
1

FPGA Trojans through Detecting and Weakening of
Cryptographic Primitives

Pawel Swierczynski∗, Marc Fyrbiak∗, Philipp Koppe∗, and Christof Paar∗†, Fellow, IEEE
∗Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

†University of Massachusetts Amherst, USA
{pawel.swierczynski,marc.fyrbiak,philipp.koppe,christof.paar}@rub.de

Abstract—This paper investigates a novel attack vector against
cryptography realized on FPGAs, which poses a serious threat to
real-world applications. We demonstrate how a targeted bitstream
modification can seriously weaken cryptographic algorithms,
which we show with the examples of AES and 3DES. The attack
is performed by modifying the FPGA bitstream that configures
the hardware elements during initialization. Recently, it has
been shown that cloning of FPGA designs is feasible, even if
the bitstream is encrypted. However, due to its proprietary file
format, a meaningful modification is very challenging. While
some previous work addressed bitstream reverse-engineering,
so far it has not been evaluated how difficult it is to detect
and modify cryptographic elements. We outline two possible
practical attacks that have serious security implications. We
target the S-boxes of block ciphers that can be implemented
in look-up tables or stored as precomputed set of values in the
memory of the FPGA. We demonstrate that it is possible to
detect and apply meaningful changes to cryptographic elements
inside an unknown, proprietary and undocumented bitstream.
Our proposed attack does not require any knowledge of the
internal routing. Furthermore, we show how an AES key can
be revealed within seconds. Finally, we discuss countermeasures
that can raise the bar for an adversary to successfully perform
this kind of attack.

Keywords—Hardware security, FPGAs, Trojans, bitstream ma-
nipulation, reverse-engineering, DES, AES.

I. INTRODUCTION

F IELD-Programmable Gate Arrays (FPGAs) play an im-
portant role in the field of embedded systems. They

are used in a wide spectrum of applications, e.g., computer
networks, data centers, automation, signal processing and the
automotive industry. Many of these applications are security-
sensitive and use FPGAs for cryptographic operations such as
random number generation, key establishment, digital signa-
tures as well as encryption. Despite a large body of research
addressing various aspects of FPGA security [1], the issue of
maliciously manipulating the configuration data of FPGAs has
not been addressed to our knowledge. During initialization, the
so-called bitstream is loaded into the FPGA, which configures
the internal hardware elements. The majority of FPGAs used
in practice employ bitstreams that are stored externally, e.g., on

Part of the research was conducted at the University of Massachusetts
Amherst. This material is based upon work partially supported by the National
Science Foundation under Grant No. CNS-1318497. This work has been also
partially supported by the Hans L. Merkle Foundation.

dedicated flash chips. This setup provides an unfortunate attack
surface which allows to learn about the security mechanisms
implemented, and more damaging, to introduce Trojan-like
manipulations of the hardware. Even though the two market
leaders, Altera and Xilinx, offer bitstream encryption as a
security measure, the schemes of both have been broken [2],
[3], [4]. These attacks leak the symmetric encryption keys
stored inside the FPGA utilizing side-channel analysis. After
key extraction, the encrypted bitstream stored in the external
flash can be read and decrypted. It is also possible to re-encrypt
a modified bitstream and load it into the FPGA to ultimately
change its hardware configuration.

Even though it can be assumed that the bitstream is known
to an adversary, there are still two major problems: the attacker
has to overcome a considerably obfuscation hurdle (proprietary
bitstream) and has to find the cryptographic components in a
large FPGA design. The bitstreams of all commercial FPGAs
make use of proprietary file formats. It is neither documented
which parts of the file belong to which hardware components
within the FPGA nor how different bits of the file influence the
specific configuration. There has been research on bitstream
reverse-engineering to uncover some of the bitstream features.
Nonetheless, it is not publicly documented what the file format
details of popular commercial FPGA vendors are. Even with a
full understanding of the bitstream, it poses a great challenge
for an attacker to detect and identify cryptographic components
within an unknown design. However, this is a prerequisite for
“meaningful” manipulations. To the best of our knowledge,
the only previous work in this direction is by Chakraborty et
al. [5]. They proposed a technique which allows to merge new
logic into an existing bitstream. The inserted logic is restricted
to unused logic blocks, meaning the inserted logic has to be
completely distinct from the existing one. The fundamental
limitation of the approach is the inability to interact with or
modify the existing design.

In this paper, we introduce methods to detect and
manipulate crucial cryptographic components like S-boxes in
the bitstream. These can either be implemented as lookup-
table or they can be stored in the embedded memory. The
applied modifications weaken the cryptographic algorithm or
leak (parts of) the key, while we require no knowledge of the
internal routing information. We demonstrate our approach
with AES, DES, and Triple-DES, which are most widely used
block ciphers in current and legacy applications. The weakened
algorithms are incompatible with their genuine counterparts.

2

Thus, the attack is limited to scenarios in which encryption
and decryption are computed by the same device, e.g., USB
flash drives, solid-state disks or in encrypted cloud storage.
The manipulations can also be used in systems in which all
involved devices can be altered. We practically verified our
techniques on a commercially available FPGA. Finally, we
briefly discuss countermeasures to raise the bar for an attacker.

II. FIRST POINT OF ATTACK: LOOK-UP TABLES IN FIELD
PROGRAMMABLE GATE ARRAYS

Lookup-tables (LUTs) are one of several element types em-
bedded in an Field Programmable Gate Array (FPGA). They
are responsible for implementing the logic of a design. When
combining LUTs with multiplexers, an FPGA can implement
combinatorial and more complex logic functions. FPGAs use
thousands of LUTs that can implement either logic functions or
serve as distributed Random Access Memory (RAM). Usually
two or four LUTs are embedded in a “logic block”. As depicted
in Figure 1, a group of logic blocks is connected to a switch-
box. The switch-box is used for managing all wire connections.

The outputs of the switch-boxes are connected with the
input pins of the LUTs or with the embedded multiplexers.
Thus, the output of the switch-box provides the permutation
of the input bits of any LUT.

Since LUTs represent the primary logic in an FPGA, they
are promising targets for an attacker that wants to maliciously
change the functionality of a third-party FPGA design. This
is especially critical in cryptographic applications. Thus, it is
also quite important to analyze the LUTs contents in terms of
security. In the real world an attacker usually only possesses
the bitstream of an FPGA design, but not the corresponding
netlist. We have practically verified that an attacker is able to
detect and modify the appropriate bits in order to change a
genuine bitstream to a malicious version.
For this purpose, an adversary needs to know details of the
(proprietary) bitstream mapping that is responsible for config-
uring the LUT contents. To be more precise, the bitstream file
format has to be partially reverse-engineered.

Section II-A provides detailed information on how to fully
reverse-engineer all LUT bit positions. Note that the LUT
bits are distributed over the bitstream following specific and
unknown patterns. We successfully obtained the bit mapping
of two devices that are based on a 4-bit-to-1 bit and a 6-bit-to-
1 bit LUT architecture. Note that the following approach can
be applied for most of those FPGAs belonging to the same
vendor.

A. Extracting the LUT Mapping From a Bitstream
As an example, we consider an FPGA that uses a 6-bit-to-1

bit architecture. We assume the following properties:
• Four 6-bit-to-1 bit LUTs are embedded in one logic

block with the ability to store 4×64 bits.
• Three multiplexers that can combine LUT outputs.
To extract the bitstream mapping of all LUTs, an attacker

simply conducts a profiling phase. The approach of learning

the LUT contents from a bitstream relies on generating ap-
propriate netlists that specify the rules of reconfiguring the
hardware for the given FPGA target. The netlist can be used
to manually configure any LUT with any arbitrary 6-input
Boolean function. To give an example, Listing 1 shows the
configuration of four LUTs. Note that the presented netlist
uses a fictional syntax.

Listing 1: Netlist example for setting LUT contents
FPGA design "minimal_lut_implementation" ...,
other configuration "...";

instance "logic block X Y",
config {
LUT1 = {0x0000000000000000} //64 inputs output 0
LUT2 = {0xFFFFFFFFFFFFFFFF} //64 inputs output 1
LUT3 = {0x0000000000000001} //Last input outputs 1
LUT4 = {0x8000000000000000} //First input outputs 1
}

As further illustrated by Listing 1, each LUT of one logic
block can be configured by specifying a 64-bit LUT content
representing a Boolean function.

In the following, we describe a generic reverse-engineering
strategy that reveals all LUT bit positions from a bitstream. An
attacker configures two different values for exactly one LUT,
thus, she has to create two different netlists (c.f., Listing 1).
The first netlist configures a LUT, whose output is always a
logical zero for all 64 input values (6-bit-to-1 bit architecture).
It should be noted that for each input value one output bit has
to be stored. All outputs bits together (64-bit) form a LUT
content. In this case, 64 “0”-bits, which is the resulting LUT
content of the currently discussed Boolean function, are stored
in the bitstream. Analogously, in a 4-bit-to-1 bit architecture
(16 input values), only sixteen “0”-bits are stored in the
bitstream due to less input value entries.

