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Abstract 12 

The visual message conveyed by a retinal ganglion cell (RGC) is often summarized by its spatial 13 

receptive field, but in principle also depends on the responses of other RGCs and natural image 14 

statistics. This possibility was explored by linear reconstruction of natural images from 15 

responses of the four numerically-dominant macaque RGC types. Reconstructions were highly 16 

consistent across retinas. The optimal reconstruction filter for each RGC – its visual message –17 

reflected natural image statistics, and resembled the receptive field only when nearby, same-18 

type cells were included. ON and OFF cells conveyed largely independent, complementary 19 

representations, and parasol and midget cells conveyed distinct features. Correlated activity 20 

and nonlinearities had statistically significant but minor effects on reconstruction. Simulated 21 

reconstructions, using linear-nonlinear cascade models of RGC light responses that 22 

incorporated measured spatial properties and nonlinearities, produced similar results. 23 

Spatiotemporal reconstructions exhibited similar spatial properties, suggesting that the results 24 

are relevant for natural vision. 25 
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Introduction 26 

The brain uses visual information transmitted by retinal neurons to make inferences about the 27 

external world. Traditionally, the visual signal transmitted by an individual retinal ganglion cell 28 

(RGC) has been summarized by its spatial profile of light sensitivity, or receptive field (RF), 29 

measured with stimuli such as spots or bars (Chichilnisky, 2001; Kuffler, 1953; Lettvin et al., 30 

1959). Although intuitively appealing, this description may not reveal how the spikes from a 31 

RGC contribute to the visual representation in the brain under natural viewing conditions. In 32 

particular, because of the strong spatial correlations in natural images (Ruderman & Bialek, 33 

1994), the response of a single RGC contains information about visual space well beyond its RF. 34 

Thus, across the RGC population, the responses of many individual cells could contain 35 

information about the same region of visual space, and it is not obvious how the brain could 36 

exploit this potentially redundant information (Puchalla et al., 2005). Complicating this issue is 37 

the fact that there are roughly twenty RGC types, each covering all of visual space with their 38 

RFs, and each with different spatial, temporal, and chromatic sensitivity (Dacey et al., 2003). 39 

Furthermore, RGCs show both stimulus-induced and stimulus-independent correlated activity, 40 

within and across cell types (Greschner et al., 2011; Mastronarde, 1983), which could 41 

substantially influence the encoding of the stimulus (Meytlis et al., 2012; Pillow et al., 2008; 42 

Ruda et al., 2020; Zylberberg et al., 2016). For these reasons, the visual message transmitted by 43 

a RGC to the brain is not fully understood. 44 
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One way to understand how each RGC contributes to vision is to determine how a natural 45 

image can be reconstructed from the light-evoked responses of the entire RGC population. 46 

This analysis approach mimics the challenge faced by the brain: using sensory inputs to make 47 

inferences about the visual environment (Bialek et al., 1991; Rieke et al., 1997). In the simplest 48 

case of linear reconstruction, the visual message of an individual RGC can be summarized by its 49 

optimal reconstruction filter, i.e. its contribution to the reconstructed image. Linear 50 

reconstruction has been used to estimate the temporal structure of a spatially uniform 51 

stimulus from the responses of salamander RGCs, revealing that reconstruction filters varied 52 

widely and depended heavily on the other RGCs included in the reconstruction (Warland et al., 53 

1997). However, no spatial information was explored, and only a small number of RGCs of 54 

unknown types were examined. A later study linearly reconstructed spatiotemporal natural 55 

movies from the activity of neurons in the cat LGN (Stanley et al., 1999). However, neurons from 56 

many recordings were pooled, without cell type identification or the systematic spatial 57 

organization expected from complete populations of multiple cell types. More recently, several 58 

studies have used nonlinear and machine learning methods for reconstruction (Botella-Soler et 59 

al., 2018; Parthasarathy et al., 2017; Zhang et al., 2020), although these techniques were not 60 

tested in primate, or on large-scale data sets with clear cell type identifications and complete 61 

populations of RGCs. Thus, it remains unclear what spatial visual message primate RGCs 62 

convey to the brain, in the context of natural scenes and the full neural population.  63 

We performed linear reconstruction of flashed natural images from the responses of hundreds 64 

of RGCs in macaque retina, using large-scale, multi-electrode recordings. These recordings 65 
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provided simultaneous access to the visual signals of nearly complete populations of ON and 66 

OFF parasol cells, as well as locally complete populations of ON and OFF midget cells, the four 67 

numerically dominant RGC types that provide high resolution visual information to the brain 68 

(Dacey et al., 2003). Data from fifteen recordings produced strikingly similar reconstructions. 69 

Examination of reconstruction filters revealed that the visual message of a given RGC 70 

depended on the responses of other RGCs, due to the statistics of natural scenes. 71 

Reconstruction from complete cell type populations revealed that they conveyed different 72 

features of the visual scene, consistent with their distinct light response properties. The spatial 73 

information carried by one type was mostly unaffected by the contributions of other types, 74 

particularly types with the opposite response polarity (ON vs. OFF). Two simple tests of 75 

nonlinear reconstruction revealed only minor improvements over linear reconstruction. Similar 76 

visual messages and reconstructions were obtained using linear-nonlinear cascade models of 77 

RGC light response incorporating measured spatial properties and response nonlinearity. 78 

Finally, full spatiotemporal reconstruction with dynamic scenes revealed similar spatial visual 79 

messages, suggesting that these findings may generalize to natural vision.   80 
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Results 81 

Large-scale multi-electrode recordings from the peripheral macaque retina were used to 82 

characterize light responses in complete populations of retinal ganglion cells (RGCs; 83 

Chichilnisky & Kalmar, 2002; Field et al., 2010; Frechette et al., 2005; Litke et al., 2004). The 84 

classical receptive field (RF) of each cell was measured by reverse correlation between its spike 85 

train and a spatiotemporal white noise stimulus, resulting in a spike-triggered average (STA) 86 

stimulus that summarized the spatial, temporal and chromatic properties of the cell 87 

(Chichilnisky, 2001). Clustering of these properties revealed multiple identifiable and complete 88 

cell type populations (see Methods; Chichilnisky & Kalmar, 2002; Dacey, 1993; DeVries & Baylor, 89 

1997; Field et al., 2007; Frechette et al., 2005), including the four numerically dominant RGC 90 

types in macaque: ON parasol, OFF parasol, ON midget, and OFF midget. The RFs of each 91 

identified type formed an orderly lattice (mosaic), consistent with the spatial organization of 92 

each RGC type known from anatomical studies (Wässle et al., 1983). 93 

Responses to natural images were then characterized by displaying static, grayscale images 94 

from the ImageNet database, which contains a wide variety of subjects including landscapes, 95 

objects, people, and animals (Fei-Fei et al., 2010). Each image was displayed for 100ms, 96 

separated by 400ms of spatially uniform illumination with intensity equal to the mean intensity 97 

across all images (Figure 1A). This stimulus timing produced a strong initial response from both 98 

parasol and midget cells, and a return to maintained firing rates prior to the onset of the next 99 

image. For each image, the population response was quantified as a vector of RGC spike counts 100 
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in the 150ms window after image onset (Figure 1B; window chosen to optimize reconstruction 101 

performance; see Methods). The stimulus (S, dimensions: number of images x number of pixels) 102 

was reconstructed from the recorded ON and OFF parasol and midget cell responses (R, 103 

dimensions: number of images x number of cells) using a linear model, S = RW. The optimal 104 

weights for the linear model (W, dimensions: number of cells x number of pixels) were 105 

calculated using least squares regression, 106 

𝑊!" = (𝑅#𝑅)$%𝑅#𝑆. (1) 107 

The weights were then used to reconstruct a held-out set of test images. Reconstruction 108 

performance was measured by comparing only the areas of the original and reconstructed 109 

images covered by the RF mosaic for each RGC type included in the analysis (see Methods). 110 

Pearson’s linear correlation coefficient (⍴) was used as the performance metric; mean squared 111 

error (MSE) and the structural similarity (SSIM; Wang et al., 2004) showed the same trends. All 112 

statistical tests were computed using resampling to generate null models (see Methods). 113 

Regularization of reconstruction weights was not necessary, because the number of samples 114 

was much larger (>20x) than the number of parameters in all cases (see Methods). In what 115 

follows, reconstruction “from RGCs” is used as a shorthand to indicate reconstruction from 116 

their recorded responses, as described above. 117 

The basic characteristics of spatial linear reconstruction were evaluated by reconstructing 118 

images from the responses of populations of ON and OFF parasol cells in 15 recordings from 9 119 
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monkeys. In each case, both cell types formed complete or nearly complete mosaics with 120 

uniform coverage, indicating that nearly every cell of each type over the electrode array was 121 

recorded (see Figures 1C and 2). Thus, the reconstructions revealed the full visual 122 

representation in these RGC populations. In each recording, reconstruction performance varied 123 

considerably across the set of test images (Figure 1D, ⍴ = 0.76 +/- 0.12 across n = 2250 images 124 

from 15 recordings), but was similar for repeated presentations of the same image (standard 125 

deviation across repeats = 0.014). Reconstruction performance was also similar for 126 

presentations of the same image in different recordings (standard deviation across recordings 127 

= 0.039), despite differences in the population responses and the properties of the RF mosaics 128 

(Figure 2). The reconstructed images themselves were also very similar across recordings (⍴ = 129 

0.90 +/- 0.06, across 150 images and 66 pairs of recordings; Figure 2). The minor differences in 130 

performance between recordings were correlated with the average RF size in each recording (⍴ 131 

