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Abstract. This paper presents full round distinguishing and key re-
covery attacks on lightweight block cipher SAND-2 with 64-bit block
size and 128-bit key size, which appears to be a mixture of the AND-
Rotation-XOR (AND-RX) based ciphers SAND and ANT. However, the
security arguments against linear and some other attacks are not fully
provided. In this paper, we find that the combination of a SAND-like
nibble-based round function and ANT-like bit-based permutations will
cause dependencies and lead to iterative linear and differential trails with
high probabilities. By exploiting these, full round distinguishing attacks
on SAND-2 work with 26 queries for linear and 2°%-%° queries for differ-
ential in the single-key setting. Then, full round key recovery attacks are
also mounted, which work with the time complexity 24823 for linear and
26410 o1 differential. It should be noted that the dependency observed
in this paper only works for SAND-2 and will not threaten SAND and
ANT. From the point of designers, our attacks show the risk of mixing
the parts of different designs, even though each of them is well-studied
to be secure.

Keywords: Linear Cryptanalysis - Differential Cryptanalysis - Distin-
guishing Attack - Key Recovery Attack - SAND-2

1 Introduction

With strong demands of lightweight symmetric-key primitives, the design and
cryptanalysis of lightweight ciphers (e.g., block cipher and hash function) has
been one of the most productive lines of research in recent years. As one of the
most important building blocks of symmetric primitives, lightweight block cipher
has motivated and inspired many important research directions and works.
Taking a variety of cost metrics into considerations under lightweight scenar-
ios, it is naturally a challenge to balance different perspectives when designing
the block cipher, including security level, hardware cost and software efficiency.



For instance, SIMON and SPECK proposed by NSA [BSS*13] are two quite
elegant and competitive algorithms but without any design rationale and secu-
rity analysis in the design paper, where the former is hardware-oriented and the
latter is software-oriented. SKINNY [BJK™16] is then proposed by Beierle et
al. at CRYPTO 2016 as a competitor to SIMON in terms of performance, and
it provides stronger security guarantees with regard to differential [BS91] and
linear [Mat93] attacks, which are the most classical and powerful cryptanalytic
methods. Later, Chen et al. [CFST22] proposed a new family of AND-RX block
ciphers SAND at DCC 2022, which admits an equivalent nibble-based structure,
this makes SAND both software and hardware efficient. They also introduced a
novel approach to analyze the security, which allows for high security in both
single-key and related-key [Knu91,Bih94] scenarios.

Recently, Chen and Li et al. [CLGH23]| follows SAND and ANT [CFF*19]
block ciphers to design a new cipher called SAND-2', which adopts almost all
SAND cipher and bit-based permutations similar to that in ANT cipher. They
aim to achieve a better diffusion and security bounds of differential, however,
the designers only evaluate the resistance against differential attack and do not
provide other common cryptanalysis. Especially considering that the bit-based
permutations totally break the nibble-based structure, it seems that the de-
signers of SAND-2 did not take care of the dependency existing in the round
function, which has already been discussed by the designers of SAND [CFST22,
Section 3]. And it is worth noting that this similar dependency has already been
observed by Sasaki [Sasl8] to break full round ANU cipher [BPSP16] under
related-key setting. Naturally, we wonder that whether there are some depen-
dencies in SAND-27 and if there exists, whether we can make full use of such
dependencies to provide more in-depth security evaluations of SAND-27

Contributions. In this paper, we answer the above two questions positively. By
carefully observing the bit-based round function of SAND-2, we firstly find some
dependencies that can be used to construct linear and differential trails, which
help us derive two-round iterative differential and linear characteristics. Then,
we mount longer number of rounds distinguishers from these iterative trails.
Based on which, we finally launch full round key recovery attacks on SAND-2,
our results are given in Table 1.

Dependencies in the round function of SAND-2. Although the designers
of SAND-2 adopted bit-based permutations Py/P; to mix bits in Go/G1 as com-
plicated as possible, considering the software implementation, it still preserves
some properties (like the partial rotation invariant property of Py and P; in
ANT cipher). Based on these properties, for SAND-2 round function, we can
easily derive the same input bit for two parallel non-linear components Gy and
G after regrouping by rotations and bit permutations Py/P;.

! SAND-2 uses the name of SAND, but it is designed by totally different designers.



Iterative linear and differential trails of SAND-2. Based on the observed
dependencies, we then construct two-round iterative linear and differential char-

acteristics of SAND-2. For linear (020, 022) 2, (020, 022), it has the linear bias

with 272, For differential (0x8,0z0) 2 (0x8, 020), it has the differential prob-
ability with 272, Both only have one active bit and have other seven rotation
equivalent trails due to the partial rotation invariant of bit-based permutations.

Then, we mount longer linear and differential distinguishers based on these
iterative characteristics, the clustering effect is also considered, SAT/SMT based
automatic search method clustering and experiments of these distinguishers are
performed as verifications. For linear, these iterative based longer number of
rounds distinguishers has no significant clustering effect. For differential, we de-
velop a formula based method to approximately evaluate the clustering differen-
tial probability, especially for longer number of rounds where SAT/SMT based
method is inefficient. The experiment results show that our method is effective
and efficient to approximate these iterative differential distinguishers.

Full round attacks on SAND-2. With these carefully constructed and eval-

uated iterative trails, full round distinguishers can be mounted: (022, 0z0) A,

(020, 0x2) for linear with linear probability 2746 and (020, 0x8) A, (028, 020)
for differential with differential probability 27°8-60, These distinguishers not only
lead to full round distinguishing attacks on SAND-2, but also they have a high
probability, especially for linear with a practical complexity 24¢. Then, we launch
linear and differential full round key recovery attacks on SAND-2, which are sum-
marized in Table 1. It is worth noting that the time and data complexity of linear
full round key recovery attack are even practical (both under 259).

