
REDUCTION FROM SPARSE LPN TO LPN, DUAL ATTACK 3.0

KÉVIN CARRIER1, THOMAS DEBRIS–ALAZARD2,3, CHARLES MEYER-HILFIGER4,
AND JEAN-PIERRE TILLICH4

Abstract. The security of code-based cryptography relies primarily on the hardness of decod-
ing generic linear codes. Until very recently, all the best algorithms for solving the decoding
problem were information set decoders (ISD). However, recently a new algorithm called RLPN-
decoding which relies on a completely different approach was introduced and it has been shown
that RLPN outperforms significantly ISD decoders for a rather large range of rates. This RLPN
decoder relies on two ingredients, first reducing decoding to some underlying LPN problem, and
then computing efficiently many parity-checks of small weight when restricted to some positions.
We revisit RLPN-decoding by noticing that, in this algorithm, decoding is in fact reduced to a
sparse-LPN problem, namely with a secret whose Hamming weight is small. Our new approach
consists this time in making an additional reduction from sparse-LPN to plain-LPN with a cod-
ing approach inspired by coded-BKW. It outperforms significantly the ISD’s and RLPN for code
rates smaller than 0.42. This algorithm can be viewed as the code-based cryptography cousin
of recent dual attacks in lattice-based cryptography. We depart completely from the traditional
analysis of this kind of algorithm which uses a certain number of independence assumptions that
have been strongly questioned recently in the latter domain. We give instead a formula for the
LPN noise relying on duality which allows to analyze the behavior of the algorithm by relying
only on the analysis of a certain weight distribution. By using only a minimal assumption whose
validity has been verified experimentally we are able to justify the correctness of our algorithm.
This key tool, namely the duality formula, can be readily adapted to the lattice setting and is
shown to give a simple explanation for some phenomena observed on dual attacks in lattices
in [DP23b].

1. Introduction

1.1. Background.
Code-based Cryptography: Decoding and LPN Problems. Code-based cryptography relies
on the hardness of decoding generic linear codes or sometimes also on a closely related problem,
namely the LPN problem. The first one corresponds in the binary case to

Problem 1 (decoding a fixed error weight in a linear code). Let C be a binary linear code over
F2 of dimension k and length n, i.e. a subspace of Fn

2 of dimension k. We are given y ∈ Fn
2 , an

integer t and we want to find a codeword c ∈ C and an error vector e ∈ Fn
2 of Hamming weight

|e| = t for which y = c+ e.

Generally the linear code is specified by a generator matrix, namely a k × n binary matrix G
whose rows span the vector space C, in other words

C = {uG : u ∈ Fk
2}.

1 Laboratoire ETIS, UMR 8051, CY Cergy-Paris Université, ENSEA, CNRS
2 Project GRACE, Inria Saclay
3 Laboratoire LIX, École Polytechnique, Institut Polytechnique de Paris, 1 rue Honoré d’Estienne

d’Orves, 91120 Palaiseau Cedex
4 Project COSMIQ, Inria de Paris
E-mail addresses: kevin.carrier@ensea.fr, thomas.debris@inria.fr, charles.meyer-hilfiger@inria.fr,

jean-pierre.tillich@inria.fr.
The work of KC, TDA and JPT was funded by the French Agence Nationale de la Recherche through ANR

JCJC DECODE (ANR-22-CE39-0004-01) for KC, ANR JCJC COLA (ANR-21-CE39-0011) for TDA and ANR-22-
PETQ-0008 PQ-TLS for JPT. The work of CMH was funded by the French Agence de l’innovation de défense and
by Inria.

1

The second one is a version of this problem where the length n is basically unbounded; the code
is randomly chosen and the error model is slightly modified to take into account that the length
is not fixed.
Problem 2 (LPN problem). Let s be a secret chosen uniformly at random in Fk

2 . We have
unbounded access to an oracle such that each query provides a pair (a, b) where a is chosen
uniformly at random in Fk

2 and b is a bit obtained as
b = 〈s,a〉+ e

where e ∈ F2 is chosen at random and is equal to 1 with probability p. Quantity 〈s,a〉 stands for
the inner product

∑k
i=1 siai between s = (si)1⩽i⩽k and a = (ai)1⩽i⩽k. The aim is to output s

after querying a certain number of times the oracle.
Sometimes a variation of the LPN problem is considered, namely the sparse LPN problem where

the only difference is the way s is chosen, say uniformly at random among the words of length n and
Hamming weight t′ small, or the entries like i.i.d. Bernoulli random variables of parameter p′ small.

The Complexity of the Best Generic Decoding Algorithms and LPN-solvers. It is
of fundamental importance to study the complexity of these problems, the best state of the art
algorithms being those that are used to determine secure parameters of code-based cryptosystems.
The regime of parameters which is relevant for code-based cryptography depends on the type of
primitive, but a large range of parameters is relevant here. For some code-based cryptosystems, t is
sublinear in n, [McE78, AAB+21a, AAB+21b, BCL+19, AAB+21b], for some Stern like signatures
schemes [Ste93, Vér96, CVA10, AGS11, GPS22, FJR22] it is precisely decoding at the Gilbert-
Varshamov distance that is relevant. It is at this distance that the decoding problem is expected
to be the hardest. Recall that the Gilbert-Varshamov distance dGV(n, k) is given by dGV(n, k)

def
=

n h−1(1−R), where R
def
= k

n is the code rate, h is the binary entropy function h(x)
def
= −x log2 x−

(1 − x) log2(1 − x) and h−1(x) its inverse ranging over
(
0, 1

2

)
. Above this bound, the number of

solutions becomes exponential and this helps to devise more efficient decoders.
Concerning now the LPN problem, it has long been recognized that having an unbounded num-

ber of queries or codelength while having a fixed error probability p per bit as in LPN makes the
problem really simpler. The best algorithms for solving this problem, are BKW type algorithms
[BKW03, EKM17] and are of subexponential complexity 2O(k/ log k). However, this is not true
anymore if the number of queries is fixed and the error rate p is chosen such that the problem is
the hardest, namely when h(p) = 1−k/n. In this case, the best algorithms behave exponentially in
min(k, n−k) despite many efforts on this issue [Pra62, Ste88, Dum91, BLP11, MMT11, BJMM12,
MO15, BM17, BM18, CDMT22].

Reduction from Decoding to an LPN Problem. Note that until very recently, all the best
algorithms for solving the decoding problem or the LPN problem when it is the hardest have been
ISD algorithms. They all rely crucially on the Prange bet, namely that we have finally found
after many trials a subset of positions of size ≈ n − k which contains almost all the errors. This
was the situation since 1962 [Pra62]. There was at some point, just one exception [Dum86] which
relied instead on a collision technique and gave only a slight improvement in a very tiny rate range
R ∈ (0.98, 1), but it was soon found out how to incorporate this technique in ISD algorithms
[Ste88, Dum89] to improve them. However in 2022, a new algorithm called RLPN-decoding was
introduced in [CDMT22]. It relies on a completely different approach following an old idea called
“statistical decoding” due to Al Jabri [Jab01]. The new approach consists in reducing decoding
to LPN. For the first time in sixty years a strong competitor for ISD techniques was found: it
outperforms ISD techniques in the low rate regime, say R ∈ (0, 0.3) and the improvement is quite
significant in the range R ∈ (0, 0.2) say. To explain the idea, assume we are given an instance of
the decoding problem y = c + e, where c ∈ C and |e| = t. As in statistical decoding, decoding
relies on low weight parity-check equations, namely vectors h such that 〈h, c〉 = 0 for any c ∈ C
(in other words, such h’s belong to the dual code C⊥). However, in the new approach these parity-
check equations are required to be of low weight only on a subset N of positions. The rest of the

2

positions P correspond to the entries of e we aim to recover and is the secret in the LPN problem.
The point of the whole approach is that

〈y,h〉 = 〈e,h〉 =
∑
j∈P

hjej +
∑
j∈N

hjej = 〈eP ,hP〉︸ ︷︷ ︸
lin. comb.

+ 〈eN ,hN 〉︸ ︷︷ ︸
LPN noise

.

Here the notation eP means the restriction of e to the positions in P: eP = (ei)i∈P . Vector
eP is interpreted as the LPN secret s, i.e. s

def
= eP and hP as the linear combination vector a

while 〈eN ,hN 〉 is the LPN noise. Therefore, by computing (h, 〈y,h〉) we really have access to
the LPN sample

a︸︷︷︸
hP

,

=⟨y,h⟩︷ ︸︸ ︷
〈s,a〉︸ ︷︷ ︸
⟨eP ,hP⟩

+ e︸︷︷︸
⟨eN ,hN ⟩

.

The point of choosing low weight vectors h on N , is that it is readily verified that this translates
into the fact that the binary random variable 〈eN ,hN 〉 is biased, say P(〈eN ,hN 〉 = 1) = 1−ε

2
with a bias ε which gets bigger when the Hamming weight |hN | of h on N gets smaller.

Recovering eP is then performed by producing enough parity-check equations to have enough
information on eP (we need about N ≈ 1/ε2 parity-check equations) and amounts to solve the
LPN problem. This is done by the Fast Fourier Transform (FFT) and costs about s2s where
s

def
= |P|. We cannot afford more sophisticated techniques like the BKW algorithm which would

give a sub-exponential algorithm, because we are very far away from the constant error probability
regime. Here the bias ε is exponentially small in the codelength, so we are really in the extreme
noise regime, where on top of that we have hardly more LPN samples than the number we need
to recover the secret. In other words, we are in a situation where we can only use very basic
algorithms, and the FFT which saves a factor N when compared to plain exhaustive search over
all possible LPN secrets comes in handy here. The low weight parity-check equations are found by
using collision techniques which are borrowed from advanced ISD techniques [Dum89, BJMM12].

The improvement upon statistical decoding given by RLPN is really due to this splitting in two
parts. Recall that plain statistical decoding uses parity-checks which are low weight on the whole
support. In both cases, 1

ε2 of such parity-checks are needed, however in RLPN decoding the bias ε
is way bigger because the weight we have on N is way smaller for our parity-checks.

Dual Attacks, Some Negative Results and a New Analysis. Statistical decoding [Jab01] or
its variant, namely RLPN decoding, both fall into the category of dual attacks meaning a decoding
algorithm that computes in a first step low weight codewords in the dual code and then computes
the inner products of the received word y with those parity-checks to infer some information about
the error e. These methods can be viewed as the coding theoretic analogue of the dual attacks
in lattice-based cryptography [MR09]. Similarly to what happened in code-based cryptography,
they were shown after a sequence of improvements [Alb17, EJK20, GJ21, MAT22, CST22] to be
able of being competitive with primal attacks, and the crucial improvement came from similar
techniques, namely by a splitting strategy. Like in RLPN decoding, the point is that this splitting
in two parts really allows to find dual vectors that are of smaller weight/norm on the restricted
subset. Note that this idea was already put forward for statistical decoding (but not exploited
there) in [DT17a, §8, p.33] or [DT17b, p. 21].

However, the analysis in both settings relies on various independence assumptions, see for
instance [MAT22, Ass. 4.4, Ass. 5.8] for dual attacks in lattices or [CDMT22, Ass. 3.7] for dual
attacks for codes. In lattice-based cryptography, the dual attacks were strongly questioned recently
in [DP23b] by showing that these independence assumptions made for analyzing dual attacks were
in contradiction with some theorems in certain regimes or with well-tested heuristics in some other
regimes. Note that it was already noticed in [CDMT22, §3.4] that the i.i.d. Bernoulli model implied
by the LPN model for the 〈eN ,hN 〉’s is not always accurate, but it was conjectured there that the
discrepancy between this ideal model and experiments does not impact the asymptotic analysis
of the decoding based on this model. This was proved to be wrong in [MT23] where it was shown
that the number of candidates passing the validity test of the RLPN decoder given in [CDMT22]

3

is actually exponentially large for the parameters considered there, whereas there should be only
one candidate passing the test if the algorithm was correct. However, this paper gave at the same
time an approach for analyzing rigorously dual attacks in coding theory by bringing in a duality
equation [MT23, Prop. 1.3] which relates the fundamental quantity manipulated by the decoder
and the weight distribution of translates of a shortened version of the code to be decoded. By
studying this weight distribution together with an assumption whose validity has been verified
experimentally, a slightly modified RLPN decoder was introduced there and shown to attain the
complexity exponent claimed in [CDMT22].

1.2. Our Contribution.
(i) improving RLPN-decoding by a reduction from sparse LPN to plain LPN,
(ii) a rigorous analysis of the decoding algorithm based on a simple assumption verified ex-

perimentally.
Reduction from Sparse LPN to Plain LPN. Notice that the LPN problem we have to solve is
actually a sparse LPN problem: eP is not uniformly distributed among Fs

2 since it is of low weight.
Indeed, it is the restriction to P of a vector which is itself of low weight. Unfortunately, the FFT
algorithm used for recovering eP is unable to exploit this fact. In a sense, what we need here to
improve RLPN decoding is an algorithm for solving sparse secret LPN in the very noisy regime
(but with an exponential number of samples). This can be done by using a coded-BKW technique
that was introduced in [GJL14]. There it was not used as a technique for solving sparse LPN but
as a technique to improve the reduction steps of the BKW algorithm [BKW03] that put together
pairs of vectors a and a′ which are equal on a block of positions and add the corresponding LPN
samples to get an LPN sample (a+ a′, 〈a+ a′, s〉+ e+ e′) which is more noisy but with vectors a
which become sparser and sparser as the number of blocks increases. Asking exact collisions on
the block needs a lot of LPN samples and this can be relaxed by the coded-BKW technique. It
basically uses a code of the same length as the block of positions we are considering during the
BKW step and asks only an approximate collision on the block meaning that the closest codewords
c and c′ to a and a′ restricted to this block should be the same.

To explain what we have in mind here, consider an LPN sample which is of the following
form (hP , 〈eP ,hP〉 + e). Choose now a linear code Caux of length s and dimension kaux (i.e. a
subspace of Fs

2) which we know how to decode for any possible entry, meaning here that we can
produce for any entry y ∈ Fs

2 a codeword caux ∈ Caux which is close enough to y. Codes with
this property are known under the name of lossy source codes in information theory. In [GJL14]
it was proposed to use for instance a product of small codes. There are almost optimal codes
(producing for a given dimension kaux almost optimal near codewords) using a low complexity
decoder. Basically, the best that can be done is to produce codewords at distance dGV(s, kaux). For
instance polar codes are asymptotically optimal [KU10], they attain asymptotically this Gilbert-
Varshamov distance by using only a decoding algorithm of quasi-linear complexity O(s log s).

Consider now a parity-check h of small weight w on N that we use for RLPN-decoding and
decode hP with the lossy source code Caux: hP = caux + eaux where caux ∈ Caux and |eaux| is
small. Consider a generator matrix Gaux of Caux, namely a kaux × s matrix such that Caux =

{uGaux : u ∈ Fkaux
2 } (i.e. the rows of Gaux generate Caux). Notice now that

〈eP ,hP〉 = 〈eP , caux + eaux〉 = 〈eP , caux〉+ 〈eP , eaux〉

= 〈eP ,uGaux〉+ 〈eP , eaux〉 (where u ∈ Fkaux
2)

= 〈ePG⊺
aux,u〉+ 〈eP , eaux〉︸ ︷︷ ︸

biased

.

If we plug this expression in the original LPN sample (hP , 〈h,y〉 = 〈eP ,hP〉+ 〈eN ,hN 〉) we ob-
tain

〈h,y〉 = 〈ePG⊺
aux,u〉+ 〈e, eaux〉︸ ︷︷ ︸

noise 1

+ 〈eN ,hN 〉︸ ︷︷ ︸
noise 2

.

4

In other words, we have a new LPN problem where

a︸︷︷︸
u

,

⟨y,h⟩︷ ︸︸ ︷
〈s,a〉︸ ︷︷ ︸

⟨ePG⊺
aux,u⟩

+ e︸︷︷︸
⟨eP ,eaux⟩+⟨eN ,hN ⟩

. (1)

The new secret is not anymore a part eP of the error but a linear combination ePG⊺
aux of it

and the LPN noise has increased somehow. However, now the secret is way smaller, it belongs to
Fkaux
2 . The situation is changed significantly by this. Before, basically the optimal parameters for

RLPN-decoding were such that the cost of FFT decoding the LPN secret, namely O(s2s) is of the
same order as 1/ε2 the number of parity-check equations we need. Here ε is defined by

P(e = 1) =
1− ε

2
.

Recall that ε is basically a decreasing function of the weight w of the parity-check equations we
are able to produce. Here since we do not pay anymore O(s2s) for FFT decoding the new LPN
secret but O

(
kaux2

kaux
)

we can take larger values for s which themselves give a smaller support N
resulting in much smaller weight w on N and thus the bias term coming from 〈eN ,hN 〉 is much
smaller. Of course there is an additional noise term now which is 〈eP , eaux〉. However, all in all,
the gain we have by being able to use a much larger s outweighs the additional noise term. It can
also be observed that we do not recover eP but kaux linear combinations of bits of eP . This is
easy to fix by running a few times more this algorithm with other lossy source codes Caux until
getting enough linear combinations to be able to recover eP .

We call this new algorithm double-RLPN-decoding, since it is based on two successive reductions:
first we reduce the problem to sparse-LPN, then we reduce the sparse-LPN to a plain-LPN problem
as explained above.

double-RLPN-Decoding and its Analysis. It turns out that the LPN problem given in Equa-
tion (1) is more structured than a standard LPN problem and like what happened in the RLPN
algorithm [CDMT22], producing the most likely candidate for the LPN problem does not neces-
sarily produce the right candidate ePG⊺

aux even if we have enough samples for ensuring that in
the ideal i.i.d model of the LPN problem the most likely candidate would indeed be the right solu-
tion. Again, the i.i.d. model is not accurate. We have to use the whole information given by the
FFT and output for L big enough the L most likely solutions to have a chance to have ePG⊺

aux
in the list. However, verifying whether a candidate s for ePG⊺

aux is indeed valid is relatively
straightforward:

(a) we can as in the RLPN algorithm make a bet on the weight |eP |, say |eP | = t′ (and run
enough double-RLPN decoding steps until finding a partition P ∪N for which this bet is
valid),

(b) recover eP by solving the decoding problem (in its syndrome form) s = ePG⊺
aux and

|eP | = t′,
(c) check whether the putative candidate v for eP we get can be extended to a complete

solution by solving the decoding problem y = c + e, eP = v, c ∈ C and |e| = t which
is much easier to solve than the original decoding problem due to the partial knowledge
about e, i.e. eP = v.

The whole problem we face here for analyzing the problem is the same as the one that was
faced to analyze the RLPN algorithm, the i.i.d. LPN model is not valid and we really have to
get rid of the independence assumptions. Part of this work is achieved by adapting one of the
fundamental tools used for analyzing RLPN decoding, namely [CDMT22, Proposition 3.1] which
gives a formula of the bias ε in terms of Krawtchouk polynomials. We will obtain a generalization
of this proposition adapted to the double-RLPN decoder, namely Proposition 2 in §3. Note that
Proposition 2 does not rely on unproven assumptions contrarily to what is done in dual attacks
in lattice-based cryptography where the corresponding result is achieved through independence
assumptions.

5

Estimating the number L of candidates for the LPN problem given in Equation (1) we have to
keep for being sure to have ePG⊺

aux is even more delicate. It requires a careful adaptation to our
setting of [MT23] that analyzed the RLPN decoder. Here, we will not be able to avoid completely
assumptions for performing the analysis (but this was also the case in [MT23]). However, again
we will not resort to independence assumptions which seem in our context not only to be wrong
strictly speaking, but also to be unable to be good enough for capturing the size of L. We will
namely develop some tools analogous to what has been achieved in [MT23]:

(i) a duality result, namely Proposition 4 of §5.3, which expresses the FFT value of a candidate
as a weighted sum of the product of evaluations of Krawtchouk polynomials where the
weights come from a certain weight distributions of codes related to C and Caux. This
is an adaptation of [MT23, Prop. 3.2] to our setting and is the key for estimating L as
explained in §5.2,

(ii) an estimation of this sum with probabilistic considerations. These probabilistic consider-
ations are rigorous for the part of the sum which is most certainly the dominating term.
However for the part of the sum which is very likely to be negligible, we lack accurate tail
bounds for the number of codewords of a given weight in a random linear code and in this
case we just conjecture that the part of the sum which seems negligible and for which we
have only partial control with the probabilistic tool at hand, is indeed negligible. This
conjecture has been verified experimentally and we even used a very crude approximation
of this weighted sum with the help of independent Poisson variables which captures the
size of L obtained in our experiments and which implies our conjecture.

All in all with the help of a conjecture that we verified experimentally, we are able to capture the
size of L and to obtain a formula for the complexity of double-RLPN decoding. The key tool for
performing this analysis, namely the duality result, can be readily adapted to lattices (see §8).
It turns out that even a crude use of this duality result gives a good explanation of the part of
the experimental curve departing from the theoretical curve based on the standard independence
assumption found in [DP23b, Fig. 3]. This substantiates the claim made in [MT23, §6] that the
code duality result of [MT23] carries over to the lattice setting and can be used to predict dual
attacks without using the independence assumption.
The Results Obtained by this New Approach. This new approach results in a very significant
gain compared to RLPN decoding. Our most advanced version of double-RLPN-decoding algorithm
performs better than the current state of the art ISD algorithm for all rates R ⩽ 0.42 as shown in
Figure 1.
Concurrent/related work. Very recently, we became aware that the prediction we have made
on the score function for lattices by using our duality result and crude estimates of the relevant
sum (see §8) has also been obtained by using as we do here Bessel functions and related tools in
[DP23a]. This paper provides a much more in depth study as we do here.

