
1

Systematically Quantifying Cryptanalytic
Non-Linearities in Strong PUFs

Durba Chatterjee∗, Kuheli Pratihar∗, Aritra Hazra∗, Ulrich Rührmair†, Debdeep Mukhopadhyay∗
∗Indian Institute of Technology Kharagpur † LMU München, München, Germany, and University of Connecticut,

Storrs, USA

Abstract—Physically Unclonable Functions (PUFs) with large
challenge space (also called Strong PUFs) are promoted for
usage in authentications and various other cryptographic and
security applications. In order to qualify for these cryptographic
applications, the Boolean functions realized by PUFs need to
possess a high non-linearity (NL). However, with a large challenge
space (usually ≥ 64 bits), measuring NL by classical techniques
like Walsh transformation is computationally infeasible. In this
paper, we propose the usage of a heuristic-based measure called
non-homomorphicity test which estimates the NL of Boolean
functions with high accuracy in spite of not needing access to
the entire challenge-response set. We also combine our analysis
with a technique used in linear cryptanalysis, called Piling-
up lemma, to measure the NL of popular PUF compositions.
As a demonstration to justify the soundness of the metric,
we perform extensive experimentation by first estimating the
NL of constituent Arbiter/Bistable Ring PUFs using the non-
homomorphicity test, and then applying them to quantify the
same for their XOR compositions namely XOR Arbiter PUFs
and XOR Bistable Ring PUF. Our findings show that the metric
explains the impact of various parameter choices of these PUF
compositions on the NL obtained and thus promises to be used as
an important objective criterion for future efforts to evaluate PUF
designs. While the framework is not representative of the machine
learning robustness of PUFs, it can be a useful complementary
tool to analyze the cryptanalytic strengths of PUF primitives.

Index Terms—Strong PUFs, Non-linearity, Cryptanalysis,
Cryptanalytic Attacks, Non-homomorphicity Tests.

I. INTRODUCTION

PHYSICALLY Unclonable Function (PUF) is a hardware-
based security primitive that leverages the intrinsic de-

vice properties to realize a pseudorandom instance-specific
function [1], [2]. This makes it an important cryptographic
primitive which is used as a building block in various security
applications such as device identification [1], [3]–[5], authen-
tication protocols [6], [7], random number generation [8],
[9], advanced cryptographic protocols [10]–[15] and many
more. PUFs are broadly categorized into two groups, namely
Strong PUF and Weak PUF, on the basis of the number of
admissible challenge-response pairs (CRPs) [16], [17]. Strong
PUFs are characterized by a large number of CRPs and a
public interface to query the PUF, i.e. a user should be able
to feed any challenge and obtain its corresponding response.
Also, given the public interface, the challenge-response set
should be large enough, so that an adversary cannot obtain
all possible CRPs. Some popular Strong PUF constructions
include the Arbiter PUF [3], [18], XOR Arbiter PUF [3], Feed-
Forward Arbiter PUF [18], [19], analog PUFs [20]–[22], SHIC

PUF [23], [24], Lightweight Secure PUF [25], Bistable Ring
PUF [26], Subthreshold PUF [27], Lattice PUF [28], Voltage
Transfer PUF [29], and Multiplexer PUF [30]. On the other
hand, Weak PUFs allow a relatively less number of CRPs
and thus have a restricted querying interface [16], [17]. Some
example Weak PUF constructions include Ring Oscillator
PUF [3], SRAM PUF [8], DRAM PUFs [31], [32], butterfly
PUFs [33], buskeeper PUFs [34], transistor PUFs [35], or
diode PUFs [36].

The above-mentioned features make Strong PUFs a prime
candidate in several applications such as lightweight authenti-
cation [6], [37]–[41], advanced cryptographic protocols [10],
[12], [42], [43], or hardware obfuscation [44], [45] that man-
date cryptographic properties such as unpredictability, random-
ness and high non-linearity. Unpredictability of Strong PUFs
has been assessed using attack strategies ranging from classical
cryptanalytic techniques [46]–[48] to machine-learning (ML)
based modeling attacks [49]–[54]. In ML-based attacks [49],
[50], [53], [55], an adversary eavesdrops on a set of CRPs and
feeds it to a suitable machine learning algorithm that produces
a software model emulating the target PUF instance. The goal
of the attacker is to predict the response for an unseen chal-
lenge with high accuracy. On the contrary, in case of a classical
cryptanalytic attack, the objective is to exploit cryptographic
weakness in the construction to launch a computational attack.
A successful classical cryptanalytic attack on Strong PUF
implies that an attacker can predict the response for an un-
known challenge with probability greater than that of a random
guess. Although there has been significant development in
cryptanalysis of classical standard cryptographic primitives
such as ciphers or Boolean functions such as Substitution
Box (SBox), the assessment of PUFs from a cryptographic per-
spective lacks depth. Consequently, several popular PUF con-
structions do not have good cryptographic properties such as
unbiasedness, nonlinearity or strict avalanche criteria (SAC),
making them susceptible to attacks [46]–[48]. Although it
might be infeasible to launch a pure cryptanalytic attack on
PUFs due to its large challenge-response space, several attacks
have amalgamated cryptanalysis with ML to launch successful
attacks on standalone constructions [30], its compositions [46],
[54] as well as protocols employing PUFs.

One of the common cryptanalytic attacks is the linear
approximation attack, wherein an adversary tries to create a
linear approximation of the primitive and uses the approxi-
mation to predict the output for an unknown input [56]. Let
us consider the following example: Let l be the best linear

2

approximation of a function and if an adversary knows the
outputs l(a) and l(b) for two random inputs a and b, then it can
determine the output of a+ b by computing l(a) + l(b) (with
some approximation error, depending on the distance between
the target function and its best linear approximator), without
querying the primitive. This allows the attacker to generate
outputs for unknown inputs without querying the PUF, thereby
compromising the security of authentication protocols.

On the same lines, a linear approximation-based attack
was demonstrated on Multiplexer PUF (MPUF), wherein an
attacker tries to approximate the final response with an internal
APUF response bit. This is based on the crucial observation
that the NL of the MUX Network is not 0.5. For (n, 3)-
MPUF (comprising of 8 data-line APUFs and 3 select-line
APUFs), the bias in NL is calculated to be 25% which implies
that the MPUF response differs from one of the data-line
APUF outputs for only 1

4

th of the entire CRP set. Thus, an
attacker can approximate a constituent APUF output using the
final MPUF response with an error of only 25% and model
it using standard ML algorithms [30]. The same procedure is
repeated with a different set of CRPs to obtain models for
each data-line APUF. Thus, it is crucial to choose a combiner
function that has a high NL, although, this does not consider
the NL of the constituent PUFs.

In this work, we focus on the cryptographic NL of PUFs
and their XOR compositions. We present a systematic method
to quantify the NL of individual instances efficiently using the
SQnL framework. The overview of the nonlinearity assessment
framework is depicted in Fig. 1. Since the functionality of
every instance is uniquely determined by the device’s intrinsic
properties, each PUF instance realizes a different Boolean
function. Thus, there can be some instances which have low
NL and are therefore susceptible to classical cryptanalytic
attacks. Thus, it is imperative to assess each instance individ-
ually to filter out/isolate/identify the bad instances. Classical
techniques such as Walsh-Transformation are a misfit for
Strong PUFs with standard challenge length of 64-bits or
higher. This necessitates the formulation of a standard metric
that can estimate the NL of Strong PUF constructions given
black-box access to the PUF instance under test, by observ-
ing a significantly small fraction of CRPs. This technique
has been extensively used in the field of property testing.
Here we use one such test known as homomorphicity test
to formulate a metric that can approximate NL with some
error. The approximation error can be considered as a trade-
off for less computational overhead. Increasing the number
of CRPs provides a better estimate of NL at the cost of
higher computational overhead. The NL computed by the
proposed method does not correspond to the NL required to
bolster security against ML-based modeling attacks. This test
helps designers to evaluate specific instances for weakness
concerning classical cryptanalytic attacks (such as linear crypt-
analysis), and thus forms an essential part of the post-silicon
PUF assessment tool set.

A. Contributions

The contributions of this work are as follows:

NL

bounds

PUF Instance
under Test

NL Estimation using
Piling-up Lemma

Sec. III Sec. III Sec. IV

Evaluation Framework

Analysis Framework

Comparison with NL
Bounds of PUFs

Sec. III Sec. IV

NL

bounds

Instance-Specific Testability Analysis

Comparison with NL Bounds
from HT for XOR

Composiitons

Test Score Computation

Homomorphicity Test (HT) NL Estimation

Test Mechanism

Compute NL Bounds

Refinement: Selection of

NL Estimation for

XOR Composiitons

input
tuples

NL

bounds

Sec. III

NL bounds

NL bounds

for XOR

Composition

Fig. 1: Overview of SQnL Framework

• We develop a computationally efficient, easy-to-perform
test to estimate the NL of Strong PUF constructions.
This does not require any knowledge about the con-
struction and provides a good estimate of the NL with
a significantly small fraction of the entire challenge-
response set. The test checks the failure probability of the
homomorphicity property over a set of randomly chosen
inputs, hence termed the PUF Homomorphicity test.

• We present a guideline for the choice of parameters for
the PUF homomorphicity test and explain with the help
of a representative example of XOR Arbiter PUF.

• We apply the test to popular Strong PUF constructions
such as XOR Arbiter PUF, Feed-Forward Arbiter PUF
and XOR Bistable Ring PUF for different test parameters.
We evaluate the accuracy of the test by comparing it
with the NL results obtained from the Sagemath tool.
We demonstrate empirically that the actual nonlinearity
lies within the NL bounds computed from the homomor-
phicity test for PUFs with small challenge lengths.

• We perform instance-specific analysis for the above-
mentioned PUF families over 100 random PUF instances.
Using empirical results, we depict how the estimated
bounds capture the variation in NL across different in-
stances. We discuss the implications of this test on the
bad instances of PUF and how the test can identify such
bad instances.

• We propose a mechanism to extend the NL estimation for
XOR compositions of PUFs using a standard technique
called Piling-up lemma [56]. We empirically demonstrate
the efficacy of the heuristic in estimating NL of k-XOR
APUF for k = 2− 8.

• We consolidate the test parameters for which the PUF
homomorphicity produces the most accurate estimation
over 200 randomly simulated PUF instances of Arbiter
PUF, XOR Arbiter PUF, Feed-Forward Arbiter PUF,
Bistable Ring PUF and XOR Bistable Ring PUF.

The proposed test estimates the NL of Strong PUFs from a
black-box perspective, thereby assessing the resilience against
traditional cryptanalysis attacks performed on cryptographic
primitives such as block ciphers. Note that the NL estimated

3

by the test does not correspond to the NL exploited by ML
attacks.