Table 1: Distinguishing and key recovery attacks on SAND-2 (the total rounds
of SAND-2 are 47).

Attack Method Rounds Time! Data Memory Success Prob. Source
Distinguisher
Differential 6 - - - - [CLGH23]
Linear 47 216-00 916.00 1 - Section 3.1
Differential 47 258.60 95860 1 - Section 3.2

Key Recovery

Linear 47 (41)F 24823 945.50  935.00 83.24% Section 4.1
Differential 47 (43) 20410 96020 957.20 92.61% Section 4.2
Differential 47 (41) 27370 25313 95313 90.65% Appendix A

f Time complexity is evaluated by one full round encryption of SAND-2.
 The number of rounds of the distinguisher used for key recovery attack are 41.



Outline of the paper. In Section 2, we firstly give a brief introduction of
SAND and SAND-2 block ciphers. In Section 3, we show the dependencies in
the round function of SAND-2, which are used to construct differential and
linear distinguishers. Based on the distinguishers we mount, full round linear and
differential key recovery attacks on SAND-2 are provided in Section 4. Finally,
we conclude the paper.

2 Preliminary

The design of SAND-2 almost follows SAND block cipher, except that the design-
ers of SAND-2 break the nibble-based equivalent structure of SAND by adopting
bit-based permutations in the middle of two parallel expanding round functions,
which may incur dependency problems as discussed in the design rationales of
SAND [CFS*22, Section 3]. This also makes the security analysis of SAND-
2 more difficult, that is, the cipher cannot be analyzed under nibble-level like
SAND. We note that SAND-2 still lacks enough cryptanalysis and the designers
only provide a rough security bound against differential attack. Since SAND-2
directly uses the same key schedule and the similar round function of SAND, we
will first give an introduction to SAND and then briefly introduce SAND-2.

2.1 Specification of SAND block cipher

SAND is an AND-RX block cipher with Feistel construction, which has two
versions SAND-64 and SAND-128. As SAND-2 only has 64-bit version, we only
introduce SAND-64 here, it has 48 total rounds and 128-bit keysize.

XI’

Fig. 1: Round Function of SAND-64.

Round function of SAND. As shown in Fig. 1, the left branch X, firstly
has a double expanding process and rotates with rotation constants (sg,s1),
where (s9,s1) = (0,4) for its Synthetic S-box (SSb) equivalent representation.
Non-linear components Gy and G are then applied parallelly. Before applying a



nibble equivalent permutation P,, and adding to the right branch Y., the outputs
of Gy and G are compressed by XOR operations. For more details, we refer the
reader to SAND design paper [CFST22].
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Fig. 2: Key schedule of SAND-64. Fig. 3: Operation Ag of SAND-64.

Key schedule. The 128-bit master key K can be viewed as four 32-bit words,
i.e., K = K3||K3||K1||Ko. The update function of key schedule is shown in Fig.
2, and K;4 can be calculated as below

Kivg ¢ (Ag)3(Kiy3) @ K; @ (i + 1), 0<i <43,

where (Ag)® denotes that the operation Ag is applied to K; 3 for three times
iteratively. Ag is a nibble-based function and depicted in Fig. 3 where X[j]
denotes the j-th (0 < j < 8) nibble of input X, i.e., K,.( 0 < r < 47) can be
divided into eight nibbles. Finally, the r-th round subkey sk, will be loaded from
K, and added to the encryption state.

2.2 Specification of SAND-2 block cipher

SAND-2 adopts the same key schedule and the similar round function of SAND,
it also changes the total rounds from 48 to 47.

Fig. 4: Round function for even round. Fig.5: Round function for odd round.



For the round function of SAND-2, as shown in Fig. 4, it firstly replaces
some AND operations to NAND operations in Gy and G;. Then it uses two
different bit permutations P, and P, as shown in Table 2, which are similar
to the bit-based permutation adopted in ANT [CFFT19] block cipher. Finally,
SAND-2 alternatively swaps NAND and AND operations in two layers of Gy for
even round and odd round (see in Fig. 5). For more details of SAND-2, please
refer to its design paper [CLGH23|.

Table 2: Bit permutations Py and P;.

i o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Py(i) 28 23 26 1 0 27 30 5 4 31 2 9 8 3 6 13
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Py(i) 12 7 10 17 16 11 14 21 20 15 18 25 24 19 22 29

i o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 20 2r 2 29 24 31 6 1 28 3 10 5 0 7 14 9
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pi(i) 4 11 18 13 8 15 22 17 12 19 26 21 16 23 30 25

3 Iterative and Full Round Distinguishers of SAND-2

In this section, we show how to exploit dependency properties existing in the
round function of SAND-2 to construct iterative linear and differential char-
acteristics. Then, full round linear and differential distinguishers can be both
mounted. To enhance the probability of distinguishers, we evaluate the clustering
effect for these distinguishers, experiments are also performed for verifications.

3.1 Linear Distinguishers of SAND-2

We firstly present a two-round iterative linear characteristic of SAND-2, as shown
in Fig. 6, this is obtained by carefully observing two bit permutations Py/P; and
the rotation, then we have the following property.

Property 1. For the input bit with index ip = 4 x ¢t + 3% (0 < t < 8) of G and
the input bit with index i1 = 4 x (¢ + 1) + 3 of Gy, these two bits are derived
from the same bit in X, with index 4 x t + 3 and have a linear relation with
(4 x t 4+ 1)-th output bit of Gy and G respectively.

