
1

Constructing a pairing-free certificateless proxy signature scheme

from ECDSA

Cholun Kim 1

1 Faculty of Mathematics, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea

E-mail address: cu.kim1019@ryongnamsan.edu.kp

Abstract

Proxy signature is a kind of digital signature, in which a user called original signer can

delegate his signing rights to another user called proxy signer and the proxy signer can sign

messages on behalf of the original signer. Certificateless proxy signature (CLPS) means proxy

signature in the certificateless setting in which there exists neither the certificate management

issue as in traditional PKI nor private key escrow problem as in Identity-based setting. Up to

now, a number of CLPS schemes have been proposed, but some of those schemes either lack

formal security analysis or turn out to be insecure and others are less efficient because of

using costly operations including bilinear pairings and map-to-point hashing on elliptic curve

groups.

In this paper, we formalize the definition and security model of CLPS schemes. We then

construct a pairing-free CLPS scheme from the standard ECDSA and prove its security in the

random oracle model under the discrete semi-logarithm problem’s hardness assumption as in

the provable security result of ECDSA.

Keywords: proxy signature; certificateless cryptography; random oracle model; provable

security; elliptic curve digital signature algorithm.

1. Introduction

Proxy signature is a kind of digital signature, in which a user called original signer can

delegate his signing rights to another user called proxy signer and the proxy signer can sign

messages on behalf of the original signer, in case of temporal absence of him, lack of his time,

etc. Since the first scheme of the proxy signature was introduced by Mambo et al. [17] in 1996,

it has found a lot of practical applications in distributed systems where delegation of signing

rights is quite common, including cloud computing, global distribution networks, and

electronic commerce.

2

Mambo et al. [17] classified proxy signature schemes into three types, based on the

delegation mode: full delegation, partial delegation and delegation by warrant. In the full

delegation, the original signer entirely grants his private key (signing key) to the proxy signer.

Therefore, the proxy signer has all signing right of the original signer and such schemes have

no non-repudiation. In the partial delegation, a proxy signer obtains a new key, called proxy

signing key, which is derived from the private key (signing key) of the original signer and the

public or private key of the proxy signer. Obviously, proxy signatures generated by using

proxy signing key are distinguished from the original signer’s signatures, but the proxy

signature with partial delegation still suffers from the problem that the proxy signer has no

limit on which messages and when he can sign. In the delegation by warrant, this problem can

be solved. Warrants are usually written by the original signers and can include identities of the

original signer and the proxy signer, the delegation period, the associated public keys, and

other information. Actually, it is possible to contain any type of security policy that specifies

the restrictions under which the delegation is valid, such as the formats of messages to be

signed, the number of signatures to be generated by proxy signer, etc. The original signers

prepare the warrants at their will and sign them to certify the legitimacy of the proxy signers

and be able to delegate the limited signing right to the proxy signers. Therefore, most of

works in the literature focus on the proxy signature schemes with the delegation by warrant.

The warrant signed by the original signer is called the delegation.

In general, a secure proxy signature scheme should satisfy the following security

requirements which is introduced by Mambo et al. [17]: (1) Strong Unforgeability: Only the

designated proxy signer can create a valid proxy signature and even the original signer cannot.

(2) Verifiability: Anyone can verify the proxy signature and its conformance to the original

signer’s agreement or delegation. (3) Strong Identifiability: From the proxy signature, anyone

can determine the identity of corresponding proxy signer. (4) Strong Undeniability: A proxy

signer cannot deny his or her signature ever generated against anyone. (5) Distinguishability:

Anyone can distinguish the proxy signature from the original signer’s normal signature. (6)

Prevention of misuse: The proxy signer cannot sign messages that have not been authorized

by the original signer.

Among the above security requirements for a secure proxy signature scheme, the strong

unforgeability is the most important and difficult one to satisfy. In most of proposed schemes,

the other security properties are easily derived from the correctness and the strong

3

unforgeability of the schemes.

Like other types of digital signatures, the proxy signature is a cryptographic primitive in

public key cryptography (PKC), so that it is an important issue to guarantee the authenticity of

public keys which match with private keys (signing keys) of signers. In traditional public key

setting such as PKI, certificates generated by a trusted third part (TTP) are used to mitigate

this issue, but it is costly to use and manage them, and brings about new problems. In order to

bypass these problems, Shamir [19] introduced the concept of Identity-based Signature (IBS)

along with Identity-based encryption (IBE). In IBS, the public key of a user is his identity

information (e.g., his email address) which is approved publicly and doesn’t need to be

certified by any TTP, but all private keys are only generated by a TTP called private key

generator (PKG). Therefore, the PKG can freely generate any user’s signature on any message

and this results in the private key escrow problem which is inherent in the identity-based

setting. In 2003, Al-Riyami and Paterson [1] introduced certificateless public-key

cryptography (CL-PKC) and the first certificateless signature (CLS) scheme to solve the

private key escrow problem in the identity-based setting and eliminate the need of certificates

in the conventional PKI.

In the certificateless setting, a TTP named a Key Generation Center (KGC) is also

required for a user to generate his private key, but unlike a PKG in IBS schemes, the KGC

produces a partial private key for any user by using his identity and a master key, and transfers

it the user securely. Then the user generates his own full private key by combining the partial

private key generated by KGC with a secret value chosen by himself. As a result, the KGC

cannot know the full private key of any user and the key escrow problem in the identity-based

setting can be solved. Meanwhile, the public key for each user in CLS schemes is no longer

his identity, but it can be certified by the structure of the CL-PKC without any certificate.

1.1 Motivation

It is natural to combine the concepts of proxy signature with CL-PKC. The proxy

signature in CL-PKC is called the certificateless proxy signature (CLPS), introduced by Li et

al. [13] in 2005.

Li et al. [13] proposed the first scheme of the CLPS. Later, Yap et al. [25] and Lu et al.

[14] found that Li et al.’s scheme is insecure. Furthermore, Lu et al. [14] improved Li et al.’s

CLPS scheme, but they, just as Li et al. [13], did not present any formal security proof for the

scheme. Then, the CLPS and its some extensions (e.g. certificateless multi-proxy signature,

4

certificateless proxy multi-signature, etc) have been discussed in many literatures [3, 4, 7, 11,

15, 18, 20, 21, 22, 23, 24, 26].

For the construction of a provably secure scheme, a number of security models for the

CLPS schemes were proposed by Wan et al. [22] firstly, Chen et al. [3], Chen et al. [4], Jin

and Wen [11], Zhang et al. [26], Xu et al. [24], Du and Wen [7], Padhye and Tiwari [18], etc.

In the above security models, the power of adversaries and the security of a scheme have been

defined. However, there are subtle differences in those definitions between the security

models. Furthermore, even the definitions of a CLPS scheme lack consistency between many

literatures.

The CLPS schemes with formal security proofs were proposed by Chen et al. [4], Jin and

Wen [11], Tian et al. [21], Xu et al. [24], Zhang et al. [26], Du and Wen [7], Padhye and

Tiwari [18], Lu and Li [15], etc. All the above schemes are based on bilinear pairing

operations, except for the one in Padhye and Tiwari [18]. It is well known that the cost of

paring operation is very high, and schemes without pairings would be more appealing in terms

of efficiency. Padhye and Tiwari [18] proposed an elliptic curve discrete log problem

(ECDLP)-based CLPS scheme without pairings. However, Shi et al. [20] showed their scheme

is not secure for practical applications. Therefore, to the best of our knowledge, there is no

provably secure CLPS scheme without pairings up to now.

Recently, Cheng and Chen [5] and Karati et al. [12] proposed some provably secure

certificateless signature (CLS) schemes without pairings. Especially, Cheng and Chen [5]

presented the generic approach to construct CLS schemes from standard algorithms such as

ECDSA and EC-FSDSA [10].

Motivated from above reasons, we focus on the security model for certificateless proxy

signature (CLPS) schemes and provably secure schemes without pairings.

1.2 Our contribution

The main contributions of this paper can be summarized as follows:

(1) Firstly, we formalize the definition of CLPS scheme and the security model for CLPS

schemes. We carefully select algorithms which compose a CLPS scheme and specify their

inputs/outputs to support good schemes proposed in the literature. We also redefine oracles

which specify the capabilities of adversaries against a CLPS scheme, and present more clear

definition of the security of a CLPS scheme to eliminate issues of previous security models as

much as possible.

5

(2) Secondly, we propose an efficient CLPS scheme without bilinear pairings. The idea

of this scheme is inspired by Cheng and Chen’s technique [5] used to construct some CLS

schemes from standard ECDSA (Elliptic Curve Digital Signature Algorithm).

