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 Abstract  Abstract

Abstract

Earthquakes affected mankind since the days of old, claiming more human casualties than any other

nature catastrophe. The determination of the hypocenter location displays one of the key subjects of

seismology. Today’s standard approaches provide for trustable location estimates - given a large

amount of stations with high quality data and proper assumptions about the sub-surface velocity

structure. The same approaches fail, however, when this amount of stations and quality of data is

not given, e.g. in the mapping of seismically active zones using low magnitude events: Here, only

few stations detect the signals that sometimes barely exceed the noise level. Seismic phases appear

hence unclear, rendering the information of arrival times doubtful. Another example are real-time

location schemes (e.g. in Earthquake Early Warning Systems): Here, events need to be evaluated

and located within fractions of seconds without knowledge of the complete waveform, and data

available only from the first few stations that already detected. 

The objective of this thesis lies in a methodological development that provides for more accurate

single event locations in the context of sparse and doubtful data. The less data is available the more

the  location  estimate is  determined and affected  by  the  individual  datum,  its  uncertainties  and

errors.  The  method  of  choice  must  therefore  be  outlier-resistant  (e.g.  ignore  false  picks)  and

incorporate all parameter uncertainties. When data is few, solutions may further be ambiguous (not

due to errors in the input parameters, being exact solutions to a set of even ideal arrival times),

meaningly: Multiple, significantly separated location candidates may exist. Also, models are usually

only rough and simplified representations of the subsurface structure and will often not explain the

observed  data  well  enough.  Today's  standard  approaches  often  disregard  the  corresponding

uncertainties and, hence, often displace the hypocenter significantly to the true location - outside of

the assumed error margins. Mislocations in earthquake early warning or forensic seismology may

have far-reaching implications for society and on the political level. This thesis provides therefore a

novel  location  methodology  that  incorporates  the  important  uncertainties,  naturally  disregards

outliers and thereby leads to robust hypocenter estimates. 
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 Abstract  Abstract

The work presented builds on the concept of (graphical) jackknifing, which contrary to most of

today's standard approaches doesn't attempt to minimize the error in the over-determined system

directly, but decomposes the system first into exactly- or even under-determined subsystems. This

results in distinct location constraints that are based on arrival time differences between two- or

three phases, only. Each constraint identifies a subset of space as possible hypocenter region. The

combination of multiple constraints consecutively constrains the final hypocenter region. Since a

single constraint relies on a minimum amount of phase onsets, only, solution discrepancies can be

traced  back  to  the  individual  phase  data,  which  allows  the  data  base  (e.g.  outliers)  to  be  re-

evaluated.  The  global  solution  is  finally  recomposed  based  on  the  sub-solutions  deemed

trustworthy, which provides robust and outlier resistant solutions. 

This concept is built on, supporting for three dimensional station layouts, complex velocity models

and a volumetric computation,  which render  this approach suitable for a wide class of modern

applications. A real-time methodology that regards uncertainties in phase picks, phase types and

model parameters provides for robust and accurate locations when data is uncertain and sparse.

New  constraints  are  introduced,  which  allow  to  resolve  ambiguities  and  provide  for  faster

hypocenter and magnitude estimates in Earthquake Early Warning. A new direct search scheme is

developed that integrates constraint probabilities over grid cells, which ensures the identification of

sharp hypocenter regions independent of the grid's resolution, satisfying the demand for a complete

search. The improvement in location quality is demonstrated using several examples ranging from

gas-field low-magnitude event monitoring, forensic seismology to examples of real-time locations

in Earthquake Early Warning.
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Zusammenfassung

Erdbeben fordern die meisten menschlichen Opfer unter allen Naturkatastrophen und beschäftigen

die  Menschheit  seit  alters  her.  Die  Bestimmung  des  Hypozentrums ist  eine  der  fundamentalen

Themen  und  Aufgaben  der  Seismologie.  Heutige  Standardverfahren  bieten  eine  hohe

Ortungsgenauigkeit,  insofern Daten hoher  Qualität  genügend vieler  Stationen vorliegen und die

Untergrundstruktur  hinreichend  bekannt  ist.  Die  Verfahren  versagen  aber,  insofern  diese

Bedingungen nicht  erfüllt  sind.  So z.B.  in  der  Kartographierung seismisch aktiver  Zonen unter

Nutzung schwacher seismischer Ereignisse: Nur wenige Stationen registrieren deren Signale, die

sich unter Umständen nur schwach von dem Untergrundrauschen abheben, und erlauben eine nur

unsichere  Wahl  der  Phaseneinsätze.  Ein  weiteres  Beispiel  liefert  die  Echtzeitortung  (z.B.  in

Erdbeben-Frühwarnsystemen): Dort müssen Ereignisse innerhalb von Bruchteilen von Sekunden

bewertet und geortet werden, ohne Kenntnis des vollständigen Signals, und basierend auf nur den

wenigen Stationen, die das Beben bereits registrierten.

Diese Doktorarbeit befasst sich mit der Entwicklung einer Methode, die akkuratere Ortungen von

Einzelereignissen  im  Kontext  weniger  und  ungenauer  Daten  bereitstellt.  Umso  weniger  Daten

verfügbar sind, umso stärker ist die Lösung abhängig von einzelnen Phaseneinsätzen, ihren Fehlern

und Unsicherheiten. Das Verfahren muss daher die gegebenen Unsicherheiten berücksichtigen und

resistent gegenüber Ausreißern (z.B. falsch identifizierten Phaseneinsätzen) in den Daten sein. Bei

sehr wenigen verfügbaren Stationen können Lösungen des Weiteren ihre Eindeutigkeit  verlieren

(nicht  aufgrund  von  Fehlern  in  den  Eingabeparametern,  vielmehr  existieren  nun  mehrere

mathematisch exakte Lösungen selbst bei idealen Phaseneinsätzen). Dies heißt, dass mehrere, klar

getrennte  Regionen  als  mögliches  Hypozentrum  in  Frage  kommen  können.  Die  verwendeten

Untergrundmodelle  sind  für  gewöhnlich  nur  grobe  Annäherungen  an  die  bestehende

Untergrundstruktur.  Die  Anwendung  von  Standardverfahren,  die  diese  Unsicherheiten  oft

ignorieren, kann zu Fehlortungen führen, welche die erwarteten Fehlergrenzen überschreiten. Dies

ist insbesondere kritisch für Frühwarnsysteme oder die forensische Seismologie, da Fehlortungen

dort signifikante Auswirkungen für die Gesellschaft oder auf der politischen Ebene haben können.

Diese Arbeit stellt eine neue Methodik vor, welche die gegebenen Unsicherheiten berücksichtigt,

inhärent Ausreißer vernachlässigt und dadurch zu robusteren Hypozentren führt. 
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Die entwickelte Methodik basiert auf dem Konzept des (graphischen) “Jackkifing's”. Entgegen den

meisten Standardverfahren wird hier nicht versucht, den Fehler des überbestimmten Systems direkt

zu  minimieren.  Stattdessen  wird  das  System  zuerst  in  exakt-  und  unterbestimmte  Subsysteme

zerlegt.  Daraus  ergeben  sich  verschiedene  Ortsbeschränkungen,  die  ihrerseits  nur  auf  der

Einsatzzeitdifferenz zwischen zwei- oder drei Phasen beruhen. Jede individuelle Ortseinschränkung

identifiziert  eine  Teilmenge  des  Raumes  als  möglichen  Ursprung  des  Erdbebens.  Durch

Kombination  mehrerer  Einschränkungen  wird  schließlich  das  Gebiet  eingegrenzt,  welches  das

Hypozentrum  in  seiner  Unsicherheit  beschreibt.  Da  die  Ortseinschränkungen  jeweils  nur  auf

wenigen  Phaseneinsätzen  beruhen,  können  Unstimmigkeiten  in  der  Lösung  auf  einzelne

Phaseneinsätze zurückgeführt werden, und die Datengrundlage (insbesondere Ausreißer) revidiert

werden. Die globale  Lösung wird schließlich aus  den bewerteten und korrigierten Sublösungen

rekombiniert, wodurch stabile Ausreißer-resistente Lösungen erreicht werden können.