We now give an example of this property as follows, and it should be noted
that it has other seven equivalent cases for different choices of ¢t. Also, this
property is independent of the odd or even round.

2 For simplicity, all bit indices are taken modulo 32 in the rest of the paper.



Ezample 1. For iy = 31, Py(ig) = 29, and Py (i1) = 29 when i; = 3. Due to the
rotation X, <« 0 before Gy and X, << 4 before G, then the bit with index
10 = 31 in G and the bit with index i; = 3 in G are derived from the same bit
in X,., which are marked as yellow in Fig. 6. Coincidentally, both these bits are
linear related to the 29-th bit of the outputs of Gy and G respectively.

With Property 1, the two-round linear characteristic depicted in Fig. 6 with
linear bias 272 (equivalent to linear probability 272) is now constructed as below
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Fig. 6: Two-round iterative linear characteristic (active bit is marked as yellow).



1. Let only the 29-th bit mask of the right branch of the input be active, i.e.,
I'Y,[29] = 1. All the rest bits of I'Y,. and I' X, are set to be zero mask. So,
the input mask is (I"X,, I'Y;.) = (0200000000, 02:20000000);

2. According to the propagation rule of linear mask, the output masks of Gy
and G of the first round function are both with 0220000000;

3. In order to make the trail iterative, we let the mask I'Y;.;; = 0200000000.
Then according to Property 1, the input masks of Gy and G; of the first
round function can be set to be 0280000000 and 000000008 respectively;

4. With I"X, 11 = 0220000000, it leads to the output mask of the second round
(I'Xyy2,I'Y,10) = (I'X,., I'Y,) = (0200000000, 02:20000000).

For the linear bias of this two-round trail, only the step 3 mentioned above
produces the probability, that is, the second layer of G of the first round func-
tion, as the 29-th output bit mask is non-zero, then the output mask of the corre-
sponding NAND operation is also non-zero, which makes this NAND operation
active with linear bias 272. Thus, this two-round iterative linear characteristic®
(0200000000, 02:20000000) — (0200000000, 0220000000) has the linear bias with
272 and can start from both even or odd round number.

Longer trails, the clustering effect and experiments. With the presented
two-round iterative trail above, longer number of rounds linear distinguishers can
be naturally mounted. Especially, a 47-round (full round) linear characteristic of
SAND-2 can be obtained by iterating the two-round trail 23 times and appending
one free round at the beginning, which has the linear bias with 2724, Not only
does this trail invalidates the security of SAND-2 against linear attacks, but also
its bias is even high enough to be a practical full round distinguisher with the
complexity 246,

To verify these iterative trails, we firstly cluster the trails of different numbers
of iterative times by the mature SAT/SMT automatic search method [AK18].
The results show that this kind of two-round iterative based linear trails has
no significant clustering effect. Then, we perform experiments to evaluate the
linear bias of these trails, which are given in Table 3 and match the results of
clustering. In next section, we will use the 41-round linear distinguisher with the
bias 272! to mount full round key recovery attack on SAND-2.

3.2 Differential Distinguishers of SAND-2

Similar to finding linear distinguishers of SAND-2, we now show how to construct
iterative differential trails of SAND-2 and then try to approximate differential
probability by considering the clustering effect.

We firstly divide the input bits of Gy (G1) by its 4-bit output, as shown in
Table 4 and Table 5, where the six bit indices of each row is derived from the

3 Note that this trail also has other seven equivalent cases, all these can be used to
mount longer distinguishers and key recovery attacks. In the rest of the paper, we
will only focus on evaluating one case, but the other seven cases will be similar.



Table 3: Experiments of the iterative linear characteristics.

Round|Theoretical linear bias|Experimental linear bias|Test data
3 52 5=2:00 570
4 9-3 9—38.00 926
6 9—4 9—4.00 926
8 95 9—4.99 926
16 9-9 9—9.02 926
24 9—13 9—12.91 926
2% 914 9—13.89 928

left branch state X,. and Gy[3 — 0] represents the lowest nibble of the output of
Go (similarly for Gp). Then, still by carefully observing the inputs of Gy and
G, it has the following property.

Property 2. When all input bit differences of X,. are zero, except the (4 xt+3)-th
(0 <t < 8) bit, that is AX,.[4 x t + 3] =1, it then has

— For the (¢t — 1)-th* nibble of Gy, its input difference is 06001000 (binary
representation). Then, its possible 4-bit output differences are 060000 with
probability %, 060001 with probability i or 001001 with probability %;

— For the t-th nibble of Gy, its input difference is 0b0000001. Then, its possi-
ble 4-bit output differences are 060010 with probability % or 001010 with
probability %;

— For the (¢t — 7)-th nibble of Gy, its input difference is 06000100. Then, its
possible 4-bit output differences are 060000 with probability %, 060110 with
probability 4 or 060100 with probability ;

— For the t-th nibble of Gy, its input difference is 06001000, its 4-bit output
difference must be 060010.

Table 4: Grouping input bit index of G. Table 5: Grouping input bit index of G.

