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Abstract. In SAC’14, Biham and Carmeli presented a novel attack on DES, involving
a variation of Partitioning Cryptanalysis. This was further extended in ToSC’18
by Biham and Perle into the Conditional Linear Cryptanalysis in the context of
Feistel ciphers. In this work, we formalize this cryptanalytic technique for block
ciphers in general and derive several properties. This conditional approximation is
then used to approximate the inv : GF (28) → GF (28) : x 7→ x254 function which
forms the only source of non-linearity in the AES. By extending the approximation to
encompass the full AES round function, a linear distinguisher for four-round AES in
the known-plaintext model is constructed; the existence of which is often understood
to be impossible. We furthermore demonstrate a key-recovery attack capable of
extracting 32 bits of information in 4-round AES using 2125.62 data and time. In
addition to suggesting a new approach to advancing the cryptanalysis of the AES,
this result moreover demonstrates a caveat in the standard interpretation of the
Wide Trail Strategy — the design framework underlying many SPN-based ciphers
published in recent years.
Keywords: Conditional Linear Cryptanalysis · AES · Statistical Distinguisher

1 Introduction
In 1992, Matsui and Yamagishi [MY92] presented a novel cryptanalytic method for block
ciphers, which was later generalized by Matsui [Mat93] and named Linear Cryptanalysis.
When used to analyze a block cipher, this method is concerned with discovering bits in
the input and output of the cipher that are the same with high probability for almost all
keys [Dae95, HN11, Mat93]. When such bits are found, one can launch an attack against
the cipher, e.g. Matsui’s Algorithm 1 and 2 key-recovery attacks.

This method has become a staple in the cryptanalysis of block ciphers and has influenced
their design ever since. This includes the Rijndael cipher [DR20], which went on to become
the Advanced Encryption Standard (AES) [DBN+01] in 2000. This cipher attempts
to thwart standard linear cryptanalytic attacks by means of the Wide Trail Strategy
(WTS) [DR01], the framework underlying its design. Following Rijndael’s standardization
as AES in 2000, the WTS has seen more widespread use, for example in the block ciphers
Fides [BBK+13] and LED [GPPR11], and the hash-function Photon [GPP11]. It introduces
non-linear behavior in a cipher by means of small non-linear s-boxes and forces any linear
trail to activate many of those. By choosing the number of rounds for a cipher such that
the correlation contribution of any trail is sufficiently small, the WTS argues that a cipher
then becomes resistant to standard linear cryptanalytic attacks. Extending this argument
to AES yield that four rounds can withstand these attacks.

However, Linear Cryptanalysis has been a field of close study, which has led to the
inception of a large number of extensions. For this work, we highlight conditional linear
cryptanalysis [BP18] and an unnamed predecessor presented in [BC14]. Both of these
techniques partition the plaintext-ciphertext space and manage to increase the correlation
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of a linear approximation by only considering the data from some parts of the partition;
the techniques differ in their partition construction method. Note that these techniques
should not be confused with partitioning cryptanalysis [HM97], which also constructs a
partition, but attempts to extract information about the key using the sizes of the parts
instead.

1.1 Organization and Our Contribution
Section 2 commences by stating the notation used throughout this work and necessary
core concepts. We attempt to generalize conditional cryptanalysis for any block cipher
and derive several properties in Section 3. By applying this technique to the AES s-box in
Section 4, we demonstrate that it is capable of achieving a 2−1 correlation using only a
quarter of the data, where the correlation magnitude of traditional linear approximations
is known to be upper bounded by 2−3. In Section 5, this approximation is then extended
to the full AES round function, yielding a 2−16 correlation with all sixteen s-boxes active.
When combined with a 3-round linear trail, this forms a novel statistical distinguisher
for four-round AES. We furthermore demonstrate how in the known-plaintext model this
distinguisher can be exploited to extract a minimum of 32 bits of the key using 2125.62 data.
Since this complexity is beyond reach, our empirical validation breaks the approximation
into smaller parts and verifies each of them separately. A discussion of the implications
of these attacks for the WTS are then provided in Section 6 together with directions for
future work and concluding words.

2 Preliminaries

2.1 Notation
Let F2m denote the finite field on 2m elements. When m = 1, we use 0 and 1 to denote the
elements in the group underlying F2 and refer to them as bits; elements in F28 are referred
to as bytes. Bit-strings of length m are used to represent elements in F2m . Hexadecimal
notation is used to shorten the notation of these bit strings, e.g. we represent the element
10100111b ∈ F28 as A7x. The binary operation ⊕ : F2m × F2m → F2m represents addition
on this field, which is commonly known as the XOR operation.

The n-dimensional vector space over F2m is denoted by Fn
2m . For a vector v ∈ Fn

2m ,
vi ∈ F2m is used to indicate its ith coefficient, with 1 ≤ i ≤ n. The binary operation
⊕ : Fn

2m × Fn
2m → Fn

2m : a, b 7→ (a1 ⊕ b1, . . . , an ⊕ bn) denotes the addition of vectors. It
will be clear from context whether ⊕ is used to denote addition on F2m or Fn

2m . Given
that F2n is isomorphic to Fn

2 , we will primarily use Fn
2 to denote the space on n-bit vectors;

F2n is only used when this is more informative.
We call F : Fn

2 → Fm
2 with n, m ∈ N+ a vectorial Boolean function. When n = m and

F is invertible, F is called a permutation. In the special case that m = 1, the function
f : Fn

2 → F2 is said to be a Boolean function. Note that a vectorial Boolean function F
can be viewed as a vector of Boolean functions (f1, . . . , fm) acting on the same input, with
fi : Fn

2 → F2 for all 1 ≤ i ≤ m. A Boolean function is linear if f(x ⊕ y) = f(x) ⊕ f(y) for
all x, y ∈ Fn

2 . Analogously, a vectorial Boolean function F is said to be linear when all
Boolean functions f1, . . . , fm composing it are linear.

We use a⊤x as shorthand notation for the inner product ⟨·, ·⟩ : Fn
2 × Fn

2 → F2 : a, x 7→
a1x1 ⊕ . . . ⊕ anxn. Observe that for fixed a, we can view a⊤x as a Boolean function on
x; we refer to a as the mask of x. The parity functions a⊤x with a ∈ Fn

2 \ {0} are the
only linear Boolean functions. Consequently, any linear vectorial Boolean function F can
be decomposed into a vector of functions (a⊤

1 x, . . . , a⊤
mx). Note that this implies that
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F (x) = Mx for all x ∈ Fn
2 , when the ith row in M ∈ Fm×n

2 is equal to ai for all 1 ≤ i ≤ m.
We will use MF to denote this matrix for F .

The imbalance of a Boolean function is defined as

Imb(f) := 1
2 (|{x ∈ Fn

2 | f(x) = 0}| − |{x ∈ Fn
2 | f(x) = 1}|) (1)

where | · | maps a set to its size. A function with imbalance 0 is said to be balanced [DR07].
For the parity functions it holds that Imb(a⊤x) = δa,0 · 1

2 |Fn
2 |, with δi,j denoting the

Kronecker delta.

2.2 Linear Cryptanalysis
When used to analyse an n-bit block cipher Ek(x) = E(x, k) : Fn

2 × Fκ
2 → Fn

2 , standard
Linear Cryptanalysis is concerned with discovering masks u, v ∈ Fn

2 such that the deviation
of the probability pk := P

[
u⊤x = v⊤Ek(x)

]
from 1

2 is large for almost all keys k ∈
Fκ

2 [Dae95, HN11, Mat93]. This deviation is denoted using ϵk and is referred to as the
bias of the linear approximation (u, v). However, in this work, we make use of the concept
of correlation as presented in [Dae95]. Here, the correlation of (u, v) with Ek is defined as

CEk
v,u := 2ϵk = 2 ·

(
P
[
u⊤x = v⊤Ek(x)

]
− 1

2
)
, (2)

where one is consequently interested in discovering (u, v) for which the absolute value, or
magnitude, of this correlation is large for almost all keys.

A common technique to discover such an approximation is through the construction
of a linear trail [Bih95, HCN19, Mat93]. For an r-round key-alternating block cipher
Ek := Akr ◦ F ◦ Akr−1 ◦ · · · ◦ F ◦ Ak0 with Ak : Fn

2 → Fn
2 : x 7→ x ⊕ k and F : Fn

2 → Fn
2 the

round function, a trail is defined as τ := (τ0, . . . , τr) ∈ (Fn
2 )r+1. The contribution of this

trail τ to the correlation of the linear hull (τ0, τr) with Ek is computed as

CEk
τ :=

(
r∏

i=0
C

Aki
τi,τi

)
·

r−1∏
j=0

CF
τj+1,τj

 = (−1)
⊕r

i=0
τ⊤

i ki ·
r−1∏
j=0

CF
τj+1,τj

, (3)

where the second equality follows from [DR20, Equation 7.34]. When this trail is the
dominant contributor [DGV95] to the correlation of (τ0, τr) with Ek, we can approximate
CEk

τr,τ0
= CEk

τ .

2.3 The Wide Trail Strategy
The Wide Trail Strategy (WTS) was first introduced as a block cipher design philosophy
by Daemen in 1995 [Dae95]. Throughout the design of the SHARK [RDP+96], SQUARE
[DKR97], and BKSQ [DR00] ciphers, the concept was further developed into a broadly-
applicable block cipher design framework [DR01], ultimately forming the basis of the
Rijndael cipher.

The strategy attempts to avert linear approximations with large correlations from
forming in a cipher by forcing the correlation contribution of all linear trails through the
cipher to be small. To achieve this, the strategy advocates the use of key-alternating
Substitution-Permutation Networks (SPN) with a specific format for the substitution
function γ : Fn

2 → Fn
2 and permutation function λ : Fn

2 → Fn
2 . Here, bricklayer function γ

introduces non-linear behavior into the cipher by treating the n-bit block as the concate-
nation of m-bit bundles and applying a non-linear permutation to each bundle — these
permutations are referred to as the s-boxes of γ. Meanwhile, the permutation function λ is
a linear transformation aimed at spreading information between the bundles. This concept
of information spreading is closely linked to that of diffusion, which was first introduced
by Shannon [Sha49] to denote the quantitative spreading of information.
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Computing the correlation contribution of a linear trail for such a cipher is rather
straightforward. Following Equation 3, only the one-round approximations for the round-
functions influence the correlation magnitude, while [DR20, Equation 7.36] demonstrates
that a proper linear approximation for λ yields a correlation of amplitude 1. As such,
only the approximations over the function γ need to be considered. According to [DR20,
Equation 7.37], the correlation of an approximation (u, v) with a bricklayer function γ is
computed as

Cγ
v,u =

n/m−1∏
i=0

CSi

[v]i,[u]i
, (4)

where Si denotes the s-box γ applies to the ith m-bit bundle, and [v]i denotes the part of
v that masks this bundle. It thus follows that the correlation of a trail is computed as the
product of the approximation correlations for each of the s-boxes.

When γ applies the same s-box S for all bundles, this expression allows for the
formulation of an upper bound on the correlation contribution of a trail. For any chosen
permutation function λ it is possible to compute a lower bound nr on the number of
active s-boxes any r-round trail must contain. Here, an s-box is considered active in a trail
when it is assigned a non-zero input mask, output mask, or both. When we furthermore
observe that CS

v,u = 1 if and only if u = v = 0, we can see that the absolute correlation
contribution of an r-round linear trail is upper bounded by cnr , where c is an upper bound
on the magnitude of the correlation of a linear approximation with S.

To account for the possibility that the correlation contributions of several linear trails
amplify one another by means of the linear hull effect, the WTS requires the number of
rounds r to be chosen such that the contribution of a linear trail is at most κ−1 · 2−n/2,
where κ denotes the key size. It then argued that even in the unlikely scenario that a
linear hull contains κ trails with such a contribution, it would only be detectable when all
κ trails amplify one another simultaneously — an event that is expected to occur for an
insignificant fraction of the key space. Although not proof of security, the authors argue
that this shows the WTS to be a sound design strategy.

2.4 AES
The Advanced Encryption Standard (AES) [DBN+01] is the standardized version of the
Rijndael cipher [DR20] that is best described as an r-round key-alternating substitution-
permutation network. Its encryption function can be expressed as the composition

AESr
k := Akr

◦ RF′ ◦ Akr−1 ◦ RF ◦ · · · ◦ RF ◦ Ak1 ◦ RF ◦ Ak0 , (5)

where Aki
: F128

2 → F128
2 : x 7→ x ⊕ ki denotes the addition of round key ki and RF, RF′ :

F128
2 → F128

2 denote the round functions. In the first r − 1 rounds, the round function
RF := MC ◦ SR ◦ SB is used, while the last round applies RF′ := SR ◦ SB, with SB, SR, MC :
F128

2 → F128
2 .

The standardized cipher specifies three AES variants — AES-128, AES-192, and AES-
256 — differing in two aspects. First, the variants involve 10, 12, and 14 rounds respectively.
Second, the lengths of the master key k used are 128, 192, and 256 bits. AES includes a
specification for the key expansion algorithm used to generate the individual round keys ki

from k. In Section 5 we will use the fact that this algorithm reuses part of this master key
as the initial round key k0. Aside from this, it is assumed that the round keys generated
by this algorithm are statistically independent [LMM91].

The AES state is most conveniently represented using a 4 × 4 byte matrix, an example
of which is provided in Figure 1. This example demonstrates that the 128-bit state may
additionally be viewed as a byte-vector (p0, . . . , p15) ∈ F16

28 storing the byte entries of the
matrix in column-major order.
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p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

Figure 1: A convenient representation of the AES state.