Auf diesem Konzept  beruhend,  wurde  die  Methode  um drei-dimensionale  Stationsverteilungen,

komplexe Geschwindigkeitsmodelle und eine räumliche Berechnung erweitert, welche die Methode

für  viele  moderne  Anwendungen  öffnet.  Echzeitfähige  Algorithmen,  die  Unsicherheiten  in

Phaseneinsatzwahl, Phasenklassifizierung und Modelparametern berücksichtigen, erlauben robuste

und  akkurate  Ortungen,  selbst  wenn  die  Datengrundlage  karg  und  unsicher  ist.  Neue

Ortseinschränkungen werden vorgestellt,  die  Mehrdeutigkeiten in der Lösung auflösen und eine

schnellere  Bestimmung  des  Hypozentrums  und  der  Erdbebenmagnitude  in  Frühwarnsystemen

erlauben.  Eine  neue  Rastersuche,  welche  die  Wahrscheinlichkeit  der  Erfüllung  der

Einschränkungsbedingungen über Gitterzellen integriert,  sichert  die  Identifizierung kompaktester

Minima unabhängig von der Rasterauflösung und erfüllt somit die Bedingung nach Vollständigkeit

der Lösung. Die verbesserte Ortungsqualität wird an Hand mehrerer Beispiele aus den Bereichen

der  Gasfeld-Überwachung,  der  forensischen  Seismologie  und  der  Echtzeitortungen  in

Frühwarnsystemen aufgezeigt.
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I Introduction

I.1 Overview

The phenomenon “Earthquake” equally affected and fascinated mankind since the days of old. The

earthquake location problem, which can be described as the search for the source location from

which all released energy radiates, displays one of the early and key subjects of seismology. Today,

this field does not only pertain to classical earthquake location, but is applied for various kinds of

source  processes,  usually  several  magnitudes  of  energy  weaker:  Minute  fracture  processes,

explosions and implosions, impact events, structure collapses, events that often would only be noted

as  noise  bursts.  In  most  of  today’s  seismological  applications  enough  seismic  stations  exist  to

deliver  a  sufficient  amount  of  seismogram and arrival  time data  to  satisfy the  commonly used

models with redundant data. Yet, in other cases the amount of stations and redundancy and quality

of data is not given. One such example is the analysis of ML -3 shear-quakes in soft shale landslides

using  the  methodology  of  Nanoseismic  Monitoring  (Joswig,  2008)  to  identify  destabilization

processes. Here the event is often only detected by very few stations and signals close to noise level

often impede a clear identification of phase onsets. In the field of forensic seismology, searching for

ML -2 aftershocks in “Comprehensive Test Ban Treaty On-Site Inspections” (CTBT-OSI), only few

stations  actually  see  the  low  SNR  (Signal-to-Noise-Ratio)  signals.  In  the  real  time  location

framework of Earthquake Early Warning (EEW), the event needs to be located and evaluated within

fractions of seconds without knowledge of the full signal and detections only on a minimum amount

of stations. In other cases, only few stations can be deployed as in the exotic case of the Rosetta

space mission's Acoustic Surface Sounding Experiment (CASSE) on the Philae lander (which just

landed on comet 67P/Churyumov-Gerasimenko), deriving information from the three sensors in its

legs.

The less data is available the more the location estimate depends on the individual datum and the

more it is affected by its uncertainties and errors. Mislocations in applications of early warning or

forensic seismology may have far-reaching implications for society and on the political level. The

location analysis therefore requires robust methods that allow to resolve the correlation between

individual data and global solution and reveal all physically possible solutions.

The work presented in this thesis builds on the concept of graphical jackknifing (Joswig, 2006),

which complementary to the widely used purely numerical, iterative localization methods offers

insight into the location process in a way that is crucial for the analysis of sparse and doubtful data.
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Contrasting most of today's standard approaches, which attempt to directly minimize the error in

over-determined systems (e.g. sum of L2-normed residuals), here the (over-determined) system is

first  decomposed  into  exactly-  and  even  under-determined  subsystems.  This  results  in  distinct

location constraints that are based on arrival time differences between arriving phases. These are

individually evaluated, which provides the possibility to trace back discrepancies in the solutions to

individual  phase  data,  allowing  to  re-evaluate  and  possibly  correct  the  datum  or  underlying

information  base.  The  global  solution  is  finally  recomposed  based  on  the  solutions  of  the

trustworthy subsystems, which allows to obtain stable and outlier resistant solutions. 

Even when principal phases (e.g Pg- or S-phases) can be identified and picked sufficiently accurate

- an even larger impact on the source location is exerted by the choice of the velocity model. Often,

the velocity structure is not well known and only roughly approximated through 1D models. Given

only few data, the effect of mis-chosen models can be significant. 

The work presented in this thesis therefore focussed on two key points. As the event interpretation

relies on a high location quality, one aspect focusses on ways to increase the accuracy of single

event  locations through methodological  advancements,  to  support complex velocity  models and

three-dimensional station distributions in the context of distinct constraints. As this yields complex

constraint behavior, new approaches will be introduced to gain insight to the solution space. The

second aspect relates to the proper treatment of the corresponding location uncertainties which may

be significant in the context of sparse and doubtful data, to identify all mathematically possible

locations and those most probable. Husen and Hardebeck (2010) point out that the uncertainties in

earthquake location are dominated by three factors, which are 1) measurement errors in the arrival

times, 2) modelling errors in the computed travel  times and 3) the general non-linearity of the

location problem. If implemented in location codes, measurement errors are usually assumed to be

Gauss distributed, yielding Gaussian error distributions for the location. As this prerequisite is not

given for doubtful data with unclean phases in noisy condition nor for the scenario of few stations, a

general probabilistic form will be derived (A large amount of stations with small errors, on the other

hand, will always yield Gauss-distributed probabilities for the location error, independent of the

form of the probability distribution of the parameter errors (Central-Limit-Theorem)). Model errors

-if at all implemented- are based on simplified functions, usually also Gauss-distributed and treated

in  a  combined  manner  with  measurement  errors  (Lomax,  2009),  but  not  representing  the  true

uncertainties derived from the velocity model or travel time curves. Pavlis (1986) shows that this

leads to biased solutions and beside Lomax (2011), Husen and Hardebeck (2010) conclude that “all

13
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location methods suffer from an inappropriate handling of velocity model errors”. Yet, the proper

treatment of these uncertainties is crucial for the analysis of sparse data. A novel approach will be

presented that allows to account for these uncertainties within the framework of distinct constraints.

Additional focus will be laid on extending the concept of distinct constraints to the estimates of

small-aperture arrays, which are an important component in the data collection, offering important

location  constraints,  in  particular  back-azimuth  information.  Chapter  III.1 will  evaluate  the

precision in location that the various constraints can achieve, but it will further shed light on the

important aspect of location ambiguities – ambiguities that are not caused by errors in the input

parameters  (which  would  lead  to  a  scatter  of  minima  in  e.g.  L1-residua  maps)  but  are  exact

solutions to a set of (even ideal) arrival times of any given phase, e.g. the P-phase arrival recorded

at several stations. Since these ambiguities appear only for special geometrical configurations when

many  stations  are  given,  they  are  hardly  observed  -  but  with  less  than  five  stations,  these

ambiguities  arise  commonly  and  may  cause  a  significant  misinterpretation  of  the  source.  The

method of  distinct  constraints  is  formulated  to  properly identify these  ambiguities  and provide

constraints that allow the identification of the true solution, to yield accurate hypocenter locations.