B. Related Works

Ever since the emergence of PUF, it has been evaluated
from the perspective of Boolean functions [57]–[60]. In [57],
the authors propose a tool that assesses the robustness of PUFs
against provable ML attacks. It uses metrics such as noise sen-
sitivity and average sensitivity and property testing algorithms
to assess the vulnerability of a PUF construction to a Fourier-
based learning attack, also known as the LMN attack [61]. In
this attack model, an attacker creates a hypothesis of the target
PUF using solely the Fourier coefficients of the low-degree
terms. The tool takes a set of challenge response pairs, the
required accuracy and confidence of the algorithm and outputs
the number of CRPs required to learn the PUF design, given
its noise sensitivity is low. Although this provides provable
guarantees against ML attacks, the tool does not evaluate
the robustness of construction to mathematical cryptanalytic
attacks. In [60], the authors present a cryptographic evaluation
of Arbiter PUF-based constructions. It also proposes a variant
of APUF that achieves good cryptographic properties with
respect to differential analysis. In the direction of testability
of PUFs, [59] proposes a testability framework for PUFs that
assesses the quality of a PUF design using correlation analysis
and statistical tests. Some first steps in the direction of auto-
matically assessing Strong PUF security against ML-attacks
have already been made in [62]. Their work systematically
monitors the sensitivity of Strong PUF responses against small
perturbations of the applied challenge.

C. Organization of this Paper

The remainder of the paper is organized as follows. Sec. II
presents the preliminary concepts required in this work. In
Sec. III, we propose the PUF homomorphicity test followed
by its empirical analysis on some popular Strong PUF archi-
tectures including Arbiter PUF, Feed-Forward APUF, Bistable
Ring PUF and their XOR compositions. Sec. IV presents a
mechanism to estimate the NL of XOR compositions of Strong
PUF designs. Sec V concludes the work.

II. PRELIMINARIES

In this section, we present a brief background of the
concepts required in this paper.

A. Non-linearity of Boolean Functions

A n-variable Boolean function f : {0, 1}n → {0, 1} is said
to be affine if it can be represented as

f(x1, x2, · · · , xn) = u0 + u1x1 + u2x2 + · · ·unxn

where ui ∈ {0, 1} ∀i ∈ [n] are the coefficients and u0 =
1. If u0 = 0, then f becomes a linear function in Fn

2 . The
coefficients collectively can be represented by a coefficient
vector u = (u0, u1, u2, · · · , un).

Let An
2 denote the set of all affine functions in Fn

2 . The NL
of a Boolean function f , denoted by Nf is the distance to its
nearest affine function in Fn

2 and is given by

Nf = min
g∈An

2

d(f, g)

2n

where d denotes the Hamming distance. It can be computed
using the Walsh transform (discrete Fourier transform) as

Nf =
1

2
− 1

2
max
u∈Fn

2

|Wf̂ (u)| (1)

where f̂ is the sign function corresponding to f , defined as
f̂ = (−1)f and Wf̂ (u) denotes the Walsh transform of f̂ and
is given by

Wf̂ (u) =
1

2n

∑
x∈Fn

2

f̂(x)(−1)u.x (2)

Here, u ∈ Fn
2 denotes the coefficient vector corresponding

to an affine function. Here Nf represents the normalized
NL and it can take values in [0, 0.5). The computational
overhead involved in Nf calculation using Walsh transform
is exponential in the number of variables n.

B. Affinity Test of Boolean Functions

One of the commonly used techniques for testing the affinity
of a Boolean function is to check whether f(x+ y + z) +
f(x)+ f(y)+ f(z) = 0 holds for a set of inputs x,y, z ∈ Fn

2

chosen uniformly at random. If the test passes for most of the
input triplets, f is said to be affine.

A generalization of this test, known as the t + 1-th order
non homomorphicity test [63] evaluates the probability Pt(f)
that a function f fails the following test

f(x1+x2+ · · ·+xt)+f(x1)+f(x2)+ · · ·+f(xt) = 0 (3)

for all input tuples (x1,x2, · · · ,xt) ∈ (Fn
2)

t. For odd t, f
is affine if and only if Pt(f) = 0. On the other hand for even
t, f is affine if and only if Pt(f) ∈ {0, 1} while f is linear if
and only if Pt(f) = 0.

The fail probability Pt(f) is an indicator of NL of a function
f . The relationship between Pt(f) and NL is established
in [64]. It is shown that for odd k ≥ 3, Pt(f) is bounded
as follows

1

2

(
1− (1−2Nf)

t−1
)
≤ Pt(f) ≤

1

2

(
1− (1−2Nf)

t+1
)

(4)

From Eq. 4, we obtain the following bounds on NL of a
Boolean function in terms of Pt(f)

1

2

(
1− t+1

√
1− 2Pt(f)

)
≤ Nf ≤ 1

2

(
1− t−1

√
1− 2Pt(f)

)
(5)

4

C. Relationship between NL and Fourier Spectrum

Non-linearity of a Boolean function is closely related to
its Fourier spectrum, particularly the largest Fourier coef-
ficient in the expansion. For Fourier analysis, a Boolean
function f : {0, 1}n → {0, 1} is generally represented as f :
{−1,+1}n → {−1,+1} using the encoding χ(x) = (−1)x.
The Fourier expansion of f : {−1,+1}n → {−1,+1} is a
multilinear polynomial that represents f in terms of all the
n-bit linear functions χS . This is mathematically represented
as

f(x) =
∑
S⊆[n]

f̂(S).χS(x) (6)

where χS(x) =
∏

i∈S xi represents a linear function 1,
S denotes the set of input variables that contribute to the
corresponding linear function. The Fourier coefficient given
by f̂(S) = ⟨f, χS⟩ = Ex∈{−1,+1}n [f(x)χS(x)] represents the
distance of f to χS . The Fourier coefficient can be related to
the Hamming distance to the corresponding linear function as
f̂(S) = 1 − 2HD(f, χS) where HD denotes the Hamming
distance. Since the set of affine and linear functions are
complementary, we can directly compute NL from the Fourier
expansion.

For Bent functions, the class of Boolean functions with
the highest NL, all the Fourier coefficients have the same
magnitude, implying it has equal distance from all the linear
functions. On the other hand, for a generic Boolean function,
the fail probability of the affinity/homomorphicity test Pt is
bounded by the largest coefficient in its Fourier spectrum [65].
D. Piling-up Lemma

Piling-up lemma [56] is a technique used in linear cryptanal-
ysis to compute linear approximation of Boolean functions.
It states that the output bias of a linear Boolean function is
related to its input bias, given that the inputs are independent
Boolean variables. Mathematically,

ϵ(x1 ⊕ x2 ⊕ · · · ⊕ xk) = 2k−1
k∏

i=1

ϵi (7)

where x1, · · · , xk ∈ {0, 1} denote independent binary random
variables and ϵi = pi − 1

2 denotes the bias or deviation of the
probability pi of xi from 1/2.

E. Physically Unclonable Functions

A Physically Unclonable Function (PUF) is a pseudo-
random function realized from the intrinsic physical character-
istics of the underlying device. For instance, PUFs instantiated
on silicon chips leverage the inherent physical features of
the IC that occur due to uncontrollable variations in the
manufacturing process and are known as Silicon PUFs. We
briefly describe some of the Silicon PUF constructions, namely
Arbiter PUF, Feed-Forward Arbiter PUF, Bistable Ring PUF
and their XOR compositions.

1The AND operation in {−1,+1} domain corresponds to an XOR opera-
tion in F2.

1) Arbiter PUF and XOR Arbiter PUFs: Arbiter
PUF (APUF) [18] is the seminal primitive PUF architecture
that utilizes the delay difference of two symmetrically de-
signed parallel delay lines to generate a random and unique
response. In an ideal scenario, the delay difference should be
zero between two symmetrically laid-out paths. However, in
practice, it is non-zero due to uncontrollable variation in the IC
manufacturing process that introduces random offset between
the two delays.

An APUF comprises n two-port path-swapping switches
connected in serial. The input challenge bits are used as the
control to the switches that determine which path (straight
or cross) will be selected for the input signal’s propagation.
The two input terminals of the first stage are connected to a
common end, to which an excitation signal is applied. The
arbiter (D flip-flop) at the end of the two paths returns a 1-bit
response (logic-0 or logic-1) depending on which of the two
paths is faster. Fig. 2a depicts a n-stage APUF that takes a
n-bit challenge c = (c1, c2, · · · , cn), where ci is the control
signal to the ith switch.

However, APUFs have been shown to be vulnerable against
modeling as well as reliability attacks [49], [53]. Therefore, to
strengthen the APUF construction against such attacks, XOR
Arbiter PUFs (XOR APUF) [3] were proposed. A k-XOR
APUF has k individual APUFs whose outputs are combined
using an XOR gate to produce a global 1-bit response as shown
in Fig. 2d.

2) Feed-Forward Arbiter PUF and Feed-Forward XOR Ar-
biter PUFs: Feed-Forward Arbiter PUFs (FF-APUF) [19] uses
an internally generated signal to drive one or more switches in
the APUF delay chain instead of the external challenge bits.
The rationale behind the construction is to obfuscate a part of
the actual challenge fed to the PUF to enhance its resilience to
ML attacks. The internally generated signal is a function of the
delay differences accumulated in earlier parts of the circuit and
is obtained from an additional arbiter as depicted in Fig. 2b.
The delay paths emanating from a intermediate stage in the
delay chain is fed to an additional arbiter, whose outcome
is provided as a challenge bit to a succeeding stage, thereby
creating a feed-forward loop. The stage whose emanating
signals are fed to the arbiter determines the start of the loop
and the stage whose challenge bit is replaced by the arbiter
output specifies the end of the loop. A FF-APUF can comprise
of more than one loops. The number of loops, the start and
end position of the loops and the amount of overlap between
loops can give rise to different types of feed-forward Arbiter
PUF architectures. FF-APUFs with multiple loops can be
categorized on the basis of the position of loops into two
classes, namely FF-APUF with non-overlapping loops and FF-
APUF with overlapping loops.

The addition of the feed-forward loop makes the arbiter PUF
non-differentiable, thereby making it robust against linear ML
attacks using algorithms such as Linear Regression (LR) and
Support Vector Machine (SVM) barring a few cases where the
number of non-overlapping loops are small. The resilience of
FF-APUF to ML attacks can be improved further by using
XOR FF-APUFs. A k-XOR FF-APUF has k independent
FF-APUFs whose outputs XORed to obtain the final PUF

5

...

...

R

c1=1 c2=0 cn=1

D Q

CLK

(a) APUF

...

...

QD

CLK

R

c1=1 c2=0 cn=1

...

...

ci

D Q

CLK

(b) FF-APUF

1 1

00

1 1

00

1 1

00
...

11

0 0

11

0 0

11

0 0

...

c1 c2 cn/2

cn/2+1cn-1cn

Rst
R

(c) BRPUF

...

...

R

...

...

...

...

..
.

..
.

..
.

..
.

c1=1 c2=0 cn=1

k-XORs

D Q

CLK

D Q

CLK

D Q

CLK

(d) k-XOR APUF

R
..

.

..
.

..
.

..
.

k-XORs

...

...

...

...

ci

c1=1 c2=0 cn=1

...

...

...

...

ci

D Q

CLK

D Q

CLK

D Q

CLK

D Q

CLK

(e) k-XOR FF-APUF

1 1

00

1 1

00

1 1

00
...