The vectorial Boolean function SB, short for SubBytes, applies the s-box S : F8
2 → F8

2 to
each of the sixteen bytes. This s-box is best described as the composition T ◦ L ◦ inv. Here,
inv : F28 → F28 : x 7→ x254 mod 11Bx maps an element in F28 \ {0} to its multiplicative
inverse modulo 11Bx and zero to itself. The function L : F8

2 → F8
2 is a linear permutation —

its matrix representation is provided in Equation 6 — while T : F8
2 → F8

2 : x 7→ x ⊕ 63x is
an affine translation.

ML =



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


(6)

The ShiftRows (SR) operation is a linear function permuting the bytes in the state.
Assuming zero-based indexing, this operation cyclically shifts the bytes in the ith row of
the state i steps to the left. An illustration is provided in Figure 2.

SR:

p0 p4 p8 p12

p1 p5 p9 p13

p2 p6 p10 p14

p3 p7 p11 p15

7→

p0 p4 p8 p12

p5 p9 p13 p1

p10 p14 p2 p6

p15 p3 p7 p11

Figure 2: Illustration of the application of ShiftRows to the state.

The MixColumns (MC) function is best described as a linear transformation H : F32
2 → F32

2
that is applied to each of the four 32-bit columns in the state. The matrix associated with
H is included as supplementary material.

The SubBytes function forms the substitution part of this SPN and is the only non-linear
component contained in the round function RF. As such, one of its purposes is to thwart
linear cryptanalysis against the cipher. It is in particular the properties of the non-linear
function inv that deter linear attacks. Because we will analyze the linear properties of
the inv function, it may be more insightful to ignore the algebraic structure underlying
this function and instead view it as a lookup table. For both inv and S, these tables are
provided as supplementary material.

The ShiftRows and MixColumns functions form the permutation part of this substitution-
permutation network. As illustrated in Section 2.3, the purpose of these functions is to
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force any linear trail through the AES to have many active s-boxes, thus yielding a small
contribution to the correlation of the hull containing it.

3 Conditional Approximation
In [BC14], Biham and Carmeli show that one can improve the data complexity of a
linear attack by partitioning the data into classes and computing the correlation of the
approximation for each class individually. The authors illustrate that for properly chosen
partitions one will find that the magnitude of the approximation correlation for at least
one of the classes is larger than one would observe when computing the correlation using
all data. Where Biham and Carmeli only briefly review this technique, we will attempt to
formalize it and its notation, and illustrate some of its properties. In this formalization,
we restrict ourselves to only conditioning the input of a function; the case for conditioning
the output is symmetric and is omitted for brevity. The discussion in this section is made
from a mathematical point of view and is purposefully kept abstract. The implications for
symmetric-key cryptanalysis and in particular the AES, are deferred to Sections 4–5.

3.1 Definition
A conditional approximation (u, v)|X for a function F : Fn

2 → Fm
2 comprises a linear

approximation (u, v) with masks u ∈ Fn
2 and v ∈ Fm

2 , and a vectorial Boolean function
X : Fn

2 → Fr
2. In this approximation, X is leveraged to create a partition PX on the set of

plaintexts Fn
2 consisting of 2r classes, with a class Pb

X := {x ∈ Fn
2 | X(x) = b} for each

b ∈ Fr
2. For each class, we are interested in

pb := P
[
u⊤x = v⊤F (x)

∣∣ X(x) = b
]
, (7)

from which the definition of correlation naturally extends to the definition of conditional
correlation as

CF
v,u

∣∣∣Pb
X

:= 2 · P
[
u⊤x = v⊤F (x)

∣∣ x ∈ Pb
X

]
− 1. (8)

We furthermore refer to CF
∣∣∣Pb

X
as a conditional correlation matrix. Depending on the

choice of X, it may be possible to achieve a conditional correlation in one or more classes
that exceeds the correlation of the unconditioned linear approximation. In the following
subsections, we provide some general properties of the conditional approximation and
relate the conditional approximation to standard linear cryptanalysis. In Section 4, more
specific properties will be discussed.

3.2 Properties
In [DGV95, Equation 15] it is demonstrated that for appropriate combinations of vectorial
Boolean functions F and G, the correlation matrix CG◦F can be computed as the matrix
product CG · CF . When using conditional correlation matrices instead, this equality is no
longer satisfied. With Lemma 1 and 2 we demonstrate how this equation can be adapted
for conditional approximations.

Lemma 1. Let F : Fn
2 → Fp

2, G : Fp
2 → Fm

2 and X : Fn
2 → Fr

2 be arbitrary vectorial
Boolean functions. For all b ∈ Fr

2 it holds that

CG◦F
∣∣∣Pb

X
= CG ·

(
CF
∣∣∣Pb

X

)
.

Proof. The proof of this lemma is deferred to Appendix A.
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Lemma 2. Let F : Fn
2 → Fn

2 be an arbitrary permutation, let G : Fn
2 → Fm

2 and
X : Fn

2 → Fr
2 be arbitrary vectorial Boolean functions. For all b ∈ Fr

2 it holds that

CG◦F
∣∣∣Pb

X◦F
= CG

∣∣∣Pb
X

· CF .

Proof. The proof of this lemma is deferred to Appendix A.

Note here that Lemma 2 only applies to the case that F is a permutation.
We furthermore discuss constructing a conditional approximation for the Cartesian

product of functions. To this end, we present Lemma 3, where we use ·|· to denote vector
concatenation and × to denote the Cartesian product of vectorial Boolean functions s.t.
(f × g)(x|y) = f(x)|g(y).

Lemma 3. Let F : Fn
2 → Fm

2 , G : Fr
2 → Fp

2, X : Fn
2 → Fq

2 and Y : Fr
2 → Fs

2 be arbitrary
vectorial Boolean functions. It holds that

CF
∣∣Pa

X
⊗ CG

∣∣∣Pb
Y

= CF ×G
∣∣∣Pa|b

X×Y

for all a ∈ Fq
2 and b ∈ Fs

2, where ⊗ denotes the Kronecker product.

Proof. The proof of this lemma is deferred to Appendix A.

Lastly, it was already observed in [BC14] that merging disjoint classes of the same size
yields a new class with a conditional correlation that is the average of the original two.
We present a generalization of this result in Lemma 4.

Lemma 4. Let F : Fn
2 → Fm

2 and X : Fn
2 → Fr

2 be arbitrary vectorial Boolean functions.
For any b, b′ ∈ Fr

2 s.t. b ̸= b′, it holds that

CF
∣∣∣Pb

X
∪Pb′

X
= |Pb

X |
|Pb

X | + |Pb′
X |

· CF
∣∣∣Pb

X
+ |Pb′

X |
|Pb

X | + |Pb′
X |

· CF
∣∣∣Pb′

X

when either Pb
X ̸= ∅ or Pb′

X ̸= ∅.

Proof. The proof of this lemma is deferred to Appendix A.

Note here in particular that when |Pb
X | = |Pb′

X | ≠ 0, the correlation of the merged class is
indeed the average of the original two.

3.3 Relation to Standard Linear Cryptanalysis
To provide an understanding of how this version of conditional cryptanalysis fits within
the framework of standard linear cryptanalysis, we illustrate a relation between both
approximation techniques when applied to Boolean permutations. To this end, we introduce
Lemma 5.

Lemma 5. Let F : Fn
2 → Fn

2 be an arbitrary permutation and u, v ∈ Fn
2 arbitrary masks.

For all b ∈ F2 it holds that
(−1)b · CF

v,0

∣∣∣Pb
X

= CF
v,u,

when X : Fn
2 → F2 : x 7→ u⊤x.

Proof. The proof of this lemma is deferred to Appendix A.

It follows from this lemma that a conditional approximation (0, v)|u⊤x restricted to those
plaintexts for which u⊤x = 0, is equivalent to the linear approximation (u, v) in the sense
that both achieve the same correlation when used to approximate the same function.
Furthermore, restricting (0, v)|u⊤x to P1

u⊤x yields a conditional approximation achieving
the same correlation as (u, v), but with opposite sign.
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4 Conditional Analysis of the Multiplicative Inverse in F28

In this section, we analyze the vectorial Boolean function inv, which was introduced in
Section 2.4 as an integral part of the AES s-box. First, we recall in Section 4.1 the seminal
work by Nyberg [Nyb94] which provides an upper bound of 21−n/2 on the correlation
magnitude of any linear approximation for the inverse function on F2n . We then recall the
work of Keliher, Meijer, and Tavares [KMT01a, KMT01b] discussing the complete Linear
Approximation Table (LAT) for the special case of n = 8, and observe that Nyberg’s upper
bound is tight in this case.

In symmetric-key folklore, these two results are understood to mean that any attempt to
approximate this multiplicative inverse in F28 must incur a cost of 2−3 at the minimum (see
e.g., [AAB+20, GKM+09, MN17, JNPS21]). Conversely, we demonstrate in Section 4.3
how the conditional approximation technique can exhibit a higher correlation when properly
applied to inv.

4.1 Linear Approximations of the Inversion Function
Nyberg proved in [Nyb94] that the inversion function on finite field F2n possesses properties
that are highly desirable in cryptography. In particular, it is shown that the correlation
of any linear approximation for this function is upper bounded by 21−n/2. This property,
among others, led Daemen and Rijmen to use it with n = 8 as part of the Rijndael
s-box [DR20]. Recall that this particular instance of the inversion function was previously
introduced in Section 2.4 as inv : F8

2 → F8
2.

We briefly discuss the linear properties of the inv function. To this end, we construct its
correlation matrix Cinv. This matrix is isomorphic to the Linear Approximation Table of
inv, which was previously discussed in [KMT01a, KMT01b], and reveals a clear structure
underlying the inv operation. In particular, it holds that the distribution of values in
column Cinv

v,· is the same for any output mask v ∈ F8
2 \ {0} [KMT01a, Lemma 2]. We recall

this distribution in Table 1. For an arbitrary v ∈ F8
2 \ {0}, this table lists each value in

Cinv
v,· along with the number ϕ of input masks for which this correlation is attained. Since

inv is an involution, we additionally conclude that the same distribution arises when the
input mask u is fixed and v varies instead.

Table 1 reveals that, regardless the choice of output mask v ∈ F8
2 \ {0}, there always

exist exactly five input masks u ∈ F8
2 \ {0} s.t. Cinv

v,u = 8
64 = 2−3, where it should

be noted that the exact values of these masks depend on the choice of v. Let us use
Ωv = {ω1, ω2, ω3, ω4, ω5} to denote the set containing these five masks moving forward.

Scanning these sets we find that, irrespective of the chosen output mask v, Ωv always
contains two masks that can be expressed as a linear combination of the other three. To
be more precise: for any v ∈ F8

2 \ {0}, there exists an ordering on the elements in Ωv such
that ω1 ⊕ ω2 = ω4 and ω1 ⊕ ω3 = ω5. Since a ⊕ b = c ⇐⇒ a ⊕ c = b, it follows that there
are in fact eight such orderings. In the remaining analysis, we will assume any one of these
eight to be applied to Ωv; all results hold irrespective of the chosen ordering. An overview

Table 1: Frequency distribution of the correlation between linear combinations of bits in
the inv input and output.

Cinv
v,u − 7

64 − 6
64 − 5

64 − 4
64 − 3

64 − 2
64 − 1

64 0

ϕ 8 16 8 18 24 16 32 17

Cinv
v,u

1
64

2
64

3
64

4
64

5
64

6
64

7
64

8
64

ϕ 16 20 16 16 16 20 8 5
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of the masks ω1, ω2, ω3 ∈ Ωv for each v ∈ F8
2 \ {0} is provided as supplementary material.

4.2 Constructing a Conditional Approximation
In [BP18], Biham and Perle briefly discuss the strategies employed to construct the
conditional approximations used in their attack for DES. From this discussion, it is evident
that the authors primarily make use of heuristic methods and search algorithms, but
provide no explicit construction techniques. In this section, we do present a construction
method and demonstrate its value in the next subsection, where it is applied to inv.

When constructing a conditional approximation for some vectorial Boolean function
F : Fn

2 → Fm
2 , we propose to select an output mask v ∈ Fm

2 that has multiple input masks
ui ∈ Fn

2 for which |CF
v,ui

| is preferably high and at least non-zero, with 1 ≤ i ≤ r and
r ≥ 2. With these ui and v, we construct the conditional approximation (0, v)|X with
X : Fn

2 → Fr
2 : x 7→ (u⊤

1 x, . . . , u⊤
r x).

In this construction, one must keep in mind only to include masks ui that are linearly
independent of one another; when a linearly dependent set is used, some of the classes
in PX will be empty. We can illustrate this with the example X : Fn

2 → F3
2 : x 7→

(u⊤
1 x, u⊤

2 x, (u1 ⊕ u2)⊤x), where the classes P(0,0,1)
X , P(0,1,0)

X , P(1,0,0)
X and P(1,1,1)

X are empty
due to the linear dependency of the masks. When only linearly independent masks are
used, X induces a partition consisting of 2r classes that all have a size of 2n−r.

We expect this conditional approximation to achieve an absolute correlation on class
Pb

X that is higher than |CF
v,ui

| for any ui, when b ∈ Fr
2 s.t. (−1)bi = sgn(CF

v,ui
) for all

1 ≤ i ≤ r. Here, sgn is used to denote the signum-function. For the plaintexts x in this
class, it namely holds that u⊤

i x = bi and P
[
v⊤F (x) = 0

∣∣ u⊤
i x = bi

]
> 1

2 for all 1 ≤ i ≤ r.
When the application of this technique yields two classes with the same absolute

correlation, it is possible to merge these using Lemma 4 while maintaining the correlation
magnitude. To account for the case that the classes one wishes to merge have correlations
with opposing signs, we introduce Lemma 6.