Nibbles Bit index of X, Nibbles Bit index of X,

Go[3—-0] |13 10 7 6 4 3 G1[3 - 0] 8 5 3 31 30 29
Gol7—4] |17 14 11 10 8 7 Gil7—4] [12 9 7 3 2 1
Go[ll—8] |21 18 15 14 12 11 Gil1—-8] |16 13 11 7 6 5

Go[15—12] |25 22 19 18 16 15  Gi[15—12] |20 17 15 11 10 9
Go[19—16] |29 26 23 22 20 19  Gi(19—16] |24 21 19 15 14 13
Go[23—20] | 1T 30 27 26 24 23  G[23—20] |28 25 23 19 18 17
Go27—24] | 5 2 31 30 28 27  Gi27—24] | 0 29 27 23 22 21
Go31—28] |9 6 3 2 0 31 Gi[31—28]|4 1 3L 27 26 25

4 For simplicity, the index number of the nibble takes modulo 8.



With Property 2, we can easily construct an iterative two-round differential
characteristic with probability 273 as below

1. Let only the 31-th bit difference (¢ = 7) of the left branch of the input be ac-
tive, i.e., AX,.[31] = 1. All the rest bits of AX,. and AY,. are set to be zero dif-
ference. So, the input difference is (AX,., AY,.) = (0280000000, 0200000000);

2. In order to make this trail iterative, according to Property 2, we let the 4-bit
output differences of the 6-th nibble of Gy and the 0-th nibble of G; be both
zero, and 4-bit output difference of the 7-th nibbles of Gy be 060010, which
then can cancel the difference of the corresponding nibble of Gfy;

3. With AX,; = 0200000000, it leads to the output difference of the second
round (AX, 2, AY,12) = (AX,, AY,.) = (0280000000, 000000000).

For the differential probability of this two-round trail, only the step 2 men-
tioned above produces the probability 273, that is, cancelling all differences at the
compression. Thus, this two-round differential trail® (0280000000, 02:00000000) —
(02280000000, 0200000000) has the differential probability 2-3 and can start from
both even or odd round number.

Approximation of differential probabilities. In order to obtain a more
accurate differential probability of the iterative based distinguishers for later
attacks, we try to approximate the probability of these iterative distinguishers,
however, the method we proposed in the following still cannot capture all trails
for the given differential, but it can effectively cluster the differential with high
probability, which usually dominates the final probability of a differential. We
then also use SAT/SMT automatic search method to evaluate the clustering
effect, which shows our method is efficient and effective to approximate the
probability of such iterative differentials of SAND-2. The following property is
firstly introduced, which can be partly derived from Property 2.

Property 3. For one round of SAND-2, it has the following differential charac-
teristics and corresponding probability P:

1—round

— (02:80000000, 0z00000000) ~——"2“"%, (02200000000, 02:80000000),
— (0280000000, 0200000000) ~="2“"%, (02:80000000, 0280000000
— (0280000000, 0z80000000) ~="2“"%, (0200000000, 0280000000
—( ) (
= ( (

9—
9—
9—

3.
3.
3.
)
1—round 3.

0280000000, 0280000000) ————— (0280000000, 0280000000),

1—round

0200000000, 02:80000000) ———— (0280000000, 0200000000), P = 1.

)
);
)
)

e Bla vl Bilav

3
)
)
)

We note that the case in Property 3 is also just one of the eight equivalent
cases. Based on Property 3, except the above presented two-round iterative trail
with probability 273, we can also construct an (m + 3)-round differential trail
with probability 273("+2) ag below:

m-round

(028, 020) — (028,02:8) ———— (028,028) — (020, 028) — (028, 0x0).

5 Similarly, this trail also has other seven equivalent cases, which can be both used to
mount longer distinguishers and key recovery attacks.

—_

0



With this configurable trail, it may bring us many different characteristics that
can be clustered to enhance the final probability. Thus, we provide the following
formulas to do such clustering process.

Proposition 1. For a given even number of rounds N, = 2n,. (n,. € ZT ), for a
fized probability P =277 (p € Z*1), it has

min(N.—3,[ 5 —-2])
2] + > (m; + 3)k; = N,

1=0,m;=1

min(N,—3,| 5 -2])
35 + > 3(mi + 2)k; = p,

i=0,m;=i

where j (0 < j < n,) denotes the iterative times of the two-round iterative dif-
ferential characteristic and k; (0 < k; < Lmj) denotes the number of (m; +
3)-round iterative differential. We can obtain a set of values for (j,ko, ki, ...)
which denotes the number of different short-round iterative differential char-
acteristic. Then we iterate the position of these short-round iterative differen-
tial characteristic, equivalent to calculating a permutation combination number,
which corresponds to different trails that can be clustered.

In order to check whether the method presented above can effectively approx-
imate the probability of longer rounds iterative distinguishers, we also apply the
SAT/SMT based search method to do the clustering for 8-round and 16-round it-
erative differential trails with probability greater than 2-3° and match the results
clustered by Proposition 1. Then the experiments to compare the theoretical and
experimental probabilities are also performed for several distinguishers, which
shows the effectiveness of our proposed method and are given in Table 6. It can
be observed that these iterative differential trails have slight clustering effect.

Table 6: Experiments of the iterative differentials of SAND-2.
Round‘Theoretical probability‘Experimental probability‘Test data

2 273.00 273.00 227
4 2—583 2—5481 227
8 2711.13 2711.08 227
16 2721.21 2721.02 227

Distinguishers for full round attacks. With the effective and efficient eval-
uation method presented above, we then mount 40-round, 42-round and 46-round
iterative distinguishers. It should be noted that for such longer rounds, SAT/SMT
based method is already very inefficient due to the size of models thus cannot
provide tight bounds of the final probability. For the formulas in Proposition 1,
we also limit and select part m; for the calculation considering the efficiency, thus

11



just providing a lower bound of the probability. However, it is still high enough
to launch full round attacks and invalidate security bounds given in SAND-2
design paper [CLGH23, Table 17].