= -0.7), which in turn is inversely related to RGC density (DeVries & Baylor, 1997; Gauthier et al., 132 

2009). Qualitatively, large scale image structure seemed to be well captured, but fine details 133 

were not. These results indicate that the image structure and the spatial resolution of the RGC 134 

population, rather than response variability, were primarily responsible for variation in 135 

reconstruction performance across images and recordings. 136 

To further probe the role of the spatial resolution of the RGC population, the reconstructed 137 

images were compared to smoothed images, created by convolving the original images with a 138 

Gaussian matching the average parasol cell RF size for each recording (see Figure 1E, bottom 139 

row). Broadly, the smoothed images provided a good approximation to the images obtained by 140 
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reconstruction. On average, the reconstructed image (averaged across trials) was more similar 141 

to the smoothed image than to the original image (⍴ = 0.91 +/- 0.06 vs. ⍴ = 0.78 +/- 0.11 across 142 

n = 2250 images from 15 recordings; p < 0.001). The residuals from reconstruction and 143 

smoothing, obtained by subtracting the original image, were also similar (⍴=0.83 +/- 0.09), 144 

suggesting that reconstruction and smoothing captured and discarded similar features of the 145 

original images. While smoothed images do not represent a strict upper limit on reconstruction 146 

performance, this analysis further indicates that the RGC density is an important factor in 147 

image reconstruction. 148 

Spike latency was also tested as a measure of population response. Spike latency has been 149 

shown to convey more stimulus information than spike counts in salamander RGCs in certain 150 

conditions (Gollisch & Meister, 2008). The RGC response was defined as the time from the 151 

image onset to the time of the first spike. This latency response measure led to less accurate 152 

reconstruction performance overall (reconstruction from ON and OFF parasol cell responses: 153 

Δ⍴ = -0.10 +/- 0.12 across 4500 images from 15 recordings, p < 0.001; reconstruction from ON 154 

and OFF midget cell responses: -0.16 +/- 0.19 across 3300 images from 11 recordings, p < 0.001), 155 

although it did improve performance for reconstruction from ON parasol cells alone in two 156 

recordings (Δ⍴ = 0.04 +/- 0.12 across 600 images from two recordings, p < 0.001) and from ON 157 

midget cells alone in one recording (Δ⍴ = 0.02 +/- 0.1 across 300 images, p < 0.001).  158 
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 159 

Figure 1: Linear reconstruction from ON and OFF parasol cell responses. A) Visual stimulus: static 160 
images from the ImageNet database were flashed for 100 ms, with 400ms of gray between. The thin 161 
black rectangle indicates the central image region shown in C and E. B) Example population response: 162 
each entry corresponds to the number of spikes from one RGC in a 150ms window (shown in blue) after 163 
the image onset. C) Left: Examples of reconstruction filters for an ON (top) and OFF (bottom) parasol 164 
cell. Right: RF locations for the entire population of ON (top) and OFF (bottom) parasol cells used in one 165 
recording. D) Reconstruction performance (correlation) across all recordings. E) Example 166 
reconstructions for three representative scores (middle row), compared to original images (top row) and 167 
smoothed images (bottom row), from the same recording and at the same scale as shown in C. F) 168 
Reconstruction performance across 15 recordings. Left: Distributions of scores across images for each 169 
recording, ordered by average receptive field (RF) size. Right: Average reconstruction performance vs. 170 
average RF radius (⍴ = -0.7). Source files for D and F are available in Figure 1 – source data 1. 171 
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 172 

Figure 2: Visual representation across retinas. A) Distribution of correlation between reconstructed 173 
images from different recordings, across 150 images and 66 pairs of recordings. B) Example image. C) 174 
Across 12 recordings, reconstructed images (top, averaged across trials), ON (middle, blue) and OFF 175 
(bottom, orange) parasol responses, shown as the mosaic of Gaussian RF fits shaded by the spike count 176 
in response to this image. Source files for A are available in Figure 2 – source data 1. 177 
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The visual message conveyed by retinal ganglion cells 178 

To understand how the visual message conveyed by a single RGC depends on the signals 179 

transmitted by others, reconstruction was performed from a given cell alone or with other cells 180 

of the same type. Cells of the same type exhibited similar response properties (Chichilnisky & 181 

Kalmar, 2002), with non-overlapping RFs forming a mosaic tiling visual space (Figure 2). When a 182 

single cell was used for reconstruction, its reconstruction filter (Figure 3A, top) was much wider 183 

than its spatial RF (Figure 3A, bottom, measured with white noise; see Methods), or the spatially 184 

localized filter obtained in the full population reconstruction described above (Figure 1C). The 185 

full width at half maximum of the average single cell reconstruction filter was roughly four 186 

times the average RF width (3.6 +/- 1.4 across 15 recordings). As additional RGCs of the same 187 

type were included in reconstruction, the spatial spread of the primary cell’s reconstruction 188 

filter was progressively reduced, leveling off to a value slightly higher than the average RF size 189 

when the 6 nearest neighbors were included (1.3 +/- 0.2 across 15 recordings; average filters 190 

shown in Figure 3C, widths shown in Figure 3D).  191 

Both the spatial spread of the single cell reconstruction filter and its reduction in the context of 192 

the neural population can be understood by examining how the optimal filters (Equation 1) 193 

depend on the statistics of the stimulus (S) and response (R).  The matrix 𝑅#𝑅 represents 194 

correlations in the activity of different RGCs. The matrix 𝑅#𝑆 represents unnormalized, spike-195 

triggered average (STA) images, one for each RGC. These natural image STAs were broad 196 

(Figure 3A, top), reflecting the strong spatial correlations present in natural scenes (Figure 3B). 197 
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For reconstruction from a single cell’s responses, 𝑅#𝑅 is a scalar, and therefore the single cell 198 

reconstruction filter is directly proportional to the natural image STA. However, in the case of 199 

reconstruction from the population, 𝑅#𝑅 is a matrix that shapes the reconstruction filter based 200 

on the activity of other cells. Specifically, each cell’s filter is a linear mixture of its own natural 201 

image STA and those of the other cells in the population reconstruction, weighted negatively 202 

based on the magnitude of their correlated activity. This mixing resulted in the reduction in the 203 

width of the reconstruction filter of a given RGC when nearby cells of the same type were 204 

included (Figure 3C).   205 
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 206 

Figure 3: Effect of the population on the visual message. A) The reconstruction filter of a single cell 207 
as more neighboring cells are included in the reconstruction. Left: receptive fields (RFs) of cells in 208 
reconstruction, with the primary cell indicated in blue. Right: Filter of the primary cell. B) Autocorrelation 209 
structure of the natural images used here. C) Average ON (left) and OFF (right) parasol cell filters for a 210 
single recording. From top to bottom: reconstruction from a single cell, reconstruction from that cell 211 
plus all nearest neighbors, reconstruction from that cell plus all cells of the same type, and that cell’s RF. 212 
D) Filter width, normalized by the RF width. E) Profiles of the same type filters in the horizontal (orange) 213 
and diagonal (blue) directions. Average (bold) +/- standard deviation (shaded region) across recordings. 214 
Source files for D and E are available in Figure 3 – source data 1.  215 
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When the complete population of RGCs of the same type was included in the reconstruction, 216 

the resulting spatially localized filters were similar to the RFs obtained with white noise stimuli 217 

(⍴ = 0.78 +/- 0.10, n = 997 ON and 1228 OFF parasol cells from 15 recordings). However, some 218 

natural image spatial structure remained and was consistent across recordings, cells, and cell 219 

types. Most strikingly, the reconstruction filters exhibited broad vertical and horizontal 220 

structure (Figure 3C,E). This is a known feature of natural scenes (Girshick et al., 2011), and is 221 

present in the images used here (Figure 3B). 222 

In addition, the visual scene was more uniformly covered by the reconstruction filters than by 223 

the RFs (Figure 4A,C). Coverage was defined as the proportion of pixels that were within the 224 

extent of exactly one cell’s filter. The filter extent was defined by a threshold, set separately for 225 

the reconstruction filters and for the RFs to maximize the resulting coverage value. Across 226 

both the ON and OFF parasol cells in 12 recordings, the average coverage was 0.62 +/- 0.06 for 227 

the RFs and 0.78 +/- 0.03 for the reconstruction filters (Figure 4C; p < 0.001). By comparison, 228 

expanded RFs, scaled around each RGC’s center location to match the average filter width, led 229 

to a small reduction in coverage (0.57 +/- 0.06; p < 0.001) due to increased overlap. This 230 

indicates that the filters are not simply broader versions of the RF, but rather that they are 231 

distorted relative to the RFs to fill gaps in the mosaic. 232 

To understand how the differences between reconstruction filters and RFs affected the 233 

reconstructed images, reconstruction was performed using the spatial RFs in place of the filters 234 

(each RF independently scaled to minimize MSE, see Methods; Figure 4B). This manipulation 235 
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reduced reconstruction performance by 24% (Δ⍴ = -0.12 +/- 0.09 across 4500 images from ON 236 

and OFF parasol cells in 15 recordings; p < 0.001; Figure 4D), primarily in the lower spatial 237 

frequencies, which also contain most of the power in the original images (Figure 4E). The 238 

resulting images were noticeably less smooth in appearance than the optimally reconstructed 239 

images, and exhibited structure resembling the RGC mosaic (Figure 4B). Thus, although the 240 

reconstruction filters generally resembled the RFs, the additional spatial structure related to 241 

natural images and the spatial arrangement of RGCs led to smoother reconstructed images. 242 