Lemma 6. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function, u ∈ Fn
2 and

v ∈ Fm
2 arbitrary masks, and X : Fn

2 → Fr
2 : x 7→ (u⊤

1 x, . . . , u⊤
r x) an arbitrary linear

vectorial Boolean function with u1, . . . , ur ∈ Fn
2 linearly independent. For all b ∈ Fr

2 it
holds that

(−1)bi · CF
v,u⊕ui

∣∣∣Pb
X

= CF
v,u

∣∣∣Pb
X

.

Proof. The proof of this lemma is deferred to Appendix A.

This lemma demonstrates that, with a properly chosen w in the span of the set {u1, . . . , ur},
the signs of the correlations of the two classes one wishes to merge can be made the same
when adding w to the input mask of the conditional approximation.

When constructing a conditional approximation for a cipher that starts with a key
addition Ak : Fn

2 → Fn
2 : x 7→ x ⊕ k, using a linear conditioning function X to partition the

plaintext space has another benefit. We can namely use Lemma 2 to see that

CF
∣∣∣Pb

X
· CAk = CF ◦Ak

∣∣∣Pb
X⊕Ak

= CF ◦Ak

∣∣∣Pb
X′

, (9)

where X ′ : Fn
2 → Fr

2 : x 7→ X(x) ⊕ X(k) constructs the same partition as X: adding k

only rearranges the order of the classes such that Pb
X = Pb⊕X(k)

X′ . In this situation it thus
suffices to construct a conditional approximation for F ; the addition of k only influences
which class achieves the large correlation.



10 A New Linear Distinguisher for Four-Round AES

4.3 Conditional Approximation for inv
We now construct a conditional approximation for inv. The technique presented in
Section 4.2 lends itself exceptionally well to inv since we have seen in Section 4.1 that
for any v ∈ F8

2 \ {0} there are five input masks ω ∈ Ωv s.t. Cinv
v,ω = 2−3. We will,

however, exclude the masks ω4 and ω5 from the conditioning function as we observed
that they are linearly dependent on the masks ω1, ω2, and ω3. Hence, we construct
X : F8

2 → F3
2 : x 7→ (ω⊤

1 x, ω⊤
2 x, ω⊤

3 x), which induces a partition with 8 classes that all
contain 32 plaintexts. In Table 2 we present an overview of the conditional correlations
achieved on each of these eight classes.

Table 2: Cinv
v,0

∣∣∣Pb
X

for each b ∈ F3
2.

ω⊤
1 x 0 0 0 0 1 1 1 1

ω⊤
2 x 0 0 1 1 0 0 1 1

ω⊤
3 x 0 1 0 1 0 1 0 1

Cinv
v,0

∣∣∣Pb
X

2−1 2−2 2−2 −2−1 −2−3 −2−3 −2−3 −2−3

From this table we gather that the conditional approximation (0, v)|X achieves a conditional
correlation of ±2−1 for two plaintext classes. Note that this is a substantial increase when
compared to the 2−3 correlation upper bound for the linear approximations (ω, v) with
ω ∈ Ωv, illustrating the utility of the conditional approximation.

4.4 Improving the Conditional Approximation
Since there are two classes with a correlation of magnitude 2−1, we shall merge these by
means of Lemma 4. Before performing this merge, we must first modify the approximation
such that the signs of the conditional correlations of these two classes are the same. To
this end we leverage Lemma 6 and observe that the correlation sign of the class P(0,1,1)

X

is inverted when we consider the conditional approximation (ω3, v)|X instead of (0, v)|X .
The correlations associated with this new conditional approximation are shown in Table 3.

With the signs of the correlations corresponding with P(0,0,0)
X and P(0,1,1)

X now the
same, it is possible to modify X such that these two classes are merged. To this end, one
needs to discover the linear properties that the classes have in common. Observe here
that the value of ω⊤

1 x is the same for the two classes of interest and that the value of
ω⊤

2 x ⊕ ω⊤
3 x = (ω2 ⊕ ω3)⊤x is moreover constant. This means that these two classes are

merged when we instead partition on X ′ : Fn
2 → F2

2 : x 7→ (ω⊤
1 x, ω⊤

6 x), where ω6 := ω2 ⊕ω3.
The conditional correlations associated with the approximation (ω3, v)|X′ are presented in
Table 4 and shows that the linear approximation (ω3, v) achieves a correlation of 2−1 on
plaintext class corresponding with b = (0, 0).

It was previously mentioned in Section 4.2 that extending a conditional approximation
to include a round-key addition function Ak yields that the conditional correlations are

Table 3: Cinv
v,ω3

∣∣∣Pb
X

for each b ∈ F3
2.

ω⊤
1 x 0 0 0 0 1 1 1 1

ω⊤
2 x 0 0 1 1 0 0 1 1

ω⊤
3 x 0 1 0 1 0 1 0 1

Cinv
v,ω3

∣∣∣Pb
X

2−1 −2−2 2−2 2−1 −2−3 2−3 −2−3 2−3
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Table 4: Cinv
v,ω3

∣∣∣Pb
X′

for each b ∈ F2
2.

ω⊤
1 x 0 0 1 1

ω⊤
6 x 0 1 0 1

Cinv
v,ω3

∣∣∣Pb
X′

2−1 0 0 0

permuted among the classes induced by X, depending on the value of k. This effect is
illustrated in Table 5, where the conditional correlations for approximation (ω3, v)|X′ with
inv ◦ Ak are presented. We observe here that the class with the 2−1 correlation magnitude
is indexed by b ⊕ X ′(k) = (ω⊤

1 k, ω⊤
6 k). It is moreover illustrated that the sign of the

correlation is determined by the value of (−1)ω⊤
3 k.

Table 5: Cinv◦Ak
v,ω3

∣∣∣Pb
X′

for k ∈ F8
2, b ∈ F2

2 and X ′ : x 7→ (ω⊤
1 x, ω⊤

6 x).

ω⊤
1 x 0 0 1 1

ω⊤
6 x 0 1 0 1

ω⊤
3 k ω⊤

1 k ω⊤
6 k

0

0 0 2−1 0 0 0
0 1 0 2−1 0 0
1 0 0 0 2−1 0
1 1 0 0 0 2−1

1

0 0 −2−1 0 0 0
0 1 0 −2−1 0 0
1 0 0 0 −2−1 0
1 1 0 0 0 −2−1

5 Application to 4-round AES
It has been argued that the correlation contribution of a standard linear trail for four-
round AES is upper bounded by 2−75 [DR20, Section 9.5.2], making it the smallest
round-reduced version of this cipher that can withstand distinguishing attacks that rely on
standard linear cryptanalysis. However, in symmetric-key folklore this is often incorrectly
understood to mean that this round-reduced version of AES can withstand any form of
linear cryptanalysis. In this section, we present a linear cryptanalysis distinguishing attack
against four-round AES, highlighting the need for refining this understanding.

5.1 The four-round distinguisher
To construct a conditional distinguisher for four-round AES, one commences with the
construction of a three-round linear trail (v, w) for AES3

k. This trail should be formed such
that the first and third round have four active s-boxes, while the second round only has
one. Moreover, one should make sure that the correlation of the trail over each of the nine
s-boxes is 2−3. When done correctly, this yields a trail with a correlation contribution of
(2−3)9 = 2−27. In Figure 3, one such example is provided.

As a second step, one prepends to this the trail (u, v) for the function MC ◦ SR, forming
the 3 1

2 -round trail (u, w) for AES3
k ◦ MC ◦ SR. Note here that u should be chosen such that
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39x

34x

2Dx

2Dx

SB7→

80x

81x

01x

01x

SR7→

80x

81x

01x

01x

MC7→

01x

SB7→

88x

SR7→

88x

MC7→

17x

FDx

5Bx

39x

SB7→

25x

36x

D2x

80x

SR7→

25x

36x

D2x

80x

MC7→

FFx D0x 7Cx 30x

93x B0x 48x 10x

48x 90x C7x 2Bx

01x 70x 21x 3Dx

Figure 3: Linear trail (v, w) for three-round AES with 9 active s-boxes.

(u, v) achieves a correlation of 1 with MC ◦ SR. Such a u always exists since both of these
functions are linear. The resulting trail attains a correlation contribution of magnitude
2−27. In Figure 4 the extension (u, v) for the example trail is presented.

9Cx 34x 2Dx 3Bx

2Dx A5x 9Ax 2Dx

16x 2Dx 39x AEx

34x 3Bx 16x 39x

SR7→

9Cx 34x 2Dx 3Bx

A5x 9Ax 2Dx 2Dx

39x AEx 16x 2Dx

39x 34x 3Bx 16x

MC7→

39x

34x

2Dx

2Dx

Figure 4: Linear trail (u, v) for MixColumns ◦ ShiftRows.

Third, one prepends a conditional approximation (r, u)|X for SubBytes to the trail,



Tomer Ashur and Erik Takke 13

forming the conditional trail (r, w)|X for AES3
k ◦ MC ◦ SR ◦ SB. Using Lemma 3, we

find that this conditional approximation can be formed using sixteen conditional trails
([r]i, [u′′]i, [u′]i, [u]i)|Xi

for the s-boxes Si, where 1 ≤ i ≤ 16. Since Si = T ◦ L ◦ inv, with
T affine and L linear, both [u′′]i and [u′]i can be chosen such that the trail ([u′′]i, [u]i)
achieves a correlation of magnitude 1 with T ◦ L. Following this, one chooses the mask
[r]i to be equal to ω3 ∈ Ω[u′′]i

. Lastly, one constructs the conditioning function Xi as
x 7→ (ω⊤

1 x, ω⊤
6 x) with ω1, ω2, ω3 ∈ Ω[u′′]i

and ω6 = ω2 ⊕ ω3. Table 6 lists the conditioning
masks ω1 and ω6 for each of the sixteen conditioning functions Xi, while Figure 5 presents
the trail extension for the example (r, u).

Table 6: Masks ω1 and ω6 for partitioning functions Xi : x 7→ (ω⊤
1 x, ω⊤

6 x).
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ω1 E5x 93x 62x 7Dx 7Dx C0x 93x 79x 93x 94x 7Ax 62x 79x 93x 9Dx 7Ax
ω6 3Ax 20x 19x EAx EAx 6Bx 20x CEx 20x 49x F9x 19x CEx 20x F2x F9x

93x 80x A9x AAx

A9x 9Cx 58x A9x

3Cx A9x C1x D9x

80x AAx 3Cx C1x

inv7→

AFx E6x 87x BCx

87x F0x 8Bx 87x

3Bx 87x 5Fx 6Dx

E6x BCx 3Bx 5Fx

T◦L7→

9Cx 34x 2Dx 3Bx

2Dx A5x 9Ax 2Dx

16x 2Dx 39x AEx

34x 3Bx 16x 39x

Figure 5: Linear trail (r, u) for SubBytes in first round.

It now follows from Section 4.4 that ([r]i, [u′′]i)|Xi
achieves a conditional correlation

with Si of magnitude 2−1 when restricted to the plaintexts in P0
Xi

, while achieving a
correlation of 0 when restricted to the other classes. Recalling Lemma 3, we find that one
can combine these sixteen conditioning functions as 16

i=1 Xi to form X. The resulting
approximation (r, u)|X now achieves a conditional correlation with SubBytes of magnitude
(2−1)16 = 2−16 on plaintext class P0

X and 0 on all other classes. Leveraging Lemma 1, we
find that (r, w)|X achieves a conditional correlation with AES3

k ◦ MC ◦ SR ◦ SB of magnitude
2−27 · 2−16 = 2−43 on plaintext class P0

X .
Finally, Equation 15 shows that prepending the round key addition function Ak0 yields

that (r, w)|X achieves a conditional correlation with AES4
k of magnitude 2−43 on plaintext

class Pb∗

X , where b∗ := X(k0). Moving forward, we will refer to Pb∗

X as the substantial
plaintext class.

Completing the example, Figure 6 presents the full four-round trail (r, w) and Equa-
tion 10 lists the complete conditioning function X.

93x 80x A9x AAx

A9x 9Cx 58x A9x

3Cx A9x C1x D9x

80x AAx 3Cx C1x

AES4
k7→

FFx D0x 7Cx 30x

93x B0x 48x 10x

48x 90x C7x 2Bx

01x 70x 21x 3Dx

Figure 6: Linear trail (r, w) for four-round AES with 25 active s-boxes.
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X : F128
2 → F32

2 : x 7→
(E5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00⊤

x x,

00 93 00 00 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 62 00 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 7D 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 7D 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 C0 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 93 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 79 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 93 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 94 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 7A 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 62 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 79 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 93 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 9D 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7A⊤
x x,

3A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 19 00 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 EA 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 EA 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 6B 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 20 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 CE 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 20 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 49 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 F9 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 19 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 CE 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 F2 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 F9⊤
x x)

(10)

5.2 Distinguishing property
We may thus construct a conditional approximation (u, v)|X with X linear, which, when
applied to four-round AES, achieves a correlation of magnitude 2−43 when conditioning
on the substantial class, while yielding 0 on the other 232 − 1 classes. We will argue that
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this property is highly unique for a 128-bit permutation and thus allows us to distinguish
four-round AES from a random permutation.

First, observe that a conditional approximation using a linear conditioning function is
akin to considering the correlation of a linear approximation where a number of bits of
the input is fixed. In the case of four-round AES, we have shown a set of 32 input bits
for which the linear approximation achieves a correlation magnitude of 2−43 for a single
class (which we refer to as the substantial class) and 0 for all other classes; which class
is the substantial one depends on the first round-key. To illustrate that this property is
unique to AES, it thus suffices to show that when fixing 32 bits of the input of a random
permutation, it is highly unlikely that any linear approximation will achieve a correlation
of 2−43 when restricted to a certain data class.