(3) Finally, we show our scheme is provably secure in the random oracle model under

the assumption that the semi-logarithm problem [2] is intractable.

Our scheme has the merits of CL-PKC. Besides, it is derived from the standard Elliptic

Curve Digital Signature Algorithm (ECDSA) widely used as an international standard and is

the provably secure CLPS scheme without bilinear pairings. Therefore, it can be easily

implemented using existing security elements that support ECDSA, and is particularly useful

in the Internet of Things (IoT) because of high efficiency of time and space.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, some preliminaries are

given. In Section 3, we present the definition of a CLPS scheme and formalize the security

model for CLPS schemes. Then, a concrete CLPS scheme without pairings is proposed in

Section 4. We prove the security of the proposed scheme in Section 5. Finally, we conclude

the paper in Section 6.

2. Notations and Preliminaries

Throughout this paper, we will use following notations:

  : the security parameter;


1 : the string consisting of  ones;

 Ss R : the operation of picking an element s uniformly at random from a finite set

S ;

 r ⟻),,(1 mii  : the operation of running a probabilistic (randomized) algorithm

 with input mii ,,1  and assigning the result to r ;

 r ⟵),,(1 mii  : the operation of running a deterministic algorithm  with input

mii ,,1  and assigning the result to r ;

 1V / 2V : one of two values 1V and 2V ;

 1V ∥ 2V : the concatenation of the (binary) string representations of two values 1V and

2V ;

6

 L  R : the assignment of the value of R to L .

 : the null symbol indicating a failure or a false value;

 ∅: the empty set or the empty string.

 Let  be a cyclic additive group of prime order q with the addition “+”. If P

and qk  , we denote  
timesk

PP   as Pk][.

 PPT stands for probabilistic polynomial-time.

A function
:f is said to be negligible if, for all polynomial p , there exists an

integer pk such that |)(|/1)(npnf  for all n > pk , or equivalently, if for all c

there exists an integer ck such that
cnnf )(for all n > ck .

Definition 1. Discrete Logarithm Problem (DLP). Let  be a cyclic additive group of

prime order q and G is a generator of  . The discrete logarithm problem (DLP) is given a

random P to find
*

qk  such that PGk ][. k is called the discrete logarithm of P

to the base G .

Definition 2. Semi-Logarithm Problem (SLP). Let  be a cyclic additive group of

prime order q , G is a generator of  and qf : is a map (called a conversion

function). The semi-logarithm problem (SLP) is given a random P to find

*),(qqvu   such that  )][]([1 PuGvfu  
. The pair of integers),(vu is called

the (discrete) semi-logarithm of P to the base G for the conversion function f and the

group  .

D. Brown [2] said “Finding the discrete logarithm of P allows one to find its semi-

logarithm.” That is, if the SLP is intractable, the DLP is also intractable. But it is not obvious

whether the SLP is equivalent to or easier than the DLP. The intractability of SLP is a

necessary condition for the security of ECDSA. For ECDSA,  is a cyclic subgroup on an

elliptic curve E over some finite field  and the conversion function f is taken by the

function xΠ which maps the point P to its x-coordinate)mod()(x qP interpreted as an

integer when performing the reduction modulo q [2].

7

In CLPS, more generally, in CL-PKC, two types of adversaries with different capabilities,

Type I Adversaries and Type II Adversaries, are considered [1, 5, 7, 18];

 A Type I Adversary I acts as a dishonest user, and can replace the public key of

any user with his choice but cannot access to the master secret key.

 A Type II Adversary II acts as a malicious KGC, and knows the master secret key

(so can compute any user’s partial private key for itself) but cannot replace any user’s

public key.

3. Definition and Security Model for CLPS

In this paper, we focus on CLPS schemes based on the delegation with warrant as in

many works, since it can provide more security and flexibility.

3.1 Definition of a CLPS scheme

In this section, we first define a certificateless proxy signature (CLPS) scheme based on

the delegation with warrant, and then consider some differences between the new definition

and the previous ones.

We seek to make the definition more versatile by combining the merits of previous

works, so that it will give us more flexibility and simplicity in formalizing old schemes and

designing new schemes without weakening the security requirements or losing any of nice

features specific to CLPS.

Definition 3. Let  be the security parameter. A certificateless proxy signature

(CLPS) (with appendix) scheme)(Σ comprises entities of four types: the KGC, the original

signer, the proxy signer and the verifier. It consists of the following seven polynomial-time

algorithms:

(1) (Params , s) ⟻ Setup(
1): As a probabilistic (randomized) algorithm run by the

KGC, it outputs a list of system parameters Params and a master secret key s .

(2) (UP , Us) ⟻ GenerateUserKeys(Params , UID): This is a probabilistic algorithm

run by any entity except the KGC. When a user U run, it takes as input Params and his

identity UID , and outputs a public/secret key pair (UP , Us) for the user U .

(3) (UK , Uc)⟻ GeneratePartialKeys(Params , s , UID , UP): As a probabilistic

algorithm run by the KGC, it takes as input Params , the master secret key s , the identity

8

UID of a user U and his public key UP , and outputs a pair of partial public / private keys

(UK , Uc) for the user U . (UP , UK)/(Us , Uc) is the pair of full public / private keys for the

user U .

(4) Oδ ⟻ GenerateDelegation(Params , OID , OP , OK , Oc , Os , Ow): This is a

probabilistic algorithm run by original signers. When an original signer O run, it takes as

input Params , the identity OID and the full public/private key pair (OP , OK)/(Os , Oc) of

O , and a warrant Ow issued by O , and then outputs the delegation Oδ certified by O . Oδ

includes Ow .

(5) True/False ⟵ VerifyDelegation(Params , OID , OP , OK , Oδ): This is a

deterministic algorithm run by any user. It takes as input Params , the identity OID and the

full public key (OP , OK) of an original signer O , and the delegation Oδ issued by O . It

outputs True if the delegation Oδ is valid, or False otherwise.

(6) m ⟻ GenerateProxySign(Params , OID , OP , OK , Oδ , PID , PP , PK , Ps , Pc , m):

This is a probabilistic algorithm run by proxy signers. It takes as input Params , the identity

OID and the full public key (OP , OK) of an original signer O , the delegation Oδ issued by

O , the identity PID and the full public/private key pair (PP , PK)/(Ps , Pc) of the proxy

signer P specified by the delegation Oδ , and a message m . It outputs a signature m of P

on the message m .

(7) True/False ⟵ VerifyProxySign(Params , OID , OP , OK , Oδ , PID , PP ,

PK , m , m): This is a deterministic algorithm run by any user (verifier). It takes as input

Params , the identity OID and the full public key (OP , OK) of an original signer O , and

the delegation Oδ issued by O , the identity PID and the full public key (PP , PK) of a

proxy signer P , a message m , and a proxy signature m . It outputs True if the delegation

Oδ is valid, the proxy signer P is specified in the delegation Oδ , the message m conforms

to the delegation Oδ and the proxy signature m is valid, or False otherwise.

We can find some differences between the above definition and the previous definitions

9

for CLPS schemes, which was first introduced in [13], later proposed by Wan et al. [22], Chen

et al. [4], Xu et al. [24], Zhang et al. [26], Padhye and Tiwari [18], Du and Wen [7], etc.

Main difference is in the 3rd algorithm, GeneratePartialKeys, generating partial keys

of any user. In other definitions, it is usually named as Partial-Private-Key-Extract, takes

system parameters, the master secret key and the identity of a user as input, and outputs only a

partial private key of the user. However, in our definition, following what Cheng and Chen [5]

has done for the definition of CL-PKC, the public key UP of the user U is added as its input,

and the public value UK is also outputted from it. It is possible that the input parameter UP

are ignored within the algorithm and the public value UK of the output is the empty string.

Hence, any partial key generation algorithms following the other definitions can be covered

by our definition. On the other hand, by adding the public key UP selected by a user as input

of GeneratePartialKeys, our definition can capture CLPS schemes achieving Girault’s trust

level 3 [8], such as Zhang et al.’s scheme [26]. This technique has been already discussed in

[1]. By including the partial public key UK into output of GeneratePartialKeys, our

definition can explicitly depict the schemes in which a user’s partial private key has a public

part, such as Padhye-Tiwari scheme [18].