This is of fundamental importance for earthquake early warning systems. Due to a real time capable

implementation,  distinct  constraints  is  well  suited  for  the  application  of  real  time  locations  in

earthquake early warning, which chapter IV is dedicated to. 

The circumstance of few available data, weak or non-standard events defines the context of the

location problem laid out in this thesis. One such example is shown in the following figure ( I.1:1),

displaying surface waves on seismic traces recorded at several stations at the US East Coast.

14



I Introduction I.1 Overview

Fig.  I.1:1: Registration of low SNR surface wave signals on the vertical BHZ component of six broad band stations.
The blue curve marks all possible phase onsets. The unfiltered seismograms (red) are underlaid by sonograms (i.e.
noise-adapted  spectrograms,  displaying  the  signal  energies  per  frequency  band over  time)  of  fig.I.1:2.  While  the
seismogram at  HRV doesn't  allow a correlation with the  waveform of  the closest  station LSCT (and impedes an
automatic detection or phase identification), the sonogram (fig.I.1:2) clearly shows the same signature. Station SSPA in
far distance shows several signatures similar to LSCT, two of them are due to local events.

The signals in this seismic record originate from the catastrophic collapse of the Twin Towers, on

Sept. 11th 2001. Solely based on this record it would be difficult to locate their origin. Several vague

phase  onset  candidates  render  the  association  to  one  single  event  difficult.  Weak  signatures  at

distant stations (e.g. HRV, SNR≈1 ) can only be recognized using a noise- adapted spectral analysis

(Sonograms) (Joswig, 2008) (fig.  I.1:2). Arrival time picking uncertainties are therefore large, as

picking is not based on a phase identification in raw seismograms but by similarity in the spectral

signature. 
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I Introduction I.1 Overview

The existence of additional spectral energy signatures, possibly originating from local sources, leads

to  an  ambiguity  in  picking  that  impedes  the  use  of  standard  techniques  as  Root-Mean-Square

(RMS) residua sum based approaches. 

Fig.  I.1:2: Sonogram traces of fig.  I.1:1. The strong signature of the closest station LSCT can still be identified on
HRV. On SSPA several signatures could match the one of LSCT. The blue boxes mark all possible signature onsets. The
color scale spans from white (no energy above noise level in given frequency band) over green and blue to black
(indicating significant energies above noise level in the respective frequency band). 

The following chapters present the development of a novel location methodology that provides for

accurate locations when uncertainties are large and information is few: Ranging from weak and

ambiguous signals (as in fig. I.1:2) in microseismic monitoring, to large-magnitude events that need

to be located within fractions of seconds on the basis of a few stations in earthquake early warning.

The  approach  presented  here  further  develops  solutions  found  in  the  most  advanced  location

techniques available today and blends them with key components that are, however, found much

earlier, in the location schemes being introduced when modern seismology was just born.
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I.2 Earthquake Location: “State of the Art” and “Back to the Roots”

Given a sufficient amount of good data, various advanced location methods allow to obtain detailed

information on the source location, its extent, as even the whole space-time history of the rupture

process. Given many stations and multiple events, joint hypocenter relocation schemes as Master

Event (Deichmann and Garcia-Fernandez, 1992) or Double Difference (Waldhausen, 2001) may be

applied. This greatly improves relative locations, often resolving sharp structural information in the

form of tight event clusters. It, however, does not provide more accurate absolute locations than

obtained  by single-event  location  techniques  (Menke  and  Schaff,  2004)  except  in  cases  where

ground truth information is available. Given a sufficiently large amount of stations (>100), not only

the hypocenter but the full space-time history of a single rupture process can be determined by back

propagation,  back  projection  and  Time Reversal  techniques  (Larmat,  2006).  The  signals  being

recorded at transducer-arrays are here time-reversed and retransmitted through the model-medium.

The wave travels back and refocusses at the source location due to the time invariance of the wave

equation. Passive Seismic (Duncan, 2005) allows to locate events with signals below noise level

using automated beam steered waveform stacking. Here the emitted energy is calculated at every

location of interest by stacking waveforms, each being time shifted according to the travel time

from trial location to station before stacking. However, also this method requires data of between

40-100 stations. 

When this amount of data is not available, single-event location falls back to feature (seismic phase)

based approaches. The focus of this work lies on the evaluation of local to regional events using a

phase based analysis,  incorporating the information  of  direct  and refracted P and S waves and

small-aperture-array  beam forming  within  a  jackknifing  concept.  For  phase  based single  event

location  predominately  two  inversion  classes  exist  today  (Husen  and  Hardebeck,  2010),  both

attempting the minimization of residual sums. The first is based on iterative searches, in which the

forward problem is linearized and the solution found by step wise improvement of a initial estimate.

Matrices of partial derivatives representing the local gradient of the penalty function at given test

vectors in solution space are inverted to obtain improved estimates. In the second class,  direct,

global searches are performed. The solution space is sampled using regular, irregular or nested grids

which allows a mapping of the solution quality and finds the global and all local minima, given that

they lie in the sampled interval. Linearized inversions only sample the solution space at few test

locations and are therefore incomplete. They depend on an initial test estimate which may lead to
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convergence into local minima. As they rely on partial derivatives they may become unstable in

heterogeneous environments with first order discontinuities and may misrepresent the true solution

for poorly-constrained problems. Outliers  in  the data  strongly affect  the solution (Husen et  al.,

2003). Yet, linearizing iterative schemes are very efficient and of low computational cost, making

them  generally  the  method  of  choice.  Software  packages  like  HYPO71  (Lee  et  al.,  1975),

HYPOINVERSE (Klein,  1978),  HYPOCENTER (Lienert  et  al.,  1986),  HYPOELLIPSE (Lahr,

1989)  and  HYPOSAT (Schweitzer,  1997)  are  well  known representatives  of  this  class.  In  the

following the underlying iterative scheme and its error measures shall be outlined.

I.2.1 Linearized Inversion Schemes

The fundamental  concept  of  many iterative location  procedures used today has  its  roots in  the

scheme developed by Geiger (1910), which initially inverted in two spatial  dimensions as deep

hypocenters  were  ruled  out  at  the  beginning  of  the  20th century.  The  objects  of  inversion  are

hypocenter location (x , y , z)t  and origin time t0 . The two are combined in the model vector 

m=(x , y , z , t0) (I.2.1-1)

which starting from an initial guess location is improved stepwise until convergence is met.  The

data given are the observed arrival times t i
O  picked from a seismogram recorded at location x i  of

station i  

x i=x i , y i , z i . (I.2.1-2)

Arrival times can be expressed as the sum of origin time t0  and the wave's travel time Tt  between

source x  and i -th station x i

t i
O=t0+Tt ( x , x i) . (I.2.1-3)

Given a model representing the existing velocity structure, a proposed hypocenter and origin time,

the synthetic arrival time t i
M  can be predicted by a forward calculation of the travel time
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t i
M=F i(m) . (I.2.1-4)

Here,  F i  is the operator projecting the four dimensional space-time model vector  m  into the

temporal one dimensional solution space. F describes all calculations of wave propagation between

source and i-th station through the velocity model. These calculations are performed either semi-

analytically,  but  usually  numerically  using  ray-tracers  or  wavefront  solvers,  or  practically  by

interpolating tables of recorded travel-times. Eq. (I.2.1-4) can be written vectorially as

t M=F (m) . (I.2.1-5)

The residual r i  defines the discrepancy between forward calculated (modeled) and observed onset

times 

r i=t i
O−t i

M . (I.2.1-6)

Now, a model vector m∗  is sought which minimizes the sum over all (absolute) values of residuals

(L1-norm). For this vector, calculated (predicted) and observed onset times become similar

R(L1)=∑
i
∣r i∣=∑

i

∣t i
O−t i

M∣=! min . (I.2.1-7)

This L1-norm is a robust measure for the discrepancy between predicted (modeled) and observed

data,  as  it  is  insensitive  to  outliers.  However,  it  is  not  differentiable  at  the  point  of  vanishing

residuals which complicates the numerical minimization. The commonly used L2-norm

R(L2)=∑
i

r i
2=∑

i

(t i
O−t i

M )2=! min , (I.2.1-8)

on the other hand is once continuously differentiable and assigns comparably higher penalties to

larger residuals. While this is reasonable for data with smaller measurement errors (as it is more
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important to bring larger discrepancies into agreement, than small ones for which the requirements

are nearly satisfied), the least-squares norm causes misguiding outliers to dominate the solution. To

dampen  these  effects,  mixed  L1/L2-norms  may  be  applied,  e.g.  the  Huber-norm  (Guitton  and

Symes, 2003) uses a L2 norm for smaller residuals, while using an L1 norm when they grow larger.