When fixing 32-bits of the input of a 128-bit permutation P , we can view this function
as a set of vectorial Boolean functions P1, . . . , P232 : F96

2 → F128
2 , one for each of the 232

possible fixations of the input bits. When P is a random permutation, we argue that
these functions Pi are themselves reasonably approximated as random vectorial Boolean
functions. It was shown in [DR07] that the correlation of a linear approximation with any
vectorial Boolean function F : Fn

2 → Fm
2 is distributed according to the normal distribution

N (0, 2−n). For the functions Pi, this distribution thus evaluates to N := N (0, 2−96). The
probability that an arbitrary Pi yields a correlation with magnitude greater than or equal
to 2−43 with the constructed trail then follows as

P
[
|X| ≥ 2−43] = 2 · P

[
X ≥ 2−43] = 2 · P

[
248 · X ≥ 25] = 2 · Φ(−25) < 2−743.987,

where X ∼ N and Φ denotes the cumulative density function for the standard normal
distribution. Given that the arbitrary permutation P is composed of the 232 functions
Pi, the probability that at least one of these Pi achieves the desired correlation can be
closely approximated as 2−743 · 232 = 2−711. This probability is small enough to conclude
that observing a correlation of 2−43 on one of the 232 classes constructed by a linear
conditioning function X is a distinguishing property for four-round AES.

5.3 Key-recovery attack
In addition to constructing a distinguishing attack, the conditional approximation (r, w)|X
can be leveraged to construct a key-recovery attack against 4-round AES. We have namely
seen that the value of the first round key k0 fully determines which plaintext class in PX

becomes substantial. In particular, the substantial class can be indexed by the value of
b∗ = X(k0). Since X : F128

2 → F32
2 , one can thus recover 32 bits of information on this first

round key k0 by determining which class is substantial.
We will demonstrate how the substantial class can be determined in both the chosen

and known-plaintext model, as well as derive the data complexity of either attack. Note
that these complexity bounds also illustrate the time complexity of both attacks since the
data complexity and time complexity are identical in this instance.

5.3.1 Chosen plaintext attack

To determine which plaintext class is substantial, we closely approximate the conditional
correlation of all 232 classes and conclude that the greatest absolute correlation corresponds
with the substantial class. To construct this approximation in the chosen plaintext
model, one selects a sufficient number of plaintext-ciphertext pairs t for each class in the
plaintext-ciphertext space partition induced by X, and uses this to compute an empirical
approximation of the conditional correlation. To compute the value of t, we can use [Sel08,
Corollary 1]. Although Selçuk introduces this formula for computing the data complexity
of Matsui’s Algorithm 2 attack, it can also be applied here: the only difference between
this and an Algorithm 2 attack is that our attack seeks to find the plaintext class achieving
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the non-zero correlation, whereas Algorithm 2 seeks to find the class of keys achieving a
non-zero correlation. Since this attack computes correlations with different data sets and a
static key, instead of different keys and a static data set, the formula now yields the data
complexity per plaintext class. A reformulated version of Selçuk’s corollary is presented in
Corollary 1.
Corollary 1 (Corollary 1, [Sel08]).

N =
(
Φ−1(PS) + Φ−1(1 − 2−a−1)

)2 · C−2 (11)
plaintext blocks are needed in a linear attack to accomplish an a-bit advantage with a
success probability of PS using a linear approximation achieving a correlation of C.

We determine the number of chosen plaintext-ciphertext pairs necessary to correctly
identify the substantial class with 95% certainty. In Table 7, an overview for the data
complexity per class t for fixed success probability PS = 0.95 and varying advantages a is
presented. Based on this table, we can conclude that with 292 plaintext-ciphertext pairs
per class one should be able to correctly discern the non-zero correlation plaintext class in
at least 95% of experiments. This thus implies a total data complexity of 232 · 292 = 2124

chosen plaintext-ciphertext pairs for this attack.

Table 7: Data complexity per plaintext class of a chosen plaintext attack in terms of
advantage.

a 1 8 16 32
log2(t) 88.43 90.36 91.16 91.99

5.3.2 Known-plaintext attack

The data complexity for the known-plaintext attack is identical, except for the evaluation
of the complete data complexity from the complexity per class. In the case of a known-
plaintext attack, one has to account for the fact that at least t samples must be encountered
for each class even though the samples are drawn from the complete codebook.

This is in fact the problem known as the dixie-cup problem. Here, one attempts to
obtain m copies of n unique objects by uniformly sampling these objects with replacement.
It was shown by Newman [New60] that the expected number of objects Em(n) one must
sample before obtaining m instances of each of the n types equals

Em(n) = n ln n + (m − 1) · n ln ln n + O(1) (12)
as n approaches infinity. In our situation, we attempt to encounter m = t samples for
n = 232 plaintext classes and are thus interested in the total number of necessary samples
t∗ = Em(n). We present the value of t∗ in terms of the advantage a in Table 8. From this
table we conclude that 2125.62 known plaintext-ciphertext pairs will allow one to correctly
identify the substantial class with 95% certainty.

Table 8: Expected data complexity in terms of advantage.
a 1 8 16 32

log2(t∗) 122.06 123.99 124.79 125.62

5.4 Experimental validation
We experimentally validate the conditional approximation presented in Section 5.1. Given
that the time complexity of the full key recovery attack is 2125.62, and therefore beyond what
we can compute in reasonable time, we instead validate two parts of (r, w)|X independently.
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5.4.1 Experiment 1

The first experiment restricts itself to the conditional approximation used in the first round
of the distinguisher. This approximation with sixteen active s-boxes is expected to achieve
a correlation of magnitude 2−16 when restricted to data from the substantial class, while
achieving a correlation of 0 when restricted to data from other classes.

As such, the experiment generates a random key k and uses this to compute the value
of b∗ = X(k0). In addition to this correct class index, fifteen incorrect classes b1, . . . , b15
are randomly selected. For each of the sixteen data classes, 235.62 plaintext-ciphertext pairs
are generated and used to approximate the conditional correlation for each class. Applying
Equation (1) we can deduce that this amount of data would result in the substantial class
having the highest correlation among all 16 classes with probability 0.95.

Results The experiment was repeated sixteen times. In fifteen of the sixteen runs, the
substantial class was correctly identified. Furthermore, the magnitudes of the correlation
observed for the substantial class fell in the interval [2−16.2620, 2−15.3295] with one outlier at
2−17.0648. We deem this evidence sufficient to support the claim that the substantial con-
ditional correlation of the conditional approximation (r, u)|X with AES1

k is greater than or
equal to 2−16. The details of this experiment and its results are attached as supplementary
material.

5.4.2 Experiment 2

To show that a conditional approximation can be followed by (i.e., prepended to) a
“standard” linear approximation, we devised a second experiment covering two rounds. We
restrict ourselves to a trail (r, v)|X which includes eight active S-boxes in the first round
and two active S-boxes in the second. The conditional approximation is applied only to the
S-boxes in the first round whereas the S-boxes in the second round are approximated in
the standard way. The s-boxes have been chosen such that this approximation is expected
to achieve a correlation with AES2

k of magnitude 2−14 when restricted to data from the
substantial class, while achieving a correlation of 0 when restricted to data from other
classes.

The setup of the experiment is identical to that of Experiment 1, except that the data
complexity per class is reduced to 231.62.

Results The experiment was executed sixteen times. In fourteen of the sixteen runs, the
substantial class was correctly identified. Furthermore, the magnitudes of the correlation
observed for the substantial class fell in the interval [2−15.0900, 2−13.4589]. We deem this
evidence sufficient to support the claim that the substantial conditional correlation of the
conditional approximation (r, u)|X with AES2

k is greater than or equal to 2−14. The details
of this experiment and its results are furthermore attached as supplementary material.

6 Discussion and Conclusion
Let us recall that, according to the WTS, the number of rounds r for a cipher should be
chosen such that the absolute correlation contribution of all linear trails is smaller than
κ−1 ·2−n/2. For AES-128, this bound evaluates to 1

128 ·2−128/2 = 2−71, while for four-round
AES, it has been shown that any linear trail has an absolute correlation contribution smaller
than or equal to 2−75, which is clearly smaller than 2−71. It is thus argued that four-round
AES is not vulnerable to attacks based on standard linear cryptanalysis. However, we
observe that in literature this argument is often understood to apply to all forms of linear
cryptanalysis. The presented statistical distinguisher and key-recovery attack demonstrate
that this generalization does not apply.
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We have observed that inv, the inversion function on 28 elements, has five input masks
ω for every output mask v ∈ F8

2 \ {0} s.t. Cinv
v,ω = 2−3. This allowed for the construction of

a conditional approximation that achieves a conditional correlation of 2−1 when applied to
inv. This approximation was then expanded to encompass a full round of the AES, which
was used to construct a statistical distinguisher for four-round AES in the known-plaintext
model; the existence of which was often understood to be impossible. We have moreover
demonstrated a key-recovery attack capable of extracting 32 bits of information on the
key using only 2125.62 data. To validate this attack, two small-scale experiments were
performed that demonstrated that the conditional approximation can be used to achieve
a 4-bit advantage when approximating one-round AES with sixteen active s-boxes and
sampling 235.62 data for all sixteen plaintext classes, and when approximating two-round
AES with 10 active s-boxes while sampling 231.62 per class.

With the distinguisher established and validated, this work demonstrates that four-
round AES is statistically distinguishable from a random permutation in the known-
plaintext model. In addition to illustrating that this round-reduced version is unsafe, this
result furthermore presents a potential weakness in any cipher using it as a subroutine
(e.g., [MN17, WP13]). Even more impacting is the fact that the vulnerability in four-round
AES stems from a caveat in the security argument of the Wide Trail Strategy. This
security argument implicitly assumed that, in the case of AES, the correlation magnitude
of an approximation for the s-box is upper bounded by 2−3. As such, the conditional
approximation forms a threat to the security of any of the multitude of ciphers constructed
in recent years according to this design framework (e.g., [AAB+20, BBI+15, BKL+07,
GNL11, GKR+21, JNPS21], etc.).
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A Proofs
In this appendix, we present the proofs for all lemmas presented in this work. The proofs
are provided in the same order as the lemmas are presented.

Lemma 1. Let F : Fn
2 → Fp

2, G : Fp
2 → Fm

2 and X : Fn
2 → Fr

2 be arbitrary vectorial
Boolean functions. For all b ∈ Fr

2 it holds that

CG◦F
∣∣∣Pb

X
= CG ·

(
CF
∣∣∣Pb

X

)
.

Proof. Let us first observe that for any combination of masks u ∈ Fn
2 and v ∈ Fm

2 , the
correlation of approximation (u, v) with any vectorial Boolean function H : Fn

2 → Fm
2 can

be computed as
CH

v,u = 1
|Fn

2 |
∑

x∈Fn
2

(−1)u⊤x⊕v⊤H(x), (13)

while conditional correlation can be computed as

CH
v,u

∣∣∣Pb
X

= 1
|Pb

X |
∑

x∈Pb
X

(−1)u⊤x⊕v⊤H(x). (14)

We can use these equalities to see that for any u ∈ Fn
2 and v ∈ Fm

2 , it holds that∑
z∈Fp

2

CG
v,z · CF

z,u

∣∣∣Pb
X

=
∑
z∈Fp

2

 1
|Fp

2|
∑

x∈Fp
2

(−1)z⊤x⊕v⊤G(x)

 1
|Pb

X |
∑

y∈Pb
X

(−1)u⊤y⊕z⊤F (y)


= 1

|Fp
2|

1
|Pb

X |
∑

x∈Fp
2

∑
y∈Pb

X

(−1)u⊤y⊕v⊤G(x)
∑

z∈Fn
2

(−1)z⊤(x⊕F (y))

(1)= 1
|Fp

2|
1

|Pb
X |
∑

x∈Fp
2

∑
y∈Pb

X

(−1)u⊤y⊕v⊤G(x) · |Fp
2| · δx,F (y)

= 1
|Pb

X |
∑

y∈Pb
X

(−1)u⊤y⊕v⊤G(F (y))

= CG◦F
v,u

∣∣∣Pb
X

,

where step (1) follows from the fact that the parity function z⊤· is balanced.

Lemma 2. Let F : Fn
2 → Fn

2 be an arbitrary permutation, let G : Fn
2 → Fm

2 and
X : Fn

2 → Fr
2 be arbitrary vectorial Boolean functions. For all b ∈ Fr

2 it holds that

CG◦F
∣∣∣Pb

X◦F
= CG

∣∣∣Pb
X

· CF .

Proof. We start with the observation that for any x ∈ Fn
2 it holds that

F (x) ∈ Pb
X

⇐⇒ F (x) ∈ {z | X(z) = b}
⇐⇒ x ∈ {F −1(z) | X(z) = b}
⇐⇒ x ∈ {y | X(F (y)) = b}
⇐⇒ x ∈ {y | y ∈ Pb

X◦F }
⇐⇒ x ∈ Pb

X◦F .

