
Simplified Modeling of MITM Attacks
for Block Ciphers: new (Quantum) Attacks

André Schrottenloher1∗ and Marc Stevens2

1 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
firstname.lastname@inria.fr

2 Cryptology Group, CWI, Amsterdam, The Netherlands
firstname.lastname@cwi.nl

Abstract. The meet-in-the-middle (MITM) technique has led to many key-recovery
attacks on block ciphers and preimage attacks on hash functions. Nowadays, cryptog-
raphers use automatic tools that reduce the search of MITM attacks to an optimization
problem. Bao et al. (EUROCRYPT 2021) introduced a low-level modeling based
on Mixed Integer Linear Programming (MILP) for MITM attacks on hash functions,
which was extended to key-recovery attacks by Dong et al. (CRYPTO 2021). However,
the modeling only covers AES-like designs. Schrottenloher and Stevens (CRYPTO
2022) proposed a different approach aiming at higher-level simplified models. However,
this modeling was limited to cryptographic permutations.
In this paper, we extend the latter simplified modeling to also cover block ciphers
with simple key schedules. The resulting modeling enables us to target a large array
of primitives, typically lightweight SPN ciphers where the key schedule has a slow
diffusion, or none at all. We give several applications such as full breaks of the
PIPO-256 and FUTURE block ciphers, and reduced-round classical and quantum
attacks on SATURNIN-Hash.
Keywords: MITM Attacks · Key-recovery attacks · Quantum cryptanalysis ·
Preimage attacks · AES · Present

1 Introduction
Meet-in-the-middle (MITM) attacks are powerful attacks on symmetric primitives such
as block ciphers [DH77] and hash functions [Sas11]. The goal in both cases is to find an
unknown value (the internal state or the key) which satisfies a certain set of constraints,
e.g., between the inputs and outputs of a certain computational path.

If one guesses the entire unknown value, then the whole path can be recomputed
and the constraints checked: this is the generic exhaustive search, which can always be
applied. The MITM technique identifies some parts of the path which can be computed
independently from others. Typically one defines a forward chunk (computed forwards)
and an independent backward chunk (computed backwards), which start from a given
starting point, and meet at several matching points. The values that they can take are
computed independently. Afterwards, one selects among the pairs all those which satisfy
the conditions set by the matching points.

MITM attacks have been successfully applied to many designs, using more and more re-
fined techniques: guess-and-determine [DSP07], splice-and-cut [AS08, GLRW10], bicliques
[KRS12], 3-subset MITM [BR10, Sas18], and so on. Even when they do not reach the best

∗Part of this work was done while the author was at CWI.

mailto:firstname.lastname@inria.fr
mailto:firstname.lastname@cwi.nl

number of rounds in terms of key-recovery, they can have other advantages, such as a very
low data complexity (like the attack on Present-80 of [CNV13]).

Automatic Search of MITM Attacks. A MITM attack is entirely defined by its character-
istic or path, the choice of its forward and backward chunks. Finding the best characteristic
is an optimization problem, which can be solved automatically.

Dedicated search tools were proposed, such as the tool of Derbez and Fouque [DF16]
for MITM and DS-MITM attacks. The algorithm starts from a given starting point,
tries to expand the forward and backward paths before they match, and terminates if
it has explored too many possibilities. Another automatic search, with a similar spirit,
was proposed in [AA20]. While both these tools apply to a large class of designs (AES-
like, bit-based SPNs, Feistel schemes), they have some limitations: the tool of [DF16]
is not adapted for preimage attacks and the one of [AA20] does not support guess-and-
determine. In a similar context, Hadipour and Eichlseder introduced a generic tool [HE22]
for guess-and-determine attacks, but it does not cover MITM attacks.

In this paper, we focus on a modeling of the problem using Mixed Integer Linear
Programming (MILP). Sasaki first used MILP to optimize the 3-subset MITM attack
on Gift-64 [Sas18], however his modeling only concerned this specific case. Later, Bao et
al. defined an MILP modeling of MITM attacks on AES-like hash functions [BDG+21].
The modeling relies on local propagation rules for the backward and forward paths, which
constrain the state of nibbles (forward, backward, unknown. . .) and count the number of
degrees of freedom which are consumed. Later, it was extended to key-recovery attacks
in [DHS+21], and to the guess-and-determine technique in [BGST22], including more and
more techniques (nonlinearly constrained words, superposition states) which allowed to
capture more refined constraints on the key nibbles and interactions between the key and
the state.

Originally, this modeling strategy applies to designs which perform operations at
a nibble level (though we note that bit-level models were also introduced afterwards
in [QHD+23]). Besides, the definition of rules can become quite complicated. A different
approach was proposed in [SS22a], which covers both AES-like and Present-like designs,
and benefits from a simple description. However, the scope of the modeling is now limited
to a computational path which does not take into account key additions. Quantum attacks
are obtained by adapting the objective function of the search.

Contribution and Results. In this paper, we extend the modeling strategy of [SS22a] to
support key additions in the primitive. The main issue posed by key additions is that they
happen at the nibble level, while the model of [SS22a] considered larger components in
the primitive. We show that we can keep the simplicity of the previous model by adding
variables for the key nibbles, and placing them in the forward or backward chunks using
a few new constraints. This allows us to cover both pseudo-preimage attacks on hash
functions and key-recovery attacks on block ciphers. The downside is that we need to focus
on lightweight key schedules such as the one of Present [BKL+07] which only perform
bit rotations and S-Box operations.

Complex linear functions in the key schedule may complicate the interactions between
the key and state bits. The series of works on AES-like designs [BDG+21, DHS+21,
BGST22] have been able to capture more and more of these interactions, and reach new
attacks that the previous models were not able to find. We conjecture that our modeling,
despite its simplicity, reaches at least the same performance on the class of designs defined
in Section 2.1. Though we cannot prove it in full generality, we could for example find
a pseudo-preimage attack on 7-round Saturnin-Hash with a smaller time complexity
than [DHS+21].

1

The results obtained with our tool are summarized in Table 1, compared with some re-
sults of previous works. We obtain full-round attacks on the block ciphers Future [GPS22]
and Pipo-256 [KJK+20], both due to the simple key schedules of the ciphers. We also
give new quantum attacks on reduced-round Saturnin-Hash and Saturnin, and observe
that some Grover-meet-Simon attacks [LM17] are covered by the automatic search. This
complements the automated search of Simon-based attacks previously proposed by Canale,
Leander and Stennes [CLS22]. Though their tool can find more attacks than ours, as it
allows to define periodic functions from a bigger class, it was limited to rather simple
constructions. Our tool is more adapted to complex cipher designs.

Table 1: Attacks overview. Complexities are given in log2. The ‘time’ column includes the
generic attack time. In the ‘memory’ column, ‘*’ means QRACM and ‘**’ means QRAQM.

Target Rounds Time Memory Data Reference
Classical

1k-AES 7 112 / 128 40 80 Section C.1
1k-AES 7 120 / 128 32 32 Section C.1
2k-AES 10 248 / 256 48 128 Section C.1

Saturnin pre. 7 / 16 208 / 256 48 [DHS+21]
Saturnin pre. 7 / 16 192 / 256 160 Section 4.1

Future 10 / 10 126 / 128 34 64 Section 4.2
Saturnin 7.5 / 10 244 / 256 244 225 [CDL+20]
Saturnin 6.5 / 10 152 / 256 70 70 [FKL+00] (C.3)
Saturnin 6.5 / 10 248 / 256 24 248 Section C.3
Haraka-512 5.5 / 5 240 / 256 16 [SS22a]
Haraka-512 5.5 / 5 224 / 256 80 Section C.4
Haraka-512 6.5 / 5 240 / 256 224 Section C.4

Present-80 7 / 31 73.42 / 80 9 1 [CNV13]
Present-80 8 / 31 73.42 / 80 6 [CNV13]
Present-80 9 / 31 78 / 80 6 8 Section 5.1
Present-80 9 / 31 77 / 80 16 12 Section 5.1

Fly 11 / 20 125 / 128 20 64 Section 5.2
Pipo-128 10 / 14 125 / 128 20 64 Section 5.2
Pipo-256 18 / 18 252 / 256 60 64 Section 5.2
Future 10 / 10 126 / 128 34 64 Section 4.2

Quantum
Saturnin pre. 7 / 16 115.55 / 128 32** Section 4.1

Saturnin 6.5 / 10 120 / 128 70** 70 (Q1) [BNS19] (C.3)
Saturnin 6.5 / 10 127.55 / 128 24** 124 (Q2) Section C.3

Gift-64 (GMS) 15 / 28 58.97 / 64 negl. 58.97 (Q2) Section C.5
Saturnin (GMS) 5.5 / 10 110.24 / 128 64* 64 (Q1) Section C.3

Outline. The paper is organized as follows. In Section 2, we define the AES-like and
Present-like classes of designs, introduce the MITM framework and the different tech-
niques relevant for this paper, as well as quantum computing tools. We borrow from [SS22a]
the generic conversion of a classical MITM attack into a quantum one, and we explain the
Grover-meet-Simon (GMS) attacks.

Next, in Section 3 we explain the modeling of MITM attacks, first explaining [SS22a],
then introducing our new variables and constraints for the key schedule and details on
how to adapt the framework to the key-recovery case. The last sections are devoted to our

2

Round 0 Round r − 1

s0 sr = EK(s0)

k0

Internal
state

Key
schedule

Matching
point
I J

Matching
point
J I

Wrapping

Forward
path
I

Backward
path
J

Figure 1: MITM attacks using the “splice-and-cut” technique (figure adapted from [SS22a]).

applications: 1) AES-like designs in Section 4, including Saturnin-Hash, Saturnin and
Future; 2) Present-like designs in Section 5, including Present and Pipo.

The code used in this paper, including the generation of MILP models for all our exam-
ples, and the generation of figures, is available online1. We used the Gurobi solver [Gur23]
on a desktop computer.

2 Preliminaries
In this section, we give a high-level overview of MITM attacks, with corresponding formulas
for the time complexity. We also give preliminaries on quantum attacks.

As shown in Figure 1, we consider a block cipher EK , made of a sequence of r rounds
(0 to r− 1) which act on the internal state taking value s0 (plaintext) to sr (ciphertext). A
key schedule function transforms the master key K into a sequence of round keys k0, . . . , kr.
Each ki is added before round i, and kr is the final key addition. We enforce some relation
between s0 and sr, which creates a closed computational path. We are searching for a pair
(s0,K) satisfying this path.

In the case of a preimage or pseudo-preimage attack [Sas11], the block cipher EK is
used as a compression function. For example, in the Matyas-Meyer-Oseas (MMO) mode,
the function is f(m,h) = Eh(m) for a chaining value h and a message block m. Given a
target T , a pair h,m such that Eh(m) = m⊕ T is a preimage of the compression function.
The degrees of freedom of both m and h may be used. If we fix h, we remove the key
schedule; the block cipher becomes a permutation.

For a key-recovery attack, the relation between input and output (“wrapping” in Fig-
ure 1) is given by EK . On the forward path in Figure 1, we need to compute s0 from sr,
so we perform decryption queries.

2.1 AES-like and Present-like Designs
The AES [DR20] is the standardized version of the block cipher Rijndael [DR99], and its
design strategy has been followed by many ciphers and hash functions, forming a family
that we will call “AES-like”. AES-like designs are substitution-permutation networks (SPN)
in which the internal states and round keys are represented as matrices of nibbles. The

1https://github.com/AndreSchrottenloher/key-mitm

3

https://github.com/AndreSchrottenloher/key-mitm

Column 0
k0 k5 k10 k15

Column 1
k4 k9 k14 k3

Column 2
k8 k13 k2 k7

Column 3
k12 k1 k6 k11

k′0 k′5 k′10 k′15 k′4 k′9 k′14 k′3 k′8 k′13 k′2 k′7 k′12 k′1 k′6 k′11

Figure 2: Two rounds of AES with two keys k and k′, using the Super S-Box representation.

S-Box layers operate on nibbles independently. The linear layer can also be expressed as
an operation on nibbles.

In the AES, the state is a 4 × 4 matrix of bytes, and the round function composed
of: the key addition (ARK); the S-Box layer (SB); the ShiftRows operation (SR), which
permutes bytes within rows of the matrix; and finally, the MixColumns operation (MC),
which multiplies each column by an MDS matrix. Other AES-like designs typically have
similar operations. Sometimes (like in Skinny [BJK+16]) the MixColumns is not MDS,
but we will not consider such cases in this paper. Key schedules of AES-like designs also
typically operate at the nibble level, e.g., in the AES itself, the only operations are XORs
of key bytes and S-Boxes.

Super S-Box and Present-like Ciphers. It can be noticed that in the sequence of
operations ARK → SB → SR → MC, the operation SB commutes with SR and ARK.
Thus, an AES round can be rewritten as a permutation of bytes, followed by a key addition,
and a layer of Super S-Boxes applying on columns. This abstraction is essential for us.
Using the Super S-Box representation, an AES-like design becomes an SPN in which the
linear layer is simply a permutation of nibbles, corresponding to the SR operation. We
give an example in Figure 2, where the initial bytes are numbered from 0 to 15, and the
columns of the state are the groups of bytes [0−3], [4−7], [8−11], [12−15].