2. Notation and Coding Theory Background

Basic Notation. Vectors and matrices are respectively denoted in bold letters and bold capital
letters such as a and A. The entry at index i of the vector x is denoted by xi or x(i). The
canonical inner product

∑n
i=1 xiyi between two vectors x and y of Fn

2 is denoted by 〈x,y〉 where
F2 denotes the binary field. Let I be a list of indexes. We denote by xI the vector (xi)i∈I .
In the same way, we denote by AI the sub-matrix made of the columns of A which are indexed
by I . We denote by 0n ∈ Fn×n

2 and Idn ∈ Fn×n
2 the null matrix and the identity matrix of

size n respectively. The concatenation of two vectors x and y is denoted by x||y. The Hamming
weight of a vector x and the cardinality of a finite set A are denoted in the same way by |x| and
|A | respectively. There will be no confusion since they apply to different objects. Notation Ja, bK
stands for the set of the integers between a and b, both included. Furthermore, we let Snw denote
the Hamming sphere of Fn

2 with radius w and centered at 0, namely

Snw
def
= {x ∈ Fn

2 : |x| = w}.
6

0.0 0.2 0.4 0.6 0.8 1.0
Rate

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lo
g 2

Co
m

pl
ex

ity
n

Prange 1962 (ISD)
Both and May 2018 (ISD)
RLPN 2022
double-RLPN

Figure 1. Asymptotic complexity exponent of some decoding algorithms: our
new double-RLPN decoder, the RLPN decoder, Both and May algorithm [BM18]
(with the correction of [CDMT22, Ess22]) which is the state-of-the-art of ISD
decoders and the Prange decoder [Pra62].

Probabilistic Notation. For a finite set S , we write X
$←S when X is an element of S drawn

uniformly at random in it. For a Bernoulli random variable X, denote by bias(X) the quantity

bias(X)
def
= P(X = 0)− P(X = 1).

For a Bernoulli random variable X of parameter p = 1−ε
2 , i.e. P(X = 1) = 1−ε

2 , we have
bias(X) = ε.

Fourier Transform. Let f : Fn
2 → R be a function. We define its Fourier transform f̂ : Fn

2 → R
as

f̂ (x) =
∑
u∈Fn

2

f(u) (−1)⟨x,u⟩ . (2)

Soft-O Notation. For real valued functions defined over R or N we define o(), O(), Ω(), Θ(),
in the usual way and also use the less common notation Õ() and Ω̃ (), where f = Õ(g) means
that f(x) = O

(
g(x) logk g(x)

)
and f = Ω̃ (g) means that f(x) = Ω

(
g(x) logk g(x)

)
for some k.

We will use this for functions which have an exponential behavior, say g(x) = eαx, in which case
f(x) = Õ(g(x)) means that f(x) = O(P (x)g(x)) where P is a polynomial in x. We also use
f = ω(g) when f dominates g asymptotically; that is when lim

x→∞
|f(x)|
g(x) =∞.

Coding Theory. A binary linear code C of length n and dimension k is a subspace of Fn
2 of

dimension k. We say that it has parameters [n, k] or that it is an [n, k]-code. Its rate R is defined
as R

def
= k

n . A generator matrix G for C is a full rank k × n matrix over F2 such that

C =
{
uG : u ∈ Fk

2

}
.

A parity-check matrix H for C is a full-rank (n− k)× n matrix over F2 such that

C = {c ∈ Fn
2 : Hc⊺ = 0} .

7

In other words, C is the null space of H. The dimension of the code is given by dim (C) def
= k. The

code whose generator matrix is the parity-check matrix of C is called the dual code of C. It might
be seen as the subspace of parity-checks of C and is defined equivalently as

Definition 1 (Dual Code). The dual code C⊥ of an [n, k]-code C is an [n, n − k]-code which is
defined by

C⊥ def
= {h ∈ Fn

2 : ∀c ∈ C, 〈c,h〉 = 0} .

Sometimes it is considered in the literature the following equivalent version of the decoding
problem (see Problem 3 as defined in the introduction) by using instead the parity-check matrix
and syndrome point of view

Problem 3 (Decoding a fixed error weight via syndromes). Let C be an [n, k]-code with parity-
check matrix H ∈ F(n−k)×n

2 . We are given a syndrome s ∈ Fn−k
2 , an integer t and we want to find

an error vector e ∈ Fn
2 of Hamming weight |e| = t for which He⊺ = s⊺.

It is readily seen that both Problems 1 and 3 are equivalent: given C with parity-check matrix
H, then decoding c+e with a codeword c ∈ C and e ∈ Snt amounts to recover e from Hy⊺ = He⊺

as by definition Hc⊺ = 0.
When C is an [n, k]-code and x ∈ Fn

2 we let

C + x
def
= {c+ x , c ∈ C}

denote a coset of C and we denote by Ni (C + x) the number of words of hamming weight i in the
coset C + x, namely

Ni (C + x)
def
= |C + x ∩ Sni | .

An important quantity is the Gilbert-Varshamov distance which is defined as

Definition 2 (Gilbert-Varshamov distance). The Gilbert-Varshamov distance dGV(n, k) associated
to a length n and dimension k is defined as the largest integer d such that

2k |Bd| < 2n

where Bd is the Hamming ball centered at 0 in Fn
2 and radius d, that is Bd

def
= {x ∈ Fn

2 : |x| ⩽ d}.

This quantity has two different interpretations. On one hand, it corresponds up to a constant
term to the typical minimum distance of a linear code of length n and dimension k, but it is also
related to the expected number of solutions of the decoding problem for a random linear [n, k]-code
which is defined as follows.

Problem 4 ((n, k, t) Decoding Problem - DP(n, k, t)).

• Given: (G,y
def
= mG+ x) where m,G and x are respectively picked uniformly at random

over Fk
2 , Fk×n

2 and Snt .
• Aim: an error e ∈ Fn

2 of Hamming weight t such that y − e = zG for some z ∈ Fk
2 .

This problem really corresponds to decoding at distance t the [n, k]-code admitting G as gen-
erator matrix. The largest weight t for which we might hope for having a single solution (strictly
speaking when we look for solutions of weight ⩽ t and not exactly t, but the difference between
these two notions is generally irrelevant) is given by the Gilbert-Varshamov distance dGV(n, k).
At this distance, the expected number of solutions is readily seen to be Θ(1) whether we look at
codewords at distance exactly t from the received word y or at distance ⩽ t.

It will also be very convenient to consider the operation of puncturing a code, i.e. keeping only
a subset of entries in a codeword.

Definition 3 (Punctured Code). For a code C and a subset I of code positions, we denote by
CI the punctured code obtained from C by keeping only the positions in I , i.e.

CI = {cI : c ∈ C}.
8

Definition 4 (Shortened Code). For a code C and a subset I of code positions, we denote by CI

the shortened code is defined by

CI = {cI : c ∈ C and cJ1,nK\I = 0}.

It is readily seen that we have(
CI
)⊥

=
(
C⊥
)
I

and (CI)
⊥
=
(
C⊥
)I

. (3)

Krawtchouk Polynomial. We recall here some properties about Krawtchouk polynomial that
will be useful in the article. Many useful properties can be found in [KS21, §2.2]

Definition 5. (Krawtchouk polynomial) We define the Krawtchouk polynomial K(n)
w of degree w

and of order n as

K(n)
w (X)

def
=

w∑
j=0

(−1)j
(
X

j

)(
n−X

w − j

)
.

The following fact is well known: it gives an alternate expression of the Krawtchouk polynomial
(see for instance [vL99, Lemma 5.3.1]).

Fact 1. For any x ∈ Fn
2 ,

K(n)
w (|x|) = 1̂w(x) =

∑
y∈Fn

2 :|y|=w

(−1)⟨x,y⟩ . (4)

where 1w is the characteristic function of the Hamming sphere Snw of radius w.

We recall here the summary of some known results about Krawtchouk polynomials made
in [CDMT22].

Proposition 1. [CDMT22, Prop. 3.5, Prop. 3.6]
(1) Value at 0. For all 0 ⩽ w ⩽ n, K(n)

w (0) =
(
n
w

)
.

(2) Reciprocity. For all 0 ⩽ t, w ⩽ n,
(
n
t

)
K

(n)
w (t) =

(
n
w

)
K

(n)
t (w).

(3) Roots. The polynomials K
(n)
w ’s have w distinct roots which lie in the interval Jn/2 −√

w(n− w), n/2+
√
w(n− w)K. The distance between roots is at least 2 and at most o(n).

(4) Magnitude in and out the root region. Let τ and ω be two reals in [0, 1]. Let
ω⊥

def
= 1

2 −
√

ω(1− ω), and let z def
= 1−2τ−

√
D

2(1−ω) where D
def
= (1− 2τ)

2 − 4ω(1− ω).

Define κ̃(τ, ω)
def
=

{
τ log2(1− z) + (1− τ) log2(1 + z)− ω log2 z if τ ∈ [0, ω⊥],
1−h(τ)+h(ω)

2 otherwise.
• 4.1. If τ ⩽ 1

2−
√
ω(1− ω), then for all t and w such that lim

n→∞
t
n = τ and lim

n→∞
w
n = ω

we have K
(n)
w (t) = 2n(κ̃(τ,ω)+o(1)).

• 4.2. If τ > 1
2 −

√
ω(1− ω), then there exists t(n) and w(n) such that lim

n→∞
t
n = τ ,

lim
n→∞

w
n = ω and

∣∣∣K(n)
w (t)

∣∣∣ = 2n(κ̃(τ,ω)+o(1)).

3. Reduction from Sparse to Plain LPN

The purpose of this section is to explain in detail the reduction from sparse to plain LPN and
to give an important result about the bias of the resulting RLPN samples. We assume from now
on that we are given and [n, k]-code C and a y ∈ Fn

2 such that

y
def
= c+ e, c ∈ C, |e| = t,

and we want to find c and e.
9

3.1. The Approach. First, we randomly select a subset P ⊆ J1, nK of s positions, where s is a
parameter that will be chosen later. Let N

def
= J1, nK\P be the complementary set of P. Here P

corresponds to the entries of e we aim to recover. As explained in the introduction, the basic step
of the decoding algorithm is to compute a large set W of parity-check equations of low weight w
on N and to compute all the 〈y,h〉 with h ranging over W . In RLPN decoding, the approach is
to exploit directly that we have a number |W | of LPN samples (hP , 〈h,y〉) which can be viewed
as an LPN sample (a, 〈a, s〉+ e) by letting a

def
= hP , s def

= eP , e def
= 〈hN , eN 〉. Indeed,

〈h,y〉 = 〈h, c+ e〉 = 〈h, c〉︸ ︷︷ ︸
=0

+ 〈h, e〉 = 〈hP , eP〉︸ ︷︷ ︸
=⟨a,s⟩

+ 〈hN , eN 〉︸ ︷︷ ︸
LPN noise e

.

Notice that we really have a sparse LPN problem because of the sparseness of the secret eP which
is not exploited in [CDMT22] and only exploited to verify the solution in the corrected RLPN
algorithm of [MT23]. The point of this article is to exploit the sparseness of eP ∈ Fs

2 right away
in order to reduce the dimension s of the secret. This is obtained by introducing an auxiliary code
Caux of length s and dimension kaux which will be instrumental for reducing the dimension s of
the secret down to kaux. This is obtained as follows. We will assume that Caux is chosen as a code
with an efficient list-decoding procedure at distance taux.

Definition 6 (Efficiently list decodable code). A code C of length n is said to be efficiently
decodable code at distance t if it outputs for any y ∈ Fn

2 a non empty list of codewords of C at
distance t in time 2o(n).

Moreover from now on, we assume that

Notation 1. Caux is an [s, kaux] efficiently list decodable for some distance taux. We denote by
Dec(z) the set of all codewords of Caux at distance taux from z ∈ Fs

2, namely
Dec(z) = {caux ∈ Caux : |caux + z| = taux} .

Remark 1. In our instantiation, taux is chosen such that taux ≈ dGV(s, kaux), thus we typically
have |Dec(hP)| = Θ(1).

Now, let us consider caux ∈ Dec(hP), a codeword of Caux at distance taux of hP . It is readily
seen that 〈y,h〉 decomposes as:

〈y,h〉 = 〈eP , caux〉︸ ︷︷ ︸
linear comb.

+ 〈eP ,hP + caux〉+ 〈eN ,hN 〉︸ ︷︷ ︸
“new” LPN noise

.

Let us start by defining Caux with a generator matrix Gaux ∈ Fs×kaux
2 . Then, knowing caux ∈

Caux is equivalent to know maux ∈ Fkaux
2 such that

caux = mauxGaux.

We can therefore rewrite 〈eP , caux〉 as
〈eP , caux〉 = 〈eP ,mauxGaux〉 = 〈ePG⊺

aux,maux〉.

We have therefore for each parity-check equation h of weight w on N that we have computed (i.e.
for all h ∈ W) and each codeword mauxGaux of Caux at distance taux from hP , an LPN sample
(maux, 〈y,h〉) which can be viewed as such by noticing that it is indeed equal to

(a, 〈a, s〉+ e) with


a

def
= maux

s
def
= ePG⊺

aux

e
def
= 〈eP ,hP + caux〉+ 〈eN ,hN 〉

(5)

Notice here that, if Dec(hP) contains more than one element, we can compute such LPN samples
for each different caux ∈ Dec(hP). The secret in the above LPN sample is no longer given by eP

that we want to recover (contrarily to RLPN-decoding [CDMT22]), but is given by ePG⊺
aux ∈ Fkaux

2

which are kaux < s linear equations involving the s = |P| bits of the vector e we are looking for.
10

The main advantage of our new technique is that we end up with an LPN problem whose
dimension of the secret has decreased from s to kaux. However, the noise has increased; let us
describe how it behaves in the following paragraph.

3.2. Estimating the New Noise. The error e in Equation (5) is biased toward zero and its bias
is a function of n, s, t and u,w, taux which are respectively

u
def
= |eN | , w

def
= |hN | and taux

def
= |hP + caux|.

In the following statement we compute the bias of e over all the possible LPN samples, that is we
compute

bias
(h,caux)

$←H̃

(〈eP ,haux + caux〉+ 〈eN ,hN 〉) =
1∣∣∣H̃ ∣∣∣

∑
(h,caux)∈H̃

(−1)⟨eP ,hP+caux⟩+⟨eN ,hN ⟩

where H̃ is defined by

Definition 7.

H̃
def
= {(h, caux) ∈ C⊥ × Caux : |hN | = w and |hP + caux| = taux}. (6)

It is tempting to conjecture that this bias is well approximated by the bias of a Bernoulli variable
X

def
= 〈eP , eaux〉+ 〈eN ,w〉 where eaux and w are respectively drawn uniformly at random in the

Hamming spheres Sstaux and Sn−sw . The sum 〈eP , eaux〉 + 〈eN ,w〉 is performed over F2 and
all the vectors are independent random variables. Because of the independence of the random
variables, from the straightforward fact that bias(X1 +X2) = bias(X1) bias(X2) when X1 and X2

are independent Bernoulli variables (and the addition is performed modulo 2). Therefore,

bias(X) = bias (〈eP , eaux〉) bias (〈eN ,w〉)

=
K

(s)
taux(t− u)(

s
taux

) K
(n−s)
w (u)(
n−s
w

) (by Fact 1).

This kind of approximation was done in the early days of statistical decoding [Jab01, Ove06,
DT17c], until [CDMT22, Prop. 3.1] which has shown that under certain conditions, i.e. when
there are enough available parity-check equations of weight w (essentially when the number is of
order ω

(
1/δ2

)
where δ is the bias), then this approximation can indeed be shown to hold with

overwhelming probability. It turns out that [CDMT22, Prop. 3.1] can be adapted to our setting
with some additional technicalities and conditions. It can be shown that with overwhelming
probability we indeed have

bias
(h,caux)

$←H̃

(〈eP ,hP + caux〉+ 〈eN ,hN 〉) = (1 + o(1)) bias(X).

This is in essence what the following proposition shows.

Proposition 2. Suppose that the parameters are such that for some constant α > 0(
n−s
w

)(
s

taux

)
2k−kaux

= ω

(
nα

δ2

)
where δ

def
=

K
(n−s)
w (u)K

(s)
taux(t− u)(

n−s
w

)(
s

taux

) . (7)

Moreover suppose that (
n−s
w

)(
s

taux

)
2k

= O(nα) and
(

s
taux

)
2s−kaux

= O(nα) . (8)

Let N be a set of n− s positions in J1, nK and P
def
= J1, nK\N . Let e be a vector of weight u on

N and t− u on P. Let C and Caux be [n, k] and [s, kaux] linear codes respectively. Let us choose
(caux,h) uniformly at random in

H̃ = {(h, caux) ∈ C⊥ × Caux : |hN | = w and |hP + caux| = taux}.
11

Then for a proportion 1− o(1) of codes Caux and C we have that
bias

(h,caux)
$←H̃

(〈caux + hP , eP〉+ 〈eN ,hN 〉) = δ(1 + o(1)).

Proof. See Appendix §A . □

4. The double-RLPN Algorithm

We first going to explain the four main ingredients of the double-RLPN algorithm:
• computing suitable LPN samples,
• FFT decoding,
• recovering eP ,
• the bet ensuring that there are u errors on N at some point.

Let us detail each of these ingredients (or steps of the algorithm).

Computing the LPN Samples. First, our algorithm computes a certain number of LPN
samples by computing a set W of elements of C⊥ of weight w on N by using a procedure
ParityCheckEquations(w,N , C) that uses low-weight codewords search techniques to produce
a bunch of parity-check equations of C of weight w on N . Then a random code Caux is chosen in
a family of codes over F|P|2 and dimension kaux that we know how to decode efficiently at distance
taux. For an element h in W , each hP is decoded at distance taux to finally compute the set H
containing pairs (h, caux) in W × Caux satisfying |hN | = w and |hP + caux| = taux. Algorithm 1
gives the pseudo-code of the procedure.

Algorithm 1 The function computing the LPN samples associated to N

1: function LPN-Samples(C,N)
2: P ← J1, nK \N
3: W ← ParityCheckEquations(w,N , C) ▷ returns a set of parity-check equations of C

of weight w on N

4: Caux
$←F (P, kaux, taux) ▷ returns a code Caux in a family of codes F over F|P|2 and

dimension kaux that we know how to decode efficiently at distance taux
5: H ← ∅
6: for all h ∈H do
7: H ←H ∪ {h} ×Decode(hP , Caux, taux) ▷ Decode(hP , Caux, taux) outputs a set of

codewords of Caux at distance taux of hP

8: end for
9: Gaux ← generating matrix of Caux

10: return (H ,Gaux)
11: end function

FFT Decoding. Computing H gives a number |H | of LPN samples, which from the interpre-
tation given in Equation (5), leads us to think that the right choice x ∈ Fkaux

2 for ePG⊺
aux is the

one for which
bias

(h,mauxGaux)
$←H

(〈y,h〉+ 〈x,maux〉)

would be given by Proposition 2. It should namely be of order δ which is defined in this proposition.
Natural candidates for being equal to ePG⊺

aux are those for which this bias is say ⩾ δ/2. This
leads to compute all those biases. This can be done rather efficiently by factoring the common
computations made for computing all those biases for x ∈ Fkaux

2 by an FFT trick which is standard
in the LPN context. It dates back in this context to [LF06], but it can be traced back to decoding
the first-order Reed-Muller code (which is another way to view the decoding task in case of
the LPN problem) which was already suggested in [Gre66]. The link between the bias of the

12

random variables we are interested in and the Fourier transform is based on the following simple
observation that follows right away from the very definition of the Fourier transform. Before we
give this observation, let us bring in a notation that will be helpful for describing it and which
will be used throughout the paper from now on.

Notation 2. For any y ∈ Fn
2 , H ⊆ C⊥×Caux and a generator matrix Gaux of Caux we define the

function fy,H ,Gaux on Fkaux
2 by

fy,H ,Gaux : Fkaux
2 → R

u 7→

{ ∑
h:(h,uGaux)∈H (−1)⟨y,h⟩ if this sum is not empty,

0 otherwise.
(9)

With this notation at hand, the link between the biases and the Fourier transform of this
function is given by the following lemma.

Lemma 1. We have for any u ∈ Fkaux
2 and any x ∈ Fs

2 such that xG⊺
aux = u

̂fy,H ,Gaux (u) = |H | bias
(h,mauxGaux)

$←H

(〈y,h〉+ 〈u,maux〉)

= |H | bias
(h,caux)

$←H

(〈y,h〉+ 〈x, caux〉).

Proof. We have the following computation,
̂fy,H ,Gaux (u) =

∑
v∈Fkaux

2

(−1)⟨u,v⟩fy,H ,Gaux(v)

=
∑

(h,v)∈C⊥×Fkaux
2 :(h,vGaux)∈H

(−1)⟨y,h⟩+⟨u,v⟩ (Equations (2) and (9))

=
∑

(h,v)∈C⊥×Fkaux
2 :(h,vGaux)∈H

(−1)⟨y,h⟩+⟨xG
⊺
aux,v⟩

=
∑

(h,v)∈C⊥×Fkaux
2 :(h,vGaux)∈H

(−1)⟨y,h⟩+⟨x,vGaux⟩

=
∑

(h,caux)∈H

(−1)⟨y,h⟩+⟨x,caux⟩

which concludes the proof by definition of the bias. □

Remark 2. The probabilistic notation hides the fact that computing all these Fourier coefficients
and taking the maximum of them allows to decode in a certain code. Indeed let,

D def
=
{
(〈u,maux〉)(h,mauxGaux)∈H : u ∈ Fkaux

2

}
which is under very mild assumptions a linear code of dimension kaux and length |H |. If we let
c(u)

def
= (〈u,maux〉)(h,mauxGaux)∈H be the codeword associated to u and v = (〈y,h〉)(h,mauxGaux)∈H

then since
|H | bias

(h,mauxGaux)
$←H

(〈y,h〉+ 〈u,maux〉) = |H | − 2|v + c(u)|,

it follows from Lemma 1 that c(u0) is the codeword of D which is the closest to v, where u0 =

argmax ̂fy,H ,Gaux (u). Therefore, vector u0 is here a likely candidate for being equal to ePG⊺
aux

when H is big enough.