These features may help explain the high consistency in reconstruction performance across 243 

many retinas (see above; Figure 2).  244 
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 245 

Figure 4: Effect of visual message on reconstruction. A) Receptive field (RF, left) and reconstruction 246 
filter (right) contours for two sample recordings. B) Reconstruction of an image (top) using the full, fitted 247 
filters (middle) and using scaled RFs (bottom). C) Comparison of RF and filter coverage for ON and OFF 248 
parasol cells across 12 recordings. D) Comparison of reconstruction performance using scaled RFs or 249 
using full, fitted filters, across n = 4800 images from 8 recordings. E) Power in the reconstructed images 250 
(as a fraction of power in the original image) using fitted filters (orange) or scaled RFs (blue). Average 251 
(bold) +/- standard deviation (shaded region) across 8 recordings. The original power structure of the 252 
natural images is shown in gray and has arbitrary units. Source files for C, D and E are available in Figure 253 
4 – source data 1.  254 
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Distinct contributions of major cell types 255 

The visual message transmitted by RGCs of a particular type could additionally be affected by 256 

the other cell types encoding the same region of visual space (Warland et al., 1997). To test this 257 

possibility, reconstructions were performed using the responses of a single RGC alone (the 258 

primary cell), or in combination with each of the four major cell type populations. For each 259 

combination, the reconstruction filters of the primary cells were averaged across all cells of the 260 

same type for each recording (Figure 5A). Inclusion of all cells of any one cell type reduced the 261 

magnitude of the primary cell’s reconstruction filter (Figure 5B, left). This can be understood by 262 

noting that the entries in (𝑅#𝑅)$%, which mix the natural image STAs to produce the 263 

reconstruction filters, have the opposite sign of the response correlations. As expected, the 264 

correlations were positive for same-polarity cells and negative for opposite-polarity cells (not 265 

shown; Greschner et al., 2011; Mastronarde, 1983). Therefore, the cell’s reconstruction filter was 266 

reduced in magnitude by positively weighted cells of the opposite polarity, and by negatively 267 

weighted cells of the same polarity. 268 

As discussed previously, for parasol cells, inclusion of the remaining cells of the same type 269 

substantially reduced the spatial extent of the primary cell’s filter (Figure 3). However, this did 270 

not occur when cells of other types were included in reconstruction instead (Figure 5B, right, 271 

top two rows). Specifically, the inclusion of the midget cells with the same polarity only slightly 272 

reduced the spatial extent of the parasol cell’s filter, and inclusion of opposite polarity cells of 273 

either type had little effect. This is likely because the other cell types provide roughly uniform 274 
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coverage, whereas the remaining cells of the same type have a gap in the location of the 275 

primary cell, resulting in significant shaping by the immediately neighboring cells. In summary, 276 

the spatial structure of the visual message of a single parasol cell is primarily influenced by 277 

neighboring cells of the same type, and is largely unaffected by cells of other types.  278 

The filters for the midget cells were also shaped by the inclusion of the remaining cells of the 279 

same type (Figure 5A, second column), and were largely unaffected by the inclusion of 280 

opposite polarity cells of either type. However, unlike parasol cells, midget cell filters were 281 

significantly affected by the inclusion of the same-polarity parasol cells (Figure 5A, third 282 

column). This is consistent with known correlations between these cell types (Greschner et al., 283 

2011), and the asymmetry may be due to the fact that parasol cells tended to have much 284 

stronger responses to the natural images than midget cells. Thus, the interpretation of the 285 

visual signal from a midget cell does depend somewhat on the signals sent by the same-286 

polarity parasol cell population. 287 
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 288 

Figure 5: Effect of other cell types on the visual message. A) Average reconstruction filters for ON 289 
parasol (top row), OFF parasol (second row), ON midget (third row), and OFF midget (bottom row) cells 290 
for one recording. Left to right: including all cell types, all cells of the same type, all cells of the same 291 
polarity but opposite class, all cells of the opposite polarity but the same class, all cells of opposite 292 
polarity and class, and no other cell types. B) Comparison of magnitude (left) and width (right) of 293 
average reconstruction filters across conditions, normalized by the features of the single cell filter. 294 
Average +/- standard deviation across recordings is plotted (parasol: n = 11 recordings, midget: n = 5 295 
recordings). Rows correspond to cell types as in A. Source files for B are available in Figure 5 – source 296 
data 1.  297 
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The image features represented by each cell type were revealed by analysis of the 298 

reconstructed images. In particular, the separate contributions of ON and OFF cells, and of 299 

parasol and midget cells, were investigated. 300 

To estimate the contribution of ON and OFF cells, reconstruction was performed with ON or 301 

OFF parasol cells alone and in combination (Figure 6A,B). Reconstructions using just OFF 302 

parasol cells were slightly more accurate than using just ON cells, but both were less accurate 303 

than reconstruction using the two types together (Figure 6C, both: ⍴ = 0.76 +/- 0.12, ON: ⍴ = 304 

0.64 +/- 0.16, OFF: ⍴ = 0.67 +/- 0.14, across n = 2250 images from 15 recordings; all p < 0.001). 305 

Reconstruction using just ON cells failed to accurately capture intensity variations in dark areas 306 

of the image, while reconstruction with just OFF cells failed to capture variations in light areas 307 

of the image (for pixel values above the mean value: ⍴ = 0.57 for ON and 0.26 for OFF, for pixel 308 

values below the mean value: ⍴ = 0.31 for ON and 0.68 for OFF). Only a narrow middle range of 309 

pixel intensities were effectively encoded by both types (Figure 6D). This is consistent with 310 

known output nonlinearities, which suppress responses to stimuli of the non-preferred 311 

contrast, and therefore limit linear reconstruction in that range. Thus, both ON and OFF cells 312 

were necessary to reconstruct the full range of image contrasts. Reconstruction using the 313 

responses of both cell types seemed to encode darker pixels more accurately than lighter 314 

pixels (Figure 6D, bottom panel, black curve), consistent with the reconstruction performance 315 

from each type separately. This could reflect the fact that ON cells are less dense (Chichilnisky 316 

& Kalmar, 2002), and/or the fact that the natural image distribution is skewed towards darker 317 

pixel values (Figure 6D, bottom panel, gray distribution), potentially placing greater weight on 318 
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the accurate reconstruction of these values. In addition, ON cells exhibit a more linear 319 

contrast-response relationship (Chichilnisky & Kalmar, 2002), so there is less reconstruction 320 

performance difference between preferred and non-preferred contrasts. 321 

 322 

Figure 6: Contributions of ON and OFF parasol cells. A,B) Example images, responses, and 323 
reconstructions from ON and OFF parasol cells. Top left: original image. Top right: Parasol cell mosaics 324 
shaded by their response value (ON - blue, middle, OFF - orange, right). Bottom left: reconstruction from 325 
both cell types. Bottom right: reconstruction from just ON (blue, middle) or just OFF (orange, right) 326 
parasol cells. C) Reconstruction performance for ON vs. OFF (top), both vs. ON (middle), and both vs. 327 
OFF (bottom), with n = 2250 images from 15 recordings. D) Average reconstructed pixel intensity (top) 328 
and sensitivity (bottom, defined as Δaverage reconstructed pixel intensity/Δtrue pixel intensity) vs. true 329 
pixel intensity for ON (blue), OFF (orange), and both (black). Individual recordings are shown in the top 330 
plot, with the average in bold. Source files for C and D are available in Figure 6 – source data 1.  331 
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To estimate the contributions of parasol and midget cells, reconstruction was performed using 332 

parasol cells or midget cells or both (Figure 7A,B). As expected, reconstruction using both 333 

parasol and midget cells was more accurate than using either alone (Figure 7C, both: ⍴ = 0.81 334 

+/- 0.10, parasol: ⍴ = 0.77 +/- 0.12, midget: ⍴ = 0.73 +/- 0.13, across n = 1050 images from 7 335 

recordings; all p < 0.001). Images reconstructed from midget cells contained more high 336 

frequency spatial structure, consistent with their higher density (Figure 7D). However, the 337 

images reconstructed from parasol cells had 50% higher signal-to-noise (defined as standard 338 

deviation across images / standard deviation across repeats), resulting in the slightly higher 339 

reconstruction performance from parasol cells.  340 

The above analysis obscures the significantly different temporal responses properties of these 341 

two cell classes. In particular, parasol cells have more transient responses (De Monasterio, 1978; 342 

De Monasterio & Gouras, 1975; Gouras, 1968) which may allow them to convey information 343 

more rapidly than midget cells. To test this possibility, image reconstruction was performed 344 

using spikes collected over increasing windows of time after the image onset. The 345 

reconstruction performance of parasol cells increased quickly and reached 95% of peak 346 

reconstruction performance at 80 +/- 20 ms, while the performance of midget cells increased 347 

more slowly, and reached 95% performance at 116 +/- 19 ms (across 7 recordings; Figure 7E). 348 

This difference indicates that spatiotemporal reconstruction will be necessary to fully reveal 349 

the distinct contributions of these two classes (see Discussion). 350 
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 351 