We name Present-like the SPN ciphers which use only a nibble permutation as their
linear layer, like the block cipher Present [BKL+07]. Though Present uses a bit
permutation, our structure considers nibbles of any size. Our modeling starts from this
family of ciphers, and covers AES-like designs thanks to the Super S-Box representation.

Key Schedules. The key schedule of a cipher is an in-place operation that transforms
a set of internal key registers and extracts rounds keys. All variants of AES have a
key schedule which offers quite a strong diffusion. This renders the AES itself immune
to MITM key-recovery attacks2. However, lightweight ciphers, whether AES-like (e.g.,
Saturnin [CDL+20]) or Present-like (e.g., Present, Gift [BPP+17]) can have much
simpler key schedules. In this paper, we consider key schedules that operate nibble-wise
using in-place operations, either: 1) a permutation of nibbles; or 2) an S-Box applied in
place to some nibbles. This includes the key schedule of Present.

2.2 Overview of Techniques
Below we briefly review the techniques that will be contained in our automatic search.
We consider both key-recovery and preimage attacks. While they are very different

2Demirci-Selçuk Meet-in-the-middle attacks [DS08], which do not rely as much on the key schedule as
the simple MITM, are sometimes named “MITM” in the literature. We do not consider them here.

4

conceptually, the modeling is quite similar. Let EK be a block cipher with block length
(in nibbles) n and key length |K|. We start with the key-recovery case.

We have query access to EK and wish to retrieve K in time less than 2|K| computations
of E. This is done by finding solutions to the closed computational path represented
in Figure 1.

We formalize this using a forward path function fF (x, kF) and a backward path function
fB(x, kB) that take a common starting state x (e.g., the plaintext), a forward (resp.
backward) key guess kF of length |kF | (resp. kB of length |kB |) and compute the same set
of nibbles at some round inside the cipher.

We see that k = kF ∪ kB can be a potential candidate3 for K only if there exists x such
that fF (x, kF) = fB(x, kB). Typically, starting from a constant x, we compute EK(x),
compute forwards from x and backwards from EK(x). Either fF or fB includes a query
to EK or E−1

K .
Let |f | := |fF | = |fB | be the output size of fF and fB. From now on, these sizes are

counted in nibbles, and the complexity formulas would need to be re-scaled depending on
the nibble size. The attack does:

1. fix the value x

2. compute the list of all kB , fB(x, kB): time 2|kB | (we neglect the time to sort the list
by the second entry)

3. for each kF , compute fF (x, kF) and enumerate all the pairs kF , kB such that
fF (x, kF) = fB(x, kB): time 2|kF | + 2|kF∪kB |−|f |. For each pair, recompute the
whole path and check if it matches.

Because we can swap the roles of forward and backward paths, the time complexity for
key-recovery is 2|kB | + 2|kF | + 2|kF∪kB |−|f | and the memory complexity is min(2|kB |, 2|kF |).

Varying the Cut Set / Initial Structure. The cut set [AAMA14] or more generally, the
initial structure, is the start of the path, i.e., the starting state x defined above. It can
take any value and any position within the closed path. It can also be scattered onto
multiple rounds. If the cut set is moved inside the closed path, the query complexity of
the MITM attack, which was initially 1, increases. Indeed, each computation of fF (resp.
fB) will potentially query EK on a new value, depending on the starting state x and on
the current key guess kF (resp. kB).

3-Subset MITM Attack. The 3-subset MITM attack [BR10] partitions the key space in
three sets. Alongside the forward and backward key nibbles, we define shared key nibbles
kS of length |kS |, and the forward and backward paths are now computed as: fF (x, kF , kS)
and fB(x, kB , kS), where kF and kB are disjoint. The MITM attack now runs as follows:
we fix x, and for each choice of kS , we compute the pairs (kF , kB) such that fF (x, kF , kS) =
fB(x, kB , kS). The time complexity is 2|kS |+|kB | + 2|kS |+|kF | + 2|kF |+|kB |+|kS |−|f | and the
memory complexity is min(2|kB |, 2|kF |).

Guess-and-Determine. Guess-and-determine (GAD) is a powerful technique both for key-
recovery [BDF11] and preimage attacks [SWWW12, BGST22]. We introduce nibble state
guesses yF and yB in the definition of the forward and backward paths: fF (x, yF , kF , kS)
and fB(x, yB , kB , kS). We then have to compute fF and fB not only for all kF and kB,
but also yF and yB, and find quadruples (yF , yB , kF , kB) such that fF (x, yF , kF , kS) =
fB(x, yB , kB , kS). The time complexity becomes:

2|kS |+|kB |+|yB | + 2|kS |+|kF |+|yF | + 2|kS |+|kB |+|yB |+|kF |+|yF |−|f | , (1)
3In this paper, the forward, backward (and shared) key nibbles will entirely cover the master key. It is

not necessarily the case, but it happens when the key-schedule is very simple.

5

and the memory complexity is min(2|kB |+|yB |, 2|kF |+|yF |). To have a valid attack, we need
|yB |+ |yF | < |f |, i.e., the guesses allow to deduce more matching state nibbles.

Finally, we note that we can make x bigger than n nibbles, i.e., fix more than a full
internal state. In that case we will need to repeat the merging operation |x| − n times
before finding a valid pair of internal state and key. The time complexity becomes:

2|kS | × 2max(|x|−n,0) ×
(

2|kB |+|yB | + 2|kF |+|yF | + 2|kB |+|yB |+|kF |+|yF |−|f |
)
. (2)

Preimage Attack. In the preimage case, we want to find a pair (x,K) such that EK(x)⊕
x = T for a fixed target T , in time less than 2n computations of E. Informally, the
problem remains the same: having fixed kS and x, find the pairs (yF , kF), (yB , kB) such
that fF (x, yF , kF , kS) = fB(x, yB , kB , kS), among which a solution will be found. The
main difference is the number of times that we need to repeat this operation.

If the path contains only one solution, and if the key is entirely fixed, we can see that
we will have to repeat 2|x| times to traverse all the possible internal states, and find the
one that matches. If there are 2t solutions (due to less “wrapping” between the input and
output), then we need only 2|x|−t repetitions.

The forward and backward key nibbles take 2kB+kF different values. Assuming that
changing these key nibbles re-randomizes properly the path, this means that we only have
to repeat 2|x|−t−kB−kF times to traverse 2|x|−t different starting values for x. This gives
the formula:

2max(|x|−|kB |−|kF |−t,0) ×
(

2|kB |+|yB | + 2|kF |+|yF | + 2|kB |+|yB |+|kF |+|yF |−|f |
)
. (3)

All-subkey-recovery (ASR) and Parallel MITM (PMITM). The ASR technique was
proposed in [IS12]. If the key schedule is complex, we cannot use the relations between
round keys, and the effective key length increases. Any guess kF yields a value fF (x, kF , kS)
for the matching variable, and any guess kB yields a value fB(x, kB , kS). However, the
amount of matching may be too small and leave more than 2|K| triples (kF , kB , kS). The
Parallel MITM technique overcomes this by increasing the effective output length of fF
and fB: it computes in parallel for multiple starting states x. The time and memory
complexities are increased by a small factor with respect to a single starting state.

The PMITM is not very useful in our case, where the key schedule is simple. Further-
more, it is incompatible with GAD. Indeed, the internal state guesses yF , yB are dependent
on the starting state x. Multiple parallel states would have multiple independent state
guesses, and the complexity would increase faster than it decreases thanks to the PMITM.

Sieve-in-the-middle (SIM) and Bicliques. The sieve-in-the-middle technique [CNV13]
allows to sieve through an additional S-Box layer between the forward and backward
path. This is done by means of an advanced list merging procedure. Sieve-in-the-middle
is partially captured by GAD: though the merging procedure in the SIM attacks is more
complex, it can be captured by making guesses on the forward or on the backward side.
However, the modeling will not capture the fact that these guesses cost less than a
recomputation of the full subpath, since they are made at the last moment.

Biclique cryptanalysis is an extension of MITM attacks used both against block
ciphers [BKR11] and hash functions [KRS12], where the initial structure is extended with
the help of bicliques. We did not study bicliques in this paper. It is still an open question
to extend the MILP models of MITM attacks with bicliques.

2.3 Quantum Computing
We assume basic knowledge of quantum computing in the quantum circuit model, such as
the ket notation |·〉, qubits and basic operations (see, e.g., [NC02]). We use “time” to refer

6

to gate counts in quantum circuits, and “quantum memory” for their width (number of
qubits), in multiple of the time and memory required to implement the primitive attacked.
We stress that we use only generic complexity formulas, and no technical knowledge of
quantum computing is required to apply these formulas.

Quantum Memories. We use in this paper two types of quantum memory, which
can be understood as a hardware assumption: QRACM (quantum-accessible classical
memory) and QRAQM (quantum-accessible quantum memory). QRACM allows unit-
time access in superposition to a large classical memory. That is, given memory cells
y0, . . . , yM−1, the operation: |i〉 |0〉 7→ |i〉 |yi〉 (memory access) can be implemented in
time 1. Whereas QRAQM is a stronger model in which the following operation costs a
time 1: |i〉 |y0, . . . , yM−1〉 |x〉 7→ |i〉 |y0, . . . , yi−1, x, yi+1, . . . , yM−1〉 |y〉, which allows at the
same time to read and write in superposition in the available quantum memory.

As can be seen in Table 1, our quantum MITM attacks require QRAQM, except
Grover-meet-Simon (key-recovery) attacks.

Grover’s Algorithm. Grover’s search algorithm [Gro96] solves the following problem:
given a quantum oracle that implements a boolean function f : {0, 1}n → {0, 1}, find a
preimage of 1. It is an iterative procedure that moves its internal state towards the uniform
superposition of solutions. If there are t such preimages, then π

4

√
2n

t calls to the oracle
Of : |x〉 |0〉 → |x〉 |f(x)〉 are sufficient to reach a state very close to: 1√

t

∑
x,f(x)=1 |x〉.

Measuring this state allows to find a solution. For example, exhaustive key search uses
a few plaintext-ciphertext pairs (pi, ci) and tests: f(k) = 1 ⇐⇒ ∀(pi, ci), Ek(pi) = ci.
With 1 expected solution, only O

(
2|k|/2) calls to a quantum implementation of Ek are

required, instead of O
(
2|k|
)
classically (a quadratic speedup).

The calls to Of usually dominate the cost of the algorithm. Implementing the function
f might require the QRACM or QRAQM model, for example when we need to access a
large list.

Quantum Queries: the Q1 and Q2 model. The literature on quantum key-recovery
attacks (e.g., [KLLN16b]) distinguishes two quantum attacker settings: Q1 (classical
queries) and Q2 (quantum queries). In Q1, the quantum attacker has only access to
classical secret-key oracles (decryption and / or encryption), whereas in Q2, the quantum
attacker can use a quantum oracle, for example: OEK

: |x〉 |0〉 7→ |x〉 |EK(x)〉. In particular,
any computation that involves the secret-key cipher EK can now be done in superposition.

If the key length is twice the block size or more, then we can use QRACM to emulate
the Q2 setting. Indeed, the cost of querying the entire codebook (classically) is lower than
the cost of Grover search for the key. Thus, any quantum attacker can pre-compute the
codebook, store it in QRACM, and implement OEK

efficiently.
This relation between Q2 queries and QRACM will also dictate our benchmarking of

the latter: while counting the time in block cipher evaluations, we will consider a Q2 query
to cost 1, and a QRACM / QRAQM query to cost 1 as well.

2.4 Quantum Attacks
We reuse Theorem 4 from [SS22b, Appendix A.2], which converts a classical MITM
into a quantum attack using quantum search (the exact variant of Amplitude Amplifica-
tion [BHMT02]). The quantum attack may benefit from up to a quadratic speedup with
respect to the classical attack.

It considers a MITM attack that first makes g guesses, then merges two lists of size 2`F

and 2`B into a list of size 2`M . It also assumes heuristically that there is a single solution,
and that the subpaths leading to the solution are selected u.a.r. from all choices.

7

Theorem 1. Let T be the quantum time to compute an element of any of the three lists,
or to recompute the full path given a partial match. There is a quantum algorithm of
complexity:

2T
(π

4 2g/2 + 1
)(

2`F +
(π

4 2`B/2 + 1
)(π√

2
max

(
1, 2(`M−`B)/2

)
+ 6
))

, (4)

that finds the key K with probability 1/2.

Intuitively, the algorithm uses a Grover search on the g guesses, under which a two-list
merging is used. The two-list merging constructs the forward list first, then performs a
quantum search in the backward and merged list elements. Note that the roles of forward
and backward can be exchanged in this formula. We refer to [SS22b] for the details of this
algorithm and its correctness.

In the following, like in [SS22a], we consider that T is smaller or equal to the quantum
time necessary to implement the full primitive under attack, and we count the time in
multiples of T . This simplifies the comparison with Grover search.