Another difference is that some algorithms in the traditional definitions of CLPS (more

generally, CL-PKC) are eliminated in our definition. Firstly, in the same approach as taken by

Wan et al. [22], Xu et al. [24], Zhang et al. [26], Du and Wen [7], etc., we eliminate the

algorithm Set-Secret-Value generating a user secret value, the algorithm Set-Private-Key

generating a user private key, and the algorithm Set-Public-Key generating a user public key,

by including the function of Set-Private-Key into other algorithms and combining the

functions of Set-Secret-Value and Set-Public-Key with GenerateUserKeys. The detailed

advantages of this approach can be referred to [9]. Secondly, we eliminate the algorithm

generating a proxy signing key and include the function of the algorithm into the proxy

signing algorithm GenerateProxySign. This makes the our definition more versatile as it is

possible that the partial private key Pc and the secret key Ps of the proxy signer, the

delegation Oδ , and the others are ‘mixed’ together in some randomized way during proxy

signing.

Final and minor difference is in specifying the input/output of algorithms according to

10

the above modifications on the old definitions. At least, in our definition, partial public keys

and identities of users are explicitly added to input of such algorithms as

GenerateDelegation, VerifyDelegation, GenerateProxySign, VerifyProxySign, etc.

3.2 Security Model for CLPS schemes

As described in Section 2, there are two types of adversaries, types I and II, against

CLPS as a cryptographic primitive of CL-PKC. In view of proxy signature, the final goal of

Type I/II adversaries against CLPS is to forge a valid proxy signature on behalf of their target

proxy signer or a valid delegation on behalf of their target original signer without the

knowledge of the full private key of the target user.

The adversary against a CLPS scheme of Definition 3 is defined as follows.

Definition 4. Let  be the security parameter. An adversary)( against a CLPS

scheme)(Σ is a probabilistic algorithm which takes as input
1 and can access to some of

the following oracles (as well as the random oracles if there exists):

(1) (UP , UK)⟻ CreateUser (UID) : On input an identity UID , it creates a new user U

whose identity is UID if the user has not yet been created. At the same time, a partial key pair

and a pair of public/secret keys of the user U are generated or updated and the full public key

(UP , UK) is returned.

(2) Us /⟵ eyGetSecretK (UID , UP) : On input the identity UID and the public key UP

of a user U , it records (UID , UP) in the query list S and outputs the user’s secret key Us

pairing with UP , if the user U has been created. It outputs  otherwise.

(3) Uc /⟵ Key sGetPartial (UID , UK) : On input the identity UID and the partial public

key UK of a user U , it records (UID , UK) in the query list P and outputs user’s partial

private key Uc pairing with UK , if there exists the user U . It outputs  otherwise. When

UK is the empty string, Uc is the current partial private key of the user U .

(4) (UP , UK)/⟵ eyGetPublicK (UID) : On input the identity UID of a user U , it

records (UID , UK) in the query list P and outputs the full public key (UP , UK) currently

associated with UID , if there exists the user U . It outputs  otherwise.

11

(5) “OK”/⟵ rKey sReplaceUse (UID , UP , Us): On input the identity UID , a new public k

ey UP and a new secret key Us of a user U , it records (UID , UP) in the query list R , raplac

es the current pair of partial public / private keys of the user U with the new pair (UP , Us) an

d outputs “OK”, if there exists the user U . It outputs  otherwise. Us may be the empty

string.

(6) Oδ /⟻ ionGetDelegat (OID , OP , OK , Ow): On input the identity OID of an original

signer O , a full public key (OP , OK) and a warrant Ow , it outputs the valid delegation

Oδ (created newly if there does not exist) on the warrant Ow and records the tuple (OID , OP ,

OK , Ow , Oδ) in the query-answer list D , if there exists the user O and (OP , OK) is the (cur

rent or past) full public key of O . It outputs  otherwise.

(7) m /⟵ gnGetProxy Si (OID , OP , OK , Oδ , PID , PP , PK , m): On input the identity

OID and a full public key (OP , OK) of an original signer O , a delegation Oδ , the identity

PID and a full public key (PP , PK) of a proxy signer P , and a message m , it outputs the

valid proxy signature m on the message m . If there does not exist one of O and P , Oδ is

not valid, or PID and m do not conform to Oδ , it returns .

An adversary is called the Type I adversary and denoted by)(I  if it can access all the

above oracles but cannot access to the master secret key. An adversary is called the Type II

adversary and denoted by)(II  if it knows the master secret key but can access only 5

oracles of the above oracles except Key sGetPartial and rKey sReplaceUse .

Our definition of oracles for adversaries is similar to the one in [26] but has some

differences from others including it. Firstly, the oracle CreateUser can not only create a new

user but also update all keys for any existing user. By querying to this oracle, adversaries can

trigger the legitimate renewal of all keys for any user. This makes our definition of adversary

more practical. Secondly, a user’s public key UP and partial public key UK are explicitly

added to input of eyGetSecretK and Key sGetPartial , respectively. By this, our definition can

capture the actions of adversaries trying to find something from the system’s history in the

certificateless settings with freely revocable keys. Thirdly, as a consequence of our definition

12

of CLPS scheme excluding the algorithm generating a proxy signing key, we eliminate the

oracle returning a proxy signing key unlike other models. Actually, it is not necessary for

adversaries with having access to eyGetSecretK and Key sGetPartial . Finally, the specification of

the input/output of oracles is more clear and compact.

Now, we define the interactive security game between an adversary)( 

{)(I  ,)(II  } against a CLPS scheme)(Σ and a challenger  , where  is the

security parameter. The game consists of three stages: Setup, Attack and Forgery.

EUF-CMA Game:

Setup:  runs Setup(
1) to obtain the system parameter list Params and the master

secret key s . Then  sends Params to the adversary)( . If)( is)(II  ,  also

passes s to the adversary)( . Otherwise, keeps the master secret key s secret. Finally, 

initializes the lists P , S , R and D with empty list (∅) respectively.

Attack:)( gathers information by adaptively querying oracles allowed to him and. 

correctly simulates the oracles called by)( and returns proper values.

Forgery: Finally,)( outputs a tuple (
*IDO ,

*PO ,
*KO ,

*δO ,
*IDP ,

*PP ,
*K P ,

*m , *m
).

We say that)( wins the game or succeeds in the game if and only if the following

conditions are satisfied:

(1) VerifyProxySign(Params ,
*IDO ,

*PO ,
*KO ,

*δO ,
*IDP ,

*PP ,
*K P ,

*m , *m
)=True.

(2) The tuple (
*IDO ,

*PO ,
*KO ,

*δO ,
*IDP ,

*PP ,
*K P ,

*m) has not been submitted to the oracle

gnGetProxy Si in the Attack stage.

(3) When)( is)(I  , the following boolean expression is true:

(((
*IDO ,

*KO)P ∨ (*IDO ,
*PO)S ∪ R) ∧ (

*IDO ,
*PO ,

*KO ,
wO ,)D) ∨

((
*IDP ,

*K P)P ∨ (*IDP ,
*PP)S ∪ R),

where
*
Ow is the warrant in the delegation

*δO and * means for an arbitrary value.

When)( is)(II  , the following boolean expression is true:

((
*IDO ,

*PO)S ∧ (
*IDO ,

*PO ,
*KO ,

wO ,)D) ∨ ((
*IDP ,

*PP)S).

13

The security of a CLPS scheme is defined as follows.

Definition 5. A CLPS scheme is said to be existentially unforgeable or secure against an

adaptively chosen-message attack and an adaptively chosen-warrant attack if for the security

parameter  , no PPT adversary)( against the scheme has a non-negligible probability

of success in the above game.

An adversary against a CLPS scheme can win the above game by forging a valid proxy

signature or a valid delegation. But in the security models proposed by Chen et al. [4], Xu et

al. [24], Padhye and Tiwari [18], Du and Wen [7], etc., an adversary can win only when he is

able to forge a valid signature. Only Zhang et al.’s model [26] takes forgery of a delegation

into account. Comparing Zhang et al.’s model [26], our definition of security is more concise

and easy to use.

4. A CLPS scheme without bilinear pairings

In this section, we propose a pairing-free CLPS scheme in conformity with Definition 3,

and consider the correctness and the efficiency of it.

Our scheme is based on ECDSA [10] and consists of the following seven algorithms:

(1) (Params , s) ⟻ Setup(
1): KGC takes the security parameter  as input and

returns Params and a master secret key s as follows:

a. Chooses a  -bit prime p , and determines a finite field p of order p , an elliptic

curve pE / defined by baXXYE  32: over p , a cyclic additive

subgroup  of prime order q on pE / and a generator G of  .

b. Rs *

q ; KGCP ⟵ Gs][.

c. Chooses an integer 0n , and cryptographic hash functions

n}1,0{}1,0{:H *
1  ,

**
2 }1,0{:H q ,

**
3 }1,0{:H q and

**
4 }1,0{:H q .

d. :ParamsB a ∥ b ∥ G ∥ KGCP . (We assume that the binary representaions of a , b , G

and KGCP are obtained in a trivial way.)

e. Publishes :Params { a , b , p , q , G , KGCP , 1H , 2H , 3H , 4H } and keeps s secret

(2) (UP , Us) ⟻ GenerateUserKeys(Params , UID): The user U with the identity

UID sets his public key UP and secret key Us as follows:

14

a. Rs U
*

q ; UP ⟵ GU][s .

