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Abstract. Designing novel symmetric-key primitives for advanced protocols like
secure multiparty computation (MPC), fully homomorphic encryption (FHE) and
zero-knowledge proof systems (ZK), has been an important research topic in recent
years. Many such existing primitives adopt quite different design strategies from
conventional block ciphers. Notable features include that many of these ciphers are
defined over a large finite field, and that a power map is commonly used to construct
the nonlinear component due to its efficiency in these applications as well as its strong
resistance against the differential and linear cryptanalysis. In this paper, we target
the MPC-friendly ciphers AIM and RAIN used for the post-quantum signature schemes
AIMer (CCS 2023 and NIST PQC Round 1 Additional Signatures) and Rainier (CCS
2022), respectively. Specifically, we can find equivalent representations of 2-round
RAIN and full-round AIM, respectively, which make them vulnerable to either the
polynomial method, or the crossbred algorithm, or the fast exhaustive search attack.
Consequently, we can break 2-round RAIN with the 128/192/256-bit key in only
2111/2170/2225 bit operations. For full-round AIM with the 128/192/256-bit key, we
could break them in 2136.2/2200.7/2265 bit operations, which are equivalent to about
2115/2178/2241 calls of the underlying primitives. In particular, our analysis indicates
that AIM does not reach the required security levels by the NIST competition.
Keywords: RAIN · AIM · equivalent representation · overdefined system · algebraic
attack

1 Introduction
Developing novel symmetric-key primitives with applications to MPC, FHE and ZK
has become an important research topic for their real-world impacts. Since the block
cipher LowMC [ARS+15] published at EUROCRYPT 2015, there haven been a num-
ber of such novel primitives [AGR+16,CHK+21,GLR+20,GKL+22,DKR+22,BBC+23,
DEG+18,GAH+23,GLR+20,MJSC16,DGGK21,GØSW23,HKL+22,CCF+16,DGH+21,
AAB+20,AMT22,SLST23,GKR+21]. Especially, some ZK-friendly hash functions like Po-
seidon [GKR+21] and Rescue [AAB+20] were immediately adopted in real-world blockchains
for their high efficiency in this application, and some MPC-friendly primitives like
LowMC [ARS+15], Rain [DKR+22] and AIM [KHS+22] have been used to build post-
quantum signature schemes with the MPC-in-the-head technique [IKOS07].
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While traditional symmetric-key primitives typically work over F2, many of the new
primitives are designed over large finite fields, though some are still defined over F2, but
with new structures. This poses new challenges in terms of developing generic or dedicated
cryptanalysis techniques to understand their security. Since this has been a largely
unexplored area, many of these ciphers eventually turned out to be vulnerable against
new attacks against their less-understood components, like the guess-and-determine attack
on FLIP [DLR16], Gröbner basis attack on Jarvis and Friday [ACG+19], various algebraic
attacks on LowMC [LIM21,LSW+22,Din21a,LMSI22,BBDV20,BBVY21], linearization
attack on Rasta [LSMI21], higher-order differential attacks on MiMC [EGL+20,BCD+20,
BCP23] and Chaghri [LAW+23, LGB+23] over large finite fields, and algebraic attacks
on Rubato over rings [GAH+23], just to name a few. After years of effort to understand
the security of these novel primitives, there have been some useful cryptanalytic tools
developed for designers. However, this does not imply that the designers could exclude all
potential attacks for their new proposals, especially when the ciphers are adopting new
and less-understood structures.

In this paper, we mainly focus on the latest MPC-friendly ciphers RAIN (CCS
2022) [DKR+22] and AIM (CCS 2023) [KHS+22]. The two ciphers are tailored to specific
post-quantum signature schemes Rainier and AIMer built with the MPC-in-the-head tech-
nique, respectively. Especially, AIMer is one of NIST PQC Round 1 Additional Signatures1

that were released in July, 2023. In the signature schemes Rainier and AIMer, the public key
is a single plaintext-ciphertext pair, and the secret key is the key for this plaintext-ciphertext
pair. Consequently, the security of these two signature schemes relies on the difficulty to
recover the secret key of RAIN and AIM with only a single known plaintext-ciphertext pair,
respectively. While there are some successful attacks [Din21a,LMSI22,BBDV20,BBVY21]
on LowMC in this setting by exploiting the low-degree properties of its 3-bit S-box, RAIN
and AIM are quite different from LowMC as their nonlinear components are over large
finite fields and their algebraic degree is high or maximal. Therefore, the designers made
very aggressive choices for the secure number of rounds for the two ciphers in order to
improve the efficiency of the signature schemes. Specifically, it is claimed that 3 rounds
are secure for RAIN and the designers also proposed to use 4 rounds to further increase
the security margin. Moreover, by the designers’ analysis, even 2 rounds of RAIN cannot
be broken. For AIM, although it is different from common block ciphers, we can view it as
a 2-round primitive.

Our Contributions. In spite of the high agebraic degree of the nonlinear components
of RAIN and AIM, we could identify nontrivial low-degree equivalent representations for
2-round RAIN and full-round AIM, which make them vulnerable to either the polynomial
method [Din21a], crossbred algorithm [JV17] or the fast exhaustive search attack [BCC+10].
The main idea is to set up a system of equations in a variable related to the secret key,
i.e. they are related by a high-degree equation. After solving the system of equations to
recover this variable, the secret key can be then efficiently computed, and the key-recovery
attack is achieved. Specifically, we could

• break 2-round RAIN using the polynomial method or the crossbred algorithm with
time complexity significantly smaller than 2n bit operations, as shown in Table 2;

• significantly improve the naive brute force attack on AIM with the fast exhaustive
search (FES) method to solve a system of low-degree equations, as shown in Table 4.