11

0 0

11

0 0

11

0 0

...

c1 c2 cn/2

cn/2+1cn-1cn

Rst R

..
.

..
.

..
.

k
-X

O
R

s
..

.

1 1

00

1 1

00

1 1

00
...

11

0 0

11

0 0

11

0 0

...

c1 c2 cn/2

cn/2+1cn-1cn

1 1

00

1 1

00

1 1

00
...

11

0 0

11

0 0

11

0 0

...

c1 c2 cn/2

cn/2+1cn-1cn

(f) k-XOR BRPUF

Fig. 2: Schematic Diagram of Strong PUF constructions

response.
3) Bistable Ring PUF and XOR Bistable Ring PUFs: A

Bistable Ring PUF (BRPUF) comprises of an even number
of inverting cells connected serially in a loop as depicted in
Fig. 2c. It generates a random response from either of the
two stable states (010101 . . . or 101010 . . .) of the loop [26],
[66]. BRPUF considers the challenge-dependent delay of each
inverting stage to generate a stable response.

Each stage of BRPUF has two inverting delay elements with
MUXs to select the challenge-driven signal path. The linear
model for BRPUF, first proposed in [66] uses an additive delay
model similar to APUFs as given below.

r = sgn

(
n∑

i=1

αi + ciβi

)
(8)

where ci denotes the ith challenge bit and the weight val-
ues (αi, βi) represent the difference between the pull-up
strength and the pull-down strength in BRPUF as opposed to
the stage delays in APUF. In order to increase the robustness
of the construction against modeling attacks XOR BRPUF is
proposed, wherein the final response is obtained XORing the
outputs of k BRPUFs. Furthermore, the same linear-model is
used in the PyPUF tool for the abstraction of BRPUFs and
XOR-BRPUFs.

F. Simulation of Challenge-Response Pairs

PyPUF [67] is an open-source library which provides tools
to simulate, analyse as well as model different PUF designs.
This library uses Linear Threshold Functions (LTFs) to model
different delay-based PUFs [51]. Arbiter PUF and its com-
positions namely XOR-APUF, XOR Feed-Forward APUF are
modelled using LTFs and model-specific parameters such as

the number of XOR branches, starting and ending location of
feed-forward loop etc.

1 >>> from pypuf.simulation import XORArbiterPUF
2 >>> puf = XORArbiterPUF(n=64, k=8, seed=1, noisiness

=.05)
3 >>> from pypuf.io import random_inputs
4 >>> puf.eval(random_inputs(n=64, N=3, seed=2))
5 array([-1, -1, 1], dtype=int8)

Listing 1: XOR Arbiter PUF Instantiation

Each bit of the challenge in the PyPUF tool is generated
from a uniform distribution. A challenge transformation is
performed on the raw challenge input to get a transformed
challenge with parity bits based on the PUF model (e.g. Arbiter
PUF). The LTF generates weights that are sampled from a
Gaussian distribution, which are then used to evaluate the
dot-product with the transformed challenges. PyPUF tool uses
the sign of the LTF output for Arbiter PUF. In the case of
XOR Arbiter PUFs, the output of t LTFs are multiplied and
the sign of the output is the final PUF response. There is
also a noise parameter in the PyPUF tool which determines
the standard deviation of the noisy random variable added to
the LTF used for noisy simulations. Listing 1 and 2 shows
sample instantiations for Arbiter PUF and XOR Arbiter PUF
respectively.

III. NON-LINEARITY EVALUATION OF PUFS

Non-linearity is an essential property required in cryp-
tographic primitives. In this section, we propose a test to
evaluate the NL of a PUF instance. We first present the test
methodology and elaborate the test parameters and results
using examples of Arbiter PUF, Feed-Forward Arbiter PUF,
Bistable Ring PUF and its XOR compositions.

6

A. Test Methodology and Test Rationale

Non-linearity computation of a PUF instance using classical
techniques such as Walsh Transformation requires the entire
challenge-response set, making it computationally infeasible
for an instance with a standard challenge length of 64 bits
and higher. It necessitates an efficient approach for NL com-
putation of PUF constructions using a small fraction of the
entire challenge-response set.

Test 1 (PUF HOMOMORPHICITY TEST).

Under Test:
• PUF-instance with binary challenges ci = b1i · · · bni

of length n, and with single-bit responses Ri.

Test Score/Output:
• A number Pt ∈ [0, 1] that estimates the probability

with which the instance fails the homomorphicity
test. The probability is calculated over nObs number
of t-input tuples, where a t-input tuple comprises of
t randomly generated challenges (c1, c2, · · · , ct).

Test Variants and Practical Application:
• In practice, for a given t, Pt can be estimated by the

following method:
– A set of t n-bit challenges c1, c2, · · · , ct is

chosen uniformly at random. All the challenges
are fed to the PUF instance and their responses
are XORed to obtain a single bit output, say R.

– A bitwise XOR of the t challenges is performed
to obtain another n-bit challenge c′. This chal-
lenge is applied to the PUF-instance and let the
corresponding response be represented by R′.

– The former two steps are repeated for nObs
input tuples. Pt is calculated as the fraction of
tuples for which R and R′ differ.

• For a given t, Pt value is unique to a PUF-instance.
Ideally, all possible t-tuples, i.e. nObs =

(
2n

t

)
should be considered. However, nObs ≥ 106 gives a
decent estimate of NL. We explain the role of nObs
in NL estimation in the following subsection.

• The choice of t is crucial to get a correct estimation
of NL. Based on our experiments, we observe that
one should start with t = 3, 5. A higher t value gives
a better estimate. However, the permissible t values
depend on the number of tuples nObs.

Ideal Test Score and Simple Test Interpretation:
• The ideal value of the test score is 0.5, which implies

that the instance under test has an NL of 0.5. Any
deviation from the ideal value implies that the NL
is less than 0.5. Although the amount of deviation
of NL from 0.5 depends on the choice of t, as given
in Eq. 5. Even a small deviation of Pt from 0.5, can
imply a significantly low NL.

To estimate the NL of the PUF-instance under test, we

0.45

0.5
0.5

0.5

0.49

Fa
il

P
ro

ba
bi

lli
ty

 (P
t)

Non-Linearity
0 0.2 0.4 0.6

0.20.1 0.240.22

t=5
t=7
t=9
t=11
t=13

Fig. 3: Flip Probability vs Non Linearity

compute min(Pt, 1−Pt) and substitute the obtained value in
Eq. 5. It returns an upper and lower bound of NL, depending
on the value of t. Note that, min(Pt(f), 1 − Pt(f)) ensures
that the value substituted in Eq. 5 can take a maximum value
of 0.5, as a value greater than 0.5 of Pt(f) implies a much
lower Pt(f

′) 2. In NL estimation, we take the minimum of
Pt(f) and Pt(f

′) as it takes into account the distance of
the best linear approximator from f and f ′. For an affine
function, since Pt(f) = 0 irrespective of the value of t (odd
t) (refer Sec. II-B), the lower and upper bound converge
at Nf = 0. However, for a non-affine function, the choice
of t and nObs play a crucial role in the homomorphicity
test and consequently in NL estimation. Fig. 3 illustrates the
relationship between Pt and the NL upper bound obtained
from Eq. 5 for different t, from which we make the following
observations:

1) As t increases, the slope of the curve gets steeper. So,
for a PUF-instance under test (having a fixed NL), the
Pt gets closer to 0.5 on increasing t. Let us refer to
the vertical grid line in the zoomed part on the right
in Fig. 3. For 0.24 NL, the point of intersection of
each curve to the vertical line gets closer to 0.5 as t
increases. Moreover, if the NL of the PUF-instance is
high (close to 0.5), the separation between the curve and
0.5 diminishes rapidly on increasing t. In other words,
the fail probability deviates from 0.5 by a very small
fraction.

2) For a given fail probability value corresponding to a
PUF-instance under test, the estimated NL reduces as t
increases. This can be understood better by following a
horizontal line in the left zoomed area in Fig. 3. With
an increase in t, the point of intersection shifts closer to
zero, resulting in an underestimation of NL.

Given these insights, we elaborate on the significance of t and
nObs in the homomorphicity test as follows.
Impact of t on non-linearity estimation: From Eq. 5, we
understand that increasing t results in a better NL estimation as
the interval between the upper and lower bounds reduce. Intu-
itively, the homomorphicity test becomes more strict/stringent
as t increases, thereby increasing the fail probability Pt. Thus,

2f ′ denotes the complement of f . If f has a fail probability Pt(f), then
the fail probability of f ′ is Pt(f ′) = 1− Pt(f).

7

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.10

0.15

0.20

0.25

0.30

0.35

0.40

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

NL min (t=5)
NL max (t=5)

(a) nObs = 10K

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.10

0.15

0.20

0.25

0.30

0.35

0.40

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

NL min (t=5)
NL max (t=5)

(b) nObs = 100K

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.10

0.15

0.20

0.25

0.30

0.35

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)

NL max (t=5)
NL min (t=7)
NL max (t=7)

(c) nObs = 1M

Fig. 4: Non-linearity of APUF estimated using different nObs and t

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.15

0.20

0.25

0.30

0.35

0.40

0.45

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

NL min (t=5)
NL max (t=5)

(a) nObs = 10K

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.15

0.20

0.25

0.30

0.35

0.40

0.45

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

NL min (t=5)
NL max (t=5)

(b) nObs = 100K

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.15

0.20

0.25

0.30

0.35

0.40

0.45

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

NL min (t=5)
NL max (t=5)

(c) nObs = 1M

Fig. 5: Non-linearity of 2-XOR APUF estimated using various nObs and t

for an accurate NL estimation, t should be high which in
turn requires the fail probability to be very precise (from
Observation 1)). Note that, one can choose a smaller value
of t, for which the fail probability need not be calculated very
accurately, however, the resultant NL bound interval would be
wide.

Impact of nObs on the non-linearity estimation: For a given
t, the Pt(f) is basically the fraction of input tuples for which
the homomorphicity test fails. Thus the precision of Pt is
determined by nObs. Although it is computationally infeasible
to consider all possible t-input tuples for the test, we can work
with a significantly lower number of tuples. To select a higher
value of t, one needs to calculate the fail probability accurately,
therefore nObs should be high. A smaller nObs value will
result in underestimation of the fail probability (rounded up
to less number of decimal places), which will in turn generate
a much lower NL estimate (refer to Observation 2)).

In the next section, we illustrate this phenomenon with the
help of XOR APUF, FF-APUF and BR-PUF constructions.
First, we demonstrate the impact of nObs on the permissible
values of t and the accuracy of the NL estimation. For this,
we compare the NL bounds obtained for XOR APUF for
different nObs and t with actual NL obtained from Sagemath
tool [68]. We perform this analysis on PUFs with small
challenge lengths. Next, using FF-APUF and BR-PUF designs,

we empirically determine suitable t for which the estimated
NL approximates the actual NL accurately. Based on our
analysis we extend the PUF homomorphicity test for large
challenge lengths in the following section.