We give the pseudo-code of the FFT decoding algorithm producing a list S of putative candi-
dates for being equal to ePG⊺

aux in Algorithm 2.
The point of using the FFT for computing all these biases is that its complexity is of order

O
(
kaux2

kauxF
)

where F is the complexity of computing fy,H ,Gaux which can be bounded by
13

Algorithm 2 FFT algorithm producing a list of candidates for ePG⊺
aux

Input: H , Gaux
Output: S a list of candidates for ePG⊺

aux
1: function FFT-Decode(H , Gaux)
2: ̂fy,H ,Gaux ←FFT(fy,H ,Gaux)

3: S ←
{
u ∈ Fkaux

2 : ̂fy,H ,Gaux(u) >
δ
2 |H |

}
▷ δ

def
=

K(n−s)
w (u)K

(s)
taux (t−u)

(n−s
w)(s

taux)
4: return S
5: end function

O
(
max

(
1, |H |

2kaux

))
. On the other hand, if we had computed directly all those biases we would

have a much bigger complexity of O
(
|H | 2kaux

)
because H is of exponential size for the problem

at hand.
Recovering eP and then e. If we have a candidate s for ePG⊺

aux, then since we expect
|eP | = t − u, recovering eP from the equality s = ePG⊺

aux is nothing but solving a decoding
problem, namely to decode t − u errors in the code of parity-check matrix Gaux, i.e. C⊥aux. In
other words, we have to solve DP(s, s − kaux, t − u). This approach can be generalized by taking
Naux different sets of LPN samples associated respectively to the codes C(1)aux, · · · , C(Naux)

aux . For i

in J1, NauxK, let G
(i)
aux be the generating matrix which is chosen for C(i)aux. Then each of these

sets of LPN samples brings candidates for ePG⊺
aux. By choosing an Naux-tuple of candidates

(s(1), · · · , s(Naux)), where s(i) is a candidate for G
(i)
auxe

⊺
P (we have taken the transpose to have a

more readable form) given by the i-th LPN samples set, we get to solve the set of simultaneous
equations

(s(1))⊺ = G(1)
auxe

⊺
P , · · · , (s(Naux))⊺ = G(Naux)

aux e⊺P
with the constraint |eP | = t− u. In other words if we set

H⊺ def
=
(
G

(1)
aux

⊺
· · · G

(Naux)
aux

⊺) and s
def
=
(
s(1) . . . s(Naux)

)
then we have to solve the decoding problem He⊺P = s⊺ with |eP | = t − u, in other words we

have to solve DP (s, s−Nauxkaux, t− u). We are going to choose a simple ISD algorithm to solve
this problem, namely Dumer’s algorithm [Dum89] which is a good compromise between efficiency
and simple formula for its complexity. We denote by Decode-Dumer(H, s, t) the call to Dumer’s
algorithm to decode the syndrome s of an error of weight t associated to the parity-check matrix
H. We assume here that this call produces all solutions to this decoding problem.

Once we have recovered eP , say we know that it is equal to some v of weight t − u in Fs
2, we

face a much simpler problem. We namely have to solve the problem
y = c+ e, c ∈ C, eP = v, |eN | = u.

This is nothing but DP(n− s, k − s, u) which is much simpler. Here we might just use algorithm
Decode-Dumer on it. Let us call Solve-SubProblem(C,N ,y,v, u) the routine which performs
this task and which returns a candidate for eN and returns ⊥ otherwise. If this problem has no
solution we have of course a false candidate for eP and if we have a solution, then we have
solved our decoding problem. To verify that we have indeed such a decoding problem, suppose
without loss of generality that P = J1, sK and N = Js + 1, nK. We can also assume that CP
is of full rank dimension s (this holds with overwhelming probability). We can compute G a

generator matrix of C of the form G =

(
Ids R
0k−s R′

)
by applying partial Gaussian elimination on

a generator matrix of C. Then Solve-SubProblem(C,N ,y,x, u) decodes at distance u the word
y′

def
= yN − (yP − x)R onto the code CN of generator matrix R′.
With this notation at hand, the pseudo-code describing the algorithm for recovering eP and

then returning e if a suitable solution is found, is given in Algorithm 3.

14

Algorithm 3 algorithm recovering eP and then e

Input: S (1), · · · ,S (Naux) ⊂ Fkaux
2 , G(1)

aux, · · · ,G(Naux)
aux ∈ Fkaux×s

2

1: function Recover-e(S (1), · · · ,S (Naux),G
(1)
aux, · · · ,G(Naux)

aux)
2: H⊺ ←

(
G

(1)
aux

⊺
· · · G

(Naux)
aux

⊺)
3: for

(
s(1), ..., s(Naux)

)
∈
∏Naux

j=1 S(j) do
4: s←

(
s(1) . . . s(Naux)

)
5: for all v ∈ Decode-Dumer(H, s, t) do
6: e′ ← Solve-SubProblem(C,N ,y,v, u)
7: if e′ 6= ⊥ then
8: return e such that eP = x and eN = e′

9: end if
10: end for
11: end for
12: end function

Testing Enough Candidates N . Now, it may also happen that when choosing N , we might
not have that |eN | = u. For this, we have to check enough candidates. The probability that a set
N of size n− s satisfies this property is given by

Psucc
def
=

(
t
u

)(
n−t

n−u−s
)(

n
n−s
) .

Performing a number Niter of trials for N which is of order Θ(1/Psucc) will succeed with constant
probability. Putting all these ingredients together leads to the whole double-RLPN algorithm given
in Algorithm 4.

Algorithm 4 double-RLPN decoder
Input: y, t, C an [n, k]-code
Parameters: s, u, kaux, taux, N,

(
C(j)aux

)
j∈F

Output: e such that |e| = t and y − e ∈ C.
1: function double-RLPN(y, C, t)
2: for i from 1 to Niter do ▷ Niter such that w.o.p one iteration is s.t |eN | = u

3: N
$← {I ⊆ J1, nK : |I | = n− s} ▷ Hope that |eN | = u

4: for j = 1, . . . , Naux do
5: (H (j),G

(j)
aux)← LPN-Samples(C,N)

6: S(j) ← FFT-Decode(H (j),G
(j)
aux)

7: end for
8: Recover-e(S (1), · · · ,S (Naux),G

(1)
aux, · · · ,G(Naux)

aux)
9: end for

10: end function

Complexity of the Algorithm. It is sufficient to take Naux = O(1) for the parameters we are
interested in which will correspond to a choice of kaux of the form kaux = Ω(s). With this choice
we immediately get the following complexity for the double-RLPN algorithm

15

Proposition 3. The complexity C of the double-RLPN algorithm is given by

C = Õ
(

1

Psucc

(
Teq +NTdec + kaux max

(
2kaux , |H |

)
+ SNauxTISD

))
where

Psucc =

(
t
u

)(
n−t

n−u−s
)(

n
n−s
)

TISD = TDumer(s, s−Nauxkaux, t− u) +NISDTDumer(n− s, k − s, u)

and Teq is the time complexity of ParityCheckEquations, N is the number of parity-check
equations produced by this procedure, Tdec is the complexity of decoding Caux, i.e. it is the complexity
of a call to Decode(), S is the size of a list output by FFT-Decode(), NISD is the number of
solutions to the (s, s−Nauxkaux, t−u) decoding problem and TDumer(n, k, t) stands for the complexity
of solving the (n, k, t) decoding problem with Dumer’s algorithm when we want to find all solutions
to the problem.

The asymptotic complexity formula for the double-RLPN algorithm, including also the con-
straints required on our parameters, is given in Appendix B Proposition 9 which was used to
generate Figure 1.

5. Estimating the Number of False Candidates

The goal of this section is to introduce the main tool necessary to make a rigorous analysis of
Algorithm 4 and to give a formula for the number of false candidates which is proved by making
a certain conjecture whose validity has then been verified experimentally.

5.1. Main Duality Tool. The fundamental quantity when analyzing dual attacks is the bias
of 〈y,h〉 + 〈x, caux〉 which tells us whether xG⊺

aux has to be put in the list S of candidates
output by Algorithm 2. While initially standard independence assumptions were made to analyze
its distribution [CDMT22, Ass. 3.7] (which are very similar to analyze dual attacks in lattice
based cryptography), recently [MT23] showed that these assumptions were erroneous and, gave
for the first time a dual expression [MT23, Prop 1.] for this quantity which seems a key step to
understand its behavior and gave with an additional assumption a rigorous analysis of the RLPN
dual attack. The proposition given there to estimate the number of false candidates turns out to
match accurately the experiments. The following proposition is a generalization of [MT23, Prop
1.] and gives a dual expression for the aforementioned bias.

Proposition 4. Let P and N be two complementary subsets of J1, nK of size s and n − s
respectively. Let C be an [n, k]-code such that CP is of dimension s and let Caux be an [s, kaux]-
code. We have for any x ∈ Fs

2

bias
(h,caux)

$←H̃

(〈y,h〉+ 〈x, caux〉) =
1

2k−kaux

1∣∣∣H̃ ∣∣∣
n−s∑
i=0

s∑
j=0

Ni,jK
(n−s)
w (i)K

(s)
taux (j) (10)

where

Ni,j
def
=

∣∣{(r, cN
)
∈ (x+ C⊥aux)× CN : |r| = j and

∣∣(r+ eP)R+ eN + cN
∣∣ = i

}∣∣ ,
H̃ = {(h, caux) ∈ C⊥ × Caux : |hN | = w and |hP + caux| = taux}

and where R ∈ Fs×(n−s)
2 is such that for any h ∈ C⊥ we have hP = hN R⊺.

Proof. This proposition is proved in Appendix C. □

5.2. Intuition on How this Formula Allows to Estimate |S |. As a preliminary remark,
notice that bias

(h,caux)
$←H̃

(〈y,h〉+ 〈x, caux〉) is the same for all x belonging to a same coset of
16

C⊥aux and therefore only possibly allows to distinguish the values xG⊺
aux. Second, observe that the

expected value of
∣∣∣H̃ ∣∣∣ is (n−s

w)
2k−s

(s
taux)

2s−kaux so that we expect

1

2k−kaux

∣∣∣H̃ ∣∣∣ ≈ 1(
n−s
w

)(
s

taux

) .
Third, observe that Proposition 2 means in essence that the bias corresponding to eP , namely
bias

(h,caux)
$←H̃

(〈y,h〉+ 〈eP , caux〉) should be ≈ K(n−s)
w (u)K

(s)
taux (t−u)

(n−s
w)(s

taux)
, i.e. it corresponds roughly

to the “first” pair (i, j) (where we range the values according to the product K
(n−s)
w (i)K

(s)
taux (j))

for which Ni,j 6= 0, namely (i, j) = (u, t − u) where the pair (eP ,0) is likely to be the only pair
(r, cN) in (eP+C⊥aux)×CN such that |r| = t−u and

∣∣(r+ eP)R+ eN + cN
∣∣ = u (and therefore

we likely have Nu,t−u = 1). Therefore the behavior of the sum appearing in (10) is dominated by
this first term Ni,j which is non zero, namely (i, j) = (u, t − u) since we really have in this case
that the corresponding term in the sum is nothing but

K
(n−s)
w (u)K

(s)
taux(t− u)(

n−s
w

)(
s

taux

) .

This kind of phenomenon appears to be much more general than this: the x ∈ Fs
2 which give a

high bias (and are therefore the ones we put in S) are those for which there is an Ni,j which is
unexpectedly non zero (and therefore most likely equal to 1) in the low values of (i, j) for which the
term Kn−s

w (i)K
(s)
taux (j) can compete or even supersede the term dominating in the expression (10)

of the bias of eP , namely K
(n−s)
w (u)K

(s)
taux(t − u) (we have ignored the common denominator

2k−kaux
∣∣∣H̃ ∣∣∣ appearing in both sums). Similarly we expect that the bias of those x is of order in

this case
K

(n−s)
w (i)K

(s)
taux(j)(

n−s
w

)(
s

taux

) .

This intuition is formalized by Conjecture 1 what we make later on.

5.3. Main Proposition. The key step of the analysis is to estimate the number of candidates,
namely the size of S (Instruction 3 of Algorithm 4). Provided that the bet (|eN | = u) on the
error is valid we expect that the secret vector ePG⊺

aux belongs to S . But, as we will show in this
section this set also contains some false positives, namely any element of S \ {ePG⊺

aux}. Testing
if an element of S is a false positive (Algorithm 3) will be of exponential cost. Estimating their
number is therefore crucial to predict the complexity of our algorithm. The following proposition
bounds the expected number of candidates in a typical iteration of Algorithm 4.

Proposition 5. Using Distribution 1 for C, Caux, e and y and given that our parameters verify
Parameter Constraint 1, that the number of computed LPN samples is the total number of available
LPN samples, i.e. H = H̃ and under Conjecture 1 we have that the expected number of candidates
per iteration is bounded by

EC,Caux (|S |) = Õ

(
max

(i,j)∈A

(
s
j

)(
n−s
i

)
2n−k

)
+ 1 (11)

where

A def
=

{
(i, j) ∈ J0, n− sK× J0, sK, ∣∣∣∣∣K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣ ⩽ n3.2

}
. (12)

The set S of candidates is defined by

S
def
=

{
s ∈ Fkaux

2 : ̂f
y,H̃ ,Gaux

(s) ⩾ δ

2
H̃

}
, (13)

17

where

H̃
def
=

(
n−s
w

)(
s

taux

)
2k−kaux

and δ
def
=

K
(n−s)
w (u)K

(s)
taux (t− u)(

n−s
w

)(
s

taux

) . (14)

Remark 3. The additional constraint that H = H̃ is only here to simplify the proof. One
could make a similar proposition without this constraint. In our instantiation of Algorithm 4 and
with our optimal parameters this constraint is de-facto verified. Note also that H̃ appearing in the
expression of the threshold is the expected number of available LPN samples, namely EC,Caux

(∣∣∣H̃ ∣∣∣).

Distribution 1.
• P and N are two fixed complementary subsets of J1, nK of size s and n− s respectively.
• The code C of generator matrix G is chosen uniformly at random among [n, k] linear codes

which are such that CP is of dimension s.
• The code Caux of generator matrix Gaux ∈ Fkaux×s

2 is chosen uniformly at random among
the [s, kaux]-codes.

• e ∈ Fn
2 is a fixed vector of Snt , c ∈ C is a random codeword of C and we define y

def
= c+ e.

Correctness of our algorithm is ensured by the following constraints.

Parameter Constraint 1. We suppose that the parameters n, k, t, s, kaux, taux, w, u are such that
there exists a constant α > 0 that is such that

(i)

(
n−s
w

)(
s

taux

)
2k−kaux

= ω

(
nα+8

δ2

)
, (ii)

(
n−s
w

)(
s

taux

)
2k

= O(nα) , (iii)

(
s

taux

)
2s−kaux

= O(nα) . (15)

where,

δ
def
=

K
(n−s)
w (u)K

(s)
taux (t− u)(

n−s
w

)(
s

taux

) .

Remark 4. Note that these constraints are in fact, up to a polynomial factor, the minimal
constraints required for our algorithm to work. Indeed, there are precisely the constraints required
in Proposition 2 which estimates the bias of the error of the LPN samples (5).

The difficulty of proving Proposition 5 is similar to the difficulties encountered in analyzing the
RLPN algorithm in [MT23], we know too little about the tails of the distribution of Ni,j . As such,
we will make the following conjecture which formalizes the discussion in §5.2.

Conjecture 1. Using Distribution 1, under Parameter Constraint 1,

P

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)


= Õ

(
max

(i,j)∈A
P (Ni,j 6= 0) + 2−n

)
where A is given in Equation (12) and x is taken uniformly at random in Fs

2 \ {C⊥aux + eP}.

Conjecture 1 is discussed in the following section where we give experimental evidences that
our analysis holds. In Appendix F.1 we show that this conjecture is in fact a consequence of a
more minimalistic conjecture.

6. Experimental Evidence for Our Analysis

The goal of this section is to provide experimental evidence supporting Proposition 5. We will
propose a convenient probabilistic model for the Ni,j ’s and show that this model does not change
the output distribution of our algorithm. We will essentially use the same model as in [MT23,

18

Appendix D] and model the weight distribution of the coset of a random linear code as a Poisson
distribution of the right expected value. Recall that Ni,j can be written as

Ni,j =

Nj(C⊥aux+x)∑
u=0

Ni

((
r(u) + eP

)
R+ eN + CN

)
where R ∈ Fs×(n−s)

2 is such that for any h ∈ C⊥ we have hP = hN R⊺, r(u) is the u’th codeword
of weight j of C⊥aux + x and Nj(C⊥aux + x) counts the number of elements in C⊥aux + x of Ham-
ming weight j. With our model, we first draw Nj

(
C⊥aux + x

)
according to a Poisson distribution

of expected value (sj)
2kaux and then we draw each Ni

((
r(u) + eP

)
R+ eN + CN

)
according to in-

dependent Poisson distributions of expected values (n−s
i)

2n−k (see appendix E, Lemma 9 where we
compute E

(
Nj

(
C⊥aux + x

))
and E

(
Ni

((
r(u) + eP

)
R+ eN + CN

))
under Distribution 1). Fi-

nally, we get the following model for Ni,j by using the fact that the sum of independent Poisson
random variables is a Poisson random variable:

Model 1 (Poisson Model). Under Distribution 1 and when x is taken uniformly at random in
Fs
2 \ {C⊥aux + eP} we make the model that

Ni,j ∼ Poisson

(
Nj

(
n−s
i

)
2n−k

)
, where Nj ∼ Poisson

((
s
j

)
2kaux

)
.

Under Poisson Model 1, the following proposition proves Conjecture 1 and thus it shows that
Proposition 5 holds.

Proposition 6. Under the Poisson Model 1, Conjecture 1 holds.

Proof. The proof is given Appendix F. □

In Figure 2 we computed the expected number of x’s whose bias multiplied by
∣∣∣H̃∣∣∣ is bigger

than some prescribed quantity T according to
• the standard independence model in dual attacks where the 〈e,h〉’s are supposed to be

independent,
• some experiments,
• the case were we replace the right-hand term of Ni,j (given in Equation (10)) by their

Poisson model.
As it is shown by Figure 2, the Poisson model matches remarkably well with the experiments.

This shows, as was the case in the analysis [MT23] of the RLPN algorithm, that the Poisson model
allows to predict accurately the size of S .

7. Instantiating the Auxiliary Code Caux with an Efficient Decoder

In double-RLPN we need to choose an auxiliary code Caux which is efficiently list-decodable
(Definition 6) at the smallest as possible distance taux = dGV(s, kaux). We propose to use the
following product of small random codes (other choices may be more suitable but they are harder
to analyze, like polar codes [Arı09, KU10, Şaş11, TV12]),

Caux
def
= C1 × · · · × Cb

where the Ci’s are random
[
s
b ,

kaux
b

]
-codes. Notice that

Dec(z) def
= {caux ∈ Caux : |caux + z| = taux}

does not look exactly like how it should with a random code for which our analysis given in
Propositions 2 and 5 hold. Furthermore, we will compute

H ⊆
{
(h, caux) ∈ C⊥ × Caux : ∀i ∈ J1, bK , |hN (i)| = w

b and |hP(i) + ci| = taux
b

}
19

0 500 1000 1500 2000 2500 3000
T

0

21

22

23

24

25

26

27

28

29

210

211

212

213

214

215

216

217

218

219

220
#{

x
k a

ux
2

:x
e

G
au

x a
nd

 f
(x

)
T}

Experience
Poisson model
Independence model

Figure 2. Size of the set {x ∈ Fkaux
2 \ {ePGaux} : f̂y,H (x) ⩾ T} as a func-

tion of T when [w, taux, kaux, s, k, n, u, t] = [5, 2, 20, 28, 30, 60, 8, 8], number of LPN
samples N = 65536. Here the curve “Independence model” has been replaced
when modelling the 〈y,h〉’s by i.i.d Bernouilli random variables of parameter 1

2
(standard independence model in dual attacks).

in Instruction 1 of Algorithm 1. To this aim we will perform exhausting search on the random
codes. By choosing the number b of blocs as,

b = Θ(log n) (16)

the above decoding algorithm costs for any parity-check equation O
(
2n/ logn

)
(recall that taux ≈

dGV(n, k)). Therefore, as Algorithm 1 running time is exponential (in n) for our considered
parameters, it won’t affect it. Furthermore, there are false candidates when computing H and it
is crucial to estimate their numbers.

Our analysis of Sections 3 and 5 has been made in the idealized-model where Caux is a random
code equipped with genie aided decoders. But, by choosing b as in Equation (16), analysis of
Propositions 2 and 5 is still verified with our particular choice of Caux (up to negligible factors) as
justified in Appendix G.

8. Links with Dual Attacks in Lattice Based Cryptography

The purpose of this section is to give more details about the close connection between dual
attacks in coding theory (a.k.a “statistical decoding” after the pioneering work of [Jab01]) and
dual attacks in lattice based cryptography. Basically, with some slight differences highlighted
in [PS23, App. A], the lattice based analogue of the dual attack presented here is the slight
improvement [CST22] of the Matzov attack [MAT22]. The improvement in [CST22] is based on
the fact that the modulus switching technique used in [MAT22] can be viewed as a suboptimal
source distortion code for the Euclidean metric which can be replaced by an almost optimal polar
code. The approach followed here should carry over to this lattice setting as well and in particular,
the fundamental duality Proposition 4. Let us just observe now that a simple duality equality
(together with a gross approximation based on the considerations of §5.2) can be used to explain
the results observed in [DP23b, Fig. 3]. It was shown there that predictions of the score function
based on standard independence assumptions made for dual attacks in lattice based cryptography
seem to be off in some parameter region (what can be called the “error-floor” region due to its

20

similarity with the Low-Density-Parity-Check codes literature). To explain this point, we will use
the same notation as in [DP23b] and will not redefine the quantities appearing here.