(15)
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Let us furthermore recall Equation 13 and 14 for computing correlation and conditional
correlation, listed in the proof of Lemma 1. We can use these equalities to see that

∑
z∈Fn

2

CG
v,z

∣∣∣Pb
X

· CF
z,u

=
∑

z∈Fn
2

 1
|Pb

X |
∑

x∈Pb
X

(−1)z⊤x⊕v⊤G(x)

 1
|Fn

2 |
∑

y∈Fn
2

(−1)u⊤y⊕z⊤F (y)


= 1

|Pb
X |

1
|Fn

2 |
∑

x∈Pb
X

∑
y∈Fn

2

(−1)u⊤y⊕v⊤G(x)
∑

z∈Fn
2

(−1)z⊤(x⊕F (y))

(1)= 1
|Pb

X |
1

|Fn
2 |
∑

x∈Pb
X

∑
y∈Fn

2

(−1)u⊤y⊕v⊤G(x) · |Fn
2 | · δx,F (y)

= 1
|Pb

X |
1

|Fn
2 |
∑

x∈Pb
X

∑
y∈Fn

2

(−1)u⊤y⊕v⊤G(x) · |Fn
2 | · δF −1(x),y

(2)= 1
|Pb

X |
∑

x∈Pb
X

(−1)u⊤F −1(x)⊕v⊤G(x)

= 1
|Pb

X |
∑

F (y)∈Pb
X

(−1)u⊤y⊕v⊤G(F (y))

(3)= 1
|Pb

X |
∑

z∈Pb
X◦F

(−1)u⊤z⊕v⊤G(F (z))

(4)= CG◦F
v,u

∣∣∣Pb
X◦F

,

where step (1) follows from the fact that the parity function z⊤· is balanced, (2) from
the fact that F is a permutation, (3) from Equation 15, and (4) from the fact that
|Pb

X | = |Pb
X◦F |.

Lemma 3. Let F : Fn
2 → Fm

2 , G : Fr
2 → Fp

2, X : Fn
2 → Fq

2 and Y : Fr
2 → Fs

2 be arbitrary
vectorial Boolean functions. It holds that

CF
∣∣Pa

X
⊗ CG

∣∣∣Pb
Y

= CF ×G
∣∣∣Pa|b

X×Y

for all a ∈ Fq
2 and b ∈ Fs

2, where ⊗ denotes the Kronecker product.

Proof. Let us first observe that |Pa
X | · |Pb

Y | = |Pa|b
X×Y | and that

y|z ∈ Pa|b
X×Y ⇐⇒ y ∈ Pa

X and z ∈ Pb
Y
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for any y ∈ Fn
2 and z ∈ Fr

2. Let v := v1|v2 and w := w1|w2 be arbitrary. It then holds that

CF ×G
v,w

∣∣∣Pa|b

X×Y

= 1
|Pa|b

X×Y |

∑
x∈Pa|b

X×Y

(−1)w⊤x⊕v⊤(F ×G)(x)

= 1
|Pa

X |
· 1

|Pb
Y |

∑
y|z∈Pa|b

X×Y

(−1)(w1|w2)⊤(y|z)⊕(v1|v2)⊤(F (y)|G(z))

= 1
|Pa

X |
· 1

|Pb
Y |

∑
y∈Pa

X

∑
z∈Pb

Y

(−1)w⊤
1 y⊕w⊤

2 z⊕v⊤
1 F (y)⊕v⊤

2 G(z)

=

 1
|Pa

X |
∑

y∈Pa
X

(−1)w⊤
1 y⊕v⊤

1 F (y)

 ·

 1
|Pb

Y |
∑

z∈Pb
Y

(−1)w⊤
2 z⊕v⊤

2 G(z)


= CF

v1,w1

∣∣Pa
X

· CG
v2,w2

∣∣∣Pb
Y

with y ∈ Fn
2 and z ∈ Fm

2 .

Lemma 4. Let F : Fn
2 → Fm

2 and X : Fn
2 → Fr

2 be arbitrary vectorial Boolean functions.
For any b, b′ ∈ Fr

2 s.t. b ̸= b′, it holds that

CF
∣∣∣Pb

X
∪Pb′

X
= |Pb

X |
|Pb

X | + |Pb′
X |

· CF
∣∣∣Pb

X
+ |Pb′

X |
|Pb

X | + |Pb′
X |

· CF
∣∣∣Pb′

X

when either Pb
X ̸= ∅ or Pb′

X ̸= ∅.

Proof. Let s := |Pb
X |. Observe that

P
[
u⊤x = v⊤F (x)

∣∣∣ x ∈ Pb
X ∪ Pb′

X

]
= P

[
u⊤x = v⊤F (x)

∣∣∣ x ∈ Pb
X \ Pb′

X

]
· P
[
x ∈ Pb

X \ Pb′

X

∣∣∣ x ∈ Pb
X ∪ Pb′

X

]
+ P

[
u⊤x = v⊤F (x)

∣∣∣ x ∈ Pb′

X \ Pb
X

]
· P
[
x ∈ Pb′

X \ Pb
X

∣∣∣ x ∈ Pb
X ∪ Pb′

X

]
+ P

[
u⊤x = v⊤F (x)

∣∣∣ x ∈ Pb′

X ∩ Pb
X

]
· P
[
x ∈ Pb′

X ∩ Pb
X

∣∣∣ x ∈ Pb
X ∪ Pb′

X

]
(1)= P

[
u⊤x = v⊤F (x)

∣∣ x ∈ Pb
X

]
· P
[
x ∈ Pb

X

∣∣∣ x ∈ Pb
X ∪ Pb′

X

]
+ P

[
u⊤x = v⊤F (x)

∣∣∣ x ∈ Pb′

X

]
· P
[
x ∈ Pb′

X

∣∣∣ x ∈ Pb
X ∪ Pb′

X

]
= P

[
u⊤x = v⊤F (x)

∣∣ x ∈ Pb
X

]
· |Pb

X |
|Pb

X
|+|Pb′

X
|

+ P
[
u⊤x = v⊤F (x)

∣∣∣ x ∈ Pb′

X

]
· |Pb′

X |
|Pb

X
|+|Pb′

X
|

where step (1) follows from the assumption that b ̸= b′ and PF is a partition. This equality



Tomer Ashur and Erik Takke 25

can now be used to show that for any u, v ∈ Fn
2 it holds that

CF
v,u

∣∣∣Pb
X

∪Pb′
X

= 2 · P
[
u⊤x = v⊤F (x)

∣∣∣ x ∈ Pb
X ∪ Pb′

X

]
− 1

= 2
(
P
[
u⊤x = v⊤F (x)

∣∣ x ∈ Pb
X

]
· |Pb

X |
|Pb

X
|+|Pb′

X
|

+ P
[
u⊤x = v⊤F (x)

∣∣∣ x ∈ Pb′

X

]
· |Pb′

X |
|Pb

X
|+|Pb′

X
|

)
− 1

(2)= |Pb
X |

|Pb
X

|+|Pb′
X

| ·
(
2P
[
u⊤x = v⊤F (x)

∣∣ x ∈ Pb
X

]
− 1
)

+ |Pb′
X |

|Pb
X

|+|Pb′
X

| ·
(

2P
[
u⊤x = v⊤F (x)

∣∣∣ x ∈ Pb′

X

]
− 1
)

= |Pb
X |

|Pb
X

|+|Pb′
X

| · CF
v,u

∣∣∣Pb
X

+ |Pb′
X |

|Pb
X

|+|Pb′
X

| · CF
v,u

∣∣∣Pb′
X

,

where step (2) involves the fact that |Pb
X |

|Pb
X

|+|Pb′
X

| + |Pb′
X |

|Pb
X

|+|Pb′
X

| = 1. Since this holds for all u

and v, the lemma follows.

Lemma 5. Let F : Fn
2 → Fn

2 be an arbitrary permutation and u, v ∈ Fn
2 arbitrary masks.

For all b ∈ F2 it holds that
(−1)b · CF

v,0

∣∣∣Pb
X

= CF
v,u,

when X : Fn
2 → F2 : x 7→ u⊤x.

Proof. Note first of all that it follows from Lemma 4 that

CF
v,0

∣∣∣P0
X

+ CF
v,0

∣∣∣P1
X

= 2 · CF
v,0

∣∣∣P0
X

∪P1
X

= 2 · CF
v,0

(1)= 0,

where step (1) follows from the fact that F is a permutation. In particular, note that
CF

v,0

∣∣∣P0
X

= −CF
v,0

∣∣∣P1
X

. Note furthermore that |P0
X | = |P1

X | = |Fn
2 |/2 since X is a balanced

function. Subsequently,

CF
v,0

∣∣∣P0
X

− CF
v,0

∣∣∣P1
X

=

 1
|P0

X |
∑

x∈P0
X

(−1)0⊤x⊕v⊤F (x)

−

 1
|P1

X |
∑

x∈P1
X

(−1)0⊤x⊕v⊤F (x)


(2)=

 1
|P0

X |
∑

x∈P0
X

(−1)u⊤x⊕v⊤F (x)

−

− 1
|P1

X |
∑

x∈P1
X

(−1)u⊤x⊕v⊤F (x)


= 2

|Fn
2 |
∑

x∈Fn
2

(−1)u⊤x⊕v⊤F (x)

= 2 · CF
v,u,

where step (2) multiplies the summations with (−1)u⊤x, which equals 1 for all x ∈ P0
X

and −1 for x ∈ P1
X . Combining these two results then gives that

CF
v,u = 1

2

(
CF

v,0

∣∣∣P0
X

− CF
v,0

∣∣∣P1
X

)
= 1

2

(
CF

v,0

∣∣∣P0
X

+ CF
v,0

∣∣∣P0
X

)
= CF

v,0

∣∣∣P0
X

(16)

and also CF
v,u = −CF

v,0

∣∣∣P1
X

.
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Lemma 6. Let F : Fn
2 → Fm

2 be an arbitrary vectorial Boolean function, u ∈ Fn
2 and

v ∈ Fm
2 arbitrary masks, and X : Fn

2 → Fr
2 : x 7→ (u⊤

1 x, . . . , u⊤
r x) an arbitrary linear

vectorial Boolean function with u1, . . . , ur ∈ Fn
2 linearly independent. For all b ∈ Fr

2 it
holds that

(−1)bi · CF
v,u⊕ui

∣∣∣Pb
X

= CF
v,u

∣∣∣Pb
X

.

Proof. Let recall Equation 14 provided in the proof of Lemma 1. We can use this to show
that

CF
v,u

∣∣∣Pb
X

= 1
|Pb

X |
∑

x∈Pb
X

(−1)u⊤x⊕v⊤F (x)

= 1
|Pb

X |
∑

x∈Pb
X

(−1)u⊤x⊕v⊤F (x) · (−1)u⊤
i x · (−1)u⊤

i x

(1)= (−1)bi · 1
|Pb

X |
∑

x∈Pb
X

(−1)(u⊕ui)⊤x⊕v⊤F (x)

= (−1)bi · CF
v,u⊕ui

∣∣∣Pb
X

.

Here, step (1) follows from the observation that u⊤
i x = bi for all x ∈ Pb

X and that
a⊤x ⊕ b⊤x = (a ⊕ b)⊤x.
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Supplementary material
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B MH

In Section 2.4, the algebraic description of the MixColumns function is presented. This
function can be decomposed into the application of the function H to each column of the
state. The matrix representation MH of this function is presented below. To improve its
readability, all one-entries in this matrix are printed in bold, while all zero-entries are
represented with a dot. Moreover, three horizontal and three vertical lines have been
included to aid in understanding the effect of applying this matrix to a four-byte column
of the state.

MH =



· 1 · · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · · · ·
· · 1 · · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · · ·
· · · 1 · · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · ·
1 · · · 1 · · · 1 · · 1 1 · · · · · · 1 · · · · · · · 1 · · · ·
1 · · · · 1 · · 1 · · · 1 1 · · · · · · 1 · · · · · · · 1 · · ·
· · · · · · 1 · · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · ·
1 · · · · · · 1 1 · · · · · 1 1 · · · · · · 1 · · · · · · · 1 ·
1 · · · · · · · 1 · · · · · · 1 · · · · · · · 1 · · · · · · · 1
1 · · · · · · · · 1 · · · · · · 1 1 · · · · · · 1 · · · · · · ·
· 1 · · · · · · · · 1 · · · · · · 1 1 · · · · · · 1 · · · · · ·
· · 1 · · · · · · · · 1 · · · · · · 1 1 · · · · · · 1 · · · · ·
· · · 1 · · · · 1 · · · 1 · · · 1 · · 1 1 · · · · · · 1 · · · ·
· · · · 1 · · · 1 · · · · 1 · · 1 · · · 1 1 · · · · · · 1 · · ·
· · · · · 1 · · · · · · · · 1 · · · · · · 1 1 · · · · · · 1 · ·
· · · · · · 1 · 1 · · · · · · 1 1 · · · · · 1 1 · · · · · · 1 ·
· · · · · · · 1 1 · · · · · · · 1 · · · · · · 1 · · · · · · · 1
1 · · · · · · · 1 · · · · · · · · 1 · · · · · · 1 1 · · · · · ·
· 1 · · · · · · · 1 · · · · · · · · 1 · · · · · · 1 1 · · · · ·
· · 1 · · · · · · · 1 · · · · · · · · 1 · · · · · · 1 1 · · · ·
· · · 1 · · · · · · · 1 · · · · 1 · · · 1 · · · 1 · · 1 1 · · ·
· · · · 1 · · · · · · · 1 · · · 1 · · · · 1 · · 1 · · · 1 1 · ·
· · · · · 1 · · · · · · · 1 · · · · · · · · 1 · · · · · · 1 1 ·
· · · · · · 1 · · · · · · · 1 · 1 · · · · · · 1 1 · · · · · 1 1
· · · · · · · 1 · · · · · · · 1 1 · · · · · · · 1 · · · · · · 1
1 1 · · · · · · 1 · · · · · · · 1 · · · · · · · · 1 · · · · · ·
· 1 1 · · · · · · 1 · · · · · · · 1 · · · · · · · · 1 · · · · ·
· · 1 1 · · · · · · 1 · · · · · · · 1 · · · · · · · · 1 · · · ·
1 · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · 1 · · · 1 · · ·
1 · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · 1 · · · · 1 · ·
· · · · · 1 1 · · · · · · 1 · · · · · · · 1 · · · · · · · · 1 ·
1 · · · · · 1 1 · · · · · · 1 · · · · · · · 1 · 1 · · · · · · 1
1 · · · · · · 1 · · · · · · · 1 · · · · · · · 1 1 · · · · · · ·