B. Non-Linearity of XOR Arbiter PUFs

We perform the PUF homomorphicity test on 20 randomly
chosen instances of APUF and k-XOR PUF (k = 2, 3, 4, 5, 6)
that take challenges of length n = 4, 5, · · · , 24 for t in
{3, 5, 7, 9} and nObs = 10K, 100K and 1M . The NL bounds
obtained from the test are verified against the NL obtained
from the Sagemath tool [68]. Fig. 4 depicts the NL bounds
averaged over 20 APUF instances using 10K, 100K and 1M
tuples, from which we make the following observations:

• For nObs = 10K, the homomorphicity test correctly
estimates the NL only for t = 3. For a higher value,
say t = 5, the test underestimates the NL bounds. This
can be attributed to low precision of Pt.

• As nObs increases, the homomorphicity test performs
well for t = 5, 7.

• The accuracy of the homomorphicity test enhances as t
increases.

We perform the same analysis for 2-XOR APUF and
demonstrate the results in Fig. 5. Similar to APUF, given
10K input tuples, the homomorphicity test performs well

8

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (nObs=10K)
NL max (nObs=10K)
NL min (nObs=100K)

NL max (nObs=100K)
NL min (nObs=1M)
NL max (nObs=1M)

(a) k = 3

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (nObs=10K)
NL max (nObs=10K)
NL min (nObs=100K)

NL max (nObs=100K)
NL min (nObs=1M)
NL max (nObs=1M)

(b) k = 4

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (nObs=10K)
NL max (nObs=10K)
NL min (nObs=100K)

NL max (nObs=100K)
NL min (nObs=1M)
NL max (nObs=1M)

(c) k = 5

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (nObs=10K)
NL max (nObs=10K)
NL min (nObs=100K)

NL max (nObs=100K)
NL min (nObs=1M)
NL max (nObs=1M)

(d) k = 6

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (nObs=10K)
NL max (nObs=10K)
NL min (nObs=100K)

NL max (nObs=100K)
NL min (nObs=1M)
NL max (nObs=1M)

(e) k = 7

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (nObs=10K)
NL max (nObs=10K)
NL min (nObs=100K)

NL max (nObs=100K)
NL min (nObs=1M)
NL max (nObs=1M)

(f) k = 8

Fig. 6: Non-linearity of k-XOR APUFs (k = 3, 4, 5, 6, 7, 8) estimated using different nObs for t = 3

for t = 3. On the other hand, the test fails to estimate
the NL correctly when 5-input tuples are considered. For
a correct estimation, the user needs to increase nObs. For
nObs = 1M , we observe that the actual NL lies within the
estimated bounds. To experimentally demonstrate the impact
of nObs, we perform the homomorphicity test on 20 instances
of each k-XOR APUF (k = 3, 4, 5, 6, 7, 8) with t = 3 and vary
nObs = 10K, 100K and 1M . We validate the bounds with
NL values obtained from Sagemath as shown in Fig. 6. One
key point to be noted is that the estimated bounds follow the
trend of actual NL for higher nObs as the challenge length
increases. This crucial observation enables us to extend this
test for PUFs with large challenge lengths. Going forward,
we use nObs ≥ 1M for the homomorphicity test on other
PUF designs. The choice of nObs is also dependent on the
challenge length.

To illustrate the change in NL of k-XOR APUF with change
in k, we plot the NL of 100 instances of 20-bit APUF and
k-XOR PUF where k = 2, 3, 4, 5, 6, 7, 8 (refer Fig. 7). The
100 instances are chosen uniformly at random and their NL is
computed using the Sagemath tool. Fig. 7 clearly depicts the
increase in average NL with an increase in k. Herein, we also
observe that for APUF and 2-XOR APUF, the NL of individual
instances vary significantly, while the variation reduces for
higher values of k, as clearly depicted in Fig. 8. This implies
that we can easily identify less non-linear instances that are
susceptible to cryptanalytic attacks. Additionally, the NL of
the different k-XOR APUF instances is distinguishable up to
k = 4. Among higher k-XOR APUF values, this distinction

Fig. 7: Non-linearity of individual instances of 20-bit k-XOR
APUF instances obtained from SAGE (k = 1, 2, · · · , 8)

diminishes, implying that one can distinguish between a lower
XOR APUF instance from a higher XOR APUF instance.

To evaluate the performance of the proposed test, we also
plot the NL bounds estimated from the test along with the
SAGE NL values for all instances in Fig. 9. Herein, we
can observe that the estimated bounds follows the individual

9

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Fig. 8: Non-linearity Variance of individual instances of 20-
bit k-XOR APUF instances obtained from SAGE (k =
1, 2, · · · , 8)

NL closely, including the peaks and troughs (refer Fig. 9b).
Moreover, the width of the bounds reduces as t increases.
For higher k, there exist some instances for which the test
estimates the NL incorrectly. We specify the fraction of
instances for which the homomorphicity test computes NL
range correctly using a parameter γ in each of the plots. We
observe that as k increases, the value of γ reduces, which
indicates an underestimation of NL due to less number of input
tuples. To validate our conjecture, we re-evaluate γ for a larger
nObs value. We depict the results of the test for nObs = 10M
for k-XOR APUF (k = 6, 7, 8) in Fig. 9.

C. Non-Linearity of Feed-Forward Arbiter PUFs

We apply the same test to Feed-Forward Arbiter PUF (refer
Sec. II-E). The rationale behind the FF-APUF design is
to increase the NL of the construction, thereby increasing
robustness against model-building attacks. To the best of our
knowledge, no previous work in the literature has quantified
the increase in NL due to the addition of feed-forward loops.
For this work, we consider FF-APUF with non-overlapping as
well as overlapping FF-APUF. In both configurations, we vary
the loop length (denoted by l) and number of loops, depending
on the challenge length. Additionally, in an FF-APUF with
overlapping loops, we also vary the overlap in the loops,
denoted by o. For a given FF-APUF construction, all loops
have the same length and the loop structure spans the entire
delay chain. For instance, let us consider a 20-bit FF-APUF
with non-overlapping loops of length 4. The loop structure
in this construction is (1, 5), (6, 10), (11, 15), (16, 20). This
representation specifies the starting and ending of each loop
in terms of the challenge bit, i.e the first entry in each
parenthesis denotes the challenge bit after which the the top
and bottom signals are branched out to an arbiter and the last
entry denotes the challenge bit where the arbiter output is
fed. Similarly, we represent the loop structure of a 20-bit FF-
APUF with overlapping loops of length 5 and an overlap of 2
as (1, 6), (4, 9), (7, 12), (10, 15), (13, 18). Although the delay
chain comprises of 20 stages the loop structure spans upto the
18th stage as no more loops of length 5 can fit beyond that.

FF-AFPUF with nonoverlapping loops: First, we per-
form the homomorphicity test on n-bit FF-APUF with non-

overlapping loops where n = 10, 12, · · · , 24 and loop length
varies in l = 3, 4, 5. We start with a challenge length of 10 so
that we obtain at least two loops for l = 3. We use 1M input
tuples and vary t = 3, 5, 7, 9. Fig. 10 depicts the average NL
obtained from Sagemath along with the NL bounds obtained
from the test, from which we make the following observations:

• The NL of an FF-APUF is lesser compared to an APUF
of same challenge length (ref. Fig. 4). It decreases further
with an increase in the number of loops. This can be
explained

• The NL values depict a zig-zag behaviour that can be
attributed to the end position of the last loop. Let us
consider Fig. 10a as an example. In this n = 12, 14, 16
break the monotonic increase of NL as observed in
case of APUF. In particular, the NL values are in the
order NL16 < NL12 < NL14. The loop structure for
n = 12, 14 is (1, 4), (5, 8), (9, 12) and for n = 16, the
structure is (1, 4), (5, 8), (9, 12), (13, 16). The lower NL
for n = 16 as compared to n = 12 is due to more
number of loops (4 and 3 respectively). Since n = 12, 14
have the same loop structure, the impact of increased
challenge length is predominant. The remaining plots can
be explained in a similar manner.

FF-AFPUF with overlapping loops: Next, we perform
the test on FF-APUF with overlapping loops for n =
10, 12, · · · , 24. The length of a single loop and the overlap
between two consecutive loops represented as (l, o) can take
values in (3, 1), (4, 1), (5, 1), (5, 2), (6, 1), (6, 2). We use the
same test parameters set for FF-APUF with non-overlapping
loops. The test results are presented in Fig. 11, from which
we make the following observations:

• The NL of FF-APUF with overlapping loops increases
monotonically with the challenge length.

• The NL bounds determined from the homomorphicity test
follows the SAGE NL pattern for t = 3, 5. For higher t
values, the homomorphicity test underestimates the NL
bounds, similar to an XOR APUF.

D. Non-Linearity of Bistable Ring PUFs

We apply the homomorphicity test to Bistable PUF and
XOR Bistable Ring PUF (XOR BRPUF), which has a different
internal structure than Arbiter PUF constructions. We perform
the test over 20 randomly generated instances of each con-
struction where k varies in {1, · · · , 6} using 1M observations,
pt = {3, 5, 7, 9} and present our results in Fig. 12. We observe
the following:

• The rate of increase of BRPUF NL with respect to the
challenge length is lesser than that of an APUF.

• For 1M observations, the homomorphicity test performs
well for BRPUF and 2-XOR BRPUF. However, for higher
values of k, the test underestimates the NL for k-XOR
BRPUF.

To illustrate the change in NL with increase in number
of XOR chains, we also plot the individual NL of each of
the 100 20-bit XOR BRPUF where k = 1, · · · , 8 (refer
Fig. 14). From this plot, we observe significant variation in the
NL of individual instances for BR-PUF and 2-XOR BRPUF.