— For 46-round distinguisher, it has the probability 27°%6°. When one round is
added to its head with probability 1, this can lead to a full round differential
distinguisher of SAND-2.

— In order to launch full round key recovery attacks on SAND-2, we mount
a 43-round (extended from 42-round) and a 41-round (extended from 40-
round) distinguisher with probability 2753:62 and 275113 respectively.

Remark: In this section, we construct iterative differential and linear distin-
guishers, which already lead to full round distinguish attacks. Some distinguish-
ers will be later used to mount full round key recovery attacks, and we summarize
these distinguishers in Table 7. It should be noted that we only perform exper-
iments on some short rounds distinguishers of SAND-2 due to our inefficient
software implementation® of SAND-2 and the limited computing resources.

Table 7: Summary of the differential and linear distinguishers of SAND-2.

Type Distinguisher Probability Usage

Linear |(0x2,0z0) Arround, (00, 0x2) 916 Distinguishing attack

Linear |(0z2,0z0) Alround, (020, 022) 240 Key recovery attack
Differential | (020, 0z8) Arround, (028,0x0)| 27789 |Distinguishing attack
Differential | (020, 0z8) Aoround, (028,020)| 275362 | Key recovery attack
Differential | (020, 0x8) 2lround, (028,0x0)| 277113 | Key recovery attack

4 Key Recovery Attacks on SAND-2

In this section, we give the full round key recovery attacks based on the 41-round
linear distinguisher and 43-round differential distinguisher presented above. For
linear attack, the time, data and memory complexities are 24823 full round en-
cryptions, 24°°0 known-plaintexts and 23°:%° respectively. For differential attack,
the time, data and memory complexities are 26410 full round encryptions, 260-20
chosen-plaintexts and 2°7-20 respectively.

It should be noted that a full round key recovery attack based on 41-round
differential distinguisher is also mounted, which has a lower data complexity
253-13 but a higher time complexity 2737°. We provide a detailed description
about this result in Appendix A.

5 Because SAND-2 adopts two different bit permutation layers Po/P; and different
round functions in even or odd round.

12



4.1 Full Round Linear Attack

In the attack, we both append three rounds before and after the 41-round linear
distinguisher. The key recovery attack is illustrated in Fig. 7 and Fig. 8, where
X; and Y; denote the 32-bit input to the left and right branches, Go(X;) and
G1(X;) represent the 32-bit output of function Gy and G; in the i-th round,
W; records the XOR, value of output of Gy, Gy and Y; in the head(resp. Y;41 in
the tail), rk; stands for the i-th round key and M; is the XOR value of W; and
rk;. In the following, we use X;[j] to represent the j-th bit of X; and the least
significant bit is X;[0]. And the white cell denotes the linear mask of the bit is
zero, the yellow cell represents the linear mask of the bit is non-zero, the blue
cell denotes the value of the bit should be computed, the red cell represents the
subkey bits that are involved in the partial encryption and decryption phases
and the sequence numbers represent the order in which the key bits are guessed.

Suppose that the number of required plaintext-ciphertext pairs is Nr. The
attack is realised with the following steps.

1. Guess 4-bit subkey value 7kg[8, 10-12] and allocate a counter C¥[z;] for each
of 235 possible values of

21 =Xug[4, 25-27]||Wo 0,2, 5, 21-23, 27-31]| W4 [4, 25-27] |
Wis[0,2,5,8,10-12, 21-23, 27-31]||¢,,

where to = GO (Xo)[29] D G1 (Xo)[29] D YQ [29] D GO (X46)[29] D Gl (X46)[29] D
Y47[29]. Then, for each possible 4-bit subkey value rkg[8, 10-12], we compute
the value of z; and update Cf[z1] with C¥[z;] + 1, thus the dominant time
complexity is N, - 2* memory accesses to a table with 23° elements.

2. Guess 6-bit subkey value rkg[0, 2,21-23, 27] and allocate a counter C¥[zy] for
each of 239 possible values of

zg =Xy6[4, 25-27]||Wo 5, 28-31]|| My [27]| W1 [4, 25-27] ||
Wisl0,2,5,8,10-12, 21-23, 27-31]||t1,

where t; = to and My[27] records the value of rky[27]. For each possible 6-
bit subkey value rkg[0, 2,21-23,27], we compute the value of zo and update
Cl 2] with C£ 2] 4+ CF¥[2], thus the dominant time complexity of this step
is 235.24. 26 = 245 memory accesses to a table with 230 elements.

3. Guess 5-bit subkey value rkg[5,28-31] and allocate a counter C¥[z3] for each
of 224 possible values of

23 = Xyg[4, 25-27]||[W1 [4, 25-27]|[Wis[0, 2, 5, 8, 10-12, 21-23, 27-31] ||t

where to = ;. For each possible 5-bit subkey value rkg[5, 28-31], we compute
the value of 23 and update C¥ 23] with C¥[23] + C¥[22], thus the dominant
time complexity of this step is 230 .219.25 = 245 memory accesses to a table
with 224 elements.
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10.

11.

Guess 4-bit subkey value rk;[4,25-27] and allocate a counter CF[z,] for each
of 220 possible values of

21 = Xag[4, 25-27]|[Wi[0, 2, 5, 8, 10-12, 21-23, 27-31]||¢5,

where t3 = to®G1(X2)[29]. For each possible 4-bit subkey value rk;[4, 25-27],
we compute the value of 23 and update CF[zy] with CF[z4] + CL[z3]. The
dominant time complexity of this step is 224215 .24 = 243 memory accesses
to a table with 220 elements.