In the next step, a second netlist is created that only differs
in the specified LUT content. Instead of outputting zeros only,
the function is chosen in such a way that it always outputs
a one regardless of the input value. Again, the corresponding
bitstream is generated. This leads to the storage of 64 “1”-bits
in the bitstream.

When comparing both bitstreams, one can observe that
exactly 64 bits toggle from “0” to “1”, while all other bits
remain unchanged. Therefore, one can easily determine and
store the mapping rules of all 64 bits that are related to one
LUT, but obviously the correct order of these 64 bits stays
unclear. It is important to know the correct order to be able
to reconstruct the correct Boolean function. Thus, an attacker
has to extend the previous approach: Now, the idea is to
additionally create 64 bitstreams from 64 different netlists.

Each netlist configures an appropriate value (c.f. Table I) for
the same LUT such that only one bit of the LUT content is set,
while all other 63 bits are cleared. All 64 generated bitstreams
can be compared with the bitstream, whose LUT content bits
are all cleared, because then only one bit toggles.

To be more precise, each LUT content bit is recovered
separately by observing the toggling positions, and thus, the
correct order can be revealed. In a 6-bit-to-1 bit architecture,
one needs to generate 65 bitstreams for each LUT, while for
a 4-bit-to-1 bit architecture only 17 bitstream generations are

3

sufficient. This approach has to be repeated for all given LUTs
of the underlying FPGA in order to be able to extract all LUT
contents from a third-party bitstream.

Generation of Content of exactly one LUT
Bitstream 1 0x0000000000000001 //Only input 0 outputs a 1
Bitstream 2 0x0000000000000002 //Only input 1 outputs a 1
Bitstream 3 0x0000000000000004 //Only input 2 outputs a 1

.
Bitstream 63 0x4000000000000000 //Only input 62 outputs a 1
Bitstream 64 0x8000000000000000 //Only input 63 outputs a 1
Bitstream 65 0x0000000000000000 //Each input outputs a 0

TABLE I: Generating 65 bitstreams for one LUT

Note that the bits of one LUT, as indicated by Table I, are not
necessarily stored next to each other in the bitstream. Rather,
they could be distributed in the bitstream file by following
specific offsets rules. To give an example, the first bit of one
LUT content can be stored in the bitstream at position (Byte
Y , Bit 0), while the second bit may be located at position
(Byte Y − 8, Bit 5). We were able to practically verify the
correctness of our recovered bitstream mapping for any single
LUT. This can be done by setting a random configuration for
any LUT (in a netlist describing all LUTs) and by creating
the corresponding bitstream. Then, the LUT contents can be
parsed from the bitstream and compared to the LUT contents
of the previously generated netlist.

Algorithm 1 illustrates that straightforward but time-
consuming approach in more detail. A more sophisticated and

Algorithm 1 LUT content extraction for a 6-bit-to-1 bit FPGA
architecture

Input: FPGA device file describing LUTs
Output: Bitstream position table of LUT content

set lut content(·) sets the LUT content in netlist file
bs ref : Reference file with zeroized LUT content
bs mod: File with specific LUT content

1: for lut index = 0 to num of luts - 1 do
2: Create bitstream bs ref with zeroised LUT content

for the LUT lut index
3: for bit = 0 to 26 − 1 do
4: lut content = 2bit

5: set lut content(bs mod, lut index, lut content)
6: Generate bitstream bs mod
7: Compare bs ref and bs mod
8: Store difference in position table[lut index][bit]
9: end for

10: end for
11: return position table

considerably faster method is to learn the offset patterns of one
or several LUTs that can be applied to all other LUTs. For a
mid-sized FPGA the computation time, then is approximately
1-2 days, whereas the straightforward approach needs much
longer. The profiling phase has to be performed only once
per device. The paper’s intention is not to provide detailed

insights into the bitstream file format. Rather, it illustrates
the feasibility of the approach. In summary, this approach is
generic and is always applicable using the standard FPGA
design flow. The next sections deal with the detection and
impacts of a potential adversary’s modification to weaken
third-party cores in bitstreams.

III. DETECTING S-BOXES IN FPGA BITSTREAMS

In this section, several S-box detection approaches are dis-
cussed for the Data Encryption Standard (DES) and Advanced
Encryption Standard (AES). Besides a search pattern strategy
for specific S-box implementations, general strategies to iden-
tify non-linear elements in FPGA bitstreams are described.
We note that AES is the most widely used symmetric cipher
and 3DES, which is based on DES, is popular in both legacy
applications, e.g., in banking, and in recent systems such as
the e-Passport.

A. Detection of DES S-boxes

This section covers the detection of DES S-boxes from a
bitstream. The corresponding FPGA design is based on a 6-
bit-to-1 bit architecture. The DES algorithm is described in
Section V in more detail. DES uses eight different predefined
6-bit-to-4 bit S-boxes. Since our target device provides 6-bit-
to-1 bit LUTs, one DES S-box column1 fits into one LUT.
Therefore, one complete S-box (4 columns) can be realized
by four LUTs. Hence, a round-based DES implementation
requires 32 LUTs for all eight S-boxes. A general 6-bit-to-
4 bit S-box is illustrated in Table II. Note that each column
LUT1, LUT2, LUT3, and LUT4 stores a unique 64-bit se-
quence describing a Boolean equation. These might be the
fixed bit-sequences of a DES S-box. Each value ai, bi, ci, and
di with i ∈ {1, ..., 64} stores exactly one bit.

Input values Output columns
i6 i5 i4 i3 i2 i1 LUT1 LUT2 LUT3 LUT4

0 0 0 0 0 0 a1 b1 c1 d1

0 0 0 0 0 1 a2 b2 c2 d2

...
1 1 1 1 1 1 a64 b64 c64 d64

TABLE II: General shape of a 6-bit-to-4 bit S-box

To give an example, the four patterns of the first DES S-box
are as follows.
• LUT1 = (a64, ...,a1) = 0x869D497A86E67619
• LUT2 = (b64, ...,b1) = 0xB0C7871B497826BD
• LUT3 = (c64, ...,c1) = 0x27E9D492609F1F29
• LUT4 = (d64, ...,d1) = 0x917BE9066F81B478

Note that each 64-bit pattern is unique for each DES S-box. An
adversary can learn the bitstream mapping for all LUTs, thus
she can now analyze the extracted contents. As stated above, an
attacker may search for the presented patterns. Specifically, all

1It is equal to the LUT content describing one output bit of the S-box. A
DES S-box column can be understood as LUT1 = (a64, a63, . . . a1), c.f.,
Table II.

4

720 of its permutations have to be examined, due to possible
input transposition.

The synthesis tools determine an optimal routing path. For
this purpose, the internal algorithms permute the input bits
of a LUT. This also leads to permuted output bits in the
FPGA design and the corresponding bitstream, respectively.
Due to this fact, the LUT content, e.g., has to be viewed as
perm(LUT1) instead of LUT1. One may think that an attacker
needs further knowledge of the FPGA’s routing to obtain
the given unknown input permutation (denoted by perm(·)),
but this is not necessary due to the uniqueness of DES S-
box patterns: the basic idea is to precompute the possible input
permutations for all given DES patterns and to compare them
with all extracted LUTs. If there is one match, the permutation
is successfully recovered. The corresponding DES pattern
search algorithm is depicted in Algorithm 2.

Algorithm 2 DES S-box detection for a 6-bit-to-1 bit archi-
tecture

Inputs: Bitstream bs, Bitstream position table of LUT
content
Output: File with localized DES LUTs

S1(x), S2(x), ..., S8(x) represent the DES S-boxes
Sj
p(x) denotes to the j’th output bit of Sp(x)

permi(·) denotes the i’th permutation out of 720
get lut content(·) extracts the LUT content of the bit-
stream
mark lut(·) writes the parameter to an output file

//Generate DES search patterns
1: for sbox = 0 to 7 do
2: for output bit = 0 to 3 do
3: des pattern[sbox][output bit] =
4: Soutput bit

sbox (63)|Soutput bit
sbox (62)| . . . |Soutput bit

sbox (0)
5: end for
6: end for

//Get LUT content of bitstream by using Algorithm 1
7: LUT[num of luts] ← get lut content(bs)

//Search for DES pattern
8: for lut index = 0 to num of luts - 1 do
9: for perm index = 0 to 719 do

10: for sbox = 0 to 7 do
11: for output bit = 0 to 3 do
12: if (permperm index(LUT[lut index])

== des pattern[sbox][output bit]) then
13: mark lut(lut index, sbox, output bit)
14: end if
15: end for
16: end for
17: end for
18: end for

In practice, we were able to detect all S-box instances. Besides
to the exact location of the LUTs on the FPGA’s grid, we
obtained the exact permutation order of the corresponding
input pins (without any knowledge of the routing) for every

single S-box column. The obtained knowledge is extremely
useful for an attacker, e.g., if side-channel attacks based
on electromagnetic emanation are used. Knowing the exact
location an attacker can try to locate the best probe position
for the measurement while a target device performs its crypto-
graphic operations. The bitstream can also expose information
about the utilized architecture of the design. Knowing the
architecture can indicate, whether an implementation is round-
based, unrolled, or whether other cryptographic instances run
in parallel. Table III illustrates that we were able to locate
all DES S-boxes from three tested FPGA implementations.
Note that one can also easily identify the S-boxes of a Triple-
DES (3DES) architecture. The Algorithm 2 can also be applied

Impl. Architecture Found LUTs Detection rate
#1 Round-based 32 100 %
#2 Round-based 32 100 %
#3 Unrolled (16 rounds) 16 · 32 100 %

TABLE III: Overview of evaluated DES implementations

to a 4-bit-to-1 bit LUT FPGA architecture. In this case, we
evaluated whether one can also detect the corresponding 4-bit-
to-4 bit S-boxes of the lightweight cipher PRESENT [6]. We
could again identify all S-box instances from the bitstream. As
long as a Boolean function candidate is known to an attacker,
she is able to search for it in the bitstream. Since the S-boxes
are usually the only non-linear function of a block cipher,
they represent a potential security risk from a cryptographic
perspective, if they can be altered by an attacker. Under certain
conditions, the identification of S-box columns can be more
challenging as discussed in the following.