10

0 10 20 30 40 50 60 70 80 90 100
Instance

0.15
0.20
0.25
0.30
0.35
0.40
0.45

No
nl

in
ea

rit
y = 1.00SAGE NL

Estimated NL bounds (t=3)

(a) APUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.15
0.20
0.25
0.30
0.35
0.40
0.45

No
nl

in
ea

rit
y = 0.96SAGE NL

Estimated NL bounds (t=5)

(b) APUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475

No
nl

in
ea

rit
y

= 1.00
SAGE NL
Estimated NL bounds (t=3)

(c) 2-XOR APUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.38
0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.95
SAGE NL
Estimated NL bounds (t=3)

(d) 3-XOR APUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.98
SAGE NL
Estimated NL bounds (t=3)

(e) 4-XOR APUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.97
SAGE NL
Estimated NL bounds (t=3)

(f) 5-XOR APUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.38
0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.73
SAGE NL
Estimated NL bounds (t=3)

(g) 6-XOR APUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.46
SAGE NL
Estimated NL bounds (t=3)

(h) 7-XOR APUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.25
SAGE NL
Estimated NL bounds (t=3)

(i) 8-XOR APUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.42

0.44

0.46

0.48

0.50

No
nl

in
ea

rit
y

= 0.98
SAGE NL
Estimated NL bounds (t=3)

(j) 6-XOR APUF, nObs = 10M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.42

0.44

0.46

0.48

0.50

No
nl

in
ea

rit
y

= 0.88
SAGE NL
Estimated NL bounds (t=3)

(k) 7-XOR APUF, nObs = 10M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.42

0.44

0.46

0.48

0.50

No
nl

in
ea

rit
y

= 0.68
SAGE NL
Estimated NL bounds (t=3)

(l) 8-XOR APUF, nObs = 10M

Fig. 9: Non-linearity estimation of individual instances of 20-bit XOR APUF

10 12 14 16 18 20 22
Challenge Length

0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)
NL max (t=5)

NL min (t=7)
NL max (t=7)
NL min (t=9)
NL max (t=9)

(a) l = 3

10 12 14 16 18 20 22
Challenge Length

0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)
NL max (t=5)

NL min (t=7)
NL max (t=7)
NL min (t=9)
NL max (t=9)

(b) l = 4

10 12 14 16 18 20 22
Challenge Length

0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)
NL max (t=5)

NL min (t=7)
NL max (t=7)
NL min (t=9)
NL max (t=9)

(c) l = 5

10 12 14 16 18 20 22
Challenge Length

0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)
NL max (t=5)

NL min (t=7)
NL max (t=7)
NL min (t=9)
NL max (t=9)

(d) l = 6

Fig. 10: Non-linearity of FF-APUF with non-overlapping
loops estimated using nObs = 1M

As k increases, the variation in NL of individual instances
diminishes, as depicted in Fig. 13. Next, we plot the NL
bounds estimated from the homomorphicity test along with
the SAGE NL for all the 100 instances in Fig. 15. Herein,

we denote the number of instances for which the proposed
test estimates the NL correctly using γ. We observe the same
phenomenon of decreasing γ in case of XOR BRPUF for
higher values of k. Compared to XOR APUFs, we observe
that the proposed test performs better for XOR BRPUF for
higher values of k (k = 6, 7, 8).

E. Non-linearity Computation for standard challenge length
PUFs

To assess the performance of the homomorphicity test on
PUFs with standard challenge lengths, we perform the test on
20 instances of n-bit APUF and n-bit k-XOR APUF, where
n = 32, 64, 96, 128, 192 and k = 2, · · · , 8. We observe from
the empirical results demonstrated in Fig. 16 that the NL
of APUF and XOR APUFs increase almost monotonically
with the challenge length. We perform the test by varying the
number of input tuples from 100K, 1M and 2M . However,
for nObs = 1M , we observe that the bounds were horizontal,
thereby independent of the challenge length. On increasing
nObs to 2M and restricting tuple length to t = 3, we observe
a monotonic increase in the NL with increasing challenge
length. Additionally on increasing k, the estimated bound
shifts close to 0.5, thereby illustrating NL enhancement due
to XOR. Fig. 16 depicts the NL bounds obtained from the
homomorphicity tests.

IV. NON-LINEARITY COMPUTATION FOR PUF
COMPOSITIONS USING PILING-UP LEMMA

The results in the previous section establish the capability
of the homomorphicity test in estimating the NL of several

11

10 12 14 16 18 20 22
Challenge Length

0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)

NL max (t=5)
NL min (t=7)
NL max (t=7)

(a) l = 3, o = 1

10 12 14 16 18 20 22
Challenge Length

0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)

NL max (t=5)
NL min (t=7)
NL max (t=7)

(b) l = 4, o = 1

10 12 14 16 18 20 22
Challenge Length

0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)

NL max (t=5)
NL min (t=7)
NL max (t=7)

(c) l = 5, o = 1

10 12 14 16 18 20 22
Challenge Length

0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)

NL max (t=5)
NL min (t=7)
NL max (t=7)

(d) l = 5, o = 2

10 12 14 16 18 20 22
Challenge Length

0.20

0.25

0.30

0.35

0.40

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)

NL max (t=5)
NL min (t=7)
NL max (t=7)

(e) l = 6, o = 1

10 12 14 16 18 20 22
Challenge Length

0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)

NL max (t=5)
NL min (t=7)
NL max (t=7)

(f) l = 6, o = 2

Fig. 11: Non-linearity of FF-APUF with overlapping loops
estimated using nObs = 1M

primitive PUF constructions. Although the test performs well
on small XOR compositions, results presented in Sec. III-B
and III-D depict that the proposed test underestimates the NL
for higher values of k (k = 7, 8) (refer Tab. I). One way to
address this is to increase nObs, however, the computation
time increases linearly. In this section, we present a heuristic
to extend the NL estimation for higher XOR compositions. To
this end, we employ the Piling-up lemma (refer Sec. II-D) to
explain the change in NL of k-XOR APUF, k-XOR BRPUF,
with varying k. Although Piing-up lemma is traditionally used
to estimate the bias of a linear Boolean function (XOR of
independent Boolean variables) from the individual bias of the
input variables, herein we employ this technique to compute an
upper bound of NL of XOR of independent Boolean functions.
We can assume the contributing Boolean functions (realized by
constituent primitive PUFs) to be independent as the output of
each of the primitive PUFs is determined from different delay
parameters. The formulation of NL of XOR composition of
PUF is explained as follows.

Let the NL of a PUF primitive taking an n-bit challenge be
Xn. The bias of NL is the difference between the actual NL
from its ideal value of 0.5 and is given by ϵn = 0.5 − Xn.
Assuming Xn to be a random variable, the NL of a k-XOR

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.15

0.20

0.25

0.30

0.35

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)
NL min (t=5)

NL max (t=5)
NL min (t=7)
NL max (t=7)

(a) k = 1

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.15
0.20
0.25
0.30
0.35
0.40
0.45

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

NL min (t=5)
NL max (t=5)

(b) k = 2

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.20
0.25
0.30
0.35
0.40
0.45
0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

(c) k = 3

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.20
0.25
0.30
0.35
0.40
0.45
0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

(d) k = 4

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.20
0.25
0.30
0.35
0.40
0.45
0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

(e) k = 5

4 6 8 10 12 14 16 18 20 22 24
Challenge Length

0.20
0.25
0.30
0.35
0.40
0.45
0.50

No
nl

in
ea

rit
y

SAGE NL
NL min (t=3)
NL max (t=3)

(f) k = 6

Fig. 12: Non-linearity of k-XOR BRPUF estimated using
nObs = 1M

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Fig. 13: Non-linearity of individual instances of 20-bit k-XOR
BRPUF instances obtained from SAGE (k = 1, 2, · · · , 8)

composition can be estimated as

Xk
n =

1

2
− 2k−1

k∏
i=1

ϵn (9)

We assess the proposed heuristic using the following cases:
Case 1: All constituent PUF are affine. In this case Xn = 0,
thus Xk

n = 1
2 − 2k−1.2−k = 0.

Case 2: One instance has Xn > 0 and remaining k − 1
constituent PUFs are affine. Let the non-zero NL be denoted
by d. Then, Xk

n = 1
2 − 2k−1.2−(k−1).(12 − d) = d. Thus, the

NL of the XOR composition is equal to that of the non-linear
PUF instance.

12

Fig. 14: Non-linearity of individual instances of 20-bit k-XOR
BRPUF instances obtained from SAGE (k = 1, 2, · · · , 8)

Case 3: Two instances have non-zero NL and the remaining
k − 2 constituent PUFs are affine. Let the non-zero non-
linearities be denoted by d1 and d2. Then, Xk

n = 1
2 −

2k−1.2−(k−2).(12 − d1).(
1
2 − d2) =

1
2 − 2(12 − d1).(

1
2 − d2) =

d1+d2−2d1d2. As a result, the NL of the XOR composition
is greater than the NL of constituent PUFs.

Since NL is the distance to the closest affine function,
we can explain the enhanced NL of XOR composition in
terms of distance to affine functions. On XORing the PUF
outputs, the distance of the resultant XOR APUF from a
given affine function will be at most the sum of distances
of the constituent PUFs from that affine function and at least
the absolute difference of these distances. To determine the
NL, we focus on the distance to the closest affine function.
If both the constituent PUFs have the same closest affine
function, then the NL can take any value between the absolute
difference and sum of their respective distances. On the other
hand, in a more probable case, if the constituent PUFs have
different closest affine functions, the NL upon XOR will be
bounded by the sum of their respective distances. For small
k (say k = 2, 3), the NL of the XOR composition may even
be lesser than the NL of a constituent primitive PUF. One
trivial instance of this scenario is when the primitive designs
realize the same or similar Boolean function. In this case,
the response bits cancel each other and generate a response
vector corresponding to an affine function or close to an
affine function. This phenomenon is confirmed by the plot
for 2-XOR PUF and 2-XOR BRPUF depicted in Fig. 7, 14
respectively. For some 2-XOR APUF instances, the NL value
is lower than that of an APUF. However, for higher values
of k, the probability of such an occurrence reduces, thereby
resulting in higher NL, as depicted in Fig. 7 and 14. Thus, the
variation in the NL values is much reduced and close to 0.5.
We experimentally validate our hypothesis using APUF and

k-XOR APUF instances. First, we demonstrate the efficacy
of the heuristic using PUFs with small challenge lengths, for
which we can determine the actual NL.
PUFs with Small Challenge lengths: In the first experiment,
we apply this mechanism on k-XOR APUF with challenge
lengths upto n = 24 and k = {2, · · · , 8}. We compute the
mean estimated NL of XOR APUFs from Eq. 9 using the
NL of 20 randomly chosen APUF instances. We compare the
estimated value with the average of NL values obtained for
k-XOR APUF from the Sagemath tool. Fig 17 illustrates the
actual NL, as well as the NL estimated using Piling-up lemma
of a 10-bit and a 24-bit XOR APUF for k = {1, · · · , 8}.
We can observe that on increasing the challenge length, the
estimated NL closely approximates the actual NL. Note that
this analysis provides us with an estimate of NL of a particular
design, rather than for specific instances, which is suitable as
the variation in NL for higher XOR values is minimal.