(3) (UK , Uc) ⟻ GeneratePartialKeys(Params , s , UID , UP): On input Params ,

the master secret key s , a user’s identity UID and public key UP , KGC returns a pair of

partial public / private keys (UK , Uc) for the user U with the identity UID as follows:

a. 1h ⟵ 1H (ParamsB ∥ UID).

b. Rk U
*

q ; UK ⟵ GU]k[.

c. 2h⟵ 2H (UK ∥ 1h). // (We assume that the binary representaion of UK is obtained

in a trivial way.)

d. Uc ⟵)k(2hsU
 qmod .

e. Publishes UK and sends Uc to U via a secure channel.

// U can validate its partial keys (UK , Uc) by checking the equation

GU]c[≟ UK +[2H (UK ∥ 1H (ParamsB ∥ UID))] KGCP

(4) Oδ ⟻ GenerateDelegation(Params , OID , OP , OK , Os , Oc , Ow): The original

signer O outputs the delegation Oδ on the warrant Ow as follows:

a. 1h ⟵ 1H (ParamsB ∥ OID); 2h ⟵ 2H (OP ∥ OK ∥ 1h).

b. 3h ⟵ 3H (Ow ∥ 2h).

c. Or R *

q ; OR ⟵ GrO][.

d. if xΠ (OR)=0 then goto c.

e. O ⟵
1

Or (xΠ (OR)(Os + Oc)+ 3h) qmod .

f. if O =0 then goto c.

g. Oδ  (Ow , OR , O); return Oδ .

(5) True/False ⟵ VerifyDelegation(Params , OID , OP , OK , Oδ): Any verifier,

including the proxy signer specified by the delegation Oδ , can verify Oδ as follows:

a. (Ow , OR , O)  Oδ . // Oδ is parsed as (Ow , OR , O).

b. if xΠ (OR)
*

q ∨ O 
*

q then return False.

15

c. 1h ⟵ 1H (ParamsB ∥ OID); 2h⟵ 2H (OK ∥ 1h).

d. OO ⟵ OP + OK +[2h] KGCP .

d. 2h ⟵ 2H (OP ∥ OK ∥ 1h); 3h ⟵ 3H (Ow ∥ 2h).

e. 1u ⟵(3h / O) qmod ; 2u ⟵(xΠ (OR)/ O) qmod .

f. return (OR ≟ [1u] G +[2u] OO).

// A verifier accepts Oδ if VerifyDelegation returns True, or rejects otherwise.

(6) m ⟻ GenerateProxySign(Params , OID , OP , OK , Oδ , PID , PP , PK , Ps , Pc , m):

If the proxy signer P specified by the delegation Oδ accepts the delegation Oδ , he returns a

proxy signature m on the message m as follows:

a. (Ow , OR , O)  Oδ . // Oδ is parsed as (Ow , OR , O).

b. 1h ⟵ 1H (ParamsB ∥ PID); 2h ⟵ 2H (OP ∥ OK ∥ 1h); 3h ⟵ 3H (Ow ∥ 2h).

c. Pt ⟵ (O +(Ps + Pc) 3h) qmod . // This is just a proxy signing key.

d. 4h ⟵ 4H (m ∥ Ow ∥ 2h)

e. Pr R *

q ; PR ⟵[Pr] G .

f. u ⟵ xΠ (PR); v ⟵
1

Pr (u Pt + 4h) qmod .

g. m  (u , v); return m .

(7) True/False ⟵ VerifyProxySign(Params , OID , OP , OK , Oδ , PID , PP , PK , m ,

m): Having all inputs, any verifier verifies the proxy signature m on the message m as

follows:

a. if VerifyDelegation(Params , OID , OK , OP , Oδ)=False then return False.

b. (Ow , OR , O)  Oδ .

c. 1h ⟵ 1H (ParamsB ∥ PID); 2h ⟵ 2H (PP ∥ PK ∥ 1h).

d. 3h ⟵ 3H (Ow ∥ 2h); 4h ⟵ 4H (m ∥ Ow ∥ 2h); 2h⟵ 2H (PK ∥ 1h).

e. PO ⟵[O] G +[3h](PP + PK +[2h] KGCP).

f. (u , v)  m . // m is parsed as (u , v).

16

g. 1v ⟵(
1v 4h) qmod ; 2v ⟵(

1v u) qmod .

h. PR ⟵[1v] G +[2v] PO ; u⟵ xΠ (PR).

i. return (u ≟ u)

// A verifier accepts m if VerifyProxySign returns True, or rejects otherwise.

Now, we consider the correctness of the proposed scheme.

The correctness of the algorithm VerifyDelegation verifying a delegation is proved as

follows.

[1u] G +[2u] OO

=[(3h / O) qmod] G +[(xΠ (OR)/ O) qmod](OP + OK +[2h] KGCP)

=[
1

O (3h + xΠ (OR)(Os + Ok + 2h s)) qmod] G

=[
1

O (3h + xΠ (OR)(Os + Oc)) qmod] G

=[Or] G = OR .

The correctness of the algorithm VerifyProxySign verifying a proxy signature is proved

as follows.

PR =[1v] G +[2v] PO

=[(
1v 4h) qmod] G +[(

1v u) qmod]([O] G +[3h](PP + PK +[2h] KGCP)

=[
1v (4h + u (O + 3h (Ps + Pk + 2h s))) qmod] G

=[Pr
))cs((

))s((

34

234

huh

shkhuh

PPO

PPO








qmod] G

=[Pr
))s((

))s((

324

234

hhskuh

shkhuh

PPO

PPO








qmod] G

=[Pr] G = PR .

Next, we compare the efficiency of our scheme with Zhang et al.’s scheme [26] in Table

1, though it is based on bilinear pairing. As mentioned in Section 1.1, there is no provably

secure CLPS scheme without pairings in the literature.

In Table 1, TH , TP , TS and TA stand for the time of a map-to-point hash operation, a

bilinear pairing operation, an elliptic curve scalar multiplication, and an elliptic curve point

addition. According to [6, 12], TH is rather logner than TP by a narrow margin, TP is

17

several times longer than TS , and TS is several tens to hundreds times longer than TA . We

ignore costless operations such as one-way hash operation and operations on integers, which

are much cheaper than the point addition. G denotes the bit length of a point in the elliptic

curve group  and Z means the length of the integer q , i.e. qlog . G is several times

longer than Z .

Table 1. The comparison of efficiency

 [26] Our scheme

Generation of keys 1 TH +2 TS 2 TS

Generation of delegation 2 TH +3 TS +2 TA 1 TS

Verification of delegation 3 TH +4 TP 3 TS +3 TA

Signing 3 TH +4 TS +3 TA 1 TS

Verification of signature 5 TH +5 TP +2 TA 5 TS +4 TA

Key size 2 G +1 Z 2 G +2 Z

Signature size 3 G 2 Z

Note that using the binding technique in [1], we can easily convert our scheme to the one

which achieves Girault’s trust level 3 [8], by replacing 2h ⟵ 2H (UK ∥ 1h) with

2h ⟵ 2H (UP ∥ UK ∥ 1h) in the step (c) of GeneratePartialKey s , the step (c) of

VerifyDelegation and the step (d) of VerifyProxySign.

5. Security Proofs

In this section, we prove the security of our scheme in the random oracle model (ROM),

under the assumption that the elliptic curve semi-logarithm problem (ECSLP) is hard. we use

the notations and symbols in Section 4 as it is.

Theorem. In the random oracle model, if there exists a PPT adversary)( that wins

EUF-CMA Game against our CLPS scheme with a non-negligible probability of success (in

), then the semi-logarithm problem in the group  can be solved in polynomial time (in )

with a non-negligible probability (in ).

Proof. Suppose that)( succeeds in EUF-CMA Game with a non-negligible

probability)( in time)(t which is polynomial in  , and in EUF-CMA Game,)(

respectively makes
1HN ,

2HN ,
3HN ,

4HN queries to 1H , 2H , 3H , 4H modeled as random

18

oracles. Let UN and UKeyN be respectively the number of queries to CreateUser that)(

makes in EUF-CMA Game and the maximum number of same queries on a fixed user identity

among them, i.e. the maximum number of key pairs of a fixed user. These are all functions of

 and do not exceed)(t .

From this point, we considering Type I and Type II adversaries separately.