Let us first observe that an immediate corollary of Proposition 4 is

Corollary 1. Consider an [n, k] linear code C and consider some word y = c + e ∈ Fn
2 where c

is in C. Let W be the set of codewords of weight w in C⊥ and let fW (y)
def
=
∑

w∈W (−1)⟨y,w⟩. We
have

fW (y) =
1

2k

n∑
i=0

NiK
n
w(i)

where Ni is the number of words of weight i in C + e.

It is insightful to view these Krawtchouk polynomials as the Fourier transform of the indicator
function of a Hamming sphere, see Fact 1. Similarly, the lattice based analogue of Corollary 1
involving the lattice based analogue of fW , which is called the score function in [DP23b] will
involve the Bessel function of the first kind (see for instance [DDRT23, Fact 4.9]). We namely
obtain

Proposition 7. Consider a lattice Λ ⊆ Rn and consider some word y = x + e ∈ Rn where x is
in Λ. Let W̃ be the set of dual lattice vectors of Euclidean weights in (w− ε, w+ ε) in Λ∨ and let
f

W̃
(y)

def
=
∑

w∈W̃
cos(2π〈x,y〉). We have

f
W̃
(y) =

1

|Λ∨|
∑
j⩾0

Nj

jn (2π)n/2

(
(2π(w + ε)j)n/2Jn/2(2π(w + ε)j) (17)

− (2π(w − ε)j)n/2Jn/2(2π(w − ε)j)
)

where Nj is the number of words of Euclidean norm j in Λ + e and Jν is the Bessel function of
the first kind of order1 ν.

The proof is given in Appendix H. Let us take some subset W of W̃ of size N say. We make the
approximation fW (y) ≈ N

|W̃ | fW̃
(y) and by using the Gaussian heuristic and some computations

that are detailed in Appendix H:

fW (y) ≈ N

√
nπ

e

∑
j⩾0

Nj

(
n

2πewj

)n/2−1

Jn/2−1(2πwj). (18)

We can use now a similar heuristic as the one described in §5.2 and predict that the abnormal
large values of the score function fW (y) appear when y is abnormally close to Λ, say N⩽x 6= 0,
where N⩽x = |{c ∈ Λ : |y − c| ⩽ x}| when P (N⩽x 6= 0) � 1. In this case, we make the crude
approximation that the sum (18) is dominated by the term j0 which is the smallest in it:

fW (y) ≈ N

√
nπ

e
Nj0

(
n

2πewj0

)n/2−1

Jn/2−1(2πwj0). (19)

The survival function P (fW (y) ⩾ X) is then crudely approximated as the probability that such
an event happens

P
(
fW (y) ⩾ N

√
nπ

e
Nx

(n

2πewx

)n/2−1
Jn/2−1(2πwx)

)
≈ P (N⩽x ⩾ 1)

≈ E(N⩽x)

≈

 x√
n

2πe · (πn)1/n · |Λ|1/n

n

1Here the j’s belong to the discrete set of all possible norms in the lattice and should not be viewed as an integer
value.

21

where the last approximation is the Gaussian heuristic. In the context of the experiments described
in [DP23b, §5], Λ def

= L (B) is given by2

B
def
=

[
In/2 A
0 q · In/2

]
·
[

2 · Ikfft
0

0 In−kfft

]
(20)

Then we use the same full sieve algorithm as in [DP23b] to produce short vectors W ⊂ Λ∨. In
what follows, we use the practical values of N and w that we obtained by experiments. We have
reused the implementation for the experiments in [DP23b, §5]3. This very crude estimation seems
to capture the error-floor behavior of the survival function as shown in Figure 3. The point is
that it is precisely this part of the curve which is not predicted by the standard independence
assumption and which had no explanation so far. It can also be observed that the duality result
is nothing but a straighforward use of the Poisson formula which has also be used very recently
in [WE23] to predict the abnormal variance of the BDD score distribution observed in [DP23b,
Table 1].

100 200 300 400

x

2−10

2−20

2−30

2−40

(fW(y)≥ x)

this paper
in [21, Section 5, Fig.3]
in [21, Section 5, Fig.3]

400 800 1200 1600 2000

x

2−10

2−20

2−30

2−40

(fW(y)≥ x)

this paper
in [21, Section 5, Fig.3]
in [21, Section 5, Fig.3]

Figure 3. Crude estimation of the survival function (red, dash-dot line) com-
pared to the experiments in [DP23b, §5] (green, full line) and the prediction
with the standard independence assumption (blue, dashed line). (left) q = 3329,
n = 60, T = 245, N = 5040 and w = 0.0320; (right) q = 3329, n = 80, T = 248,
N = 89494 and w = 0.0376.

A more precise prediction. One can remark (see Figure 3) that i) our newly introduced ap-
proximate distribution for fW given in Equation (19) matches the experimental curves specifically
in the waterfall-floor zone and ii) the distribution of fW given by the independence heuristic
[DP23b, Heuristic 3] matches the experimental curves up to this waterfall-floor zone. A natural
idea to predict the experimental curve on the whole support is therefore to take the convolution
of these two distributions. Indeed, for any support point, there is always one distribution which
exponentially dominates the other one.

Distribution in the waterfall-floor zone. Let us denote by Xfloor the random variable given
by Equation (19), namely:

Xfloor
def
= G(j0) (21)

where

G(j) = N

√
nπ

e

(
n

2πewj

)n/2−1

Jn/2−1(2πwj)

and j0 is the length of the shortest vector of the lattice. We only have to compute the distribution
of j0 to compute the distribution of Xfloor. To that extend we make the following classic model.

2In [DP23b], Λ and B are actually respectively Λ′ and B′

3https://github.com/ludopulles/DoesDualSieveWork
22

https://github.com/ludopulles/DoesDualSieveWork

Model 2. Model for the number of lattice points in a ball. Let Λ be a random lattice of full rank
n and of volume V . We make the model that:

|Λ \ {0} ∩ Bz| ∼ Poisson

(
Vol (B1) zn

V

)
where Bz denotes the Euclidean ball of center 0 and radius z and Vol (B1) =

√
πn

Γ(n
2 +1)

.

This model allows us to write the following fact regarding the distribution of the length of the
j’th shortest vector:

Fact 2. Under Model 2, and for k = 0 · · ·∞ the distribution of jk, i.e. the k′th non-zero shortest
vector of a random lattice Λ of full rank n and of volume V , is given by:

jnk ∼ Gamma

(
k + 1,

Vol (B1)
V

)
where Z ∼ Gamma (b, θ) has the following survival function when b is an integer:

P (Z ⩾ α)
def
= e−θα

b−1∑
i=0

(θα)
i

i!
.

Proof. For any z > 0, we have that
P (jnk > zn) = P (jk > z)

= P

(
k⋃

i=0

“|Λ \ {0} ∩ Bz| = i”

)

=

k∑
i=0

P (|Λ \ {0} ∩ Bz| = i) (disjoint union)

=

k∑
i=0

(Vol (B1) zn/V)i e−(Vol(B1) zn/V)

i !
(Model 2)

which completes the proof. □

Distribution in the waterfall zone. Let us denote by Xfall the random variable fW under
the independence heuristic. As given by [DP23b, Lemma 3] and the discussion that follows their
lemma we have

Fact 3. Xfall follows a normal distribution of mean 0 and variance 1
2N . More precisely, its

probability density function p is given by

p(x) =
1√
πN

e−x
2/N .

We now make the refined model that fW (y) follows the same distribution as Xfall+Xfloor where
the distribution of Xfloor is computed numerically by using Fact 2 along with Equation (21). We
show in Figure 4 that the distribution of this refined model well approximates the behavior of the
experimental distribution of fW on the whole support.
Concurrent work. Note that very recently we have been made aware of the concurrent work
[DP23a] which similarly to what we do here, uses Bessel functions to predict the score with a
related approach and similar predictions (see [DP23a, §4.3]).

References
[AAB+21a] Carlos Aguilar Melchor, Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,

Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, and Gilles Zémor. BIKE. Round 3 Submission to the
NIST Post-Quantum Cryptography Call, v. 4.2, September 2021.

23

100 200 300 400

x

2−10

2−20

2−30

2−40

(fW(y)≥ x)

this paper
in [21, Section 5, Fig.3]
in [21, Section 5, Fig.3]

400 800 1200 1600 2000

x

2−10

2−20

2−30

2−40

(fW(y)≥ x)

this paper all
in [21, Section 5, Fig.3]
in [21, Section 5, Fig.3]

Figure 4. Refined estimation of the survival function (red, dash-dot line) com-
pared to the experiments in [DP23b, §5] (green, full line) and the prediction
with the standard independence assumption (blue, dashed line). (left) q = 3329,
n = 60, T = 245, N = 5040 and w = 0.0320; (right) q = 3329, n = 80, T = 248,
N = 89494 and w = 0.0376

[AAB+21b] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe
Deneuville, Philippe Gaborit, Edoardo Persichetti, Gilles Zémor, and Jurjen Bos. HQC. Round 3
Submission to the NIST Post-Quantum Cryptography Call, June 2021. https://pqc-hqc.org/doc/
hqc-specification_2021-06-06.pdf.

[AGS11] Carlos Aguilar, Philippe Gaborit, and Julien Schrek. A new zero-knowledge code based identification
scheme with reduced communication. In Proc. IEEE Inf. Theory Workshop- ITW 2011, pages 648–652.
IEEE, October 2011.

[Alb17] Martin R. Albrecht. On dual lattice attacks against small-secret LWE and parameter choices in HE-
lib and SEAL. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II, volume 10211
of Lecture Notes in Computer Science, pages 103–129, 2017.

[Arı09] Erdal Arıkan. Channel polarization: a method for constructing capacity-achieving codes for symmetric
binary-input memoryless channels. IEEE Trans. Inform. Theory, 55(7):3051–3073, 2009.

[BCL+19] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Mizoczki, Ruben Niederhagen,
Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, and Wang Wen.
Classic McEliece: conservative code-based cryptography. https://classic.mceliece.org, March 2019.
Second round submission to the NIST post-quantum cryptography call.

[BCN89] Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neumaier. Distance-Regular Graphs. Number 18
in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in
Mathematics. Springer Verlag Berlin Heidelberg, 1989.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary linear
codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In Advances in Cryptology -
EUROCRYPT 2012, LNCS. Springer, 2012.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding exponents: ball-collision
decoding. In Advances in Cryptology - CRYPTO 2011, volume 6841 of LNCS, pages 743–760, 2011.

[BM17] Leif Both and Alexander May. Optimizing BJMM with Nearest Neighbors: Full Decoding in 22/21n

and McEliece Security. In WCC Workshop on Coding and Cryptography, September 2017.
[BM18] Leif Both and Alexander May. Decoding linear codes with high error rate and its impact for LPN

security. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography 2018, volume
10786 of LNCS, pages 25–46, Fort Lauderdale, FL, USA, April 2018. Springer.

[CDMT22] Kevin Carrier, Thomas Debris-Alazard, Charles Meyer-Hilfiger, and Jean-Pierre Tillich. Statistical
decoding 2.0: Reducing decoding to LPN. In Advances in Cryptology - ASIACRYPT 2022, LNCS.
Springer, 2022.

[CST22] Kevin Carrier, Yixin Shen, and Jean-Pierre Tillich. Faster dual lattice attacks by using coding theory.
Cryptology ePrint Archive, Paper 2022/1750, 2022. https://eprint.iacr.org/2022/1750.

[CVA10] Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui. A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In Selected Areas in Cryptography, pages 171–
186, 2010.

24

https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://classic.mceliece.org
https://eprint.iacr.org/2022/1750

[DDRT23] Thomas Debris-Alazard, Léo Ducas, Nicolas Resch, and Jean-Pierre Tillich. Smoothing codes and
lattices: Systematic study and new bounds. IEEE Trans. Inform. Theory, 69(9):6006–6027, 2023.

[DP23a] Léo Ducas and Ludo N. Pulles. Accurate score prediction for dual attacks. preprint, November 2023.
preprint.

[DP23b] Léo Ducas and Ludo N. Pulles. Does the dual-sieve attack on learning with errors even work? In
Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023, volume
14083 of LNCS, pages 37–69, Santa Barbara, CA, USA, August 2023. Springer.

[DT17a] Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding. preprint, January 2017.
arXiv:1701.07416.

[DT17b] Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding. Slides of the ISIT talk, June
2017. See https://tdalazard.io/slidesDecoStat.pdf.

[DT17c] Thomas Debris-Alazard and Jean-Pierre Tillich. Statistical decoding. In Proc. IEEE Int. Symposium
Inf. Theory - ISIT 2017, pages 1798–1802, Aachen, Germany, June 2017.

[Dum86] Ilya Dumer. On syndrome decoding of linear codes. In Proceedings of the 9th All-Union Symp. on Re-
dundancy in Information Systems, abstracts of papers (in russian), Part 2, pages 157–159, Leningrad,
1986.

[Dum89] Il’ya Dumer. Two decoding algorithms for linear codes. Probl. Inf. Transm., 25(1):17–23, 1989.
[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-Swedish Int.

Workshop Inform. Theory, pages 50–52, Moscow, 1991.
[EJK20] Thomas Espitau, Antoine Joux, and Natalia Kharchenko. On a dual/hybrid approach to small secret

LWE - A dual/enumeration technique for learning with errors and application to security estimates
of FHE schemes. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran, editors,
Progress in Cryptology - INDOCRYPT 2020 - 21st International Conference on Cryptology in India,
Bangalore, India, December 13-16, 2020, Proceedings, volume 12578 of Lecture Notes in Computer
Science, pages 440–462. Springer, 2020.

[EKM17] Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017, volume 10402 of LNCS, pages 486–514, Santa
Barbara, CA, USA, August 2017. Springer.

[Ess22] Andre Esser. Revisiting nearest-neighbor-based information set decoding. Cryptology ePrint Archive,
Paper 2022/1328, 2022. https://eprint.iacr.org/2022/1328.

[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome decoding in the head: Shorter sig-
natures from zero-knowledge proofs. IACR Cryptol. ePrint Arch., page 188, 2022.

[GJ21] Qian Guo and Thomas Johansson. Faster dual lattice attacks for solving LWE with applications to
CRYSTALS. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT
2021 - 27th International Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6-10, 2021, Proceedings, Part IV, volume 13093 of Lecture Notes in
Computer Science, pages 33–62. Springer, 2021.

[GJL14] Qian Guo, Thomas Johansson, and Carl Löndahl. Solving LPN using covering codes. In Advances in
Cryptology - ASIACRYPT 2014, volume 8873 of LNCS, pages 1–20. Springer, 2014.

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
[GPS22] Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a practical code-based signature

scheme from zero-knowledge proofs with trusted setup. Cryptogr., 6(1):5, 2022.
[Gre66] Richard R. Green. A serial orthogonal decoder. JPL Space Programs Summary, 37-39-IV:247–253,

1966.
[Jab01] Abdulrahman Al Jabri. A statistical decoding algorithm for general linear block codes. In Bahram

Honary, editor, Cryptography and coding. Proceedings of the 8th IMA International Conference, volume
2260 of LNCS, pages 1–8, Cirencester, UK, December 2001. Springer.

[KS21] Naomi Kirshner and Alex Samorodnitsky. A moment ratio bound for polynomials and some extremal
properties of krawchouk polynomials and hamming spheres. IEEE Trans. Inform. Theory, 67(6):3509–
3541, 2021.

[KU10] Satish B. Korada and Rüdiger Urbanke. Polar codes are optimal for lossy source coding. IEEE Trans.
Inform. Theory, 56(4):1751–1768, 2010.

[LF06] Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In Proceedings of the 5th interna-
tional conference on Security and Cryptography for Networks, volume 4116 of LNCS, pages 348–359.
Springer, 2006.

[MAT22] MATZOV. Report on the Security of LWE: Improved Dual Lattice Attack, April 2022.
[McE78] Robert J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages 114–116. Jet

Propulsion Lab, 1978. DSN Progress Report 44.
[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes in O(20.054n).

In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT 2011, volume
7073 of LNCS, pages 107–124. Springer, 2011.

[MO15] Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to decoding of bi-
nary linear codes. In E. Oswald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015,
volume 9056 of LNCS, pages 203–228. Springer, 2015.

25

https://eprint.iacr.org/2022/1328

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-quantum cryptography, pages
147–191. Springer, 2009.

[MS86] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes. North–Holland,
Amsterdam, fifth edition, 1986.

[MT23] Charles Meyer-Hilfiger and Jean-Pierre Tillich. Rigorous foundations for dual attacks in coding theory.
In Theory of Cryptography Conference, TCC 2023, LNCS. Springer Verlag, December 2023. to appear.

[Ove06] Raphael Overbeck. Statistical decoding revisited. In Reihaneh Safavi-Naini Lynn Batten, editor, In-
formation security and privacy : 11th Australasian conference, ACISP 2006, volume 4058 of LNCS,
pages 283–294. Springer, 2006.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE Transactions on Information
Theory, 8(5):5–9, 1962.

[PS23] Amaury Pouly and Yixin Shen. Provable dual attacks on learning with errors. Cryptology ePrint
Archive, Paper 2023/1508, 2023. https://eprint.iacr.org/2023/1508.

[Şaş11] Eren Şaşoǧlu. Polarization and polar codes. Foundations and Trends in Communications and Infor-
mation Theory, 8(4):259–381, 2011.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In G. D. Cohen and J. Wolfmann,
editors, Coding Theory and Applications, volume 388 of LNCS, pages 106–113. Springer, 1988.

[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding. In D.R. Stinson, editor,
Advances in Cryptology - CRYPTO’93, volume 773 of LNCS, pages 13–21. Springer, 1993.

[TV12] Ido Tal and Alexander Vardy. List decoding of polar codes. CoRR, abs/1206.0050, 2012.
[Vér96] Pascal Véron. Improved identification schemes based on error-correcting codes. Appl. Algebra Eng.

Commun. Comput., 8(1):57–69, 1996.
[vL99] Jacobus Hendricus van Lint. Introduction to coding theory. Graduate texts in mathematics. Springer,

3rd edition edition, 1999.
[WE23] Andreas Wiemers and Stephan Ehlen. A remark on the independence heuristic in the dual attack. IACR

Cryptology ePrint Archive, Report2023/1238, August 2023. http://eprint.iacr.org/2023/1238.

26

https://eprint.iacr.org/2023/1508
http://eprint.iacr.org/2023/1238

Appendix A. Proof of Proposition 2

Let us first recall this proposition

Proposition 2. Suppose that the parameters are such that for some constant α > 0(
n−s
w

)(
s

taux

)
2k−kaux

= ω

(
nα

δ2

)
where δ

def
=

K
(n−s)
w (u)K

(s)
taux(t− u)(

n−s
w

)(
s

taux

) . (7)

Moreover suppose that (
n−s
w

)(
s

taux

)
2k

= O(nα) and
(

s
taux

)
2s−kaux

= O(nα) . (8)

Let N be a set of n− s positions in J1, nK and P
def
= J1, nK\N . Let e be a vector of weight u on

N and t− u on P. Let C and Caux be [n, k] and [s, kaux] linear codes respectively. Let us choose
(caux,h) uniformly at random in

H̃ = {(h, caux) ∈ C⊥ × Caux : |hN | = w and |hP + caux| = taux}.

Then for a proportion 1− o(1) of codes Caux and C we have that
bias

(h,caux)
$←H̃

(〈caux + hP , eP〉+ 〈eN ,hN 〉) = δ(1 + o(1)).

The proof of this Proposition 2 will be a consequence of the following lemma.

Lemma 2. Let w, s, k, kaux, taux, n ∈ N be such that (for some constant a > 0)(
n−s
w

)(
s

taux

)
2k

= O(nα) and
(

s
taux

)
2s−kaux

= O(nα) (22)

Let N be a fixed set of n− s positions in J1, nK and P
def
= J1, nK\N . Let e ∈ Fn

2 be some error
of weight u on N .

Assume that C is an [n, k]-linear code chosen by picking an (n−k)×n binary parity-check matrix
H uniformly at random and that Caux is chosen by picking an (s − kaux) × s binary parity-check
matrix Haux uniformly at random. Let us define for b ∈ {0, 1},

Eb
def
=
∣∣{(e′,h) ∈ Sstaux × C

⊥ : |hN | = w and e′ + hP ∈ Caux, 〈e′, eP〉+ 〈eN ,hN 〉 = b
}∣∣ ,

E′b
def
=
∣∣{(e′,h) ∈ Sstaux × Fn

2 : |hN | = w and 〈e′, eP〉+ 〈eN ,hN 〉 = b
}∣∣ .

Then,

EH,Haux(Eb) = Θ (1)
E′b

2k+s−kaux
(23)

VarH,Haux(Eb) = O(nα)
E′b

2k+s−kaux
(24)

Proof. Let 1e′,h be the indicator function of the event “h ∈ C⊥ and e′ + hP ∈ Caux”. Define

Eb
def
=
{
(e′,h) ∈ Sstaux × Fn

2 : |hN | = w and 〈e′, eP〉+ 〈eN ,hN 〉 = b
}
.

