
Advancing the Meet-in-the-Filter Technique:
Applications to CHAM and KATAN⋆

Alex Biryukov 1, Je Sen Teh 1,2, and Aleksei Udovenko 1

1 University of Luxembourg {name.surname}@uni.lu
2 University Sains Malaysia jesen teh@usm.my

Abstract. Recently, Biryukov et al. presented a new technique for key
recovery in differential cryptanalysis, called meet-in-the-filter (MiF). In
this work, we develop theoretical and practical aspects of the technique,
which helps understanding and simplifies application. In particular, we
show bounds on MiF complexity and conditions when the MiF-enhanced
attack may reach them. We present a method based on trail counting
which allows to estimate filtering strength of involved rounds and per-
form consequent complexity analysis with pen and paper, compared to
the computer-aided approach of the original work. Furthermore, we show
how MiF can be combined with plaintext structures for linear key sched-
ules, allowing to increase the number of attacked rounds or to reduce the
data complexity.
We illustrate our methods on block cipher families Cham and Katan
and show best-to-date single-key differential attacks for these ciphers.

Keywords: Symmetric-key · Differential cryptanalysis · ARX · NLFSR · CHAM
· KATAN

1 Introduction

In over a decade or so, there has been a shift towards portable computing de-
vices such as smart devices and wearable systems. Although these devices have
greatly eased the lives of many, they also came with new security challenges, one
being the design of cryptographic solutions that are not only efficient and se-
cure, but also have minimal computational requirements (e.g. low memory and
energy). Finding a balance between these requirements has been the focus of
researchers in the field of lightweight cryptography. Many lightweight primitives
have been proposed over the years to address this need, including symmetric-key
block ciphers such as Cham [15, 17] and Katan [5]. Differential cryptanalysis
is one of the main techniques for assessing the security of various cryptographic
primitives. Resistance to differential attacks has become one of the basic re-
quirements of a modern block cipher. Many variants of the attack have since

⋆ The work was supported by the Luxembourg National Research Fund’s
(FNR) and the German Research Foundation’s (DFG) joint project APLICA
(C19/IS/13641232).

been introduced. Recently, a new differential cryptanalysis tool called meet-in-
the-filter (MiF) was proposed by Biryukov et al. [4]. Using MiF, an attacker can
append a large number of rounds for key recovery. When applied to Speck [2],
some of the best differential attacks were reported. However, its application to
other block ciphers has yet to be investigated. In this paper, we apply MiF to
attack Cham-64 [15,17] and the Katan family of block ciphers [5]. The choices
of both Cham and Katan were motivated by their slow diffusion (slower than
Speck) which allows to append a large number of rounds for key recovery. We
report the best differential attacks on both ciphers in the single-key setting using
MiF as summarized in Table 1. For a comparison, prior differential attacks on

Table 1: Key Recovery Attacks on Cham-64 and the Katan family.

Cipher Rounds Time Data Memory Ref.

Cham-64-128 52 2114 261 254 Section 4.2
Katan-32-80 124 276 231 238 Section 5.3
Katan-48-80 130 273 245 251 Section 5.4
Katan-64-80 110 273 257 265 Section 5.5

Katan are provided in Appendix A.
In addition to new cryptanalysis results for Cham and Katan, this paper

revisits the practical and theoretical aspects of MiF. We describe theoretical
bounds on its complexity and show how simple time complexity estimates can be
obtained for MiF-enhanced differential attacks. We also introduce an approach
for estimating trail weight distributions which is useful to determine the filtering
strength of rounds involved in key recovery, which allows to perform complexity
analysis with pen and paper. In addition, we show that MiF can be combined
with plaintext structures to increase the number of attacked rounds for ciphers
with linear key schedules (e.g. Cham).

The outline of the paper is as follows. Section 2 provides a brief introduction
to the MiF tool. Section 3 present new techniques and theories related to MiF
that are used in our attacks. Finally, detailed descriptions of our attacks on
Cham-64 and the entire Katan family are reported in Section 4 and 5.

2 The Meet-in-the-Filter Technique

A typical differential attack relies on a differential distinguisher over r rounds
of a cipher with probability p to which k key-recovery rounds are appended.
After guessing the last k round keys, an attacker performs partial decryptions to
obtain the output difference after r rounds. If this difference matches the output
difference of the r-round distinguisher, then the round key guesses are likely to
be correct. Generally, an attacker would try to maximize r to obtain the best
attack possible.

2

MiF [4] is a differential cryptanalysis tool that allows to also maximize k. If
a cipher has a relatively slow diffusion an attacker can potentially add a large
number of k rounds. MiF produces a set of full k-round trails that are used for
key recovery by first splitting k into two parts, k = s + t, then processing each
part separately to find a meeting point (matching difference in the middle). An
illustration of MiF is provided in Figure 1.

Δ𝐼𝐼𝐼𝐼 Δ𝑂𝑂𝑂𝑂𝑂𝑂 Δ𝐶𝐶
Δ𝑋𝑋 = Δ𝑌𝑌

𝑟𝑟 𝑠𝑠 𝑡𝑡

𝑘𝑘

Fig. 1: MiF with an r-round differential and k = s + t key recovery rounds.

Offline, a Matsui-like search is performed in the forward direction over s
rounds starting from the output difference of the r-round differential, ∆OUT

to an intermediate difference ∆X. The set of these s-round trails (the MiF
cluster) will be stored. In the online phase, plaintext pairs with difference ∆IN

are encrypted over r + k rounds to obtain a ciphertext difference, ∆C. For each
ciphertext pair (C1,C2), we then perform a reverse search on t rounds in search
of a match in the cluster. The set of trails over t rounds is called the MiF filter.

Ciphertext pairs that result in a match are candidate right pairs, i.e., pairs

whose plaintexts have followed the initial r-round differential (∆IN
rÐ→ ∆OUT),

and come with a set of suggested k-round trails. The latter will be used in the key-
recovery phase which involves guessing round keys and checking if the partial
decryption of ciphertext pairs conforms to the suggested trails. Key recovery
relies on the following formulation of the Markov assumption:

Assumption 1. For a differential trail ∆P Ð→∆C with a weight w (and possibly
truncated intermediate differences), the average fraction of pairs of ciphertexts
(C1,C2) and subkeys for which the partial decryption of (C1,C2) follows the trail
is equal to 2−w.

In the end, the attacker is left with a set of candidate keys that are tested with
trial decryptions. Optimizing the key recovery phase requires deeper analysis and
may vary depending on the target cipher.

3

3 New Theoretical Analysis of Meet-in-the-Filter
Technique and Extensions

3.1 Performance Gain of MiF Key Recovery over Exhaustive
Search

We first analyze the theoretical power and limits of MiF with respect to the
weights of involved trails or differentials. Indeed, the MiF attack has several pa-
rameters and the trade-off between the time and data complexities is not very
clear. For the purpose of this subsection, we will assume that the key recovery
procedure is perfect: given a trail or even a differential over k rounds, it enu-
merates (without any extra overhead) all the candidate subkeys that satisfy the
trail/differential. This is a strong condition and, although it can often be reached
in basic MiF attacks, advanced attacks would require more precise analysis of
the intermediate costs. We will focus on the following MiF-like setting.

An attacker uses a differential ∆IN
rÐ→ ∆OUT over r rounds with a weight

w and queries an (r + k)-round encryption of a plaintext pair (P1, P2) with
P1 ⊕ P2 = ∆IN, obtaining a ciphertext pair (C1,C2) with C1 ⊕ C2 = ∆C. The

MiF tool suggests a set of valid trails of the form ∆OUT
kÐ→ ∆C. The attacker

may run the perfect key recovery and obtain, by Assumption 1, a list of 2Ks−w

subkeys, where Ks is the size of the involved subkeys in bits (typically equal
to the size of the master key). These subkeys may then be checked using trial
decryptions. Questions then arise: What are the chances to hit the correct master
key? Should the attacker attempt the key recovery, or, perhaps, it is better to
try another pair?

The key insight to answering these questions lies in studying the probability
that the right subkey is among the suggested subkeys posterior to observing the
output difference ∆C. Indeed, if the suggested subkeys are not better than fully
randomly guessed subkeys, then the attack is not useful at all. On the other
hand, if the suggested subkeys are g times more likely to match the right subkey
(g > 1), then on average, the attacker would need to test g times fewer subkeys
to find the right one, effectively reducing the time complexity (more precisely,
of the trial decryption stage) by the factor g. This idea is similar to the classic
definition of signal/noise ratio (S/N) by Biham and Shamir [3], and our theory

specializes it based on the MiF trail ∆OUT
r+kÐÐ→∆C.