Firstly, when)( is Type I adversary)(I  , we construct an algorithm I that uses

)(I  to solve the semi-logarithm problem in the group  as follows:

Algorithm I :

Input: An instance of the semi-logarithm problem given by q ,  , G , xΠ : q and

P  G][ where  is unknown.

Output: The solution),(vu of the above instance such that u = xΠ ([
1v](G + [u] P)).

1. Select seven indices 0< O , P  UN , 0< O , P  UKeyN , 0< O , P 
3HN ,

0< 
4HN and a boolean value {0,1} randomly.

2. Simulate a challenger in EUF-CMA Game as follows:

Setup: Set KGCP  P = G][ , :ParamsB a ∥ b ∥G ∥ KGCP , :Params { a , b , p , q , G ,

KGCP } and send Params to)(I  . Initialize the lists P , S , R and D with empty

list (∅) respectively, and prepare lists 1H and 2H of 2-tuples, lists 3H and 4H of 4-

tuples and a list L of tuples in form of (UID , UP , UK , Us , Uc). Choose nine values

*
1Oh ,

*
1Ph 

n}1,0{ and
*
2Oh ,

*
2Ph ,

*
2Oh ,

*
2Ph ,

*
3h ,

*
4h ,

* 
*
q randomly such that

*
2Oh ,

*
2Ph ,

*
2Oh ,

*
2Ph are all different and if O  P then

*
1Oh 

*
1Ph .

Attack: Answer)(I  ’s queries to oracles as follows:

 1H (x): If there exists 1h 
n}1,0{ such that (x, 1h) 1H then return 1h . If | 1H |

= O −1 then put (x,
*
1Oh) in 1H and return

*
1Oh . If | 1H |= P −1 then put (x,

*
1Ph)

in 1H and return
*
1Ph . Otherwise, choose 1h 

n}1,0{ randomly. If 1h =
*
1Oh or

1h =
*
1Ph then terminate the game. (This case is called Event 1E .) Otherwise, put

19

(x, 1h) in 1H and return 1h .

 2H (x): If there exists 2h 
*
q such that (x, 2h) 2H then return 2h . Otherwise,

choose 2h 
*
q randomly. If 2h {

*
2Oh ,

*
2Ph ,

*
2Oh ,

*
2Ph } then terminate the game.

(This case is called Event 2E .) Otherwise, put (x, 2h) in 2H and return 2h .

 3H (w ∥ h): If there exists 3h 
*
q such that (w ∥ h , 3h ,*,*) 3H then return 3h

(where * means for an arbitrary value). Otherwise, respond differently according to

the following cases:

– If =0 and h =
*
2Oh , then consider the following cases:

(1) If | 3H |= O −1 then put (w ∥ h ,
*
3h , , ) in 1H and return

*
3h .

(2) Else, follow the next steps:

a. (u , v) R **
qq   .

b. R ⟵ [u] G +[v][
*
3h] KGCP .

c.  ⟵(xΠ (R)/ v) qmod ; 3h ⟵(u  xΠ (R)/ v) qmod .

d. put (w ∥ h , 3h , R ,) in 3H and return 3h .

– If =1 and h =
*
2Ph , then consider the following cases:

(1) If | 3H |= P −1, then put (w ∥ *
2Ph ,

*
3h , , ) in 1H and return

*
3h .

(2) Else, follow the next steps:

a. (u , v) R **
qq   .

b. R ⟵[(u − v  * /
*
3h) qmod]G +[v][

*
4h /

*
3h] KGCP .

c.  ⟵(xΠ (R)/ v) qmod ; 3h ⟵(u  xΠ (R)/ v) qmod .

d. put (w ∥ h , 3h , R ,) in 3H and return 3h .

– If =1, h =
*
2Oh and | 3H |= O −1, then follow the next steps:

a. Search 2H for the item (UP ∥ UK ∥ *
1Oh ,

*
2Oh) indexed by

*
2Oh (it must be

existed uniquely!) to get UP and UK .

20

b. Search 1H for the item (ParamsB ∥ UID ,
*
1Oh) indexed by

*
1Oh to get UID .

c. Search L for the item (UID , UP , UK , Us , Uc) indexed by (UID , UP , UK) to

get Us and Uc .

d. Ur R *

q ; UR ⟵[Ur] G ; 3h ⟵(
*  Ur − xΠ (UR)(Us + Uc)) qmod .

e. Put (w ∥ h , 3h , UR ,
*) in 3H and return 3h .

– Else, choose 3h 
*
q randomly. If 3h =

*
3h then terminate the game. (This case is

called Event 3E .) Otherwise, put (w ∥ h , 3h , , ) in 3H and return 3h .

 4H (m ∥ w ∥ h): If there exists 4h 
*
q such that (m ∥ w ∥ h , 4h ,*,*) 4H then

return 4h . Otherwise, respond differently according to the following cases:

– If =0, or =1 and h 
*
2Ph , then choose 4h 

*
q randomly. If 4h =

*
4h then

terminate the game. (This case is called Event 4E .) Otherwise, put (m ∥ w ∥ h ,

4h , , ) in 4H and return 4h .

– If =1, h =
*
2Ph and | 4H |= −1, then put (m ∥ w ∥ h ,

*
4h ,,) in 4H and

return
*
4h .

– Else, follow the next steps:

a. (u , v) R **
qq   .

b. u⟵ xΠ ([u] G +[v][
*
4h] KGCP); v⟵(u / v) qmod .

c. 4h ⟵(u u / v) qmod .

d. Put (m ∥ w ∥ h , 4h , u , v) in 4H and return 4h .

 CreateUser (UID): Let 1h ⟵ 1H (ParamsB ∥ UID) and respond differently in the

following cases:

– If =0, 1h =
*
1Oh and the current query is the O -th one on UID , then follow

the next steps:

a. If O =1 then choose Uc 
*
q randomly, let UK ⟵[Uc] G −[

*
2Oh] KGCP

21

and put (UK ∥ 1h ,
*

2Oh) in 2H . Otherwise, search L for the latest item (UID ,

, UK ,, Uc) indexed by UID to get UK and Uc .

b. UP ⟵[(
*
3h −

*
2Oh) qmod] KGCP − UK .

c. Put (UID , UP , UK ,, Uc) in L , put (UP ∥ UK ∥ 1h ,
*
2Oh) in 2H and return

(UP , UK).

– If =1, 1h =
*
1Ph and the current query is the P -th one on UID , then follow

the next steps:

a. If P =1 then choose Uc 
*
q randomly, let UK ⟵[Uc] G −[

*
2Ph] KGCP

and put (UK ∥ 1h ,
*

2Ph) in 2H . Otherwise, search L for the latest item (UID ,

, UK ,, Uc) indexed by UID to get UK and Uc .

b. UP ⟵[(
*
4h /

*
3h −

*
2Ph) qmod] KGCP −[(

* /
*
3h) qmod] G − UK .

c. Put (UID , UP , UK ,, Uc) in L , put (UP ∥ UK ∥ 1h ,
*
2Ph) in 2H and return

(UP , UK).

– Else, follow the next steps:

a. Rs U
*

q ; UP ⟵ GU]s[.

b. Uc R *
q ; 2h R *

q ; UK ⟵[Uc]G −[2h] KGCP .

c. If there exists h  *
q such that (UK ∥ 1h , h) 2H and h  2h then terminate

the game. (This case is called Event 21E .)

d. If (UK ∥ 1h , 2h) 2H then check whether 2h is in {
*
2Oh ,

*
2Ph }. If it is,

terminate the game. (This case is called Event 22E .) Otherwise, put (UK ∥ 1h ,

2h) in 2H .

e. Put (UID , UP , UK , Us , Uc) in L and return (UP , UK).

 eyGetSecretK (UID , UP): Search L for the item (UID , UP ,*, Us ,*) indexed by

(UID , UP) to get Us . If the search succeeds, put (UID , UP) in S and return Us .

22

Otherwise, return .

 KeyGetPartial (UID , UK): Search L for the item (UID ,*, UK ,*, Uc) indexed by

(UID , UK) to get Uc . If the search succeeds, put (UID , UK) in P and return Uc .

Otherwise, return .

 eyGetPublicK (UID): Search L for the latest item (UID , UP , UK ,*,*) indexed by

UID to get UP and UK . If the search succeeds, return (UP , UK). Otherwise,

return .

 rKey sReplaceUse (UID , UP , Us): Search L for the latest item (UID ,*, UK ,*, Uc)

indexed by UID to get UK and Uc . If the search succeeds, put (UID , UP ,

UK , Us , Uc) in L , put (UID , UP) in R and return “OK”. Otherwise, return .

 ionGetDelegat (OID , OP , OK , Ow): Search D for the item (OID , OP , OK , Ow , Oδ)

indexed by (OID , OP , OK , Ow) to get Oδ . If the search succeeds, return Oδ .