Especially, our attack on AIM has motivated the AIM team to change the used S-boxes.
More details of the revised version of AIM called AIM2 can be referred to [KHSL23].

1https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
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Table 1: Summary of the time complexity to break 2-round RAIN and full-round AIM
with an n-bit key, which is given in the number of equivalent calls of the ciphers. Moreover,
the number of bit operations of 2-round RAIN and full-round AIM are both estimated as
n3, just as in [ZWY+23,KHS+22].

Target n 128 192 256

2-Round Rain
polynomial method (Sect. 4) 297 2149 2201

crossbred algorithm (Sect. 4) 290 2147 2204

guess and determine [ZWY+23] 2120.3 2180.4 2243.1

full-round AIM fast exhaustive search (Sect. 5) 2115 2178 2241

guess-and-determine [ZWY+23] 2125.7 2186.5 2254.4

Comparison with [ZWY+23]. There is a parallel work [ZWY+23] on the cryptanalysis
of 2-round RAIN and full-round AIM, which will appear at ASIACRYPT 2023. The main
technique in [ZWY+23] is to linearize the inverse function y = x−1 over F2n when n is
an even number, thus resulting in a guess-and-determine attack. By this nature, their
attacks will fail for RAIN and AIM if n is an odd number, while our attacks are not affected
by this change. In addition, their attacks cannot reach 3 rounds of RAIN, while our
attacks have this potential if weak linear layers are used. Moreover, compared with the
attacks in [ZWY+23], our attacks have a lower time complexity, as can be seen in Table 1.
Especially, we found that the first two countermeasures proposed in Sect. 5.2 of [ZWY+23]
for AIM, i.e., adding different constants before each S-box in the first round or using odd
n, cannot prevent our attacks, which further demonstrates the advantage of our technique.

Organization. In Sect. 2, we briefly introduce the relation between polynomials over F2n

and Fn
2 , and revisit some known techniques to solve the system of multivariate Boolean

equations. Then, we show in Sect. 3 how to derive an overdefined system of quadratic
Boolean equations from a special form of polynomial equations over F2n . In Sect. 4, we
will present the algebraic attacks on 2 rounds of RAIN. The fast exhaustive search attack
on full-round AIM is given in Sect. 5. Finally, the paper is concluded in Sect. 6.

2 Solving Multivariate Nonlinear Boolean Equations
It is well-known that solving multivariate nonlinear equations is NP-hard, even if the
equations are over F2, i.e. Boolean equations. In algebraic attacks on cryptographic
primitives, the attackers first model the to-be-solved problem (e.g., key recovery or finding
a preimage/collision) with a system of nonlinear equations, and then solve the equation
system with generic techniques like Gröbner basis method [Buc65, Fau99, Fau02], XL
algorithm [CKPS00], fast exhaustive search (FES) [BCC+10], crossbred algorithm [JV17]
or polynomial method [LPT+17,BKW19,Din21b,Din21a]. Developing generic equation-
solving techniques is always challenging. In most cases, how to model the problem with
better algebraic equations is crucial to improve the algebraic attack because attackers
can exploit some algebraic structures of the primitives to set up equations that can be
efficiently solved.

Since our target primitives RAIN [DKR+22] and AIM [KHS+22] are both defined over
the finite field F2n , and there exists an isomorphism between Fn

2 and F2n , e.g., see Chapter
6 of [RHPScKK07], we only focus on Boolean equations in this paper. Specifically, each
polynomial p(y1, . . . , yt) in the polynomial ring F2n [y1, . . . , yt] can be written as

p(y1, . . . , yt) =
2n−1∑
i1=0

· · ·
2n−1∑
it=0

ui1,...,it
yi1

1 . . . yit
t ,
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where ui1,...,it
∈ F2n is the coefficient. Given any irreducible polynomial for F2n , the

polynomial p can be equivalently described by n vectorial Boolean polynomials p1, . . . , pn

in nt Boolean variables, and the algebraic degree of each Boolean polynomial pi is

max{
t∑

i=1
Hw(ij) : ui1,...,it

̸= 0},

where Hw(i) denotes the Hamming weight of the integer i, i.e. the number of 1 in the
binary representation of i. Indeed, we can have the following formal definition of the
algebraic degree of a polynomial in F2n [y1, . . . , yt]:

Definition 1. Let

p(y1, . . . , yt) =
2n−1∑
i1=0

· · ·
2n−1∑
it=0

ui1,...,ity
i1
1 . . . yit

t ,

be a polynomial in F2n [y1, . . . , yt] where ui1,...,it
∈ F2n is the coefficient, the algebraic

degree of p denoted by Deg(p) is defined as

Deg(p) = max{
t∑

i=1
Hw(ij) : ui1,...,it

̸= 0}.

In other words, for a system of equations defined over F2n , we can first convert them
into a system of Boolean equations with known algebraic degree, and then solve them
with generic equation-solving techniques developed for Boolean equations. Let us consider
m Boolean polynomials f1, . . . , fm in n (n ≤ m) variables x1, . . . , xn, and their algebraic
degree is upper bounded by d. For the following system of m equations:

f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0,

there are some known techniques to solve them and we introduce them one by one.