To validate the performance of the proposed heuristic, we
perform an instance-specific analysis. Leveraging the PyPUF
tool implementation of an XOR APUF, we generate XOR
APUF responses along with the contributing arbiter outputs.
For PUFs with small challenge lengths, we compute the
nonlinearity of each of the constituent APUFs using Sagemath,
compute its bias and substitute in Eq.9. We perform this
experiment over 100 randomly chosen instances of 24-bit k-
XOR APUF, varying k = 2, · · · , 8 and depict the results in
Fig. 19. We observe that the nonlinearity estimated by the
heuristic provides a close upper bound. As the value of k
increases, the difference between the actual and estimated
nonlinearity reduces (refer Fig. 19f, 19g). The average of
the difference between the actual and estimated nonlinearity
reduces from 0.0177 to 0.0056 as k increases from 2 to 8.
We repeated the experiment for 200 instances of 20-bit XOR
APUF, where this difference reduced from 0.0199 to 0.0084
for k = 2 to k = 8.
Combination with homomorphicity test: In the next experi-
ment we combine the above-mentioned mechanism with the
homomorphicity test. To this end, we substitute the mean of
NL bounds obtained from the homomorphicity test for APUF
in Eq. 9 with small as well as standard challenge lengths.
We vary k in {1, · · · , 8}. To validate this estimation, we
perform the homomorphicity test on 20 instances of each of
the k-XOR APUF constructions and compare the mean of
estimated NL bounds with the Piling-up lemma result. The
results for k-XOR APUF are presented in Fig. 18. We observe
that the outcome of the Piling-up lemma (depicted by blue and
red lines) upper bounds the NL interval obtained from the
homomorphicity test (depicted by yellow region). Since the
Piling-up lemma based test provides an upper bound of the
nonlinearity, using γ for estimating the accuracy of the test
is not appropriate. Thus, we define a metric β that measures
the difference between the nonlinearity bounds obtained from
the homomorphicity test for k-XOR compositions and the
estimation obtained from Piling-up lemma for each instance.
β will take a positive value, as the Piling-up lemma gives an
upper bound. Ideally, β should be close to zero. A higher value
of β indicates that the homomorphicity test underestimates
the nonlinearity of a given instance, thereby implying more

13

0 10 20 30 40 50 60 70 80 90 100
Instance

0.15
0.20
0.25
0.30
0.35
0.40
0.45

No
nl

in
ea

rit
y = 1.00SAGE NL

Estimated NL bounds (t=3)

(a) BRPUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.15
0.20
0.25
0.30
0.35
0.40
0.45

No
nl

in
ea

rit
y = 0.96SAGE NL

Estimated NL bounds (t=5)

(b) BRPUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.300
0.325
0.350
0.375
0.400
0.425
0.450
0.475

No
nl

in
ea

rit
y

= 1.00
SAGE NL
Estimated NL bounds (t=3)

(c) 2-XOR BRPUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.90
SAGE NL
Estimated NL bounds (t=3)

(d) 3-XOR BRPUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.94
SAGE NL
Estimated NL bounds (t=3)

(e) 4-XOR BRPUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.38
0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.92
SAGE NL
Estimated NL bounds (t=3)

(f) 5-XOR BRPUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.38
0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.66

SAGE NL
Estimated NL bounds (t=3)

(g) 6-XOR BRPUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.40
SAGE NL
Estimated NL bounds (t=3)

(h) 7-XOR BRPUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.38
0.40
0.42
0.44
0.46
0.48
0.50

No
nl

in
ea

rit
y

= 0.32
SAGE NL
Estimated NL bounds (t=3)

(i) 8-XOR BRPUF, nObs = 1M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.42

0.44

0.46

0.48

0.50

No
nl

in
ea

rit
y

= 0.98
SAGE NL
Estimated NL bounds (t=3)

(j) 6-XOR BRPUF, nObs = 10M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.42

0.44

0.46

0.48

0.50

No
nl

in
ea

rit
y

= 0.88
SAGE NL
Estimated NL bounds (t=3)

(k) 7-XOR BRPUF, nObs = 10M

0 10 20 30 40 50 60 70 80 90 100
Instance

0.42

0.44

0.46

0.48

0.50

No
nl

in
ea

rit
y

= 0.58
SAGE NL
Estimated NL bounds (t=3)

(l) 8-XOR BRPUF, nObs = 10M

Fig. 15: Non-linearity estimation of individual instances of 20-bit XOR BRPUF

32 64 96 128 192 256
Challenge Length

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

NL min (k=1)
NL max (k=1)
NL min (k=2)
NL max (k=2)
NL min (k=3)
NL max (k=3)
NL min (k=4)
NL max (k=4)

Fig. 16: Non-linearity of n-bit k-XOR APUF estimated using
nObs = 2M and t = 3

2 4 6 8
#XOR

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

No
nl

in
ea

rit
y

Estimated NL
SAGE NL range
Mean SAGE NL

(a) n = 10

2 4 6 8
#XOR

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Estimated NL
SAGE NL range
Mean SAGE NL

(b) n = 24

Fig. 17: Non-linearity estimation using Piling-up Lemma

observations need to be considered.

V. DISCUSSION AND CONCLUSION

While significant research has been conducted on the ML
robustness of a PUF design [49]–[52], [69], [70], little in-
vestigation is done on its cryptanalysis [46]–[48]. One of the
necessary conditions of a secure cryptographic primitive is
high NL. Unlike standard cryptographic primitives such as

block ciphers, NL computation of a PUF is computationally
infeasible, due to its large challenge length. A block cipher
comprises of a set of linear and nonlinear operations. The
nonlinearity evaluation of a block cipher is performed by de-
termining the nonlinearity of individual nonlinear components
such as Substitution Box (SBox). Since the input to each
nonlinear component depends on a subset of input bits, it is
feasible to compute the nonlinearity using Walsh transform.
On the contrary, the final PUF response depends on all the
challenge bits, thereby making it computationally infeasible
for PUFs.

This work takes the first step in this direction and proposes
a simple, easy-to-standardize and efficient test to estimate the
NL of any PUF design using a small fraction of its challenge-
response pairs. We illustrate the efficacy of the proposed
test using several candidate Strong PUF constructions such
as Arbiter PUF, Feed-Forward APUF, Bistable Ring PUF
and their XOR compositions with small as well as standard
challenge lengths. The experimental results corresponding to
PUFs with small challenge lengths provide concrete evidence
of the accuracy of the proposed test and insights into the
optimal choice of test parameters. We also extend the analysis
for designs having standard challenge lengths (n ≥ 64).
Additionally, we propose a mechanism using Piling-up lemma
to extend the homomorphicity test for XOR compositions. We
validate the upper bound obtained from the mechanism using
the NL range estimated by the homomorphicity test.

The test provides insight into the different functionality
realized by different instances, as highlighted by the instance-
specific analysis. Particularly, we observe that although the
average NL of a set of instances for a PUF design is large,
there exist some instances that have significantly low NL as

14

PUF
Designs

Design
Parameters

Small Challenge Lengths (n) Standard Challenge Length (n)
10 20 24 32 64 96 128 192 256

APUF k = 1
(10K, 3)
(1M, 7)

(10K, 3)
(1M, 5)

(10K, 3)
(1M, 5)

- - - - - -

XOR
APUF

k = 2
(10K, 5)
(1M, 7)

(10K, 3)
(1M, 5)

(10K, 3)
(1M, 3)

(10M, 3)
βmin = 0.0147
βmax = 0.0065

(10M, 3)
βmin = 0.007671
βmax = 0.002651

(10M, 3)
βmin = 0.0009
βmax = 0.0025

(10M, 3)
βmin = 0.0089
βmax = 0.00236

(10M, 3)
βmin = 0.002038
βmax = 0.00443

(10M, 3)
βmin = 0.02173
βmax = 0.00438

k = 3
(10K, 3)
(1M, 3)

(10K, 3)
(1M, 3)

(10K, 3)
(1M, 3)

(10M, 3)
βmin = 0.01997
βmax = 0.00477

(10M, 3)
βmin = 0.03300
βmax = 0.00608

(10M, 3)
βmin = 0.0404
βmax = 0.00672

(10M, 3)
βmin = 0.04538
βmax = 0.00718

(10M, 3)
βmin = 0.048713
βmax = 0.00729

(10M, 3)
βmin = 0.0502
βmax = 0.0072

k = 4
(10K, 3)
(1M, 3)

(10K, 3)
(1M, 3)

(10K, 3)
(1M, 3)

(10M, 3)
βmin = 0.050161
βmax = 0.007231

(10M, 3)
βmin = 0.051077
βmax = 0.007624

(10M, 3)
βmin = 0.05227
βmax = 0.00720

(10M, 3)
βmin = 0.05422
βmax = 0.00744

(10M, 3)
βmin = 0.05655
βmax = 0.00745

(10M, 3)
βmin = 0.05766
βmax = 0.00759

k = 5
(10K, 3)
(1M, 3)

(10K, 3)
(1M, 3)

(10K, 3)
(1M, 3)

(10M, 3)
βmin = 0.051404
βmax = 0.007471

(10M, 3)
βmin = 0.057920
βmax = 0.007908

(10M, 3)
βmin = 0.05825
βmax = 0.00763

(10M, 3)
βmin = 0.05890
βmax = 0.00768

(10M, 3)
βmin = 0.05686
βmax = 0.00705

(10M, 3)
βmin = 0.005654
βmax = 0.00700

k = 6
(10K, 3)
(1M, 3)

(10K, 3)
(1M, 3)
(10M, 3)

(10K, 3)
(1M, 3)
(10M, 3)

(10M, 3)
βmin = 0.0569

βmax = 0.007673

(10M, 3)
βmin = 0.056414
βmax = 0.0071049

(10M, 3)
βmin = 0.05799
βmax = 0.00729

(10M, 3)
βmin = 0.05961
βmax = 0.00759

(10M, 3)
βmin = 0.05727
βmax = 0.00703

(10M, 3)
βmin = 0.06085
βmax = 0.00778

k = 7
(10K, 3)
(1M, 3)

(10K, 3)
(1M, 3)
(10M, 3)

(10K, 3)
(1M, 3)
(10M, 3)

(10M, 3)
βmin = 0.05839
βmax = 0.00749

(10M, 3)
βmin = 0.056965
βmax = 0.006951

(10M, 3)
βmin = 0.05645
βmax = 0.006772

(10M, 3)
βmin = 0.05734
βmax = 0.00700

(10M, 3)
βmin = 0.059119
βmax = 0.007398

(10M, 3)
βmin = 0.05967
βmax = 0.00745

k = 8
(10K, 3)
(1M, 3)

(10K, 3)
(1M, 3)
(10M, 3)

(10K, 3)
(1M, 3)
(10M, 3)

(10M, 3)
βmin = 0.005691
βmax = 0.00702

(10M, 3)
βmin = 0.058364
βmax = 0.007221

(10M, 3)
βmin = 0.059156
βmax = 0.00730

(10M, 3)
βmin = 0.05605
βmax = 0.00678

(10M, 3)
βmin = 0.058725
βmax = 0.007294

(10M, 3)
βmin = 0.05722
βmax = 0.00700

FF-APUF
Non

overlapping
(10K, 3)
(1M, 7)

(10K, 3)
(1M, 5)

(10K, 3)
(1M, 5)

- - - - - -

Overlapping (10K, 3)
(1M, 7)

(10K, 3)
(1M, 5)

(10K, 3)
(1M, 5)

- - - - - -

BR PUF k = 1 (1M, 3) (1M, 3) (1M, 3)
(10M, 3)

βmin = 0.008471
βmax = 0.005713

(10M, 3)
βmin = 0.048988
βmax = 0.003349

(10M, 3)
βmin = 0.001230
βmax = 0.003219

(10M, 3)
βmin = 0.023311
βmax = 0.003439

(10M, 3)
βmin = 0.020910
βmax = 0.005849

(10M, 3)
βmin = 0.058891
βmax = 0.004345

XOR
BRPUF

k = 2 (1M, 3) (1M, 3) (1M, 3)
(10M, 3)

βmin = 0.058910
βmax = 0.004589

(10M, 3)
βmin = 0.059081
βmax = 0.004594

(10M, 3)
βmin = 0.053012
βmax = 0.004491

(10M, 3)
βmin = 0.050993
βmax = 0.0040091

(10M, 3)
βmin = 0.057142
βmax = 0.003978

(10M, 3)
βmin = 0.048819
βmax = 0.003434

k = 3 (1M, 3) (1M, 3) (1M, 3)
(10M, 3)