Otherwise, follow the next steps:

a. Search 1H for the item (ParamsB ∥ OID , 1h) indexed by ParamsB ∥ OID to get 1h .

If the search does not succeed, return .

b. Search 2H for the item (OP ∥ OK ∥ 1h , 2h) indexed by OP ∥ OK ∥ 1h to get 2h .

If the search does not succeed, return .

c. Oh ⟵ 3H (Ow ∥ 2h).

d. Search 3H for the item (Ow ∥ 2h , Oh , OR , O) indexed by (Ow ∥ 2h , Oh) to g

et OR and O . If OR  and O , then let Oδ (Ow , OR , O), put

(OID , OP , OK , Ow , Oδ) in D and return Oδ . Otherwise, continue.

e. Search L for the item (OID , OP , OK , Os , Oc) indexed by (OID , OP , OK) to

get Os and Oc . If the search succeeds, Os  and Oc , then continue.

Otherwise, return .

f. Or R *

q ; OR ⟵ GrO][; O ⟵
1

Or (xΠ (OR)(Os + Oc)+ Oh) qmod .

g. Let Oδ  (Ow , OR , O), put (OID , OP , OK , Ow , Oδ) in D and return Oδ .

23

 gnGetProxy Si (OID , OP , OK , Oδ , PID , PP , PK , m): Parse Oδ as (Ow , OR , O)

and check whether the delegation Oδ is valid and all input parameters comform to

Ow . If not, return . If the checks are passed, follow the next steps:

a. Search L for the item (PID , PP , PK , Ps , Pc) indexed by (PID , PP , PK) to g

et Ps and Pc . If the search does not succeed, return .

b. Search 1H for the item (ParamsB ∥ PID , 1h) indexed by ParamsB ∥ PID to get

1h . If the search does not succeed, return .

c. 2h ⟵ 2H (PP ∥ PK ∥ 1h); 3h ⟵ 3H (Ow ∥ 2h); 4h ⟵ 4H (m ∥ Ow ∥ 2h).

d. Consider the following cases:

– If Px =, then search 4H for the item (m ∥ Ow ∥ 2h , 4h , u , v) indexed by

(m ∥ Ow ∥ 2h , 4h) to get u and v . If u  and v , return (u , v).

Otherwise, terminate the game. (This case is called Event S .)

– Else (i.e. if Px 
*
q), let Pt ⟵(O +(Ps + Pc) 3h) qmod , Pr R *

q ,

PR ⟵[Pr] G , u ⟵ xΠ (PR), v ⟵
1

Pr (u Pt + 4h) qmod , and return

(u , v).

Forgery: Wait until)(I  outputs a tuple (
*IDO ,

*PO ,
*KO ,

*δO ,
*IDP ,

*PP ,
*K P ,

*m , *m
)

as the final result of the game.

3. Check)(I  ’s final result and output the solution of the above instance (i.e. the

input) as follows:

(1) If VerifyProxySign(Params ,
*IDO ,

*PO ,
*KO ,

*δO ,
*IDP ,

*PP ,
*K P ,

*m , *m
)=False,

then reject the final result and output .

(2) Parse
*δO as (

*wO ,
*
OR ,

*
O). If the following boolean expression is true, then reject

the final result and output .

(((
*IDO ,

*KO)P ∧ (
*IDO ,

*PO)S ∪ R) ∨ (
*IDO ,

*PO ,
*KO ,

*wO ,
*δO)D)

∧ (
*IDP ,

*K P)P ∧ (
*IDP ,

*PP)S ∪ R .

(3) If the following boolean expression is true, then reject the final result and return .

24

*
1Oh  1H (ParamsB ∥ *IDO) ∨

*
1Ph  1H (ParamsB ∥ *IDP) ∨

*
2Oh  2H (

*PO ∥ *KO ∥ *
1Oh) ∨

*
2Ph  2H (

*PP ∥ *K P ∥ *
1Ph) ∨

(
*
3h  3H (

*wO ∥ *
2Oh) ∧

*
3h  3H (

*wO ∥ *
2Ph)) ∨

*
4h  4H (

*m ∥ *wO ∥ *
2Ph).

(4) If =0, then let
*u ⟵ xΠ (

*
OR),

*v ⟵(
*
O /

*
3h) qmod . Otherwise (i.e. if =1),

Parse *m
 as (u , v) and let

*u ⟵ u ,
*v ⟵(v /

*
4h) qmod .

(5) Output (
*u ,

*v). (The end of the algoritm I)

Now, we analyze the time complexity of I . The time complexity of I is dominated by

the scalar multiplications and additions in  , operations in *
q and searches on lists which

are performed in the simulations of oracles. All operands for the above operations in  and

*
q have at most a polynomial size in  and we can assume that the computational cost of

any operation in  and *
q is less than some polynomial)(p . On the other hand, the sizes

of all lists in oracle simulations of I do not go beyond the number of all queries by)(I  ,

which is not larger than)(t . It results that the time of a search on any list in I is also not

longer than)(t . Therefore, the cost of answering an oracle query in I is also less than

))()(( tpO  , and we conclude that the total time complexity of I is))()()((2  tptO 

which is also polynomial in  .

Next, we show that if I does not terminate the game incompletely, then)(I  ’s view

in the simulated game with I is indistinguishable from its view in the real attack and when

I ’s output is not , it is the solution for the SLP instance given as input of I .

In the random oracle model, the outputs of 1H , 2H , 3H and 4H are all sampled

uniformly at random. In the simulation of CreateUser , a partial key pair (UK , Uc) of U is

created from uniformly distributed random values Uc and 2h to satisfy the equations

UK =[Uc] G −[2h] KGCP and 2h = 2H (UK ∥ 1H (ParamsB ∥ UID)) which are equivalent to the

verification equation for validity of a partial key pair. From the true randomness of hash

values, the distribution of (UK , Uc) in the simulation is identical to the one of values taken

25

by)(I  in the real attack. If UID {
*IDO ,

*IDP } or UP {
*PO ,

*PP }, U ’s public key UP

and secret key Us are generated randomly and satisfy the equation UP = GU]s[. Hence, the

key pair is valid and the full item (UID , UP , UK , Us , Uc) is put in L . In this case, the

simulations of other oracles follow to the definition of our scheme.

If =0, then the full public key (
*PO ,

*KO) given by I to)(I  for the targeted origi

nal signer
*IDO and)(I  ’s final result satisfy the following equations:

*PO +
*KO =[(

*
3h −

*
2Oh) qmod] KGCP ,

VerifyDelegation(Params ,
*IDO ,

*PO ,
*KO ,

*δO)=True,

*
1Oh = 1H (ParamsB ∥ *IDO),

*
2Oh = 2H (

*KO ∥ *
1Oh),

*
2Oh = 2H (

*PO ∥ *KO ∥ *
1Oh),

*
3h = 3H (

*wO ∥ *
2Oh).

From the definition of VerifyDelegation and the above equations, we have

OO =
*PO +

*KO +[
*

2Oh] KGCP =[
*
3h] KGCP ,

1u =(
*
3h /

*
O) qmod , 2u =(xΠ (

*
OR)/

*
O) qmod ,

xΠ (
*
OR)= xΠ ([1u] G +[2u] OO)= xΠ ([1u] G +[2u 

*
3h] KGCP).

Since I ’s output is
*u = xΠ (

*
OR),

*v =(
*
O /

*
3h) qmod in this case, we have

*u = xΠ ([
1*)(v](G +[

*u] KGCP)).

That is, (
*u ,

*v) is the solution for the SLP instance given as input. In this case, the item

(
*IDO ,

*PO ,
*KO ,,

*cO) is put in L . When Ow 
*wO , I ’s response (Ow , R ,) to the oracle

query ionGetDelegat (
*IDO ,

*PO , Ow) is derived from the item (Ow ∥ *
2Oh , 3h , R ,) in 3H and

satisfies the following equations.

R = [u] G +[v][3h] KGCP ,

 =(xΠ (R)/ v) qmod ,

3h =(u  xΠ (R)/ v)= 3H (Ow ∥ *
2Oh),

where u , v *
q are choosed randomly. From these, it follows that (Ow , R ,) is valid and

26

the distribution of (Ow , R ,) in the simulation is identical to the one of values taken by

)(I  in the real attack.