2.1 Fast Exhaustive Search
The fast exhaustive search method is basically based on an efficient way to evaluate a
Boolean polynomial over {0, 1}n, i.e. how to efficiently compute fi(x1, . . . , xn) for all
(x1, . . . , xn) ∈ {0, 1}n. Since the algebraic degree of each fi is upper bounded by d, there
are

(
n

≤d

)
possible terms in fi(x1, . . . , xn) where

(
n

≤d

)
=
∑d

i=0
(

n
i

)
. Therefore, the naive

polynomial evaluation would require about 2n ·
(

n
≤d

)
bit operations for each fi.

In [BCC+10], the authors found that evaluating fi over {0, 1}n only requires d · 2n bit
operations after an initialization phase of complexity O(n2d) (see Theorem 1 in [BCC+10]).
Indeed, according to the explanation in Section 4 of [BCC+10], the term n2d comes
from nd times of evaluations of the polynomial fi, which is itself upper bounded by nd.
This suggests the complexity of such an initialization phase is indeed about nd ·

(
n

≤d

)
bit

operations.
With such an efficient way to evaluate fi, given n polynomials of algebraic degree d,

the attackers can first evaluate n1 polynomials f1, . . . , fn1 in parallel. At this phase, it is
expected to generate 2n−n1 candidate solutions. For each such candidate solution, it can
be further checked against the remaining polynomials with the naive polynomial evaluation
aided with an early-aborting strategy. In this way, the time complexity to find the solution
is estimated as about 4d · log2n · 2n bit operations (see Theorem 2 and its generalization
at Section 5 of [BCC+10]). The memory complexity is estimated as n ·

(
n

≤d

)
bits, which is

used to store the polynomials. Note that the time complexity of the initialization phase
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is upper bounded by n1 · nd ·
(

n
≤d

)
≤ n · nd ·

(
n

≤d

)
bit operations according to the above

careful analysis, and this is not taken into account in 4d · log2n · 2n.
At EUROCRYPT 2021, Dinur proposed a memory-efficient Möbius transform [Din21a]

to evaluate a Boolean polynomial fi(x1, . . . , xn) of algebraic degree d over {0, 1}n. This
method does not require the costly initialization phase of time complexity O(n2d). Moreover,
the time complexity and memory complexity of this method are d · 2n bit operations and
n ·
(

n
≤d

)
bits, respectively. Hence, it can be trivially applied to the fast exhaustive search

and the whole time complexity is kept the same, i.e. it is still 4d · log2n · 2n bit operations.
The memory complexity is upper bounded by n · n ·

(
n

≤d

)
bits.

2.2 Polynomial Method
The polynomial method to solve n multivariate Boolean equations of algebraic degree d
in n variables was first proposed at SODA 2017 [LPT+17]. There have been 3 improved
variants [BKW19,Din21b,Din21a] and we focus on the latest variant [Din21a] proposed by
Dinur at EUROCRYPT 2021 since it gives the accurate time complexity in bit operations.
The general idea is to first find the solutions to a smaller number of polynomial equations
from these n polynomial equations, and then check the solutions against the remaining
equations. The technique mainly exists in how to efficiently enumerate the solutions of
that small system of equations by the polynomial interpolation and evaluation. We refer
the interested readers to [Din21a,LMSI22] for the detailed explanation. For a system of
n Boolean equations of algebraic degree d (d ≥ 2) in n variables, the time and memory
complexity to solve it are estimated as n2 · 2(1−1/2.7d)n bit operations and n2 · 2(1−1/1.35d)n

bits, respectively. In the case d = 2, the time and memory complexity are n2 · 20.815n bit
operations and n2 · 20.63n bits, respectively.

Due to the relatively low time complexity of the polynomial method, it has become
an important tool to evaluate the resistance against algebraic attacks, especially when it
is possible to construct low-degree equations. For the downsides of this method, apart
from its requirement of huge memory, it also cannot take advantage of the feature of
the overdefined system of equations. Specifically, even if we have m > n equations in n
variables, the polynomial method will give the same time complexity as in the case of n
equations.

2.3 Crossbred Algorithm
The idea behind Joux and Vitse’s crossbred algorithm [JV17] for finding solutions to a
polynomial system F of m quadratic equations f1 = 0, . . . , fm = 0 in n variables, is to
derive a set of polynomials in the ideal of F that is easy to solve once certain variables have
been fixed. The algorithm considers three integer inputs (D, nD, d1). In a preprocessing
step reminiscent of the XL algorithm [CKPS00], the original polynomials of F are extended
to the degree ≤ D Macaulay matrix M≤D(F). This is the matrix whose rows are given
by µ · f where f ∈ F and µ is a monomial of degree ≤ D − 2, and the columns represent
all monomials of degree ≤ D. A formal definition of the Macaulay matrix M≤D(F) can
be found below:

Definition 2. [JV17] Let K be a field. For any integer b, let Tb be an ordered set of the
monomials of K[x1, . . . , xn] of degree smaller than or equal to b. The degree D Macaulay
matrix of F , denoted by M≤D(F), is the matrix with coefficients in K whose columns are
indexed by Tb, whose lines are indexed by the set {(µ, fi) | 1 ≤ i ≤ m; µ ∈ TD−deg(fi)},
and whose coefficients are those of the products µfi in the basis TD.

After constructing the the Macaulay matrix M≤D(F), it is then reduced in a way such
that a subsystem of polynomials whose degrees are at most d1 in the first nD variables. In
the linearization step, one iterates over the possible values of the last n − nD variables,
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and solves the corresponding degree-d1 subsystem in the first nD variables. In particular,
when d1 = 1, this means to solve a linear system in nD variables once the last n − nD

variables have been assigned.