In the following, consider two differentials

τr =∆IN
rÐ→∆OUT, τk =∆OUT

kÐ→∆C, (1)

with probabilities Pr[τr] = p and Pr[τk] = q respectively. Let p̃ be the probability

of the full differential ∆IN
r+kÐÐ→∆C.

Definition 1. Define the gain g of the pair (τr, τk) as

g = Pr[κ is the right key ∣ κ satisfies ∆OUT
kÐ→∆C]

2−Ks
, (2)

4

where the probability is over the encryptions of plaintext pairs.

Theorem 1. The gain g is equal to

g = Pr[∆IN
rÐ→∆OUT]

Pr[∆IN
r+kÐÐ→∆C]

= p

p̃
. (3)

Proof. For κ to be the right subkey, the encryption must have followed the

path ∆IN
rÐ→ ∆OUT

kÐ→ ∆C (given ∆IN
r+kÐÐ→ ∆C) and κ is one of the subkeys

satisfying the transition ∆OUT
kÐ→∆C (which has expected size 2Ksq, where q is

the transition probability over k rounds). Therefore,

g =
pq
p̃
⋅ 1
2Ksq

2−Ks
= p

p̃
.

Perhaps counter-intuitively, the proposition shows that the gain does not

directly depend on the probability q of trail/differential ∆OUT
kÐ→ ∆C, except

that it is included in the full differential when concatenated with ∆IN
rÐ→∆OUT.

The explanation for that in terms of a differential attack is that the probability
q of the transition τk is proportional to the number 2Ksq of surviving keys and
inversely proportional to the required number 1/(pq) of encryptions: A lower
probability transition yields fewer keys to check but requires more encryptions
to actually hit it, while a higher probability transition yields more key candidates
but happens more often.

The trivial bound p̃ ≥ pq translates to the following bound on the gain.

Proposition 1. The gain g is upper-bounded by 1/q.

This is also clear from the fact that the set of (on average) 2Ksq subkeys is
smaller than all 2Ks keys precisely by the factor of 1/q. However, this bound

is tight only in the case p̃ = pq, i.e., when all trails in the differential ∆IN
r+kÐÐ→

∆C are going through ∆OUT after the first r rounds. In this case, getting one
encryption pair with such ∆C is sufficient for the attack to succeed with gain
1/q, since the right key has to be in those 2Ksq suggested keys. In typical attacks,
however, the gain would be much smaller. It is as close to 1/q as big is the fraction
of trails ∆IN

r+kÐÐ→∆C going through ∆OUT (in terms of the total probability).
Usually, we expect all output differences to be equally possible, as described

in the following assumption.

Assumption 2. The probability3 of any differential ∆IN
r+kÐÐ→ ∆C over the full

cipher is equal to 2−∣C∣ up to a negligible error, where ∣C ∣ is the ciphertext size.

Corollary 1. Under Assumption 2, the gain g is equal to 2∣C∣p.
3 Here, we consider probability over all intermediate (long) keys. Therefore, the limi-
tation of a fixed-key permutation to have minimum nonzero differential probability
2−∣C∣+1 (over plaintexts/ciphertexts) does not affect this assumption.

5

Interestingly and counter-intuitively, the gain does not depend on the dif-
ferential in the MiF part (unless Assumption 2 does not hold and there is a
full-round (improbable) differential distinguisher). Note however that here we
only consider the final number of key candidates for trial decryptions. Other
attack complexities which include the data complexity, the MiF complexity and
the intermediate key recovery complexity do depend on the MiF part. For at-
tacks where the trial decryption dominates, the corollary provides a simple time
complexity estimate of 2Ks/(2∣C∣p). We further investigate Theorem 1 experi-
mentally4 in Appendix D.

Remark 1. In principle, the filtering in accordance with the trail does not nec-
essarily need to filter keys for each given ciphertext pair: filtering by ciphertext
values works as well, since it reduces the total number of trail-subkey candidates.

Remark 2. Our definition of gain specializes the S/N ratio to concrete output

differences ∆C. Indeed, [3] compute S/N = 2Ksp
w

, where w is the average number
of subkey candidates suggested by a pair (including a possible filtration factor).

A given ciphertext difference ∆C defines the differential ∆OUT
kÐ→ ∆C with

probability q, so that w = 2Ksq and the S/N value is specialized into simply p
q
.

This is correct as long as the probability of the actual encryption following the

differential ∆IN
rÐ→∆OUT is equal to p; in particular, this is true if we average the

S/N value over all possible ciphertext differences. However, for a given ciphertext
difference, the actual probability is equal to pq

p̃
(see above), yielding the posterior

factor q
p̃
. Note that even Assumption 2 (fixing p̃ to 2∣C∣) does not make the gain

match the S/N definition, since the MiF trails defining the probability q still
vary depending on the observed ciphertext difference (but the gain will average
to S/N over all possible differences). We conclude that the gain theory is more
fine-grained than the S/N formula of [3], giving more insights into the MiF
attack.

Trails or differentials? In order to provide final complexity estimates for the
trial decryption step, there are two cases depending on whether a trail is used
for an attack or a differential. We will assume that the recovered subkey can be
used to obtain all other subkeys using the cipher’s decryption procedure. If only
a part of the subkey is recovered, the rest can be recovered by exhaustive search.

In a differential -based attack, the recovered subkey is simply used to decrypt
one r-round (partially decrypted) ciphertext and checked against the known
plaintext. We assume the cost of this is equal to r rounds of the primitive, or,
r/(r + k) full primitive decryptions.

In a trail -based attack, a surviving pair can be decrypted round-by-round and
checked for conformance to the trail. The expected number of round decryptions
can be computed by using the trail’s round weights (w1,w2, . . . ,wr) as

c = 1 + 2−wr ⋅ (1 + 2−wr−1 ⋅ (. . .)). (4)

4 Codes and other relevant information are available at
github.com/cryptolu/MeetInTheFilter CHAM KATAN.

6

https://github.com/cryptolu/MeetInTheFilter_CHAM_KATAN

Since both values have to be decrypted to test the difference, the cost has to be
doubled so that the final cost is equal to 2c/(r + k) full primitive decryptions.

Since the final number of candidates is proportional to the probability of the
trail/differential, the final complexity can be expressed as

min(2c

r + k
⋅ 1

ptrail
,

r

r + k
⋅ 1

pdiff
)

full primitive decryptions.
We remark that a mix of the two methods is possible by fixing several final

rounds of a differential to the same trail. The associated cost c can be com-
puted as in (4), applied to the last t ≤ r rounds with the additional cost of
(r − t)2−wr−wr−1−...−wr−t+1 single-round decryptions (i.e., for a pair surviving all t
last rounds of the trail, we need to decrypt only one text up to the plaintext to
check). We will use this method in the attack on Cham (Section 4.2).

3.2 MiF-like Key Recovery Applied to Plaintext Structures

When the attacked cipher has a simple (e.g., linear) key schedule, MiF-like key
recovery can be also performed at the first round of the cipher, combined with a
standard technique in differential cryptanalysis - plaintext structures. The latter
allows to construct a compact set of plaintexts containing many pairs satisfying
one of the given differences.

The standard approach is to start with a single difference ∆IN, propagate it
backward by a few rounds in all possible ways to determine the set of possibly
active bits, and construct a structure consisting of plaintexts with active bits
taking all possible values and inactive bits set to any constant. After the whole
structure is encrypted, the attacker enumerates all pairs in the structure and
analyzes conditions on which the pair would reach the difference ∆IN after the
initial rounds. Typically, there is a strong filter quickly discarding many such

pairs. If the main differential ∆IN
rÐ→ ∆OUT requires more pairs, the process is

repeated for the same structure but using different constants for inactive bits.
We recall that the core idea of MiF is to find a trail connecting the differ-

ences, and to use it to recover candidates for the intermediate subkey bits. This
methodology can be directly applied to plaintext structures as well. Since the
attacker needs to bound the activity pattern after propagating ∆IN backward,
we will assume that all t trails over these initial rounds can be explicitly enumer-
ated. Then, during the attack, the attacker would simply enumerate these trails
and choose accordingly pairs from the structure instead of enumerating all pairs.
Note that a structure with n active bits contains 2n plaintexts and distinct 2n−1

pairs of plaintexts satisfying a chosen difference fitting the pattern. Therefore,
t2n−1 pairs are enumerated instead of all 22n−1 pairs, per one structure.

Then, for each plaintext-trail pair, the attacker can also apply MiF-like key
recovery in addition to the ciphertext-side key recovery. This stage can in fact
be precomputed offline. A necessary constraint is that it should be possible to
combine the subkey bits recovered from the plaintext and ciphertext sides, which
is typically the case for linear key schedules (at a reasonable cost).