Notice that E′b = |Eb|. By definition and linearity of the expectation

EH,Haux (Eb) = EH,Haux

 ∑
(e′,h)∈Eb

1e′,h


=

∑
(e′,h)∈Eb

EH,Haux(1e′,h)

=
∑

(e′,h)∈Eb

PH,Haux

(
h ∈ C⊥,hP + e′ ∈ Caux

)
(25)

27

We have that,

PH,Haux

(
h ∈ C⊥,hP + e′ ∈ Caux

)
=

{
1

2k+s−kaux if hP + e′ 6= 0
1
2k

otherwise. (26)

Indeed, notice that events “h ∈ C⊥” and “hP + e′ ∈ Caux” are independent. Furthermore, h
cannot be equal to 0 as |hN | = w > 0. Therefore,

PH,Haux

(
h ∈ C⊥,hP + e′ ∈ Caux

)
= PH

(
h ∈ C⊥

)
PHaux (hP + e′ ∈ Caux)

=
1

2k
PHaux (hP + e′ ∈ Caux)

Now, plugging Equation (26) in (25) leads to,

EH,Haux (Eb) =
∑

(e′,h)∈Eb
hP ̸=e′

1

2k+s−kaux
+

∑
(e′,h)∈Eb
hP=e′

1

2k

=
∑

e′∈Ss
taux


∣∣∣E e′

b,1

∣∣∣
2k+s−kaux

+

∣∣∣E e′

b,2

∣∣∣
2k

 (27)

where for a fixed e′,
E e′

b,1
def
= {h ∈ Fn

2 : (e′,h) ∈ Eb and hP 6= e′} , (28)

E e′

b,2
def
= {h ∈ Fn

2 : (e′,h) ∈ Eb and hP = e′} . (29)
Notice that for any e′,

|Eb,1| =
|Eb,2|
2s

(30)
It is readily seen that,

|Eb| =
∑

e′∈Ss
taux

(∣∣∣E e′

b,1

∣∣∣+ ∣∣∣E e′

b,2

∣∣∣)
which implies that∑

e′∈Ss
taux

∣∣∣E e′

b,1

∣∣∣ = |Eb|
1 + 1

2s

= Θ(1) |Eb| and
∑

e′∈Ss
taux

∣∣∣E e′

b,2

∣∣∣ = |Eb|
2s − 1

= Θ
(
2−s
)
|Eb|

Plugging this into Equation (27) leads to,

EH,Haux (Eb) = Θ (1)
|Eb|

2k+s−kaux
+Θ(1)

|Eb|
2k+s

= Θ(1)
|Eb|

2k+s−kaux
(31)

which shows Equation (23). Let us show now Equation (24). By definition

Var (Eb) =
∑

(e′,h)∈Eb

Var (1e′,h) +
∑

(e′
0,h

0),(e′
1,h

1)∈Eb
(e′

0,h
0) ̸=(e′

1,h
1)

E
(
1e′

0,h
0 1e′

1,h
1

)
− E

(
1e′

0,h
0

)
E
(
1e′

1,h
1

)

⩽ E′b
2k+s−kaux

+
∑

(e′
0,h

0),(e′
1,h

1)∈Eb
(e′

0,h
0) ̸=(e′

1,h
1)

E
(
1e′

0,h
0 1e′

1,h
1

)
− E

(
1e′

0,h
0

)
E
(
1e′

1,h
1

)

where we used that Var(1e′,h) ⩽ E
(
12
e,h

)
= E (1e,h) and Equation (31).

To compute the above expectations, we will split in two cases according to E e′

b,1 and E e′

b,2 which
are respectively defined in Equations (28) and (29). More precisely, we will fix e′b and suppose
that hb belongs to Eb,1 or Eb,2. We will treat the following disjoint cases.

1. F
e′
0,e

′
1

0 =
{
(h0,h1) : h0 ∈ E

e′
0

b,1 and h1 ∈ E
e′
1

b,1

}
,

2. F
e′
0,e

′
1

1 =
{
(h0,h1) : h0 ∈ E

e′
0

b,2 and h1 ∈ E
e′
1

b,1

}
3. F

e′
0,e

′
1

2 =
{
(h0,h1) : h0 ∈ E

e′
0

b,1 and h1 ∈ E
e′
1

b,2

}
28

4. F
e′
0,e

′
1

3 =
{
(h0,h1) : h0 ∈ E

e′
0

b,2 and h1 ∈ E
e′
1

b,2

}
In particular,

Var (Eb) ⩽
E′b

2k+s−kaux
+
∑
e′
0,e

′
1

(∑
h0,h1∈F

e′0,e′1
0

(e′
0,h

0) ̸=(e′
1,h

1)

E
(
1e′

0,h
0 1e′

1,h
1

)
− E

(
1e′

0,h
0

)
E
(
1e′

1,h
1

)
︸ ︷︷ ︸

def
=F0

+
∑

h0,h1∈F
e′0,e′1
1

(e′
0,h

0) ̸=(e′
1,h

1)

E
(
1e′

0,h
0 1e′

1,h
1

)
− E

(
1e′

0,h
0

)
E
(
1e′

1,h
1

)
︸ ︷︷ ︸

def
=F1

+
∑

h0,h1∈F
e′0,e′1
2

(e′
0,h

0) ̸=(e′
1,h

1)

E
(
1e′

0,h
0 1e′

1,h
1

)
− E

(
1e′

0,h
0

)
E
(
1e′

1,h
1

)
︸ ︷︷ ︸

def
=F2

+
∑

h0,h1∈F
e′0,e′1
3

(e′
0,h

0) ̸=(e′
1,h

1)

E
(
1e′

0,h
0 1e′

1,h
1

)
− E

(
1e′

0,h
0

)
E
(
1e′

1,h
1

)
︸ ︷︷ ︸

def
=F3

)
(32)

Let,

Cov def
= F0 + F1 + F2 + F3 (33)

For each cases, we will split according to the following subcases.

i. e′0 = e′1, h
0 6= h1 and h0

P = h1
P ,

ii. e′0 = e′1, h
0 6= h1 and h0

P 6= h1
P ,

iii. e′0 6= e′1 and h0 = h1

iv. e′0 6= e′1, h
0 6= h1 and h0

P = h1
P

v. e′0 6= e′1,h
0 6= h1,h0

P 6= h1
P and h0

P + e′0 = h1
P + e′1

vi. e′0 6= e′1,h
0 6= h1,h0

P 6= h1
P and h0

P + e′0 6= h1
P + e′1

Case 1: Recall that in this case we have

h0
P 6= e′0 and h1

P 6= e′1 (34)

We have,

E
(
1e′

0,h
0

)
E
(
1e′

1,h
1

)
=

(
1

2k+s−kaux

)2

Let us compute EH,Haux

(
1e′

0,h
0 1e′

1,h
1

)
when (e′0,h

0) 6= (e′1,h
1). By definition

EH,Haux

(
1e′

0,h
0 1e′

1,h
1

)
= PH,Haux

(
h0,h1 ∈ C⊥,h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
= PH,Haux

(
h0,h1 ∈ C⊥

)
PH,Haux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
29

Therefore, ∑
e′
0,e

′
1

F0 =
∑
e′
0,e

′
1

∑
h0,h1∈F

e′0,e′1
0

(e′
0,h

0) ̸=(e′
1,h

1)

E
(
1e′

0,h
0 1e′

1,h
1

)
−
(

1

2k+s−kaux

)2

=
∑
e′
0,e

′
1

∑
h0,h1∈F

e′0,e′1
0

(e′
0,h

0) ̸=(e′
1,h

1)

Cov(0) (35)

where,

Cov(0) def
= PH

(
h0,h1 ∈ C⊥

)
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
−
(

1

2k+s−kaux

)2

Our aim now it to upper-bound Cov(0) according to the above 6 sub-cases.

Sub-case i. Suppose that e′0 = e′1, h0 6= h1 and h0
P = h1

P . We have

Cov(0) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
−
(

1

2k+s−kaux

)2

=
1

22k
PHaux

(
h0

P + e′0 ∈ Caux
)
−
(

1

2k+s−kaux

)2

(as h0
P + e′0 = h1

P + e′1)

=
1

22k
1

2s−kaux
−
(

1

2k+s−kaux

)2

where in the last line we used Equation (34). Therefore, in that case

Cov(0) ⩽ 1

22k
1

2s−kaux
.

Sub-case ii. Suppose that e′0 = e′1,h
0 6= h1 and h0

P 6= h1
P . We have

Cov(0) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
−
(

1

2k+s−kaux

)2

=
1

22k
PHaux

(
h0

P + e′0 ∈ Caux
)
PHaux

(
h1

P + e′1 ∈ Caux
)
−
(

1

2k+s−kaux

)2

(36)

where in the last line we used that h0
P + e′0 6= h1

P + e′1showing that these two vectors are linearly
independent (we work in F2), and thus that both events are independent. But, as they are different
from 0 (according to Equation (34)) we have for (b ∈ {0, 1})

PHaux

(
hb

P + e′b ∈ Caux
)
=

1

2s−kaux

Therefore, plugging this in Equation (36) leads to

Cov(0) = 0.

Sub-case iii. Suppose that e′0 6= e′1, h0 = h1. In that case,

Cov(0) = PHaux

(
h0 ∈ C⊥

)
PHaux

(
h0

P + e′0 ∈ Caux,h
0
P + e′1 ∈ Caux

)
−
(

1

2k+s−kaux

)2

=
1

2k
PHaux

(
h0

P + e′0 ∈ Caux
)
PHaux

(
h0

P + e′1 ∈ Caux
)
−
(

1

2k+s−kaux

)2

=
1

2k

(
1

2s−kaux

)2

−
(

1

2k+s−kaux

)2

30

where in the second equality we used that h0
P +e′0 6= h1

P +e′1 and are different from 0 (according
to Equation (34)) which implies that both events are independent. Therefore, in that case

Cov(0) ⩽ 1

2k+2s−2kaux
(37)

Sub-case iv. Suppose that e′0 6= e′1, h0 6= h1 and h0
P = h1

P . In that case,

Cov(0) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux,h
0
P + e′1 ∈ Caux

)
−
(

1

2k+s−kaux

)2

=
1

22k
PHaux

(
h0

P + e′0 ∈ Caux
)
PHaux

(
h0

P + e′1 ∈ Caux
)
−
(

1

2k+s−kaux

)2

=

(
1

2k+s−kaux

)2

−
(

1

2k+s−kaux

)2

= 0

where in the second equality we used that h0
P +e′0 = h1

P +e′0 6= h1
P +e′1 which implies that both

events are independent.

Sub-case v. Suppose that e′0 6= e′1, h0 6= h1, h0
P 6= h1

P and h0
P + e′0 = h1

P + e′1. We have

Cov(0) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux
)
−
(

1

2k+s−kaux

)2

=
1

22k
PHaux

(
h0

P + e′0 ∈ Caux
)
−
(

1

2k+s−kaux

)2

=
1

22k
1

2s−kaux
−
(

1

2k+s−kaux

)2

Therefore,

Cov(0) ⩽ 1

22k+s−kaux

Sub-case vi. Suppose that e′0 6= e′1, h0 6= h1, h0
P 6= h1

P and h0
P + e′0 6= h1

P + e′1. In that case
we can write

Cov(0) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
−
(

1

2k+s−kaux

)2

=
1

22k
PHaux

(
h0

P + e′0 ∈ Caux
)
PHaux

(
h1

P + e′1 ∈ Caux
)
−
(

1

2k+s−kaux

)2

=

(
1

2k+s−kaux

)2

−
(

1

2k+s−kaux

)2

Therefore we obtain,
Cov(0) = 0.

Case 2: Recall that in this case we have

h0
P = e′0 and h1

P 6= e′1 (38)

We have,

E
(
1e′

0,h
0

)
E
(
1e′

1,h
1

)
=

1

2k
1

2k+s−kaux
=

1

22k+s−kaux

Let us compute EH,Haux

(
1e′

0,h
0 1e′

1,h
1

)
when (e′0,h

0) 6= (e′1,h
1). By definition

EH,Haux

(
1e′

0,h
0 1e′

1,h
1

)
= PH,Haux

(
h0,h1 ∈ C⊥,h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
= PH,Haux

(
h0,h1 ∈ C⊥

)
PH,Haux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
31

Therefore, ∑
e′
0,e

′
1

F1 =
∑
e′
0,e

′
1

E
(
1e′

0,h
0 1e′

1,h
1

)
− 1

22k+s−kaux

=
∑
e′
0,e

′
1

∑
h0,h1∈F

e′0,e′1
1

(e′
0,h

0) ̸=(e′
1,h

1)

Cov(1) (39)

where,

Cov(1) def
= PH

(
h0,h1 ∈ C⊥

)
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
− 1

22k+s−kaux

Our aim now it to upper-bound Cov(1) according to the above 6 sub-cases.

Sub-case i. Suppose that e′0 = e′1, h0 6= h1 and h0
P = h1

P . This subcase is impossible according
to Equation (38). Therefore,

Cov(1) = 0.

Sub-case ii. Suppose that e′0 = e′1,h
0 6= h1 and h0

P 6= h1
P . We have

Cov(1) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
− 1

22k+s−kaux

=
1

22k
PHaux

(
h1

P + e′1 ∈ Caux
)
− 1

22k+s−kaux
(40)

where in the last line we used that h0
P +e′0 6= h1

P +e′1 showing that these two vectors are linearly
independent (we work in F2), and thus that both events are independent. Furthermore, we also
used that h0

P + e′0 = 0 according to Equation (38). But,

PHaux

(
h1

P + e′1 ∈ Caux
)
=

1

2s−kaux

Therefore, plugging this in Equation (40) leads to
Cov(1) = 0.

Sub-case iii. Suppose that e′0 6= e′1, h0 = h1. In that case,

Cov(1) = PHaux

(
h0 ∈ C⊥

)
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
− 1

22k+s−kaux

=
1

2k
PHaux

(
h0

P + e′0 ∈ Caux
)
PHaux

(
h0

P + e′1 ∈ Caux
)
− 1

22k+s−kaux

=
1

2k
1

2s−kaux
− 1

22k+s−kaux

where in the second equality we used that h0
P + e′0 6= h1

P + e′1 which implies that both events are
independent. Furthermore, we also used that h0

P +e′0 = 0 according to Equation (38). Therefore,
in that case

Cov(1) ⩽ 1

2k+s−kaux
(41)

Sub-case iv. Suppose that e′0 6= e′1, h0 6= h1 and h0
P = h1

P . In that case,

Cov(1) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux,h
0
P + e′1 ∈ Caux

)
− 1

22k+s−kaux

=
1

22k
PHaux

(
h0

P + e′1 ∈ Caux
)
− 1

22k+s−kaux

=
1

22k+s−kaux
− 1

22k+s−kaux

= 0

where in the second equality we used that h0
P +e′0 = h1

P +e′0 6= h1
P +e′1 which implies that both

events are independent. Furthermore, we also used that h0
P + e′0 = 0 according to Equation (38).

32

Sub-case v. Suppose that e′0 6= e′1, h0 6= h1, h0
P 6= h1

P and h0
P + e′0 = h1

P + e′1. This subcase
is impossible according to Equation (38). Therefore,

Cov(1) = 0

Sub-case vi. Suppose that e′0 6= e′1, h0 6= h1, h0
P 6= h1

P and h0
P + e′0 6= h1

P + e′1. In that case
we can write

Cov(0) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
− 1

22k+s−kaux

=
1

22k
PHaux

(
h1

P + e′1 ∈ Caux
)
− 1

22k+s−kaux

=
1

22k+s−kaux
− 1

22k+s−kaux

Therefore we obtain,
Cov(1) = 0.

Case 3: This situation is symmetric to Case 2.

Case 4: Recall that in this case we have
h0

P = e′0 and h1
P = e′1 (42)

We have,
E
(
1e′

0,h
0

)
E
(
1e′

1,h
1

)
=

1

22k

Let us compute EH,Haux

(
1e′

0,h
0 1e′

1,h
1

)
when (e′0,h

0) 6= (e′1,h
1). By definition

EH,Haux

(
1e′

0,h
0 1e′

1,h
1

)
= PH,Haux

(
h0,h1 ∈ C⊥,h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
= PH,Haux

(
h0,h1 ∈ C⊥

)
PH,Haux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
Therefore, ∑

e′
0,e

′
1

F3 =
∑
e′
0,e

′
1

∑
h0,h1∈F

e′0,e′1
3

(e′
0,h

0) ̸=(e′
1,h

1)

E
(
1e′

0,h
0 1e′

1,h
1

)
− 1

22k

=
∑
e′
0,e

′
1

∑
h0,h1∈F

e′0,e′1
3

(e′
0,h

0) ̸=(e′
1,h

1)

Cov(3) (43)

where,
Cov(3) def

= PH

(
h0,h1 ∈ C⊥

)
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
− 1

22k

Our aim now it to upper-bound Cov(1) according to the above 6 sub-cases.

Sub-case i. Suppose that e′0 = e′1, h0 6= h1 and h0
P = h1

P . We have

Cov(3) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux,h
1
P + e′1 ∈ Caux

)
− 1

22k

=
1

22k
PHaux (0 ∈ Caux)−

1

22k

=
1

22k
− 1

22k

where in the second equality we used Equation (42). Therefore, in that case

Cov(3) = 0.

Sub-case ii. Suppose that e′0 = e′1,h
0 6= h1 and h0

P 6= h1
P . According to Equation (42) this

sub-case is impossible. Therefore,
Cov(3) = 0.

33

Sub-case iii. Suppose that e′0 6= e′1, h0 = h1. According to Equation (42) this sub-case is
impossible. Therefore,

Cov(3) = 0.

Sub-case iv. Suppose that e′0 6= e′1, h0 6= h1 and h0
P = h1

P . According to Equation (42) this
sub-case is impossible. Therefore,

Cov(3) = 0.

Sub-case v. Suppose that e′0 6= e′1, h0 6= h1, h0
P 6= h1

P and h0
P + e′0 = h1

P + e′1. We have

Cov(3) =
1

22k
PHaux

(
h0

P + e′0 ∈ Caux
)
− 1

22k

=
1

22k
PHaux (0 ∈ Caux)−

1

22k

=
1

22k
− 1

22k

where in the second equality we used Equation (42). Therefore,

Cov(3) = 0

Sub-case vi. Suppose that e′0 6= e′1, h0 6= h1, h0
P 6= h1

P and h0
P + e′0 6= h1

P + e′1. According to
Equation (42) this sub-case is impossible. Therefore,

Cov(3) = 0.

We are now ready to gather Cases 1, 2, 3 and 4 according to Subcases i, ii, iii, iv, v and vi. Our
aim is to bound Cov that were defined in Equation 33. We can already notice that Case 4 has no
impact on this sum while Cases 2 and 3 have an influence only in Subcase iii. Furthermore, ii, iv
and vi have no contribution to this sum, whatever is the considered case.

Let us upper-bound Cov according to the different subcases where Covi denotes the terms in-
volved in Cov coming from Subcase i (in particular Covi is defined as a certain sum of Cov(i), see
Equations (35), (39) and (36)).

Subcase i: We have,

Cov1 ⩽
∑

(e′
0,h

0)∈Eb

∑
h1:(e′

0,h
1)∈Eb

h1 ̸=h0,h0
P=h1

P

1

22k
1

2s−kaux
⩽

∑
(e0,h0)∈Eb

(
n−s
w

)
22k+s−kaux

=

(
n−s
w

)
2k

E′b
2k+s−kaux

Subcase ii: We have,
Cov2 = 0.

Subcase iii: We have here to split the computation here between Cases 1 and 2. Recall that they
are given by

F
e′
0,e

′
1

0 =
{
(h0,h1) : h0 ∈ E

e′
0

b,1 and h1 ∈ E
e′
1

b,1

}
,

F
e′
0,e

′
1

1 =
{
(h0,h1) : h0 ∈ E

e′
0

b,2 and h1 ∈ E
e′
1

b,1

}
where,

E e′

b,1
def
= {h ∈ Fn

2 : (e′,h) ∈ Eb and hP 6= e′} ,

E e′

b,2
def
= {h ∈ Fn

2 : (e′,h) ∈ Eb and hP = e′} .

But recall according to Equation (30) that,

|Eb,1| =
|Eb,2|
2s

34

Therefore, in Subcase iii,

Cov3 =
∑

e′
0 ̸=e′

1

∑
h0=h1∈F

e′0,e′1
0

Cov(0) + 2
∑

e′
0 ̸=e′

1

∑
h0=h1∈F

e′0,e′1
1

Cov(1)

=
∑

e′
0 ̸=e′

1

∑
h0=h1∈F

e′0,e′1
0

1

2k+2s−2kaux
+ 2

∑
e′
0 ̸=e′

1

∑
h0=h1∈F

e′0,e′1
1

1

2k+s−kaux
(Equations (37)) and (41)

=
∑

e′
0 ̸=e′

1

∑
h0=h1∈F

e′0,e′1
0

1

2k+2s−2kaux
+

1

2s

∑
e′
0 ̸=e′

1

∑
h0=h1∈F

e′0,e′1
0

1

2k+s−kaux

= O(1)
∑

e′
0 ̸=e′

1

∑
h0=h1∈F

e′0,e′1
0

1

2k+2s−2kaux

where we basically use the same reasoning than for proving Equation (31). There in this subcase,

Cov3 ⩽
∑

(e′
0,h

0)∈Eb

∑
(e′

1,h
0)∈Eb

h1=h0,e′
0 ̸=e′

1

1

2k+2s−2kaux
⩽

∑
(e′

0,h
0)∈Eb

(
s

taux

)
2k+2s−2kaux

=

(
s

taux

)
2s−kaux

E′b
2k+s−kaux

Subcase iv: We have,
Cov4 = 0.

Subcase v: We have,

Cov5 ⩽
∑

(e′
0,h

0)∈Eb

∑
(e′

1,h
1)∈Eb

h1 ̸=h0, h0
P ̸=h1

P , e′
0 ̸=e′

1

e′
0+h0

P=e′
1+h1

P

1

22k+s−kaux
⩽

∑
(e0,h0)∈Eb

(
s

taux

)(
n−s
w

)
22k+s−kaux

=

(
n−s
w

)(
s

taux

)
2k

E′b
2k+s−kaux

Subcase vi: We have,
Cov6 = 0.