Choosing parameters. In general, it is not easy to choose the optimal values of parameters
(D, nD, d1). In practice, d1 = 1 is typically chosen, and we will focus on this choice as well.
To determine (D, nD), it is often assumed that the underlying polynomial system behaves
as a generic system, in that the cancellations between polynomials are minimal. This is
also related to the notion of semi-regularity from [BFSY]. Under this assumption, one is
able to accurately predict the rank of M≤D(F) denoted by Rank(F≤D(F)). Thus, for any
given D, one can choose the largest corresponding nD by counting monomials such that
there exists a linear subsystem of equations in the first nD variables. More precisely, let
Monn,D(i), denote the number of degree ≤ D-monomials in n variables that have degree
≥ 2 in the first i < n variables. We then expect to find M≤D(F) − Monn,D(i) equations
that are linear in the first i variables. Valid choices of nD are then any number i that
yields ≥ i such equations. The pair (D, nD) can then be chosen so that the running time
of the preprocessing and linearization steps are minimized. Indeed, such a way to choose
(D, nD) has, for instance, been adopted in Section 3.4 of [BMSV22].

Unfortunately, the polynomial systems we will work with in Section 4.3 will contain
more cancellations than generic systems. Hence the usual estimates outlined above cannot
be applied directly. Instead, for small values D, we will investigate the rank of MD(F)
for these particular systems, and derive optimal choices of nD thereafter.

3 Overdefined Systems of Boolean Equations
At ASIACRYPT 2002, Courtois et al. revealed that it was possible to construct an
overdefined system of Boolean equations for the S-box of AES [CP02]. Although the
algebraic attack on AES in this paper was later believed to be too optimistic or even wrong,
it provides a new perspective to analyze AES with algebraic techniques. In our algebraic
attacks on RAIN, we rely on a quite similar idea to set up overdefined systems of Boolean
equations.

Specifically, according to [CP02], for the inverse function y = x−1 over F2n where x ̸= 0,
we can derive the following 5 equations over F2n :

xy = 1, x2y = x, xy2 = y, x4y = x3, xy4 = y3.

Due to the isomorphism between F2n and Fn
2 , given any irreducible polynomial over F2n ,

these 5 equations over F2n can be equivalently represented as 5n Boolean equations of alge-
braic degree 2, and these 5n quadratic Boolean equations are linearly independent [CL04].

In the above, we mainly discussed how to generate more equations from the equation
xy = 1 over F2n . In [CL04], the authors also discussed how to generate more quadratic
equations for different power maps over F2n with the Gold exponent [Gol68] and Kasami
exponent [Kas71], respectively. In the following, we show how to generate more quadratic
equations from a special form of equations that appear in our cryptanalysis of RAIN.

Specifically, we consider 3 polynomials P1(x), P2(x), P3(x) ∈ F2n [x] such that

P1(x)P2(x) + P3(x) = 0, (1)

where Deg(P1) = Deg(P2) = Deg(P3) = 1. Then, we can generate the following 3 equations

P1(x)P2(x) + P3(x) = 0,

P1(x)(P2(x))2 + P2(x)P3(x) = 0,

(P1(x))2P2(x) + P1(x)P3(x) = 0.
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By the definition of the algebraic degree of a polynomial in F2n [x] and the property that
(x + y) = x2 + y2 for ∀x, y ∈ F2n , we immediately obtain that these 3 equations correspond
to 3n Boolean equations of algebraic degree upper bounded by 2.

For convenience, these 3n Boolean equations are all assumed to be quadratic since
for most cases of interest they are indeed quadratic. We will not discuss the sufficient
conditions to make these 3n quadratic Boolean equations linearly independent. Instead, we
are only interested in how to generate more quadratic equations and expect that they are
linearly independent. In the actual attacks, we will first test whether these 3n quadratic
equations are linearly independent by computing the rank of the coefficient matrix formed
by these quadratic equations where each quadratic term is viewed as a new independent
variable.

4 Algebraic Cryptanalysis of RAIN
In this section, we first briefly recall the description of the MPC-friendly cipher RAIN
proposed at CCS 2022 [DKR+22]. Then, we present the algebraic cryptanalysis of 2 and 3
rounds of RAIN, respectively, though the 3-round attack eventually failed. Although the
successful attack only reaches 2 rounds, the designers choose the total number rounds of
RAIN as either 3 or 4. This indicates that there is a small security margin if using 3 rounds
of RAIN. It should be emphasized that the designers have performed thorough analysis of
RAIN, and that they also performed experiments of the Gröbner basis attack on 2-round
RAIN. While they were not able to find a specific attack on 2-round RAIN, they only claim
security of RAIN for more than 3 rounds. Similar to [DKR+22], we denote 2 and 3 rounds
of RAIN by RAIN2 and RAIN3, respectively.

4.1 Description of RAIN
The r-round RAIN is depicted in Figure 1, where k is the secret key and (c1, . . . , cr) are
the round constants. The S-box y = S(x) is the inverse function over F2n , i.e.y = x−1 = 1

x
, for ∀x ∈ F2n , x ̸= 0

y = 0, for x = 0
(2)

Or equivalently, the S-box is defined by the power map:

x 7→ x2n−2, for ∀x ∈ F2n .

k + c1

x
−1

M1

s0
x
−1

Mr−1

k + c2 k + cr

sr

k

Figure 1: The r-round RAIN

For the linear layers, they are randomly generated and the designers have fixed their
choices. Indeed, the binary matrix Mi can also be transformed to an F2-linearized
polynomial by interpolation. Abusing the notation, we can write Mi(x) as

Mi(x) =
n−1∑
j=0

ai,jx2j

,
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where (ai,0, . . . , ai,n−1) ∈ Fn
2n are known constants. In the design, it has been ensured that

for each Mi, all the corresponding coefficients of the F2-linearized polynomial are non-zero,
i.e. ai,j ̸= 0 for j ∈ [0, n − 1].