7

3.3 Computing or Estimating the Average Trail Probability

We propose the following very simple but powerful theorem that relates the
average probability of a trail to the total number of trails, where we only consider
trails starting with a fixed difference.

Theorem 2. Let ∆ be a state difference of a cipher. Let T be the set of all
possible l-round trails starting at ∆. Then, the average probability of a trail from
T is equal to 1/∣T ∣.

Proof. Follows from the fact that all trails starting from a single fixed difference
must have probabilities summing to 1.

For ARX ciphers, counting the number of valid output differences for a single
ADD operation can be done efficiently using bit-based dynamic programming.

Lemma 1. Let α,β be fixed differences for the n-bit inputs of ADD or SUB.
Then, the number of differences γ such that (α,β) → γ is a valid differential
transition through the chosen operation can be computed in time O(n).

Proof. The idea is to iterate an index i from the least significant bit to the most
significant bit and keep 3 counters for the numbers of differences γ (defined up
to the current bit) such that: (a) αi = βi = γi = 0, (b) αi = βi = γi = 1, (c)
¬(αi = βi = γi). Since the new bit of γ is defined by one of the three cases, and
all bits of α and β are given, it is easy to update the counters. In particular,
case (c) creates both possibilities for the new difference bit (branching factor
2), while cases (a) and (b) define the new difference bit deterministically. See
Algorithm 1 for details.

Algorithm 1 Counting differential trail extensions through single ADD or SUB

Input: α,β ∈ Fn
2

Output: ∣{γ ∈ Fn
2 ∣ (α,β) → γ is valid through ADD/SUB}∣

1: if α0 = β0 = 0 then
2: (c0, c1, c≠) ← (1,0,0)
3: else
4: (c0, c1, c≠) ← (0,0,1)
5: end if
6: for i ∈ {1, . . . , n − 1} do
7: if αi = βi = 0 then
8: (c0, c1, c≠) ← (c0 + c≠,0, c1 + c≠)
9: else if αi = βi = 1 then
10: (c0, c1, c≠) ← (0, c1 + c≠, c0 + c≠)
11: else if αi ≠ βi then
12: (c0, c1, c≠) ← (0,0, c0 + c1 + 2c≠)
13: end if
14: end for
15: return c0 + c1 + c≠

8

Theorem 2 and Lemma 1 allow to compute the average trail probability for
a given cipher and a chosen difference for a relatively large number of rounds.
The idea is to explicitly enumerate all possible trails for l rounds and then use
Algorithm 1 on each trail to extend by 1 or more rounds implicitly, depending on
the cipher’s structure. For example, Speck allows only 1-round extension in both
directions, while Cham allows 3-round extension forwards and 1-round extension
backwards. Furthermore, typically, after a few rounds, the round’s branching
factor (multiplier to the number of trails) converges to the branching factor of
a random difference transition which is usually known (for example, it is about
212.1 for a 16-bit ADD [4]). The latter estimation method is relevant also for
non-ARX primitives, for which Algorithm 1 is non-applicable. Therefore, these
techniques allow to count or to estimate the number of trails over any number
of cipher’s rounds.

3.4 Estimating the Truncated Trail Weight Distribution

For complexity analysis, we need to compute the probability of each round’s
differential transition, averaged over a given set of trails. For this, we employ
the following assumption.

Assumption 3. Let Ti be the set of all trails over i rounds of a cipher. Then,
the probability of differential transitions at round j ≤ k averaged over the trails
from Tk can be estimated as ∣Tj−1∣/∣Tj ∣, letting ∣T0∣ = 1.

Example 1. In Cham64, the difference (2000,1000,2810,0020) spans forward
219.55 trails over 4 rounds and 229.89 trails over 5 rounds. Therefore, we assume
that the average probability of a differential transition over the 5th round is
equal to 2−10.34 (see Table 2b).

The intuition for this assumption is based on Theorem 2. Indeed, the average
probability of all trails over the first j − 1 rounds is equal to 1/∣Tj−1∣, and over
the first j rounds it is equal to 1/∣Tj ∣. Since for a single trail the probabilities
over rounds are multiplied, it is natural to use such a product rule for average
probabilities of trails in order to estimate the single round’s average probability.
The possibility of approximation error comes from the fact that extending trails
over j rounds to k rounds may change the distribution of the j-round prefixes
(by changing their multiplicities).

Furthermore, the approximation error is limited by the fact that the average
round probabilities computed in such way do multiply to the correct average
trail probability 1/∣Tk ∣. Therefore, the actual average probabilities may only
shift filtration power from one round to another, unlikely to significantly affect
complexity analysis of our attacks. Our experiments onKatan-32 in Appendix E
show that estimates using Assumption 3 closely approximates the actual average
trail weights.

Eichlseder and Kales [8] adopted a similar approach to estimate the dif-
ferential probability for semi-truncated differential characteristics. Rather than

9

enumerating all possible trails, they calculate the sum of probabilities of all com-
patible differential characteristics for a fixed input difference, averaged over all
compatible input differences.

4 Cryptanalysis of Round-reduced CHAM

4.1 CHAM Revisited

Cham is a family of lightweight block ciphers based on the ARX construction
[15,17]. It consists of 3 members, Cham-64-128 (to which we refer to as Cham-
64 in the rest of the paper), Cham-128-128 and Cham-128-256 with 88, 112 and
120 rounds respectively, where Cham-n-k refers to a variant with an n-bit block
and k-bit secret key. Each block is processed as m = n

4
-bit words using three

main operations: bitwise XOR, addition modulo 2m and bitwise rotation. The
two consecutive rounds of Cham are depicted in Figure 2. Cham has a linear
key schedule that generates 2k

m
m-bit words defined as

RK[i] =K[i] ⊕ROL1(K[i]) ⊕ROL8(K[i]), (5)

RK[i + k

m
⊕ 1] =K[i] ⊕ROL1(K[i]) ⊕ROL11(K[i]). (6)

Note that the master key words can be calculated from round subkeys by invert-
ing these linear maps, for example, by precomputed lookup tables.

𝑋𝑋𝑖𝑖[3]

𝑋𝑋𝑖𝑖[2]

𝑋𝑋𝑖𝑖[1]

𝑋𝑋𝑖𝑖[0]

𝑋𝑋𝑖𝑖+1[3]

𝑋𝑋𝑖𝑖+1[2]

𝑋𝑋𝑖𝑖+1[1]

𝑋𝑋𝑖𝑖+1[0]

𝑋𝑋𝑖𝑖+2[3]

𝑋𝑋𝑖𝑖+2[2]

𝑋𝑋𝑖𝑖+2[1]

𝑋𝑋𝑖𝑖+2[0]

𝑅𝑅𝑅𝑅𝐿𝐿1 𝑅𝑅𝑅𝑅𝐿𝐿8

𝑖𝑖 𝑖𝑖 + 1

𝑅𝑅𝑅𝑅𝐿𝐿8 𝑅𝑅𝑅𝑅𝐿𝐿1

𝑅𝑅𝑅𝑅[𝑖𝑖 mod 2𝑘𝑘
𝑚𝑚

] 𝑅𝑅𝑅𝑅[𝑖𝑖 + 1 mod 2𝑘𝑘
𝑚𝑚

]

Fig. 2: Two consecutive rounds of Cham starting from an even i-th round

The following observations on Cham are used in our attack:

Observation 1. In any 4 rounds of Cham, the input and the output difference
together determine the full 4-round differential trail (efficiently). Consequently,
4 rounds of Cham do not have any trail clustering.

Observation 2. The addition in the i-th round of Cham takes as inputs the
outputs of additions in the (i − 3)-rd and (i − 4)-th rounds. The subtraction
(in decryption) in the i-th round of Cham takes as inputs the outputs of the
subtractions in the (i + 1)-st and (i + 4)-th rounds.

10

Prior differential cryptanalysis findings on Cham only involved identifying
the best differential trails. Apart from attacks briefly described by the designers,
no other key recovery attacks have been proposed so far.

Appendix B provides some details of the Cham differentials used in our
paper. While experimentally verifying the validity of these differentials, we also
found that Cham’s differentials are highly key-dependent. This key-dependency
is further investigated in Appendix C.

4.2 Attack on 52-round CHAM-64

We use a differential over 40 rounds of Cham having probability p = 2−60.05

(with the first and last 4 rounds having fixed differences), and an attack split
4+40+4+4. The main 40-round differential can be extended 4 rounds backward
in 235.67 possible ways (see Table 2a), with 10 least significant bits of the last
word never active in the plaintext difference. This list of differences can be
precomputed.