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C Lookup Tables

Table 9: Look-up table for inv(xy).
y

· 0 · 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · A · B · C · D · E · F

x

0 · 00x 01x 8Dx F6x CBx 52x 7Bx D1x E8x 4Fx 29x C0x B0x E1x E5x C7x
1 · 74x B4x AAx 4Bx 99x 2Bx 60x 5Fx 58x 3Fx FDx CCx FFx 40x EEx B2x
2 · 3Ax 6Ex 5Ax F1x 55x 4Dx A8x C9x C1x 0Ax 98x 15x 30x 44x A2x C2x
3 · 2Cx 45x 92x 6Cx F3x 39x 66x 42x F2x 35x 20x 6Fx 77x BBx 59x 19x
4 · 1Dx FEx 37x 67x 2Dx 31x F5x 69x A7x 64x ABx 13x 54x 25x E9x 09x
5 · EDx 5Cx 05x CAx 4Cx 24x 87x BFx 18x 3Ex 22x F0x 51x ECx 61x 17x
6 · 16x 5Ex AFx D3x 49x A6x 36x 43x F4x 47x 91x DFx 33x 93x 21x 3Bx
7 · 79x B7x 97x 85x 10x B5x BAx 3Cx B6x 70x D0x 06x A1x FAx 81x 82x
8 · 83x 7Ex 7Fx 80x 96x 73x BEx 56x 9Bx 9Ex 95x D9x F7x 02x B9x A4x
9 · DEx 6Ax 32x 6Dx D8x 8Ax 84x 72x 2Ax 14x 9Fx 88x F9x DCx 89x 9Ax
A · FBx 7Cx 2Ex C3x 8Fx B8x 65x 48x 26x C8x 12x 4Ax CEx E7x D2x 62x
B · 0Cx E0x 1Fx EFx 11x 75x 78x 71x A5x 8Ex 76x 3Dx BDx BCx 86x 57x
C · 0Bx 28x 2Fx A3x DAx D4x E4x 0Fx A9x 27x 53x 04x 1Bx FCx ACx E6x
D · 7Ax 07x AEx 63x C5x DBx E2x EAx 94x 8Bx C4x D5x 9Dx F8x 90x 6Bx
E · B1x 0Dx D6x EBx C6x 0Ex CFx ADx 08x 4Ex D7x E3x 5Dx 50x 1Ex B3x
F · 5Bx 23x 38x 34x 68x 46x 03x 8Cx DDx 9Cx 7Dx A0x CDx 1Ax 41x 1Cx

Table 10: Look-up table for the AES s-box function S(xy)
y

· 0 · 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · A · B · C · D · E · F

x

0 · 63x 7Cx 77x 7Bx F2x 6Bx 6Fx C5x 30x 01x 67x 2Bx FEx D7x ABx 76x
1 · CAx 82x C9x 7Dx FAx 59x 47x F0x ADx D4x A2x AFx 9Cx A4x 72x C0x
2 · B7x FDx 93x 26x 36x 3Fx F7x CCx 34x A5x E5x F1x 71x D8x 31x 15x
3 · 04x C7x 23x C3x 18x 96x 05x 9Ax 07x 12x 80x E2x EBx 27x B2x 75x
4 · 09x 83x 2Cx 1Ax 1Bx 6Ex 5Ax A0x 52x 3Bx D6x B3x 29x E3x 2Fx 84x
5 · 53x D1x 00x EDx 20x FCx B1x 5Bx 6Ax CBx BEx 39x 4Ax 4Cx 58x CFx
6 · D0x EFx AAx FBx 43x 4Dx 33x 85x 45x F9x 02x 7Fx 50x 3Cx 9Fx A8x
7 · 51x A3x 40x 8Fx 92x 9Dx 38x F5x BCx B6x DAx 21x 10x FFx F3x D2x
8 · CDx 0Cx 13x ECx 5Fx 97x 44x 17x C4x A7x 7Ex 3Dx 64x 5Dx 19x 73x
9 · 60x 81x 4Fx DCx 22x 2Ax 90x 88x 46x EEx B8x 14x DEx 5Ex 0Bx DBx
A · E0x 32x 3Ax 0Ax 49x 06x 24x 5Cx C2x D3x ACx 62x 91x 95x E4x 79x
B · E7x C8x 37x 6Dx 8Dx D5x 4Ex A9x 6Cx 56x F4x EAx 65x 7Ax AEx 08x
C · BAx 78x 25x 2Ex 1Cx A6x B4x C6x E8x DDx 74x 1Fx 4Bx BDx 8Bx 8Ax
D · 70x 3Ex B5x 66x 48x 03x F6x 0Ex 61x 35x 57x B9x 86x C1x 1Dx 9Ex
E · E1x F8x 98x 11x 69x D9x 8Ex 94x 9Bx 1Ex 87x E9x CEx 55x 28x DFx
F · 8Cx A1x 89x 0Dx BFx E6x 42x 68x 41x 99x 2Dx 0Fx B0x 54x BBx 16x
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D Masks

Table 11: The masks ω1, ω2, ω3 ∈ Ωv for every v ∈ F8
2 \ {0}.

v ω1 ω2 ω3
01x 84x 63x F3x
02x 7Cx A2x D2x
03x 42x 31x F9x
04x 3Ex 69x D1x
05x 5Ax CDx FDx
06x D4x 9Ax 61x
07x A1x 18x FCx
08x 80x 97x DAx
09x 9Fx ABx 68x
0Ax ADx 53x CBx
0Bx 4Cx 89x 93x
0Cx AEx A2x A0x
0Dx EAx CDx B0x
0Ex D0x DCx AEx
0Fx C9x 44x 54x
10x 47x 33x 7Bx
11x 40x 8Bx EDx
12x 4Fx 9Ax FBx
13x 9Ex 1Bx 43x
14x 9Ax 60x 61x
15x 56x A9x B3x
16x A6x E2x C9x
17x CAx 08x 2Cx
18x 57x 50x D1x
19x 7Fx F2x C9x
1Ax 1Ex 99x 92x
1Bx 75x 13x D8x
1Cx E8x BFx 86x
1Dx C4x 4Ax 78x
1Ex 1Ax 20x 6Cx
1Fx 64x 22x AAx
20x 23x 3Dx 99x
21x 4Dx 6Ax EAx
22x F6x E9x DBx
23x 20x 76x E5x
24x A7x 6Ax DAx
25x 54x 3Bx D9x
26x 43x 85x 94x
27x CFx C2x 21x
28x C5x 3Ax 93x

v ω1 ω2 ω3
29x CDx 30x B0x
2Ax 2Bx 54x D9x
2Bx 2Ax 6Dx 51x
2Cx DAx CDx 30x
2Dx D3x F1x 64x
2Ex 65x E1x F3x
2Fx F5x 71x 82x
30x C2x 29x 2Cx
31x ABx A8x 68x
32x 3Fx 79x 5Bx
33x 6Fx 10x E2x
34x 8Ax 09x C1x
35x 8Fx 43x 49x
36x 3Ax 6Cx 89x
37x C8x 38x B2x
38x F4x C3x ABx
39x B9x F8x E4x
3Ax 36x 28x B1x
3Bx 62x 25x 3Cx
3Cx 8Dx 10x 3Bx
3Dx 89x 20x 56x
3Ex 04x B9x E0x
3Fx 32x 55x 91x
40x 11x 9Ex CCx
41x 50x 39x D6x
42x 03x 5Cx 68x
43x 26x 13x 53x
44x 7Bx 74x 6Dx
45x 69x E8x 86x
46x 78x 67x 32x
47x 10x 3Bx E2x
48x D9x B6x A6x
49x 53x 35x EDx
4Ax AAx 1Dx ECx
4Bx 68x 34x A8x
4Cx 0Bx A4x B1x
4Dx 21x C2x CAx
4Ex E7x E1x 90x
4Fx 12x 90x F5x
50x 41x 18x E4x

v ω1 ω2 ω3
51x E2x C9x 9Dx
52x 66x 98x D8x
53x 49x 0Ax 9Ex
54x 25x 2Ax 7Bx
55x 95x AAx 79x
56x 15x 23x 28x
57x 18x 04x E4x
58x EDx 8Bx 98x
59x B8x 50x D6x
5Ax 05x 08x CAx
5Bx E9x 32x 78x
5Cx B2x F0x F9x
5Dx 86x 81x 39x
5Ex F2x C9x 54x
5Fx 7Ax 38x C1x
60x E1x 14x 96x
61x 77x 71x 63x
62x 3Bx 9Dx D9x
63x D5x 01x 61x
64x 1Fx 32x A3x
65x 2Ex 9Bx FAx
66x 52x 58x 49x
67x B7x 88x F1x
68x 4Bx 09x 31x
69x 45x 41x E0x
6Ax C7x 21x E3x
6Bx C1x 42x B2x
6Cx BAx A4x 8Cx
6Dx 9Dx 2Bx D9x
6Ex E4x F8x 59x
6Fx 33x 25x 48x
70x ACx D0x D2x
71x FAx D5x 61x
72x DCx 72x A0x
73x 9Cx 03x 6Bx
74x B6x 10x F2x
75x 1Bx 58x 94x
76x B1x 1Ex 92x
77x 61x 60x 4Ex
78x 46x 5Bx 88x
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v ω1 ω2 ω3
79x BCx 32x E9x
7Ax 5Fx 68x 9Fx
7Bx 44x 10x 2Bx
7Cx 02x 70x DCx
7Dx E6x C2x 29x
7Ex DEx D0x 70x
7Fx 19x 2Ax 48x
80x 08x CFx E6x
81x F8x 45x 5Dx
82x B5x 9Ax FAx
83x A8x 9Cx 6Bx
84x 01x 2Ex B4x
85x 98x 13x BEx
86x 5Dx 18x 41x
87x 93x 89x A9x
88x 8Ex E9x 78x
89x 3Dx 0Bx BAx
8Ax 34x C0x C3x
8Bx 94x 11x 58x
8Cx FFx 1Ax 93x
8Dx 3Cx 33x 19x
8Ex 88x 1Dx 79x
8Fx 35x 40x D8x
90x 9Bx D5x D4x
91x ECx D3x 5Bx
92x A9x 1Ax 76x
93x 87x 0Bx 28x
94x 8Bx ADx 75x
95x 55x DBx A3x
96x B4x 9Ax 60x
97x EBx 05x 08x
98x 85x 52x 58x
99x DFx 1Ax 20x
9Ax 14x 12x 82x
9Bx 90x F5x 71x
9Cx 73x F0x C8x
9Dx 6Dx 62x 51x
9Ex 13x 40x ADx
9Fx 09x 7Ax C8x
A0x A0x ACx D2x
A1x 07x B8x D1x
A2x D2x D0x 0Cx
A3x F1x CEx 64x
A4x B3x 4Cx 6Cx
A5x D1x 50x B8x

v ω1 ω2 ω3
A6x 16x 48x 62x
A7x 24x 21x EBx
A8x 83x 31x C8x
A9x 92x 15x 3Dx
AAx 4Ax 55x BCx
ABx 31x 38x C8x
ACx 70x A0x DCx
ADx 0Ax 11x 94x
AEx 0Cx 02x 72x
AFx E5x A9x 93x
B0x EEx E3x 29x
B1x 76x 3Ax B3x
B2x 5Cx 6Bx A8x
B3x A4x B1x 92x
B4x 96x 12x 63x
B5x 82x 84x 65x
B6x 74x 19x 48x
B7x 67x 4Ax 91x
B8x 59x F8x FCx
B9x 39x 3Ex D6x
BAx 6Cx 20x 89x
BBx C3x C0x 9Cx
BCx 79x 64x AAx
BDx BFx 81x D1x
BEx CCx 49x 52x
BFx BDx A1x E0x
C0x F0x 4Bx 7Ax
C1x 6Bx 34x F4x
C2x 30x 27x 7Dx
C3x BBx 31x 38x
C4x 1Dx D3x F1x
C5x 28x 23x 99x
C6x FEx D8x CBx
C7x 6Ax 80x B0x
C8x 37x ABx 9Fx
C9x 0Fx 19x 51x
CAx 17x 5Ax EAx
CBx D7x 0Ax 11x
CCx BEx 8Bx 40x
CDx 29x 2Cx 24x
CEx DBx C4x 78x
CFx 27x 5Ax 80x
D0x 0Ex 70x A2x
D1x A5x A1x 18x
D2x A2x A0x 70x

v ω1 ω2 ω3
D3x 2Dx 91x E9x
D4x 06x 63x 90x
D5x 63x 71x 90x
D6x E0x 41x 59x
D7x CBx EDx 98x
D8x DDx 1Bx 52x
D9x 48x 6Dx 2Ax
DAx 2Cx 08x EBx
DBx CEx 22x 5Bx
DCx 72x 7Cx ACx
DDx D8x 13x 40x
DEx 7Ex 02x A2x
DFx 99x 92x A4x
E0x D6x E8x 69x
E1x 60x 4Ex 9Bx
E2x 51x 16x 62x
E3x FDx B0x 6Ax
E4x 6Ex 39x 50x
E5x AFx BAx 23x
E6x 7Dx 6Ax 80x
E7x 4Ex 01x FBx
E8x 1Cx 59x E0x
E9x 5Bx 79x 88x
EAx 0Dx 21x CAx
EBx 97x 30x DAx
ECx 91x 4Ax C4x
EDx 58x 49x D7x
EEx B0x 97x 30x
EFx FCx F8x B9x
F0x C0x F7x 9Cx
F1x A3x 2Dx C4x
F2x 5Ex 19x 2Ax
F3x FBx 01x D5x
F4x 38x B2x C1x
F5x 2Fx 60x 9Bx
F6x 22x 88x 95x
F7x F9x F0x 8Ax
F8x 81x B8x 6Ex
F9x F7x 03x ABx
FAx 71x 14x 82x
FBx F3x E1x 14x
FCx EFx E8x B8x
FDx E3x 05x 29x
FEx C6x 0Ax 52x
FFx 8Cx 99x 28x
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E Experiment details
This appendix discusses the three experiments in detail and presents the results of each.