B. Generalization of Arbitrary y-bit-to-1 bit LUTs

If the FPGA’s architecture uses y-bit-to-1 bit LUTs (2y bits
of memory) and x-bit-to-1 bit Boolean functions (2x bits of
memory) need to be synthesized, two cases may occur:

a) Case 1: x ≤ y: If x is less than or equal to y, then
the whole S-box column is placed in exactly one LUT. The
LUT contents can be matched with the reference patterns
as described in Algorithm 2. It is thus straightforward to
detect single x-bit-to-1 bit S-box columns. This case holds,
e.g., for the S-boxes of the DES algorithm in a 6-bit-to-1
bit architecture (x = y = 6).

b) Case 2: x > y: If x is larger than y, then it is a more
challenging task to find x-bit-to-1 bit S-box columns within an
FPGA design. Due to the dimensions, one S-box column must
be split into 2x

2y LUTs that have to be combined by 2x

2y − 1
multiplexers. We have developed a search strategy for S-box
columns that exceed the common 16-bit (4-bit-to-1 bit) and
64-bit (6-bit-to-1 bit) memory limitations of one LUT. This
technique is described for the AES in Section III-C. AES uses
8-bit-to-8 bit (eight 8-bit-to-1 bit functions) S-boxes and thus
28

26 = 4 LUTs implement one S-box column in a 6-bit-to-1
bit architecture.

5

Sw
it

ch
-b

o
x

Lo
g

ic
 B

lo
ck

Lo
g

ic
 B

lo
ck

Routed Wires Other Resources

i6

i5

i4

i3

i2

i1

LUT1

(64-bit)

i6

i5

i4

i3

i2

i1

i6

i5

i4

i3

i2

i1

i6

i5

i4

i3

i2

i1

6.4
5.4
4.4
3.4
2.4
1.4
0.4

6.3
5.3
4.3
3.3
2.3
1.3
0.3

6.2
5.2
4.2
3.2
2.2
1.2
0.2

6.1
5.1
4.1
3.1
2.1
1.1
0.1

Out

Logic Block

6.4

5.4

4.4

3.4

2.4

1.4

6.3

5.3

4.3

3.3

2.3

1.3

6.2

5.2

4.2

3.2

2.2

1.2

6.1

5.1

4.1

3.1

2.1

1.1

Out

Out

0.1

0.2

0.3

6.4
5.4
4.4
3.4
2.4
1.4

6.3
5.3
4.3
3.3
2.3
1.3
0.3

6.2
5.2
4.2
3.2
2.2
1.2
0.2

6.1
5.1
4.1
3.1
2.1
1.1
0.1

m
ux

m
ux

μ1 = i8

μ1 = i8

μ2 = i7

m
ux

LUT2

(64-bit)

LUT3

(64-bit)

LUT4

(64-bit)

Part 1 of 1 AES -Sbox column

Part 2 of 1 AES -Sbox column

Part 3 of 1 AES -Sbox column

Part 4 of 1 AES -Sbox column

Fig. 1: Simplified overview of a logic block realizing an 8-bit-to-1 bit Boolean function (256 bits of memory) with four 6-bit-to-1
bit LUTs (64 bits of memory each)

C. Detection of AES S-boxes
In the following, the detection of decomposed AES S-boxes,

which are realized in a 6-bit-to-1 bit architecture, is considered.
At first the attacker computes the 8-bit-to-8 bit AES S-box.
The decomposition is necessary, because the degree x of the
Boolean function is higher than the number of LUT inputs
y. Thus case 2 of the previous section holds here. Each
out of the 8 AES S-box columns represents an 8-bit-to-1
bit Boolean function and is stored as a 256-bit value denoted
by (a256, a255, ..., a1).

Such an AES S-box column is similar to the bit-string of
Table II but is larger (256 bits instead of 64 bits). The AES S-
box columns have to be split-up into 4 LUTs each, because one
LUT of the FPGA can only store 64 bits. All LUTs are denoted
by LUTi with i ∈ {1, 2, 3, 4} that need to be multiplexed with
2 input bits. They are denoted by µ1 and µ2. The purpose of
these two input bits is to select one of the 4 lookup-tables LUTi

with the help of 3 multiplexers, c.f., Fig. 1. The synthesizer
has to chose 64 bits from (a256, a255, ..., a1) and assigns them
to one LUT. An AES S-box column has eight input bits that
we denote by (i8, i7, ..., i1). The straightforward example of
how to distribute the 256 bit values (a256, a254, ..., a1) to 4
LUTs is illustrated in the following.
• LUT1 = (a256, ..., a193) sel. by (µ1, µ2) = (0, 0)
• LUT2 = (a192, ..., a129) sel. by (µ1, µ2) = (0, 1)
• LUT3 = (a128, ..., a65) sel. by (µ1, µ2) = (1, 0)
• LUT4 = (a64, ..., a1) sel. by (µ1, µ2) = (1, 1)
• The multiplexer configuration is µ1 = i8 and µ2 = i7
• The remaining input bits (i6, i5, ..., i1) are not permuted

If the multiplexer configuration is different, then the assign-
ment of (a256, a255, ..., a1) to the lookup-tables LUT1, LUT2,
LUT3, and LUT4 has to be re-organized by the synthesizer.
An attacker would observe that the tools proceed as follows:
for each AES S-box input value i ∈ {0, ..., 255}, for which
(µ1, µ2) = (0, 0) holds, add the corresponding bit (one bit
of (a256, ..., a1)) to the same LUT group. This is repeated
for (µ1, µ2) ∈ {(0, 1), (1, 0), (1, 1)}. The contents of LUTi

can vary due to one out of 6! = 720 possible permutations.
Also, there are

(
8
2

)
possibilities to pick two multiplexer bits

(µ1, µ2) from (i8, i7, ..., i1). So there are
(
8
2

)
·720 ·4 = 80640

patterns for one AES S-box column. To be able to search
for all 8 AES S-box output columns, one needs to generate
8 · 80640 = 645120 patterns in total. Algorithm 3 provides
the necessary steps for detecting all AES S-boxes from the
bitstream.

From an attacker’s point of view, it is an advantage that all
four LUTs are placed within one logic block. This property
simplifies the detection of one single AES S-box column.
These results are a proof-of-concept that in many cases an
attacker only has to reverse-engineer the LUT content part
of the bitstream, and does not need any further knowledge
about the routing to be able to detect and modify S-boxes.
Thus, the reverse-engineering effort is minimal. Nevertheless,
there are various ways to implement the S-boxes in an FPGA
design and thus the presented detection method does not
always neccessarily lead to a successful finding. Note that in
some cases, an adversary needs to figure out the exact input
permutation and multiplexer configuration of a logic block,

6

Algorithm 3 AES S-box detection for a 6-bit-to-1 bit FPGA
architecture

Input: Bitstream bs, Bitstream position table of LUT
content
Output: File with localized AES LUTs

Sj(x) denotes the j’th output bit of S(x)
permi(·) denotes the i’th permutation of all 6!
get lut content(·) extract the LUT content of the bitstream
mark lut(·) writes the parameter to output file

//Generate AES search patterns
1: for sbox bit = 0 to 7 do
2: for mux cfg = 0 to

(
8
2

)
− 1 do

3: Pick multiplexer configuration (µ1, µ2)
4: Set cnti to 0, i = 1,2,3,4
5: for i = 0 to 255 do
6: switch(get mux value(i))
7: case(0,0):

LUT1[mux cfg][sbox bit][cnt1++] = Ssbox bit(i)
8: case(0,1):

LUT2[mux cfg][sbox bit][cnt2++] = Ssbox bit(i)
9: case(1,0):

LUT3[mux cfg][sbox bit][cnt3++] = Ssbox bit(i)
10: case(1,1):

LUT4[mux cfg][sbox bit][cnt4++] = Ssbox bit(i)
11: end switch
12: end for
13: end for
14: end for

//Get LUT content of bitstream by using Algorithm 1
15: LUT[num of luts] ← get lut content(bs)
16: //Search for AES pattern
17: for lut index = 0 to num of luts do
18: for sbox bit = 0 to 7 do
19: for mux cfg = 0 to

(
8
2

)
− 1 do

20: for perm index = 0 to 719 do
21: for i = 0 to 255 do
22: if permperm index(LUT[lut index])

== LUTi/64[mux cfg][sbox bit][i mod 64] then
23: mark lut(lut index, sbox bit,

mux cfg, perm index)
24: end if
25: end for
26: end for
27: end for
28: end for
29: end for

while for some other potential detection strategies this is not
necessary at all. These cases are discussed in Section VI and
V in more detail.
To verify our results practically, we evaluated 8 publicly
available AES cores on a 6-bit-to-1 bit FPGA in order to
study the corresponding bitstreams. These cores are offered

by OpenCores2. With the help of Algorithm 3, we were
able to detect all S-boxes being implemented by LUTs. The
corresponding results are given in Table IV.