Figure 7: Contributions of the parasol and midget cell classes. A) Example image and 352 
reconstructions for parasol and midget cells. Top left: original image. Top right: reconstruction with 353 
parasol and midget cells (gray). Bottom left: reconstruction with only parasol cells (blue). Bottom right: 354 
reconstruction with only midget cells (orange). B) Cell type mosaics shaded by their response values, for 355 
ON (top) and OFF (bottom) parasol cells (left, blue) and midget cells (right, orange). C) Reconstruction 356 
performance for midget vs. parasol (top), both vs. parasol (middle), and both vs. midget (bottom). D) 357 
Power in the reconstructed images as a fraction of power in the original image (left) and receptive fields 358 
(right) for parasol cells (blue), midget cells (orange), and both types (gray) for each of 3 recordings. E) 359 
Left: Fraction of peak reconstruction performance with increasing spike integration times for parasol 360 
(blue) and midget (orange) cells, with averages across recordings shown in bold. Dotted line indicates 361 
95% performance. Right: Time to 95% performance for parasol and midget reconstructions across 7 362 
recordings. Source files for C, D and E are available in Figure 7 – source data 1.  363 
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The effect of correlated firing 364 

The above results indicate that the visual message of each RGC, and the contributions of each 365 

cell type, are shaped by correlated activity. However, these analyses do not distinguish 366 

between stimulus-induced (signal) correlations, and stimulus-independent (noise) correlations 367 

that arise from neural circuitry within and across cell types in the primate retina (Greschner et 368 

al., 2011; Mastronarde, 1983). 369 

To test the effect of noise correlations, reconstruction performance was evaluated on repeated 370 

presentations of test images. This performance was compared to a control condition in which 371 

the responses of each cell were independently shuffled across trials to remove noise 372 

correlations while preserving single-cell statistics and signal correlations. The reconstruction 373 

filters (computed from unshuffled training data) were then used to reconstruct the test images, 374 

using either the shuffled or unshuffled responses. In principle, shuffling could result in a net 375 

increase or decrease in reconstruction accuracy, due to two opposing factors. Because the 376 

reconstruction filters incorporate the correlated activity present in training data (Equation 1), 377 

any deviation from this correlation structure in the test data could reduce performance. On the 378 

other hand, if noise correlations produce spatial structure in the reconstructions that obscures 379 

the structure of the natural images, their removal could enhance reconstruction performance. 380 

The relative influence of these competing effects could also depend on the overall fidelity of 381 

the reconstruction.  382 
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Accordingly, the shuffling manipulation was tested using three response measures. In the first, 383 

RGC responses were calculated by counting spikes in the 150ms window after image onset, as 384 

above. In the second, the response was measured at the intrinsic time scale of correlations 385 

(~10ms; DeVries, 1999; Mastronarde, 1983; Meister et al., 1995; Shlens et al., 2006), by counting 386 

spikes in fifteen 10ms bins, and reconstructing with this multivariate response vector instead of 387 

the scalar spike count. In the third, spikes were counted only in the 10ms bin that had the 388 

highest average firing rate (50-60 ms after image onset). While the third approach did not 389 

utilize all of the available information in the responses, it was used to mimic low-fidelity or rapid 390 

perception scenarios, which would have fewer stimulus-driven spikes available for 391 

reconstruction. 392 

Reconstruction using the first two response measures had similar unshuffled performance (⍴ = 393 

0.76 +/- 0.12 and 0.75 +/- 0.12 respectively), and low variation across trials (standard deviation 394 

across repeats = 0.015). With these measures, shuffling had a very small and detrimental effect 395 

on reconstruction (across 3 recordings with 27 repeats of 150 test images: (1) Δ⍴ = -0.0004 +/- 396 

0.0017; |Δ⍴| = 0.0012 +/- 0.0012; p < 0.001, (2) Δ⍴ = -0.0008 +/- 0.0019; |Δ⍴| = 0.0014 +/- 0.0015; 397 

p < 0.001). In each case, the magnitude of the change in correlation represented about 10% of 398 

the variation in reconstruction accuracy across trials, which represents roughly how much 399 

improvement could be expected (Figure 8). For comparison, shuffling the responses in each 400 

time bin independently across trials (rather than the responses of each cell independently) had 401 

a much larger effect (Δ⍴ = -0.02 +/- 0.01), consistent with previous results (Botella-Soler et al., 402 

2018), indicating that the autocorrelation structure across time is more important for 403 
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reconstruction than the noise correlation structure across cells. Thus, in these conditions, noise 404 

correlations had a limited impact on reconstruction, regardless of the time scale of analysis. 405 

Reconstruction using the third measure had lower unshuffled performance (⍴ = 0.64 +/- 0.14), 406 

and higher variation across trials (standard deviation across repeats = 0.039). In this case, 407 

shuffling led to a more consistent, but still small, increase in reconstruction performance (Δ⍴ = 408 

0.0071 +/- 0.0076; |Δ⍴| = 0.0075 +/- 0.0072; p < 0.001). The increase represented a larger 409 

fraction of the variation in reconstruction accuracy across trials (20%; Figure 8). This suggests 410 

that in low-fidelity, high-noise situations, noise correlations in the RGC population can partially 411 

obscure the structure of natural images, even if reconstruction is designed to take the 412 

correlations into account.  413 

 414 

Figure 8: Effect of noise correlations. The change in reconstruction performance (Δ⍴) when using 415 
shuffled data for three scenarios: one 150ms window, fifteen 10ms windows, and one 10ms window. 416 
Black bars show median +/- interquartile range for three recordings (each shown separately). Gray bars 417 
show the standard deviation in the reconstruction performance across trials. Source files are available in 418 
Figure 8 – source data 1.  419 
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Nonlinear reconstruction 420 

Linear reconstruction provides an easily interpretable estimate of the visual message, but it 421 

may limit the quality of reconstruction by not extracting all of the information available in the 422 

neural responses, and may also differ greatly from how the brain processes the retinal input. 423 

Therefore, two simple extensions of linear reconstruction were tested: transformation of the 424 

responses using a scalar nonlinearity, and inclusion of interaction terms between nearby cells. 425 

In the first case, the response of each cell was transformed using a scalar nonlinearity, and 426 

linear regression (Equation 1) was performed to reconstruct images from the transformed 427 

response. The stimulus estimate SNL is given by SNL = f(R)ᐧWNL, where WNL is a matrix of 428 

reconstruction weights (refitted using the transformed responses), and f(R) is the scalar 429 

nonlinear transform of the population response vector R. This is equivalent to inverting a 430 

linear-nonlinear (LN) encoding model of the form R = g(KᐧS), where g is the inverse of f, and K is 431 

a different set of weights (note that in general a nonlinear encoder may not require an 432 

equivalent nonlinear decoder for optimum performance; see Rieke et al., 1997 for a full 433 

discussion). A common form of the LN encoding model uses an exponential nonlinearity, g = 434 

exp(); therefore, the inverse function f = log() was used for reconstruction, and the response for 435 

each cell was defined as the spike count plus 1. A square root transformation was also tested, 436 

and yielded similar results (not shown).  437 

The relationship to pixel values was more linear for the transformed RGC responses than for 438 

the original responses (Δlinear fit RMSE = -1.9 +/- 1.5 across n = 2225 cells from 15 recordings; 439 
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Figure 9A,B), indicating that this inverse function captured at least some of the nonlinearity in 440 

retinal signals. The nonlinear transformation slightly increased reconstruction accuracy when 441 

using the responses of ON or OFF parasol cells alone (across 15 recordings with 300 images 442 

each: ON parasol: Δ⍴ = 0.013 +/- 0.051, p<0.001; OFF parasol: Δ⍴ = 0.015 +/- 0.035, p<0.001; 443 

Figure 9C). However, it did not help when using the responses of ON and OFF parasol cells 444 

together (Δ⍴ = -0.0017 +/- 0.032, p = 0.001; Figure 9C). This likely reflects the fact that the 445 

relationship between the true pixel values and the pixel values reconstructed using the original, 446 

untransformed responses was already approximately linear when using both cell types, but not 447 

when using just one cell type (Figure 6). In addition, using the raw responses of both cell types 448 

was more effective than using the transformed responses of either type alone (ON parasol: Δ⍴ 449 

= -0.09 +/- 0.1, p<0.001; OFF parasol: Δ⍴ = -0.06 +/- 0.1, p<0.001), suggesting that intensity 450 

information cannot be directly recovered fully from either ON or OFF cells alone. 451 

Nonlinear interactions between the signals from different cells could also potentially increase 452 

reconstruction performance. To test this idea, the products of spike counts in pairs of 453 

neighboring cells were added as predictors in the linear reconstruction. Neighbors were 454 

defined as cells with RF centers that were within 1.5 times the median nearest neighbor 455 

distance between RF centers of the cells of the same type. For parasol cells, this definition 456 

resulted in roughly 6 ON and 6 OFF neighbors per cell, as expected (see Figure 2). Including 457 

these interactions produced a small increase in reconstruction accuracy (Δ⍴ = 0.0093 +/- 458 

0.023, across 3 recordings with 300 test images each; p < 0.001; regularization did not lead to 459 

improved performance). The primary contribution was from ON-OFF pairs (ON-OFF: Δ⍴ = 460 
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0.0089 +/- 0.019, not significantly different than all pairs, p = 0.2; ON-ON: Δ⍴ = 0.0021 +/- 0.010 461 

and OFF-OFF: Δ⍴ = 0.0024 +/- 0.013, both significantly different than all pairs, p < 0.001; Figure 462 

9D). The reconstruction filters associated with these interaction terms typically had an oriented 463 

structure orthogonal to the line between the RF centers of the two cells (Figure 9F,G), 464 

suggesting that the improvement in reconstruction may come primarily from using the joint 465 

activation of partially overlapping ON and OFF cells to capture edges in the visual scene.  466 
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 467 