We encrypt 27.05 structures of 254 plaintexts (261.05 encryptions). After ex-
tracting pairs with one of 235.67 possible plaintext differences in each structure,
we obtain 261.05+35.67−1 = 295.72 plaintext-ciphertext pairs for analysis, each ac-
companied by a candidate trail in the first 4 + 40 rounds. Note that we expect
to find 1 right pair following the main 40-round differential in this set (by the
linearity of expectation), since the sum of probabilities of all trails in the 4 prefix
rounds is equal to 1, and we consider 260.05 such sets. Each such pair is processed
by MiF, getting a list of candidate trails for the last 8 rounds. From Table 2b
we can see that each ciphertext difference induces 264.84−64 = 20.84 trails5 on
average, resulting in 296.56 full 52-round trails (with associated plaintext and ci-
phertext pairs) for analysis. This can be done by expanding the difference ∆OUT

forward by 219.55 possible 4-round trails and checking the validity of differential
transitions through ADD in the bottom 4 rounds, leading to a time complexity
of about 219.55 one-round encryptions of Cham per pair (2116.11 total).

Using methodology from Section 3.3, we computed the filtering probabilities
for each round of the first and last 8 rounds, see Table 3 (computed from Table 2a
and Table 2b). Now, we will guess the subkeys in a carefully chosen order, cross-
checking the top and bottom subkeys as soon as possible. The order must satisfy
Observation 2, namely, guessing or verifying round r at the top must have rounds
r−3, r−4 guessed (can skip 2 rounds); guessing or verifying round r at the bottom
must have rounds r + 1, r + 4 guessed (cannot skip rounds). The timeline of the
procedure is given in Table 4.

The procedure uses 2 main actions: computing a representation of the set
of candidates for a subkey of one of the rounds; filtering a set of candidates
for some subkey by a round from the other side. Both filters are based on one
known incoming value into the addition/subtraction and the known differential
transition.
5 When extending 8 rounds forward, there are 264.84 possible trails. Since there are
only 264 possible ciphertext differences, each ciphertext difference suggests 20.84 trails
on average.

11

Table 2: Cham-64 trail statistics. Weight is defined as the − log2 of the proba-
bility.

(a) Backward extension from difference
∆IN = (0020,0010,1020,2800).

Round #Trails
Avg. Weight
(this round)

-1 24.17 4.17
-2 211.89 7.72
-3 223.8 11.91
-4 235.67 11.87

(b) Forward extension from difference
∆OUT = (2000,1000,2810,0020).

Round #Trails
Avg. Weight
(this round)

1 21.58 1.58
2 28.12 6.54
3 215.46 7.34
4 219.55 4.09
5 229.89 10.34
6 239.95 10.06
7 252.57 12.62
8 264.84 12.27

Table 3: Filter strength (top and bottom 8 rounds) in the 52-round attack on
Cham-64. Rounds 1-4 correspond to the 4-round backwards extension at the
top; rounds 5-8 correspond to the first 4 rounds of the main differential trail;
rounds 45-52 correspond to the 8-round forward extension (MiF) at the bottom.

Master
key word

Round Subkey Filter Round Subkey Filter Total

K[0] 1 RK[0] 2−11.87 49 RK[0] 2−10.34 2−22.21

K[1] 2 RK[1] 2−11.91 50 RK[1] 2−10.06 2−21.97

K[2] 3 RK[2] 2−7.72 51 RK[2] 2−12.62 2−20.34

K[3] 4 RK[3] 2−4.17 52 RK[3] 2−12.27 2−16.44

K[4] 5 RK[4] 2−1.00 46 RK[13] 2−6.54 2−7.54

K[5] 6 RK[5] 2−2.00 45 RK[12] 2−1.58 2−3.58

K[6] 7 RK[6] 2−3.00 48 RK[15] 2−4.09 2−7.09

K[7] 8 RK[7] 2−2.00 47 RK[14] 2−7.34 2−9.34

all 1-8 RK[0-7] 2−43.68 43-50 RK[0-3,12-15] 2−64.84 2−108.52

Attack Complexity. The final time complexity (based on Table 4) is dominated
by 2 ⋅ 2117.63 one-round key recovery analyses per candidate subkey, and the
cost to verify the 2116.05 final subkey candidates. We assume a 2-round cost for
enumerating a subkey candidate. Since the last 4 rounds of the differential are
fixed to a trail with round weights (1,2,3,2), we can test a key candidate with

1 + 2−2(1 + 2−3(1 + 2−2(1 + 2−1)))

one-round decryptions on average and 2−8 40-round decryptions, totalling to
1.45 = 20.54 one-round decryptions. We obtain the final estimation of

2116.05+0.54 + 2118.63 × 2 = 2119.80

12

Table 4: Guessing procedure in the 52-round attack on Cham-64. Time is mea-
sured in one-round key recovery analysis cost per key candidate.

Step Guess subkey Verify subkey Filter Time
Trail-key pairs
remaining

0 initial (after MiF) 296.56

1 R52 : K[3] 2−12.27 2100.29 2100.29

2 R51 : K[2] 2−12.62 2103.67 2103.67

3 R3 : K[2] 2−7.72 2103.67 295.95

4 R2 : K[1] 2−11.91 2100.04 2100.04

5 R50 : K[1] 2−10.06 2100.04 289.98

6 R1 : K[0] 2−11.87 294.11 294.11

7 R49 : K[0] 2−10.34 294.11 283.77

8 R4 : K[3] 2−4.17 283.77 279.60

9 R48 : K[6] 2−4.09 291.51 291.51

10 R7 : K[6] 2−3.00 291.51 288.51

11 R47 : K[7] 2−7.34 297.17 297.17

12 R46 : K[4] 2−6.54 2106.63 2106.63

13 R5 : K[4] 2−1.00 2106.63 2105.63

14 R8 : K[7] 2−2.00 2105.63 2103.63

15 R6 : K[5] 2−2.00 2117.63 2117.63

16 R45 : K[5] 2−1.58 2117.63 2116.05

one-round encryptions, equal to 2114.10 52-round Cham encryptions. The data
complexity is 261.05 chosen-plaintext encryptions. The 254 64-bit blocks required
to store plaintexts in a structure dominate memory complexity.

13

5 Cryptanalysis of Round-reduced KATAN

5.1 KATAN Revisited

TheKatan family of block ciphers comprises three variants denoted asKatan-b,
where the block size b is 32, 48 or 64 [5].Katan consists of two nonlinear feedback
shift registers (NLFSR) that store and update the plaintext and an LFSR to
generate round subkeys. All variants of Katan have an 80-bit key, the same
key schedule and 254 rounds. They differ by register lengths, bit positions that
enter the feedback functions, and the number of steps, which is the number of
times the round function is repeated using the same subkey each round. Figure 3
depicts one round of Katan where L1 and L2 are two NLFSRs while ka and kb
are two round key bits. Given an 80-bit master key K, the subkey of round i is
ka∣∣kb = k2⋅i∣∣k2⋅i+1 where

ki =
⎧⎪⎪⎨⎪⎪⎩

Ki, for i = 0, . . . ,79,
ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13, otherwise.

The L1 and L2 registers are updated by two nonlinear feedback functions, fb
and fa respectively, defined as follows:

fa(L1) = L1[x1] ⊕L1[x2] ⊕ (L1[x3] ∧L1[x4]) ⊕ (L1[x5] ∧ IR) ⊕ ka, (7)

fb(L2) = L2[y1] ⊕L2[y2] ⊕ (L2[y3] ∧L2[y4]) ⊕ (L2[y5] ∧L2[y6]) ⊕ kb,

where IR is the irregular update bit depending on the round. The selection of xi

and yi bits differ for each variant of Katan. During each step, LSBs of L1 and
L2 are updated by fb and fa respectively. For Katan-48 and -64, each round
has two and three steps respectively. Table 5 defines the register lengths and bit
positions that enter the feedback functions for all variants.

𝐿𝐿1

𝐿𝐿2

∧

∧𝑘𝑘𝑏𝑏

𝑘𝑘𝑎𝑎∧

𝑦𝑦6

∧

𝑦𝑦4

𝑥𝑥4

𝐼𝐼𝐼𝐼

𝑥𝑥2

𝑦𝑦2

𝑥𝑥5 𝑥𝑥1

𝑦𝑦1

𝑥𝑥3

𝑦𝑦3 𝑦𝑦5

Fig. 3: One round of Katan

The most successful attacks on all variants of Katan are multidimensional
meet-in-the-middle attacks that span up to 206, 148 and 129 rounds for Katan-
32, 48 and 64 respectively [16]. As the goal of this paper is to use MiF to improve

14

Table 5: Parameters for the Katan-b family of block ciphers

b ∣L1∣ ∣L2∣ x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

32 13 19 12 7 8 5 3 18 7 12 10 8 3
48 19 29 18 12 15 7 6 28 19 21 13 15 6
64 25 39 24 15 20 11 9 38 25 33 21 14 9

differential cryptanalysis, we will compare our results against the best single-key
and related-key differential attacks as summarized in Table 7 of Appendix A.