E.1 Experiment 1
The first experiment verifies the conditional approximation (r, u)|X used for the first round.
We present the linear trail part (r, u) of this approximation in Figure 7. Note that this trail
is formed as the concatenation of the trails presented in figures 5 and 4. The conditioning
function X is identical to the one found in Equation 10.

93x 80x A9x AAx

A9x 9Cx 58x A9x

3Cx A9x C1x D9x

80x AAx 3Cx C1x

AES1
k7→

39x

34x

2Dx

2Dx

Figure 7: Linear trail (u, v) for one-round AES with 16 active s-boxes.

For this experiment, it was decided to compute an approximation of the correlation of
(r, u) with AES1

k for sixteen of the 232 data classes induced by X: X(k0), the class expected
to achieve a 2−16 conditional correlation, and fifteen arbitrary classes, each expected to
achieve a correlation of 0. Leveraging Corollary 1, we find that sampling

N =
(
Φ−1(PS) + Φ−1(1 − 2−a−1)

)2 · C−2

=
(
Φ−1(0.95) + Φ−1(1 − 2−a−1)

)2 · (2−16)−2

= 12.31 · 232 ≈ 235.62

uniformly random sampled plaintext-ciphertext pairs per class, should allow X(k0) to
achieve the greatest correlation magnitude of all sixteen classes with a probability of 0.95
if its correlation is indeed 2−16 and 0 for the other, arbitrarily chosen classes. Thus, we

1. sample 235.62 data for each class,
2. use this data to approximate the correlation of (u, v) with AES1

k for each class, and
3. verify that the correlation corresponding with the correct data class has the greatest

magnitude of the sixteen classes.

The experiment was run sixteen times. The randomly generated encryption keys k as
well as the IDs of the classes X(k0) for each run are presented in Table 12. An overview of
the observed correlation approximations for each class are found in Tables 13–16.

E.2 Experiment 2
The second experiment verifies the conditional approximation (r, v)|X used for the first
two rounds. We present the linear trail part (r, v) of this approximation in Figure 8. Note
that this trail is formed as an extension of partial the concatenation of the trails presented
in figures 5, and 4, and is expected to achieve a correlation of 2−14 on the substantial class.
The conditioning function X is a modified version of the one found in Equation 10, and is
presented in Equation 17.



Tomer Ashur and Erik Takke 33

93x 80x

9Cx 58x

C1x D9x

80x C1x

AES2
k7→

C1x

40x

C1x

41x

Figure 8: Linear trail (r, v) for two-round AES with 10 active s-boxes.

X : F128
2 → F16

2 : x 7→
(E5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00⊤

x x,

00 00 00 7D 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 7D 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 C0 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 94 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 7A 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 9D 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7A⊤
x x,

3A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 EA 00 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 EA 00 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 6B 00 00 00 00 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 49 00 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 F9 00 00 00 00 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 F2 00⊤
x x,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 F9⊤
x x)

(17)

For this experiment, it was decided to compute an approximation of the correlation of
(r, v) with AES2

k for sixteen of the 232 data classes induced by X: X(k0): the substantial class
and fifteen arbitrary classes expected to achieve a correlation of 0. Leveraging Corollary 1,
we find that sampling

N =
(
Φ−1(PS) + Φ−1(1 − 2−a−1)

)2 · C−2

=
(
Φ−1(0.95) + Φ−1(1 − 2−a−1)

)2 · (2−14)−2

= 12.31 · 228 ≈ 231.62

uniformly random sampled plaintext-ciphertext pairs per class, should allow the sub-
stantial class to achieve the greatest correlation magnitude of all sixteen classes with a
probability of 0.95 if its correlation is indeed 2−14 and 0 for the other, arbitrarily chosen
classes.

The experiment was run sixteen times. The randomly generated encryption keys k as
well as the IDs of the classes X(k0) for each run are presented in Table 17. An overview of
the observed correlation approximations for each class are found in tables 18 and 19.



34 A New Linear Distinguisher for Four-Round AES

Table 12: Settings Experiment 1
run key k substantial class X(k0)
1 88 0E E0 4B BF 21 F4 33 13 A3 8D FE 49 59 3B FBx D9FB9362x
2 8B 7A EB E0 59 3F 1B C7 69 05 9B 19 A6 98 56 2Fx 22E950DBx
3 D6 B6 42 AF 31 1F C6 E3 0A 11 6A 19 89 02 B3 CEx C9C74D71x
4 34 73 51 C4 88 FD 52 31 3E A4 BF 25 81 58 70 89x 691F40BBx
5 5C 75 EF 33 F4 83 1C 39 2D 50 8A 7D 23 E7 61 2Ax 36C749DCx
6 6E 24 F2 80 74 B3 DD B1 AC 1C 69 AE 87 CF 3A E4x A7ACF5DBx
7 79 F4 39 C6 0E E0 A9 25 A7 2A 55 6F C1 25 63 99x A096F3E6x
8 FB 1B 90 FE F3 6A FE E9 7A 14 B0 BA EF EB 51 D3x 560533ACx
9 3C A5 5A 91 15 CF E2 17 36 9C 77 61 F1 94 CF 89x 0841D2D3x
10 40 B7 FE 84 B3 C2 E6 CB 17 5A 59 DF 6A 9B 62 13x B9E85A1Ax
11 5C E2 A9 5B 40 85 49 F5 49 7D C5 A9 23 17 95 9Bx 2EB55D68x
12 F3 A3 74 6B 7C 95 34 2B 08 A4 CB 07 85 78 CA 43x 4F3CEE16x
13 68 D8 84 4F EB 86 F0 85 28 A0 06 17 F5 11 21 B6x 05731E8Bx
14 F8 29 2B 7E A4 06 98 88 B3 2A 02 98 DD B1 88 29x D124C4C7x
15 88 C0 B6 C1 34 7B 85 C0 6A E3 B6 3E A2 B4 0C 35x CDE8ACA5x
16 5D FA 71 65 47 00 57 D6 8E EC 35 C1 7D 62 73 69x CA1D403Cx

Table 13: Results Experiment 1, run 1-3
Run 1

Class Cond. corr.
D9FB9362x 2−15.4999

D818A478x 2−19.1573

E605FB82x −2−17.9155

B2674FB6x −2−17.6730

8A3B6341x 2−17.5305

01AAA9D9x 2−19.5722

3E3CCD29x −2−17.7783

4C4E58B7x −2−22.4873

7DCDAD8Bx 2−19.7293

748D48A9x 2−17.3644

BE90D164x −2−17.6962

4527B12Dx −2−17.5678

987ABE46x −2−18.0745

83945F76x 2−17.3502

E9B0845Fx 2−18.0487

A087006Ex −2−18.1554

Run 2
Class Cond. corr.

22E950DBx 2−16.1102

CE3417E4x 2−18.1270

B8CB982Ex 2−19.8481

04857711x −2−18.5216

0E9736CEx 2−17.9451

30C1E6DAx 2−17.7053

E715387Cx −2−17.6672

F854C41Dx −2−17.9095

03FA8B0Ex 2−17.8999

CFF74618x 2−21.4722

146146C7x −2−18.5509

CA06AB96x −2−22.9214

A6846144x 2−18.6522

394B5D83x −2−16.5908

1CC311A6x −2−18.5728

F7AA8286x −2−20.4581

Run 3
Class Cond. corr.

C9C74D71x −2−15.9625

5B05CFDCx −2−19.3660

D4F596BCx 2−17.2500

8E3CEED7x −2−18.0353

2527A236x 2−21.0380

BEAA017Cx 2−19.7306

FE483590x 2−17.4687

8EE41D6Dx −2−18.2623

462E26EEx −2−19.2456

1C0B28EBx 2−17.9268

DBAFA19Bx 2−17.4078

845A6D19x −2−18.1232

90E62B87x −2−16.8759

A77796EBx −2−16.9372

A62113EFx 2−17.8797

12BC7FF7x −2−18.6994
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Table 14: Results Experiment 1, run 4-12
Run 4

Class Cond. corr.
691F40BBx −2−15.7756

16E3FDBEx 2−23.7022

B3897963x 2−18.7780

93CFEF88x 2−17.3957

A7B89A0Cx −2−16.8270

FB5C4923x −2−17.1264

4B257145x 2−18.7155

59C4690Fx −2−18.0092

E75E61C7x 2−18.1044

7108E4AFx 2−19.0402

508A71FFx −2−19.2861

F8ED0A0Bx 2−18.7207

F24337B1x −2−18.8501

0C34BDF3x −2−17.4189

398233B0x 2−17.6361

83FB82EDx 2−18.6361

Run 5
Class Cond. corr.

36C749DCx 2−16.2046

FBCFEAC8x 2−18.3684

61CA4EFAx 2−19.1917

66F33BE1x 2−19.5200

E4C79FDFx 2−18.5953

51B30397x −2−20.0508

6E6105C0x 2−17.9348

CC14343Dx −2−18.8991

89A6C359x 2−19.5868

4921655Dx 2−17.4314

B5DAA46Bx 2−17.2169

411ED3B3x 2−21.0006

BBE96696x −2−18.1351

32A5DEAFx −2−16.8141

FFD6F2AEx 2−17.2869

E97815C2x −2−19.7837

Run 6
Class Cond. corr.

A7ACF5DBx −2−15.3295

3723281Bx 2−19.9286

A7791C20x 2−17.6121

57D0D38Ax −2−20.2062

2E8AA8D0x −2−17.9525

AF73613Dx −2−18.0425

2127A29Cx 2−18.3473

B999CDA8x 2−18.4215

9B722706x 2−17.0399

ABB3564Fx 2−17.9552

0DC239A7x 2−20.5299

94E844C3x −2−20.1235

F6148C2Ax −2−18.3755

5EB3E9BBx 2−18.3688

396A0040x 2−23.1944

24EC1390x 2−20.9910

Run 7
Class Cond. corr.

A096F3E6x −2−16.0597

D0A9D240x −2−18.3818

46373DFEx 2−18.1380

15895B21x −2−19.3119

5A403D62x −2−18.5704

2E66E414x 2−21.1715

04DD66C5x 2−21.0084

2BB84DFDx 2−19.7062

BAE4A96Ex −2−17.4475

5507078Fx 2−18.9505

B299AD82x 2−17.7568

6B639FC2x −2−18.9349

1E04D922x −2−18.7995

2CB164AEx −2−19.9789

782AC4B9x 2−19.8064

B2C73118x −2−17.9784

Run 8
Class Cond. corr.

560533ACx −2−15.9254

F8E3E4FBx −2−19.8774

DC190EF0x −2−17.8428

A5155394x 2−16.1876

01061496x 2−16.8843

3FB87759x −2−17.1370

E08EBDF0x 2−19.8748

2DDF9477x 2−18.2082

FDC770D4x 2−21.4741

0B38CBE3x −2−18.8104

C703D7F9x 2−20.0152

01B81B61x 2−21.1555

C3A5180Cx 2−19.2615

AB74FC57x 2−17.1102

0969D431x 2−20.6310

702CB326x −2−19.3912

Run 9
Class Cond. corr.

0841D2D3x −2−15.5616

2A6A80BBx −2−19.0762

72A6FCD6x 2−20.3500

CAB51EF7x 2−17.2106

D1B4AE5Dx 2−17.8585

21284C10x 2−18.0342

D9BD6A99x 2−19.2286

131D8ABDx 2−18.4165

040D421Ax −2−17.3171

1F7590A3x 2−17.0995

0BC17C43x −2−17.0447

94A8D2D6x 2−18.6436

3F9CA5E4x 2−17.6383

A64226DEx 2−18.3055

814D89A2x −2−19.4767

40C22B2Ax 2−21.6249

Run 10
Class Cond. corr.

B9E85A1Ax 2−17.0648

DD399B66x 2−18.2499

C4712160x 2−17.6473

0E845DE9x −2−17.8888

F5697A15x 2−16.6692

20AE2D1Ex −2−18.6498

4E1A9439x −2−20.4738

A692CF68x −2−25.7297

2D6E74B9x −2−19.1425

4BA432CEx 2−24.1769

908FB0E1x 2−16.1571

87D2C47Dx −2−17.7923

45BBB748x 2−17.2851

EF778233x −2−17.9270

AB448DE7x 2−19.0715

B35C0B5Ex −2−18.4746

Run 11
Class Cond. corr.

2EB55D68x 2−15.8385

8DA98656x 2−21.5538

7F5C9161x 2−20.5999

E2E3F48Bx −2−19.3037

3D9CD58Ax 2−21.4999

E3232ED1x −2−17.1821

D215324Fx 2−21.3974

68CB1CBBx 2−21.0152

6E3AF545x 2−17.3588

E06121A4x −2−19.7149

F5DA598Ax −2−17.7904

9E0718E9x 2−23.8105

FE5FB280x −2−18.7501

8650F29Dx −2−19.6677

52EEFA5Dx 2−18.6606

DDBBBCC6x 2−19.1039

Run 12
Class Cond. corr.