Q1 and Q2 Model. Though the procedure of [SS22a] remains valid for key-recovery
attacks, the computation of one of the two lists now includes queries to the block cipher
(or its inverse). For example, assume that we access the block cipher E itself. Let S be
the space of plaintexts encountered during the attack. Often S becomes the full codebook,
but for exhaustive search (which can be seen as a degenerate MITM attack), S contains
only a constant number of elements. Let E′ : S → {0, 1}n be the cipher restricted to the
space S.

In the classical attack, we compute the lists using classical access to E′. In the
quantum attack, the list elements are computed in superposition. This means that we
need superposition query access to E′. If S is small enough with respect to the total key
size, this can be done via QRACM (sometimes at the expense of a bigger memory) in the
Q1 model. Otherwise, this requires the Q2 model.

2.5 Grover-meet-Simon as a PMITM Attack
Simon’s algorithm [Sim97] is a quantum algorithm that solves the boolean hidden period
problem: given access to a two-to-one function f : {0, 1}n → {0, 1}m such that f(x⊕ s) =
f(x), for some secret s, find s. The algorithm runs in time O

(
n3) using O(n) Q2 queries

to f . It has been analyzed in detail in multiple works (e.g. [KLLN16a, SS17]) and found
to be quite robust, in particular it works well if f is a random periodic function [Bon21],
which models well the cases encountered in symmetric cryptography.

Simon’s algorithm is the key component of many quantum attacks in the Q2 set-
ting [KLLN16a] and more recently the Q1 setting [BHN+19]. In this paper, we will focus
on the Grover-meet-Simon (GMS) attack of Leander and May [LM17]. This is a Q2 attack
that finds a periodic function in a family of functions:

F : {0, 1}κ × {0, 1}n → {0, 1}m

∀z, Fz = F (z, ·)
∃!k ∈ {0, 1}κ, (∃s,∀x, Fk(x) = Fk(x⊕ s))

.

GMS uses a Grover search of the right k, which calls Simon’s algorithm as a test.
Its quantum complexity has been analyzed in detail in [Bon21, BJ22]. As for Simon’s
algorithm, the constant in the O(n) is close to 1 if we assume the functions to be random,
and the gate count in O

(
n3) is usually smaller than the cost of n function computations.

8

Even if we restrict the functions’ output to one bit, this only doubles the number of queries
needed by Simon’s algorithm [MS22]. Therefore, we will approximate the complexity as:

4T π4 2|k|/2n , (5)

where T is the cost of a query to F .

GMS-based MITM Attacks. Consider a PMITM attack. Starting from an initial state
x, it looks for a collision between the forward and backward path: (kF , kB , kS) such that
fF (x, kF , kS) = fB(x, kB , kS). The functions fF and fB can have a single-bit output.

Assume that both fF and fB are of the form:

fF (x, kF , kS) = gF (x⊕ k′F , kS) and fB(x, kB , kS) = gB(x⊕ k′B , kS)

where k′F and k′B , of size |x|, contain nibbles of kF and kB respectively (and zero nibbles
for positions at which no key is added). We are then looking for (kS , k′B , k′F) such that:

∀x, gF (x, kS) = gB(x⊕ k′F ⊕ k′B , kS) .

Therefore, when looking for MITM attacks, we can also look for GMS-based attacks.
In this case, we will remove the GAD technique. We separate the key nibbles into “shared”
key nibbles kS (guessed with Grover search) and “middle” key nibbles kM (found with
Simon’s algorithm). The part of the input x on which there is no addition of kM is fixed.

Though we would have liked to use the offline-Simon algorithm [BHN+19], which
removes the need for Q2 queries or QRACM, a technical problem arises from the fact that
the functions computing the forward and backward paths are not invertible.

3 Modeling
In this section, we describe the MILP modeling of MITM attacks used in this paper. It
relies on a cell-based representation of a cipher, which is the same as in [SS22a].

3.1 Previous Work
An r-round Present-like cipher is abstracted as an r-layered, weighted, undirected graph.
The nodes of the graph, named cells, correspond to the S-Box operations in the cipher.
The edges of the graph correspond to the exchange of nibbles in the linear layer. The
MITM input-output constraint that closes the path is enforced by edges between cells
of layer 0 (first round) and layer r − 1 (last round). Intuitively, this corresponds to the
rewriting of the MITM problem as a system of linear relations between the cells, since
all the nonlinear operations are local to them. Both cells and edges are weighted. For
any pair (c, c′), we use wc and wc,c′ to denote these weights (we have wc,c′ = 0 if (c, c′) is
not an edge). They correspond to the number of state nibbles that one should know to
determine the value of this cell or edge. For example, in the graph representation of the
AES, one has wc,c′ = 1 for edges and wc = 4 for 4-nibble cells.

Given any set of cells C, we define the reduced list R[C] which contains all assignments
of values to these cells satisfying the linear constraints. It has size:

log2 |R[C]| =
∑
c∈C

wc −
∑

(c,c′)∈C2

wc,c′ . (6)

Thanks to the Present-like structure, as long as C does not cover all the rounds, there is a
streaming algorithm that produces the elements of R[C] in time |R[C]|. Indeed, incoming

9

N c00 c01 c02 c03

N c10

k0 k5 k10 k15

H c11

k4 k9 k14 k3

c12

k8 k13 k2 k7

c13

k12 k1 k6 k11

c20 H c21 c22 c23

Figure 3: Two global guesses (green ↔ edges) in the path of an AES-like cipher.

edges of each cell are either fixed, determined by the previous round, or undetermined.
Then they correspond to forward or backward guesses yF , yB , and can be arbitrarily filled.

The MITM configuration is now defined using two sets of cells: forward (CF) and
backward (CB), such that CM := CF ∪CB contains a whole round. As shown in Equation 6,
the respective sizes `F , `B , `M of R[CF], R[CB], R[CM] (in log2) can be deduced from the
choice of CF , CB by linear inequations.

To any choice of CF , CB , there corresponds a MITM algorithm of memory min(`F , `B)
and running time max(`B , `F , `M) (in log2), which consists in constructing one list, stream-
ing the other and re-computing the path for matching pairs.

Global Guesses. Any edge (c, c′) where c ∈ CB , c′ ∈ CF can be turned into a “global
guess”, as shown in Figure 3. Indeed, by guessing these values before computing R[CF]
and R[CB], the matching on these nibbles is precomputed. If there are g nibbles of global
guess, the time complexity becomes: g + max(`B , `F , `M) (in log2). The quantum time
complexity is obtained by simplifying Equation 4:

g

2 + max
(

min(`F , `B), 1
2 max(`F , `B , `M)

)
. (7)

Forward cells are represented in blue H, backward cells in red N. Global guesses are
represented in green ↔. It should be noted that they only impact the memory complexity
of the attack and its quantum time complexity.

Matching through MixColumns. The difference between the Present-like and AES-like
cases lies in the following property of the Super S-Box, due to the MDS property of
MixColumns. Let c be a Super S-Box of width wc.

Assume that we know f, b nibbles at the previous round, from the forward and backward
path, respectively, and f ′, b′ nibbles at the next round. Then we can match a total of
f + b+ f ′ + b′ − wc nibbles through the cell, i.e., even if it does not belong to CF ∪ CB.
This is because we can write linear relations between these values. This is modeled by
allowing to add such a cell in the merged list (we call it a new merged cell).

We can also precompute some of these relations, like global guesses of nibbles. With
limitations: • we cannot precompute more than f + b+ f ′ + b′ − wc relations (the total
amount of matching on this cell); • we cannot precompute more than f ′ (the amount of
forward nibbles at the next round) and more than b (the amount of backward nibbles at
the previous round), otherwise this would create too many constraints.

10

Modeling. For each cell c, we create 3 boolean variables cell_colL[c] where L ∈ {F,B,M}.
We always have cell_colF [c] + cell_colB [c] ≤ cell_colM [c], and this is an equality if the cell
is not a Super S-Box.

The list sizes and precomputed matchings are deduced from these variables using linear
inequalities. For each cell, we sum its contribution to the list size (as a new temporary
variable), and the amount of global reduction that it allows. We deduce the time complexity
(in log2), which is minimized. A complete pseudocode of this model is given in Appendix A.

3.2 Modeling the Key Schedule
Now, we move further than [SS22a]. Including a key schedule path is a simple transforma-
tion to the graph, where each edge is now (possibly, but not necessarily) labeled by a key
nibble, as in Figure 3. This is the key nibble that is XORed on this edge.

Let us start by the new variables and constraints related to the key schedule itself. We
consider a key schedule like the one of Present, which starts by initializing a key register,
and then: • creates new key nibbles by applying operations in place on the key register;
• extracts the round keys from the key register.

In a similar spirit as the cell-based modeling of the state update function, we start by
considering all round key nibbles as independent. We assume that they all have the same
size (e.g., a single bit for Present). For example, each round of Present-80 applies a
single 4-bit S-Box on the key register, so after r rounds, the total amount of key nibbles is
80 + 4r.

The operations that were applied create relations between groups of key nibbles, e.g.
k4|k5|k6|k7 = S(k0|k1|k2|k3). These relations can be modeled as key cells, on the same
principle as state cells. For a key cell of width w (here 4), the knowledge of at least w key
nibbles allows to deduce all others.

Modeling. For each key nibble ki, we create 3 boolean variables key_colL[ki] for L ∈
{S,B, F}. The key nibble can be either: • forward (F), i.e., known only in the forward
path; • backward (B), i.e., known only in the backward path; • shared (S), i.e., known in
both paths. This corresponds to kF , kB , kS in the formulas of Section 2.2.

For each key cell c, we create 3 exclusive boolean variables: key_cell_colL[c], L ∈
{S,B, F}, which indicate whether the key cell is “active” in the list of shared, forward or
backward key nibbles. These variables have the following constraints:

• if key_cell_colS [c] is true, then all key nibbles attached to this cell must be shared

• if key_cell_colB [c] is true, then all key nibbles must be shared or backward

• if key_cell_colF [c] is true, then all key nibbles must be shared or forward

The “activation” of a key cell means that we use its relation to reduce the number of
effective key nibbles, either in the shared, the backward or forward sets. Thus we compute
the number of effective shared, forward and backward key nibbles by a sum over all key
nibble variables, minus the reduction of key cells.

3.3 Modeling the Key Addition
We observe that the key addition can be modeled using only constraints on the coloration
of key nibbles. For any key nibble ki, consider any edge e = (c, c′, wc,c′ , ki) where ki is
added:

• If both c and c′ are in the forward path, then ki should be either forward, or shared.
Indeed, in order to compute the next forward cell, we have the choice between
guessing ki or guessing the state nibble. This costs the same, but guessing ki will

11

x0 x1 x2 x3

H S H S S N S

k0 k1 k2 k3

� MC

k′0 k′1 k′2 k′3

y0 y1 y2 y3

Figure 4: Key addition in the Super S-Box case.

always be more advantageous, since we might reuse this guess somewhere else in the
path.

• Likewise, if both c and c′ are in the backward path, then ki should be either backward,
or shared.

While it is not necessary for all the key nibbles to be colored, e.g., in the PMITM case,
in practice this will be the case in our attacks, since we consider simple key schedules. So
the forward-backward (matching) and backward-forward (global guess) relations do not
create any constraint.

Computation of the Lists. The forward and backward lists now contain both partial
states and key guesses. We will start in both cases by taking values for the key nibbles,
using the key cells, then compute the states round by round as before. The constraint of
having at least one round not covered by C still allows to enumerate the elements of R[C]
efficiently.

The list sizes are computed as before (by the contribution of each cell individually),
then increased by the amount of key nibbles that they contain. In the preimage case, the
time complexity reflects Equation 3. In the key-recovery case, the time complexity is given
by Equation 2. If there are |x| nibbles of global reduction, and if the key-less list sizes
were `B , `F , `M , then the times are respectively, in log2:

max(|x| − |kB | − |kF |, 0)
|kS |+ max(|x| − n, 0)

}
+ max(|kB |+ `B , |kF |+ `F , |kB |+ |kF |+ `M) . (8)

In the quantum setting, these formulas are adapted using Equation 4:

1
2 max(|x| − |kB | − |kF |, 0)
1
2 (|kS |+ max(|x| − n, 0))

}
+ max

(
min(|kF |+ `F , |kB |+ `B),

1
2 max(|kB |+ `B , |kF |+ `F , |kB |+ |kF |+ `M)

)
. (9)

Super S-Box Case. To understand what happens if the cell c is a Super S-Box, we must
separate the S-Box layer and the MixColumns operation, as shown in Figure 4. Following
the usual layout of SPN ciphers, the S-Box layer is always performed between the key
addition and the MC operation.

In this example, there are 6 nibbles known in input and output, so we can form two
linear relations between them, of the form: L(S(k0⊕x0), S(k1⊕x1), S(k3⊕x3), y0⊕k′0, y2⊕
k′2, y3 ⊕ k′3) = 0, where L is a linear function. One of these relations can be precomputed

12

as follows: LF (S(k0 ⊕ x0), S(k1 ⊕ x1), y0, k
′
2, k
′
3) = LB(S(k3 ⊕ x3), k′0, y2, y3) = t. That is,

we can guess the value of t beforehand. During the forward path computation, we will
obtain y0 as a function of t and the other variables, and in the backward path, we obtain
x3 as a function of t and the other variables.