In the single-key setting, Albrecht and Leander proposed a 115-round attack
with time complexity T = 278 that exploits the full difference distribution of
Katan-32 [1]. Their attack was not computationally feasible for larger variants.
A 117-round amplified boomerang attack with T = 279.3 was later introduced
by Chen et al. [6]. The best single-key differential attacks on Katan-48 and 64
were reported by Knellwolf et al. [13] using an approach known as conditional
differential cryptanalysis. The latter is applicable to ciphers with NLFSR-based
constructions. Using this approach, around 2 bits of subkey information could
be recovered after 70 and 68 rounds of Katan-48 and Katan-64 respectively.

5.2 Key Recovery Observations

The differential propagation through AND is the basic block for constructing
trails over the Katan structure.

Fact 1. Let (α,β) → γ be a valid differential transition through AND (2-to-1
bit). Then,

1. α = β = 0 implies γ = 0 (probability 1);
2. otherwise, the transition has probability 1/2 (for both cases γ = 0 and γ = 1).

The structure of Katan’s step allows to easily derive the average branching
factor of differential trails, i.e., how many 1-step trails does a random difference
span on average. This is useful for estimating the MiF complexity. Note that
this factor does not depend on the version of Katan.

Proposition 2. Let α be a uniformly random state difference in Katan. Then,
it is expected to span 217/64 ≈ 21.76 1-step trails (in any chosen direction).

Proof. The L2 register has 2 ANDs applied to it, but their outputs are XORed
together. The transition we consider includes the full step and does not specify
the intermediate output difference of the ANDs. The output difference of the
two XORed ANDs is either fully determined (when both ANDs are inactive, i.e.,
have zero difference in all input and output bits), which happens with probability
1/16, or can be equal to 0 or 1, which happens with probability 15/16. For the
single AND applied to the L1 register, the situation is similar but simpler: the
transition has a single extension if the AND is inactive (happens in 1/4 of the

15

cases), or 2 extensions otherwise (in 3/4 of the cases). We obtain the expected
number of 1-step extensions is equal to

15

16
⋅ 3
4
⋅ 4 + 1

16
⋅ 3
4
⋅ 2 + 15

16
⋅ 1
4
⋅ 2 + 1

16
⋅ 1
4
⋅ 1 = 217

64
.

Our experiment on Katan-32 in Appendix E supports the validity of Propo-
sition 2.

The key recovery behaviour of AND (with respect to a given differential
transition) is illustrated in Table 6a and Table 6b. The tables show that an
active differential transition through AND is conditioned by an affine function
of the involved values. More precisely, if one of the input bits is active, then we
learn the value of the other (inactive) bit (which has to be the same for both
texts since it is inactive). If both input bits are active, then we learn the value
of the difference between the input bits (which, again, has to be the same for
both texts even though they have to be different).

Table 6: Differential properties of AND.

(a) Output differences ∆(xy) of tran-
sitions through AND.

(x, y)
(∆x,∆y)

(0,0) (0,1) (1,0) (1,1)

(0,0) 0 0 0 1
(0,1) 0 0 1 0
(1,0) 0 1 0 0
(1,1) 0 1 1 1

(b) Conditions and output values induced
by differential transitions through AND.

Diff. transition
(∆x,∆y) →∆(xy)

Condition Output xy

(0,0) → 0 - xy

(0,1) → 0 x = 0 0
(0,1) → 1 x = 1 y

(1,0) → 0 y = 0 0
(1,0) → 1 y = 1 x

(1,1) → 0 x⊕ y = 1 0
(1,1) → 1 x⊕ y = 0 x = y

Proposition 3. In the encryption mode, the key addition kb (resp. kb) going
into the L1 (resp. L2) register does not affect an AND operation during x4 + 1
(resp. y6 + 1) encryption steps. The concrete numbers of steps are 6/8/12 (resp.
4/7/10) for 32-/48-/64-bit versions of Katan.

Proposition 4. In the decryption mode, the key addition ka going into the L1

register affects an AND operation only after x1 − x3 decryption steps6, equal to

6 In a decryption step, due to the register shift, the taps x2, . . . , x5, y2, . . . , y6 are
increased by 1 in order to match the same bits used in the encryption. This explains
why Proposition 3 has an extra step compare to Proposition 4.

16

4/3/4 for 32-/48-/64-bit versions of Katan respectively. Similarly, the key ad-
dition kb going into the L2 register affects an AND operation only after y1 − y3
decryption steps, equal to 6/7/5 for 32-/48-/64-bit versions of Katan respec-
tively.

In our attacks, we guess key bits only when they are input to an AND being
currently decrypted (bits x3 and y3). Note that the XOR feed takes as input a
bit placed after the first AND input bit. In this way, we always guess concrete
subkey bits and not linear functions of them.

5.3 Attack on 124-round KATAN-32

Appendix B provides details of the Katan differentials used in our attacks. We
attack rounds 124 rounds of Katan-32 after skipping the first 29 rounds (i.e.,
rounds 30-153). This skip is motivated by rounds 34-107 having a local minimum
in the fraction of rounds with IR=1, leading to slower diffusion. The rounds are
split as follows:

– Rounds 30-33 (4): free rounds at the top (key-independent transitions);
– Rounds 34-107 (74): main differential(s): 40028200→ 21000004/21000006;
– Rounds 108-149 (42): MiF and key recovery (involves 80 distinct subkey

bits);
– Rounds 150-153 (4): free rounds at the bottom (key-independent transi-

tions).

Using the trail(s). The two best 74-round differential trails covering rounds 34-
107 both have the same weight 31 and differential probability 2−30.23 . Since the
differential effect is weak, we choose to use the best trail (rather than differen-
tials), as it allows to verify the subkey candidates round-by-round by checking
conformance to the trail (thus avoiding full cipher decryption). This allows to
save a few bits in the time complexity since the number of rounds is large.

Free rounds. We choose 230 random inputs pairs at round 34, conforming to the
difference 40028200. Each value is then decrypted by 4 rounds using zero subkey
bits. These bits do not affect the differential propagation, so that the difference
40028200 will be satisfied at round 34 during actual encryption with real subkey
bits. These 230 pairs are than encrypted by the oracle.

Similarly, the last 4 rounds can be decrypted without involving the key ma-
terial. Although the rounds actually perform key additions, they are effectively
delayed until the first AND operation, which takes 4 rounds for the L1 register
and 6 rounds for the L2 register.

MiF Trail Enumeration. We effectively end up with 230 pairs of encryptions
covering rounds 34-149, candidates for satisfying one of the two differentials in
rounds 34-107.

For each of the two differences ∆OUT, we run the MiF procedure and gen-
erate possible trails connecting ∆OUT and the (partially decrypted) ciphertext

17

difference. For each trail, we run the key recovery procedure (described below).
The time complexity of MiF can be estimated as follows. By exhaustive trail
enumeration, we observe that the two differences span respectively 230.36 and
232.87 trails (233.10 total) over 23 rounds (108-130). These trails form the MiF
cluster. Then, for each ciphertext difference, we enumerate all possible trails
backwards over 19 rounds (131-149), leading to (21.76)19 = 233.44 trails on av-
erage (by Proposition 2)7. Each of the obtained differences is checked against
the cluster. This requires 230 × 233.44 = 263.44 lookups (each may return several
trails), which is negligible compared to the key recovery complexity (see below).

For the record, we expect to check in total over 230+64.46−32 + 230+66.97−32 =
265.20 trails. Here, 264.46 and 266.97 are the number of 42-round trails spanned
by the two chosen differences respectively (computed iteratively using dynamic
programming).