4F3CEE16x 2−15.8386

6118C102x 2−20.1948

5EDE09FAx 2−16.4085

C6D23AF3x −2−19.3290

917BDE76x 2−19.2828

DB9D1706x −2−16.6047

B52017DFx −2−17.9765

E932226Cx −2−17.3126

798D01C6x 2−17.5631

8C374DF8x 2−17.3292

CC6C8D7Fx −2−17.0031

431CAB81x 2−17.5546

5D4A703Fx −2−18.0655

C0C4F6E0x −2−18.2996

FF5CC8D0x 2−19.7086

8AEE31A7x 2−21.3384
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Table 15: Results Experiment 1, run 13-14
Run 13

Class Cond. corr.
05731E8Bx −2−16.2620

5DB0E778x −2−17.5226

1978A847x 2−16.4214

0714A162x 2−17.4079

E427DDA1x −2−19.0854

F1043FF0x 2−18.4435

2063BF16x 2−18.2604

72FEEE44x 2−16.8421

84FB3EB8x 2−18.1412

D460EBE6x 2−19.2130

8B520DDCx −2−18.5055

62AD0B93x 2−17.6416

49724508x 2−18.2654

961235FBx 2−18.9537

1B2DF449x −2−16.7523

9439837Bx 2−17.2473

Run 14
Class Cond. corr.

D124C4C7x 2−15.9330

1EAB8149x 2−18.2779

D096E50Ax −2−16.8167

F63D83A0x 2−16.7964

58DD999Fx −2−19.6575

687BD459x 2−17.2279

7ED57159x −2−18.1704

3E16ED13x −2−19.2129

AB7C3CDFx 2−20.4807

5B44777Fx 2−17.3261

EB21F368x 2−17.1960

8D37614Ex −2−18.7395

D8D92EA8x 2−18.2482

53E8CFA4x 2−21.3423

4BFDC6C2x 2−19.8957

F0873852x −2−17.5521

Table 16: Results Experiment 1, run 15-16
Run 15

Class Cond. corr.
CDE8ACA5x −2−16.5740

CAED06DEx −2−17.8129

54B90F29x 2−18.5584

4CA9E3D1x 2−18.3883

6CDE2F4Ax 2−19.2274

EA60B0CCx −2−19.0488

71848C19x 2−19.7642

4B2F81CDx −2−18.2663

F202E2B0x 2−17.9375

A799466Fx −2−17.3837

2EF92DBDx −2−20.7477

177B5383x 2−16.9851

3ED126D7x 2−16.7947

6F7C522Cx 2−17.9543

3B690371x 2−19.4156

398B8EAEx −2−17.8491

Run 16
Class Cond. corr.

CA1D403Cx −2−15.6369

269AEC23x 2−17.6759

18A8ABD9x 2−20.1006

F6624A07x 2−17.8805

39526EEBx −2−18.4606

86EC1AFEx 2−16.7075

E7D25F0Ax −2−17.4129

79C1D69Bx 2−18.2451

794E2396x −2−18.2178

08966969x 2−17.8062

D6D50228x −2−19.1594

4FD5EEF1x 2−17.6230

F2D8D95Ax 2−17.8633

8DE104ECx −2−20.9480

AE59DF9Bx 2−16.6174

9CDF42F0x −2−18.5145
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Table 17: Settings Experiment 2
run key k substantial class X(k0)
1 D2 E7 BD 7E 06 4A 6F 15 AE 5D 39 B9 56 FA 50 C1x 7739x
2 AB 78 62 7C 36 16 BB 8B F3 7D 55 BB 00 D0 F7 9Ax E1DFx
3 CA 43 A2 7A B5 4B 67 77 D5 65 E3 4C 98 FD 0A 01x 1E03x
4 5C FF CC D5 A7 C6 B5 DF 3D 08 74 66 4B B5 5F 05x 242Fx
5 87 25 84 F0 51 5B BD 45 82 75 B1 F7 37 98 40 31x F0E3x
6 FD AC D1 33 A2 EB 0D C5 07 48 00 33 51 C2 61 0Ex E2B1x
7 E2 79 A6 01 48 F7 74 F9 78 8C E9 02 D5 A6 25 DAx C40Ex
8 62 AC EC 54 68 92 18 B4 F7 DD 92 8E D1 66 D4 2Dx 7A7Bx
9 06 93 63 2A 8A 34 1A E9 E9 00 24 3B 4C 77 CD BEx A4F4x
10 10 49 22 10 34 A5 68 63 2E A5 BE 17 96 90 C5 76x 72A9x
11 40 C3 EE A1 05 55 F5 C5 1C 78 C8 69 35 32 61 BBx 9A05x
12 AA 95 B1 8D AF 97 00 36 84 2B BF 8D 3F F4 6C D2x 5185x
13 82 3B 85 7F 4C 12 9A 8A E1 12 8D 1C 2C C9 1D 45x AD96x
14 81 05 9B F3 F8 7F 8F 8C 87 D3 4E 97 0B 29 DB 97x 1411x
15 06 0A 9E 84 FF 39 1B EF 5B 4E 05 FC 32 8F EE A4x CBF4x
16 32 91 C5 32 60 EF D4 B3 9C FA DD A7 1C 4D 85 04x 8696x

Table 18: Results Experiment 2, run 1-4
Run 1

Class Cond. corr.
7739x 2−14.7755

0BA7x −2−15.1016

C56Dx −2−15.9418

E0A4x −2−17.5555

B205x −2−16.7841

DBCFx −2−14.9386

94A2x −2−15.9209

E406x 2−16.3749

C716x −2−15.4192

3D7Cx −2−16.1821

DFC8x −2−20.0540

CE69x −2−15.0659

E317x −2−19.4358

ABB9x 2−18.2686

EA58x −2−16.5159

68A3x 2−18.4225

Run 2
Class Cond. corr.
E1DFx 2−14.4051

DECDx 2−14.7583

8BD2x 2−15.9473

8F18x −2−16.6231

7CDFx −2−15.9235

911Bx 2−18.5230

F4DBx −2−15.4753

FE17x −2−16.0871

3B8Ax −2−19.1257

6731x 2−17.3923

AEF9x −2−16.2686

264Fx −2−17.1391

D568x 2−16.3593

1C8Cx 2−16.2737

57A9x 2−16.0766

6BF4x 2−16.5487

Run 3
Class Cond. corr.
1E03x −2−14.2988

BA93x 2−15.4010

95E2x −2−15.5154

47F4x −2−16.1295

5722x 2−17.3693

322Dx 2−15.8003

EF5Bx −2−17.0102

D8ADx 2−18.5977

8555x −2−18.7710

9EFBx −2−20.1980

E725x 2−15.8796

A5DBx −2−15.4151

6F63x −2−15.6374

C883x −2−16.7736

BC3Cx 2−16.6672

8F28x 2−18.9721

Run 4
Class Cond. corr.
242Fx 2−14.3707

388Ex 2−14.6176

C034x 2−16.1970

632Ex −2−17.6330

E279x 2−18.7117

B28Cx 2−15.4069

26C4x −2−18.8490

CB00x −2−16.4241

2CCFx −2−16.1990

86F8x 2−14.8792

4E16x −2−19.1657

F68Ex −2−16.1821

DC87x −2−15.2997

4D0Bx 2−14.3464

F52Fx −2−16.4191

CA7Dx −2−17.5357
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Table 19: Results Experiment 2, run 5-16
Run 5

Class Cond. corr.
F0E3x 2−14.0013

DB7Ex −2−15.7332

DB49x −2−16.4554

BCE7x −2−17.4877

B219x 2−20.7283

35ECx 2−14.6546

3A19x 2−16.6525

ECC4x −2−15.5898

C1E4x 2−15.0888

2043x −2−16.3024

F1C9x 2−16.2757

6CBCx −2−16.2378

2815x −2−16.2954

475Fx −2−16.1167

697Ax −2−15.2881

988Dx −2−16.9645

Run 6
Class Cond. corr.
E2B1x 2−14.3716

8CA5x 2−20.0693

5722x 2−15.0597

B362x 2−14.9223

A6FFx 2−16.5127

17A2x −2−15.6205

80E6x 2−18.5839

0C8Ex 2−14.6881

9689x −2−16.8477

87E0x −2−15.1826

A6C3x 2−15.4206

3385x 2−18.8934

CD7Fx −2−18.9379

6E2Ex 2−16.8961

E2DAx 2−17.4384

530Cx 2−15.6815

Run 7
Class Cond. corr.
C40Ex 2−14.4449

E7A6x 2−16.8690

C134x −2−15.3590

935Dx 2−15.4809

7478x −2−16.4987

190Bx −2−15.0138

7DC3x 2−16.3652

4B0Bx 2−16.8354

B242x −2−16.6587

1AA0x 2−15.8424

214Bx −2−18.2526

4317x −2−15.8732

1D46x −2−16.8654

2CFCx −2−16.9402

24F4x 2−15.9180

BC3Bx 2−15.1942

Run 8
Class Cond. corr.
7A7Bx −2−14.8248

42BEx −2−17.1346

A34Ax 2−18.5138

C238x −2−15.0471

EDE1x −2−21.9871

F6B0x 2−16.1473

0BE1x −2−16.8602

1F33x 2−16.0671

6EE5x 2−17.2484

A1F7x 2−16.3617

0B3Ex 2−15.7595

A420x −2−15.5446

EA4Bx 2−14.9606

3880x −2−15.8658

16B1x 2−19.0984

FC8Ax −2−16.5374

Run 9
Class Cond. corr.
A4F4x −2−14.4412

19A8x −2−17.2236

3B6Dx −2−14.5100

AC88x −2−16.3749

37D2x −2−17.7640

1150x 2−15.6985

5F5Fx 2−16.0560

BBCBx −2−15.0803

BC5Cx −2−15.2454

B564x 2−14.9222

1293x −2−16.1343

21D1x −2−18.2133

5D60x −2−16.2374

F344x −2−16.5596

9CF2x −2−15.5289

BD63x 2−14.2884

Run 10
Class Cond. corr.
72A9x −2−15.0900

6FECx 2−18.3103

C936x 2−16.7246

3598x −2−15.5514

CF43x −2−16.0569

868Bx −2−15.8424

0FA7x −2−14.9989

2F07x −2−22.2192

45B6x −2−16.5485

243Ax 2−15.2239

DB15x −2−15.8345

51F4x −2−14.8893

1358x −2−15.6970

2315x 2−15.9978

8A7Fx −2−17.4412

44B1x −2−15.8216

Run 11
Class Cond. corr.
9A05x 2−13.9470

BAFEx −2−15.2182

0203x −2−15.5227

3ED5x 2−15.2702

CA16x −2−18.3100

8524x 2−16.1654

68ABx 2−18.6388

435Fx −2−18.9816

4A7Fx 2−17.6849

47BFx 2−14.7445

3951x 2−17.2349

371Ax −2−18.2964

C3B9x 2−17.2509

DDE4x −2−18.0504

6E09x 2−18.7562

4ABDx 2−18.1714

Run 12
Class Cond. corr.
5185x 2−13.9585

F7ECx −2−15.2780

B9AEx 2−18.4358

9AAAx 2−17.0183

C141x 2−14.5610

7C9Dx −2−15.5436

2161x 2−18.0580

48E9x 2−15.6957

404Bx −2−15.6813

42AFx 2−15.5912

BE9Dx 2−17.0223

174Ax −2−15.6898

E7C5x −2−18.7995

2A2Cx −2−15.9797

9C3Dx −2−15.5690

2FC7x −2−16.4663

Run 13
Class Cond. corr.
AD96x 2−14.1913

FF04x −2−18.6912

908Dx −2−15.3723

BD3Cx 2−19.0892

2684x −2−14.8869

4622x −2−17.4602

B95Ex −2−18.4386

3409x −2−17.0849

A1E8x −2−16.8910

B4ABx −2−17.1547

C844x 2−15.8789

417Ax 2−18.2304

152Bx 2−16.5412

F68Fx −2−16.4105

D00Fx −2−18.5125

49A0x −2−16.0733

Run 14
Class Cond. corr.
1411x −2−13.4589

775Cx 2−15.7345

01A3x −2−17.8515

65E1x 2−15.1726

FB61x 2−14.9914

C750x −2−17.0675

4714x 2−14.8149

CA10x −2−19.6321

C2B3x −2−17.9569

E9AEx 2−16.3241

5B12x −2−18.0958

BB3Bx −2−14.4584

04A8x 2−18.2655

684Fx −2−16.3141

9648x 2−17.7090

F1D2x −2−16.4496

Run 15
Class Cond. corr.
CBF4x 2−13.8074

7DB0x −2−17.2316

3B6Ax 2−16.4807

7B79x 2−16.0247

9D17x 2−19.4792

3CB1x −2−16.5038

8570x −2−15.8811

FC18x −2−15.0194

C44Bx −2−16.7061

CE37x 2−16.1367

EADEx −2−16.8083

AFC3x −2−17.6059

CC21x −2−14.7704

3EA8x −2−17.2445

1A4Dx −2−22.6600

C6CDx −2−16.1096

Run 16
Class Cond. corr.
8696x 2−13.7917

F63Fx −2−15.7935

63E2x 2−14.6600

404Fx −2−16.3921

62E4x 2−15.5395

97D7x 2−17.1093

00C0x −2−17.1480

A35Ax −2−18.0227

61E0x −2−20.2835

1D38x −2−16.7416

7C57x −2−15.6409

1A3Dx 2−21.1668

3548x 2−16.1807

8A66x −2−19.0099

F063x −2−17.0442

BB46x −2−16.0631
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