Plugging all these bounds on the Covi together and using that Cov =
∑

i Covi leads to

Cov ⩽
((

n−s
w

)
2k

+

(
s

taux

)
2s−kaux

+

(
n−s
w

)(
s

taux

)
2k

)
E′b

2k+s−kaux

= O(nα)
E′b

2k+s−kaux

where in the last lines we used the constraints (22) given in the proposition. Plugging this equation
in Equation (32) concludes the proof. □

We are now ready to prove our proposition:

Proof of Proposition 2. Let Eb and E′b (for b ∈ {0, 1}) be defined as in Lemma 2. By using the
Bienaymé-Tchebychev inequality, we obtain for any function f mapping the positive integers to
positive real numbers:

PH,Haux

(
|Eb − E (Eb) | ⩾

√
f(n)E (Eb)

)
⩽ Var(Eb)

f(n)E(Eb)
=
O(nα)

f(n)

where the last inequality is a consequence of Lemma 2. Since,

bias
(h,caux)

$←H̃

(〈caux + hP , eP〉+ 〈eN ,hN 〉) =
E0 − E1

E0 + E1
,

35

we have with probability greater than 1− O(nα)
f(n) that

µ0 − µ1 −
√
2f(n)

√
µ0 + µ1

µ0 + µ1 +
√
2f(n)

√
µ0 + µ1

⩽ bias
(h,caux)

$←H̃

(〈caux + hP , eP〉+ 〈eN ,hN 〉)

⩽ µ0 − µ1 +
√
2f(n)

√
µ0 + µ1

µ0 + µ1 −
√

2f(n)
√
µ0 + µ1

(44)

where
µi

def
= E (Ei)

and where we used that for all positive x and y,
√
x+
√
y ⩽

√
2(x+ y). Let,

N = µ0 + µ1

It is readily seen that,

N =

(
n−s
w

)(
s

taux

)
2k−kaux

We let f(n) = δ
√
N/2. Since N = µ0 + µ1 this implies f(n) = δ

√
µ0 + µ1/2. By Equation (7),

note that f(n)
O(nα) tends to infinity as n tends to infinity. We notice that√

2f(n)
√
µ0 + µ1 = δ1/2(µ0 + µ1)

3/4

= o (δ(µ0 + µ1))

because
δ1/2(µ0 + µ1)

3/4

δ(µ0 + µ1)
=

1√
δ
√
µ0 + µ1

=
1√
2f(n)

−→
n→+∞

0.

Equation (44) can now be rewritten as

µ0 − µ1 − o (δ(µ0 + µ1))

µ0 + µ1 + o (δ(µ0 + µ1))
⩽ bias (〈e′′, eP〉+ 〈eN ,hN 〉)

⩽ µ0 − µ1 + o (δ(µ0 + µ1))

µ0 + µ1 − o (δ(µ0 + µ1))
(45)

Now on the other hand
δ = bias

(h,caux)
$←H̃

(〈caux + hP , eP〉+ 〈eN ,hN 〉)

=
E′0 − E′1
E′0 + E′1

=

E′
0

2k+s−kaux −
E′

1

2k+s−kaux

E′
0

2k+s−kaux +
E′

1

2k+s−kaux

=
µ0 − µ1

µ0 + µ1

where the last equality is a consequence of Lemma 2, in particular Equation (23). From this it
follows that we can rewrite (45) as

δ

1 + o(δ)
− o(δ) ⩽ bias

(h,caux)
$←H̃

(〈caux + hP , eP〉+ 〈eN ,hN 〉)

⩽ δ

1− o(δ)
+ o(δ)

from which it follows immediately that
bias

(h,caux)
$←H̃

(〈caux + hP , eP〉+ 〈eN ,hN 〉) = δ(1 + o(1))

which concludes the proof. □
36

Appendix B. Correctness and Running-Time of the double-RLPN algorithm
(Algorithm 4)

In this section we prove the correctness of Algorithm 4 in Subsection B.1. Furthermore, we give
its running-time in Subsection B.2. To this aim, we instantiate Instructions 1 (ParityCheckEquations)
1 (Decode) of Algorithm 1.
Notation 3. • Instantiation of Algorithm 4.

– We instantiate ParityCheckEquations instruction with the technique devised in
[CDMT22, §5] to compute all the parity-checks of a given weight in a code (which is
inspired from [BJMM12]). Its asymptotic complexity is recalled in Proposition 11.

– The family of auxiliary [s, kaux] linear codes Caux used will be product of log s random
codes as devised in Section 7 . Using these the Decode procedure outputs almost all
codeword at distance taux in time 2o(s) max

(
(s
taux)

2s−kaux , 1

)
.

• Framework for the analysis of Algorithm 4
– We prove the correctness (Proposition 8) and we make the complexity analysis (Propo-

sition 9) in the framework of Proposition 5. More specifically, analysis is made for
C and Caux being random [n, k] and [s, k]aux codes. We argue in Section 7 that the
proof would be roughly the same (but more complicated) if we were to make it using
Caux being random product codes. The complexity of Algorithm 4 would only grow by
a factor of 2o(s) when using these codes.

– Note that with the ParityCheckEquations and Decode procedures we have cho-
sen, Algorithm 4 computes in fact all the possible LPN samples, namely we have (as
required in Proposition 5):

H = H̃

– We reuse notation introduced in Proposition 5: the set S (j) of candidates for the j’th
auxiliary code C(j)aux is defined by

S (j) def
= {s ∈ Fkaux

2 : ̂f
y,H̃ ,G

(j)
aux

(s) ⩾ δ

2
H̃}, (46)

where

H̃
def
=

(
n−s
w

)(
s

taux

)
2k−kaux

, δ
def
=

K
(n−s)
w (u)K

(s)
taux (t− u)(

n−s
w

)(
s

taux

) . (47)

B.1. Correctness of the algorithm. The goal of this section is to prove that double-RLPN,
namely Algorithm 4, outputs the desired error vector e after essentially Niter ≈

(nt)
(s
t−u)(

n−s
u)

iter-
ations of the outer loop (Line (2) of Algorithm 4). This is given by the following proposition.

Proposition 8. Let C be a code taken uniformly at random among the [n, k] linear codes and
C(1)aux, . . . , C(Naux)

aux which are Naux codes taken uniformly at random among the [s, kaux] linear codes.
Let y

def
= c + e where c ∈ C and where e ∈ Snt is a fixed error vector of weight t. As long

as the parameters s, kaux, taux, w, u verify the Parameters constraint (1) and as long as Niter =

ω

(
(nt)

(s
t−u)(

n−s
u)

)
and Naux = O(1), Algorithm 4 outputs the error vector e with probability 1− o(1).

It is readily seen that when Niter = ω

(
(nt)

(s
t−u)(

n−s
u)

)
then, with probability 1 − o(1) over the

choice of P there exists an iteration such that |eN | = u. We only have left to show that for such
an iteration we have with high probability that eP

(
G

(j)
aux
)⊤
∈ S (j) for j = 1, . . . , Naux which is

the purpose of the following lemma.
Lemma 3. Let us reuse the setting of Proposition 8. Moreover, let us fix P and N two
complementary sets of J1, nK of size s and n − s respectively and such that |eN | = u. Let us

37

denote by G
(1)
aux, . . . ,G

(Naux)
aux the generators matrices of the codes C(1)aux, . . . , C(Naux)

aux respectively.
Then,

P

Naux⋂
j=1

“eP G(j)
aux

⊺
∈ S (j)”

 = 1− o(1). (48)

Proof. First, notice that

P

Naux⋂
j=1

“eP G(j)
aux

⊺
∈ S (j)”

 = 1− P

Naux⋃
j=1

“eP G(j)
aux

⊺
/∈ S (j)”


⩾ 1−

Naux∑
j=1

P
(
“eP G(j)

aux
⊺
/∈ S (j)”

)
where we used the union-bound. Now, as Naux = O(1) we only have to show that P

(
“eP G

(j)
aux

⊺
/∈ S (j)”

)
=

o(1) to prove Equation (48). By using Fact 4,

”eP G(j)
aux

⊺
/∈ S (j)”⇐⇒ bias

(h,caux)
$←H̃

(〈y,h〉+ 〈eP , caux〉) <
δ

2

H̃∣∣∣H̃ ∣∣∣
Our aim is to show,

P

 bias
(h,caux)

$←H̃

(〈y,h〉+ 〈eP , caux〉) <
δ

2

H̃∣∣∣H̃ ∣∣∣
 = o(1).

To simplify notation let b def
= bias

(h,caux)
$←H̃

(〈y,h〉+ 〈eP , caux〉). It is readily seen that EC,Caux

(∣∣∣H̃ ∣∣∣) =

H̃ (1 + o(1)) and VarC,Caux

(∣∣∣H̃ ∣∣∣) ⩽ H̃(1 + o(1)). Therefore, by using Bienaymé-Tchebychev in-
equality, for any a,

P
(∣∣∣∣∣∣H̃ ∣∣∣− (1 + o(1))H̃

∣∣∣ ⩾√aH̃
)
⩽ 1 + o(1)

a
We have the following computation,

P

b <
δ

2

H̃∣∣∣H̃ ∣∣∣
 = P

b <
δ

2

H̃∣∣∣H̃ ∣∣∣ |
∣∣∣∣∣∣H̃ ∣∣∣− (1 + o(1))H̃

∣∣∣ ⩾√aH̃

P
(∣∣∣∣∣∣H̃ ∣∣∣− (1 + o(1))H̃

∣∣∣ ⩾√aH̃
)

+ P

b <
δ

2

H̃∣∣∣H̃ ∣∣∣ |
∣∣∣∣∣∣H̃ ∣∣∣− (1 + o(1))H̃

∣∣∣ <√aH̃

P
(∣∣∣∣∣∣H̃ ∣∣∣− (1 + o(1))H̃

∣∣∣ <√aH̃
)

Therefore,

P

b <
δ

2

H̃∣∣∣H̃ ∣∣∣
 ⩽ P

(∣∣∣∣∣∣H̃ ∣∣∣− (1 + o(1))H̃
∣∣∣ ⩾√aH̃

)
+ P

(
b <

δ

2

H̃

(1 + o(1))H̃ −
√
aH̃

)

⩽ 1 + o(1)

a
+ P

b <
δ

2

1

(1 + o(1))−
√

a

H̃


Let us choose a = H̃1/2. Recall that H̃ = ω

(
nα+8

δ2

)
where δ ⩽ 1. Therefore,

P

b <
δ

2

H̃∣∣∣H̃ ∣∣∣
 = o(1) + P

(
b <

δ

2
(1 + o(1))

)
= o(1)

38

where in the last equality we used Proposition 7. It concludes the proof. □

B.2. Asymptotic complexity of double-RLPN. We now have every tool to give the complexity
of our algorithm, namely, we can compute the expected number of candidates at each iteration
given by Proposition 5 and we have the correctness of our algorithm which is given by Proposition
8.

Proposition 9. Asymptotic complexity exponent of the double-RLPN algorithm. Define

R
def
= lim

n→∞

k

n
, τ

def
= lim

n→∞

t

n
, σ

def
= lim

n→∞

s

n
, Raux

def
= lim

n→∞

kaux
n

τaux
def
= lim

n→∞

taux
n

, ω
def
= lim

n→∞

w

n
, µ

def
= lim

n→∞

u

n

Suppose that de Decode procedure has an expected time complexity of 2n·σ·o(1). The expected
complexity of the double-RLPN algorithm to decode a code of rate R at relative distance τ is upper
bounded by 2n (αdouble-RLPN +o(1)) where

αdouble-RLPN ⩽ −π +max

(
(1− σ) · αeq

(
R− σ

1− σ
,

ω

1− σ

)
, νsample, Raux, νcandidate · Naux + αISD

)
where

π
def
= h (τ)− σ · h2

(
τ − µ

σ

)
− (1− σ) · h

(
µ

1− σ

)
,

νsamples
def
= (1− σ) · h2

(
ω

1− σ

)
+ σ · h2

(τaux
σ

)
− (R−Raux),

αISD
def
= max

(
σ · αISD-Dumer

(
1− Naux · τaux

σ
,
τ − µ

σ

)
, νISD + (1− σ) · αISD-Dumer

(
R− σ

1− σ
,

µ

1− σ

))
,

νISD
def
= max

(
σ · h2

(
τ − µ

σ

)
−Naux · τaux, 0

)
νcandidates

def
= max

(
max

(η,ζ)∈A
σ · h2

(
ζ

σ

)
+ (1− σ) · h2

(
η

1− σ

)
− (1−R), 0

)
,

with

A def
=

{
(η, ζ) ∈ [0, 1− σ]× [0, σ] : σ

[
κ̃

(
taux
σ

,
τ − µ

σ

)
− κ̃

(
taux
σ

,
ζ

σ

)]
+

(1− σ)

[
κ̃

(
ω

1− σ
,

µ

1− σ

)
− κ̃

(
ω

1− σ
,

η

1− σ

)]
⩽ 0

}
,

and
• αeq(R

′, τ ′) is the complexity exponent of ParityCheckEquations to compute all parity-
checks of relative weight τ ′ of a code of rate R′. It is instantiated here with a technique
devised in [CDMT22, §5 Eq. (5.4)] and its complexity is recalled in Proposition 11.

• αISD-Dumer(R
′, τ ′) is the complexity exponent of Decode-Dumer to return all the solutions

to the decoding problem in a code of rate R′ at relative distance τ ′. Its complexity is recalled
in Proposition 10.

Moreover, σ, Raux, τaux, ω, µ, are non-negative and such that
σ ⩽ R, τ − σ ⩽ µ ⩽ τ, ω ⩽ 1− σ,

νsamples ⩾ −2 εbias, (49)

0 ⩾ (1− σ) h2

(
ω

1− σ

)
+ σh2

(τaux
σ

)
−R (50)

0 ⩾ σ h2

(τaux
σ

)
− (σ −Raux) (51)

39

where κ̃ is the function defined in Proposition 1 and

εbias
def
= σ

[
κ̃

(
taux
σ

,
τ − µ

σ

)
− h2

(τaux
σ

)]
+ (1− σ)

[
κ̃

(
ω

1− σ
,

µ

1− σ

)
− h2

(
ω

1− σ

)]
.

Finally, we require that Naux = O(1).
Remark 5. In practice our parameters are such that we decode the auxiliary code at Gilbert-
Varshamov distance, namely τaux = σ h−12 (1−Raux).

While initially Dumer’s decoder [Dum91] is designed to produce only one solution to the de-
coding problem it suffices to re-run it as many time as the number of solutions we expect from
the decoding problem to find all of them. We get the following proposition giving the asymptotic
complexity of the Decode-Dumer procedure.
Proposition 10 (Asymptotic time complexity of ISD Decoder [Dum91] to produce all solutions
to the decoding problem). Let R def

= lim
n→∞

k
n , τ

def
= lim

n→∞
t
n . Let ℓ and w be two (implicit) parameters

of the algorithm and define λ
def
= lim

n→∞
ℓ
n , ω

def
= lim

n→∞
w
n . The time and space complexities of [Dum91]

to find a proportion 1 − o(1) of all solutions to the decoding problem at distance t on an [n, k]
linear code are given by 2n (αISD-Dumer+o(1)) and 2n (βISD-Dumer+o(1)) respectively where

αISD-Dumer
def
= min

ω,λ

(
π +max

(
R+ λ

2
h2

(
ω

R+ λ

)
, (R+ λ)h2

(
ω

R+ λ

)
− λ

))
, (52)

π
def
= h2(τ)− (1−R− λ)h2

(
τ − ω

1−R− λ

)
− (R+ λ)h2

(
ω

R+ λ

)
, (53)

νsol
def
= max (h2 (τ)− (1−R), 0) , (54)

βISD-Dumer
def
=

R+ λ

2
h2

(
ω

R+ λ

)
. (55)

Moreover λ and ω must verify the following constraints:
0 ⩽ λ ⩽ 1−R, max (R+ λ+ τ − 1, 0) ⩽ ω ⩽ min (τ,R+ λ) .

The expected number of solutions is given by 2n (νsol+o(1)).
We recall here the asymptotic complexity of the technique devised in [CDMT22, §5, Equation

(5.4)] based on [BJMM12] decoder to produce all parity-checks of low weight of a code.
Proposition 11. Asymptotic time complexity exponent of BJMM technique [BJMM12], [CDMT22,
§5, Equation (5.4)] to produce all parity-checks of relative weight ω of a code of rate R

αBJMM(R,ω)
def
= min

π1,π2,λ1,λ2

γ (56)

where
γ

def
= max(γ1, γ2, γ3)

γ1
def
= max (ν0, 2 ν0 − λ1) , γ2

def
= max (ν1, 2 ν1 − (λ2 − λ1)) , γ3

def
= max (ν2, 2 ν2 − (λ− λ2))

ν0
def
=

h(π1)

2
, ν1

def
= h(π1)− λ1, ν2

def
= h(π2)− λ2, ν3

def
= h(ω)− λ.

and the constraint region R is defined by the sub-region of nonnegative tuples (π1, π2, λ1, λ2)
such that

λ1 ⩽ λ2 ⩽ λ, π1 ⩽ π2 ⩽ π, π2 ⩽ 2π1, π ⩽ 2π2, π2 ⩽ λ1, π ⩽ λ2,

and

λ1 = π2 + (1− π2)h

(
π1 − π2/2

1− π2

)
, (57)

λ2 = ω + (1− ω)h

(
π2 − ω/2

1− ω

)
(58)

40

The expected number of parity-checks computed is given by 2n (ν3+o(1))

Appendix C. Proof of Proposition 4

Let us recall Proposition 4.

Proposition 4. Let P and N be two complementary subsets of J1, nK of size s and n − s
respectively. Let C be an [n, k]-code such that CP is of dimension s and let Caux be an [s, kaux]-
code. We have for any x ∈ Fs

2

bias
(h,caux)

$←H̃

(〈y,h〉+ 〈x, caux〉) =
1

2k−kaux

1∣∣∣H̃ ∣∣∣
n−s∑
i=0

s∑
j=0

Ni,jK
(n−s)
w (i)K

(s)
taux (j) (10)

where

Ni,j
def
=

∣∣{(r, cN
)
∈ (x+ C⊥aux)× CN : |r| = j and

∣∣(r+ eP)R+ eN + cN
∣∣ = i

}∣∣ ,
H̃ = {(h, caux) ∈ C⊥ × Caux : |hN | = w and |hP + caux| = taux}

and where R ∈ Fs×(n−s)
2 is such that for any h ∈ C⊥ we have hP = hN R⊺.

Let us devise a more convenient expression for 〈y,h〉+ 〈x, caux〉. By noticing that hP and hN

are linearly linked we get the following lemma.

Lemma 4. Let P and N be two complementary subsets of J1, nK of size s and n− s respectively.
Let C and Caux be two [n, k] linear and [s, kaux] linear codes respectively such that CP is of dimension
s. Let x ∈ Fs

2 and (h, caux) ∈ H̃ where recall that

H̃
def
= {(h, caux) ∈ C⊥ × Caux : |hN | = w and |hP + c⊥aux| = taux}.

We have that
〈y,h〉+ 〈x, caux〉 = 〈(x+ eP)R+ eN ,hN 〉+ 〈x,hP + caux〉 (59)

where R ∈ Fs×(n−s)
2 is (independently of the parity-check h) such that

hP = hN R⊺. (60)

Proof. First, let us show Equation (60). Suppose without loss of generality that P = J1, sK and
N = Js + 1, nK. Let G ∈ Fk×n

2 be a generator matrix of C. Because CP is of dimension s there
exists an invertible J ∈ Fk×k

2 such that

JG =

(
Ids R
0k−s R′

)
where R ∈ Fs×(n−s)

2 and R′ ∈ F(k−s)×(n−s)
2 . Furthermore, JG is another generator matrix for C.

Therefore for any h ∈ C⊥ we have JG h⊺ = 0. Since JGh⊺ = h⊺
P +Rh⊺

N , this gives (60). Now,
let us prove (59). Recall that, using Equation (60) we have:

〈y,h〉 = 〈eP ,hP〉+ 〈eN ,hN 〉

= 〈eP ,hN R⊤〉+ 〈eN ,hN 〉
= 〈ePR+ eN ,hN 〉,

and

〈x, caux〉 = 〈x,hP〉+ 〈x,hP + caux〉
= 〈xR,hN 〉+ 〈x,hP + caux〉

where in the last equality we used Equation (60). This concludes the proof. □
41

Proof of Proposition 4. Let us consider R ∈ Fs×(n−s)
2 as in Lemma 4 and let us prove Equation

(10). By definition of the bias and H̃ given Equation (60) we have the following computation and
,

bias
(h,caux))

$←H̃

(〈y,h〉+ 〈x, caux〉)

=
1∣∣∣H̃ ∣∣∣

∑
(h,caux)∈H̃

(−1)⟨y,h⟩+⟨x,caux⟩

=
1∣∣∣H̃ ∣∣∣

∑
(hN ,caux)∈(C⊥)

N
×Caux

|hN |=w,|RhN +caux|=taux

(−1)⟨(x+eP)R+eN ,hN ⟩+⟨x,hN R⊺+caux⟩

where in the last equality we used Lemma 4. Therefore,

bias
(h,caux))

$←H̃

=
1∣∣∣H̃ ∣∣∣

∑
(hN ,caux)∈(C⊥)

N
×Caux

f(hN , caux) (61)

where,

f(hN , caux)
def
= (−1)⟨(x+eP)R+eN ,hN ⟩+⟨x,hN R⊺+caux⟩1{|hN |=w,|hN R⊺+caux|=taux}.

Using Equation 3 we have that
(
C⊥
)
N

=
(
CN

)⊥ and thus
((
CN

)⊥ × Caux

)⊥
= CN × C⊥aux.