To enable this, we just need to ensure the following additional constraints for each edge
(c, c′, wc,c′ , ki): • if c is forward and c′ is a new merged cell, then ki must be forward; • if
c is backward and c′ is a new merged cell, then ki must be backward. These constraints
allow to go through the upper S-Box layer and access the inputs to the MC layer. In
particular, there are no constraints on the key nibbles below.
Remark 1 (Double key addition). In the path of a preimage attack of a compression
function, we may have a key addition before the first round 0, and after the last round
r − 1. This means that two key nibbles are added on the edges that connect rounds 0 and
r − 1. Since our model does not allow two key additions on an edge, we add a new round
of “dummy” single-nibble operations between the two additions.

3.4 Adaptation to the Key-recovery Setting
In the key-recovery case, going from round 0 to round r − 1 requires a query to the block
cipher. This is modeled by adding a new round with a single cell (the “cipher cell”), as
large as the internal state, which is connected to round 0 and to round r − 1. The cipher
cell must belong either to CF (decryption queries) or to CB (encryption queries).

Role of the Global Reduction. The nibbles of global reduction serve as a way to reduce
the memory complexity in preimage attacks. In key-recovery attacks, the same variables
correspond to the cut-set. This change of perspective is visible in Equations 8 and 9.
While a preimage attack requires to loop over the values given to the global guesses, a
key-recovery attack can fix n of these nibbles for free.

Data Complexity. In key-recovery attacks, we may want to control or minimize the data
complexity. This can be done as follows. Assume without loss of generality that the cipher
cell c belongs to CB. We look at all the edges connecting c with cells at round 0, and
count the weight of edges that: • connect with forward cells (thus, can be globally fixed);
• do not have a backward key nibble. The data complexity can be upper bounded by
the state size, minus the sum of weights of all such edges: this corresponds to the total
number of state bits that can vary when the queries are made. Similar constraints apply if
c belongs to CF .

PMITM and Grover-meet-Simon. In the PMITM case, we add the constraints that all
cells should have a zero contribution to the list sizes (which will only depend on the initial
state, and on key bit guesses), and we do not count the merged list size. We only require
some matching between the forward and backward paths to occur.

Grover-meet-Simon is a subcase of PMITM, as we have seen in Section 2.5. In this
case, we can compute an approximation of the complexity by counting only the “shared”
key nibbles of the path. The key nibbles XORed to the starting state are not colored.
They are the “middle” key nibbles kM defined in Section 2.5.

4 Application to AES-like Designs
In this section, we detail two of our applications to AES-like designs (more can be found
in Appendix C). In each case, we only give the details of one solution path, but several
solutions actually lead to the same complexity. How these paths translate into attack

13

algorithms was discussed previously in Section 2. For completeness, we include detailed
descriptions of the attacks in Appendix B, and we only give here the main ideas.

The figures use the following color / symbol scheme: green ↔ for global guesses,
shared key nibbles kS and � matching through MixColumns; blue H for the forward path
and kF ; red N for the backward path and kB . Additionally, matchings between forward
and backward are displayed as cyan edges.

4.1 Pseudo-preimage Attack on SATURNIN-Hash
Saturnin is one of the second-round candidates of the NIST LWC competition [CDL+20].
The block cipher has both a block and a key size of 256 bits, and it can be abstracted as
an AES-like design operating on a 4×4 matrix of 16-bit nibbles. A single round of this
representation is actually a “Super-round” that corresponds to two rounds in Saturnin. It
adds a key which alternates between the master key and a rotated version of it, then applies
either a transformation on the rows (MixRows) or the columns (MixColumns). This can
be viewed equivalently as the composition of a transposition, followed by a MixColumns,
but the key bytes have to be positioned appropriately.

The hash function Saturnin-Hash uses the block cipher as a compression function.
In [DHS+21], the authors gave a pseudo-preimage attack on 7 super-rounds (out of 16)
of time 2208 and memory 248. We improve this time to 2192, at the expense of a larger
memory, using the path of Figure 5.

We start by fixing the 4 key nibbles k1,2,3,11. In the forward list, we put 6 nibbles
k5,6,7,8,9,10 and in the backward list, we put the 6 others k0,4,12,13,14,15. We also fix the
values of 14 state nibbles: 9 arrows, 2 linear relations through c3

0, 1 linear relation through
c5

0, c
5
1, c

5
2 respectively.

The forward list is computed as follows: we start from c2
2, which needs 4 nibble guesses.

Going through c3
0, the two nibbles are deduced using the two precomputed linear relations.

The same is done through round 5, so there is nothing more to guess. The list is of size
26×16+4×16 = 2160. The backward list guesses 3 nibbles at round 5 (the other ones are
deduced by the linear relations), then one nibble at round 3, so it has the same size.

There are 10 linear relations between backward and forward: 4 relations through
MixColumns at round 1, 2 relations which hadn’t been used yet in c3

0, and 4 matchings
of nibbles. As we obtain a list of 2160 partial (pseudo)-preimages on 4 nibbles (the blue
nibbles going through round 7) there remains to repeat this operation 22×16 times.

In the quantum setting, our tool finds an attack on the same number of rounds, of
complexity 2115.55 and using 232 QRAQM. The path is quite different, and corresponds to
a classical attack with reduced memory. For completeness we include it in Appendix C.2.

4.2 Key-recovery Attack on full FUTURE
Future [GPS22] is an AES-like cipher with 64-bit blocks and 128-bit keys. Its internal
state is represented as a 4 × 4 matrix of 4-bit nibbles. The round function applies the
following operations: • SubCells (S-Boxes); • MixColumns; • ShiftRows; • AddRoundKey.
One can note that the order of operations is different from the AES; also, ShiftRows
rotates the rows to the right (and not to the left like in the AES). There are 10 rounds;
MixColumns is omitted at the last round.

The key addition alternates between two 64-bit subkeys k0, k1, where k0 is first added
in the “pre-round”, and then, the key added at round i is rotated by 5(i/2) bits.

Because the key bits are not aligned with the state nibbles, due to the rotations,
we model the structure of Future at the bit level. The composition of SubCells and
MixColumns is viewed as a Super S-Box operating on 16 bits. When matching through
MixColumns, groups of key bits that belong to the same S-Box should not have incompatible

14

c00
k5 k6 k7 k8

k0 k1 k2 k3

c01
k9 k10 k11 k12

k4 k5 k6 k7

c02
k13 k14 k15 k0

k8 k9 k10 k11

H c03
k1 k2 k3 k4

k12 k13 k14 k15
R0

� c10 � c11 � c12 � c13
R1

N c20
k5 k6 k7 k8

k0 k1 k2 k3

N c21
k9 k10 k11 k12

k4 k5 k6 k7

H c22
k13 k14 k15 k0

k8 k9 k10 k11

N c23
k1 k2 k3 k4

k12 k13 k14 k15
R2

� c30 N c31 N c32 H c33
R3

N c40
k5 k6 k7 k8

k0 k1 k2 k3

N c41
k9 k10 k11 k12

k4 k5 k6 k7

H c42
k13 k14 k15 k0

k8 k9 k10 k11

H c43
k1 k2 k3 k4

k12 k13 k14 k15
R4

� c50 � c51 � c52 H c53
R5

c60
k5 k6 k7 k8

k0 k1 k2 k3

c61
k9 k10 k11 k12

k4 k5 k6 k7

c62
k13 k14 k15 k0

k8 k9 k10 k11

H c63
k1 k2 k3 k4

k12 k13 k14 k15
R6

H H H HR7

Figure 5: Path of a 7 Super-round pseudo-preimage attack on Saturnin-Hash.

15

colors (i.e., both backward and forward). But since they come from the same cell, this is
already ensured by the coloring constraints.

With our tool, we find an attack4 of time complexity 2126 and memory 234. The path
is displayed in Figure 6. Due to space constraints, we have only represented the added key
bits as color rectangles. Groups of 4 consecutive bits go through a single S-Box before the
MixColumns operation.

In the forward path, we guess 14 key bits. In the backward path, we guess 22 key bits.
The other 92 key bits are shared. There are 15 state nibbles guessed in total, and 1 nibble
(4 bits) of linear relation at c2

3.
Going forwards, we compute the states c1 and then c2 without having to make any

state guess. At c2
3 we use the single nibble of linear relation that we have precomputed;

we have to guess 3 other nibbles. To compute c5 we have to guess 2 nibbles. Thus the
forward list is of total size: 214+5×4 = 234.

Going backwards, we have immediately the value of c1
1 (the single red state nibble

remaining is deduced by the precomputed linear relation, which relates it to the backward
key bits). There is no other guess to make until round 7, where we need to guess 3 nibbles.
Thus the list size is also 234.

In the merged list, we can note that there are 3 nibbles of matching at round 2, since we
only precomputed one linear relation. There are also 3 nibbles at round 6, going through
MixColumns. Finally, there are 3 nibbles of matching at round 8. This makes a total of 36
bits of matching, so the merged list is of size 232.

In [GPS22] the authors estimated that MITM attacks could reach up to 7 rounds of
the cipher. However this estimate did not take into account the GAD technique. Indeed,
in this attack, state guesses allow roughly to extend the forward path by two rounds, and
the backward path by one round.

5 Application to Present-like Designs
In this section, we show some applications of our results to Present-like designs, where
there is no Super S-Box. Because the designs attacked here involve either a large number
of rounds or state nibbles, we only sketch briefly the structure of the attacks and give
zoomed-out versions of some of the pictures. The full pictures can be automatically
generated using our code.

5.1 Application to Present
Present [BKL+07] is an SPN cipher with a state of 16× 4 bits. It uses a 4-bit S-Box,
and the linear layer is a permutation of the bits. While the best key-recovery attacks on
the block cipher Present are linear attacks, they have a large data complexity. The main
advantage of MITM attacks is a small data complexity.

The Sieve-in-the-middle technique introduced in [CNV13] allowed to find an attack
on 7-round Present-80 in time 273.42. Using bicliques, this attack can be extended to 8
rounds with the same time complexity, and 26 data complexity.

With our tool, we are able to obtain a GAD attack on 9 rounds with a comparable
28 data complexity, and a time complexity 278. A bird’s eye view of the attack path is
represented in Figure 7. The data complexity appears clearly since all state bits except 8
are fixed between the first round and the encryption cell.

We detail the choice of backward and forward key bits. Since each round of key
scheduling applies an S-Box, there are a total of 9 key cells relating the key bits, and a
total of 80 + 9× 4 = 116 key bits. In the forward key, we take k20, k21, k24, k25 from the

4Actually, our optimization yields an even better attack with time complexity 2124 and memory 284,
but the path is much more complicated.

16

N c00 N c01 N c02 N c03
R0

H c10 N c11 H c12 H c13
R1

H c20 H c21 H c22 � c23
R2

H c30 H c31 H c32 H c33
R3

c40 H c41 H c42 H c43
R4

H c50 H c51 c52 c53
R5

c60 � c61 � c62 � c63
R6

N c70 N c71 N c72 c73
R7

N c80 � c81 N c82 N c83
R8

N N N N N N N N N N N N N N N NR9

N c100
R10

Figure 6: Path of the key-recovery attack on full Future. Individual edges correspond to
S-Boxes, which are aligned with groups of 4 key bits.

17

H H H H H H H N H N H H H H H H

H H H H H H H H H H H H H H H H

H H H H H H H H H H H H H H H H

H H H H H H H H H H H H H H

H H H H H H H H H H H

N N N

N N N N

N N N N N N N N

N N N N N N N N N N N N N N N N

N

Figure 7: Low-data MITM attack on 9 rounds of Present-80.

master key, and two key bits k81, k82 that appear on the left at the second round. Four
key bits k15, k16, k17, k18, which are the remaining forward key bits visible at the first
round, are deduced with a key cell relation.

All other key cells reduce the shared key bits. In the backward list, we only guess two
key bits k41, k42 and there are no active key cells. Four bits of state guesses are required
to activate the last two backward cells. All lists have size 26. We can also fine-tune the
trade-off between data and time, for example by taking a limit of 212 data, we find a
slightly smaller complexity 277.

5.2 Application to FLY and PIPO
The lightweight block ciphers Fly [KG16] and Pipo [KJK+20] are structurally similar
with respect to MITM attacks. Both are Present-like SPN ciphers with 64-bit blocks,
but 8-bit S-Boxes, where the linear layer is a bit-permutation. Though the S-Box and
permutation differ between both designs, the cell-based representation will be the same.
Indeed, what only matters for us is that between any pair of S-Boxes of two successive
rounds, there is a single-bit linear relation.

This simplification is allowed by the simple key schedule of both ciphers. Fly uses a
128-bit master key which is equivalent to k0||k1, where k0 is used in even rounds and k1 in
odd rounds. Pipo-128 does the same, while Pipo-256 has a 256-bit key which is separated
in 4 subkeys k = k3‖k2‖k1‖k0 used alternatively. The only difference between Fly and
Pipo-128 is the final key addition in Pipo-128. Furthermore, in the attacks, the final key
is always entirely known in the backward path. Applying a final bit permutation or not
will lead to the same attack paths and complexities.