To compensate the impact of large residuals, weights are often attributed in the root-mean-squared

residuals (RMS) minimization (eq. I.2.1-9).

RMS=
∑

1

n

wi r i
2

∑
1

n

wi

(I.2.1-9)

Residuals  may be weighed directly  based on the quality  of  the  corresponding phase  pick.  The

weight wi  of station i  is also generally set in relation to the distance as closer sources tend to have

clearer  phase  onsets  and uncertainties  in  the  local  velocity  model  show less  effect  for  shorter

distances. A standard form of distance weighting is given in (Havskov et al., 2011)

wi
d∝ { x far , x far<Δi

x far−Δi

x far−x near

, xnear<Δi<x far

xnear , Δi<xnear

 , (I.2.1-10)

with Δi  being the epicentral distance, xnear  the distance yielding full weight and x far  the distance

corresponding to reduced weight.  xnear  is suggested to be in the order of magnitude of network

diameter and  x far  being about twice  xnear . For more than six available phases, HYPOELLIPSE

(Lahr,  1999) makes use of truncation or boxcar weighting which reduces the weight, and fully

neglects residuals larger then a multiple of the standard deviation, respectively. 

The inversion scheme solves the inverse problem iteratively. Starting with an initial guess value

m0 , the hypocenter is approached by searching for a better m  in its vicinity. 
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m=m0+Δm (I.2.1-11)

Δm is assumed to be small, so that the relationship between modeled arrival time t M and m may

be linearized neglecting higher order Taylor-terms

t i
M (m)=ti

M (m0)+∑
j

∂ ti
M

∂m j
∣

m0

Δm j + ... . (I.2.1-12)

A “better” model vector m  is characterized by lower residuals r (m)  compared to r (m0) . 

ri (m)= tO−ti
M (m)

= tO−ti
M (m0)⏟

ri(m
0)

+∑
j

∂ ti
M

∂m j
∣

m0

Δm j
(I.2.1-13)

r (m)  can be minimized by requiring

ri (m
0)= ∑

j

∂ t i
M

∂m j
∣

m0

Δm j . (I.2.1-14)

This, in vectorial notation, takes the form of

r (m0)=G Δm (I.2.1-15)

with G being the Jacobian matrix of partial derivatives

G i j=
∂ t i

M

∂m j

. (I.2.1-16)

As m  is four dimensional, G  becomes a square matrix in case of four given onsets. In this case,
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Δ m  may be obtained by direct multiplication of r  with the inverse of G , G−1 . Using eq. (I.2.1-

11) an improved model vector is given. The process is repeated until  m  converges.  If more than

four stations are given, the dimensionality of G  differs from the one of m . In this case Δ m  can

not be obtained directly, since no inverse  G−1  exists ( G−1 G=! 1 ).  The overdetermined equation

system is solved by minimizing a global misfit function  χ2 . Every onset  t i
O  is bound to errors,

expressed by the standard deviation σi  by which it is weighted in χ2 . In analogy to eq. (I.2.1-7) it

is written as

χ2=∑
i

1

σ i
2 (ri−∑

j

G i jΔm j)
2

. (I.2.1-17)

Requiring the partial derivative ∂2 /∂mk to vanish leads to a system of linear equations that

yields  the  set  of  Δmi  for  which  χ2  is  minimized.  Since  all  mi  are  independent  (

∂Δm j /∂Δmk=0 ) eq. (I.2.1-17) can be reformulated to

∂χ2

∂Δmk

= 0 =2∑
i

1

σi
2 (ri−∑

j

G i jΔm j)G ik . (I.2.1-18)

Splitting up the summation terms 

∑
i

1

σi
2 r i G ik=∑

i

1

σ i
2 (∑j

G i jΔm j)G ik , (I.2.1-19)

and assuming similar standard deviations  σi≈σ ,∀ i  yields

→
σ i=σ

∑
i

ri G ik=∑
i (∑j

G i jΔm j)G ik , (I.2.1-20)

or 

GT r=GT GΔ m (I.2.1-21)

 

22



I Introduction I.2.1 Linearized Inversion Schemes

 in vector notation. It can be solved for Δ m : 

Δm= (GT G)−1 GT r= G−g r . (I.2.1-22)

Due to its similarity with eq. (I.2.1-15), G−g  is also called the generalized Inverse of G , allowing

to  solve  for  Δ m  following  a  least  squares  formalism.  G−g  is  equivalent  to  G−1  for

dim(r)=dim(m)=4.  Successive  application  of  eq.(I.2.1-11) and  (I.2.1-22) leads  to  an  steadily

improved  m∗ .  The  corresponding onset  times being the  solution  of  the  forward  problem,  are

calculated using eq. (I.2.1-5). A good choice of the start vector m0  is important as a m0  distant to

the true hypocenter may lead to convergence in local minima instead of the global one. An initial

start vector may be obtained using an origin time extracted from Wadati-diagrams and an location

obtained from hyperbolic location (chapter  I.2.4). For a stable iteration the operator F has to be

continuously  differentiable.  An  inhomogeneous  medium e.g.  containing  layer  boundaries  is

therefore problematic and may lead to convergence in local minima, e.g. in vicinity of the layer

boundary.

  

Fig.  I.2.1:1: Iterative inversion in a 3-layer medium with dipping layer
boundaries,  showing  the  spatial  evolution  of  the  model  vector.  The
solution m* is found by step wise improvement, starting from the estimate
m0. Not shown is the evolution of the origin time, which -in well behaved
models- converges with  the spatial solution.

The quality of the solution is indicated by the behavior of the RMS in the vicinity of m∗ , which

could  be  directly  observed in  a  global,  direct  search  approach:  A RMS,  growing  quickly with

distance from the minimum, corresponds to a well-constrained and well-localized solution. A slowly

growing  RMS  indicates  that  small  deviations  in  the  onset  times  would  lead  to  large  spatial
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dislocations of the estimated hypocenter: The true solution could consequently be found in a larger

area around  m∗ .  This can be quantified through the variance-covariance error ellipsoid, which

extrapolates  the  information  given in  the  variance-covariation  found at  the  point  of  m∗ .  The

variance-covariance matrix σ X
2  is defined as 

σ X
2 =(GT σ−1G)−1 (I.2.1-23)

with σ  being the matrix of onset covariances while the second term expresses the covariance of the

partial derivatives laid out in eq. (I.2.1-16). The diagonal elements of σ X
2  :  σ xx

2 , σ yy
2 , σ zz

2  and σtt
2

are the variances of hypocenter location (x,y,z) and origin time ( t0 ), while off-diagonal elements

display  the  relationship  e.g.  trade-offs  between  the  four  model  quantities  (Bormann,  2012).  A

singular  value  decomposition  (SVD)  or  principle  component  analysis  (PCA)  of  the  submatrix

containing the spatial components yields the ellipsoid's principal axes. The resulting eigenvectors

and -values orient the ellipsoid in space. With  σ X
2  being a variance matrix, the square root of

diagonal elements corresponds to the standard deviation of the hypocentral parameter. This 1 σ

ellipse corresponds to a 68% confidence interval of the hypocenter falling into this volume (Chew,

1966). Scaling the variance-covariance matrix to correspond to two or three standard deviations

enlarges  the ellipsoid  to  express a  95% resp.  99.7% confidence region. Yet,  as  the ellipsoid is

extrapolated from the single point m∗  this error measure looses its applicability in the presence of

inhomogeneities, in which case the hypocenter might be located well outside the confidence region.