By using the Poisson formula (see [MS86, Lemma 2, Ch. 5.2]), together with the fact that
dim

(
CN × C⊥aux

)
= k − kaux, we get∑

(hN ,caux)∈(CN)
⊥×Caux

f(hN , caux) =
1

2k−kaux

∑
(cN ,c⊥

aux)∈C
N ×C⊥aux

f̂(cN , c⊥aux). (62)

Let us compute the right-hand term. By definition of f , it is readily seen that

f̂(y1,y2) =
∑

z1∈Fn−1
2 ,z2∈Fs

2

|z1|=w,|z1R
⊤+z2|=taux

(−1)⟨y1,z1⟩+⟨y2,z2⟩(−1)⟨(x+eP)R+eN ,z1⟩+⟨x,z1R
⊺+z2⟩

=
∑

z1∈Fn−s
2 :|z1|=w

(−1)⟨y1+(x+eP+y2)R+eN ,z1⟩
∑

z2∈Fs
2:|z1R

⊺+z2|=taux

(−1)⟨y2+x,z1R
⊺+z2⟩

= K(n−s)
w (|y1 + (y2 + x+ eP)R+ eN |) K

(s)
taux (|y2 + x|)

where in the last equality we used Fact 1. Plugging this into Equation (62) and then into Equation
(61) concludes the proof. □

Appendix D. Proof of Proposition 5

The proof of this Appendix is to prove Proposition 5 which we recall is given by

Proposition 5. Using Distribution 1 for C, Caux, e and y and given that our parameters verify
Parameter Constraint 1, that the number of computed LPN samples is the total number of available
LPN samples, i.e. H = H̃ and under Conjecture 1 we have that the expected number of candidates
per iteration is bounded by

EC,Caux (|S |) = Õ

(
max

(i,j)∈A

(
s
j

)(
n−s
i

)
2n−k

)
+ 1 (11)

where

A def
=

{
(i, j) ∈ J0, n− sK× J0, sK, ∣∣∣∣∣K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣ ⩽ n3.2

}
. (12)

42

The set S of candidates is defined by

S
def
=

{
s ∈ Fkaux

2 : ̂f
y,H̃ ,Gaux

(s) ⩾ δ

2
H̃

}
, (13)

where

H̃
def
=

(
n−s
w

)(
s

taux

)
2k−kaux

and δ
def
=

K
(n−s)
w (u)K

(s)
taux (t− u)(

n−s
w

)(
s

taux

) . (14)

The proof is divided in the following steps.

Step 1: in Lemma 5 we show that the expected size of S is related to the probability that the
bias of 〈y,h〉+ 〈x,hP〉 is superior to the threshold ≈ δ

2 .

Step 2: We give an exponential bound on the aforementioned probability by using Poisson
summation formula as it was done in the proof of Proposition 4.

Step 1. Recall that we have from Equation 13 that

S
def
=

{
s ∈ Fkaux

2 : ̂f
y,H̃ ,Gaux

(s) ⩾ δ

2
H̃

}
.

By using Lemma 1 we get the following condition for an element s to be a candidate:

Fact 4. Let s ∈ Fkaux
2 and x ∈ Fs

2 such that xG⊺
aux = s. We have,

s ∈ S ⇐⇒ bias
(h,caux)

$←H̃

(〈y,h〉+ 〈x, caux〉) ⩾
δ

2

H̃∣∣∣H̃ ∣∣∣ .
From there, we can derive the following lemma linking the expected size of S and the previous

bias.

Lemma 5. Under Distribution 1, using notation of Proposition 5 and under the constraint of
Proposition 5 that H = H̃ we have

EC,Caux (|S |) ⩽ 2kauxPC,Caux,x

 bias
(h,caux)

$←H̃

(〈y,h〉+ 〈x, caux〉) ⩾
δ

2

H̃∣∣∣H̃ ∣∣∣
+ 1

where x is taken uniformly at random in Fs
2 \ {C⊥aux + eP}.

Proof. We have the following computation,

EC,Caux (|S |) = E

 ∑
s∈Fkaux

2

1s∈S


⩽ 1 + E

 ∑
s∈Fkaux

2 :s ̸=ePG⊺
aux

1s∈S


= 1 + E

 ∑
s∈Fkaux

2 :s ̸=ePG⊺
aux

1

2s−kaux

∑
z∈Fs

2 :z G⊺
aux=s

1zG⊺
aux∈S


where in the last equality we used that Gaux, which is a generator matrix of Caux, has rank s−kaux
according to Distribution 1. Now, from the linearity of the expectation we get,

EC,Caux (|S |) ⩽ 1 +
1

2s−kaux

∑
z∈Fs

2 :z/∈C⊥aux+eP

PC,Caux (zG
⊺
aux ∈ S)

= 1 + 2kaux PC,Caux,x (xG
⊺
aux ∈ S)

43

where in the last line we used that Gaux has full rank,
∣∣C⊥aux + eP

∣∣ = 2s and x is taken uniformly
at random in Fs

2 \ {C⊥aux + eP}. Using Fact 4 concludes the proof. □

Step 2. The following lemma relates the upper-bound given in Lemma 5 to the involved probability
in Conjecture 1.

Lemma 6. Using Distribution 1 and notation of Proposition 5 we have

PC,Caux,x

 bias
(h,caux)

$←H̃

(〈y,h〉+ 〈x, caux〉) ⩾
δ

2

H̃∣∣∣H̃ ∣∣∣
 =

PC,Caux,x

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)

 .

where x is taken uniformly at random in Fs
2 \ {C⊥aux + eP}.

Proof. Recall that we have that from notation of Proposition 5,

H̃
def
=

(
n−s
w

)(
s

taux

)
2k−kaux

, δ
def
=

K
(n−s)
w (u)K

(s)
taux(t− u)(

n−s
w

)(
s

taux

) . (63)

According to Proposition 4 we have the following computation,

P

 bias
(h,caux)

$←H̃

(〈y,h〉+ 〈x, caux〉) ⩾
δ

2

H̃∣∣∣H̃ ∣∣∣


= P

 1

2k−kaux

1∣∣∣H̃ ∣∣∣
s∑

j=0

n−s∑
i=0

K
(s)
taux (j)K

n−s
w (i)Ni,j ⩾

δ

2

H̃∣∣∣H̃ ∣∣∣


= P

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

n−s
w (i)Ni,j ⩾

K
(n−s)
w (u)K

(s)
taux (t− u)

2


where in the last equality we used Equation (63). It concludes the proof. □

We will now use Conjecture 1 to bound the right-hand term of Lemma 6 by the probability
of the event “Ni,j 6= 0” for some low i and j (more precisely when K

(n−s)
w (u)K

(s)
taux(t − u) ⩽

K
(n−s)
w (i)K

(s)
taux(j)).

Lemma 7. Under Distribution 1 we have that for (i, j) ∈ J0, n− sK× J0, sK,
PC,Caux,x (Ni,j 6= 0) = O

((
s
j

)(
n−s
i

)
2kaux+n−k

)
where x is taken uniformly at random in Fs

2 \ {C⊥aux + eP}.

Proof. This is proved in the first lemma of Appendix E. □

We are now ready to prove Proposition 5.

proof of Proposition 5. Recall that we want to show,

EC,Caux (|S |) = Õ

(
max

(i,j)∈A

(
s
j

)(
n−s
i

)
2n−k

)
+ 1.

Lemma 5 gives us that

EC,Caux (|S |) ⩽ 2kauxPC,Caux,x

 bias
(h,caux)

$←H̃

(〈y,h〉+ 〈x, caux〉) ⩾
δ

2

H̃∣∣∣H̃ ∣∣∣
+ 1 (64)

44

Now using Lemma 6 we get that

P

 bias
(h,caux)

$←H̃

(〈y,h〉+ 〈x, caux〉) ⩾
δ

2

H̃∣∣∣H̃ ∣∣∣
 =

P

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)

 . (65)

From Conjecture 1,

P

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)

 = Õ
(

max
(i,j)∈A

PC,Caux,x (Ni,j 6= 0)

)
Therefore, using Lemma 7 we get

P

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)

 = Õ

((
s
j

)(
n−s
i

)
2kaux+n−k

)
Plugging this into Equation (65) and then in (64) concludes the proof. which proves our result. □

Appendix E. About the distribution of the Ni,j

This appendix is dedicated to studying the distribution of Ni,j and in particular to prove
Lemma 7 which was used in Appendix C to prove Proposition 4. We recall that it is given by

Lemma 7. Under Distribution 1 we have that for (i, j) ∈ J0, n− sK× J0, sK,
PC,Caux,x (Ni,j 6= 0) = O

((
s
j

)(
n−s
i

)
2kaux+n−k

)
where x is taken uniformly at random in Fs

2 \ {C⊥aux + eP}.

First, using the union bound we can devise the following upper bound on our target probability:

Fact 5.
P (Ni,j 6= 0) ⩽ E (Ni,j) .

To compute this expected value, we first need to give the following lemma giving the probability
that a word belongs to a random code.

Lemma 8. Let C be chosen uniformly at random among the [n, k] linear codes. Let c ∈ Fn
2 \ {0}

we have

PC (c ∈ C) =
2k − 1

2n − 1
, (66)

PC (0 ∈ C) = 1. (67)

Proof. This lemma directly follows from [BCN89, §3, Lemma 9.3.2, (iii)]. □

We now give the preliminary lemma which breaks down the expected value of Ni,j on the C⊥aux
part and on the CN part.

Lemma 9. Under Distribution 1 we denote by

N
(C⊥aux)
j

def
= EC,Caux,x

(
Nj

(
C⊥aux + x

))
where x is taken uniformly at random in Fs

2 \{C⊥aux+eP} and r ∈ C⊥aux+x. We denote by fixing x,

N
(CN)
i

def
= EC

(
Ni

(
CN + (r+ eP)R+ eN

))
(68)

45

We have that

N
(CN)
i =

(
n−s
i

)
2n−k

(
1 +O

(
2−(s−k)

))
(69)

N
(C⊥aux)
j ⩽

(
s
j

)
2kaux

(
1 +O

(
2−(s−kaux)

))
(70)

Furthermore, the term O
(
2−(s−kaux)

)
in Equation (69) does not depend on i·

Proof. Under Distribution 1, C is taken at random among the [n, k]-codes that are such that CP
is of full rank dimension s. Therefore, it is the same as if C was chosen by taking its generator
matrix G ∈ Fk×n

2 as follows:

GP
def
=

(
Is

0k−s

)
, GN

def
=

(
R

GN

)
.

where R is chosen uniformly at random among matrices of Fs×(n−s)
2 and GN is any generator

matrix of a code chosen uniformly at random among the [n − s, k − s]-codes. In particular, GN

and R are independent.
Now, by definition x ∈ Fs

2 \ {C⊥aux + eP} and r ∈ C⊥aux + x, therefore r + eP 6= 0. We deduce
that, (r+ eP)R is uniformly distributed in Fn−s

2 as a non-zero sum of uniformly distribution
vectors. To simplify the notations let us define the uniformly distributed vector

v
def
= (r+ eP)R+ eN

which is independent of CN (by construction GN and R are independent). Now, let us show
Equation (69). We have by linearity of the expected value that

N
(CN)
i =

∑
z∈Sn−s

i

PC,v
(
z ∈ CN + v

)
=

∑
z∈Sn−s

i

PC,v
(
z ∈ CN + v

∣∣v = z
)
PC,v (v = z) + PC,v

(
z ∈ CN + v

∣∣v 6= z
)
PC,v (v 6= z)

=
∑

z∈Sn−s
i

1

2n−s
+

2k−s − 1

2n−s − 1

(
1− 1

2n−s

)
(Lemma 8)

=

(
n−s
i

)
2n−k

(
2n−k

2n−s
+ 2n−k

2k−s − 1

2n−s − 1
O(1)

)
=

(
n−s
i

)
2n−k

(
1

2k−s
+

2−s − 2−k

2−s − 2−n
O(1)

)
=

(
n−s
i

)
2n−k

(
1

2k−s
+

1− 2−k+s

1− 2−n+s
O(1)

)
=

(
n−s
i

)
2n−k

(
1 +

1

2k−s
+O

(
2−k+s

))
(s ⩽ k ⩽ n)

Let us now show Equation (70). Recall that

N
(C⊥aux)
j

def
= ECaux,x

(
Nj

(
C⊥aux + x

))
46

where x is taken uniformly at random in Fs
2 \ {C⊥aux + eP}. By definition,

ECaux,x

(
Nj

(
C⊥aux + x

))
=
∑
z∈Ss

j

PCaux,x

(
z ∈ C⊥aux + x

)
=

∑
z∈Ss

j ,x0∈Fs
2

PCaux

(
z− x0 ∈ C⊥aux

)
Px,Caux (x = x0)

⩽
∑
z∈Ss

j

 ∑
x0∈Fs

2

2s−kaux − 1

2s − 1
Px,Caux (x = x0) + Px,Caux (x = z)


⩽
(
s

j

)
2s−kaux − 1

2s − 1
+

(
s
j

)
2s − 2kaux

⩽
(
s
j

)
2kaux

2kaux
2s−kaux − 1

2s − 1
+

(
s
j

)
2kaux

2kaux

2s − 2kaux

⩽
(
s
j

)
2kaux

2s − 2kaux

2s − 1
+

(
s
j

)
2kaux

1

2s−kaux − 1

⩽
(
s
j

)
2kaux

(
1 +O

(
2kaux−s

))
which completes the proof. □

We can now show that the expected value of Ni,j is the product of the two previously computed
quantities:

Lemma 10. Under Distribution 1 and when x is taken uniformly at random in Fs
2 \ {C⊥aux + eP}

we have

EC,Caux,x (Ni,j) = N
(C⊥aux)
j N

(CN)
i

where,

Ni,j
def
=
∣∣{(r, cN

)
∈ (x+ C⊥aux)× CN : |r| = j and

∣∣(r+ eP)R+ eN + cN
∣∣ = i

}∣∣
and,

N
(C⊥aux)
j

def
= EC,Caux,x

(
Nj

(
C⊥aux + x

))
; N

(CN)
i

def
= EC

(
Ni

(
CN + (r+ eP)R+ eN

))
.

Proof. By definition,

Ni,j =

Nj(C⊥aux+x)∑
u=0

Ni

((
r(u) + eP

)
R+ eN + CN

)
where r(u) is the u’th codeword of weight j of C⊥aux + x and Nj(C⊥aux + x) counts the number of
elements in C⊥aux + x of Hamming weight j. Therefore,

Ni,j =
∑
z∈Ss

j

Ni

(
(z+ eP)R+ eN + CN

)
1“z∈C⊥aux+x′′

=
∑

z∈Ss
j ,w∈S

n−s
i

1“w∈(z+eP)R+eN +CN ” 1“z∈C⊥aux+x′′

47

We deduce that,

EC,Caux,x (Ni,j) =
∑

z∈Ss
j ,w∈S

n−s
i

P
(
w ∈ (z+ eP)R+ eN + CN , z ∈ C⊥aux + x

)
=

∑
z∈Ss

j ,w∈S
n−s
i

P
(
w ∈ (z+ eP)R+ eN + CN | z ∈ C⊥aux + x

)
P
(
z ∈ C⊥aux + x

)

=
∑
z∈Ss

j

 ∑
w∈Sn−s

i

P
(
w ∈ (z+ eP)R+ eN + CN | z ∈ C⊥aux + x

)P
(
z ∈ C⊥aux + x

)
=
∑
z∈Ss

j

N
(CN)
i P

(
z ∈ C⊥aux + x

)
= N

(CN)
i N

(C⊥aux)
j

which completes the proof. □

Proof of Lemma 7. We prove our result by using Fact 5, then Lemmas 9 and 10. □

Appendix F. Proof of Proposition 6

F.1. A more minimalistic conjecture. The goal of this section is to devise a more minimalistic
but stronger conjecture which implies Conjecture 1 (in the sense that it involves only concentration
bound of the weight enumerator of some random linear codes). Furthermore, the aforementioned
implication is a key step of the proof of Proposition 6 which shows that the experimental model
implies Conjecture 1.

Conjecture 2. For any (i, j) ∈ J0, n− sK× J0, sK and any v ∈
s
0, Vj + n1.1 max

(√
Vj , 1

){
, we

have under Distribution 1,

PCaux,x

(∣∣Vj − Vj

∣∣ > n1.1 max

(√
Vj , 1

))
= Õ

(
2−n

)
, (71)

PC,Caux,x

(∣∣Ni,j − v Ni

∣∣ > n1.1 max

(√
v Ni, 1

)∣∣∣∣Nj = v

)
= Õ

(
2−n

)
. (72)

where
Vj

def
= Nj

(
C⊥aux + x

)
and

Ni
def
=

(
n−s
i

)
2n−k

, Vj
def
=

(
s
j

)
2kaux

. (73)

Remark 6. Recall that Ni,j
def
=
∑Vj

u=1 N
(u)
i where N

(u)
i

def
= Ni

((
r(u) + eP

)
R+ eN + CN

)
and

r(u) is the u’th codeword of weight j of C⊥aux + x. From this and using Lemma 9 it is readily seen
that we have that

EC,Caux,x (Ni,j | Vj = v) = v Ni (1 + o(1)) .

As such, Equation (72) in the previous Conjecture can also really be seen as a concentration
inequality.

Proposition 12. Conjecture 2 implies Conjecture 1.

The following lemmas will be useful to prove the this proposition.

Lemma 11 (Centering Lemma.). We have,
s∑

j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j =

s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)

(
Ni,j − VjNi

)
.

48

Proof. From the orthogonality of Krawtchouk polynomials relatively to the measure µ (i) =
(
n−s
i

)
[MS86, Ch. 5. §7. Theorem 16] we have:

n−s∑
i=0

(
n− s

i

)
K(n−s)

w (i) = 0.

By using the definition of Ni in Equation (73), we get,

0 =

s∑
j=0

Vj K
(s)
taux (j)

n−s∑
i=0

K(n−s)
w (i)Ni

=

s∑
j=0

n−s∑
i=0

K(n−s)
w (i)K

(s)
taux (j)Vj Ni.

Therefore,
s∑

j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j =

s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)

(
Ni,j − VjNi

)
which completes the proof. □

Corollary 2. We have,

P

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)

 =

Õ

(
max

(i,j)∈J0,n−sK×J0,sKP
(∣∣Ni,j − Vj Ni

∣∣ ⩾ 1

2 (n+ 1)2

∣∣∣∣∣K
(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣
))

Proof. The event
s∑

j=0

n−s∑
i=0

K
(s)
taux (j)K

n−s
w (i)

(
Ni,j − VjNi

)
⩾ 1

2
K(n−s)

w (u)K
(s)
taux (t− u)

implies that it exists j ∈ J0, sK and i ∈ J0, n− sK such that

K
(s)
taux (j)K

n−s
w (i)

(
Ni,j − VjNi

)
⩾

K
(n−s)
w (u)K

(s)
taux (t− u)

2 (n− s+ 1) (s+ 1)
. (74)

Therefore,

P

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)


= P

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

n−s
w (i)

(
Ni,j − VjNi

)
⩾ 1

2
K(n−s)

w (u)K
(s)
taux (t− u)

 (Lemma 11)

⩽ PC,Caux

 s∨
j=0

n−s∨
i=0

(
K

(s)
taux (j)K

n−s
w (i)

(
Ni,j − VjNi

)
⩾

K
(n−s)
w (u)K

(s)
taux (t− u)

2 (n− s+ 1) (s+ 1)

) (using (74))

⩽
s∑

j=0

n−s∑
i=0

P

(
K

(s)
taux (j)K

n−s
w (i)

(
Ni,j − VjNi

)
⩾

K
(n−s)
w (u)K

(s)
taux (t− u)

2 (n− s+ 1) (s+ 1)

)
(union bound)

= O
(
n2
)

max
i=0...n−s
j=0...s

P

(∣∣Ni,j − VjNi

∣∣ ⩾ 1

2 (n+ 1)2

∣∣∣∣∣K
(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣
)

which completes the proof. □
49

Lemma 12. Under Parameters constraint 1 we have that(
K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

)2

= ω
(
nα+8

)
Ni max

(
Vj ,

1

O(nα)

)

Proof. First, we simplify
(
K

(n−s)
w (u)K

(s)
taux (t− u)

)2
by using Constraint (i) of Parameters con-

straint 1 which we recall is given by:(
n−s
w

)(
s

taux

)
2k−kaux

=
ω
(
nα+8

)
δ2

, where δ
def
=

K
(n−s)
w (u)K

(s)
taux (t− u)(

n−s
w

)(
s

taux

) .

By reordering the terms in the previous equation we get:(
K(n−s)

w (u)K
(s)
taux (t− u)

)2
= 2k−kaux

(
s

taux

)(
n− s

w

)
ω(nα+8).

Now, to show the lemma we only have to show that

2k−kaux
(

s
taux

)(
n−s
w

)(
K

(n−s)
w (i)K

(s)
taux (j)

)2) ⩾ Ni max

(
Vj ,

1

O(nα)

)
. (75)

First ,let us lower bound 1(
K

(n−s)
w (i)

)2 . From the orthonormality relations of the Krawtchouk

polynomials [MS86, Ch. 5. §7. Theorem 16] with the measure µ1 (v) =
(n−s

v)
2n−s we have that

n−s∑
v=0

(
n− s

v

)(
K(n−s)

w (v)
)2

=

(
n− s

w

)
2n−s,

and thus, as the previous sum is composed of positive terms, we have that

1(
K

(n−s)
w (i)

)2 ⩾
(
n−s
i

)(
n−s
w

)
2n−s

. (76)

Now, let us lower-bound 1(
K

(s)
taux (j)

)2 . Using the same orthonormality argument relatively to the

measure µ2 (v) =
(sv)
2s we get

1(
K

(s)
taux(j)

)2 ⩾
(
s
j

)(
s

taux

)
2s

.

Furthermore, from Fact 1 we can also deduce the following inequality

(
K

(s)
taux (j)

)2
⩽
(

s

taux

)2

.

Combining the last two equations we get that

1(
K

(s)
taux(j)

)2 ⩾ min

((
s
j

)(
s

taux

)
2s

,
1(
s

taux

)2
)
. (77)

50

Finally let us show Equation (75) by using Equation (76) and (77) :

2k−kaux
(

s
taux

)(
n−s
w

)(
K

(n−s)
w (i)K

(s)
taux (j)

)2 ⩾ 2k−kaux

(
s

taux

)(
n− s

w

) (
n−s
i

)(
n−s
w

)
2n−s

min

((
s
j

)(
s

taux

)
2s

,
1(
s

taux

)2
)

=

(
n−s
i

)
2n−k

min

((
s
j

)
2kaux

,
2s−kaux(

s
taux

))

=

(
n−s
i

)
2n−k

min

((
s
j

)
2kaux

,
1

O(nα)

)
(Constraint (iii) of Eq. (15))

= Ni min

(
Vj ,

1

O(nα)

)
.