Figure 9: Nonlinear reconstruction. A) Average pixel value in receptive field center vs. original 468 
response (blue) and transformed response (orange). B) Distribution (across n = 2225 cells from 15 469 
recordings) of the change in RMSE of a linear model (mapping from response to pixel value) when using 470 
the transformed response. C) Change in reconstruction performance (correlation) when using 471 
transformed responses (log(R)) for reconstruction with either ON and OFF parasol cells, only ON 472 
parasol cells, or only OFF parasol cells. Individual images (n = 300 from each of the 15 recordings) are 473 
plotted in gray with jitter in the x-direction. The black bars represent mean +/- standard deviation, and 474 
the standard error is smaller than the central dot. D) Change in reconstruction performance 475 
(correlation) when including interaction terms. Individual images (n = 300 from each of the 3 recordings) 476 
are plotted in gray with jitter in the x-direction. The black bars represent mean +/- standard deviation, 477 
and the standard error is smaller than the central dot. E,F) Average reconstruction filters corresponding 478 
to ON-OFF type interactions, centered and aligned along the cell-to-cell axis, for simulation (E) and data 479 
(F). G) 1D Profiles of all ON-OFF interaction filters through the cell-to-cell axis, sorted by distance 480 
between the pair. H) Example image (left), reconstructions with and without interaction terms (middle), 481 
and difference between the reconstructions, with dotted lines indicating edges (right). Source files for B, 482 
C and D are available in Figure 9 – source data 1. 483 
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Comparison to simple models of RGC light response 484 

The above analyses revealed that noise correlations and interactions between cells and cell 485 

types had a limited impact on reconstruction performance, suggesting that more complicated 486 

features of retinal encoding may not be important for linear reconstruction. To further explore 487 

this idea, simple LN models were used to simulate RGC responses across all 15 recordings, and 488 

the primary features of reconstructions from recorded and simulated spike trains were 489 

compared. The simulated spike count of each RGC in response to a given image was calculated 490 

by filtering the image with the spatial RF, and then passing that value through a fitted 491 

sigmoidal nonlinearity to obtain a firing rate (see Methods). The noise in the recorded spike 492 

counts was sub-Poisson (not shown; see Uzzell & Chichilnisky, 2004); therefore, the simulated 493 

firing rate was directly compared to the trial-averaged, recorded firing rate. This model 494 

captured RGC responses to static images with reasonable accuracy (correlation between 495 

simulated and average recorded spike counts: 0.76 +/- 0.13 across n = 997 ON parasol cells; 496 

0.84 +/- 0.09 across n = 1228 OFF parasol cells; see Chichilnisky, 2001). Note that by definition, 497 

the model incorporated the measured functional organization of the retina, including retina-498 

specific RF mosaic structure and cell-type specific response properties, both of which are 499 

necessary to understand the visual message (see above). 500 

Reconstructions with recorded and simulated spike trains revealed broadly similar properties in 501 

the filters and reconstructed images. The filters fitted to the recorded and simulated spike 502 

trains were similar (⍴ = 0.84 +/- 0.09 across 2225 parasol cells from 15 recordings), and shared 503 
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key features, such as horizontal and vertical structure (Figure 10A,C). The reconstructed images 504 

themselves were also similar (correlation between images reconstructed from simulated and 505 

recorded spike counts: 0.93 +/- 0.04 across n = 2250 images from 15 recordings; Figure 10B,C), 506 

as was the reconstruction performance (simulated: ⍴ = 0.79 +/- 0.11; recorded: ⍴ = 0.78 +/- 0.11; 507 

Δ⍴ = -0.003 +/- 0.03; across 2250 images from 15 recordings; Figure10C).  508 

The simulated spike trains also replicated the structure of nonlinear interactions between cells. 509 

This was observed by using the simulated responses of ON and OFF cells and the products of 510 

the responses of neighboring cells, as above, to reconstruct natural images. The spatial 511 

reconstruction filter corresponding to the interaction term between nearby ON and OFF cells 512 

was oriented and qualitatively similar to the interaction filters obtained with real data (Figure 513 

9E,F). However, this was not the case for responses simulated using a linear model without any 514 

response rectification (not shown) – in this case, the filter corresponding to the interaction term 515 

had no clear structure. 516 

The model reveals that although the visual messages of RGCs depend on their spatial and cell-517 

type specific organization, as well as the statistics of the stimulus, their essential structure can 518 

be understood using simple models of RGC encoding.  Furthermore, some degree of nonlinear 519 

encoding is necessary to explain the oriented interaction filters observed in the data.  520 
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 521 

Figure 10: Comparison to simulated spikes. A) Average reconstruction filters calculated from spikes 522 
simulated using linear-nonlinear models (left) or recorded (right). B) Images reconstructed from 523 
simulated (left) or recorded (middle) spikes, compared to the original images (right). C) Comparison of 524 
reconstructions with recorded and simulated spike counts: filters (top; ⍴ = 0.84 +/- 0.09 across 2225 525 
parasol cells from 15 recordings), reconstructed images (middle; ⍴ = 0.93 +/- 0.04 across n = 2250 526 
images from 15 recordings), and performance (bottom; simulated: ⍴ = 0.79 +/- 0.11; recorded: ⍴ = 0.78 +/- 527 
0.11; Δ⍴ = -0.003 +/- 0.03; across 2250 images from 15 recordings). Source files for C are available in 528 
Figure 10 – source data 1. 529 

Spatial information in a naturalistic movie 530 

In natural vision, a continuous stream of retinal responses is used to make inferences about 531 

the dynamic external world. Therefore, the reconstruction approach above – using the 532 

accumulated spikes over a fraction of a second to reconstruct a flashed image – could fail to 533 

capture important aspects of normal vision. To test whether the above results extend to 534 

spatiotemporal reconstructions, a naturalistic movie, consisting of a continuous stream of 535 

natural images with simulated eye movements superimposed, was reconstructed from the 536 

spike trains of RGCs. The spike trains were binned at the frame rate of the movie (120Hz), and 537 

linear regression was performed between the frames of the movie and the RGC responses in 15 538 

bins following each frame, resulting in a spatiotemporal reconstruction filter for each RGC.  539 
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A spatial summary of the filter for each cell was obtained by first calculating the average time 540 

course of the strongest pixels, and then projecting each pixel of the full filter against this time 541 

course (examples shown in Figure 11A; see Methods). This spatial filter was highly correlated 542 

with the spatial reconstruction filters of the same cells obtained in the preceding analysis with 543 

flashed images (⍴ = 0.87 +/- 0.07, n = 351 parasol cells from 3 recordings; Figure 11B). The 544 

dynamic filters were approximately space-time separable (explained variance from first 545 

principal component = 0.85 +/- 0.13). The remaining unexplained variance contained significant 546 

apparent structure as well as noise (not shown), which may be important for further 547 

understanding spatiotemporal processing in the retina and the underlying mechanisms, but 548 

was not explored further (Benardete & Kaplan, 1997; Benardete & Kaplan, 1997; Dawis et al., 549 

1984; Derrington & Lennie, 1982; Enroth-Cugell et al., 1983). The large fraction of variance 550 

explained by a space-time separable filter suggests that the essential spatial features of the 551 

visual message observed in spatial reconstructions largely extend to spatiotemporal vision. In 552 

addition, the reconstructed movie frames were similar to reconstructions of static images 553 

(between static reconstruction and average reconstructed frame: ⍴ = 0.72 +/- 0.19 across 120 554 

images from 3 recordings, Figure 11C).  555 
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 556 

Figure 11: Spatiotemporal reconstruction. A) Examples of the spatial components extracted from the  557 
spatiotemporal reconstruction filter (top) and the static spatial reconstruction filters (bottom) for an ON 558 
(left) and OFF (right) parasol cell. B) Correlation between spatial component and static filter (⍴ = 0.87 +/- 559 
0.07 across n=351 cells from 3 recordings). C) Example reconstructions of movie frames and of static 560 
images. Source files for B are available in Figure 11 – source data 1.   561 
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Discussion 562 

Linear reconstruction of natural images was used to investigate the spatial information 563 

transmitted to the brain by complete populations of primate retinal ganglion cells (RGCs). The 564 

quality of the reconstructions was consistent across retinas. The optimal interpretation of the 565 

spikes produced by a RGC – i.e. its visual message – depended not only on its encoding 566 

properties, but also on the statistics of natural scenes and the spatial arrangement of other 567 

RGCs. These factors enabled smoother natural image reconstructions from the RGC population 568 

than would be expected from the RFs alone. In addition, the visual representation conveyed by 569 

each cell type reflected its distinct encoding properties, and for ON and OFF parasol cells, was 570 

largely independent of the contributions of other cell types. Overall, the results were consistent 571 

with a simple, linear-nonlinear model of RGC encoding, incorporating the spatial properties, 572 

contrast-response properties, and collective functional organization of the four major RGC 573 

types. Finally, a limited test of spatiotemporal reconstruction indicated that these results may 574 

generalize to natural vision.  575 

The results show that the dependence of a given RGC’s visual message on the responses of 576 

other RGCs, which was demonstrated previously in the temporal domain using a spatially 577 

uniform random flicker stimulus (Warland et al., 1997), extends to the spatial domain in natural 578 

viewing conditions. For decades, the spatial visual message of a RGC has been estimated using 579 

its receptive field, measured with artificial stimuli. However, due to spatial correlations in 580 

natural scenes, the response of a RGC contains information about the stimulus far beyond its 581 
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RF. In this light, it is at first surprising that the visual message is spatially localized and similar to 582 

the classical RF (Figure 3A,C). However, nearby regions of visual space are already “covered” by 583 

the neighboring RGCs of the same type, and the redundant information in adjacent cells 584 

apparently contributes little to representing the image structure. Even so, the visual messages 585 

retain some explicit horizontal and vertical natural scene structure, and collective spatial 586 

organization, not present in the RFs. This structure results in smoother reconstructions and 587 

more uniform coverage of visual space than the coverage provided by the RF mosaic (Figure 4). 588 