Pavlis (1986) showed for a simple example that due to the disregarding of model uncertainties none

of the  evaluated events true hypocenters was located inside  the  corresponding 95% confidence

ellipsoids. Also, when the system is ill-conditioned, e.g. poorly constrained solutions due to few

unfavorably places stations, the ellipsoid is an inadequate representation of uncertainties (Husen

and Hardebeck,  2010).  Nonetheless,  the  main  axes  of  the  confidence-ellipsoid  are  used  as  the

standard error measure in many of todays earthquake catalogs.

A mayor drawback of this inversion methodology lies in the fact, that the solution space remains

largely unexplored, except for the few points that are evaluated during the iteration or in the final

analysis around the found minimum. In cases with only a few data and expected misidentifications

of phase onsets, several minima will exist and need to be evaluated. It is important to reveal these
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model  vectors  with  similar  RMS  (competing  side  minima),  as  their  scatter  in  solution  space

indicates  the  true  solution  uncertainty.  The  identification  of  an  outlier  datum is  difficult  using

linearizing RMS based approaches in which the effect of individual parameter changes are only

observable in an integral manner. Due to the underlying least-squares formalism data outliers have a

large  impact  on the  solution  and small  deviations  in  observed  onset  times  may result  in  large

hypocenter dislocations (Lin&Sanford, 2001). The application of the more robust L1 norm leads to

instabilities  in  the  iteration  process,  due  to  misleading  gradient  estimates  near  the  minima.

Linearizing schemes generally face the danger to iterate into local minima and may get “trapped” at

velocity contrasts such as layer boundaries. Many of these disadvantages can be resolved using the

computationally  more  expensive  approach of  direct,  global  searches  often referred to  as  “Grid

searches”, which do not rely on gradient computations.

I.2.2 Direct Global Search Schemes

To obtain “complete” solutions, i.e. identify all local and the global minima, a “direct global search”

attempts to evaluate all possible model vectors contained in a certain interval, mapping the solution

space rather than sparsely sampling it. The problem is inverted by testing the whole solution space

via forward calculations for the model vector that explains the observed data best. For each test

model vector the discrepancy between observed and calculated arrival times is computed to find the

one  yielding  the  lowest  discrepancy.  As  the  whole  model  space  is  sampled,  this  methodology

provides overview over the solution space, identifying the global as well as local minima. As no

partial derivatives are required for a direct search, other discrepancy measures e.g. the L1-norm

may be used, enhancing the outlier resistance of this scheme, thereby increasing the robustness of

the solution. For the same reason, heterogeneous velocity models with high velocity contrasts may

directly be implemented and analyzed. The term “global” denotes a completeness in covering the

model space, which is the harder aspect to realize, as in fact also this method only  samples the

solution space, although orders of magnitude higher resolved than the linearizing inversion. With a

four dimensional model space in the simplest case it is sampled into a four dimensional regular grid.

The maximum possible resolution is limited by the available computational power and memory. As

for too low resolutions the true vector might not be found, adaptively refined nested grids often find

application e.g the oct-tree algorithm implemented in NonLinLoc which is about 100 times faster
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than  a  standard  grid  search  that  is  of  higher  resolution,  initially  (Lomax,  2009).  NonLinLoc

represents one of the commonly used grid search approaches and will serve as example for a direct

search approach. Here, a initially coarse grid is recursively refined. At the center of each cell, misfit

and probability measures are computed. The grid cell  with the largest probability to contain the

source  is  subdivided  into  8  cells,  for  which  misfit  and  probabilities  are  again  calculated.  The

process is repeated until termination criteria are met. 

Fig. I.2.2:1: Recursively nested grid. Oct-tree grid.

NonLinLoc follows the probabilistic inversion approach of Tarantola and Valette (1982) to derive a

posterior probability density function (PDF), identifying the optimal source location as the point of

maximum likelihood. As the oct-tree's recursive subdivision follows the maximum of the PDF, the

relative probability Pi  that a source is located in any given cell i  is given by

Pi = V i L(x i) , (I.2.2-1)

with V i  being the cell volume and x i  denoting the coordinate vector at the cell center.  L (x)  Is

the likelihood function pertaining to the spatial part of the model vector m . The general likelihood

L(m)  is derived  from  a  marginal  posterior  PDF  under  the  assumption  of  Gauss  distributed

observed data and negligible uncertainties in the forward problem F (m)  to

L (m)=exp {−1
2

[d 0−F (m) ]T C d
−1 [d 0−F (m) ]} (I.2.2-2)
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in analogy to eq. (I.2.1-5). Here, d 0  and C d  describe the mean and covariance matrix of the gauss-

distributed  observed  data.  Moser  et  al.  (1992)  showed  that  for  these  assumptions  a  maximum

likelihood origin time for a hypocenter at location x  can be obtained analytically as

t0
ml (x )=

∑
i
∑

j

wij⋅[ ti−h i( x)]

∑
i
∑

j

wij

(I.2.2-3)

with  wij  being weight components standing in relation to the covariance matrices of computed

travel- and observed arrival times, both assumed to have Gaussian uncertainties.  t i  and  h i( x)

denote the mean corrected arrival- and modeled travel times, respectively. Using this origin time

estimate,  the  problem's  dimensionality  can  be  reduced  to  a  purely  spatial  three-dimensional

analysis. The least squares probability function LLS ( x)  can now be derived from eq. (I.2.2-2) to 

LLS (x)=exp{−1/2∑
i

[t i
O−t i

M (x )]2

σi
2 } (I.2.2-4)

with  t i
O  being the observed arrival time and  t i

M  being the modeled arrival time obtained from

modeled travel times TtM  minus the maximum likelihood origin time t0
ml (x ) .  σi

2  expresses the

combined standard deviation for arrival and modeled travel times. Using the gaussian assumption,

the search for the maximum likelihood location is equivalent to a least squares problem (Tarantola

and Valette, 1982) and hence sensitive to outliers. An alternative measure was therefore derived

from the Equal Differential Time (EDT) approach (Milne, 1886), which relies on the arrival time

difference of the same phase at station pairs (Its details will be described in chapter  II.1.2.2). In

Tarantola and Valette's formulation the likelihood LEDT (x )  is given by

LEDT (x )=[∑a ,b

1

√σa
2+σb

2
⋅exp(− {[ t a

O−tb
O ]−[Tta

M ( x )−Ttb
M ( x )]}2

σ a
2+σb

2 )]
N

. (I.2.2-5)

As the sum over arrival time pairs from station a  and b  lies here outside the exponential function,

27



I Introduction I.2.2 Direct Global Search Schemes

the PDF based on LEDT  is more robust in presence of outliers than one based on L2 least-squares,

in case of large discrepancies even of the L1-norm (see chapter II.1.1, fig. II.1.1:2). The exponent N

denotes the number of observations. As with  LLS (x) ,  the maximum of the PDF identifies the

“optimal”  location  while  the  PDF itself  indicates  its  uncertainties.  The  general  formulation  of

Tarantola and Valette (1982) provides for a complete, probabilistic solution including picking and

model  uncertainties.  However,  to  obtain  analytical  solutions  for  earthquake  location,  Gauss-

distributed uncertainties were applied.  While normally distributed and unbiased errors are often

assumed, the true distributions are asymmetric and more complex. Picking is biased as picks tend to

be  late  (wherefore  no  Gauss-shaped  distribution  around  the  true  arrival  time  is  given).  Using