To the best of our knowledge, our attacks are the best against Fly and Pipo, exceeding
the differential and linear cryptanalysis performed by the authors of Pipo (who reported
9-round and 11-round attacks respectively). We defer the details of the 128-bit versions
to Appendix C.6 and focus here on our attack on full Pipo-256 (18 rounds).

Our attack has a time complexity 2252 and a memory complexity 260. It uses the path

18

N N N N N N N NR0

N N N N N N N NR1

N N N N N N N NR2

H N N H N N N HR3

H H H H H H H HR4

H H H H H H H HR5

H H H H H HR6

H H H H H HR7

H H H H H H H HR8

H H H H H H H HR9

H H H H H HR10

H H H H H HR11

H H H H H H H HR12

H H H H H H H HR13

H H H H H N H NR14

N N N N N N N NR15

N N N N N N N NR16

N N N N N N N NR17

NR18

Figure 8: Path of the 18-round attack on Pipo-256.

19

given in Figure 8. There are 183 shared key bits, 13 forward and 60 backward. There are
no state guesses backwards, as can be seen on the path. Forwards, we need to guess a total
of 56 bits: 12 bits at round 7, 16 bits at round 8, 12 bits at round 11, 16 bits at round 12.
Thus the list is of size 269. In the middle, there are 64 bits of matching (a full state), so
the merged list size is 265. The overall complexity is dominated by the computation of the
forward path: 269+183 = 2252.

6 Conclusion
In this paper, we extended the cell-based modeling of [SS22a] to find MITM attacks on
ciphers and compression functions with simple key schedules. The attacks obtained show
that the MITM technique is quite powerful when the key schedule is weak, even if the
cipher itself has a good diffusion.

At the moment, we conjecture that our modeling is optimal when the key-schedule has
only S-Boxes and permutations as defined in Section 2. A natural open question would
be to extend this further to the case of key schedules with complex linear layers, like
AES. However, this seems to induce complex linear relations between the key nibbles and
complex relations between state and key, which only a more fine-grained modeling can
capture [BGST22]. For example, in preimage attacks on AES variants, one would like to
guess nibbles or enforce constraints on linearly modified round keys (to have no impacts
through MixColumns for example). Our model cannot find such constraints.

Regarding quantum MITM attacks, we have encountered instances of the Grover-meet-
Simon attack [LM17] which cannot be turned “offline” [BHN+19]. Doing so would provide
a valuable improvement of these attacks.

Acknowledgments. We thank the reviewers of ToSC for their helpful feedback and
comments. A.S. would like to thank Susanta Samanta for providing details on the
specification of the block cipher FUTURE. Part of this work done at CWI by A.S. has been
supported by ERC-ADG-ALGSTRONGCRYPTO (project 740972). This work has been
partially supported by the French Agence Nationale de la Recherche through the DeCrypt
project under Contract ANR-18-CE39-0007, and through the France 2030 program under
grant agreement No. ANR-22-PETQ-0008 PQ-TLS.

References
[AA20] Siavash Ahmadi and Mohammad Reza Aref. Generalized meet in the middle

cryptanalysis of block ciphers with an automated search algorithm. IEEE
Access, 8:2284–2301, 2020.

[AAMA14] Siavash Ahmadi, Zahra Ahmadian, Javad Mohajeri, and Mohammad Reza
Aref. Low-data complexity biclique cryptanalysis of block ciphers with
application to piccolo and HIGHT. IEEE Trans. Inf. Forensics Secur.,
9(10):1641–1652, 2014.

[AS08] Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step
MD5 and more. In Selected Areas in Cryptography, volume 5381 of LNCS,
pages 103–119. Springer, 2008.

[BDF11] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic
search of attacks on round-reduced AES and applications. In CRYPTO,
volume 6841 of LNCS, pages 169–187. Springer, 2011.

20

[BDG+21] Zhenzhen Bao, Xiaoyang Dong, Jian Guo, Zheng Li, Danping Shi, Siwei Sun,
and Xiaoyun Wang. Automatic search of meet-in-the-middle preimage attacks
on AES-like hashing. In EUROCRYPT (1), volume 12696 of LNCS, pages
771–804. Springer, 2021.

[BGST22] Zhenzhen Bao, Jian Guo, Danping Shi, and Yi Tu. Superposition meet-in-
the-middle attacks: Updates on fundamental security of AES-like hashing.
In CRYPTO (1), volume 13507 of Lecture Notes in Computer Science, pages
64–93. Springer, 2022.

[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum
amplitude amplification and estimation. Contemporary Mathematics, 305:53–
74, 2002.

[BHN+19] Xavier Bonnetain, Akinori Hosoyamada, María Naya-Plasencia, Yu Sasaki,
and André Schrottenloher. Quantum attacks without superposition queries:
The offline simon’s algorithm. In ASIACRYPT (1), volume 11921 of Lecture
Notes in Computer Science, pages 552–583. Springer, 2019.

[BJ22] Xavier Bonnetain and Samuel Jaques. Quantum period finding against
symmetric primitives in practice. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2022(1):1–27, 2022.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
CRYPTO (2), volume 9815 of Lecture Notes in Computer Science, pages
123–153. Springer, 2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In CHES, volume 4727 of
LNCS, pages 450–466. Springer, 2007.

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In ASIACRYPT, volume 7073 of Lecture Notes
in Computer Science, pages 344–371. Springer, 2011.

[BNS19] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quan-
tum security analysis of AES. IACR Trans. Symmetric Cryptol., 2019(2):55–
93, 2019.

[Bon21] Xavier Bonnetain. Tight bounds for simon’s algorithm. In LATINCRYPT,
volume 12912 of Lecture Notes in Computer Science, pages 3–23. Springer,
2021.

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. GIFT: A small present - towards reaching
the limit of lightweight encryption. In CHES, volume 10529 of Lecture Notes
in Computer Science, pages 321–345. Springer, 2017.

[BR10] Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle
attack: Cryptanalysis of the lightweight block cipher KTANTAN. In Selected
Areas in Cryptography, volume 6544 of LNCS, pages 229–240. Springer, 2010.

21

[CDL+20] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María Naya-Plasencia,
Léo Perrin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of
lightweight symmetric algorithms for post-quantum security. IACR Trans.
Symmetric Cryptol., 2020(S1):160–207, 2020.

[CLS22] Federico Canale, Gregor Leander, and Lukas Stennes. Simon’s algorithm
and symmetric crypto: Generalizations and automatized applications. In
CRYPTO (3), volume 13509 of Lecture Notes in Computer Science, pages
779–808. Springer, 2022.

[CNV13] Anne Canteaut, María Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-
middle: Improved MITM attacks. In CRYPTO (1), volume 8042 of LNCS,
pages 222–240. Springer, 2013.

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-
middle and impossible differential attacks. In CRYPTO (2), volume 9815 of
Lecture Notes in Computer Science, pages 157–184. Springer, 2016.

[DH77] Whitfield Diffie and Martin E. Hellman. Special feature exhaustive crypt-
analysis of the NBS data encryption standard. Computer, 10(6):74–84, 1977.

[DHS+21] Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, and
Lei Hu. Meet-in-the-middle attacks revisited: Key-recovery, collision, and
preimage attacks. In CRYPTO (3), volume 12827 of LNCS, pages 278–308.
Springer, 2021.

[DR99] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. Submission to
the NIST AES competition, 1999.

[DR20] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced
Encryption Standard (AES), Second Edition. Information Security and Cryp-
tography. Springer, 2020.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on
8-round AES. In FSE, volume 5086 of Lecture Notes in Computer Science,
pages 116–126. Springer, 2008.

[DSP07] Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved meet-in-the-
middle attacks on reduced-round DES. In INDOCRYPT, volume 4859 of
LNCS, pages 86–100. Springer, 2007.

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David A. Wagner, and Doug Whiting. Improved cryptanalysis of rijndael.
In FSE, volume 1978 of Lecture Notes in Computer Science, pages 213–230.
Springer, 2000.

[GLRW10] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced
meet-in-the-middle preimage attacks: First results on full tiger, and improved
results on MD4 and SHA-2. In ASIACRYPT, volume 6477 of LNCS, pages
56–75. Springer, 2010.

[GPS22] Kishan Chand Gupta, Sumit Kumar Pandey, and Susanta Samanta. FU-
TURE: A lightweight block cipher using an optimal diffusion matrix. In
AFRICACRYPT, Lecture Notes in Computer Science, pages 28–52. Springer
Nature Switzerland, 2022.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In STOC, pages 212–219. ACM, 1996.

22

[Gur23] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[HE22] Hosein Hadipour and Maria Eichlseder. Autoguess: A tool for finding guess-
and-determine attacks and key bridges. In ACNS, volume 13269 of Lecture
Notes in Computer Science, pages 230–250. Springer, 2022.

[IS12] Takanori Isobe and Kyoji Shibutani. All subkeys recovery attack on block
ciphers: Extending meet-in-the-middle approach. In Selected Areas in Cryp-
tography, volume 7707 of LNCS, pages 202–221. Springer, 2012.

[KG16] Pierre Karpman and Benjamin Grégoire. The littlun s-box and the fly block
cipher. In NIST Lightweight Cryptography Workshop (informal proceedings),
2016.

[KJK+20] Hangi Kim, Yongjin Jeon, Giyoon Kim, Jongsung Kim, Bo-Yeon Sim, Dong-
Guk Han, Hwajeong Seo, Seonggyeom Kim, Seokhie Hong, Jaechul Sung, and
Deukjo Hong. PIPO: A lightweight block cipher with efficient higher-order
masking software implementations. In ICISC, volume 12593 of Lecture Notes
in Computer Science, pages 99–122. Springer, 2020.

[KLLN16a] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Breaking symmetric cryptosystems using quantum period finding. In
CRYPTO (2), volume 9815 of Lecture Notes in Computer Science, pages
207–237. Springer, 2016.

[KLLN16b] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and María Naya-Plasencia.
Quantum differential and linear cryptanalysis. IACR Trans. Symmetric
Cryptol., 2016(1):71–94, 2016.

[KLMR16] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka v2 - efficient short-input hashing for post-quantum applications. IACR
Trans. Symmetric Cryptol., 2016(2):1–29, 2016.

[KRS12] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bi-
cliques for preimages: Attacks on skein-512 and the SHA-2 family. In FSE,
volume 7549 of LNCS, pages 244–263. Springer, 2012.

[LJ16] Rongjia Li and Chenhui Jin. Meet-in-the-middle attacks on 10-round AES-256.
Des. Codes Cryptogr., 80(3):459–471, 2016.

[LM17] Gregor Leander and Alexander May. Grover meets simon - quantumly
attacking the fx-construction. In ASIACRYPT (2), volume 10625 of Lecture
Notes in Computer Science, pages 161–178. Springer, 2017.

[MS22] Alexander May and Lars Schlieper. Quantum period finding is compression
robust. IACR Trans. Symmetric Cryptol., 2022(1):183–211, 2022.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum
information, 2002.

[QHD+23] Lingyue Qin, Jialiang Hua, Xiaoyang Dong, Hailun Yan, and Xiaoyun Wang.
Meet-in-the-middle preimage attacks on sponge-based hashing. In EURO-
CRYPT (4), volume 14007 of Lecture Notes in Computer Science, pages
158–188. Springer, 2023.

[Sas11] Yu Sasaki. Meet-in-the-middle preimage attacks on AES hashing modes and
an application to Whirlpool. In FSE, volume 6733 of LNCS, pages 378–396.
Springer, 2011.

23

[Sas18] Yu Sasaki. Integer linear programming for three-subset meet-in-the-middle
attacks: Application to GIFT. In IWSEC, volume 11049 of LNCS, pages
227–243. Springer, 2018.

[Sch23] André Schrottenloher. Quantum linear key-recovery attacks using the QFT.
14085:258–291, 2023.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput.,
26(5):1474–1483, 1997.

[SS17] Thomas Santoli and Christian Schaffner. Using simon’s algorithm to attack
symmetric-key cryptographic primitives. Quantum Inf. Comput., 17(1&2):65–
78, 2017.

[SS22a] André Schrottenloher and Marc Stevens. Simplified MITM modeling for
permutations: New (quantum) attacks. In CRYPTO (3), volume 13509 of
Lecture Notes in Computer Science, pages 717–747. Springer, 2022.

[SS22b] André Schrottenloher and Marc Stevens. Simplified MITM modeling for
permutations: New (quantum) attacks. IACR Cryptol. ePrint Arch., page
189, 2022.

[SWWW12] Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu. Investigating fundamental
security requirements on whirlpool: Improved preimage and collision attacks.
In ASIACRYPT, volume 7658 of Lecture Notes in Computer Science, pages
562–579. Springer, 2012.

24

A Complete MILP Model with Keys
We give the generic MILP model for the GAD case, possibly with some matching through
MixColumns. Matching through MC is possible only at the cells which are indicated to be
Super S-Boxes. The pseudocode that we give below is a slightly different and simplified
version of the file modeling.py available at https://github.com/AndreSchrottenloher/
key-mitm.