In this sense, the visual message of each RGC differs from its RF, specifically in a way that 589 

reflects its coordination with other nearby cells. The significance of natural scene statistics for 590 

interpreting the neural code has also been suggested in the visual cortex (Naselaris et al., 591 

2009), and can be used as a prior to improve image estimates in multi-step reconstruction 592 

methods (Parthasarathy et al., 2017).  593 

Each of the major RGC types conveyed distinct visual representations, consistent with their 594 

encoding properties. For the most part, these were independent of the contributions of the 595 

other types, indicating that the major primate RGC types, despite covering the same region of 596 

visual space, conveyed different stimulus features. However, this separation was clearer for the 597 

ON and OFF types than for the parasol and midget cell classes, because the midget cell filters 598 

were influenced by the inclusion of same-polarity parasol cells. Further analysis in the temporal 599 

domain (see Figure 7E) may be necessary to clarify the separation of these two classes. Both 600 

ON and OFF cell types were necessary to reconstruct the full contrast range of the images, 601 

because responses from a single cell type resulted in less accurate reconstructions even if they 602 
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were linearized. It is not clear why the retina separates visual information into separate cell 603 

type channels. The roughly linear intensity representation by ON and OFF cell types together 604 

(but not individually) is consistent with suggestions that encoding by multiple cell types with 605 

nonlinear response properties could enable relatively simple linear reconstruction by 606 

downstream neurons (DiCarlo et al., 2012; Gjorgjieva et al., 2019). There also may be more 607 

complicated interactions between different cell types that another reconstruction method 608 

could reveal. As new cell types are identified and characterized (Puller et al., 2015; Rhoades et 609 

al., 2019), their contributions to vision may be more fully revealed by these linear and simple 610 

nonlinear reconstruction approaches. 611 

Overall, the results presented here were consistent with predictions from a simple, 612 

independent pseudo-linear model for RGC light responses, despite known nonlinearities and 613 

correlations in the retinal circuitry. Specifically, replacing the recorded spike trains with 614 

simulated spike trains, generated by LN models fitted to each RGC, resulted in similar 615 

reconstruction filters and reconstructed images (Figure 10). Obviously, the LN model by itself 616 

cannot explain the many features of encoding observed here; instead, the specific spatial 617 

properties, contrast-response properties, and collective organization of the major RGC types 618 

captured in the present measurements are crucial for understanding the structure of the visual 619 

message. The similarity of reconstruction from LN models and recorded data is consistent with 620 

the limited impact of interaction terms and stimulus-independent (noise) correlations, the 621 

importance of which has been debated (Cafaro & Rieke, 2010; Ganmor et al., 2015; Meytlis et al., 622 

2012; Nirenberg et al., 2001; Pillow et al., 2008; Puchalla et al., 2005; Ruda et al., 2020; 623 
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Zylberberg et al., 2016). While the impact of noise correlations on reconstruction in the present 624 

data was limited by the low total noise in the accumulated spike counts, this may not reflect 625 

natural vision, in which perception and action occur too quickly to utilize all the stimulus-driven 626 

spikes from each RGC, and sometimes must rely on visual inputs with low light levels or spatial 627 

contrast (Ruda et al., 2020). A low-fidelity situation was mimicked by reducing the spike 628 

integration time window to 10ms, a manipulation that revealed an increased but still small 629 

effect of noise correlations. It is also possible that these results would be affected by removing 630 

noise correlations from both the training and testing data, but evaluating this possibility would 631 

require longer repeated presentations of training stimuli than were performed here. 632 

It is uncertain how close the reconstructions presented here are to the best possible 633 

reconstructions given the data, and how much additional information could potentially be 634 

extracted from the spike trains. Acuity has been shown to track with midget cell receptive field 635 

size (Dacey, 1993; Merigan & Katz, 1990; Rossi & Roorda, 2010; Thibos et al., 1987), indicating 636 

that the reconstructions shown in Figure 7 may accurately represent the quality of visual 637 

information transmitted to the brain. In addition, it has been suggested that simple decoders 638 

may be sufficient, even when the encoding is highly nonlinear (DiCarlo et al., 2012; Gjorgjieva et 639 

al., 2019; Naselaris et al., 2011; Rieke et al., 1997). However, alternative approaches may be worth 640 

exploring, and could extract additional information. For example, different measures of 641 

response, such as latency (Gollisch & Meister, 2008; Gütig et al., 2013) and relative activity 642 

(Portelli et al., 2016), have been shown to convey more stimulus information than spike counts 643 

for non-primates under some conditions. This was not the case in the present data, which may 644 
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be due to high maintained firing rates in the mammalian retina (Troy & Lee, 1994; see Figure 645 

1B), which make it difficult to identify the first stimulus-driven spike. In addition, recent studies 646 

have indicated that nonlinear and deep learning models could improve reconstruction 647 

performance for static images, moving patterns, and naturalistic movies (Botella-Soler et al., 648 

2018; Kim et al., 2020; Parthasarathy et al., 2017; Zhang et al., 2020). While these approaches 649 

make the visual message more difficult to define, they could be used to extract richer 650 

information potentially present in RGC responses. Models that are interpretable while allowing 651 

for some nonlinearities could also be used to further investigate the visual message (Pillow et 652 

al., 2008).  653 

Attempting to extract more sophisticated visual information may also reveal additional 654 

information conveyed by RGCs, for example, by expanding to more complex, dynamic natural 655 

stimuli. Spatiotemporal stimuli, which were only explored here in a limited way, and/or 656 

chromatic stimuli, could further illuminate the impact of spike timing, the encoding of dynamic 657 

and space-time inseparable features, and the distinct roles of the multiple cell types 658 

(Benardete & Kaplan, 1997; Benardete & Kaplan, 1997; Berry et al., 1997; Dacey et al., 2003; 659 

Dawis et al., 1984; Derrington & Lennie, 1982; Enroth-Cugell et al., 1983; Masland, 2012; Uzzell & 660 

Chichilnisky, 2004). For example, nonlinear spatial summation and motion encoding have been 661 

demonstrated in parasol cells, but were not utilized here (Manookin et al., 2018; Turner & Rieke, 662 

2016). In addition, pixel-wise mean squared error does not accurately reflect the perceived 663 

quality of the visual representation. More sophisticated metrics for optimization and evaluation 664 

of reconstruction should be explored (Wang et al., 2002, 2004).  665 
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By projecting neural responses into a common stimulus space, reconstruction enabled direct 666 

comparison and evaluation of the visual signals transmitted downstream. The large collection 667 

of recordings used here revealed a consistent visual representation across retinas, in spite of 668 

differences in RF mosaic structure and firing rates that make comparing the neural response 669 

itself difficult. The information contained in the retinal signal limits the information available to 670 

downstream visual areas, so the results presented here could inform studies of visual 671 

processing in the LGN, V1, and other brain structures. For example, the oriented nature of the 672 

interaction term filters supports the hypothesis that orientation selectivity in the cortex results 673 

from pairs of nearby ON and OFF RGCs (Paik & Ringach, 2011; Ringach, 2007). In addition, 674 

comparing reconstructions from different visual areas using a standard measurement — the 675 

reconstructed image — could help reveal how information about the external world is 676 

represented at various stages of the visual system. 677 

Using reconstruction to understand the signals transmitted by neurons may be increasingly 678 

important in future efforts to read and write neural codes using brain-machine interfaces 679 

(BMIs). In the retina, certain types of blindness can be treated with implants that use electrical 680 

stimulation to activate the remaining retinal neurons (Goetz & Palanker, 2016). The visual 681 

messages described in the present work could be useful for inferring the perceived visual 682 

image evoked by such devices, and thus for selecting optimal electrical stimulation patterns 683 

(Goetz & Palanker, 2016; Golden et al., 2019; Shah et al., 2019). Reconstruction can also be used 684 

to compare the evoked visual representation with the representation produced by natural 685 

neural activity. In addition, the observation that reconstructions from different retinas and from 686 
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recorded and simulated spikes are similar suggests that perfect replication of the neural code 687 

of a particular retina may not be necessary. Outside the visual system, many BMIs rely on 688 

reconstruction to read out and interpret neural activity, e.g. controlling prosthetic limbs using 689 

activity recorded in the motor cortex (Lawhern et al., 2010; Vargas-Irwin et al., 2010). While 690 

these studies typically focus on performing specific tasks, the present results suggest that 691 

examination of the reconstruction filters could reveal contributions of diverse cells and cell 692 

types in these modalities.  693 
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Materials and Methods 694 

Experimental methods 695 

Multi-electrode array recordings 696 

An ex vivo multi-electrode array preparation was used to obtain recordings from the major 697 

types of primate RGCs (Chichilnisky & Kalmar, 2002; Field et al., 2010; Frechette et al., 2005; 698 

Litke et al., 2004). Briefly, eyes were enucleated from terminally anesthetized macaques used 699 

by other researchers in accordance with institutional guidelines for the care and use of animals. 700 