βmin = 0.034762
βmax = 0.004192

(10M, 3)
βmin = 0.049131
βmax = 0.008981

(10M, 3)
βmin = 0.043311
βmax = 0.00239

(10M, 3)
βmin = 0.056911
βmax = 0.003451

(10M, 3)
βmin = 0.049761
βmax = 0.002324

(10M, 3)
βmin = 0.044619
βmax = 0.003461

k = 4 (1M, 3) (1M, 3)
(1M, 3)
(10M, 3)

(10M, 3)
βmin = 0.067591
βmax = 0.002884

(10M, 3)
βmin = 0.048871
βmax = 0.005881

(10M, 3)
βmin = 0.067819
βmax = 0.006781

(10M, 3)
βmin = 0.034571
βmax = 0.005381

(10M, 3)
βmin = 0.047381
βmax = 0.004785

(10M, 3)
βmin = 0.046817
βmax = 0.005289

k = 5 (1M, 3) (1M, 3)
(1M, 3)
(10M, 3)

(10M, 3)
βmin = 0.047891
βmax = 0.005789

(10M, 3)
βmin = 0.058189
βmax = 0.004789

(10M, 3)
βmin = 0.047099
βmax = 0.005189

(10M, 3)
βmin = 0.055793
βmax = 0.007189

(10M, 3)
βmin = 0.047923
βmax = 0.008917

(10M, 3)
βmin = 0.046710
βmax = 0.005782

k = 6 (1M, 3)
(1M, 3)
(10M, 3)

(1M, 3)
(10M, 3)

(10M, 3)
βmin = 0.060082
βmax = 0.005873

(10M, 3)
βmin = 0.047881
βmax = 0.003874

(10M, 3)
βmin = 0.061810
βmax = 0.004581

(10M, 3)
βmin = 0.053809
βmax = 0.005089

(10M, 3)
βmin = 0.044001
βmax = 0.004789

(10K, 3)
βmin = 0.044081
βmax = 0.005400

k = 7 (1M, 3)
(1M, 3)
(10M, 3)

(1M, 3)
(10M, 3)

(10M, 3)
βmin = 0.062081
βmax = 0.008901

(10M, 3)
βmin = 0.058010
βmax = 0.005380

(10M, 3)
βmin = 0.058213
βmax = 0.005099

(10M, 3)
βmin = 0.067921
βmax = 0.005801

(10M, 3)
βmin = 0.05377
βmax = 0.004980

(10M, 3)
βmin = 0.059830
βmax = 0.006499

k = 8
(1M, 3)
(10M, 3)

(1M, 3)
(10M, 3)

(1M, 3)
(10M, 3)

(10M, 3)
βmin = 0.058944
βmax = 0.008452

(10M, 3)
βmin = 0.057842
βmax = 0.006463

(10M, 3)
βmin = 0.057841
βmax = 0.007469

(10M, 3)
βmin = 0.059649
βmax = 0.007694

(10M, 3)
βmin = 0.06013
βmax = 0.006894

(10M, 3)
βmin = 0.059823
βmax = 0.008791

Color
γ 0-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75 76-80 81-85 86-90 91-95 96-100

TABLE I: Homomorphicity Test parameters for best non-linearity estimation of Arbiter PUF, Bistable Ring PUF and their
XOR Compositions computed over 100 randomly chosen instances

depicted in Fig. 9, 14. Thus these instances can be targeted
by an attacker for classical cryptanalytic attacks such as linear
cryptanalytic attack [56]. Herein, an attacker tries to obtain a
linear function that closely approximates the target function.

However, we would like to state that the nonlinearities
reported by the homomorphicity test are different to the
nonlinearities that guarantee security against ML-attacks. Our
homomorphicity test scores and other analyses therefore are
useful indicators of the security against cryptanalytic attacks,
such as the ones reported in [46]–[48], but no direct indicators
of a Strong PUF’s resilience against ML-attacks. While XOR
is a non-linear function with respect to ML-based attacks, it
is a linear operator in F2. In case of an ML-based attack, the
XOR operation makes the decision boundary nonlinear in the
input space, thereby increasing the modeling complexity. This
corroborates with the reduction in ML accuracy for XOR com-
position of several PUF constructions as the number of XOR
inputs (PUF responses combined using XOR) increases [49],
[51]. On the other hand, XOR being a linear function in F2,
implies that close linear approximation of PUFs can be used
to construct approximations of their XOR compositions. Thus,
although XOR strengthens a PUF construction against ML-

based attacks, the same cannot be assured for classical crypt-
analytic attacks [56]. Also vice versa, the properties that make
a PUF resilient against certain cryptanalytic attacks, which we
detect in this paper, do not necessarily make it resilient against
ML-attacks. Thus exploring the gap between nonlinearity with
respect to ML and with respect to mathematical cryptanalysis,
and finding complementary metrics to ours that directly assess
the security of a PUF against ML-attacks, is an interesting
direction for future work. Some first steps in the direction
of automatically assessing Strong PUF security against ML-
attacks have already been made in [62].

REFERENCES

[1] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[2] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, 2002, pp. 148–160.

[3] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in 2007 44th ACM/IEEE
Design Automation Conference. IEEE, 2007, pp. 9–14.

[4] A.-R. Sadeghi, I. Visconti, and C. Wachsmann, “Puf-enhanced rfid
security and privacy,” in Workshop on secure component and system
identification (SECSI), vol. 110, 2010.

15

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50
No

nl
in

ea
rit

y

Estimated NL min
Estimated NL max
HT NL range

(a) n = 10

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Estimated NL min
Estimated NL max
HT NL range

(b) n = 24

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Estimated NL min
Estimated NL max
HT NL range

(c) n = 32

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Estimated NL min
Estimated NL max
HT NL range

(d) n = 64

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Estimated NL min
Estimated NL max
HT NL range

(e) n = 96

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Estimated NL min
Estimated NL max
HT NL range

(f) n = 128

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Estimated NL min
Estimated NL max
HT NL range

(g) n = 192

1 2 3 4 5 6 7 8
#XOR

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No
nl

in
ea

rit
y

Estimated NL min
Estimated NL max
HT NL range

(h) n = 256

Fig. 18: Non-linearity estimation using homomorphicity test
and Piling-up Lemma

[5] U. Rührmair, H. Busch, and S. Katzenbeisser, “Strong pufs: models,
constructions, and security proofs,” in Towards hardware-intrinsic secu-
rity. Springer, 2010, pp. 79–96.

[6] P. Gope, J. Lee, and T. Q. Quek, “Lightweight and practical anonymous
authentication protocol for rfid systems using physically unclonable
functions,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 11, pp. 2831–2843, 2018.

[7] U. Chatterjee, D. Mukhopadhyay, and R. S. Chakraborty, “3paa: A
private puf protocol for anonymous authentication,” IEEE Transactions
on Information Forensics and Security, vol. 16, pp. 756–769, 2020.

[8] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up sram state as
an identifying fingerprint and source of true random numbers,” IEEE
Transactions on Computers, vol. 58, no. 9, pp. 1198–1210, 2008.

[9] C. W. O’donnell, G. E. Suh, and S. Devadas, “Puf-based random number
generation,” In MIT CSAIL CSG Technical Memo, vol. 481, 2004.

[10] U. Rührmair, “Oblivious transfer based on physical unclonable func-
tions,” in International Conference on Trust and Trustworthy Computing.
Springer, 2010, pp. 430–440.

[11] U. Rührmair and M. van Dijk, “Pufs in security protocols: Attack models
and security evaluations,” in 2013 IEEE symposium on security and
privacy. IEEE, 2013, pp. 286–300.

[12] U. Rührmair, “Physical turing machines and the formalization of phys-
ical cryptography,” Cryptology ePrint Archive, 2011.

[13] M. van Dijk and U. Rührmair, “Protocol attacks on advanced puf
protocols and countermeasures,” in 2014 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2014, pp. 1–6.

1 11 21 31 41 51 61 71 81 91
Instance

0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44

NL

SAGE NL
Piling-up Lemma

(a) k = 2

1 11 21 31 41 51 61 71 81 91
Instance

0.40
0.42
0.44
0.46
0.48

NL

SAGE NL
Piling-up Lemma

(b) k = 3

1 11 21 31 41 51 61 71 81 91
Instance

0.45
0.46
0.47
0.48
0.49

NL

SAGE NL
Piling-up Lemma

(c) k = 4

1 11 21 31 41 51 61 71 81 91
Instance

0.46

0.47

0.48

0.49

0.50
NL

SAGE NL
Piling-up Lemma

(d) k = 5

1 11 21 31 41 51 61 71 81 91
Instance

0.475
0.480
0.485
0.490
0.495
0.500

NL

SAGE NL
Piling-up Lemma

(e) k = 6

1 11 21 31 41 51 61 71 81 91
Instance

0.486
0.488
0.490
0.492
0.494
0.496
0.498
0.500

NL

SAGE NL
Piling-up Lemma

(f) k = 7

1 11 21 31 41 51 61 71 81 91
Instance

0.490
0.492
0.494
0.496
0.498
0.500

NL

SAGE NL
Piling-up Lemma

(g) k = 8

Fig. 19: Nonlinearity estimated using Piling up Lemma for
100 instances of 24-bit k-XOR APUF. Note that the y-axis
scale is different for each figure.

16

[14] R. Ostrovsky, A. Scafuro, I. Visconti, and A. Wadia, “Universally
composable secure computation with (malicious) physically uncloneable
functions,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2013, pp. 702–
718.

[15] D. Dachman-Soled, N. Fleischhacker, J. Katz, A. Lysyanskaya, and
D. Schröder, “Feasibility and infeasibility of secure computation with
malicious pufs,” in Annual Cryptology Conference. Springer, 2014, pp.
405–420.

[16] U. Rührmair and D. E. Holcomb, “Pufs at a glance,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2014, pp. 1–6.

[17] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclon-
able functions and applications: A tutorial,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1126–1141, 2014.

[18] B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas, “Iden-
tification and authentication of integrated circuits,” Concurrency and
Computation: Practice and Experience, vol. 16, no. 11, pp. 1077–1098,
2004.

[19] S. S. Avvaru, Z. Zeng, and K. K. Parhi, “Homogeneous and heteroge-
neous feed-forward xor physical unclonable functions,” IEEE Trans. on
Info. For. & Sec., vol. 15, pp. 2485–2498, 2020.

[20] Q. Chen, G. Csaba, X. Ju, S. B. Natarajan, P. Lugli, M. Stutzmann,
U. Schlichtmann, and U. Rührmair, “Analog circuits for physical cryp-
tography,” in Proceedings of the 2009 12th International symposium on
integrated circuits. IEEE, 2009, pp. 121–124.

[21] G. Csaba, X. Ju, Z. Ma, Q. Chen, W. Porod, J. Schmidhuber, U. Schlicht-
mann, P. Lugli, and U. Rührmair, “Application of mismatched cellular
nonlinear networks for physical cryptography,” in 2010 12th Interna-
tional Workshop on Cellular Nanoscale Networks and their Applications
(CNNA 2010). IEEE, 2010, pp. 1–6.