Key Recovery. Each generated trail is passed through the basic round-by-round
key recovery procedure, using the associated trail as a filter. By the gain anal-
ysis (Section 3.1), we expect the final number of key candidates to be around
280−(32−PrT) = 279, which provides an estimate for the attack’s complexity, given
that the available differential filter can be efficiently used. This can be ensured
by the simple structure of the cipher. Indeed, the total number of key candidates
is only growing with the recursion depth, since the average trail probability per
step is 2−1.76 and 2 subkey bits are involved per step, yielding an expansion factor
20.24 per step (after the first few key recovery rounds where subkey material use
is sparse / delayed8). Therefore, a few deepest (closest to ∆OUT) key recovery
rounds dominate the complexity. The enumeration of the subkey bits satisfying
the transitions can be done very efficiently, since, by Table 6b, a transition gives
a direct constraint on the input bit, yielding the subkey bit value or discarding
the trail if the relevant input bit is constant. Pessimistically, we estimate the
time complexity as 2 round decryptions per each of the final candidates, i.e., 280

single-round Katan-32 decryptions equal to 273.04 full-round decryptions.
The final verification of the 279 subkeys can be done by doing round-by-round

decryption and checking conformance to the trail. Let

w1,w2, . . . = (0,1,0,0,1,0,0,0,0,0,0,1,0,1,0,1,1,0,1,0,1, . . .)

be the weights of transitions in the 74-round trail, starting from the last round.
Then, on average, we would need to decrypt each pair for

1 + 2−w1 ⋅ (1 + 2−w2 ⋅ (. . .)) ≤ 5.71

rounds, resulting in 11.42 single-round decryptions or 2−3.44 full decryptions
per a full candidate subkey. The final complexity is thus 275.56 full Katan-32
decryptions. The total key recovery complexity is 273.04 + 275.56 = 275.80 full
decryptions.

7 Experimentally, we obtained an average of 233.49 trails which closely matches the
estimates obtained by Proposition 2. See Appendix E for details.

8 Subkey dependency matrices are provided in the supporting code repository.

18

Attack Complexity. The attack requires 231 chosen-plaintext encryptions, 233.10 ⋅
23 = 237.62 memory blocks (for the MiF Cluster), and has time complexity of
about 275.80 full Katan-32 decryptions. The success rate is 1 − 1/e ≈ 63.2%
(defined solely by the main 74-round differential). It can be increased if needed
by scaling the queried data.

5.4 Attack on 130-round KATAN-48

We use four 87-round differential trails with weight 46 starting with the difference
∆IN = 000001008000 at the beginning of round 35. It can be verified that this
difference allows 7 free rounds backward.

In Katan-48, the two round subkey bits are used in two consecutive steps.
This makes the MiF filter part weaker: rounds modeled as random suggest 23.52

candidate trails (Proposition 2) if we directly construct the MiF filter from dif-
ferences, whereas the “actual” branching factor is 22 simply due to 2 key bits
used. This may create a problem for the gain potential, since most of the valid
trails would suggest no correct subkeys (by counting reasons) and the process of
discarding these trails may dominate over the subkey verification stage in terms
of complexity. We resolve this problem by replacing the MiF filter with simple
guessing (similar to Dinur’s attack on Speck [7]).

The attack procedure is as follows:

1. Precompute the 17.5-round forward MiF cluster from the 4 output differences
∆OUT (estimated size 246.93, see Appendix F).

2. Select 244 pairs of texts with difference ∆IN = 000001008000.
3. Decrypt each text for 7 rounds using zero subkeys, and query the respective

ciphertext after 130 rounds (245 queries).
4. For each pair of ciphertexts, decrypt 19 rounds involving 34 distinct sub-

key bits by recursive guessing. We expect to obtain 244+34 = 278 candidate
decryptions, with estimated time complexity of about 278 single-round pair
decryptions (278 ⋅ 2/130 = 271.98 full-round decryptions).

5. Match the difference in the cluster to get valid trails (expecting 244+34+46.93−48 =
276.93 key-trails in total). The naive approach requires 278 memory lookups in
the cluster of 246.93 trails, which can be expensive in practice. However, one
can easily reduce this workload due to slow diffusion in Katan: for example,
decrypting 14 rounds (instead of 19) produces 244+24 = 268 candidates with
already 48− 5× 4 = 28 bits of the final (19-round decrypted) difference avail-
able. This allows to localize memory accesses (e.g., by pooling intermediate
14-round decryptions before the other 5 rounds), dominated by 278 memory
accesses in clusters of size 246.93−28 = 218.93. We estimate the lookup cost to
be equal to single-round decryption per pair (270.98 full-round decryptions).

6. Proceed with MiF round-by-round key recovery; the few first average round
weights of trails as processed by MiF would be about 3.52 (see Appendix F
for full trail statistics), leading to a quick reduction in the number of sur-
viving key-trail pairs (since, again, there are only 2 subkey bits per round),
before it would start increasing up to the final number.

19

7. By the gain theory (or weight-based calculations), we expect to arrive at
2−2⋅217⋅2+34+2 = 268 candidates for the 70 involved subkey bits after processing
17.5 rounds of MiF (the last MiF half-round uses extra 2 subkey bits).

8. Then, we continue to recursively guess subkey bits and check conformance
to the trail; the last 5 rounds of the trail have weight 4, so we expect about
268+5⋅2−4 = 274 candidates for the 80 subkey bits. Let

w82,w81,w80,w79 . . . = (0,0,0,1,0,0,1,0,0,1,1,0,0,0,1,0,0,0,0,1,1,0, . . .)

be the weights of transitions in the 87-round trail, starting from the 82nd

round backward. Then, on average, we would need to decrypt each pair for

1 + 2−w82 ⋅ (1 + 2−w81 ⋅ (. . .)) ≤ 23

single-round decryptions of pairs, leading to complexity 274 ⋅23 ⋅2/130 = 270.98
full-round decryptions.

Attack Complexity. The attack requires 245 chosen plaintext encryptions, 246.24 ⋅
17 = 250.33 memory blocks and time complexity of 271.98 + 270.98 + 270.98 = 272.98
full (130-round) Katan-48 decryptions.

5.5 Attacks on 110-round KATAN-64

We use 16 differential 79-round trails with weight 60 starting with the difference
∆IN = 0080402010000000 at the beginning of round 34. It can be verified that
this difference allows 5 free rounds backward. SinceKatan-64 uses the two round
subkey bits in three consecutive steps, we will proceed using a similar strategy
to our attack on Katan-48 to limit the branching factor to 22.

The attack procedure is as follows:

1. Precompute the 14-round forward MiF cluster from the 16 output differences
∆OUT (estimated size 260.86).

2. Select 256 pairs of texts with difference ∆IN = 0080402010000000.
3. Decrypt each text for 5 rounds using zero subkeys and query the respective

ciphertext after 108 rounds (257 queries).
4. For each pair of ciphertexts, decrypt 12 rounds (which includes 1 free round)

involving 22 distinct subkey bits by recursive guessing (total time complexity
256+22 = 278 one-round pair decryptions or 278 ⋅ 2/110 = 272.22 full-round
decryptions).

5. Match the difference in the cluster to get valid trails (expecting 256+22+60.86−64 =
274.86 key-trails in total). Similarly to the attack on Katan48, we assume
the cost of 1 round decryption per lookup (271.22 full-round decryptions)

6. Proceed with MiF round-by-round key recovery which will quickly reduce
the number of surviving key-trail pairs9.

7. By the gain theory, we expect to have 2−4214⋅2+22 = 246 candidates for the
250 involved subkey bits.

9 See Appendix F for full trail statistics.

20

8. Then, we continue to recursively guess subkey bits and check if the key-trail
pairs conform to the last 15 rounds of the trail, which have weight 12. We
expect around 246+15⋅2−12 = 264 candidates for the 80 subkey bits. Let

w64,w63,w62 . . . = (1,1,1,0,1,0,0,1,0,1,0,0,1,1,1,1,2,1,1,2,2, . . .)

be the weights of transitions in the 79-round trail, starting from the 64th
round backward. Then, on average, we would need to decrypt each pair for

1 + 2−w1 ⋅ (1 + 2−w2 ⋅ (. . .)) ≤ 21.21

single-round decryption of pairs, leading to complexity 264 ⋅ 21.21 ⋅ 2/110 =
259.43 full-round decryptions.

Attack Complexity. The attack requires 257 chosen plaintext encryptions, 260.86 ⋅
14 = 264.67 memory blocks and time complexity is dominated by recursive guess-
ing, which requires 272.22 + 271.22 = 272.80 full Katan-64 decryptions. Success
rate is ≈ 63.2%.