Impl. Architecture AES LUTs with
S-box logic

S-boxes in
memory

Detection

#1 Round-based 128 (16+4)·32 = 640 no 100 %

#2 1
4 Round 128 0 yes 100 %

#3 1
4 Round 192 0 yes 100 %

#4 1
4 Round 256 0 yes 100 %

#5 Round-based 128 (0+4) · 32 = 128 yes 100 %

#6 Round-based 128 0 yes 100 %
#7 Round-based 128 0 yes 100 %

#8 Round-based 128 (16+4)·32 = 640 no 100 %

TABLE IV: Overview of evaluated AES implementations

Implementation #1 and #8 used 640 LUTs for realizing AES
S-boxes, while the S-boxes of implementation #2, #3, #4, #6,
and #7 were placed in the embedded memory of the FPGA.
It should be noted that in Sect. IV we explain how to extract
the S-boxes from the embedded memory.

During our evaluations, we observed that only implementa-
tion #5 used both parts of the hardware, namely the embedded
memory and the offered 6-input LUTs. In this implementation,
4 S-boxes were used for the key schedule step of AES, while
all other S-boxes were placed in the embedded memory.

As already mentioned before, implementation #1 and #8 use
exactly 640 LUTs belonging to AES S-boxes. Having extracted
such information from the bitstream, it can be inferred that
a round-based AES implementation is used since there are
20 = 640

32 synthesized S-box instances of the AES algorithm.
By obtaining such a result, an attacker can guess that sixteen
S-boxes belong to the processing of the AES SubBytes step,
while the other four S-boxes are synthesized for the key
schedule step of AES, which we afterwards confirmed with
the help of the netlist. It should be noted that we were also
able to identify all sixteen inverse S-boxes belonging to the
AES decryption.

D. Exploiting the Non-linearity of LUT Contents

In this section, another potential approach of detecting de-
composed S-boxes is introduced. In particular their non-linear
nature is exploited. One advantage is that the permutation
configuration of the input pins do not have to be considered
anymore. We show that measuring the degree of linearity of all
LUT contents may also be helpful for obtaining information
from third-party FPGA designs.
As mentioned in the previous sections, the analysis of LUT
content of a bitstream can reveal valuable information for
an attacker. A block cipher can be implemented using sev-
eral strategies. Each implementation strategy has an inherent
characteristic that may be revealed through measuring the
linearity of certain components of the design. For example,

2http://opencores.org/

7

in an unrolled design, it is common that many more S-
box instances are needed, compared to the number of S-
boxes in an iterated design. A central requirement for S-boxes
is that they possess a high degree of non-linearity. This is
a necessary characteristic in order to prevent cryptanalysis.
Thus, the more S-box instances are used, the more LUTs that
realize non-linear Boolean functions can be expected, if the
S-box is implemented in LUTs. To measure the linearity of
a LUT content, we use the Walsh Coefficient. It is a well-
established measure, and we use in the following the notation
from [7].
For two vectors a, b ∈ Fn

2 , we denote the inner product of a
and b by

〈a, b〉 =
n−1∑
i=0

aibi

We call a LUT a non-linear LUT if its corresponding content is
non-linear according to the Walsh Coefficient. A large number
of non-linear LUTs may indicate the usage of S-boxes. For
a Boolean function in n variables f : Fn

2 → F2 the Walsh
Coefficient is defined by

walf (a) =
∑
x∈Fn

2

(−1)f(x)+〈a,x〉

Note that the function f is the LUT content representation.
For an FPGA with 6-bit-to-1 bit LUTs, the function f is a
Boolean function f : F6

2 → F2. The linearity of the Boolean
function f is denoted by

Lin(f) = max
x∈Fn

2

|walf (x)|

If Lin(f) is large, this means that there exists an affine or
linear function that is a good approximation to the function
f . Having introduced the Walsh Coefficient, this measure is
used to evaluate the AES design of Section III-C.

1) Evaluation of an AES implementation on a 6-bit-to-1
bit Architecture: In order to evaluate the suitability of the
Walsh Coefficient, we provide the corresponding results for
an AES design (implementation #8, c.f., Table IV) that uses
20 S-box instances, implemented in LUTs. The results are
depicted in Fig. 2. The x-axis represents the Walsh Coefficient
that ranges from 16 to 64. Note that a Walsh Coefficient of
16 represents a low degree of linearity, while a value of 64
indicates a very high degree. The y-axis provides the number
of occurrences regarding the LUTs of the underlying FPGA
design.

As one can see in Fig. 2, there are 728 LUTs3 possessing a
Walsh Coefficient smaller or equal to 28 (low degree of linear-
ity). With the help of the detection approach of Algorithm 3,
we observed only two S-box LUTs having a higher linearity
(Walsh Coefficient of 26) than expected. Nevertheless, they
basically fit into the set of non-linear LUTs. An attacker can

3It is the sum of the first 7 counted occurrences: 162+ 65+ 239+ 171+
86 + 2 + 3 = 728

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
0

100

200

300

400

500

600

700

walsh coefficient

nu
m

be
r

of
 o

cc
ur

re
nc

es

162

 65

239

171

 86

 2 3 0

681

 0 0 0
 19

 1

 38

 0

193

 1 1 4
 18

 0
 13 14

 82

Fig. 2: Histogram of Walsh Coefficients evaluating the LUT
contents of a LUT-based AES implementation

assume that a LUT-based AES implementation uses 32 LUTs
per S-box instance (6-bit-to-1 bit architecture). In this case,
she would estimate b 72832 c = 22 utilized S-boxes for the dis-
cussed implementation. When using the Walsh Coefficient, an
adversary also can try to guess the architecture of the design.
Remember that the previous approach, for identifying S-boxes
using Algorithm 3, found all 640 LUTs (100% detection rate)
belonging to AES S-boxes. Therefore, it is the best solution,
but the main weakness is the inability of identifying proprietary
encryption algorithms and especially its proprietary S-boxes.
In those cases, the Walsh Coefficient may indicate, which
LUTs potentially implement proprietary S-boxes. This can
be valuable information, e.g., if the FPGA design only uses
a limited amount of logic resources. Consider for example
that only a proprietary block cipher and a communication
interface are implemented: the results should be then quite
accurate when predicting the architecture as this is the case
for the analyzed AES implementation. The non-linear LUTs
may be further studied by an attacker, who is interested in
the modification of the proprietary algorithm. During our
evaluations, we also found LUTs that simply forward, e.g.,
a plaintext or ciphertext. The corresponding LUTs possess a
very high linearity. Such information may also reveal further
implementation details.

In summary, the presented approach may help in the fol-
lowing cases:

• Identification of known non-linear S-boxes
• Identification of proprietary non-linear S-boxes
• Prediction of the implementation architecture

Thus, the Walsh Coefficient can indeed be a helpful tool for an
attacker. The adversary is able to identify, whether a bitstream
contains non-linear parts such as S-box instances and where
they are located on the FPGA’s grid.

8

IV. ANOTHER POINT OF ATTACK: EMBEDDED MEMORY
IN FPGAS

Another common implementation strategy for realizing
cryptographic S-boxes is to store them in the embedded mem-
ory of the FPGA. We briefly describe how the corresponding
bitstream mapping of the embedded memory can be obtained.
Knowing this mapping, critical data like cryptographic sym-
metric/asymmetric keys or S-boxes may be extracted from
the bitstream since one obtains the plain representation of the
embedded memory content.

Suppose that a fixed AES-{128,192,256} key with its corre-
sponding subkeys has been placed in the embedded memory.
An attacker then may easily find the corresponding main key
by searching XOR-dependencies. This can be done, e.g., with
a tool called aesfindkey written by Haldermann et al. [8].
For the reverse-engineering process, we need to create a Very
High Speed Integrated Circuit Hardware Description Language
(VHDL) file in order to derive the appropriate netlist that again
serves for learning the bitstream mapping.

A. S-box Instances in Embedded Memory
A simplified VHDL code example, realizing an AES S-box,

is depicted in Code Listing 2.