Lomnitz' words: “Generations of station seismologists faced the thankless chore of trying to pick an

emerging signal in the presence of noise, yet the fact that this operation is inherently biased was

ignored”  (Lomnitz,  2006).  One  sided  errors  do  not  yield  Gauss-like  distributions.  Also  model

uncertainties  are  more  complex and can yield  asymmetric  distributions  already for  simple  1D-

models (chapter II.3.5). Lomax (2011) notes that “estimating these travel-time errors is difficult and

often not attempted”. Simple estimates of travel-time errors are used instead. For the  LEDT (x )

formulation, the error can optionally be estimated as a fraction of the travel-time. This describes the

error well  for  a  homogeneous half  space,  but  is  insufficient  for more complex models.  Lomax

concludes “Because it is difficult or impossible to obtain, a more complete estimate of the travel-

time errors (or, equivalently, a robust estimate of the errors in the velocity model) is not used. This

is a serious limitation of this and most location algorithms, particularly for the study of absolute

event locations”. Chapter II.3.5 will establish practical estimates for the travel-time error caused by

model uncertainties and will introduce a methodology generally working in non-gaussian analysis.

The oct-tree importance-sampling of the solution space is fast and efficient, identifying the global

maximum even in multi-modal probability density functions. However, it may not identify narrow,

local maxima (see chapter II.4, fig.  II.4:1 highlights the importance of this point). This scheme is

further not intended or able to display the correlation between an individual datum and the solution,

which is important for the analysis of doubtful or ambiguous data. 

Compared to the residual sum based measure LLS ( x) , the likelihood based on EDTs proves itself

more stable in presence of outliers (e.g. fig.II.1.1:1, chapter II.1.1). The underlying concept of EDTs

Milne described already in 1886 as a consequence of the method of circles which came to be known

as the location based on “S-P circles”. Chapter II.1 will show that both methods are members of a
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set of methods that can be derived applying the concept of jackknifing, yielding location estimates

that are robust in presence of outliers. We will look at these two early key methods to understand

how the earthquake location may be determined in a robust way, without the use of residual sum

estimates.

I.2.3 Location based on S-P Information

The method of circles mentioned by Milne (1886) locates the earthquake by drawing circles around

the stations, searching for a common intersection. The radius is determined by the time difference of

P-phase onset and origin time. As, initially, the origin time is unknown, this method is a method of

trial. To compensate for the unknown, first, circles of a minimum radius were drawn around the

stations. If no common intersection was given, the radius was enlarged proportionally among the

circles and the circles were redrawn. At the right radius, most circles would intersect in a small

region. This approach works for the assumption of that time, that “hypocenters are shallow”, but

also since this was used on regional  and global scale where depth is  negligible.  However,  this

approach can be transformed into an explicit one as the origin time may be obtained using e.g.

Wadati-diagrams. For the class of velocity models for which P- and S-wave travel on the same

paths, the difference in travel time of S- and P-wave scales linearly and proportional to the distance

between station and epicenter due to the linear relationship between P- and S-wave velocity (eq.

I.2.3-1)

v p

vs

= √ 2μ+λ
μ = √1+ 1

1−2 ν
> 1

λ  :

μ  :

ν  :

1st Lamé parameter

2nd Lamé parameter    .

Poisson's ratio

  (I.2.3-1)

For such models this ratio remains constant over the travelled path. But if this ratio is known to

fluctuate  significantly  in  the  analyzed  region,  the  epicentral  distance  can  only  be  found  by

computing the travel paths and times for P- and S-phase independently and solving eq. I.2.3-3. For

the following derivation we will assume a constant ratio.
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Fig. I.2.3:1: For constant vp  / vs-ratios the ray paths
of S and P wave are similar and both travel times are
linearly  proportional  to  each  other.  Blue  shading
correlates with the seismic velocity)

Eliminating the origin time from eq. (I.2.1-3), one may write for two given phases, S and P

t p−tt p( x , x station) = t0 = t s−tt s(x , x station) , (I.2.3-2)

yielding

t s−t p=tt s−tt p . (I.2.3-3)

Using

tt s

tt p

=
v p

v s

, (I.2.3-4)

eq. (I.2.3-3) becomes

t s−t p =
v p

vs

tt p−tt p = tt p(
v p

vs

−1) (I.2.3-5)

and hence the travel time can be obtained from the difference of S- and P- arrival time

tt p =
t s−t p

(v p /v s)−1
. (I.2.3-6)

30

 Tt
p

 Tt
S

t
0

t
P

t
S



I Introduction I.2.3 Location based on S-P Information

For a homogeneous velocity model, this corresponds to a radially constant hypocentral distance d

d=v p⋅tt p =
v p⋅(t s−t p)
(v p/vs)−1

. (I.2.3-7)

Similar to the concept of trilateration,  in which a  navigator  obtains his  own location using the

intersection of three circles around fix points, the epicentral distances obtained from the arrival time

difference of S- and P-phase can be used to span out several spheres around the given stations. Each

sphere corresponds to all possible hypocenters pertaining to the information given at one station.

The global solution must comply with all given information, and is ideally determined by the one

intersection  of  all  spheres,  found  in  the  correct  focal  depth.  Historically,  the  focal  depth  was

neglected,  which  allowed  the  reduction  from  spheres  (3D)  to  circles  (2D).  Since  an  ideal

intersection  was usually  not  given due  to  picking and  model  errors,  a  representative  epicenter

estimate was commonly chosen by crossing the chords, which connect the intersection points of

circle pairs (fig. I.2.3:2).

Fig.  I.2.3:2:  Trilateration.  a)  Location  determined  by  the
intersection of several circles. The solution is marked by the
common intersection (green).  b) If no common intersection
exists, it is estimated by the crossing of chords.
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I.2.4 Location based on P1-P2 Information

Milne's method of hyperbolas, which is generally known today by the name of hyperbolic location

or Time-Difference-Of-Arrival (TDOA) location, can be understood as a derivate of the trial method

of circles for which the origin time was unknown – now applied to station pairs. Let two stations be

given for which the onset of the same phase has been recorded. Let the wave first arrive at station 1

at time t1
p  and Δ t  seconds later at station 2,

t2
p=t1

p+Δ t . (I.2.4-1)

The travel time tt i  from hypocenter to station i  is given by

t ti=t i
p−t0 . (I.2.4-2)

As the origin time is unknown, the circle's radius is unknown. In the method of hyperbolas (like in

the method of circles) the origin time is varied, but here synchronized for station pairs. A trial origin

time equal to the arrival time at station 1 yields a travel time of t t1=0 s  for the first station, and a

travel time of tt 2=Δ t  for station 2. These travel times can be interpreted as proxy for hypocentral

distance radii around the stations, allowing to construct circles as done using S-P information. If the

distance  between  both  stations  is  larger  than  the  radius  corresponding  to  Δ t ,  no  intersection

between both circles is achieved: No agreement exists between both given distance information.

Continuing  to  test  with  earlier  origin  times  causes  both  circles  to  grow  until  they  eventually

intersect in one common point. With the trial origin time further decreasing, both circles continue to

grow and the subsequent intersections of both circles build up the geometrical shape of a hyperbola

(fig. I.2.4:1).
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Fig. I.2.4:1: Hyperbola (green) as intersection of two growing circles. The
earlier the trial origin time t*

0 , the larger the radius.

The hyperbola displays therefore all possible epicenter locations for all possible origin times, based

on the time difference between two stations. The first common point at which both growing circles

touch, corresponds to the hyperbola's apex and the origin time decreases with distance to it. The

origin time may therefore be interpreted as the parameter of a parametric hyperbolic curve. 