References

1. Albrecht, M.R., Leander, G.: An all-in-one approach to differential cryptanaly-
sis for small block ciphers. In: Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 7707, pp. 1–15. Springer (2012) 15, 23

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013) 2

3. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer-Verlag, Berlin, Heidelberg (1993) 4, 6

4. Biryukov, A., dos Santos, L.C., Teh, J.S., Udovenko, A., Velichkov, V.: Meet-
in-the-filter and dynamic counting with applications to speck. Cryptology ePrint
Archive, Paper 2022/673 (2022), https://eprint.iacr.org/2022/673, https://
eprint.iacr.org/2022/673 2, 3, 9

5. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A family
of small and efficient hardware-oriented block ciphers. In: CHES. Lecture Notes in
Computer Science, vol. 5747, pp. 272–288. Springer (2009) 1, 2, 14

6. Chen, J., Teh, J., Liu, Z., Su, C., Samsudin, A., Xiang, Y.: Towards accurate
statistical analysis of security margins: New searching strategies for differential
attacks. IEEE Trans. Computers 66(10), 1763–1777 (2017) 15, 23

7. Dinur, I.: Improved differential cryptanalysis of round-reduced Speck. In: SAC
2014. LNCS, vol. 8781, pp. 147–164. Springer (2014) 19

8. Eichlseder, M., Kales, D.: Clustering related-tweak characteristics: Application to
MANTIS-6. IACR Trans. Symmetric Cryptol. 2018(2), 111–132 (2018) 9

9. Hu, K., Cui, T., Gao, C., Wang, M.: Towards key-dependent integral and impossible
differential distinguishers on 5-round AES. In: SAC. Lecture Notes in Computer
Science, vol. 11349, pp. 139–162. Springer (2018) 24

10. Huang, M., Wang, L.: Automatic tool for searching for differential characteristics
in ARX ciphers and applications. In: INDOCRYPT 2019. LNCS, vol. 11898, pp.
115–138. Springer (2019) 23

21

https://eprint.iacr.org/2022/673
https://eprint.iacr.org/2022/673
https://eprint.iacr.org/2022/673

11. Huang, M., Wang, L.: Automatic tool for searching for differential characteristics
in ARX ciphers and applications. IACR Cryptol. ePrint Arch. p. 1318 (2019) 23

12. Isobe, T., Sasaki, Y., Chen, J.: Related-key boomerang attacks on
KATAN32/48/64. In: ACISP. Lecture Notes in Computer Science, vol. 7959, pp.
268–285. Springer (2013) 23

13. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanal-
ysis of nlfsr-based cryptosystems. In: ASIACRYPT. Lecture Notes in Computer
Science, vol. 6477, pp. 130–145. Springer (2010) 15, 23

14. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of trivium and KATAN. In: Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 7118, pp. 200–212. Springer (2011) 23

15. Koo, B., Roh, D., Kim, H., Jung, Y., Lee, D., Kwon, D.: CHAM: A family of
lightweight block ciphers for resource-constrained devices. In: ICISC. Lecture Notes
in Computer Science, vol. 10779, pp. 3–25. Springer (2017) 1, 2, 10

16. Rasoolzadeh, S., Raddum, H.: Multidimensional meet in the middle cryptanalysis
of KATAN. IACR Cryptol. ePrint Arch. p. 77 (2016) 14

17. Roh, D., Koo, B., Jung, Y., Jeong, I., Lee, D., Kwon, D., Kim, W.: Revised version
of block cipher CHAM. In: ICISC. Lecture Notes in Computer Science, vol. 11975,
pp. 1–19. Springer (2019) 1, 2, 10

18. Xing, Z., Zhang, W., Han, G.: Improved conditional differential analysis on nlfsr-
based block cipher KATAN32 with MILP. Wirel. Commun. Mob. Comput. 2020,
8883557:1–8883557:14 (2020) 23

22

Supplementary Material

A Comparison with Differential Attacks

To the best of our knowledge, our attack on Cham-64 is the first third-party key
recovery attack on the cipher to date.

Table 7: Summary of differential attacks on the Katan family. SK denotes
single-key and RK denotes related-key.

Cipher Rounds Type Time Data Memory Ref

Katan-32 78 SK Conditional Differential 222 216 - [13]
Katan-32 98 SK Conditional Differential 231 219 - [18]
Katan-32 115 SK Differential 279 231 - [1]
Katan-32 117 SK Rectangle 279.3 227.3 229.9 [6]
Katan-32 120 RK Conditional Differential 231 Practical - [14]
Katan-32 123 SK Differential 275.80 231 237.62 Sec 5.3
Katan-32 174 RK Boomerang 278.8 227.6 226.6 [12]
Katan-32 187 RK Rectangle 278.4 231.8 233.9 [6]

Katan-48 70 SK Conditional Differential 234 231 - [13]
Katan-48 87 SK Rectangle 278 236.7 239.3 [6]
Katan-48 103 RK Conditional Differential 225 Practical - [14]
Katan-48 130 SK Differential 273.56 245 250.33 Sec 5.4
Katan-48 145 RK Boomerang 278.5 238.4 237.4 [12]
Katan-48 150 RK Rectangle 277.6 247.2 249.8 [6]

Katan-64 68 SK Conditional Differential 235 232 - [13]
Katan-64 72 SK Rectangle 278 255.1 258.1 [6]
Katan-64 90 RK Conditional Differential 227 Practical - [14]
Katan-64 109 SK Differential 273.65 257 260.86 Sec 5.5
Katan-64 130 RK Boomerang 278.1 253.1 252.1 [12]
Katan-64 133 RK Rectangle 278.5 258.4 261.4 [6]

B Differentials

The 38 to 42-round differentials for Cham-64 were derived from the 39-round
trail found by Huang and Wang [10, 11]. After performing a cluster search for
these trails, we improved the overall differential probabilities by at least a factor
of around 26. This significant improvement indicates that Cham has a strong
differential effect.

In the following tables, Pr T is the probability of the trail and Pr D is the
probability of the differential, both expressed as − log2(Pr). Pr D was computed
using an SMT solver.

Table 8: Cham-64 Differentials used in this paper.
†: the first and the last four rounds fixed to the best trail.

r ∆in ∆out Pr T Pr D

16 0001 8000 0080 0000 0004 0502 0088 0000 14 13.13
40 0020 0010 1020 2800 2000 1000 2810 0020 66 59.41

40 0020 0010 1020 2800 2000 1000 2810 0020 † 66 60.05

Table 9: Katan Differentials used in this paper. Offset denotes the starting
round of the search (0 offset means the search starts from the beginning).
†: There 16 trails with the same weight starting from this difference. Only 4 are
shown here.

Variant Offset r ∆in ∆out Pr T Pr D

Katan-32 33 74
4002 8200 2100 0004

31 ≥ 30.23
4002 8200 2100 0006

Katan-48 34 87 0000 0100 8000

2000 0000 1048

46 ≥ 44.86
2004 0000 1048

2004 0000 1049

2000 0000 1049

Katan-64 33 79 0080 4020 1000 0000 †

4200 1000 0010 0184

60 ≥ 56.68
4200 1000 0010 01C0

4200 0000 0010 0184

4202 0000 0010 01C0

C Key-Dependency of Cham Differentials

Given a differential with probability p, one would expect to find one good
pair after encrypting 1

p
pairs with a success probability of around 63%. How-

ever, as shown in Table 10, this behavior significantly deviates from 16 rounds
onward for Cham. Taking the 20-round trail from the table as an example
(8004,4082,8200,0100 → 0004,0502,0088,0000) we experimentally estimate the
actual differential probability for several randomly selected master keys. The re-
sults are tabulated in Table 11. For some of these keys, the 20-round trail could
in fact be impossible (key-dependent impossible differentials [9]). We leave the
experimental verification of key-dependent impossibility for future work.

For keys that are valid, the actual differential probability is higher than ex-
pected. Using the same 20-round trail example, the expected differential proba-
bility after trail clustering is 2−19.94 but experimentally, we found that the actual
differential probability is around 2−18.45. This weak key effect becomes more
noticeable as the number of rounds increase (21 rounds: 2−20.24 → 2−18.45, 22
rounds: 2−23.55 → 2−22.7, 23 rounds: 2−24.8 → 2−21.95, 24 rounds: 2−27.44 → 2−24.59).

24

Table 10: Cham-64 - Probability of finding right pairs averaged across randomly
selected master keys. Pr T is the probability of the trail and Pr D is the
probability of the differential, expressed as − log2(Pr). The number of plaintext
pairs used as inputs is equal to 1/PrD. All differentials here are based on optimal
trails.