If =1, then the full public key (
*PP ,

*K P) given by I to)(I  for the targeted proxy

 signer
*IDP and)(I  ’s final result satisfy the following equations:

*PO +
*KO =[(

*
4h /

*
3h −

*
2Ph) qmod] KGCP −[(

* /
*
3h) qmod] G ,

VerifyProxySign(Params ,
*IDO ,

*PO ,
*KO ,

*δO ,
*IDP ,

*PP ,
*K P ,

*m , *m
)=True,

*
1Ph = 1H (ParamsB ∥ *IDP),

*
2Ph = 2H (

*
PK ∥ *

1Ph),
*
2Ph = 2H (

*PP ∥ *
PK ∥ *

1Ph),

*
3h = 3H (

*wO ∥ *
2Ph),

*
4h = 4H (

*m ∥ *wO ∥ *
2Ph),

(
*wO ,

*
OR ,

*)= ionGetDelegat (
*IDO ,

*PO ,
*wO),

From the definition of VerifyProxySign and the above equations, we have

PO =[
*] G +[

*
3h](

*PP +
*
PK +[

*
2Ph] KGCP)

 =[
*] G +[

*
3h]((

*
4h /

*
3h) qmod] KGCP −[(

* /
*
3h) qmod] G)

 =[
*
4h] KGCP ,

*m
 =(u , v),

1v =(
1v 

*
4h) qmod , 2v =(

1v u) qmod ,

u = xΠ ([1v] G +[2v] PO)= xΠ ([1v] G +[2v 
*
4h] KGCP).

Since I ’s output is
*u = u ,

*v =(v /
*
4h) qmod in this case, we have

*u = xΠ ([
1*)(v](G +[

*u] KGCP)).

That is, (
*u ,

*v) is the solution for the SLP instance given as input. In this case, the item

(
*IDP ,

*PP ,
*
PK ,,

*cP) is put in L . When Ow 
*wO , I ’s response (Ow , R ,) to the oracle

query ionGetDelegat (
*IDP ,

*PP , Ow) is derived from the item (Ow ∥ *
2Ph , 3h , R ,) in 3H and

satisfies the following equations.

R = [(u − v  * /
*
3h) qmod] G +[v][

*
4h /

*
3h] KGCP ,

 =(xΠ (R)/ v) qmod ,

27

3h =(u  xP (R)/ v)= 3H (Ow ∥ *
2Ph),

where u , v *
q are choosed randomly. From these, it follows that (Ow , R ,) is valid and

the distribution of (Ow , R ,) in the simulation is identical to the one of values taken by

)(I  in the real attack.

Now, we analyze the probability for I to output the solution of the given instance of

SLP.

We know that I never rejects the final result of)(I  in its step 3 (1) and 3 (2) if

)(I  succeeds the simulated game, i.e.)(I  forges a valid delegation or proxy signature.

And if I ’s selections of seven indices O , P , O , P , O , P , and a Boolean value

 are correct, i.e. for the final result (*IDO , *PO , *KO , *δO , *IDP , *PP , *K P , *m , *m
) of)(I  ,

the target original signer with *IDO is the O -th user, the target proxy signer with *IDP is the

P -th user, (*PO , *KO) is the O -th full public key of the target original signer, (*PP , *K P) is

the P -th full public key of the target proxy signer, 3H (*wO ∥ *
2Oh) (where *wO is the warrant

in the delegation *δO and *
2Oh = 2H (*PO ∥ *KO ∥ 1H (ParamsB ∥ *IDO))) is the O -th new query to

3H , 3H (*wO ∥ *
2Ph) (where *

2Ph = 2H (*PP ∥ *K P ∥ 1H (ParamsB ∥ *IDP))) is the P -th new

query to 3H , 4H (*m ∥ *wO ∥ *
2Ph) is the  -th new query to 4H , =0 in the case

(*IDO , *PO , *KO , *wO , *δO) D and =1 in the case (*IDO , *PO , *KO , *wO , *δO) D , I never

rejects the final result of)(I  in its step 3 (3) and Event S never occurs. The probability

that)(I  succeeds the simulated game and I ’s selections of O , P , O , P ,

O , P , and  are correct is at least)( /(2
UN  2

UKeyN  2
H3

N  2
H4

N 2).

The probabilities of Events 1E , 2E and 3E in the running of I is at most nN 2/2
1H ,

qN /4
2H and qN /

3H , respectively. Since Event 4E occurs only when =1, the probability

of 4E is at most)2/(
4H qN . Since Events 21E and 22E are mutual exclusive, the probability

of Event 2221 EE  is at most UN UKeyN (2/1 q + q/2).

Therefore, the probability that I outputs the solution of the given instance of SLP is at

28

least the following expression:

)( /(
2
UN 

2
UKeyN 

2
H3

N 
2
H4

N 2)(1−
nN 2/2

1H)(1− qN /4
2H)(1− qN /

3H)

(1−)2/(
4H qN)(1− UN  UKeyN (

2/1 q + q/2)).

Since
1HN ,

2HN ,
3HN ,

4HN , UN , UKeyN and n are polynomial in  , q is exponential in  ,

)( is non-negligible, the above expression is also non-negligible.

Secondly, we construct an algorithm II that uses)(II  to solve the semi-logarithm

problem in the group  as follows:

Algorithm II :

Input/Output: (Same as defined in Algorithm I .)

1. (Same as defined in Algorithm I .)

2. Simulate a challenger in EUF-CMA Game as follows:

Setup: Choose s 
*

q randomly, set KGCP ⟵ Gs][, :ParamsB a ∥ b ∥ G ∥ KGCP ,

:Params { a , b , p , q , G , KGCP }, and send Params and s to)(II  . Initialize

the lists S and D with empty list (∅) respectively. As in Algorithm I , prepare lists

1H , 2H , 3H , 4H ,L and choose nine values
*
1Oh ,

*
1Ph 

n}1,0{ and
*
2Oh ,

*
2Ph ,

*
2Oh ,

*
2Ph ,

*
3h ,

*
4h ,

* 
*
q .

Attack: Answer)(II  ’s queries to oracles as follows:

 1H (x), 2H (x): (Same as defined in Algorithm I .)

 3H (w ∥ h):(Same as defined in Algorithm I , except tha t two KGCP s in

Algorithm I are replaced by P s)

 4H (m ∥ w ∥ h): (Same as defined in Algorithm I , except t h a t KGCP in

Algorithm I is replaced by P)

 CreateUser (UID): Let 1h ⟵ 1H (ParamsB ∥ UID) and respond differently in the

following cases:

– If =0, 1h =
*
1Oh and the current query is the O -th one on UID , then follow

29

the next steps:

a. If O =1 then choose Uk 
*
q randomly, let UK ⟵ GU]k[, Uc ⟵

(Uk + s  *
2Oh) qmod and put (UK ∥ 1h ,

*
2Oh) in 2H . Otherwise, search L for

the latest item (UID ,*, UK ,*, Uc) indexed by UID to get UK and Uc .

b. UP ⟵[
*
3h] P −[

*
2Oh] KGCP − UK .

c. Put (UID , UP , UK ,, Uc) in L , put (UP ∥ UK ∥ 1h ,
*
2Oh) in 2H and return

(UP , UK).

– If =1, 1h =
*
1Ph and the current query is the P -th one on UID , then follow

the next steps:

a. If P =1 then choose Uk 
*
q randomly, let UK ⟵ GU]k[, Uc ⟵

(Uk + s  *
2Ph) qmod and put (UK ∥ 1h ,

*
2Ph) in 2H . Otherwise, search L for

the latest item (UID ,*, UK ,*, Uc) indexed by UID to get UK and Uc .

b. UP ⟵[(
*
4h /

*
3h) qmod] P −[

*
2Ph] KGCP −[(

* /
*
3h) qmod] G − UK .

c. Put (UID , UP , UK ,, Uc) in L , put (UP ∥ UK ∥ 1h ,
*
2Ph) in 2H and return

(UP , UK).

– Else, follow the next steps:

a. Rs U
*

q ; UP ⟵ GU]s[; Rk U
*
q ; UK ⟵ GU]k[; 2h R *

q .

b. If there exists h  *
q such that (UK ∥ 1h , h) 2H and h  2h then terminate

the game.

c. If (UK ∥ 1h , 2h) 2H then check whether 2h is in {
*
2Oh ,

*
2Ph }. If it is,

terminate the game. Otherwise, put (UK ∥ 1h , 2h) in 2H .

d. Uc ⟵)k(2hsU
 qmod .

e. Put (UID , UP , UK , Us , Uc) in L and return (UP , UK).

 eyGetSecretK , eyGetPublicK , ionGetDelegat , gnGetProxy Si : (Same as defined in

Algorithm I .)

30

Forgery: Wait until)(II  outputs a tuple (
*IDO ,

*PO ,
*KO ,

*δO ,
*IDP ,

*PP ,
*K P ,

*m , *m
)

as the final result of the game.