Since the security of RAIN is limited to the case when the attacker can only know
one plaintext-ciphertext pair under the same key, the designers choose r ∈ {3, 4}. As
an attacker, the goal is thus to recover the secret key k from 1 known input-output pair
(s0, sr). Indeed, in the signature scheme Rainier built on RAIN [DKR+22], k is the secret
key while (s0, sr) is the public key. Therefore, the above attack is directly related to the
security of Rainier.

4.2 Low-degree Representation for RAIN2

The designers of RAIN claim that the polynomial method [Din21a] is infeasible because
the maximal algebraic degree is achieved after only one round due to the inverse function.
Although the claim for the inverse function is true, we point out that it is feasible to
construct a low-degree equation system to equivalently describe RAIN2. Due to this low-
degree representation, the polynomial method directly breaks RAIN2 with the 128/192/256-
bit key with only about 2118/2172/2225 bit operations, respectively.

Specifically, as shown in Figure 2, we introduce a variable v1 ∈ F2n to represent the
internal state after the first S-box. Given the known pair (s0, s2), we aim to set up a
low-degree equation system only in v1. Solving this equation system will allow us to recover
v1 and then the secret key k can be trivially recovered via:

k = v−1
1 + s0 + c1.

k + c1

x
−1

M1

s0
x
−1

s2

v1

k + c2 k

Figure 2: Illustration of RAIN2

First, we consider whether v1 = 0. In this case, we have k = s0 + c1 and it can be
trivially verified. Similarly, we can trivially verify whether k + s2 = 0. Therefore, in the
following, we always assume that

k + c1 + s0 ̸= 0, k + s2 ̸= 0.

In this way, we have
k = 1

v1
+ s0 + c1

according to the first S-box. Then, according to M1 and the last S-box, we have2

M1(v1) = 1
v1

+ s0 + c1 + c2 + 1
1
v1

+ s0 + c1 + s2
.

For convenience, let
t0 = s0 + c1 + c2, t1 = s0 + c1 + s2.

Then, t0, t1 are known constants and we have

M1(v1) = 1
v1

+ t0 + 1
1
v1

+ t1
= 1

v1
+ t0 + v1

1 + t1v1
.

2Note that addition and subtraction are the same for polynomials in the polynomial ring F2n [x1, . . . , xn].
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Based on this, we further have

v1(1 + t1v1)M1(v1) = 1 + t1v1 + t0v1(1 + t1v1) + v2
1 .

By simplifying the equation, we have

v1M1(v1) + t1v2
1M1(v1) = 1 + t1v1 + t0v1 + t0t1v2

1 + v2
1 .

Therefore, we can obtain n quadratic Boolean equations in v1. Based on Dinur’s algorithm
for the polynomial method [Din21a], we can recover v1 in about n2 · 20.815n bit operations.
Our results are summarized in Table 2.

4.3 Analysis of RAIN2 with Low-memory Complexity
We observe that it is possible to construct an overdefined system of quadratic Boolean
equations for RAIN2, and solve it with the crossbred algorithm (Section 2.3). We focus
on the choices of d1 = 1, and D = 2, 3, 4. Note that the case D = 2 corresponds to the
simplified crossbred algorithm used in [BDT22,WWF+21,LMSI22].

Specifically, we have

F (v1) = (v1 + t1v2
1)M1(v1) + 1 + t1v1 + t0v1 + t0t1v2

1 + v2
1 = 0. (3)

Note that this equation is of the same form as Equation (1), hence we can derive

G(v1) = M1(v1)F (v1)
= (v1 + t1v2

1)(M1(v1))2 + (1 + t1v1 + t0v1 + t0t1v2
1 + v2

1)M1(v1) = 0, (4)
H(v1) = (v1 + t1v2

1)F (v1)
= (v1 + t1v2

1)2M1(v1) + (1 + t1v1 + t0v1 + t0t1v2
1 + v2

1)(v1 + t1v2
1) = 0, (5)

which again correspond to 2n quadratic Boolean equations in v1. Thus we have n+2n = 3n
Boolean equations in n variables.

Number of linearly independent equations. Recall from Section 2.3 that we are interested
in understanding the number of linearly independent Boolean equations of a certain low
degree D that we can form from the system F generated by F , G and H. This is equivalent
to estimating the rank of the Macaulay matrix M≤D(F) for a sufficiently large n. We have
experimentally verified that the 3n quadratic equations forming F are linearly independent,
and thus

Rank(M≤2(F)) = 3n. (6)

At degree D = 3, we note that there are 3n2 possible polynomials of the form xifj ,
where xi is a Boolean unknown variable and fj is a polynomial in F , but not all of these will
be linearly independent. Indeed, similar to the analysis performed in [ØFRC20, Section 4],
this can at least be partially understood upon examination of the extension field description
of Equations (3)–(5). Denote L = 1 + t1v1 + t0v1 + t0t1v2

1 + v2
1 , and let F, G, H, M1 be as

above. Then we have the cancellations associated with

M1F + G = 0, (v1 + t1v2
1)F + H = 0,

(v1 + t1v2
1)G + F 2 + LF = 0, M1H + F 2 + LF = 0,

(v1 + t1v2
1)H + (v1 + t1v2

1)2F = 0, M1G + M2
1 F = 0.