Listing 2: AES S-box instantiation in the embedded memory
architecture rtl of sbox_embd_mem is
...
type rom_array is array (0 to 255) of

std_logic_vector(7 downto 0);
signal ROM : rom_array := (

X"63", X"7C", X"77", X"7B",
...
X"B0", X"54", X"BB", X"16"

);
...
process(clk)
...
if(rising_edge(clk)) then

data <= ROM(conv_integer(addr));
end if;
end process;

When using Code Listing 2, the embedded memory of the
FPGA is filled with the specified bytes of the given signal
rom array. In this case, it contains the S-box values of AES.
This kind of embedded memory requires to use a clock. The
S-box input is evaluated on the rising edge of the clock. The
corresponding netlist of this design can be generated from the
above VHDL file.

B. Extraction of Embedded Memory Content from FPGA
Bitstreams

The idea of obtaining the bitstream mapping of the em-
bedded memory is similar to the approach of extracting the
mapping of the LUT contents. Again, an attacker can create
certain netlists, for which, she changes all memory values
bitwise. For each change, the bitstream is synthesized and the
corresponding toggling bits are observed. Algorithm 4 shows
a generic approach. Having obtained the mapping, we verified

the correctness for several FPGA families. Note that there are
certain setups for the memory layout that can be chosen by
the user. We could verify that the contents of the embedded
memory can be extracted – regardless of the chosen memory
layout. This can be done with moderate programming efforts.

Algorithm 4 Extracting bitstream mapping of embedded mem-
ory content

Input: FPGA device file describing embedded memory
Output: Bitstream position table of embedded memory

set bit in block(·) sets the memory content in netlist file
bs ref : Reference file with zeroised memory content
bs mod: Modfied embedded memory content
.net represents the netlist file

1: for block = 0 to num of memory blocks - 1 do
2: Create bitstream bs ref with zeroised memory content

for memory block block
3: for bit = 0 to num of bits per memory block - 1 do
4: set bit in block(bs mod.net, block, bit)
5: Generate bitstream bs mod
6: Compare bs mod and bs ref
7: Store difference bit in position table[block][bit]
8: clear bit in block(bs mod.net, block, bit)
9: end for

10: end for
11: return position table

Note that Algorithm 4 has to be executed only once per
device. With the help of the recovered bitstream mapping
describing the contents of the embedded memory, an attacker
is able to extract and modify the contents using the bitstream
file.

C. Practical Evaluation
We were able to extract all S-box bytes residing in embed-

ded memory from the corresponding bitstreams, c.f., Table 3.
After having presented several detection approaches, we de-
scribe the potential security issues, in the next sections, for the
case that an attacker is able to detect and modify S-boxes in a
bitstream that corresponds to a DES or AES implementation.

V. ANALYSIS OF DES
The DES and especially the 3DES algorithms are still widely

used, e.g., in financial systems and SSL/TLS applications.
Therefore, both algorithms represent an attractive target to be
weakened in FPGA bitstreams. This can be conducted, e.g., by
directly modifying the bits of the bitstream related to the DES
S-boxes. As demonstrated in the previous sections, we can
clearly locate these bits. Figure 3 shows the general Feistel
structure of the DES algorithm. The DES algorithm processes
a 64-bit plaintext using a 56-bit main key [9]. Sixteen subkeys
are derived from the main key by following a fixed scheduling
plan. Before demonstrating how an adversary can modify the

9

state

XOR

S1 S2 S3 S4 S5 S6 S7 S8

round key

P

E

6

4

plaintext

 AddRoundKey

SubBytes

ShiftRows

MixColumns

MixColumnsAddRoundKey

SubBytes

ShiftRows

AddRoundKey

ciphertext

R
ou

nd
 N

r-
1

main key

Key Scheduling

W[0] W[1] W[2] B2B1 B3 B4

g

P2P1 P3 P4

+

W[3]

SS S S

RCi

+

+

+

+

g

W[4] W[5] W[6] W[7]

+

+

+

+

g

W[48] W[49] W[50] W[51]

W[0] W[1] W[2]

+

+

+

+

g

W[6] W[7] W[8] W[9]

W[3] W[4]

+

+

W[10] W[11]

W[5]

W[42] W[43] W[44] W[45] W[46] W[47]

...

...

...

+

+

+

+

g

W[56] W[57] W[58] W[59]

W[0] W[1] W[2]

+

+

+

+

g

W[8] W[9] W[10] W[11]

W[3] W[4]

+

+

W[12] W[13]

W[5]

W[48] W[49] W[50] W[51] W[52] W[53]

...

W[6] W[7]

+

+

W[14] W[15]

W[54] W[55]

... ...

h

h

P2P1 P3 P4

SS S S

plaintext

 IP

Li

IP-1

ciphertext

1
6

 r
ou

n
ds

Key SchedulingRi

+ f

Li+1 Ri+1

main Key

f

8

32

W[0]

32

8

Li+1 Ri+1

Ri+1 Li+1

canceled
xor

plaintext

 IP

Li

IP-1

ciphertext
16

 r
o

u
n

d
s

Ri

Li+1 Ri+1

Li+1 Ri+1

Ri+1 Li+1

+

Fig. 3: Overview of the DES encryption algorithm

FPGA bitstream to weaken the DES, the round function f
is described. The basic properties of diffusion and confusion
are realized by the f -function. Each of the 16 round keys
is processed by this function. Figure 4 shows the internal
structure of the DES f -function. As can be seen, all eight S-
boxes process an intermediate value that has been previously
XOR-ed with a subkey. The goal is to directly modify these
S-boxes in a way that a ciphertext (computed by this modified
DES) can be easily decrypted by an adversary. This is supposed
to hold for all plaintext blocks being encrypted by the modified
algorithm.

state

XOR

S1 S2 S3 S4 S5 S6 S7 S8

round key

P

E

6

4

plaintext

 AddRoundKey

SubBytes

ShiftRows

MixColumns

MixColumnsAddRoundKey

SubBytes

ShiftRows

AddRoundKey

ciphertext

N
r-

1
ro

un
ds

main key

Key Scheduling

W[0] W[1] W[2] B2B1 B3 B4

g

P2P1 P3 P4

+

W[3]

SS S S

RCi

+

+

+

+

g

W[4] W[5] W[6] W[7]

+

+

+

+

g

W[48] W[49] W[50] W[51]

W[0] W[1] W[2]

+

+

+

+

g

W[6] W[7] W[8] W[9]

W[3] W[4]

+

+

W[10] W[11]

W[5]

W[42] W[43] W[44] W[45] W[46] W[47]

...

...

...

+

+

+

+

g

W[56] W[57] W[58] W[59]

W[0] W[1] W[2]

+

+

+

+

g

W[8] W[9] W[10] W[11]

W[3] W[4]

+

+

W[12] W[13]

W[5]

W[48] W[49] W[50] W[51] W[52] W[53]

...

W[6] W[7]

+

+

W[14] W[15]

W[54] W[55]

... ...

h

h

P2P1 P3 P4

SS S S

plaintext

 IP

Li

IP-1

ciphertext

1
6

 r
ou

n
ds

Key SchedulingRi

+ f

Li+1 Ri+1

main Key

f

8

32

W[0]

32

8

Li+1 Ri+1

Ri+1 Li+1

canceled
xor

plaintext

 IP

Li

IP-1

ciphertext
16

 r
o

u
n

d
s

Ri

Li+1 Ri+1

Li+1 Ri+1

Ri+1 Li+1

+

Fig. 4: DES round function f

A. Modification of DES S-boxes
The idea of DES S-box alteration is discussed by Kerins

et al. [10], which we briefly present for completeness. If all
S-boxes (S1, S2, ..., S8) can be modified in such a way that
they always output a zero – regardless of all 64 possible input
values – an attacker has successfully performed a malicious
alteration of the DES algorithm. To be more precise, the
following modification should be applied to the DES S-boxes
implemented in the FPGA bitstream:

S-box0DES(i) = 0, ∀ i ∈ {0, . . . , 63}

Due to the presented modification, the whole DES algorithm
turns into a key-independent permutation. The modified DES
is visible in Figure 5. In a normal operating f -function, the S-state

XOR

S1 S2 S3 S4 S5 S6 S7 S8

round key

P

E

6

4

plaintext

 AddRoundKey

SubBytes

ShiftRows

MixColumns

MixColumnsAddRoundKey

SubBytes

ShiftRows

AddRoundKey

ciphertext

R
o

u
n

d
N

r-
1

main key

Key Scheduling

W[0] W[1] W[2] B2B1 B3 B4

g

P2P1 P3 P4

+

W[3]

SS S S

RCi

+

+

+

+

g

W[4] W[5] W[6] W[7]

+

+

+

+

g

W[48] W[49] W[50] W[51]

W[0] W[1] W[2]

+

+

+

+

g

W[6] W[7] W[8] W[9]

W[3] W[4]

+

+

W[10] W[11]

W[5]

W[42] W[43] W[44] W[45] W[46] W[47]

...

...

...