Round Pr T Pr D Success Prob. (%)

12 7 6.81 67.5
13 8 8 63.4
14 9 8.81 67.5
15 11 10.59 70.2
16 14 13.13 44.8
17 15 14.36 70.69
18 16 15.13 45.6
19 19 17.88 25.6
20 21 19.94 47.8
21 23 20.24 25.51
22 25 23.55 43.44
23 28 24.8 24.26
24 30 27.44 23.1

D Experimental Verification of Gain

Using Cham as an example, we experimentally verify the time complexity esti-
mate described in Section 3.1. To do so, we need to calculate the gain, g of the
trails (or differentials) generated by MiF. For quick verification, our experiments
were performed on 18 rounds, where the initial differential is over r = 16 rounds
and there are k = 2 key-recovery rounds. Since the number of rounds is relatively
low, Assumption 2 may not hold due to Cham’s weak diffusion. Therefore, apart
from p, we will also need to compute p̃ to calculate g (Corollary 1). Since differ-
entials over 18 rounds of Cham have key dependencies (See Appendix C), both
p and p̃ are derived experimentally for a more accurate estimate.

MiF is then used to generate a set of valid (16+2)-round trails which share

the same form ∆IN
16Ð→ ∆OUT

2Ð→ ∆C. We compute the gain for the differen-

tials that these trails correspond to, i.e., ∆IN
16Ð→ ∆OUT and ∆IN

18Ð→ ∆C.
We then perform a key-recovery attack to determine the average number of
key candidates the differentials suggest, which should correspond to the gain,
g ≈ 1 − log2(#candidates). We analyze the differentials corresponding to each
trail separately by fixing ∆C. To ensure that we have at least one right trail

that follows ∆IN
16Ð→∆OUT

2Ð→∆C, we need 1/(pq) pairs for the attack, where q
is the differential probability of the final two (key-recovery) rounds.

Table 12 summarizes the results of this experiment for four trails that corre-
spond to two different master keys. In all instances, the set of keys suggested by
each differential includes the correct (32-bit) round keys for the final 2 rounds.

25

Table 11: Experimental estimates of the key-dependent differential probability
for a 20-round trail (8004,4082,8200,0100 → 0004,0502,0088,0000). All proba-
bility values are expressed as − log2(Pr). The differential probability computed
using an SMT solver was PrD = 19.94. N denotes the fact that no valid pair
was found even after 230 input pairs were tested.

Master Key Pr D (Est.)

22a9 a4b4 c8fe 4cba d139 c314 e672 9f90 17.98
9e96 c292 ca49 4101 97aa a4b9 7cf6 e794 17.45
214b 2fd7 16a9 9cd6 d003 dba8 0c87 835e 18.00
4661 480e 53e9 5fda 0f46 6169 3044 d509 N
23a8 d74f 7698 65ef 11a4 7198 6ff1 0c34 N

In all four examples, the actual gain generally follows the estimated gain albeit
with some negligible error of around 1 bit.

Table 12: Experimental verification of the gain, g of differentials produced
by MiF performed on 18 rounds of Cham-64. All trails have ∆IN =
0001 8000 0080 0000 and ∆OUT = 0004 0502 0088 0000. All probability val-
ues are expressed as − log2(Pr).
Key 1 = 58ec 944a 5cff dc51 4873 9869 23c6 4567

Key 2 = fc99 9a30 cbf0 776c 7008 9a6a a7dd dd1b

Key ∆C p p̃ q Est. Gain Actual Gain

1 0088 0000 001e 3a05 11.87 18.2 10 6.33 7.1
1 0088 0000 0006 7a05 11.87 18.95 10 7.08 7.26
2 0088 0000 001a e604 12.68 20.86 12 8.18 7.07
2 0088 0000 0036 1a1d 12.68 21.1 12 8.42 7.93

26

E Experimental Verification of the KATAN-32 Attack

In this section, we experimentally verify the trail statistics involved in the 124-
round attack on Katan-32 (Section 5.3). We also provide some insights into the
actual trails that were generated by MiF.

Recall that the MiF procedure was performed over 42 rounds, with the first 23
rounds propagating forward from two differences ∆OUT, and the final 19 rounds
propagating backward from (partially decrypted) ciphertext differences ∆C. In
our experiments, we first constructed the MiF cluster that consists of 230.36 +
232.87 = 233.10 23-round trails. We computed both the actual and estimated
(using Assumption 3) average trail weights for all 23 rounds and found that the
values match. The average trail weights per round are listed in Table 13.

Table 13: Average trail weights for the first 23 MiF rounds from the 124-round
attack on Katan-32, starting from difference ∆OUT . Since the actual and es-
timated average trail weights (based on Assumption 3) are the same up to 2
weight digits, we only list the values once in the table.

∆OUT = (2100 0004) ∆OUT = (2100 0006)

Round Weight Round Weight Round Weight Round Weight

108 1 120 1.44 108 1 120 1.39
109 1 121 1.62 109 1 121 1.6
110 0 122 1.97 110 1 122 1.96
111 1 123 1.46 111 1 123 1.76
112 0.58 124 1.78 112 0.58 124 1.84
113 0 125 1.65 113 0 125 1.76
114 1 126 1.8 114 1 126 1.8
115 1.17 127 1.78 115 1.59 127 1.83
116 1 128 1.79 116 1.58 128 1.78
117 0.92 129 1.82 117 1 129 1.78
118 1.87 130 1.81 118 1.83 130 1.8
119 1.9 119 2

We then encrypted pairs of random plaintexts with difference ∆IN over 115
rounds starting from round 34 to obtain ciphertext pairs with difference ∆C.
We implicitly assume that these plaintexts (and their resulting ciphertext) dif-
ferences will be additionally decrypted (and resp. encrypted) using zero subkey
bits over the 4 free rounds.

For each of the ciphertext differences, we enumerate all possible trails back-
ward in search of a match in the cluster. Based on Proposition 2, we estimate
that there will be 233.44 trails on average for each difference. From 10 randomly
sampled ciphertext pairs, the actual number of trails on average was 233.49, which
closely approximates our earlier estimate. For 230 pairs, we would then have a
MiF filter size of approximately 263.49 trails.

27

On average, each ciphertext difference leads to 233.49+33.10−32 = 234.59 trails
that match the MiF cluster. For 230 pairs, we would then expect around 264.59

trails suggested by MiF. Since the ciphertext difference is random-like, extending
it backward should lead to around 21.76 trails per round (by Proposition 2).
Based on Assumption 3, the average trail weights are estimated to be around
1.76. This is a close approximation of the computed actual average trail weights
for these trails as summarized in Table 14.

Table 14: Average round trail weights for the 18/19 bottom MiF rounds from
the 124-round attack on Katan-32. All Trails refers to the entire set of trails
in the MiF filter while MiF Trails are trails from the MiF filter that found a
match in the cluster.

Round All Trails MiF Trails Round All Trails MiF Trails

131 1.80 1.80 140 1.72 1.87
132 1.80 1.82 141 1.77 1.85
133 1.80 1.80 142 1.53 1.86
134 1.76 1.83 143 1.74 1.85
135 1.79 1.83 144 1.32 1.95
136 1.80 1.82 145 1.23 1.41
137 1.73 1.81 146 1.51 1.55
138 1.87 1.77 147 1.74 1.90
139 1.67 1.89 148 1.23 1.83

28

F KATAN Trail Distributions

In the following tables, we report the trail statistics from a set of differences
∆OUT for Katan-48 and Katan-64. For Katan-48, there are 4 differences in
the set while for Katan-64, there are 16. The full trails in these sets are available
in our GitHub repository. All differences in these sets form truncated differences.
For Katan-48 the truncated difference (in binary) is

00100000 00000*00 00000000 00000000 00010000 0100100*

whereas for Katan-64, it is

01000010 000000*0 000*0000 00000000 00000000 00010000

00000001 1*000*00 .

Table 15: Trail extensions for the Katan family starting from the differences
used in the attacks.
†: Estimated number of trails based on Proposition 2.

(a) Katan-48 trail statistics from 4 dif-
ferences

Round #Trails Avg. Weight
(this round)

1 24 4
2 25.58 1.58
3 25.58 0
4 27.17 1.58
5 29.34 2.17
6 211.66 2.32
7 213.40 1.74
8 216.32 2.92
9 219.23 2.91
10 221.55 2.32
11 224.39 2.84
12 227.87 3.47
13 230.93 3.07
14 234.54 3.61
15 238.06 3.52
16 241.59 3.53
17 245.17 3.58
17.5 246.93 1.76

(b) Katan-64 trail statistics from 16 differ-
ences.

Round #Trails Avg. Weight
(this round)

1 27.58 7.58
2 28.17 0.58
3 211.49 3.32
4 212.91 1.42
5 216.88 3.98
6 221.28 4.40
7 224.82 3.54
8 229.07 4.25
9 234.34 5.27
10 239.74 5.40

11 245.02 † 5.28

12 250.30 † 5.28

13 255.58 † 5.28

14 260.96 † 5.28

29

	Advancing the Meet-in-the-Filter Technique: Applications to CHAM and KATAN