The input is given as a graph. We have a set of cells C with weights wc, a set of key
nibbles K, a set of edges E ⊆ C × C × N×K which have both a weight and a key nibble
attached, a set of key cells KC also with weights, and corresponding input and output key
nibbles. We assume that all edges and key nibbles have weight 1.

Since this modeling is built over [SS22a], we indicate the new parts that are related to
key nibbles in orange (lines 10–31). The variable names |x|, |kF |, |kS |, |kB |, `F , `B , `M are
taken in order to connect immediately to the formulas of Equation 8 and Equation 9.

. Variables for the coloration of cells and basic constraints on the path
1: for all cell c ∈ C do
2: Variable (boolean) cell_colL[c] for L ∈ {F,B,M,N}

. Forward, backward, merged cells and also “new merged” cells which can appear if
the cell is a Super S-Box

3: Constraint cell_colM [c] = cell_colF [c] + cell_colB [c] + cell_colN [c]
4: If c is not a Super S-Box, Constraint cell_colN [c] = 0
5: end for
6: For all round r, Constraint “no N cell for both r and r + 1”
7: Constraint “at least one round without B cell”
8: Constraint “at least one round without F cell”
9: Constraint “at least one round with all cells M”
. Variable and constraints on the coloration of key nibbles

10: for all key nibble k ∈ K do
11: Variable (boolean) key_colL[k] for L ∈ {F,B, S}
12: Constraint key_colB [k] + key_colF [k] + key_colS [k] = 1
13: end for
14: for all edge (c, c′, w, k) do

. If both cells are forward (or “new merged” for the below cell) then key nibble is
forward or shared

15: Constraint 1+key_colF [k]+key_colS [k] ≥ cell_colF [c]+cell_colN [c′]+cell_colF [c′]
. If both cells are backward (or “new merged” for the below cell) then key nibble is
backward or shared

16: Constraint 1+key_colB [k]+key_colS [k] ≥ cell_colB [c]+cell_colN [c′]+cell_colB [c′]
17: end for

. Constraints on the coloration of key cells
18: for all key cell kc do
19: Variable (boolean) key_cell_colL[kc] for L ∈ {F,B, S}
20: Constraint key_cell_colS [kc] + key_cell_colF [kc] + key_cell_colB [kc] ≤ 1
21: for k in input and output key nibbles of kc do
22: Constraint key_colS [k] ≥ key_cell_colS [kc]
23: Constraint key_colS [k] + key_colF [k] ≥ key_cell_colF [kc]
24: Constraint key_colS [k] + key_colB [k] ≥ key_cell_colB [kc]
25: end for
26: end for

. Total amount of key nibbles
27: Variable (integer) |kL| for L ∈ {F,B,M, S}
28: for L ∈ {F,B, S} do

25

https://github.com/AndreSchrottenloher/key-mitm
https://github.com/AndreSchrottenloher/key-mitm

29: Constraint |kL| =
∑
k∈K key_colL[k]−

∑
kc∈KC w(kc)key_cell_colL[kc]

30: end for
31: Constraint |kM | = |kF |+ |kB |

. “Global reduction” variables
32: for all cell c ∈ C do
33: Variable global_red[c] (continuous, between 0 and wc)

. Global reductions only happen at forward (guessed edges) and “new merged”
(through MC) cells. The following limit holds in both cases:

34: global_red[c] ≤ (connections with backward cells at round before)
. “Connections” are computed by weighted sums of cell coloration variables

35: if c is a super S-Box then
36: global_red[c] ≤ wc(cell_colN [c] + cell_colF [c])

. For a “new merged” cell, it depends on the number of connections to other
backward and forward cells

37: global_red[c] ≤ (connections with colored cells)− wccell_colN [c]
38: global_red[c] ≤ wccell_colF [c]+(connections with forward cells at round after)
39: else
40: global_red[c] ≤ wccell_colF [c]
41: end if
42: end for
43: |x| =

∑
c∈C global_red[c]

. List sizes
44: for c ∈ C do
45: Variable (continuous) cell_contribL[c] for L ∈ {F,B,M}

46: cell_contribL[c] = wccell_colL[c]−
(

connections with cells of
the same color at round before

)
47: end for
48: `L = (

∑
c cell_contribL[c])− |x|

49: Memory complexity: min(`F + |kF |, `B + |kB |)
50: Time complexity: determined from `F , `B , `M , |x|, |kB |, |kF |, |kS | using the formulas

of Equation 8 and Equation 9.

B Attack Algorithms
In this section, we illustrate the conversion of a MITM attack path (found with our model)
into a MITM attack algorithm on the two examples of Section 4. The attacks of Section 5
are easier to write down since they do not involve matching through MixColumns.

B.1 Pseudo-preimage Attack on Saturnin-Hash
We detail the algorithm of the attack given in Section 4.1 (Figure 5). Recall that a single
super-round of Saturnin applies the following operations: AddRoundKey, SubBytes,
MixColumns (resp. MixRows). The attack does not depend on the definition of the (super)
S-Box, nor the mixing layer (as long as it uses an MDS matrix). Below we simply need to
write linear equations that relate the input and output nibbles of the mixing operation; we
do not detail these equations and simply introduce linear functions of the nibbles. We use
S to denote the super S-Box.

We use the following notations to coincide with the figure: xji for the column i after
the key addition at round j (the arrows entering cell cji) and z

j
i after the mixing layer (the

arrows exiting cell cji). We also reuse the forward / backward / {merged, shared} coloring
scheme in the writing to make the separation of the forward and backward computations
clearer.

26

Path Details. The forward, backward and shared key nibbles are:
kF = k0, k4, k13, k13, k14, k15

kB = k6, k6, k7, k8, k9, k10

kS = k1, k2, k3, k11

. (10)

We fix a total of 14 state nibbles, including 9 arrows and 5 linear relations through
the mixing layer. We write equations depending on linear functions Li, L′i, whose exact
specification depends on the mixing layer. For example, for the matching through c1

0, we
relate outputs of the cells at round 0 (z variables) with inputs of the cells at round 2 (x
variables):

L(S(k1 ⊕ z0
3 [0]), x2

2[0]⊕ k8) = L′(x2
0[0]⊕ k0, x

2
1[0]⊕ k4, x

2
2[0]⊕ k12)

=⇒ L1(S(k1 ⊕ z0
3 [0]), x2

2[0], k0, k4, k12) = L′1(k8, x
2
0[0], x2

1[0], x2
2[0]) (11)

Similarly through c1
1, c1

2, c1
3 respectively:

L2(S(k2 ⊕ z0
3 [1]), x2

2[1], k13) = L′2(k1 ⊕ x2
0[1], k5 ⊕ x2

1[1], k9, x
2
3[1])

L3(S(k3 ⊕ z0
3 [2]), x2

2[2], k14) = L′3(k2 ⊕ x2
0[2], k6 ⊕ x2

1[2], x2
3[2], k10)

L4(S(k4 ⊕ z0
3 [3]), k11 ⊕ x2

2[3], k15) = L′4(k3 ⊕ x2
0[3], k7 ⊕ x2

1[3], x2
2[3])

Through c3
0 we have two linear relations to precompute, for which we select appropriate

choices of input and output nibbles:

L(S(x3
0[0]), S(x3

0[2]), z3
0 [0], z3

0 [2], z3
0 [3]) = 0

=⇒ L(S(k5 ⊕ z2
0 [0]), S(k13 ⊕ z2

2 [0]), k0 ⊕ x4
0[0], k8 ⊕ x4

2[0], k12 ⊕ x4
3[0]) = 0

=⇒ L5(S(k13 ⊕ z2
2 [0]), k0, x

4
2[0], k12 ⊕ x4

3[0]) = L′5(S(k5 ⊕ z2
0 [0]), x4

0[0], k8) := t5 (12)

L′(S(x3
0[1]), S(x3

0[2]), z3
0 [0], z3

0 [2], z3
0 [3]) = 0

=⇒ L6(S(k13 ⊕ z2
2 [0]), k0, x

4
2[0], k12 ⊕ x4

3[0]) = L′6(S(k9 ⊕ z2
1 [0]), x4

0[0], k8) := t6 (13)

and we can write two additional equations for matching, using the rest of the nibbles.
Finally we write the linear relations precomputed through c5

0, c
5
1, c

5
2:

L7(S(k13 ⊕ z4
2 [0]), S(k1 ⊕ z4

3 [0]), k12 ⊕ x6
3[0]) = L′7(S(k5 ⊕ z4

0 [0]), S(k9 ⊕ z4
1 [0])) := t7

(14)
L8(S(k14 ⊕ z4

2 [1]), S(k2 ⊕ z4
3 [1]), k13 ⊕ x6

3[1]) = L′8(S(k6 ⊕ z4
0 [1]), S(k10 ⊕ z4

1 [1])) := t8
(15)

L9(S(k15 ⊕ z4
2 [2]), S(k3 ⊕ z4

3 [2]), k14 ⊕ x6
3[2]) = L′9(S(k7 ⊕ z4

0 [2]), S(k11 ⊕ z4
1 [2])) := t9

(16)

The additional 9 state nibble guesses (green arrows) are:

x3
3[0], z2

1 [3], z2
3 [3], x4

2[1, 2], z3
1 [3], z3

2 [3], x5
3[0], z4

1 [3] (17)

Notice that we alternate between z and x nibbles depending on the color of the key nibble
that is added. Indeed, if the key nibble added on the edge is forward, then the state nibble
must be fixed before the key addition (otherwise we wouldn’t be able to compute forwards).
If it is backward, the state nibble must be fixed after the key addition.

27

Algorithm 1 Forward computation for the attack on Saturnin-Hash.
Global: guess of t5 to t9, 9 state nibbles
Input: kF (6 key nibble guesses) and 4 state guesses
Output: 10 nibbles for matching

1: procedure fF
2: Guess x2

2 (use 4 guesses)
3: Deduce x3

3 (use 3 global state nibbles)
4: Use Equation 12 and Equation 13 to deduce both x4

3[0] and x4
2[0] from the incoming

edge z2
2 [1]

5: Deduce x4
2, x

4
3 (use 4 global state nibbles)

6: Deduce x5
3 (use 2 global state nibbles)

7: Using the three linear relations through c5
0, c

5
1, c

5
2 (Equation 14 to Equation 16)

deduce x6
3

8: XOR with the target preimage and advance to x0
3

9: Return the following values:
Through c1

0: L1(S(k1 ⊕ z0
3 [0]), x2

2[0], k0, k4, k12)
Through c1

1: L2(S(k2 ⊕ z0
3 [1]), x2

2[1], k13)
Through c1

2: L3(S(k3 ⊕ z0
3 [2]), x2

2[2], k14)
Through c1

3: L4(S(k4 ⊕ z0
3 [3]), k11 ⊕ x2

2[3], k15)
Direct match: k14 ⊕ z2

2 [1]
Direct match: k15 ⊕ z2

2 [2]
Direct match: z3

3 [0]
Direct match: z3

3 [1]
Through c3

0: Two additional relations
10: end procedure

Algorithm 2 Backward computation for the attack on Saturnin-Hash.
Global: guess of t5 to t9, 9 state nibbles
Input: kB (6 key nibble guesses) and 4 state guesses
Output: 10 nibbles for matching

1: procedure fB
2: Guess z4

0 [0, 1, 2] (use 3 guesses)
3: Using the three linear relations through c5

0, c
5
1, c

5
2 (Equation 14 to Equation 16)

deduce z4
1 [0, 1, 2]

4: Complete z4
0 and z4

1 (use 2 global state nibbles)
5: Compute z3

1 and z3
2 (use 4 global state nibbles)

6: Guess x4
0[0] (use 1 guess)

7: Using the two precomputed relations through c3
0 (Equation 12 and Equation 13),

deduce z2
0 [0] and z2

1 [0]
8: Compute z2

0 , z
2
1 , z

2
3 (use 3 global state nibbles)

9: Return the following values:
Through c1

0: L′1(k8, x
2
0[0], x2

1[0], x2
2[0])

Through c1
1: L′2(k1 ⊕ x2

0[1], k5 ⊕ x2
1[1], k9, x

2
3[1])

Through c1
2: L′3(k2 ⊕ x2

0[2], k6 ⊕ x2
1[2], x2

3[2], k10)
Through c1

3: L′4(k3 ⊕ x2
0[3], k7 ⊕ x2

1[3], x2
2[3])

Direct match: x3
1[2]

Direct match: x3
2[2]

Direct match: k3 ⊕ x4
0[3]

Direct match: k7 ⊕ x4
1[3]

Through c3
0: Two additional relations

10: end procedure

28

Forward and Backward Computations. The forward path (Algorithm 1) starts at round
2 and stops at round 0. The backward path (Algorithm 2) starts at round 4 and stops at
round 2.

B.2 Key-recovery Attack on FUTURE
We detail the algorithm of the attack given in Section 4.2 (Figure 6). Recall that a single
round of Future applies the following operations: SubCells, MixColumns, ShiftRows,
AddRoundKey, and there is a “pre-round” key addition before round 0. The key addition
alternates between k0 and k1 where k0 is first added in the pre-round.