+

+

+

+

g

W[56] W[57] W[58] W[59]

W[0] W[1] W[2]

+

+

+

+

g

W[8] W[9] W[10] W[11]

W[3] W[4]

+

+

W[12] W[13]

W[5]

W[48] W[49] W[50] W[51] W[52] W[53]

...

W[6] W[7]

+

+

W[14] W[15]

W[54] W[55]

... ...

h

h

P2P1 P3 P4

SS S S

plaintext

 IP

Li

IP-1

ciphertext

1
6

 r
ou

n
d

s

Key SchedulingRi

+ f

Li+1 Ri+1

main Key

f

8

32

W[0]

32

8

Li+1 Ri+1

Ri+1 Li+1

canceled
xor

plaintext

 IP

Li

IP-1

ciphertext

1
6

ro
u

n
d

s

Ri

Li+1 Ri+1

Li+1 Ri+1

Ri+1 Li+1

+

Fig. 5: Modified DES with canceled f -function

box outcomes (32 bits) are permuted according to the mapping
rules of function P . The evaluated result of P is concurrently
the output of the function f . Since in the modified version,
all S-boxes outputs are zero, the output of the permutation P
is also completely zero. Hence, the output of the function f
is zero, independent of the input and subkey. Because a zero
outcome of f is XOR-ed with the left state Li, it remains
unchanged as XOR-ing a value with zero is equal to the
identity function. Thus, the state after IP(·) is not affected
when having processed all 16 DES rounds. This is because the
number of swaps is even. In the end, a final swap is performed,
which is followed by a permutation denoted by IP−1(·).

The following two equations compare the computation steps
of a normal DES encryption with the one of a modified D̃ES-
encryption using S-box0DES. The modified encryption only
applies three permutations on the plaintext (denoted by p) that

10

can be easily inverted by an attacker.

DESk(p) = IP−1(Swap(R16,k16(. . . (R1,k1(IP(p) . . .)

D̃ESk(p) = IP−1(Swap(IP(p))) = c̃

An attacker has to perform the following computation to obtain
the plaintext from the modified ciphertext c̃:

p = IP−1(Swap(IP(c̃)))

This attacks works likewise for the Triple-DES encryption
that is computed as follows [9]:

c̃ = D̃ESk3
(D̃ES

−1
k2

(D̃ESk1
(p)))

A plaintext from the modified 3DES with S-box0DES can
also be easily recovered:

p = D̃ES
−1
k1

(D̃ESk2
(D̃ES

−1
k3

(c̃)))

= IP−1(Swap(IP(IP(Swap(IP−1(IP−1(Swap(IP(c̃) . . .)

As one can see, in this case, an attacker only has to modify
eight S-boxes (or: 32 decomposed LUTs in a 6-bit-to-1 bit ar-
chitecture) within the bitstream to significantly weaken the
DES algorithm4. The S-box changes were directly applied on
the bitstreams and we verified that the alteration of the design
was successful. The presented attack of the DES algorihm
works, for both, a LUT-based implementation and for an
implementation based on embedded memory. Due to the fact
that the DES algorithm does not exhibit any inverse S-boxes,
the decryption also functions correctly. This severe bitstream
modification may remain undetected in applications such as
data storage where encryption and decryption are performed
by the same device, or if all ciphers in a given system are
modified in this way. Possible countermeasures include self-
tests or integrity checks.

VI. ANALYSIS OF AES
The Advanced Encryption Standard (AES) is the most

commonly used symmetric cipher today. In this section, we
present further results of our analysis regarding malicious
AES modifications in FPGA bitstreams. Similar to DES,
an attacker may be able to silently weaken the algorithm
such that an encryption and decryption are still being
performed correctly, but the corresponding ciphertexts are
cryptographically weak. For this purpose, the S-box instances
are again modified. Furthermore, a key leakage approach and
a corresponding scenario are discussed. As described in the
previous sections, we are able to detect S-box instances by
analyzing the corresponding bitstream of an FPGA.

Before describing both S-box modifications on the FPGA
bitstream, the AES algorithm is briefly introduced. Figure 6
shows an overview of the AES-{128,192,256} encryption
scheme for the three different key sizes 128, 192, and 256

4Potentially more S-box instances have to be modified in the bitstream,
depending on the design architecture, e.g., in an unrolled implementation.

bit leading to the execution of Nr ∈ {10, 12, 14} rounds,
respectively [11]. The AES operates on 128-bit blocks, in-
dependent of the key size. One AES round consists of the

state

XOR

S1 S2 S3 S4 S5 S6 S7 S8

round key

P

E

6

4

plaintext

 AddRoundKey

SubBytes

ShiftRows

MixColumns

MixColumnsAddRoundKey

SubBytes

ShiftRows

AddRoundKey

ciphertext

N
r-

1
ro

un
ds

main key

Key Scheduling

W[0] W[1] W[2] B2B1 B3 B4

g

P2P1 P3 P4

+

W[3]

SS S S

RCi

+

+

+

+

g

W[4] W[5] W[6] W[7]

+

+

+

+

g

W[48] W[49] W[50] W[51]

W[0] W[1] W[2]

+

+

+

+

g

W[6] W[7] W[8] W[9]

W[3] W[4]

+

+

W[10] W[11]

W[5]

W[42] W[43] W[44] W[45] W[46] W[47]

...

...

...

+

+

+

+

g

W[56] W[57] W[58] W[59]

W[0] W[1] W[2]

+

+

+

+

g

W[8] W[9] W[10] W[11]

W[3] W[4]

+

+

W[12] W[13]

W[5]

W[48] W[49] W[50] W[51] W[52] W[53]

...

W[6] W[7]

+

+

W[14] W[15]

W[54] W[55]

... ...

h

h

P2P1 P3 P4

SS S S

plaintext

 IP

Li

IP-1

ciphertext

1
6

 r
ou

n
ds

Key SchedulingRi

+ f

Li+1 Ri+1

main Key

f

8

32

W[0]

32

8

Li+1 Ri+1

Ri+1 Li+1

canceled
xor

plaintext

 IP

Li

IP-1

ciphertext

16
 r

o
u

n
d

s

Ri

Li+1 Ri+1

Li+1 Ri+1

Ri+1 Li+1

+

Fig. 6: Overview of the AES encryption algorithm

operations SubBytes, ShiftRows (SR(·)), MixColumns (MC(·)),
and AddRoundkey that are executed consecutively. Thereby, the
SubBytes step processes sixteen intermediate bytes by using a
fixed S-box. For round-based implementations it is common
to synthesize multiple S-boxes such that each input byte can
be processed in parallel. In addition to that, the key schedule
step also needs to process four S-box instances. Two of the
three key schedule algorithms are depicted and described in
Section VI-B. Section VI-A describes the impact of replacing
all S-boxes by the identity function, while Section VI-B
demonstrates the influence of setting all S-box outcomes to
zero.

A. Replacing S-boxes to the Identity Function
a) Impact of S-box modification to the AES encryption:

When setting all AES S-box instances to the identity mapping
as given in the equation below, the encryption and decryption
function turn into a linear bijection. The corresponding modi-
fied AES can correctly encrypt and decrypt, but is extremely
vulnerable to cryptanalytical attacks.

S-boxidAES(i) = i, ∀i ∈ GF(28)

An attacker is able to decrypt all faulty ciphertext blocks,
because the altered AES-128 can be described as:

c̃ = ÃESk(p) = SR(. . .MC(SR(p⊕K0)⊕K1) . . .)⊕K10

= SR(. . .MC(SR(p) . . .)

⊕ SR(. . .MC(SR(K0)⊕K1) . . .)⊕K10

= SR(. . .MC(SR(p) . . .)⊕ K̃

11

The plaintext is denoted by p, the subkeys by K0,K1, ...,K10

and the faulty ciphertext by c̃ (encrypted by the weak AES).
The equation above holds, because the MC(·) and the SR(·)
functions are linear as described below.

∀a, b 4× 4 matrices with elements ∈ GF(28) :

MC(a⊕ b) = MC(a)⊕MC(b)

SR(a⊕ b) = SR(a)⊕ SR(b)

It is important to understand that the XOR sum of all processed
subkeys is constant and can be expressed by one variable K̃. In
addition, the number of MC(·) and SR(·) operations depends
on the utilized AES key size, i.e., 128, 192, or 256 bits. In
the following, we describe how K̃ can be recovered with one
plaintext/ciphertext pair (p, c̃) encrypted by this modified AES.

b) Decryption of Ciphertexts: When an attacker can
obtain one plaintext/ciphertext pair (p, c̃) (encrypted by the
modified AES), then she is able to compute the secret K̃. For
this purpose, she simply reconstructs SR(. . .MC(SR(p) . . .),
and then computes the following:

K̃ = c̃⊕ SR(. . .MC(SR(p) . . .) (1)

With the knowledge of K̃, an attacker can recover any plain-
text x from any faulty ciphertext ỹ. To do so, the adversary
has to XOR the value ỹ with the previously recovered secret
K̃. Afterwards, the MC(·) and SR(·) transformations have to
be inverted. The number of inversions differs, depending on
the AES key size. Algorithm 6 illustrates this concept in more
detail. As indicated above, this attack works regardless of the

Algorithm 5 Decrypt Ciphertexts Encrypted with S-boxidAES

Input: Ciphertext ỹ from a modified AES (S-boxidAES)
One previously obtained (p, c̃) pair

Output: Plaintext x corresponding to ỹ

//Calculate K̃
1: K̃ ← c̃⊕ SR(. . .MC(SR(p) . . .)