Each of these six cancellations will correspond to n sums of the form
∑

xifj , which
symbolically sums to zero, and hence show up as 6n linearly dependent rows in M≤3(F).
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In fact, experiments show that M≤3(F) has rank 3n(n + 1) − 8n, meaning that there are
2n more cancellations that we are unable to explain. Summing up, this means that we
have

Rank(M≤3(F)) = n(3n − 8) + Rank(M≤2(F)). (7)

At degree D = 4 we will also have to take into account the trivial syzygies in the
polynomial system, i.e. cancellations of the form fifj + fjfi = 0 and f2

i + fi = 0. If these
were the only cancellations in the system at degree 4 (as is e.g. the case for a semi-regular
system), we would have counted the number of linearly independent equations at degree 4
as 3n

(
n
2
)

−
(3n+1

2
)
. However, we know from Equation (7) that there is a correction term of

8n at degree 3 which will likely turn into 8n2 at degree 4. Finally, experiments show that
there is a final correction term of 17n, which we are unable to explain. Summing up, we
find the following formula for the rank of the Macaulay matrix at degree 4:

Rank(M≤4(F)) = 3n

(
n

2

)
−
(

3n + 1
2

)
− 8n2 + 17n + Rank(M≤3(F)). (8)

Complexity evaluation for the Crossbred algorithm with D = 2, 3, 4. In order to
choose nD as described in Section 2.3, we first need Monn,D(i), i.e. the number of degree
≤ D-monomials in n variables that have degree ≥ 2 in the first i < n variables. This
number is listed below for D = 2, 3, 4:

Monn,D(i) =


(

i
2
)

for D = 2,(
i
3
)

+ (n − i)
(

i
2
)

+ Monn,2(i) for D = 3,(
i
4
)

+ (n − i)
(

i
3
)

+
(

n−i
2
)(

i
2
)

+ Monn,3(i) for D = 4.

(9)

At the preprocessing step of the crossbred algorithm, we need to find a parameter nD and
eliminate Monn,D(nD) monomials with Gaussian elimination. For these relatively small
choices of D, the time complexity of the preprocessing step is negligible when compared
to the latter linearization step. Specifically, the cost of the preprocessing step is equal
to the cost to perform Gaussian elimination on the Macaulay matrix M≤D(F) of size((

n
≤D−2

)
· 3n

)
×
(

n
≤D

)
. Thus it is optimal to choose nD as large as possible, that is, for

D = 2, 3, 4, we define the optimal nD as

nD = nD(F) = max
{

i ∈ Z>0
∣∣ Rank(M≤D(F)) − Monn,D(i) ≥ i

}
. (10)

This allows us to construct at least nD equations that are linear in nD variables after
guessing n − nD variables, while at the same time keeping n − nD minimal. In this way,
the time complexity to solve the target equation system is estimated as 2n−nD n3

D bit
operations, i.e. the time needed to solve a linear system in nD variables 2n−nD times.

For the memory complexity, we estimate it as the memory to store all the polynomial
equations. Specifically, it is estimated as((

n

≤ D − 2

)
· m

)
×
(

n

≤ D

)
bits of memory, as the corresponding Macaulay matrix M≤D(F) has

((
n

≤D−2
)

· 3n
)

rows
and

(
n

≤D

)
columns. The resulting time and memory complexities for the RAIN2 parameters

are given in Table 2.
Remark 1. We note that the time and memory complexity of the preprocessing step
to handle the Macaulay matrix M≤D(F) can be further optimized with advanced im-
plementation techniques. Note that eliminating Monn,D(nD) many monomials can be
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viewed as performing Gaussian elimination on a Rank(M≤D) × Monn,D(nD) submatrix
of the Macaulay matrix, and hence we can consider a Rank(M≤D) × Monn,D(nD) sub-
matrix. After this step, we can build each of the nD linear equations by summing at
most Rank(M≤D) polynomial equations, which means we do not need to perform the
Gaussian elimination on the full Macaulay matrix M≤D(F) in order to get the desired
nD linear equations. Moreover, the memory complexity can further be reduced by using
the Wiedemann algorithm for finding the kernel, as described in [BMSV22, Section 3.4].
Still, we prefer to present the numbers from the naive method for simplicity.

Table 2: Cost analysis of various methods for solving RAIN2

Method n nD Time (bits) Memory (bits)
128 - 2118 295

Polynomial Method 192 - 2172 2136

256 - 2225 2177

128 27 2115 222

Crossbred D = 2 192 33 2174 223

256 38 2234 225

128 30 2113 235

Crossbred D = 3 192 36 2172 237

256 41 2231 240

128 32 2111 245

Crossbred D = 4 192 38 2170 250

256 44 2228 252

Experimental verification. Our formulas for Rank(M≤D(F)) at D ∈ {2, 3, 4} specified
in Equations (6)–(8) have been experimentally verified using the built-in algorithm in
MAGMA [BCP97] for computing the Hilbert series of homogenized systems F for smaller
values of n. In particular, D = 2, 3 have been tested for n in the range of [25, 40], whereas
D = 4 has been tested for n ∈ [29, 40] (note that Equation (8) is negative for n < 29).

4.4 Analysis of RAIN3 Using the Equivalent Representation
It is natural to ask whether it is possible to extend this attack to 3 or more rounds.
However, this seems infeasible. Specifically, if we work in a similar way, we have(

M1(v1) + 1
v1

+ t0

)(
1
v1

+ s0 + c1 + c3 + M−1
2

(
1

1
v1

+ s0 + c1 + s3

))
= 1

Let
t2 = s0 + c1 + c3, t3 = s0 + c1 + s3.