[22] U. Rührmair, “Simpl systems as a keyless cryptographic and security
primitive,” in Cryptography and Security: From Theory to Applications.
Springer, 2012, pp. 329–354.

[23] U. Rührmair, C. Jaeger, M. Bator, M. Stutzmann, P. Lugli, and G. Csaba,
“Applications of high-capacity crossbar memories in cryptography,”
IEEE Transactions on Nanotechnology, vol. 10, no. 3, pp. 489–498,
2010.

[24] P. Lugli, A. Mahmoud, G. Csaba, M. Algasinger, M. Stutzmann, and
U. Rührmair, “Physical unclonable functions based on crossbar arrays
for cryptographic applications,” International journal of circuit theory
and applications, vol. 41, no. 6, pp. 619–633, 2013.

[25] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
pufs,” in 2008 IEEE/ACM International Conference on Computer-Aided
Design. IEEE, 2008, pp. 670–673.

[26] Q. Chen, G. Csaba, P. Lugli, U. Schlichtmann, and U. Rührmair, “The
bistable ring puf: A new architecture for strong physical unclonable func-
tions,” in 2011 IEEE International Symposium on Hardware-Oriented
Security and Trust. IEEE, 2011, pp. 134–141.

[27] M. Kalyanaraman and M. Orshansky, “Novel strong puf based on non-
linearity of mosfet subthreshold operation,” in 2013 IEEE international
symposium on hardware-oriented security and trust (HOST). IEEE,
2013, pp. 13–18.

[28] Y. Wang, X. Xi, and M. Orshansky, “Lattice puf: A strong physical
unclonable function provably secure against machine learning attacks,”
in 2020 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2020, pp. 273–283.

[29] A. Vijayakumar and S. Kundu, “A novel modeling attack resistant puf
design based on non-linear voltage transfer characteristics,” in 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2015, pp. 653–658.

[30] D. P. Sahoo, D. Mukhopadhyay, R. S. Chakraborty, and P. H. Nguyen,
“A multiplexer-based arbiter puf composition with enhanced reliability
and security,” IEEE Transactions on Computers, vol. 67, no. 3, pp. 403–
417, 2017.

[31] F. Tehranipoor, N. Karimian, K. Xiao, and J. Chandy, “Dram based
intrinsic physical unclonable functions for system level security,” in
Proceedings of the 25th edition on Great Lakes Symposium on VLSI,
2015, pp. 15–20.

[32] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The dram latency
puf: Quickly evaluating physical unclonable functions by exploiting
the latency-reliability tradeoff in modern commodity dram devices,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 194–207.

[33] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, “The
butterfly puf protecting ip on every fpga,” in 2008 IEEE International

Workshop on Hardware-Oriented Security and Trust. IEEE, 2008, pp.
67–70.

[34] P. Simons, E. van der Sluis, and V. van der Leest, “Buskeeper pufs, a
promising alternative to d flip-flop pufs,” in 2012 IEEE International
Symposium on Hardware-Oriented Security and Trust. IEEE, 2012,
pp. 7–12.

[35] K. Lofstrom, W. R. Daasch, and D. Taylor, “Ic identification circuit
using device mismatch,” in 2000 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers (Cat. No. 00CH37056). IEEE,
2000, pp. 372–373.

[36] U. Rührmair, C. Jaeger, C. Hilgers, M. Algasinger, G. Csaba, and
M. Stutzmann, “Security applications of diodes with unique current-
voltage characteristics,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2010, pp. 328–335.

[37] A. Shamsoshoara, A. Korenda, F. Afghah, and S. Zeadally, “A survey on
physical unclonable function (puf)-based security solutions for internet
of things,” Computer Networks, vol. 183, p. 107593, 2020.

[38] S. Yu and Y. Park, “A robust authentication protocol for wireless medical
sensor networks using blockchain and physically unclonable functions,”
IEEE Internet of Things Journal, 2022.

[39] G. Bansal, N. Naren, V. Chamola, B. Sikdar, N. Kumar, and M. Guizani,
“Lightweight mutual authentication protocol for v2g using physical un-
clonable function,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 7, pp. 7234–7246, 2020.

[40] T. A. Idriss, H. A. Idriss, and M. A. Bayoumi, “A lightweight puf-based
authentication protocol using secret pattern recognition for constrained
iot devices,” IEEE Access, vol. 9, pp. 80 546–80 558, 2021.

[41] U. Chatterjee, V. Govindan, R. Sadhukhan, D. Mukhopadhyay,
R. S. Chakraborty, D. Mahata, and M. M. Prabhu, “Building PUF
based authentication and key exchange protocol for iot without
explicit crps in verifier database,” IEEE Trans. Dependable Secur.
Comput., vol. 16, no. 3, pp. 424–437, 2019. [Online]. Available:
https://doi.org/10.1109/TDSC.2018.2832201

[42] C. Brzuska, M. Fischlin, H. Schröder, and S. Katzenbeisser, “Physically
uncloneable functions in the universal composition framework,” in
Annual Cryptology Conference. Springer, 2011, pp. 51–70.

[43] U. Rührmair and M. van Dijk, “On the practical use of physical un-
clonable functions in oblivious transfer and bit commitment protocols,”
Journal of Cryptographic Engineering, vol. 3, no. 1, pp. 17–28, 2013.

[44] S. Khaleghi and W. Rao, “Hardware obfuscation using strong pufs,”
in 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
IEEE, 2018, pp. 321–326.

[45] H. Kareem and D. Dunaev, “Physical unclonable functions based hard-
ware obfuscation techniques: A state of the art,” in 2021 16th Iberian
Conference on Information Systems and Technologies (CISTI). IEEE,
2021, pp. 1–6.

[46] D. P. Sahoo, P. H. Nguyen, D. Mukhopadhyay, and R. S. Chakraborty,
“A case of lightweight puf constructions: Cryptanalysis and machine
learning attacks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 8, pp. 1334–1343, 2015.

[47] L. Kraleva, M. Mahzoun, R. Posteuca, D. Toprakhisar, T. Ashur,
and I. Verbauwhede, “Cryptanalysis of strong physically unclonable
functions,” IEEE Open Journal of the Solid-State Circuits Society, 2022.

[48] P. H. Nguyen and D. P. Sahoo, “An efficient and scalable modeling attack
on lightweight secure physically unclonable function,” Cryptology ePrint
Archive, 2016.

[49] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhu-
ber, “Modeling attacks on physical unclonable functions,” in Proceed-
ings of the 17th ACM conference on Computer and communications
security, 2010, pp. 237–249.

[50] N. Wisiol, C. Mühl, N. Pirnay, P. H. Nguyen, M. Margraf, J.-P.
Seifert, M. van Dijk, and U. Rührmair, “Splitting the interpose puf: A
novel modeling attack strategy,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 97–120, 2020.

[51] N. Wisiol, B. Thapaliya, K. T. Mursi, J.-P. Seifert, and Y. Zhuang,
“Neural network modeling attacks on arbiter-puf-based designs,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 2719–
2731, 2022.

[52] M. Khalafalla and C. Gebotys, “Pufs deep attacks: Enhanced modeling
attacks using deep learning techniques to break the security of double
arbiter pufs,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2019, pp. 204–209.

[53] G. T. Becker, “The gap between promise and reality: On the insecurity of
xor arbiter pufs,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2015, pp. 535–555.

17

[54] D. Chatterjee, U. Chatterjee, D. Mukhopadhyay, and A. Hazra, “Sacred:
An attack framework on sac resistant delay-pufs leveraging bias and reli-
ability factors,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 85–90.

[55] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “Puf modeling
attacks on simulated and silicon data,” IEEE transactions on information
forensics and security, vol. 8, no. 11, pp. 1876–1891, 2013.

[56] M. Matsui, “Linear cryptanalysis method for des cipher,” in Workshop on
the Theory and Application of of Cryptographic Techniques. Springer,
1993, pp. 386–397.

[57] F. Ganji, D. Forte, and J.-P. Seifert, “Pufmeter a property testing tool for
assessing the robustness of physically unclonable functions to machine
learning attacks,” IEEE Access, vol. 7, pp. 122 513–122 521, 2019.

[58] D. Chatterjee, D. Mukhopadhyay, and A. Hazra, “PUF-G: A CAD
framework for automated assessment of provable learnability from
formal PUF representations,” in Proceedings of the 39th International
Conference on Computer-Aided Design, 2020, pp. 1–9.

[59] D. Chatterjee, A. Hazra, and D. Mukhopadhyay, “Formal analysis of puf
instances leveraging correlation-spectra in boolean functions,” in Inter-
national Conference on Security, Privacy, and Applied Cryptography
Engineering. Springer, 2019, pp. 142–158.

[60] A. Roy, D. Roy, and S. Maitra, “How Do the Arbiter PUFs Sample
the Boolean Function Class?” in International Conference on Selected
Areas in Cryptography. Springer, 2022, pp. 111–130.

[61] N. Linial, Y. Mansour, and N. Nisan, “Constant depth circuits, fourier
transform, and learnability,” Journal of the ACM (JACM), vol. 40, no. 3,
pp. 607–620, 1993.

[62] F. Kappelhoff, R. Rasche, D. Mukhopadhyay, and U. Rührmair, “Strong
puf security metrics: Response sensitivity to small challenge perturba-
tions,” in 2022 23rd International Symposium on Quality Electronic
Design (ISQED). IEEE, 2022, pp. 1–10.

[63] X.-M. Zhang and Y. Zheng, “The nonhomomorphicity of boolean func-
tions,” in International Workshop on Selected Areas in Cryptography.
Springer, 1998, pp. 280–295.

[64] A. Sălăgean and P. Stănică, “Improving bounds on probabilistic affine
tests to estimate the nonlinearity of boolean functions,” Cryptography
and Communications, vol. 14, no. 2, pp. 459–481, 2022.

[65] R. O’Donnell, Analysis of boolean functions. Cambridge University
Press, 2014.

[66] X. Xu, U. Rührmair, D. E. Holcomb, and W. Burleson, “Security
evaluation and enhancement of bistable ring pufs,” in International
Workshop on Radio Frequency Identification: Security and Privacy
Issues. Springer, 2015, pp. 3–16.

[67] N. Wisiol, C. Gräbnitz, C. Mühl, B. Zengin, T. Soroceanu,
N. Pirnay, K. T. Mursi, and A. Baliuka, “pypuf: Cryptanalysis
of Physically Unclonable Functions,” 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.3901410

[68] The Sage Developers, SageMath, the Sage Mathematics Software System
(Version x.y.z), 2022, https://www.sagemath.org.

[69] M. S. Alkatheiri and Y. Zhuang, “Towards fast and accurate machine
learning attacks of feed-forward arbiter pufs,” in 2017 IEEE Conference
on Dependable and Secure Computing. IEEE, 2017, pp. 181–187.

[70] M. Khalafalla, M. A. Elmohr, and C. Gebotys, “Going deep: Using deep
learning techniques with simplified mathematical models against xor br
and tbr pufs (attacks and countermeasures),” in 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
2020, pp. 80–90.