The attack does not depend on the specification of the S-Box nor the MixColumns,
as soon as the matrix is MDS. Like above, we will introduce many linear functions Li, L′i
without giving their full specification. The S-Box is denoted S.

Notation. Our notation coincides with Figure 6 as follows. Rounds are numbered from
0 to 9. We use (xi0, xi1, xi2, xi3) to denote the 4 columns of the state at the beginning of
round i, thus (x0

0, x
0
1, x

0
2, x

0
3) is the state after the pre-round key addition, and before the

first S-Box layer. We denote by (zi0, zi1, zi2, zi3) the state after the MC layer of round i. On
the figure this means that xij is the value on the top of cell cij (incoming edges), and zij
the value on the bottom (outgoing edges).

For a column xij , we use xij [u] (0 ≤ u < 4) to denote individual 4-bit nibbles in this
column. The SR operation transforms the state as follows:

z0[0] z1[0] z2[0] z1[0]
z0[1] z1[1] z2[1] z3[1]
z0[2] z1[2] z2[2] z3[2]
z0[3] z1[3] z2[3] z3[3]

 7→

z0[0] z1[0] z2[0] z3[0]
z3[1] z0[1] z1[1] z2[1]
z2[2] z3[2] z0[2] z1[2]
z1[3] z2[3] z3[3] z0[3]

 (18)

We use xij [u][v] (0 ≤ v < 4) to denote individual bits within a nibble. The key bits are
denoted kj [i] for j ∈ {0, 1} and i ∈ {0, . . . , 63}. Finally, multiple bits (resp. nibbles) will
be denoted either x[u, u′] or x[u−u′] for a range of values {u, . . . , u′}. As an example, the
state at the beginning of round 1 is related to the state at round 0 by:

x1
0[0] x1

1[0] x1
2[0] x1

3[0]
x1

0[1] x1
1[1] x1

2[1] x1
3[1]

x1
0[2] x1

1[2] x1
2[2] x1

3[2]
x1

0[3] x1
1[3] x1

2[3] x1
3[3]



=


z0

0 [0]⊕ k1[0−3] z0
1 [0]⊕ k1[16−19] z0

2 [0]⊕ k1[32−35] z0
3 [0]⊕ k1[48−51]

z0
3 [1]⊕ k1[4−7] z0

0 [1]⊕ k1[20−23] z0
1 [1]⊕ k1[36−39] z0

2 [1]⊕ k1[52−55]
z0

2 [2]⊕ k1[8−11] z0
3 [2]⊕ k1[24−27] z0

0 [2]⊕ k1[40−43] z0
1 [2]⊕ k1[56−59]

z0
1 [3]⊕ k1[12−15] z0

2 [3]⊕ k1[28−31] z0
3 [3]⊕ k1[44−47] z0

0 [3]⊕ k1[60−63]


Path Details. In the attack, the forward and backward key bits are:{

kF := k1[13−15, 32−39, 57−59], |kF | = 14
kB := k0[17−24], k1[9−12, 30, 31, 49−56], |kB | = 22

(19)

and the shared key bits kS are the 92 remaining others.
The 15 state nibbles which are fixed (cut set) are the following:

X := x1
0[0, 1, 2], x1

0[3][0], z0
1 [3][1, 2, 3]︸ ︷︷ ︸, z0

2 [0], z0
1 [1], x1

2[2, 3], x1
3[0, 1, 3],

x1
3[2][0], z0

1 [2][1, 2, 3]︸ ︷︷ ︸, x2
0[3], x2

1[0], x2
2[1] . (20)

29

In addition, we will precompute one linear relation through MixColumns. Here, notice
that we cannot simply fix z0

1 [3] and z0
1 [2], because the key bits on this nibble have both

forward and backward colors. The backward key bit addition needs to be placed before
the cut set, and the forward key addition after.

Equations for Matching. We will match through MixColumns in the cells c2
3, c

6
1, c

6
2, c

6
3, c

8
1.

Therefore we write linear equations between the input and output nibbles in these cells, and
we introduce a nibble variable t. Note that in all these equations, we needed to separate the
backward and forward / shared bits of the key nibbles, and the linearity of the MixColumns
operation is essential. We will write for example: k1[29, 30, 31, 32] = (k1[29]|0|0|k1[32])⊕
(0|k1[30, 31]|0) where the zeroes are zero bits and | denotes concatenation of bits.

At c2
3:

S(x2
3[2]) = L(z2

3 [0, 1, 2, 3])
S(x2

3[2]) = L(k1[9−12]⊕x3
0[1], k1[49−52]⊕x3

2[3], k1[53−56]⊕x3
3[0], k1[29, 30, 31, 32]⊕x3

1[2])
=⇒ L1(x3

0[1], x3
2[3], x3

3[0], (k1[29]|0|0|k1[32])⊕ x3
1[2])

= L′1(S(x2
3[2]), k1[9−12], k1[49−52], k1[53−56], (0|k1[30, 31]|0)) := t (21)

And similarly, with a different separation of the values:

L2(S(x2
3[0]), x3

0[1], x3
2[3], x3

3[0], (k1[29]|0|0|k1[32])⊕ x3
1[2])

= L′2(k1[9−12], k1[49−52], k1[53−56], (0|k1[30, 31]|0)) (22)

L3(S(x2
3[1]), x3

0[1], x3
2[3], x3

3[0], (k1[29]|0|0|k1[32])⊕ x3
1[2])

= L′3(k1[9−12], k1[49−52], k1[53−56], (0|k1[30, 31]|0))
(23)

L4(S(x2
3[3]), x3

0[1], x3
2[3], x3

3[0], (k1[29]|0|0|k1[32])⊕ x3
1[2])

= L′4(k1[9−12], k1[49−52], k1[53−56], (0|k1[30, 31]|0))
(24)

Next, at c6
1:

L5(S(x6
1[0]), S(x6

1[1])) = L′5(z6
1 [0, 1, 3])

=⇒
{
L5(S(x6

1[0]), S(x6
1[1]))

= L′5(k1[31, 32−34]⊕ x7
1[0], k1[51−54]⊕ x7

2[1], k1[27−29, 30]⊕ x7
0[3])

=⇒
{
L5(S(x6

1[0]), S(x6
1[1]))⊕ L′5((0|k1[32−34]), 0, 0)

= L′5((k1[31]|0|0|0)⊕ x7
1[0], k1[51−54]⊕ x7

2[1], k1[27−29, 30]⊕ x7
0[3])

(25)

At c6
2:{
L6(S(x6

2[1]), S(x6
2[2]))

= L′6(k1[47, 48, 49, 50]⊕ x7
2[0], k1[23−26]⊕ x7

0[2], k1[43−46]⊕ x7
1[3])

(26)

30

At c6
3:

L7(S(x6
3[2]), S(x6

3[3])) = L′7(k1[19−22]⊕x7
0[1], k1[39, 40−42]⊕x7

1[2], k1[59, 60−62]⊕x7
2[3])

=⇒ L7(S(x6
3[2]), S(x6

3[3]))⊕ L′7(0, k1[39]|0|0|0, k1[59]|0|0|0)
= L′7(k1[19−22]⊕ x7

0[1], (0|k1[40−42])⊕ x7
1[2], (0|k1[60−62])⊕ x7

2[3]) (27)

And finally at c8
1:

S(x8
1[0]) = L8(k1[32−35]⊕ x9

0[3], k1[36−39]⊕ x9
1[0], k1[56, 57−59]⊕ x9

2[1],
k1[12, 13−15]⊕ x9

3[2])

=⇒
{
L8(k1[32−35], k1[36−39], 0|k1[57−59], 0|k1[13−15]) =

S(x8
1[0])⊕ L8(x9

0[3], x9
1[0], (k1[56]|0|0|0)⊕ x9

2[1], (k1[12]|0|0|0)⊕ x9
3[2])

(28)

and two similar equations where we replace S(x8
1[0]) by S(x8

1[1]) (resp. S(x8
1[2])) and L8

by another linear function L9 (resp. L10).

Forward and Backward Computations. The forward and backward computations are
detailed in Algorithm 3 and Algorithm 4. There are 9 nibble conditions of matching,
i.e., 36 bits (so the merged list is of expected size 232). One can note that some of the
matching conditions are independent from others; for example the three first equations on
the backward path depend only on the key, and not on the state guesses.

C Details on Applications
In this section, we give some details of applications which were omitted from Section 4
and Section 5.

C.1 Application to 1k-AES and 2k-AES
We illustrate the power of GAD with the following structures: • 1k-AES: the AES block
cipher with a 128-bit key k, without key schedule; • 2k-AES: the AES block cipher with
alternating 128-bit keys k0, k1.

For 1k-AES, we are able to attack 7 rounds (without the final linear layer) with the
path of Figure 9. Recall that each cell xij represents the column j of the state at the end
of round i. We start by guessing the values of the 11 key bytes k0,1,2,3,4,6,7,8,9,10,11. In the
forward list, we guess the values of k5,13,14,15 (4 bytes). In the backward list, we guess the
value of k12 (one byte).

We fix the 16 green ↔ bytes on the figure, which contain 12 bytes of the plaintext,
and 4 bytes of the state after one round. The forward H list contains 24×8 elements,
as it depends only on the key bytes. The backward N list also contains 24×8 elements,
as 3 state bytes need to be guessed. There are 4 bytes of matching between them, so
the merged list is also of size 24×8. Thus the time, memory and data complexities are
respectively 211×8 × 24×8 = 2120, 24×8 = 232, 24×8 = 232. We also obtained an attack of
complexity 2112 on this variant, but with a larger data complexity.

While DS-MITM and Impossible Differential attacks would also reach 7 rounds, both
would require a much larger memory and data complexity. For 2k-AES, we are able to
attack 10 rounds, including the final linear layer. Compared to the DS-MITM attack on
10-round AES-256 [LJ16], our attack also benefits from a reduced memory complexity.

31

Algorithm 3 Forward computation for the attack on Future.
Global: kS , X, t
Input: 14 bits of kF , 20 bits for state guesses
Output: 9 nibbles for matching

1: procedure fF
2: Using the value of X and the value of kF , compute:

x1
0 = x1

0[0, 1, 2], x1
0[3][0]|(k1[13, 14, 15]⊕ z0

1 [3][1, 2, 3])
x1

2 = k1[32−35]⊕ z0
2 [0], k1[36−39]⊕ z0

1 [1], x1
2[2, 3]

x1
3 = x1

3[0, 1, 2], x1
3[2][0]|(k1[57−59]⊕ z0

1 [2][1, 2, 3])

3: Deduce x2
0, x

2
1, x

2
2 except the nibbles x2

0[3], x2
1[0], x2

2[1]
4: Use X to complete x2

0[3], x2
1[0], x2

2[1]; guess x3
0[1], x3

2[3], x3
3[0] . 12 bits of state guess

. These states are unknown because backward key nibbles were added to them
5: Deduce x3

1[2] by Equation 21: L′1(x3
0[1], x3

2[3], x3
3[0], x3

1[2]⊕ (k1[29]|0|0|k1[32])) = t
6: Compute forwards to x4

1, x
4
2, x

4
3 using kS

7: Guess x5
0[0], x5

1[1] . 8 bits of state guess
8: Deduce x5

0, x
5
1

9: Return the following values:
. They correspond to the left hand sides of the matching equations

Equation 22: L2(S(x2
3[0]), x3

0[1], x3
2[3], x3

3[0], (k1[29]|0|0|k1[32])⊕ x3
1[2])

Equation 23: L3(S(x2
3[1]), x3

0[1], x3
2[3], x3

3[0], (k1[29]|0|0|k1[32])⊕ x3
1[2])

Equation 24: L4(S(x2
3[3]), x3

0[1], x3
2[3], x3

3[0], (k1[29]|0|0|k1[32])⊕ x3
1[2])

Equation 25: L5(S(x6
1[0]), S(x6

1[1]))⊕ L′5((0|k1[32−34]), 0, 0)
Equation 26: L6(S(x6

2[1]), S(x6
2[2]))

Equation 27: L7(S(x6
3[2]), S(x6

3[3]))⊕ L′7(0, k1[39]|0|0|0, k1[59]|0|0|0)
Equation 28: L8(k1[32−35], k1[36−39], 0|k1[57−59], 0|k1[13−15])
Equation 28: L9(k1[32−35], k1[36−39], 0|k1[57−59], 0|k1[13−15])
Equation 28: L10(k1[32−35], k1[36−39], 0|k1[57−59], 0|k1[13−15])

10: end procedure

32

Algorithm 4 Backward computation for the attack on Future.
Global: kS , X, t
Input: 22 bits for kB , 12 bits for state guesses
Output: 9 nibbles for matching

1: procedure fB
2: Using Equation 21, t and kB , deduce x2

3[2]
3: Using the value of X and the value of kB , compute:

z1
1 [0−3] = k0[21−24]⊕ x2

1[0], k0[41−44]⊕ x2
2[1],
k0[61−63, 0]⊕ x2

3[2], k0[17−20]⊕ x2
0[3]