Then, we have (
M1(v1) + 1

v1
+ t0

)(
1
v1

+ t2 + M−1
2

(
v1

1 + t3v1

))
= 1,

↪→

(
v1M1(v1) + 1 + t0v1

)(
1 + t2v1 + v1M−1

2

(
v1

1 + t3v1

))
= v2

1 .
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In this case, we cannot further expand M−1
2

(
v1

1+t3v1

)
. Otherwise, we could only get an

equation system of algebraic degree n − 1 in terms of v1 because we need to multiply the
term

n−1∏
i=0

(1 + t3v1)2i

in both sides of the equation to clear all denominators.
Another interesting observation based on the above analysis is that if there are only a

few monomials in M1(x) or M−1
2 (x), we can still construct a low-degree representation

for RAIN3. For example, if there are only ℓ monomials in M−1
2 (x), i.e. there are only ℓ

nonzero coefficients in (a′
2,0, . . . , a′

2,n−1) of the F2-linearized polynomial

M−1
2 (x) =

n−1∑
i=0

a′
2,ix

2i

,

by clearing all the denominators, we can get n Boolean equations of algebraic degree upper

bounded by ℓ + 2, which is caused by v1M1(v1) · v1M−1
2

(
v1

1+t3v1

)
.

The reason to consider 2 cases M1(x) and M−1
2 (x) is simple. First, the encryption and

decryption of RAIN3 has the same structure due to the inverse function. Second, we can
introduce a variable to denote the input of the last S-box rather than the output of the
first S-box, and the equivalent representation only in this variable still has the same form.
However, the designers have fixed these polynomials and all the coefficients are nonzero,
which makes the above attack infeasible.

5 Algebraic Cryptanalysis of AIM
It is found that there also exists a low-degree representation for full-round AIM. Although
the designers also reported a similar observation in the Appendix of [KHS+22], they
only considered the lower bound of the algebraic degree of this equivalent polynomial
representation. What is worse, they only treated the polynomial method [Din21a] as the
only threat for this equivalent representation, which requires more than 2n bits of memory
even for this lower bound. In this section, we perform a deep study on this equivalent
representation and give its accurate algebraic degree. By using the fast exhaustive search
method [BCC+10], we significantly reduce the cost to find the secret key of AIM via brute
force.

5.1 Description of AIM
The general construction of AIM can be described as follows:

zi = k2ei −1 for i ∈ [1, m − 1],

w =
m−1∑
i=1

Bi(zi),

y = w2em −1 + k.

In the above equations, k and y are the input and output of AIM, respectively, while zi

and w are internal states, and Bi(x) is the F2-linearized affine polynomial, i.e.

Bi(x) = ai,n +
n−1∑
j=0

ai,jx2j

.
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x2
e1
−1 B1

k y

x2
e2
−1 B2

x2
em

−1

w

x2
e
m−1

−1 Bm−1

· · ·

z1

z2

zm−1

Figure 3: The general construction of AIM

The corresponding graphic illustration is given in Figure 3.
Three variants of AIM named AIM-I, AIM-II, and AIM-III are specified by the designers,

as shown in Table 3.

Table 3: The three variants of AIM
Name n m (e1, . . . , em)
AIM-I 128 3 (3, 27, 5)
AIM-II 192 3 (5, 29, 7)
AIM-III 256 4 (3, 7, 53, 5)

5.2 Low-degree Representation for AIM
We describe the low-degree equivalent representation for AIM in this section. As the
algebraic degree of the equivalent representation is relatively high, the polynomial method
cannot work efficiently. However, the fast exhaustive search [BCC+10] is still applicable
and breaking AIM-I/AIM-II/AIM-III requires about 2115/2178/2241 equivalent calls to the
corresponding primitives, respectively.

Specifically, we observe that in AIM, m − 1 elements in the set {e1, . . . , em} take small
values, i.e. smaller than 8. In what follows, we show how to exploit this property to
construct the low-degree representation for AIM.

Given the output y, we can represent k in terms of the unknown w as follows:

k = w2em −1 + y.

In this way, we can further represent each (zi)1≤i≤m−1 only in terms of w, as shown below:

zi = (w2em −1 + y)2ei −1.

For convenience, we assume e1 < e2 < · · · < em−1.
We first show how to compute the accurate algebraic degree for the polynomials

(zi)1≤i≤m−2 in terms of w. Note that

2i − 1 =
i−1∑
j=0

2j
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and hence we have

∀a, b ∈ F2n , ∀i ∈ [1, n] : (a + b)2i−1 =
i−1∏
j=0

(a + b)2j

=
i−1∏
j=0

(a2j

+ b2j

) =
2i−1∑
j=0

ajb2i−1−j .

Therefore, we have

zi = (w2em −1 + y)2ei −1 =
2ei −1∑
j=0

yjw2em−1(2ei −1−j).

In this way, the algebraic degree of zi in terms of w is

di = max
{

Hw
(

Mn

(
2em−1(2ei − 1 − j)

))
| j ∈ [0, 2ei − 1]

}
,

where

∀a ∈ N : Mn(a) :=
{

2n − 1 if 2n − 1|a and a ≥ 2n − 1,

a%(2n − 1) otherwise.

and Hw(a) is the hamming weight of a, i.e. the number of 1 in its binary representation.
Therefore, di can be naively computed in time O(2ei). Note that for (ei)1≤i≤m−2 in
AIM, all of them are smaller than 8 and hence (di)1≤i≤m−2 can be computed with time
complexity of 28.