Guess 4-bit subkey value rkyg[8, 10-12] and allocate a counter C¥|[25] for each
of 216 possible values of

25 = Wiyg[0,2,5,21-23, 27-31]||Wys[4, 25-27] ||t 4,

where t4 = t3. For each possible 4-bit subkey value rk4[8, 10-12], we compute
the value of z5 and update CE[z5] with C£[25] + CF[z]. The dominant time
complexity of this step is 220.219.24 = 243 memory accesses to a table with
216 elements.

Guess 6-bit subkey value k460, 2,21-23,27] and allocate a counter CF[zg]
for each of 2! possible values of

zZg — W46 [5, 28—31] ‘ |M46 [27] ‘ |W45 [4, 25—27]||t5,

where t5 = t4. For each possible 6-bit subkey value rky6(0,2,21-23, 27], we
compute the value of zg and update C{'[2] with C{'[2] + C¥|25]. The dom-
inant time complexity of this step is 216 - 223 . 26 = 245 memory accesses to
a table with 2! elements.

Guess 5-bit subkey value rkyg[5, 28-31] and allocate a counter C'¥|[27] for each
of 2° possible values of

zZr = W45[4, 25—27]||t6,

where tg = t5. For each possible 5-bit subkey value k4[5, 28-31], we compute
the value of z; and update C¥[z;] with CF[z7] + CF[z6]. The number of
memory accesses in this step is 211 - 229 . 25 = 245,

. Guess 4-bit subkey value rky5[4,25-27] and initialize a counter Countery,.

Then compute the value of t; = tg @& G1(X44)[29] for each possible 4-bit
subkey value rky45[4, 25-27]. If t; = 0, we update Countery, with Counterrp, +
C%127). The number of memory accesses in this step is 2° - 234 . 24 = 243,
The key guess will be accepted as a candidate if the counter Countery, sat-
isfies |Countery, /Ny — 0.5|>7r,, where 77, is the threshold used in [SWW21].
As mentioned above, the mask “2” of linear distinguisher can be placed in
the remaining 7 position. Thus we can use three of them to recover key. Each
distinguisher involves 38-bit key and can recover 84 bits when considering
them together (30 bits are overlapped), which are shown in the Table 8.
Then do exhaustive search for all keys that correspond to the guessed 84-bit
subkey bits against a maximum of two plaintext-ciphertext pairs.
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Table 8: Key bits involved in the 41-round distinguishers.

Distinguisher Key bits involved in the distinguisher| All 84-bit key

rko[0,2,5,8,10-12, 21-23,27-31]
(0x20000000,0x00000000)| 0% o o193, 27.31]

\L rko
(0x00000000,0x20000000) :15415[{2 22‘12277}] [0-8,10-15,17-31]
: Tk:46
(0x02000000,0x00000000) rkoll,4,6-8,17-19, 23-28, 30] [0-8,10-15, 17-31]
| rkas[1, 4, 6-8,17-19, 23-28, 30] rh[0,4,17-19
1{Y, =, -
(0x00000000,0x02000000) rh: [0,21-23] 21-23, 25-28)
rkas[0, 21-23] rkas[0,4,17-19
45 Yy &y -
(0x00200000,0x00000000) rkol0,2-4,13-15,19-24, 26, 29) 21-23, 25-28]

1ka6 0, 2-4, 13-15, 19-24, 26, 29]
k1 [17-19, 28]
rk45 [17-19, 28]

1
(0x00000000,0x00200000)

Complexity Analysis. As we leave 2'6 candidates, that means the advantage

[Sel08] of the attack as a=22. For three distinguishers, there are a total of 21¢.216.
216 candidate keys remaining. Then we set the number of pairs Ny, as 2452 so
the data complexity of this attack is 245-5. And according to [SN14], we consider
one memory access as a half round encryption. So, the time complexity of this
attack can be computed as follows.

11
3 (N - 24 +2%° x4 4+2% x3) x o x =+ ((216)° 4 2128-84) o (1 4 2764,

where ((216)3 + 2128=84) » (1 + 2764) denotes the time complexity of step 11.
Then, the time complexity of the attack is about 24%23 full round encryptions.
C¥1z] dominates the memory complexity which is roughly 235. We calculate the
success probability by the following formula in [BN17]:

Np — & 11 -2t . JTF N, - 277
1+ Np, - (ELP — ¢2)

P~ (S ),

where &(-) is the normal distribution and n is block size. The variable ¢ denotes
the approximation of the absolute value of the correlation related to the dom-
inant linear characteristic and the expected linear potential, denoted as ELP,
of the approximation is calculated as the sum of squared correlations across all
characteristics associated with it. In our attack, ELP = ¢?, thus the success
probability for one such attack is Ps = 94.07% and (94.07%)3 = 83.24%.

4.2 Full Round Differential Attack

In the attack, we both append two rounds before and after the 43-round dis-
tinguisher. The key recovery attack is illustrated in Fig. 9, where the white cell
denotes the difference of the bit is zero, the yellow cell represents the difference
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of the bit is non-zero, the blue cell denotes the difference of the bit can be zero
or non-zero and the red cell represents the value of the bit needs to be computed
for the intermediate states and for the round key that denotes being guessed.

Data collection. We can construct structures at the position of (Xo, Yp). In
each structure, the 43 bits

Xo[0, 3-23, 25-26, 28-30]|| Y5 [0, 3-4, 7-15, 18-19, 21-22]

with the difference being zero in Fig. 9 are fixed, and the value of the remaning 21
bits are traversed. Thus, 24! pairs can be generated with one structure composed
of 221 plaintexts.