//Cancel secret K̃
2: ỹ ← ỹ ⊕ K̃

//Calculate x depending on the number of rounds
3: x← SR−1(MC−1(SR−1(. . .MC−1(SR−1(ỹ) . . .)

key schedule, because the secret K̃ can be canceled in any
case. Thus, it does not matter whether any S-box of the key
schedule is altered or not.

B. Replacing S-boxes to the Zero Function
Analogous to the DES modification of Section V, all AES

S-boxes in the FPGA bitstream can be altered to always output
a zero – regardless of the input value. This kind of modification
is also presented by Kerins et al. [10], which we further
extend with respect to an FPGA scenario. The modification
is described in the following equation:

S-box0AES(i) = 0, ∀ i ∈ GF(28)

Obviously, after having altered all S-box instances in the
this manner, the AES algorithm becomes unusable. That
is because any information regarding the plaintext is lost,
right after the first SubBytes step has been processed by
the modified AES instance, hence the cipher is not bijective
anymore. However, such an alteration could still be useful
for an adversary since the output of the AES is now the last
subkey.
Such kind of attack can be useful if the underlying main key
is, e.g., hard-coded in the FPGA design and not stored in the
embedded memory. Another scenario is given if a main key
is securely transfered to the FPGA after power-up, e.g., by
a Hardware Security Module (HSM) whose data bus cannot
be eavesdropped. An adversary can obtain the key with this
alteration, if she is able to query the AES instance with an
arbitrary plaintext.

Since the S-boxes of the key schedule are usually not
distinguishable from the SubBytes S-boxes, the attack will
lead to the modification of all S-boxes, including those from
the key schedule. In the following, we have a look at the two
key schedule schemes of AES-128 and AES-192. We further
assume that all SubBytes S-boxes are altered.

1) AES-128 Key Schedule: In the case of AES-128, the main
key K0 can always be fully recovered. The steps are given in
Algorithm 6. In order to better understand Algorithm 6, the

state

XOR

S1 S2 S3 S4 S5 S6 S7 S8

round key

P

E

6

4

plaintext

 AddRoundKey

SubBytes

ShiftRows

MixColumns

MixColumnsAddRoundKey

SubBytes

ShiftRows

AddRoundKey

ciphertext

R
ou

n
d

N
r-

1

main key

Key Scheduling

W[0] W[1] W[2]

B2B1 B3 B4

g

P2P1 P3 P4

+

W[3]

SS S S

RCi

+

+

+

+

g

W[4] W[5] W[6] W[7]

+

+

+

+

g

W[48] W[49] W[50] W[51]

W[0] W[1] W[2]

+

+

+

+

g

W[6] W[7] W[8] W[9]

W[3] W[4]

+

+

W[10] W[11]

W[5]

W[42] W[43] W[44] W[45] W[46] W[47]

...

...

...

+

+

+

+

g

W[56] W[57] W[58] W[59]

W[0] W[1] W[2]

+

+

+

+

g

W[8] W[9] W[10] W[11]

W[3] W[4]

+

+

W[12] W[13]

W[5]

W[48] W[49] W[50] W[51] W[52] W[53]

...

W[6] W[7]

+

+

W[14] W[15]

W[54] W[55]

... ...

h

h

P2P1 P3 P4

SS S S

plaintext

 IP

Li

IP-1

ciphertext

16
 r

ou
n

ds

Key SchedulingRi

+ f

Li+1 Ri+1

main Key

f

8

32

W[0]

32

8

Li+1 Ri+1

Ri+1 Li+1

canceled
xor

plaintext

 IP

Li

IP-1

ciphertext

16
 r

ou
n

ds

Ri

Li+1 Ri+1

Li+1 Ri+1

Ri+1 Li+1

+

W[36] W[37] W[38]

+

+

+

+

g

W[39] W[40]

+

+

W[41]

+

+

+

+

g

W[40] W[41] W[42] W[43]

W[36] W[37] W[38] W[39]

...

Fig. 7: Key schedule of AES-128

AES-128 key schedule is depicted in Figure 7. The following
cases may occur:
• Function g(·) utilizes AES S-boxes: This can happen, if

the round keys were computed before the modification.
In this case, Algorithm 6 immediately reveals the full
key.

• Function g(·) utilizes the modified S-boxes S-box0AES:
In this case, the g-function only returns the correspond-

12

Algorithm 6 Reconstruction of the full main key of AES-128

Input: Ciphertext ỹ from modified AES (S-box0AES)
Output: Fully recovered 128-bit AES main key.

//Load modified ciphertext (= last round key)
1: for i = 0 to 3 do
2: w[43− i] = ỹ[3− i]
3: end for

//Invert the 128-bit key schedule
4: for i = 39 to 0 do
5: if i % 4 == 0 then
6: w[i] = w[i+ 4]⊕ g(w[i+ 3])
7: else
8: w[i] = w[i+ 4]⊕ w[i+ 3]
9: end if

10: end for

ing round constant RC[i], also padded with three zero
bytes. Code line 6 of Algorithm 6 should be then
changed to

w[i] = w[i+ 4]⊕ RC[i]

in order to reveal the main key.
2) AES-192 (and AES-256): Compared to AES-128, AES-

192 and AES-256, only leak the main key under special
conditions. The graphical representations of the AES-192 key
schedule function is shown in Figure 8. Similar to AES-

state

XOR

S1 S2 S3 S4 S5 S6 S7 S8

round key

P

E

6

4

plaintext

 AddRoundKey

SubBytes

ShiftRows

MixColumns

MixColumnsAddRoundKey

SubBytes

ShiftRows

AddRoundKey

ciphertext

R
o

u
nd

 N
r-

1

main key

Key Scheduling

W[0] W[1] W[2] B2B1 B3 B4

g

P2P1 P3 P4

+

W[3]

SS S S

RCi

+

+

+

+

g

W[4] W[5] W[6] W[7]

+

+

+

+

g

W[48] W[49] W[50] W[51]

W[0] W[1] W[2]

+

+

+

+

g

W[6] W[7] W[8] W[9]

W[3] W[4]

+

+

W[10] W[11]

W[5]

W[42] W[43] W[44] W[45] W[46] W[47]

...

...

...

+

+

+

+

g

W[56] W[57] W[58] W[59]

W[0] W[1] W[2]

+

+

+

+

g

W[8] W[9] W[10] W[11]

W[3] W[4]

+

+

W[12] W[13]

W[5]

W[48] W[49] W[50] W[51] W[52] W[53]

...

W[6] W[7]

+

+

W[14] W[15]

W[54] W[55]

... ...

h

h

P2P1 P3 P4

SS S S

plaintext

 IP

Li

IP-1

ciphertext

1
6

 r
ou

n
ds

Key SchedulingRi

+ f

Li+1 Ri+1

main Key

f

8

32

W[0]

32

8

Li+1 Ri+1

Ri+1 Li+1

canceled
xor

plaintext

 IP

Li

IP-1

ciphertext

16
 r

o
u

n
d

s

Ri

Li+1 Ri+1

Li+1 Ri+1

Ri+1 Li+1

+

W[36] W[37] W[38]

+

+

+

+

g

W[39] W[40]

+

+

W[41]

Fig. 8: Key schedule of AES-192

128, two cases can occur if all SubBytes S-boxes are already
modified to a constant zero outcome function:

a) Key Schedule utilizes AES S-boxes: The following
explanation refers to AES-192 that is illustrated in Figure 8,
but also holds for AES-256.

Figure 8 shows the computable words (white background)
and non-computable words (gray background). If the round
keys are calculated utilizing normal AES S-boxes, then, w[42]
cannot be calculated from the modified ciphertext. This is
because the output of the last g-processing is unknown to
an attacker. Therefore, in the set of w[36] − w[41] only the
words w[38] and w[39] are computable. The other intermediate
values belonging to the same set cannot be computed, because
w[42], w[46], and w[47] are unknown. The last possible word
that can be computed is w[33]. Hence, in this case, not any
single byte of the main key can be recovered. This fact also
holds for AES-256.

b) Key Schedule utilizes S-box0AES: In the case that the
key schedule S-boxes are also set to zero, the first 128 bit of
the AES-192 main key can be derived. This also holds for
AES-256.