3. Check)(II  ’s final result and output the solution of the above instance (i.e. the

input) as follows:

(1) (Same as defined in Algorithm I .)

(2) Parse
*δO as (

*wO ,
*
OR ,

*
O). If the following boolean expression is true, then reject

the final result and output .

((
*IDO ,

*PO)S ∨ (
*IDO ,

*PO ,
*KO ,

*wO ,
*δO)D) ∧ (

*IDP ,
*PP)S .

(3), (4), (5) (Same as defined in Algorithm I .) (The end of the algoritm II)

Since the analysis of II is similar to the one of I , we omit it. This completes the proof. �

6. Conclusion

Certificateless proxy signature (CLPS) stands for proxy signature in the certificateless

setting which is intermediate between traditional PKI and Identity-based setting and has

neither the certificate management issue nor private key escrow problem.

In this paper, we formalized the definition of a CLPS scheme and the security model for

CLPS schemes. Comparing with others, our definition of a CLPS scheme is more versatile

and our security model is more practical. We then proposed a pairing-free CLPS scheme using

the standard ECDSA (Elliptic Curve Digital Signature Algorithm) and proved that in the

random oracle model our scheme is existentially unforgeable against an adaptively chosen-

message attack and an adaptively chosen-warrant attack under the assumption that the semi-

logarithm problem is hard. To the best of our knowledge, our scheme is one of the provably

secure CLPS schemes without bilinear pairings.

Using Cheng and Chen’s technique [5] and modified ECDSA [16], we can easily convert

our scheme to the one based on a standard complexity assumption, i.e. the discrete logarithm

assumption.

Our future work is to construct a CLPS schemes without pairings in the standard model.

References

[1] S.S. Al-Riyami, K.G. Paterson, Certificateless public key cryptography, In: C.S. Laih

31

(Eds.), Proc. 9th Int. Conf. Theory and Application of Cryptology and Information

Security, ASIACRYPT 2003, LNCS 2894, Springer, 2003, pp. 452–473.

[2] D. Brown, On the provable security of ECDSA, In: I.F. Blake, G. Seroussi, N.P. Smart

(Eds.), Advances in Elliptic Curve Cryptography, Cambridge University Press, 2005, pp.

21–40.

[3] H. Chen, F.-T. Zhang, R.-S. Song, Certificateless proxy signature scheme with provable

security, Journal of Sofware 20(3) (2009) 692–701.

[4] Y.-C. Chen, C.-L. Liu, G. Horng, K.-C. Chen, A provably secure certificateless proxy

signature scheme, International Journal of Innovative Computing, Information and

Control, 7(9) (2011) 5557–5569.

[5] Z. Cheng, L. Chen, Certificateless public key signature schemes from standard

algorithms, In: C. Su, H. Kikuchi (Eds.) Proc. 14th Int. Conf. Information Security

Practice and Experience, ISPEC 2018, LNCS 11125, Springer, 2018, pp. 179–197.

[6] J. Cui, J. Zhang, H. Zhong, R. Shi, Y. Xu, An efficient certificateless aggregate

signature without pairings for vehicular ad hoc networks, Information Sciences 451–452

(2018) 1–15. https://doi.org/10.1016/j.ins.2018.03.060.

[7] H. Du, Q. Wen, Certificateless proxy multi-signature, Information Sciences 276 (2014)

21–30. http://dx.doi.org/10.1016/j.ins.2014.02.043.

[8] M. Girault, Self-certified public keys, In: D.W. Davies (Eds.) Proc. Workshop on the

Theory and Application of Cryptographic Techniques, Advances in Cryptology-

EUROCRYPT '91, LNCS 547, Springer-Verlag, 1991, pp. 490–497.

[9] B. C. Hu, D.S. Wong, X. Deng, Certificateless signature: a new security model and an

improved generic construction, Design, Codes and Cryptography 42(2) (2007) 109–126.

https://doi.org/10.1007/s10623-006-9022-9.

[10] ISO/IEC 14888-3:2016, Information Technology ‒ Security Techniques ‒ Digital

Signatures with Appendix ‒ Part 3: Discrete Logarithm Based Mechanisms, ISO/IEC

(2016)

32

[11] Z. Jin, Q. Wen, Certificateless multi-proxy signature. Computer Communications 34(3)

(2011) 344–352.

[12] A. Karati, SK H. Islam, G.P. Biswas, A Pairing-free and provably secure certificateless

Signature scheme, Information Sciences 450 (2018) 378–391. https://doi.org/10.1016/

j.ins.2018.03.053.

[13] X. Li, K. Chen, L. Sun, Certificateless signature and proxy signature schemes from

bilinear Pairings, Lithuanian Mathematical Journal 45(1) (2005) 76–83.

[14] R. Lu, D. He, C. Wang, Cryptanalysis and improvement of a certificateless proxy

signature scheme from bilinear pairings, In: Proc. of the 8th ACIS Intern. Conf. on

Software Engineering, Artifcial Intelligence, Networking, and Parallel/Distributed

Computing, SNPD 07, IEEE Computer Society, 2007, pp. 285–290. https://doi.org/

10.1109/ SNPD.2007.166.

[15] Y. Lu, J. Li, Provably secure certificateless proxy signature scheme in the standard

model, Theoretical Computer Science 639 (2016) 42–59. https://doi.org/10.1016/j.tcs.

2016. 05.019

[16] J. Malone-Lee, N. Smart, Modifications of ECDSA, In: K. Nyberg, H. Heys (Eds.)

Revised Papers of the 9th Annual Intern. Workshop on Selected Areas in Cryptography,

SAC 2002, LNCS 2595, Springer, 2003, pp. 1–12.

[17] M. Mambo, K. Usuda, and E. Okamoto, Proxy signatures: delegation of the power to

sign messages, IEICE Transactions on Fundamentals of Electronic Communications and

Computer Science, E79-A (9) (1996) 1338–1354.

[18] S. Padhye, N. Tiwari, ECDLP-based certificateless proxy signature scheme with

message recovery, Transactions on Emerging Telecommunications Technologies 26

(2015) 346–354. https://doi.org/10.1002/ett.2608.

[19] A. Shamir, Identity-based cryptosystems and signature schemes. In: G.R. Blakley, D.

Chaum (Eds.) Proc. 3rd Annual Intern. Cryptology Conf., Advances in Cryptology–

CRYPTO ’84, LNCS 196, Springer-Verlag, 1984, pp. 47–53. https://doi.org/10.1007/3-

33

540-39568-7 5.

[20] W. Shi, D. He, P. Gong, On the security of a certificateless proxy signature scheme

with message recovery, Mathematical Problems in Engineering 2013, Article ID 761694

(2013) 1–4. http://dx.doi.org/10.1155/2013/761694.

[21] M. Tian, W. Yang, L. Huang, Cryptanalysis and improvement of a certificateless

multi-proxy signature scheme, IACR Cryptology ePrint Archive: Report 2011/379, pp.

1–11 (2011).

[22] Z. Wan, X. Lai, J. Weng, X. Hong, Y. Long, W.-W. Jia, On constructing certificateless

proxy signature from certificateless signature. Journal of Shanghai Jiaotong University

(Science), 13(6) (2008) 692–694. https://doi.org/10.1007/s12204-008-0692-5.

[23] H. Xiong, F. Li, Z. Qin, A provably secure proxy signature scheme in certificateless

cryptography, Informatica, 21(2) (2010) 277–294.

[24] J. Xu, H. Sun, Q. Wen, H. Zhang, Improved certificateless multi-proxy signature. The

Journal of China Universities of Posts and Telecommunications 19(4) (2012) 94–105.

https://doi.org/10.1016/S1005-8885(11)60288-4.

[25] W. Yap, S. Heng, B. Goi, Cryptanalysis of some proxy signature scheme without

certificates. In: D. Sauveron, K. Markantonakis, A. Bilas, J.-J. Quisquater (Eds.) Proc.

of the 1st Workshop on Information Security Theory and Practices, WISTP ’07, LNCS

4462, Springer, 2007, pp. 115–126.

[26] L. Zhang, F. Zhang, Q. Wu, Delegation of signing rights using certificateless proxy

Signatures, Information Sciences 184(2012) 298–309 https://doi.org/10.1016/j.ins.2011.

08.015

	1. Introduction
	1.1 Motivation
	1.2 Our contribution
	1.3 Organization

	2. Notations and Preliminaries
	3. Definition and Security Model for CLPS
	3.1 Definition of a CLPS scheme
	3.2 Security Model for CLPS schemes

	4. A CLPS scheme without bilinear pairings
	5. Security Proofs
	6. Conclusion
	References