Immediately after enucleation, the anterior portion of the eye and vitreous were removed in 701 

room light, and the eye cup was placed in a bicarbonate-buffered Ames’ solution (Sigma, St. 702 

Louis, MO). In dim light, pieces of retina roughly 3 mm in diameter and ranging in eccentricity 703 

from 7 to 17 mm (6-12 mm temporal equivalent eccentricity; Chichilnisky & Kalmar, 2002) or 29-704 

56 degrees (Dacey & Petersen, 1992; Perry & Cowey, 1985), were placed RGC side down on a 705 

planar array consisting of 512 extracellular microelectrodes covering a 1.8 mm × 0.9 mm region 706 

(roughly 4x8° visual field angle). In all but one preparation, the retinal pigment epithelium (RPE) 707 

was left attached to allow for photopigment regeneration and to improve tissue stability, but 708 

the choroid (up to Bruch’s membrane) was removed to allow oxygenation and maintain even 709 

thickness. For the duration of the recording, the preparation was perfused with Ames’ solution 710 

(30-34° C, pH 7.4) bubbled with 95% O2, 5% CO2. The raw voltage traces recorded on each 711 

electrode were bandpass filtered, amplified, and digitized at 20kHz (Litke et al., 2004). Spikes 712 

from individual neurons were identified by standard spike sorting techniques, and only spike 713 
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trains from cells exhibiting a 1ms refractory period were analyzed further (Field et al., 2007; 714 

Litke et al., 2004).  715 

Visual stimulation 716 

The visual stimulus was produced by a 120Hz, gamma-corrected, CRT monitor (Sony Trinitron 717 

Multiscan E100; Sony, Tokyo, Japan), which was optically reduced and projected through the 718 

mostly-transparent array onto the retina at low photopic light levels (2000, 1800, and 800 719 

isomerizations per second for the L, M and S cones respectively at 50% illumination; see Field 720 

et al., 2009, 2010). The total visual stimulus area was 3.5 by 1.75 mm, which extended well 721 

beyond the recording area. 722 

A 30-minute spatiotemporal white noise stimulus was used to characterize RGC responses and 723 

to periodically assess recording quality (Chichilnisky, 2001). The stimulus was updated at either 724 

30 or 60 Hz, and consisted of a grid of pixels (spacing ranged from 44 to 88μm across 725 

recordings). For each update, the intensities for each of the three monitor primaries at each 726 

pixel location were chosen randomly from a binary distribution. 727 

Natural images from the ImageNet database (Fei-Fei et al., 2010) were converted to grayscale 728 

values. On a scale of 0 to 1, the mean image intensity was 0.45. The natural images were 729 

displayed at either 320 x 160 pixels, with each pixel measuring 11 x 11 μm on the retina, or at 160 730 

x 80 pixels, with each pixel measuring 22 x 22 μm on the retina. The images were displayed for 731 

100ms each (12 frames at 120Hz), separated by spatially uniform gray at intensity 0.45 for 400 732 
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ms, chosen to ensure a return to the average firing rates. The images were displayed in blocks 733 

of 1000, interleaved with a repeated set of 150 test images. Stimulation durations ranged from 734 

5 to 40 blocks. 735 

Dynamic movies consisted of the same set of images, each displayed for 500ms with eye 736 

movements simulated as Brownian motion with a diffusion constant of 10μm2/frame, selected 737 

to roughly match recorded eye movements from humans (Kuang et al., 2012; Van Der Linde et 738 

al., 2009) and primate (Z.M. Hafed and R.J. Krauzlis, personal communication, June 2008). After 739 

500ms, a new image appeared, with no gray screen between image presentations, and again 740 

was jittered. Each recording consisted of 5000 images, for a total of 300,000 frames of 741 

stimulation. 742 

Cell type classification 743 

The spike triggered average (STA) stimulus for each neuron was computed from the response 744 

to the white noise stimulus (Chichilnisky, 2001), to reveal the spatial, temporal, and chromatic 745 

properties of the light response. Cell type identification was performed by identifying distinct 746 

clusters in the response properties, including features of the time course and the spike train 747 

autocorrelation function extracted via principal components analysis, and the spatial extent of 748 

the receptive field (RF; Chichilnisky & Kalmar, 2002; Dacey, 1993; DeVries & Baylor, 1997; Field et 749 

al., 2007; Frechette et al., 2005). This analysis revealed multiple identifiable and complete cell 750 

type populations. In particular, the four major types, ON and OFF parasol and midget cells, 751 

were readily identifiable by their temporal properties, RF size, density, and mosaic organization 752 
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(see Rhoades et al., 2019 for a more detailed discussion). Recorded populations of parasol cells 753 

formed nearly complete mosaics over the region of retina recorded; recorded midget cell 754 

populations were less complete. 755 

Linear reconstruction 756 

Linear regression 757 

Reconstruction filters were fitted using linear regression, as described in Results. The 758 

responses of every RGC were included in the regression for every pixel; restricting the filters to 759 

a local area did not improve reconstructions. Note that the weights for each pixel are 760 

independent, and can be fitted together or separately. Prior to regression, the distribution of 761 

each cell’s responses and the pixel values at each location were centered around 0 (i.e. the 762 

mean over samples was subtracted in each case). The length of time over which spikes were 763 

counted after the image onset was chosen to optimize reconstruction performance (tested in 764 

10ms intervals from 10ms to 200ms; see Figure 7E). For the spike latency comparison, a 765 

maximum time of 150ms was assigned to cells that had not yet spiked. 766 

Convergence of estimates 767 

For all recordings, reconstruction performance obtained with half of the data was typically 95-768 

98% of the reconstruction performance obtained with the full data (Figure 12). Both an L2-769 

penalty on filter coefficients and applying a singular value cutoff when calculating the 770 

pseudoinverse of the response matrix (Golden et al., 2019; Strang, 1980) were tested as 771 

methods for optimizing performance with limited data. However, neither improved 772 
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reconstruction performance. Note that despite the large size of the weight matrix, the 773 

appropriate comparison for fitting is samples per pixel compared to weights per pixel, which is 774 

at least 20 times in every case, even when interaction terms are considered (Figure 9). 775 

 776 

Figure 12: Verification of data sufficiency. A) Performance of reconstructions from parasol cell 777 
responses as a function of the amount of training data, for 19 recordings (colors). B) Fraction of 778 
performance of reconstructions from parasol cell responses (MSE, correlation, and SSIM) achieved with 779 
half of the training data for each recording. C,D) Same as A,B for reconstructions from midget cell 780 
responses for 12 recordings (colors).  781 
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Image region selection 782 

Reconstruction performance was calculated over the image regions covered by the RFs of the 783 

recorded RGCs. To define this area, the spatial profile of each RF was fitted with a two-784 

dimensional elliptical Gaussian (Chichilnisky & Kalmar, 2002), and any pixel within two standard 785 

deviations was considered covered (Figure 13). For each analysis, pixels were only included if 786 

they were covered by at least one of each cell type used in that analysis, so the regions 787 

included were limited by the cell type with the least coverage, typically ON or OFF midget cells. 788 

Two analyses used a manually selected, rectangular central image region instead of the mosaic 789 

coverage logic above: the comparison across recordings (Figure 2), and the spatial frequency 790 

analyses (Figures 4 and 6).  791 

Error metrics 792 

The primary measures of reconstruction performance, mean squared error (MSE) and the 793 

correlation coefficient, were calculated between the original and reconstructed image, across 794 

all included pixels (as defined above). Note that linear least squares regression, which was used 795 

to obtain the filters, by definition minimizes MSE on the training data, but does not necessarily 796 

maximize the correlation coefficient. In addition, an alternative measure more closely related to 797 

perceptual difference between images, the structural similarity (SSIM; Wang et al., 2004), was 798 

calculated across the whole image (parameters: radius = 22 μm, exponents = [1 1 1]), and then 799 

averaged across the included pixels (see above) for each image. In all cases, similar trends were 800 

observed with each metric.  801 
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 802 

Figure 13: Selection of analysis region. Reconstruction performance on a sample image (top) is 803 
measured by comparing the regions inside the contours shown on the reconstructions in the second 804 
row. These contours were obtained using the receptive field mosaics (bottom two rows) of parasol cells, 805 
or of both parasol and midget cells, as described in Image region selection. Here, OFF midget cells had 806 
the least complete mosaic, so the included region was most limited by their coverage. The bounding 807 
boxes mark the extent of the visual stimulus.  808 
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Statistical analysis 809 

Statistical significance was determined using resampling. In all cases presented here, two 810 

distributions of paired values were being compared, such as reconstruction performance 811 

scores for two conditions on the same set of images. To generate values in the null 812 

distribution, each pair of values was randomly distributed between the two conditions, and the 813 

mean difference was calculated. 1000 random samples were generated this way, and the p-814 

value was the proportion of samples where the magnitude of the mean difference was greater 815 

than the recorded value. A report of p < 0.001 indicates that no samples had a larger mean 816 

difference. 817 

Filter analysis 818 

Spatial receptive field 819 

The spatial receptive field (RF; used in Figures 3 and 4) was extracted from the full spatial, 820 

temporal, and chromatic spike-triggered average (STA; used for cell type classification as 821 

described above) as follows. First, the values at each pixel location and time in the STA were 822 

summed across the color channels. Significant pixels were identified as those with an absolute 823 

maximum value (across time) of more than 5 times the robust standard deviation of all the 824 

pixels in the STA (Freeman et al., 2015). Averaging across these significant pixels resulted in a 825 

single time course. The inner product of this time course with the time course of each pixel in 826 

the STA was then computed, resulting in a spatial RF. 827 



 