This completes the proof. □

Proof of Proposition 12. Let us suppose that the Parameter constraint 1 is verified and that Con-
jecture 2 is true. We want to show Conjecture 1 holds, namely that

P

 s∑
j=0

n−s∑
i=0

K
(s)
taux (j)K

(n−s)
w (i)Ni,j ⩾

1

2
K(n−s)

w (u)K
(s)
taux (t− u)


= Õ

(
max

(i,j)∈A
P (Ni,j 6= 0) + 2−n

)
.

Using Corollary 2, we only have to show that for any (i, j) ∈ J0, n− sK× J0, sK we have

P

(∣∣Ni,j − Vj Ni

∣∣ ⩾ 1

2 (n+ 1)2

∣∣∣∣∣K
(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣
)

= Õ
(

max
(i∗,j∗)∈A

P (Ni∗,j∗ 6= 0) + 2−n
)
.

To ease up the notations let us denote by

Ri,j
def
=

1

2 (n+ 1)2

∣∣∣∣∣K
(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣ . (78)

Thus, we only have to show that

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
= Õ

(
max

(i∗,j∗)∈A
P (Ni∗,j∗ 6= 0) + 2−n

)
. (79)

We prove the previous equality for each cases: (i, j) ∈ A or (i, j) /∈ A, where recall that

A def
=

{
(i, j) ∈ J0, n− sK× J0, sK, ∣∣∣∣∣K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣ ⩽ n3.2

}
.

Cases 1: Here we suppose that (i, j) ∈ A. Let us prove Equation (79). Using the law of total
probability we have that

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
⩽ P (Ni,j 6= 0) + P

(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j , Ni,j = 0
)
.

As (i, j) ∈ A,

P (Ni,j 6= 0) = Õ
(

max
(i∗,j∗)∈A

P (Ni∗,j∗ 6= 0)

)
we only have left to show that:

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j , Ni,j = 0
)
= Õ

(
max

(i∗,j∗)∈A
P (Ni∗,j∗ 6= 0) + 2−n

)
.

We now show the previous equation, by proving that,

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j , Ni,j = 0
)
= Õ

(
2−n

)
. (80)

51

We have:

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j , Ni,j = 0
)
= P

(
Vj Ni ⩾ Ri,j

)
(we used that Vj , Ni > 0)

= P
(
Vj ⩾

Ri,j

Ni

)
= P

(
Vj − Vj ⩾

Ri,j

Ni

− Vj

)
⩽ P

(∣∣Vj − Vj

∣∣ ⩾ Ri,j

Ni

− Vj

)
.

Recall that from Equation (71) of Conjecture 2 we have that

PCaux,x

(∣∣Vj − Vj

∣∣ > n1.1 max

(√
Vj , 1

))
= Õ

(
2−n

)
.

Therefore, we only have to show that for n big enough we have

Ri,j

Ni

− Vj ⩾ n1.1 max

(√
Vj , 1

)
(81)

to prove Equation (80). Let us prove Equation (81). By definition of Ri,j in Equation (78) and
using Lemma 12 we have that

R2
i,j =

1

4 (n+ 1)4

(
K

(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

)2

=
1

4 (n+ 1)4
ω
(
nα+8

)
Ni max

(
Vj ,

1

O(nα)

)
= f(n)max

(
Ni Vj , n

−αNi

)
(82)

where f(n) = ω
(
nα+4

)
. Therefore,

R2
i,j

Ni
2

1

n2.4 max
(
Vj

2
, 1
) =

f(n)max
(
Ni Vj , n

−α Ni

)
n2.4 Ni

2
max

(
Vj

2
, 1
)

=
f(n)max

(
Vj

Ni
, n−α

Ni

)
n2.4 max

(
Vj

2
, 1
)

=


1

n2.4 f(n)max
(

1
NiVj

, n−α

NiVj
2

)
if Vj > 1

1
n2.4 f(n)max

(
Vj

Ni
, n−α

Ni

)
if Vj ⩽ 1

⩾ 1

n2.4
f(n)min

(
1

NiVj

,
n−α

Ni

)
⩾ n−2α

n2.4
f(n) min

(
1

NiVj

,
1

n−α Ni

)
=

n−2α

n2.4

f(n)

max
(
NiVj , n−α Ni

)
=

n−2α

n2.4

f(n)2

R2
i,j

(By Equation (82))

=
ω
(
n5.6

)
R2

i,j

(f(n) = ω
(
nα+4

)
)

= ω(1) (83)
52

where in the last line we used the fact that (i, j) ∈ A: by definition,

Ri,j =
1

2 (n+ 1)2

∣∣∣∣∣K
(n−s)
w (u)K

(s)
taux (t− u)

K
(n−s)
w (i)K

(s)
taux (j)

∣∣∣∣∣ ⩽ 1

2 (n+ 1)2
n3.2

and thus
1

R2
i,j

⩾ 2 (n+ 1)
2

n3.2
.

Finally, Equation (83) shows that for n big enough
Ri,j

Ni

⩾ n1.2 max
(
Vj , 1

)
And as such, for n big enough

Ri,j

Ni

− Vj ⩾ n1.1 max
(
Vj , 1

)
⩾ n1.1 max

(√
Vj , 1

)
which proves Equation (81). Therefore we have just proved Equation (79) in the case where
(i, j) ∈ A.

Case 2: . Here we suppose that (i, j) /∈ A. Let us prove Equation (79). We only have to prove
that:

P
(∣∣Ni,j − Vj Ni

∣∣ ⩾ Ri,j

)
= Õ

(
2−n

)
.

Let M be defined as
M

def
= Vj + n1.1 max

(√
Vj , 1

)
. (84)

By the law of total probability we have that

PC,Caux,x

(∣∣Ni,j − VjNi

∣∣ > Ri,j

)
=

P
(∣∣Ni,j − VjNi

∣∣ > Ri,j |Vj > M
)
P (Vj > M)+

M∑
v=0

P
(∣∣Ni,j − VjNi

∣∣ > Ri,j |Vj = v
)
P (Vj = v) .

Which we can upper bound by

PC,Caux,x

(∣∣Ni,j − VjNi

∣∣ > Ri,j

)
⩽ P (Vj > M) + max

v=0...M
P
(∣∣Ni,j − v Ni

∣∣ > Ri,j |Vj = v
)
.

By definition of M in Equation (84) and using Equation (71) of Conjecture 2 we get that
P (Vj > M) = Õ

(
2−n

)
.

Now, we only have left to prove that for any v ∈ J0,MK we have
P
(∣∣Ni,j − v Ni

∣∣ > Ri,j |Vj = v
)
= Õ

(
2−n

)
.

Let us consider v ∈ J0,MK. Let us first show that for n big enough we have that

n1.1 max

(√
v Ni, 1

)
⩽ Ri,j . (85)

We have
n2.2 max

(
v Ni, 1

)
⩽ n2.2 max

(
M Ni, 1

)
⩽ n2.2 max

(
Vj Ni + n1.1Ni max

(√
Vj , 1

)
, 1

)
(Using Equation (84))

⩽ max

(
2 n2.2 Vj Ni, 2 n

3.3Ni

√
Vj , 2 n

3.3Ni, n
2.2

)
53

To show Equation (85), ne only have left to prove that, for n big enough, each term in the previous
maximum is smaller than R2

i,j . First let us recall that by definition of Ri,j in Equation (78) and
from Lemma 12,

R2
i,j = max

(
ω
(
nα+4

)
Ni Vj , ω

(
n4
)
Ni

)
.

For n big enough we have that:
2 n2.2 Vj Ni ⩽ nα+4Ni Vj ⩽ R2

i,j ,

2 n3.3Ni

√
Vj ⩽

{
n4Ni ⩽ R2

i,j when Vj ⩽ 1

nα+4Ni Vj ⩽ R2
i,j when Vj > 1

,

2 n3.3 Ni ⩽ n4Ni ⩽ R2
i,j ,

n2.2 ⩽ R2
i,j .

Where in the last equation we used the fact that (i, j) /∈ A, thus Ri,j ⩾ n3.2

2(n+1)2
and thus R2

i,j ⩾ n2.3

for n big enough. We have shown that
n2.2 max

(
v Ni, 1

)
⩽ R2

i,j

and thus we have shown Equation (85). Finally we have

P
(∣∣Ni,j − VjNi

∣∣ > Ri,j |Vj = v
)
= O

(
P
(∣∣Ni,j − VjNi

∣∣ > n1.1 max

(√
v Ni, 1

)
|Vj = v

))
= Õ

(
2−n

)
where in the last line we used Equation (72) of Conjecture 2. This concludes the proof. □
Lemma 13. The Poisson Model 1 imply Conjecture 2.
Proof. Let M be defined as

M
def
= Vj + n1.1 max

(√
Vj , 1

)
(86)

Recall that to show Conjecture 2 we only have to show that

PCaux,x

(∣∣Vj − Vj

∣∣ ⩾ n1.1 max

(√
Vj , 1

))
= Õ

(
2−n

)
, (87)

∀v ∈ J0,MK, PC,Caux,x

(∣∣Ni,j − v Ni

∣∣ > n1.1 max

(√
v Ni, 1

) ∣∣∣∣Nj = v

)
= Õ

(
2−n

)
(88)

Under the Poisson Model 1 we have that
Ni,j ∼ Poisson

(
Vj Ni

)
, Vj ∼ Poisson

(
Vj

)
.

We will use the following fact: when X follows a Poisson distribution of parameter λ and g(n) =
ω(n), then we have that

P
(
|X− λ| > g(n)max

(√
λ, 1
))

= 2−ω(n). (89)

Let us prove this claim. It is known [Gol17, Prop 11.15] that we have the following exponential
tail bound for X:

P (|X− λ| > r) ⩽ 2 e
− r2

2 (λ+r) .

Thus,

P
(
|X− λ| > g(n)max

(√
λ, 1
))

⩽ 2 e
− g(n)2 max(λ,1)

2 (λ+g(n)max(
√

λ,1))

⩽ 2 e

− g(n)

2

(
λ+g(n)max(

√
λ,1)

g(n)max(λ,1)

)
.

We only have left to show that

λ+ g(n)max
(√

λ, 1
)

g(n)max (λ, 1)
= O(1) .

54

First it is readily seen that we have that (g(n) = ω(n))
λ

g(n)max (λ, 1)
= O(1) ,

and second,
g(n)max

(√
λ, 1
)

g(n)max (λ, 1)
=

{
1 = O(1) if λ ⩽ 1
1√
λ
= O(1) if λ > 1.

which concludes the proof of Equation (89). Equation (87) directly follows from Equation (89).
Equation (88) also directly follow sfrom Equation (89) by noticing that Ni,j = v ∼ Poisson

(
v Ni

)
when Vj = v. □
Proof of Proposition 6. Apply successively Lemma 13 and Proposition 12. □

Appendix G. Instantiating the Auxiliary Code Caux with an Efficient Decoder

We use here notation from §7. In particular, we suppose the auxiliary code Caux is a product
of b small random codes where

b = Θ(log n). (90)
We have to show that for such b, the analyses from Propositions 2 and 5 still hold. Indeed,

these analyses were done as if Caux were a random code equipped with genie aided decoders. Here
we compute H as a subset of

H̃ ⊆
{
(h, caux) ∈ C⊥ × Caux : ∀i ∈ J1, bK , |hN (i)| = w

b and |hP(i) + ci| = taux
b

}
by decoding each parity-check performing an exhaustive search on each block. We have therefore
to show that in this case,

i. the bias
bias

(h,caux)
$←H̃

(〈caux + hP , eP〉+ 〈eN ,hN 〉)

is of the same order as that given by Proposition 2,
ii. and the number of candidates to test

EC,Caux (|S |)
is of the same order as that given by Proposition 5.

To prove item i., we first suppose that eP and eN have a weight which is fairly distributed,
that is:

∀i ∈ J1, bK , |eP(i)| = t−u
b and |eN (i)| = u

b . (91)
This happens with a probability:

Psucc =

(
s/b

(t−u)/b
)b((n−s)/b

u/b

)b(
s

t−u
)(

n−s
u

) = Ω
(
n
(

b
cn

)b) (92)

where c is constant in n. So we only need to iterate the whole double-RLPN algorithm a sub-
exponential number of times, namely at most 1

Psucc
times. Note that (91) is not a necessary

condition to achieve our decoding so this overcost is overestimated.
Now, assuming Condition (91), then we can see the bias above as the product of b independent

biases involving smaller vectors. More formally, we have
bias

(h,caux)
$←H

(〈caux + hP , eP〉+ 〈eN ,hN 〉)

=

b∏
i=1

bias
(h(i),caux(i))

$←H̃i

(〈caux(i) + hP(i), eP(i)〉+ 〈eN (i),hN (i)〉)
(93)

where
H̃i

def
=
{
(hP(i),hN (i), caux(i)) ∈

(
CP(i)∪N (i)

)⊥ × Ci
: |hN (i)| = w

b and |hP(i) + ci| = taux
b

} (94)

55

Moreover, let us degrade the Constraints (7) of Proposition 2 by replacing the polynomial factor
nα by a super-polynomial

A
def
=

nα−1+log(c)+log(n)

log(n)log(n)
. (95)

On the one hand, this super-polynomial factor is multiplied to the final complexity, but on the
other hand the new constraint (with the original one (8)) induces:(

(n−s)/b
w/b

)(
s/b

taux/b

)
2(k−kaux)/b

= ω

(
nα/ log(n)

δ2/ log(n)

)
(96)

and (
(n−s)/b

w/b

)(
s/b

taux/b

)
2k/b

= O
(
nα/ log(n)

)
and

(
s/b

taux/b

)
2(s−kaux)/b

= O
(
nα/ log(n)

)
. (97)

Which allows us to say, using Proposition 2, that for all i ∈ J1, bK and for a proportion 1− o(1)
of codes Ci and CP(i)∪N (i):

bias
(h(i),caux(i))

$←H i

(〈caux(i) + hP(i), eP(i)〉+ 〈eN (i),hN (i)〉) = δ1/ log(n)(1− o(1)). (98)

By specifying the values of both o(1) (see proof of Proposition 2 in Appendix A), we can deduce
that i. is verified.

To verify item ii., we can adapt Section D to show that

EC,Caux (|S |) = Õ

 max
(i,j)∈A

(
s/b
j

)b((n−s)/b
i

)b
2n−k

+ 1 (99)

where

A def
=

(i, j) ∈ J0, n−s
b K× J0, s

b K, K((n−s)/b)
w/b (u/b)K

(s/b)
taux/b

((t− u)/b)

K
((n−s)/b)
w/b (i)K

(s/b)
taux/b

(j)
⩽ n2/b

 , (100)

S
def
= {s ∈ Fkaux

2 : ̂f
y,H̃ ,Gaux

(s) ⩾ δ

2
H̃}, (101)

and

H̃
def
=

(
(n−s)/b

w/b

)b(s/b
taux/b

)b
2k−kaux

. (102)
Finally, up to a sub-exponential factor, the above expectation is of the same order as in Propo-

sition 5.

Appendix H. Proofs of the statements made in Section 8

Proof of Proposition 7

Proposition 7. Consider a lattice Λ ⊆ Rn and consider some word y = x + e ∈ Rn where x is
in Λ. Let W̃ be the set of dual lattice vectors of Euclidean weights in (w− ε, w+ ε) in Λ∨ and let
f

W̃
(y)

def
=
∑

w∈W̃
cos(2π〈x,y〉). We have

f
W̃
(y) =

1

|Λ∨|
∑
j⩾0

Nj

jn (2π)n/2

(
(2π(w + ε)j)n/2Jn/2(2π(w + ε)j) (17)

− (2π(w − ε)j)n/2Jn/2(2π(w − ε)j)
)

where Nj is the number of words of Euclidean norm j in Λ + e and Jν is the Bessel function of
the first kind of order4 ν.

4Here the j’s belong to the discrete set of all possible norms in the lattice and should not be viewed as an integer
value.

56

It is helpful to notice before the following link between the Bessel functions and the Fourier
transform of the indicator function 1⩽w of the words of Euclidean norm ⩽ w in Rn (see [DDRT23,
Fact 4.11])

Lemma 14. We have for any positive integer n, any w ⩾ 0, any x in Rn

1̂⩽w(x) =

(
w

‖x‖2

)n/2

Jn/2 (2πw‖x‖2)

where f̂(x) =
∫
Rn f(x)e−2iπ⟨x,y⟩dy for f : Rn → C.

Proof of Proposition 7. First, notice that,

f
W̃
(y) =

1

2

∑
w∈W̃

(
e2iπ⟨w,y⟩ + e−2iπ⟨x,y⟩

)
=
∑
w∈W̃

e−2iπ⟨w,y⟩ (w 7→ −w is a bijection in W)

=
∑

w∈Λ∨

(1⩽w+ε(w)− 1⩽w−ε(w)) e−2iπ⟨w,y⟩ (103)

Recall now the Poisson summation formula, for any y ∈ Λ+ e and sufficiently regular function f ,∑
x∈Λ∨

f(x)e−2iπ⟨x,y⟩ =
1

|Λ∨|
∑

x∈Λ+e

f̂(x)

Plugging this formula into Equation (103) yields to,

f
W̃
(y) =

1

|Λ∨|
∑

x∈Λ+e

(
1̂⩽w+ε(x)− 1̂⩽w−ε(x)

)
=

1

|Λ∨|
∑
j⩾0

Nj

jn/2

(
(w + ε)n/2Jn/2 (2π(w + ε)j)− (w − ε)n/2Jn/2(2π(w − ε)j)

)
=

1

|Λ∨|
∑
j⩾0

Nj

(2π)n/2 jn

(
(2π(w + ε)j)

n/2
Jn/2 (2π(w + ε)j)

− (2π(w − ε)j)
n/2

Jn/2(2π(w − ε)j)
)

(104)

which concludes the proof. □

An Approximation. We have also an approximate form for f
W̃
(y) which is given by

f
W̃
(y) ≈ 4πε

|Λ∨|
∑
j⩾0

jNj

(
w

j

)n/2

Jn/2−1(2πwj). (105)

This follows from the fact that
d

dx

(
xn/2Jn/2(x)

)
= xn/2Jn/2−1(x). (106)

Let,

X
def
= 2πwj and h

def
= 2πεj

Notice that,(
(2π(w + ε)j)

n/2
Jn/2 (2π(w + ε)j)− (2π(w − ε)j)

n/2
Jn/2(2π(w − ε)j)

)
= (X + h)n/2Jn/2(X + h)− (X − h)n/2Jn/2(X − h)

57

From Equation (106),

(X + h)n/2Jn/2(X + h)− (X − h)n/2Jn/2(X − h) ≈ 2h
d

dX

(
Xn/2Jn/2(X)

)
= 2h Xn/2Jn/2−1(X)

= (4πεj) (2πwj)n/2Jn/2−1(2πwj)

Plugging this into Equation (104) yields (105).
We also recall that we make the approximation

fW (y) ≈ N∣∣∣W̃ ∣∣∣ fW̃
(y) (107)

The number N∨⩽x of dual vectors of length ⩽ x can be approximated using the Gaussian
heuristic:

N∨⩽x ≈
xn

√
nπ

(
n

2πe

)n/2 1

|Λ∨|
Thus we have:∣∣∣W̃ ∣∣∣ = N∨⩽w+ε −N∨⩽w−ε ≈

(w + ε)n − (w − ε)n√
n

2πe

n ·
√
πn · |Λ∨|

≈ 2nεwn−1√
n

2πe

n √
πn |Λ∨|

Putting this into Equation (107) shows,

fW (y) ≈ N
|Λ∨|

√
nπ
(

n
2πe

)n/2
2nεwn−1 f

W̃
(y)

and after some further computation

fW (y) ≈ N |Λ∨|
√
nπ
(

n
2πe

)n/2
2nεwn−1

4πε

|Λ∨|
∑
j⩾0

jNj

(
w

j

)n/2

Jn/2−1(2πwj)

= N

√
nπ

2nwn−1

(n

2πe

)n/2
4π
∑
j⩾0

jNj

(
w

j

)n/2

Jn/2−1(2πwj)

= N

√
n nn/2

n

1

wn−1

√
π π

πn/2

4

2 2n/2
1

en/2

∑
j⩾0

Nj w
n/2 1

jn/2−1
Jn/2−1(2πwj)

= N
√
n
√
π e−1 nn/2−1 π−(n/2−1) 2−(n/2−1)e−(n/2−1)

∑
j⩾0

Nj

(
1

wj

)n/2−1

Jn/2−1(2πwj)

= N

√
nπ

e

∑
j⩾0

Nj

(
n

2πewj

)n/2−1

Jn/2−1(2πwj)

58

	1. Introduction
	1.1. Background
	1.2. Our Contribution

	2. Notation and Coding Theory Background
	3. Reduction from Sparse to Plain LPN
	3.1. The Approach
	3.2. Estimating the New Noise

	4. The double-RLPN Algorithm
	5. Estimating the Number of False Candidates
	5.1. Main Duality Tool
	5.2. Intuition on How this Formula Allows to Estimate | S |
	5.3. Main Proposition

	6. Experimental Evidence for Our Analysis
	7. Instantiating the Auxiliary Code with an Efficient Decoder
	8. Links with Dual Attacks in Lattice Based Cryptography
	References
	Appendix A. Proof of Proposition 2
	Appendix B. Correctness and Running-Time of the double-RLPN algorithm (Algorithm 4)
	B.1. Correctness of the algorithm
	B.2. Asymptotic complexity of double-RLPN

	Appendix C. Proof of Proposition 4
	Appendix D. Proof of Proposition 5
	Appendix E. About the distribution of the Ni,j
	Appendix F. Proof of Proposition 6
	F.1. A more minimalistic conjecture

	Appendix G. Instantiating the Auxiliary Code with an Efficient Decoder
	Appendix H. Proofs of the statements made in Section 8