Table 9: Conditions for key recovery and filter probabilities on SAND-2.

Condition ‘ Filter ‘ Probability
(C1) |AX4r[0,3-23,25-26,28-30]|| AY47[0, 3-4, 7-15,18-19,21-22] = 0| 27%
(C2) AX4[1-2,5-6,16-17,20,23-30] = 0, AX:[31] = 1 2716
(C3) AYiy6[1-2, 5-6,16-17, 20, 23-30] = 0, AY46[31] = 1 216
(C4) AX3[1-2,24,27,31] = 0 275
(C5) AYy5[1-2,24,27,31] = 0 275

Key recovery. In the attack, we prepare N, structures and obtain N; = N,-2%!
pairs. Thus, the data complexity of the attack is N, - 22!. The detailed attack is
realised with the following steps and we list all filter conditions in Table 9.

1. For each pair P = (Xy, Yy) and P’ = (X{,Y{), we obtain the corresponding
values of the ciphertexts C' = (X47,Yar) and C' = (X}7,Y/;) by querying
the oracle. The time complexity of this step is IV, -22! full round encryptions.

2. Denoising over ciphertexts: the 43 bits of ciphertexts with the difference
being zero and check the condition (C1), Ny - 2742 pairs will be left;

3. For each pair P = (Xo,Yp) and P’ = (X|,Yy), we first calculate AX; =
X1 @ X without guessing any key bits and check the condition (C2), then
N; -2743.2716 pairs will be left. This step involves 18 S-box operation, thus
the time complexity is 2- Ny -274% x 18 x 1/32 x 1/47 full round encryptions.

4. For each pair C = (X47,Yyr) and C' = (X}7,Y/;), we can calculate AYyq
without guessing key bits and check the condition (C3), then N - 2743 .
2716.2716 pairs will be left. Similarly, this step involves 18 S-box operation,
thus the time complexity is 2+ Ny - 2743 .2716 x 18 x 1/32 x 1/47 full round
encryptions.

5. Guess 7 bits of rkg. We can compute X5[1-2,24,27,31] and X}[1-2, 24,27, 31]
for each possible 7-bit subkey value rkg|0,2-3,8,27,29-30] and check the
condition (C4), then Ny -2743.2716.9716. 975 nairs will be left. This step
involves 6 S-box operation, thus the time complexity is 2 - N; - 2743 .2716.
271627 x 6 x 1/32 x 1/47 full round encryptions.
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6. Guess 7 bits of rkss. We can compute AYy5[1-2,24,27,31] for each possible
7-bit subkey value rk46[0, 2-3, 8, 27, 29-30] and check the condition (C5), then
N;-2743.2716.9716.9-5.95 pairs will be left. Similarly, the time complexity
is 2. Np-2743.2716.9716.975.97 % 6 x 1/32 x 1/47 full round encryptions.

7. As mentioned above, the difference “8” of Differential distinguisher can be
placed in the remaining 7 position. Thus we can use all of them to recover
key. Each distinguisher involves the 14-bit key, and the all can recover a total
of 64 bits which cover exactly rko and rk46.

8. Then do exhaustive search for all keys which correspond to the guessed 64-bit
subkey bits against a maximum of two plaintext-ciphertext pairs.

Complexity Analysis. We set a counter to record the number of right pairs
that validate the input and output differences of the 43-round distinguisher.
With the analysis above, for random key guesses, the number of right pairs is
about Np - 2785, For the right key guess, the number of right pairs is expected to
be N;-2721.2753:62 where 272! is the probability of the difference of plaintext to
the head of the distinguisher and 27°3:62 is the probability of the distinguisher. In
order to get higher success probability we set the number of right pair y is 6 and
the signal-to-noise ratio Sy = % = 210-38 Q¢ the pairs N; is 27720
and corresponding N is 236-20. For eight distinguishers, the data requirement of
the attack is 8 x 236-20. 221 — 960.20 chogen plaintexts. As we leave only one best
candidate, that means advantage a is 14. So the time complexity of this attack
can be computed as follows.

8 X (23620 . 221 + ]\[1 . 2—42.97) + (1 + 264) X (1 + 2—64)’

where (142%%) x (1+27%4) denotes the time complexity of step 8. Then, the time
complexity of this attack is about 26419 full round encryptions. We calculate the
success probability by the following formula in [Sel08]:

ViSy — &1 —-279)
VSy +1
thus the success probability for one such attack is Py = 99.04% and (99.04%)® =

92.61% for the whole attack. Since we should record the right pairs, the memory
complexity of this attack is roughly 25720,

P, = &(

),

5 Conclusion

In this paper, we present full round distinguishing and key recovery attacks
on lightweight block cipher SAND-2 in single-key setting. Our attacks exploit
iterative distinguishers with high probability (e.g., the time complexities of linear
distinguishing and key recovery attacks are both even lower than 2°°), which are
derived from the dependencies of the round function of SAND-2. Moreover, we
believe that our attacks provide the insight for designers about the importance of
applying extensive and in-depth security analysis under designers’ responsibility.
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A Full Round Differential Attack based on 41-round
Distinguisher

In this attack, we both append three rounds before and after the 41-round dis-
tinguisher. The key recovery attack is illustrated in Fig. 10 and Fig. 11, where
the meaning of different cells is the same as Fig. 9.

Data collection. We can construct structures at the position of (Xo, Yp). In
each structure, the 19 bits

Xo[0,3-4,7-15,18-19,21-22]|| Y, [4, 11, 14]

with the difference being zero in Fig. 10 are fixed, and the value of the reman-
ing 45 bits are traversed. Thus, 28 pairs can be generated with one structure
composed of 2%° plaintexts.