51 

Average filter calculations 828 

Average RFs (Figure 3) were calculated by first upsampling the spatial RFs (with linear 829 

interpolation) to match the resolution of the reconstruction filters (across recordings, scaling 830 

ranged from 2-8x), then aligning the RF centers (obtained by fitting a 2D Gaussian to the RF as 831 

described above) and averaging. Average reconstruction filters (Figure 3) were not upsampled, 832 

but otherwise were calculated the same way. The average RFs and filters shown in Figure 3C 833 

were calculated separately for each recording, cell type and condition. A one-dimensional 834 

profile through the center of each average reconstruction filter was used to calculate full width 835 

at half maximum (Figure 3D,E). This calculation was robust to the angle of the profile. The 836 

average filters in Figure 5 only included cells in regions with locally dense populations of all 837 

four major cell types (defined by the number of nearby cells of each type). 838 

Receptive field reconstruction 839 

Reconstruction from receptive fields (RFs; Figure 4) was performed as follows. Each image was 840 

estimated as a sum of RFs, weighted by the RGC response and a fitted scale factor. These scale 841 

factors were calculated by minimizing the MSE between the true and estimated images as 842 

follows: 843 

 𝑎∗	 = 𝑎𝑟𝑔𝑚𝑖𝑛(	 ∑ (𝑆)0 −	𝑆*)+
,!"#$%&
*-% ; 						𝑆)0 = ∑ 𝐹. ⋅ 𝑅*,. ⋅ 𝑎.

,'%((&
.-% 	 (2) 844 

where S is the stimulus, R is the response, F is the RF, and a is the scale factor, calculated using 845 

linear least squares regression (as described above). In this case, each pixel in each image was 846 
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considered a separate sample, and was modeled as a linear combination of the image 847 

responses of all RGCs multiplied by the respective values of their RFs at that pixel. Therefore, 848 

the outputs were a vector with length equal to N, the number of images times the number of 849 

pixels in each image. The input (regressor) matrix had dimensions (N x number of cells), and 850 

the weight vector a had dimensions (number of cells x 1). For these analyses, recordings with 851 

incomplete mosaics and without high-resolution RF mapping were excluded.  852 

Analysis of cell type contributions 853 

ON and OFF parasol cells 854 

Images were reconstructed from the responses of either ON or OFF parasol cells and 855 

performance was calculated, as described above. The relationship between true and 856 

reconstructed pixel value (Figure 6D) was calculated for each recording by first binning the true 857 

pixel values by percentile, resulting in bins with equal numbers of samples. Then, for each bin, 858 

the average true pixel value and the average of the corresponding reconstructed pixel values 859 

were calculated. The sensitivity was defined as the change in average reconstructed pixel value 860 

divided by the change in true pixel value across bins. The observed trends were not dependent 861 

on the number of bins. 862 

Parasol and midget cell classes 863 

Images were reconstructed from the responses of either parasol or midget cell classes 864 

(including both ON and OFF types) and performance was calculated, as described above. The 865 

power spectra for the reconstructed images, original images, and average RFs (Figure 7D) were 866 
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calculated by discrete Fourier transform. The temporal properties of the parasol and midget 867 

classes (Figure 7E) were compared by gradually increasing the length of the window over which 868 

spikes were counted after image onset, from 10ms to 150 ms (in 10ms increments). For each 869 

window size, the reconstruction filters were refitted, and the performance was calculated as 870 

described above.  871 

For these analyses, only the recordings with the highest midget cell coverage were used, 872 

defined by the fraction of pixels included in a parasol cell analysis that would also be included 873 

in a midget cell analysis (see Image region selection above). 7 recordings were included for 874 

measuring reconstruction performance (Figure 7C) and comparing temporal properties (Figure 875 

7E). Only 3 of those were also included in the spatial frequency analysis (Figure 7D), which 876 

required complete or nearly complete mosaics. 877 

Analysis of noise correlations  878 

Noise correlation analysis (Figure 8) was limited to the 3 recordings with the most repeated 879 

presentations of the same set of test images (27 repeats each). For each of the three scenarios 880 

described in Results, reconstruction filters were fitted on a single repeat of training data, and 881 

then tested using either shuffled or unshuffled testing data. The testing data was shuffled by 882 

randomly permuting each RGC’s responses independently across repeated presentations of 883 

the same image. Reconstruction performance on the test data was measured as described 884 

earlier. 885 
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Interaction terms 886 

Only the three recordings with the most training data were included (at least 25,000 training 887 

images each; the same subset was used for the noise correlation analysis), so that despite the 888 

increase in parameter count (from ~200 to ~1000), there were still more than enough samples 889 

to calculate the weights, and regularization did not improve cross-validated reconstruction 890 

performance. 891 

Linear-nonlinear simulation 892 

Simple linear-nonlinear encoding models (Chichilnisky, 2001) were used to simulate spike trains 893 

for reconstruction, for each RGC independently. For each image, the inner product was first 894 

computed between the image and the spatial RF (see Spatial receptive field above), restricted 895 

to a local region (+/- 440μm from the RF center, corresponding to either 40x40 or 80x80 896 

pixels depending on the resolution of the images). The resulting value was then passed 897 

through a sigmoidal nonlinearity, given by 898 

𝑦 = 𝑏! +
"!

""#$%&("#⋅%!)
 (3) 899 

where the parameters {𝑏*} were fitted by minimizing the mean-squared error between the 900 

predicted and measured RGC responses, on the same data set used to fit the reconstruction 901 

filters. This model was then used to simulate responses to the images used to obtain the fitting 902 

data and the images used to obtain the held-out, repeated test data. Reconstruction filters, 903 
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reconstructed images, and performance were then calculated from the simulated responses in 904 

the same way as described above for the recorded responses.  905 

Spatiotemporal reconstruction 906 

Each frame of the spatiotemporal movie was reconstructed using the RGC spikes recorded 907 

during that frame and the following frames. Therefore, each RGC included in the 908 

reconstruction was fitted with a full-rank, spatiotemporal reconstruction filter. The spikes were 909 

binned at the frame rate of the movie, and a filter length of 15 frames (125ms) was selected to 910 

optimize performance. A spatial summary of the spatiotemporal filter (Figure 11A,B) was 911 

calculated as described above for spatial RFs. The spacetime separability of the filters was 912 

calculated using the explained variance from the first component of a singular value 913 

decomposition (limited to a spatially local region to reduce the effects of the many low-914 

magnitude, noisy pixels outside the primary filter peak). Three recordings that contained 915 

responses to both static, flashed natural images and dynamic, spatiotemporal natural movies 916 

were included. 2400 consecutive movie frames were withheld from fitting for comparison of 917 

movie frame and static image reconstructions (Figure 11C).  918 
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Source Data 919 

Figure 1 - source data 1: Linear reconstruction from ON and OFF parasol cell responses. This zip file 920 
contains the code and data for Figures 1D and 1F, which show the distribution of reconstruction scores 921 
across recordings, as well as the relationship between reconstruction performance and receptive field 922 
(RF) size. 923 

Figure 2 - source data 1: Comparison across recordings. This zip file contains the code and data for 924 
Figure 2A, which shows the similarity of reconstructed images across separate recordings.  925 

Figure 3 - source data 1: Effect of the population on the visual message. This zip file contains the 926 
code and data for Figures 3D and 3E, which show how the visual message changes depending on other 927 
RGCs. This includes the widths and profiles of the reconstruction filters.  928 

Figure 4 - source data 1: Full vs. RF reconstruction. This zip file contains the code and data for Figures 929 
4C, 4D and 4E, which compare the full and receptive field (RF) reconstructions. This includes the 930 
coverage values for the RFs, the filters, and the expanded RFs, as well as the full and RF reconstruction 931 
scores, and the power spectra of the full and RF reconstructions.  932 

Figure 5 - source data 1: Effect of other cell types on the visual message. This zip file contains the 933 
code and data for Figure 5B, which compares the magnitude and width of the filters when other cell 934 
types are included in the reconstruction.  935 

Figure 6 - source data 1: ON and OFF parasol cells. This zip file contains the code and data for Figures 936 
6C and 6D, which compare the reconstructions from ON and OFF parasol cell responses. This data 937 
includes the performance scores for reconstructions from ON and OFF parasol cell responses, as well 938 
as the binned true and estimated pixel values.  939 

Figure 7 - source data 1: Parasol and midget cell classes. This zip file contains the code and data for 940 
Figures 7C, 7D and 7E, which compare the reconstructions from parasol and midget cell responses. This 941 
data includes the performance scores for reconstructions from parasol and midget cell responses, as 942 
well as the power spectra of the resulting images, and the time required to reach 95% reconstruction 943 
performance.  944 

Figure 8 - source data 1: Noise correlations. This zip file contains the code and data for Figure 8, which 945 
shows the effects of noise correlations on reconstruction performance.  946 

Figure 9 - source data 1: Nonlinear reconstruction. This zip file contains the code and data for Figures 947 
9B, 9C, and 9D, which show the effects of using a static nonlinear transformation, and of including 948 
nonlinear interaction terms. 949 

Figure 10 - source data 1: Reconstruction from simulated spikes. This zip file contains the code and 950 
data for Figure 10C, which compares reconstruction using recorded and simulated RGC responses.  951 

Figure 11 - source data 1: Spatiotemporal reconstruction. This zip file contains code and data for 952 
Figure 11B, which compares static and spatiotemporal reconstruction filters.   953 
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