4: Using the value of kB and kS , deduce z0
0 [1], z0

1 [0], z0
2 [3], z0

3 [2]
5: Complete the state at round 0:

z0
0 [0, 2, 3] = k1[0−3]⊕ x1

0[0], k1[40−43]⊕ x1
2[2], k1[60−63]⊕ x1

3[3]
z0

1 [1, 2, 3] = z0
1 [1], (k1[56]⊕ x1

3[2][0])|z0
1 [2][1, 2, 3], (k1[12]⊕ x1

0[3][0])|z0
1 [3][1, 2, 3]

z0
2 [0, 1, 2] = z0

2 [0], k1[52−55]⊕ x1
3[1], k1[8, 9−11]⊕ x1

0[2]
z0

3 [0, 1, 3] = k1[48, 49−51]⊕ x1
3[0], k1[4−7]⊕ x1

0[1], k1[44−47]⊕ x1
2[3]

6: Compute backwards (using a query to the block cipher) to z9; compute z8
0 , z

8
2 , z

8
3

7: Guess z7
0 [1], z7

1 [0], z7
2 [3] . 12 bits of state guess

8: Deduce the entire z7
0 , z

7
1 , z

7
2

9: Return the following values:
. They correspond to the right hand sides of matching equations

Equation 22: L′2(k1[9−12], k1[49−52], k1[53−56], (0|k1[30, 31]|0))
Equation 23: L′3(k1[9−12], k1[49−52], k1[53−56], (0|k1[30, 31]|0))
Equation 24: L′4(k1[9−12], k1[49−52], k1[53−56], (0|k1[30, 31]|0))
Equation 25: L′5((k1[31]|0|0|0)⊕ x7

1[0], k1[51−54]⊕ x7
2[1], k1[27−29, 30]⊕ x7

0[3])
Equation 26: L′6(k1[47, 48, 49, 50]⊕ x7

2[0], k1[23−26]⊕ x7
0[2], k1[43−46]⊕ x7

1[3])
Equation 27: L′7(k1[19−22]⊕ x7

0[1], (0|k1[40−42])⊕ x7
1[2], (0|k1[60−62])⊕ x7

2[3])
Equation 28: S(x8

1[0])⊕ L8(x9
0[3], x9

1[0], (k1[56]|0|0|0)⊕ x9
2[1], (k1[12]|0|0|0)⊕ x9

3[2])
Equation 28: S(x8

1[1])⊕ L9(x9
0[3], x9

1[0], (k1[56]|0|0|0)⊕ x9
2[1], (k1[12]|0|0|0)⊕ x9

3[2])
Equation 28: y8

1 [2]⊕ L10(x9
0[3], x9

1[0], (k1[56]|0|0|0)⊕ x9
2[1], (k1[12]|0|0|0)⊕ x9

3[2])
10: end procedure

33

H c00

k0 k5 k10 k15

N c01

k4 k9 k14 k3

H c02

k8 k13 k2 k7

H c03

k12 k1 k6 k11
R0

H c10

k0 k5 k10 k15

H c11

k4 k9 k14 k3

H c12

k8 k13 k2 k7

H c13

k12 k1 k6 k11
R1

H c20

k0 k5 k10 k15

c21

k4 k9 k14 k3

H c22

k8 k13 k2 k7

H c23

k12 k1 k6 k11
R2

� c30

k0 k5 k10 k15

c31

k4 k9 k14 k3

� c32

k8 k13 k2 k7

� c33

k12 k1 k6 k11
R3

N c40

k0 k5 k10 k15

c41

k4 k9 k14 k3

N c42

k8 k13 k2 k7

c43

k12 k1 k6 k11
R4

N c50

k0 k5 k10 k15

c51

k4 k9 k14 k3

N c52

k8 k13 k2 k7

N c53

k12 k1 k6 k11
R5

N
k0

N
k1

N
k2

N
k3 k4 k5 k6 k7

N
k8

N
k9

N
k10

N
k11

N
k12

N
k13

N
k14

N
k15

R6

N c70

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15
R7

Figure 9: Path of a 7-round key-recovery attack on the 1k-AES structure.

34

C.2 Application to Saturnin-Hash
The path of our quantum pseudo-preimage attack on the Saturnin-Hash compression
function, reduced to 7 Super-rounds, is given in Figure 10. The forward list is of size
216×4, the backward list is of size 216×2, and in both cases this comes only from the key
nibbles. A total of 16 state nibbles are fixed: 6 green edges between R3 and R4, 4 green
edges between R4 and R5, and 3 + 3 precomputed linear relations through c3

2 and c3
3.

H c00
k5 k6 k7 k8

k0 k1 k2 k3

H c01
k9 k10 k11 k12

k4 k5 k6 k7

c02
k13 k14 k15 k0

k8 k9 k10 k11

c03
k1 k2 k3 k4

k12 k13 k14 k15
R0

� c10 � c11 � c12 � c13
R1

N c20
k5 k6 k7 k8

k0 k1 k2 k3

N c21
k9 k10 k11 k12

k4 k5 k6 k7

N c22
k13 k14 k15 k0

k8 k9 k10 k11

c23
k1 k2 k3 k4

k12 k13 k14 k15
R2

N c30 N c31 � c32 � c33
R3

H c40
k5 k6 k7 k8

k0 k1 k2 k3

H c41
k9 k10 k11 k12

k4 k5 k6 k7

N c42
k13 k14 k15 k0

k8 k9 k10 k11

H c43
k1 k2 k3 k4

k12 k13 k14 k15
R4

H c50 H c51 H c52 H c53
R5

H c60
k5 k6 k7 k8

k0 k1 k2 k3

H c61
k9 k10 k11 k12

k4 k5 k6 k7

H c62
k13 k14 k15 k0

k8 k9 k10 k11

c63
k1 k2 k3 k4

k12 k13 k14 k15
R6

H H H H H H H HR7

Figure 10: Path of a 7 Super-round quantum pseudo-preimage attack on Saturnin-Hash.

C.3 Application to Saturnin
The best classical key-recovery attack (in the single secret-key model) on Saturnin is the
DS-MITM attack on 7.5 Super-rounds reported in [CDL+20], with time complexity 2244.

35

This corresponds to 7 Super-rounds followed by another S-Box layer, and a key addition.
With our framework, we reach 6.5 Super-rounds with the path of Figure 11. The time

complexity is 2248, and the data complexity is similar. The forward H list contains half a
key nibble (k12) and two halves of state nibble guesses, so it has size 224. The backward N
list contains 3.5 key nibbles (k6,10,14, k12). There are 2 nibble conditions for merging (one
through c1

2 and one through c4
0), so the merged list is of size 224.

N c00
k5 k6 k7 k8

k0 k1 k2 k3

N c01
k9 k10 k11 k12

k4 k5 k6 k7

N c02
k13 k14 k15 k0

k8 k9 k10 k11

H c03
k1 k2 k3 k4

k12 k13 k14 k15
R0

H c10 H c11 � c12 H c13
R1

H c20
k5 k6 k7 k8

k0 k1 k2 k3

H c21
k9 k10 k11 k12

k4 k5 k6 k7

H c22
k13 k14 k15 k0

k8 k9 k10 k11

H c23
k1 k2 k3 k4

k12 k13 k14 k15
R2

H c30 c31 H c32 H c33
R3

� c40
k5 k6 k7 k8

k0 k1 k2 k3

c41
k9 k10 k11 k12

k4 k5 k6 k7

c42
k13 k14 k15 k0

k8 k9 k10 k11

c43
k1 k2 k3 k4

k12 k13 k14 k15
R4

c50 N c51 N c52 c53
R5

k0

N
k1

N
k2

N
k3 k4

N
k5

N
k6 k7 k8

N
k9

N
k10 k11 k12

N
k13

N
k14 k15

R6

N c70

k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 k0 k1 k2 k3 k4
R7

Figure 11: Path of a 6.5 Super-round key-recovery attack on Saturnin. The key nibble
k12 is half blue, half red.

For comparison, the best classical attack on 6.5 Super-round Saturnin would be a
Square attack, which initially targets 6-round AES [FKL+00]. State nibbles in Saturnin
are twice the size of AES bytes, so the complexities are (roughly) squared. To accommodate
the additional half Super-round, the time increases by a factor 264 (corresponding to the

36

guess of 4 key nibbles).
The best quantum key-recovery attack on Saturnin, as suggested in [CDL+20], is

given by adapting the quantum Square attack of [BNS19]. On 6 Super-rounds it will
reach a time complexity 288, with roughly 250 quantum memory and using 270 classical
chosen-plaintext queries (and classical memory). To reach 6.5 Super-rounds, the quantum
time increases to approximately 2120 Saturnin evaluations.

In the quantum setting, our attack reaches a time complexity 2127.55 by Equation 4
which is almost at the generic limit of 2128 (roughly corresponding to a Grover search with
large probability of success).

Grover-meet-Simon Attack. While 6 full Super-rounds are unreachable, we find a 5.5
Super-round Grover-meet-Simon attack which guesses all key nibbles except 3. By Equa-
tion 5, it has a complexity: π

2 2104× 48 ' 2110.24. Furthermore, the data complexity is only
of 264, meaning that we can use Q1 queries and store them in a QRACM of size 264.

C.4 Application to Haraka-v2
Haraka-v2 is a small-range hash function defined in [KLMR16] in two variants: Haraka-256
and Haraka-512, with respectively 256 and 512 bits of internal state. Both variants hash
an input of respectively 256 and 512 bits using an AES-based permutation followed by a
feedforward, and a truncation for Haraka-512.

The permutation is made in both cases of 5 rounds. Each round applies two AES
rounds on the substates, followed by a MIX layer, which permutes the columns between
substates.

Bao et al. [BDG+21] showed an attack on 4.5-round Haraka-256 and 5.5-round (ex-
tended) Haraka-512. The latter was subsequently improved in [SS22a] by reducing the
memory used.

Since our model subsumes the one of [SS22a], we verify that it finds the same attacks
on Haraka. Moreover, we were able to improve the attack on Haraka-512 and to devise an
attack on 6.5-rounds Haraka-512. This shows that matching in many rounds (instead of a
single round as in [BDG+21]) gives an advantage even greater than previously estimated.
Note that both results were already covered by the previous model. Yet these attacks were
not found in [SS22a], perhaps due to additional constraints used in [SS22a] to limit the
search space. In our work, we used the Gurobi solver instead of SCIP which made the
search more efficient.

C.5 Application to Gift-64
Gift-64 [BPP+17] is a lightweight block cipher aiming at optimizing the Present design
strategy, with a state of 64 bits, S-Boxes of 4 bits, and a linear layer which is a simple bit
permutation. Gift-64 has a key of 128 bits.

The authors proposed a MITM key-recovery attack on 15 rounds, which was optimized
by Sasaki [Sas18] using an automatic search based on MILP. We checked that in GAD
mode, our model recovers the time (2112) and memory (216) complexities of Sasaki’s attack.

We also find a Parallel MITM attack with a slightly improved complexity. The path of
this attack is actually the same as a Grover-meet-Simon attack that guesses 108 key bits,
and has thus a complexity π

2 254 × 20 ' 258.97 block cipher calls, using the same amount of
Q2 queries. It only requires a small number of qubits.

C.6 Application to Pipo-128
On 11-round Fly and 10-round Pipo-128, we use a path that fixes 105 key bits, that is,
all of k0 except 8 bits, and all of k1 except 7 forward bits and 8 backward bits.

37

All lists are of size 220. In the forward list, besides the 7 key bits, we need 8 bits of
state guesses at round 4 and 5 bits at round 6. In the backward list, we need 4 bits at
round 7. Then, because we know 4 backward cells at round 7 and 5 forward cells at round
6, there is 4× 4 = 20 bits of matching between them, so the merged list is also of size 220.

N N N N N N N NR0

H H H H H H H NR1

H H H H H H H HR2

H H H H H H HR3

H H H H H H H HR4

H H H H H H HR5

H H H H HR6

N N N NR7

N N N N N N NR8

N N N N N N N NR9

NR10

Figure 12: Path of the 10-round attack on Pipo-128.

A search for quantum attacks does not yield the same results. We find valid paths
when removing two rounds. However, for Fly the number of rounds reached is smaller
than quantum linear attacks [Sch23] and for Pipo-128 this is only as good.

38

	Introduction
	Preliminaries
	AES-like and Present-like Designs
	Overview of Techniques
	Quantum Computing
	Quantum Attacks
	Grover-meet-Simon as a PMITM Attack

	Modeling
	Previous Work
	Modeling the Key Schedule
	Modeling the Key Addition
	Adaptation to the Key-recovery Setting

	Application to AES-like Designs
	Pseudo-preimage Attack on SATURNIN-Hash
	Key-recovery Attack on full FUTURE

	Application to Present-like Designs
	Application to Present
	Application to FLY and PIPO

	Conclusion
	Complete MILP Model with Keys
	Attack Algorithms
	Pseudo-preimage Attack on Saturnin-Hash
	Key-recovery Attack on FUTURE

	Details on Applications
	Application to 1k-AES and 2k-AES
	Application to Saturnin-Hash
	Application to Saturnin
	Application to Haraka-v2
	Application to Gift-64
	Application to Pipo-128