At  Δ t=0s  the  hyperbola  takes  the  form of  a  line,  perpendicular  to  the  axis  connecting  both

stations  and  located  centered.  The  hyperbola's  curvature  increases  with  Δ t :  The  larger  the

difference between both observed phases, the closer the hyperbola is located toward the first station,

bending around it. The origin time difference is limited by physical constraints: There is no solution

for a Δ t  larger than Δ t crit  which corresponds to the the travel time that the phase needs to travel

from the first to the second station tt 12  (fig. I.2.4:2). 

Δ t crit=tt12 (I.2.4-3)
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Fig. I.2.4:2: Hyperbolic curves for different arrival time differences in a homogeneous model. In a)
both stations detect at the same time. b-d) The earlier station 1 detects, the stronger the hyperbola is
bent towards the station. e) When station 1 detects the phase tt 12 seconds earlier than station 2, the
hyperbola collapses into a line. tt12 being the time a signal travels from one station to the other. For
every  point  on the line,  the  travel  time difference  equals  tt12 (see  text).  For  larger  arrival  time
differences than tt12 the hyperbola ceases to exist (f).

This may be understood, considering that the most extreme Δ t  are achieved for source locations

lying on the connecting axis of both stations:  ∣Δ t∣  is minimal for a source centered between both

stations  (in  a  laterally  homogeneous  model).  For  a  source  collocated  with  the  station  of  first

detection, holds Δ t=tt12 . For a source on the same axis outside of the network, let tt s1  define the

travel time between source and first  station and  tt s2 the travel time between source and second

station. For the latter, the wave must travel past station 1, continuing to station 2. Therefore,

tt s2≈tt s1+tt12 (I.2.4-4)

and
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Δ t = t2−t 1

= (tt s2+t0)−(tt s1+t0)
= tt s2−tt s1

≈ tt s1+tt12−tt s1

= tt12

(I.2.4-5)

The maximum possible arrival time difference for any source location outside of the network is

given  by  Δ t=Δ t crit .  Approaching  Δ t crit ,  the  hyperbola's  apex approaches  the  station of  first

detection  while  its  opening  angle  (the  angle  between  both  asymptotes)  goes  toward  zero,  the

“hyperbola collapses into a line”. Larger onset time difference are physically impossible for the

given velocity model. This defines the existence criterion for hyperbolas

tt 12<Δ t crit . (I.2.4-6)

Larger onset time difference indicate discrepancies in the data. This fact often allows to discard

ambiguous phases for which this criterion is  violated. On the other hand, if  phases at  different

stations can clearly be identified to be the same (e.g. by their pattern and/or spectral signature), but

the existence criterion is violated, an indication for model-discrepancies is given.

When  more  than  two stations  are  given,  the  hyperbolic  location  method may be  applied.  The

following  two  (space-)dimensional  example  (i.e.  known focal  depth)  illustrates  the  concept  of

hyperbolic location with three given stations (fig. I.2.4:3). 
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Fig.  I.2.4:3: Hyperbolic location. Between pairs of stations a hyperbola is constructed by varying trial origin
times (each circle corresponds to a constant origin time). With three given stations three pairs of station can be
formed, yielding three hyperbolas (top). These three intersect in a common point (bottom), marking the epicenter
(yellow circle). This point bears the same origin time (intersection of three dashed circles of same origin time).
Chapter 208 will show that for certain sets of arrival times also multiple intersection points may exist, leaving the
solution ambiguous (fig. I.2.4:5). 

The permutation of stations 1,2 and 3 into pairs yields three hyperbolas which represent a coupled

system  of  equations  (station  1&2,  2&3  and  3&1)  being  exactly  determined.  Every  hyperbola

represents all possible epicenters (and origin times) based on the subset of information it relies on.

The  solution  pertaining  to  the  full  set  of  information  must  also  fulfill  the  condition  of  every

hyperbolic constraints, individually, i.e. will correspond to one of the solution of each subset. The

solution is  therefore identified  as  the intersection point  of  the  three hyperbolas.  This point  (all

constraints meet in the same location) bears also the same origin time on all hyperbolas and will be

called the “triple-point” of the triple-group that consists of the three involved hyperbolas. If the

arrival time reading of a phase is altered, the solution will be spatially shifted: The triple-point will
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move  along the  third  hyperbola  which  is  independent  of  that  reading and fixed  in  space  (fig.

I.2.4:4).  This  allows  the  analyst  to  estimate  the  geometric  impact  that  a  time  shift  (e.g.  onset

correction)  has  on  the  spatial  solution.  For  large  arrival  time-differences,  secondary  solutions

(multiple  “triple-points”)  may  appear  in  a  triple-group.  This  is  due  to  the  fact  that  though the

underlying equation system is exactly determined (3 unknowns, 3 constraints), it is not linear (fig.

I.2.4:5). It requires additional data to to resolve this ambiguity (chapter III.2).

Fig.  I.2.4:4:  Three  different  phase  readings  are
evaluated  at  station  1  (red  point),  each  one
corresponding  to  another  set  of  lines  (solid  line,
dashed line, thin solid line) The solution (red circle)
moves  on  the  third  hyperbola  [2,3]  that  does  not
depend on the altered phase.

       

Fig. I.2.4:5: Three station network (red points) in
a  2D  location  scenario  with  a  degenerated
solution: Three detected P-onsets constrain three
hyperbolae which intersect in two locations.

With additional stations more hyperbolas are generated and the system becomes overdetermined.

The number of hyperboloids is given by 

H=1
2
⋅(n2−n) , (I.2.4-7)

with n being the amount of stations that detected the phase, given that the condition of I.2.4-3 is

met for all. The number of triple-groups is then given by

T=1
6
(n3−3n2+2n ) . (I.2.4-8)

The actual number of triple-points per -group may actually be higher due to degeneration: Already

in a homogeneous model it can be twice as high as T , in more complex models even higher. In

an error-free scenario all triple-points intersect in one single point, marking the global solution.
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Errors in the data cause the triple-points to scatter (fig.  I.2.4:6). As each triple-point intersection

corresponds  to  the  agreement  of  multiple  location  constraints,  their  spread  correlates  with  the

solution quality. The larger the spread, the higher is the uncertainty in location based on the given

information.  The  lower  the  spread,  the  higher  is  the  line  density  in  the  triple-point  region,

expressing the agreement of the majority of subsystems. (Note: A low spread (i.e. the agreement of

subsystems)  does  not  necessarily  guarantee  accuracy.  A compact  triple-point  cluster  (with  low

spread) might actually be biased by a locally inaccurate model. Adding a station situated in a region

for which the model may be more accurate (and hence provides better location estimates), will

therefore increase the system's accuracy - but also enlarge the spread. Spread indicates therefore the

quality of the solution in means of indicating the extent of discrepancies in the given information.

The analyst, however, still needs to decide which data is most trustworthy. )

Fig.  I.2.4:6:  Overdetermined  System  and  triple-point
spread. Four stations yield 6 hyperbolas and 4 triple-
points clustered in a region marking the global solution.