After computing (di)1≤i≤m−2, we define

dmax = max{d1, . . . , dm−2}.

In this way, zm−1 can be expressed in w of algebraic degree dmax due to

zm−1 = B−1
m−1

(
c + w +

m−2∑
i=0

Bi(zi)
)

= B−1
m−1

(
c + w +

m−2∑
i=0

Bi

(
(w2em −1 + y)2ei −1

))

In other words, the algebraic degree of the above polynomial of zm−1 in terms of w is dmax.
Furthermore, there is another way to establish the relation between zm−1 and w:

zm−1 = (w2em −1 + y)2em−1−1
,

↪→ zm−1(w2em −1 + y) = (w2em −1 + y)2em−1
.

Hence, we obtain an equation only in terms of w, as shown below:

B−1
m−1

(
c + w +

m−2∑
i=0

Bi

(
(w2em −1 + y)2ei −1

))
(w2em −1 + y) = (w2em −1 + y)2em−1

. (11)

This equation also corresponds to n Boolean equations of algebraic degree upper
bounded by dmax + em. These n Boolean equations can be obtained by polynomial
interpolation with the recursive version of Möbius transform, e.g. as described in [Din21a].
To interpolate these n Boolean polynomials, we need to evaluate

B−1
m−1

(
c + w +

m−2∑
i=0

Bi

(
(w2em −1 + y)2ei −1

))
(w2em −1 + y) + (w2em −1 + y)2em−1
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for

Tnum =
(

n

≤ dmax + em

)
(12)

different w, whose cost can be roughly estimated as Tnum calls to AIM. After the polynomial
evaluation is over, recovering the n Boolean polynomials with these Tnum points require

n · n ·
(

n

≤ dmax + em

)
bit operations.

By solving these n Boolean equations, we can first recover w and then the secret key
can be trivially recovered via:

k = w2em −1 + y.

Remark 2. The designers are indeed aware of this representation, but they use a lower
bound on the algebraic degree of zi in terms of w, i.e. it is simply treated as the hamming

weight of Mn

(
(2em − 1)2ei−1

)
because the monomial x(2em −1)2ei−1 will appear if we

expand the expression [KHS+22]. Moreover, they only treat the polynomial method as a
main threat for this low-degree representation, which cannot beat the naive exhaustive
search because its memory complexity is much higher than 2n bits.

5.3 Solving the n Boolean Equations of Algebraic Degree dmax + em

With the memory-efficient Möbius transform [Din21a,Bou22], evaluating a Boolean polyno-
mial in n variables of algebraic degree d over {0, 1}n requires about n ·

(
n

≤d

)
bits of memory

and the time is about d · 2n bit operations. With this as the oracle of the fast exhaustive
search method [BCC+10] to efficiently evaluate a polynomial, the time complexity to
find the solution of w from n Boolean equations of algebraic degree upper bounded by
dmax + em is estimated as about

4 · (dmax + em) · log2 n · 2n (13)

bit operations. The memory complexity is upper bounded by

n · n ·
(

n

≤ dmax + em

)
bits.

Remark 3. We avoid the original fast exhaustive search method for its costly pre-processing
phase of time complexity O(n2(dmax+em)). However, as already stated in Sect. 2, the time
complexity of the pre-processing phase for n Boolean polynomials is indeed upper bounded
by

n · nd ·
(

n

≤ dmax + em

)
(14)

bit operations. In this sense, using the original fast exhaustive search attack indeed does
not affect the whole time complexity as the cost of the pre-processing phase specified in
Equation 14 is still much smaller than Equation 13 for the concrete values of (n, dmax +em)
shown in Table 4.
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Our results for the parameters of AIM are summarized in Table 4. Note that due to
the relatively small value of dmax + em compared with n, the cost to interpolate the n
Boolean polynomials is negligible, which is almost equivalent to

Tnum =
(

n

≤ dmax + em

)
calls to AIM. Moreover, according to designers’ analysis [KHS+22], without this low-degree
equivalent representation in n variables, the naive brute force takes about 2149, 2214.4 and
2280 bit operations for AIM-I, AIM-II and AIM-III, respectively. Hence, the fast exhaustive
search attack much improves the naive brute force attack. In other words, the time
complexity of our attacks is equivalent to about 2115/2178/2241 calls of the underlying
primitives.

Table 4: Fast exhaustive search (FES) attacks on AIM
Attack Type n m (e1, . . . , em) dmax + em Tnum Time (bits) Memory (bits)

Brute force [KHS+22] 128 3 (3, 27, 5) − − 2149 negligible
FES 10 247.9 2136.2 261.7

Brute force [KHS+22] 192 3 (5, 29, 7) − − 2214.4 negligible
FES 14 269.3 2200.7 284.3

Brute force [KHS+22] 256 4 (3, 7, 53, 5) − − 2280 negligible
FES 15 279.3 2265.0 295.1

6 Conclusion
We show that there are nontrivial low-degree equivalent representations for 2-round RAIN
and full-round AIM, which can be exploited to mount effective attacks. Especially, as
recovering the secret key of AIM is the underlying difficult problem of the signature scheme
AIMer, which is one of the NIST Round 1 Additional Signatures, we believe that this work
is meaningful to the ongoing NIST PQC competition. Moreover, while our analysis shows
that 3 rounds are sufficient for RAIN, we propose to primarily use 4-round RAIN with an
additional round of security margin.
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