Key recovery. In the attack, we prepare N, structures and obtain N; = N,-28°
pairs. Thus, the data complexity of the attack is N, - 2%°. The detailed attack is
realised with the following steps and we list all filter conditions in Table 10.

1. For each pair P = (Xy,Y) and P’ = (X{,Yy), we obtain the corresponding
values of the ciphertexts C' = (X47,Yar) and C' = (X}7,Y/;) by querying
the oracle. The time complexity of this step is IV, -24® full round encryptions.

2. Denoising over ciphertexts: the 19 bits of ciphertexts with the difference
being zero and check the condition (C1), Ny - 2712 pairs will be left;
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Fig.10: The head of key recovery attack based on 41-round distinguisher.
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Fig. 11: The tail of key recovery attack based on 41-round distinguisher.
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Table 10: Conditions for key recovery and filter probabilities on SAND-2.

Condition Filter Probability
(C1) |AX4r[0,3-4,7-15,18-19, 21-22][|AY47[4,11,14] = 0] 27T
(C2) AX1[0,3,5-10,12-13, 15-23, 25-26, 28-30] = 0 2724
(C3) AYiyg[0, 3,5-10,12-13, 15-23, 25-26, 28-30] = 0 2724
(C4) AX,[1-2,5-6,16-17,20,23-30] = 0, AX>[31] = 1 2-16
(C5) | AYas[1-2,5-6,16-17,20,23-30] = 0, AYy5[31] =1 216
(C6)
(C7)

AX3[1-2,24,27,31] =0 275
AY4[1-2,24,27,31] = 0 275

3. For each pair P = (Xy,Yy) and P’ = (X|,Y]), we first calculate AX; =
X140 X without guessing any key bits and check the condition (C2), then Nj-
2719.2724 pairs will be left. We view this operation as one-round encryption,
thus the time complexity is about 2- Ny -2719 x 1/47 full round encryptions.

4. For each pair C' = (X47,Yy7) and C" = (X};,Y/;), we can calculate AYy
without guessing key bits and check the condition (C3), then N;-2719.2724.
2724 pairs will be left. Similarly, the time complexity is 2-N;-2719.2724x 1 /47
full round encryptions.

5. Guess 22 bits of rkyg. We can compute X5[1-2,5-6,16-17,20,23-30, 31] and
X5[1-2,5-6,16-17, 20, 23-30, 31] for each possible 22-bit subkey value rk[0, 2-
8,10, 12-16,23,25-31] and check the condition (C4), then Ny -2719.2724.
2724.2716 pairs will be left. This step involves 18 S-box operation, thus the
time complexity is 2- Ny -2719.2724.2724.922 5 18 x 1/32 x 1/47 full round
encryptions.

6. Guess 22 bits of rkss. We can compute Yy5[1-2,5-6,16-17, 20, 23-30, 31] and
Y/s[1-2,5-6,16-17, 20, 23-30, 31] for each possible 22-bit subkey value rk4g[0, 2
8,10, 12-16,23,25-31] and check the condition (C5), then Ny -2719.2724.
2724. 9716 . 9716 hairg will be left. Similarly, the time complexity is 2 - Ny -
27199724924, 9-16 . 922 18 x 1/32 x 1/47 full round encryptions.

7. Guess 7 bits of rk;. We can compute X3[1-2, 24,27, 31] and X}[1-2, 24, 27, 31]
for each possible 7-bit subkey value rk;[0,2-3,8,27,29-30] and check the
condition (C6), then N - 2719 .2724.2724. 9716 . 9716 . 975 pajrg will be
left. This step involves 6 S-box operation, thus the time complexity is 2 Vy -
2719.9724. 9724 . 9716 . 9716 . 9T x 6 x 1/32 x 1/47 full round encryptions.

8. Guess 7 bits of rkys. We can compute AYy4[1-2,24,27,31] for each possible
7-bit subkey value rk45[0, 2-3, 8,27, 29-30] and check the condition (C7), then
N;-2719.2724.9724.9-16.9-16 .9=5.9-5 pairs will be left. Similarly, the time
complexity is 2+ Ny -2719.2-24.9-24.9-16 916 .95 .97 » § x 1/32 x 1/47
full round encryptions.

9. Then do exhaustive search for all keys which correspond to the guessed 58-bit
subkey bits against a maximum of two plaintext-ciphertext pairs.

Complexity Analysis. We set a counter to record the number of right pairs
that validate the input and output differences of the 41-round distinguisher.
With the analysis above, for random key guesses, the number of right pairs is
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about N7 -27199 For the right key guess, the number of right pairs is expected to
be N;-274%.275113 wwhere 2749 is the probability of the difference of plaintext to
the head of the distinguisher and 275113 is the probability of the distinguisher.
In order to get higher success probability we set the number of right pair p is
2 and the signal-to-noise ratio Sy = % = 21287 Qo the pairs N; is
29713 and corresponding N, is 2813, Thus the data requirement of the attack is
28:13 . 945 — 95313 chosen plaintexts. As we leave only one best candidate, that
means advantage a is 58. So the time complexity of this attack can be computed
as follows.
9813 945 4 N, . 972855 | (1 4 97T0) (1 4 2764,

where (1 4 27°) x (1 + 27%%) denotes the time complexity of step 9. Then, the
time complexity of this attack is about 27370 full round encryptions and the
success probability is Py = 90.65% for the whole attack. Since we should record
the right pairs, the memory complexity of this attack is roughly 253-13.
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