The g-function returns the round constant value RC[i], if
all S-box outputs yield a zero (for every input), c.f., function
g of Figure 7. Hence, w[42] is derivable and all the first
left 4 words of each subkey of the key schedule step are
computable. Even if the right part is not known, the first 4
words w[0] − w[3] can be computed, c.f., Algorithm 7. To

Algorithm 7 Partial key reconstruction of AES-192/256

Input: Ciphertext ỹ from modified AES with S-box0AES
Output: First 128 bit of 192/256 main key

Nw ← 51 for AES-192 (← 59 for AES-256)
Nk ← 6 for AES-192 (← 8 for AES-256)

//Load the ciphertext (= last round key)
1: for i = 0 to 3 do
2: w[Nw − i] = ỹ[3− i]
3: end for

//Invert the KeySchedule
4: for i = Nw to 0 do
5: if i mod Nk ≥ 4 then
6: continue
7: end if
8: if i mod Nk == 0 then
9: w[i] = w[i+Nk]⊕ RC[i]

10: else
11: w[i] = w[i+Nk]⊕ w[i+Nk − 1]
12: end if
13: end for

be more precise, the first 128 bits of each subkey can be
recovered. Therefore, in this case, an attacker can obtain the
first 128 bits of the main key of AES-192 and AES-256. The
other words (64 bits) of AES-192 and AES-256 (128 bits)
cannot be computed. Having discussed the potential attack
vectors, in the next section several countermeasures are briefly
described.

13

VII. COUNTERMEASURES

In this section, we briefly discuss some countermeasures
that may be deployed in order to raise the bar for an adversary.
In our attack model the adversary can modify the LUT content
and the embedded memory content of an FPGA bitstream,
i.e., the parts of the hardware in which cryptographic S-boxes
are implemented.

The countermeasures are based on obfuscation. In general,
every obfuscation strategy helps to defeat such kind of mod-
ification attacks, but if a strategy is known to an attacker, it
may be circumvented easily. In the following, several ideas
and their drawbacks are listed.

A. Built-In Self-Test
Built-In Self-Tests are a well known concept to test different

kinds of faults and circuits. A simple integrated self-test can be
used to defeat the attacks presented in this work. For example,
one can check if the algorithm outputs the correct ciphertext for
a fixed key and plaintext. Such a self-test can be circumvented,
however, by a more powerful adversary with the following
approaches:
• The integrity value has to be stored somewhere in the

FPGA bitstream. Thus, an adversary may be able to
identify and modify this value.

• The adversary could disable the self-test or modify it
in such a way that the test routine marks the test as
“passed”.

B. Forced Decomposition
Another approach targets the decomposed LUTs. They are

detectable because of their characteristically non-linear pat-
terns. Security critical Boolean equations, generating the LUT
contents for the S-boxes, should be difficult to distinguish
from other linear LUT content patterns to defeat detection
and consequently modification of these parts. One possible
way to achieve this is to further decompose the LUTs along
the Disjunctive Normal Form. For example, in a 6-bit-to-1
bit architecture, a 64-bit LUT content may be split-up into
8 LUTs. The output of each LUT can be OR-ed together to
compute the original LUT content.
To give an example, assume a Boolean function f(a, b, c) =
ab ∨ bc ∨ abc. Suppose that this Boolean function is realized
in one LUT. Following the idea described above, this LUT is
separated into three LUTs:

f1(a, b, c) = ab

f2(a, b, c) = bc

f3(a, b, c) = abc

The result of every function fi is then OR-ed. Thus, it
should be more difficult to identify f1, f2, and f3, if this
function splitting scheme is unknown to an attacker, but the
decomposition to multiple LUTs has also a drawback:
• An adversary can search for the hardware part where

the OR-ing of all fi functions is processed. In a test

implementation, we observed that one LUT is used to
implement the corresponding OR function, hence an
adversary could modify this LUT. For the alteration to an
identity mapping, e.g., in the case of AES, the adversary
would need to trace the path back to the fi functions
with the help of routing information.

Even when the set of candidates is too large for an adversary,
it is possible to obtain the correct set of LUTs belonging to
the S-box. The attacker’s effort depends on the decomposition
method and the corresponding parameters. It might be more
challenging for an attacker, if the decomposition of the LUT
content is chosen randomly for each S-box column.

C. White-box Cryptography
One could deploy white-box cryptography as a

countermeasure. The main idea is to hide the secret key
inside the implementation [12]. Key-dependent LUTs together
with random transformations generate the masking of a
fixed key. Even for this kind of countermeasure there is one
drawback:

• The tables of a fixed-key implementation can be copied
and used to decrypt the ciphertexts. In a non-fixed-key
implementation, the table values have to be computed,
thus the S-box is present on the FPGA. Again, these
S-box can be modified to weaken the implementation.

In summary, there are methods available to defeat the attacks
proposed in this paper. We recommend that further research
should be conducted to evaluate how an FPGA design can be
secured against bitstream modification attacks.

VIII. CONCLUSION

In this work, we demonstrated how to detect and maliciously
modify an FPGA bitstream that implements the widely used
cryptographic algorithms DES, 3DES, and AES in order to
weaken their strong cryptographic properties. In this scenario,
only an unknown third-party bitstream is obtained by the
adversary. This work shows that she does not need to possess
any high-level design information such as routing details to
be able to significantly weaken cryptographic primitives. The
presented attacks are practically feasible and pose a serious
threat in several applications in the real world.
An attacker can easily decrypt all ciphertext blocks that were
weakened due to the modified FPGA designs. The DES
becomes a key-independent permutation that can be inverted
by an adversary without any further information. Compared to
that, the AES was modified in two ways: the first bitstream
alteration turns the AES into a linear function and thus all
further ciphertext blocks can be decrypted with only one
known plaintext/ciphertext pair. The second modification leads
to a (partial) key leakage of AES-{128,192,256}.
Furthermore, several scenarios were discussed where such a
modification may remain undetected making a target device
behave like an FPGA Trojan. The presented results highlight
the importance of integrity checks and that further security
mechanisms must be deployed around FPGAs.

14

This work should raise awareness that an attacker can manip-
ulate proprietary bitstreams by purpose with moderate efforts.
The modification must not necessarily be a cryptographic
function. It is important to carefully check an intellectual
property core before using it in security applications.

ACKNOWLEDGMENT

The authors would like to thank Christian Kison for provid-
ing help with the VHDL implementation and Georg Becker
for his fruitful comments and discussions.

REFERENCES

[1] S. Drimer, “Volatile FPGA design security – a survey (v0.96),”
April 2008. [Online]. Available: http://www.cl.cam.ac.uk/∼sd410/
papers/fpga security.pdf

[2] A. Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the vulnerability of
FPGA bitstream encryption against power analysis attacks: Extracting
keys from Xilinx Virtex-II FPGAs,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, ser. CCS ’11.
ACM, 2011, pp. 111–124.

[3] A. Moradi, M. Kasper, and C. Paar, “Black-Box Side-Channel Attacks
Highlight the Importance of Countermeasures- An Analysis of the
Xilinx Virtex-4 and Virtex-5 Bitstream Encryption Mechanism,” in
Topics in Cryptology - CT-RSA 2012, ser. Lecture Notes in Computer
Science, vol. 7178. Springer, 2012, pp. 1–18.

[4] A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, “Side-channel
Attacks on the Bitstream Encryption Mechanism of Altera Stratix II:
Facilitating Black-box Analysis Using Software Reverse-engineering,”
in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’13, New York, NY, USA, 2013,
pp. 91–100.

[5] R. Chakraborty, I. Saha, A. Palchaudhuri, and G. Naik, “Hardware Tro-
jan Insertion by Direct Modification of FPGA Configuration Bitstream,”
Design Test, IEEE, vol. 30, no. 2, pp. 45–54, April 2013.

[6] A. Bogdanov, L. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. Robshaw, Y. Seurin, and C. Vikkelsoe,
“PRESENT: An Ultra-Lightweight Block Cipher,” in
Cryptographic Hardware and Embedded Systems - CHES 2007, ser.
Lecture Notes in Computer Science, P. Paillier and I. Verbauwhede,
Eds. Springer-Verlag, 2007, vol. 4727, pp. 450–466.

[7] Leander, G. and Poschmann, A., “On the Classification of 4 Bit S-
Boxes,” in Arithmetic of Finite Fields, ser. Lecture Notes in Computer
Science, C. Carlet and B. Sunar, Eds. Springer-Verlag, 2007, vol. 4547,
pp. 159–176.

[8] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest We
Remember: Cold-boot Attacks on Encryption Keys,” Communications
of the ACM, vol. 52, no. 5, pp. 91–98, May 2009.

[9] NIST, FIPS-46-3: Data Encryption Standard (DES), National Institute
of Standards and Technology (NIST) Std., 1999, http://csrc.nist.gov/
publications/fips/fips46-3/fips46-3.pdf.

[10] T. Kerins and K. Kursawe, “A cautionary note on weak implementations
of block ciphers,” in In 1st Benelux Workshop on Information and
System Security (WISSec 2006, 2006, p. 12.

[11] NIST, “FIPS 197 Advanced Encryption Standard (AES),” 2001, http:
//csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[12] H. J. Stanley Chow, Philip A. Eisen and P. C. van Oorshot, “White-
Box Cryptography and an AES Implementation,” Selected Areas in
Cryptography, vol. 2595, pp. 250–270, 2002.