In  the  following  chapters  we  will  use  the  fact  that  the  same  information  base  that  is  usually

evaluated in residual sum analysis to obtain a best fit solution, can also be decomposed into small

subgroups, with a member size just big enough to still  give constraints for the location.  In this

context we will again find the S-P- and hyperbolic constraints playing a key role, and will introduce

additional constraints. Depending on the situation, certain constraints gain special importance and

are  applied  and are  given weight  according to  the  given problem. The  method developed  will

generalize the constraints to the context of complex 3D velocity models and introduce uncertainty

measures to form a solid base to analyze sparse and low SNR data, allowing to track the effect of an

input datum to the global solution while preserving the aspects of solution completeness (i.e. to

reveal ambiguous solutions) and a probabilistic analysis as described in chapter I.2.2.
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II Distinct Constraints

The application of location schemes based on residual sums has drawbacks for the analysis  of

uncertain data that need to be overcome: Due to the summation,  such schemes are sensitive to

outliers.  This  point  is  crucial  as  outliers  (e.g.  mispicks)  are  expected  due  to  unclear  phase

identifications. The summation further prohibits to perceive the impact that an individual datum

exerts on the solution, e.g. how it independently constrains the solution and which effect parameter

changes (e.g. modification of the arrival time) will cause. This insight is important as it supports to

find  the  true  onset  when  ambiguous  phase  onsets  exists.  Furthermore,  parameter  uncertainties

cannot easily be translated into uncertainty regions enclosing the hypocenter: The solution is given

as a point with minimum residuum (linearized inversion) or as residual map (grid searches), but no

threshold exists that would determine which residual is too large to still yield a valid solution, and

hence no robust region is defined that encloses the hypocenter. At best confidence intervals can be

derived  based on the  variance  in  solution.  They do,  however,  not  guarantee  location  accuracy

(Pavlis,  1986).  This  quality,  however,  is  important  whenever  the  location  is  the  basis  for  far

reaching decisions. Earthquake early warning serves as good example. There, reliable boundaries

for  the  location  can  be  translated  into  lower  (and  upper)  bounds  of  magnitude  estimates,  that

directly trigger the warning for the society (fig. II.4:1 in chapter II.4 displays a recent example of an

Earthquake-Early-Warning module using a RMS grid search scheme that dislocated the hypocenter

by  over  200km).  The  spatial  extent  of  this  region  is  directly  dependent  on  the  parameter

uncertainties.  For analytical  solvability,  these uncertainties are  often taken as Gauss-distributed.

This, however, does not reflect the actual uncertainties, in neither picking nor model. This is one of

the reasons, why obtained confidence intervals may be inaccurate. Lomnitz (2006) summarizes the

loss of information due to the summation process as that “the problem is compounded by the fact

that  we locate an object in space by using measurements in the time domain.  By reducing the

problem to the time domain we blind ourselves to the fact that the residuals are actually vectors. A

1-sec residual is not the same thing (i.e., should not have the same effect on the solution) as a

residual of 1 sec to the north.” Lomnitz continues “In theory there is no obvious way of translating a

least-square algorithm in the time domain to the space domain. Should we minimize the vectorial

sum of  the  distance  residuals?  This  is  not  the  correct  answer  either.”  He  leaves  this  problem

unsolved, but points to the only direction that in his opinion may offer a remedy: “Beno Gutenberg

used a graphical location method that was routinely utilized in Pasadena for years, particularly by
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Charles  F.  Richter  in  the  classical  joint  research  work  Seismicity  of  the  Earth  (Gutenberg  and

Richter, 1954). “ Although context and application differ, we will find that “graphical” location

indeed allows to overcome the shortcomings mentioned above, and that it yields a methodology

well suited for the context of uncertain data. “Graphical” should be understood in the sense, that

only the spatial  component  of  m is  inverted for,  not  referring to whether the solution space is

actually visually inspected by an analyst or wether  it  is  numerically evaluated.  The hypocenter

problem will be solved independent from the origin time, which is estimated via forward modelling

after the location is determined. This is realized by jackknifing the dataset into smallest units of

parameter information still providing information on the location. These distinct units, individually

and collectively constraining the model vector  m consecutively to smaller regions, are therefore

called  distinct  constraints and  are  the  subject  of  the  presented  work.  Their  derivation shall  be

outlined in the following chapter.

II.1 Elementary Jackknifing and Phase Difference Groups

Jackknifing is a resampling technique often applied for variance or bias estimation (Quenouille,

1949). Solution robustness is evaluated by subsequent analysis of varying subsets of the available

data.  Disregarding parts of the data during the analysis  allows to understand the impact  of the

excluded data on the solution, whether it establishes the global trend or diverts from it, and provides

the means to construct a global solution based on the most coherent subsets. 

Let θ̂  be an estimator of the parameter θ  regarding the full sample η  consisting of n  elements (

ηi , i∈[1,n] ). Let θ̂−E  represent the estimate regarding a subset η−E  of the full sample, consisting

of all data but  e  sample elements ( e  being set according to the maximum expected number of

faulty  data).  The  Jackknife  estimate  of  θ  is  obtained  by averaging  the  estimates  θ̂−E  for  all

possible  subsets  η−E  that  can be  formed by combination of  the  n  sample  elements  into  e -

member groups. The sample is hence distributed into g  groups of h=n−e  elements, with

g= n !
(n−e)! e !

= n!
(n−h)! h !

= (nh)  , (II.1-1)

each group excluding a different subset of  e  elements.

The common form of Jackknifing excludes single observations (Miller, 1974). In this case applies
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e=1 ,  h=n−1  and g=n . For this case let  θ̂−i  denote the estimate regarding the subset  η−i ,

consisting of all data but element i . The mean jackknife estimate θ̂J  pertaining to the whole data

is now obtained by averaging the estimates θ̂−i  of all η−i , 

θ̂J=
1
n∑i=1

n

θ̂−i . (II.1-2)

Commonly, a jackknife estimate θ̃J  is applied that reduces the methodological bias

θ̃J=
1
n∑i=1

n

θ̃i = n θ̂−(n−1) 1
n∑i=1

n

θ̂−i , (II.1-3)

using the pseudo-value

θ̃i=n θ̂−(n−1)θ̂−i , (i=1, ... , n) . (II.1-4)

A measure of the impact Di  that the excluded observation ηi  exerts on the solution (Rabinowitz

and Steinberg, 1988) is given by

Di=(θ̂−i−θ̂)T cov(θ̂)(θ̂−i−θ̂)/dim(θ̂) . (II.1-5)

This  basic  concept,  laid  out  for  a  single  excluded  observation,  holds  for  every  group  size

(Quenouille,  1956).  While  excluding  one  datum reveals  whether  the  related  information  is  (a)

redundant, stabilizing the trend or (b) significantly changing the solution (which in well-conditioned

problems allows to identify outlier candidates), it does not reveal how the datum itself constructs

the  location (i.e.  constrains the hypocenter location to  a subset of space):  We might  exclude a

station from the location procedure after we located an event by e.g. the L1-minimum of residua

and  relocate  to  see  how the  hypocenter  location  changes  –  we  will  often  still  not  be  able  to

understand why the solution changed the way it did. This is due to the impact, which the data of all

other stations exert on the solution. When we now expect faulty data among the few data provided,

this becomes problematic as both, θ̂  and θ̂−i  are based on data, that themselves are not error-free

and  the  estimate  Di  may  still  be  biased  by  the  error  of  the  remaining  data.  This  can  be

demonstrated with a simple scenario: Let e.g. seven stations be given with five providing good

onsets (holding only minor errors) that point out a certain hypocenter. Let the dataset further be

contaminated by two erroneous onsets (outliers, holding large errors), that both have a similar effect
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on the solution. In such a case, excluding one datum will identify neither of the two as outlier, as the

second outlier, still contained in the dataset, biases the sub-solution towards the other. The only way

to identify the two outliers contrasting the five well-agreeing stations would be given in repeating

the jackknife with sub-groups excluding two members (group size h=n−2 ). Since the number of

bad data is initially unknown, this process could be repeated with decreasing sub-group size  h

down to the minimum number required by the estimator. The analysis, however, would be highly

dimensional,  since  the  jackknife  would  have  to  be  repeated  n−4  times.  It  would  further  be

computationally  expensive,  as  the  inversion  has  to  be  repeated  g  times  with  each  repetition.

Additionally, the amount of sub groups g  is initially quickly growing with decreasing sub-group

size  h ,  following  the  binomial  coefficients  (eq.  II.1-1).  The  inversion  would  therefore  be

performed orders of magnitude more often than in a standard location procedure and the result

would be complex, multidimensional, and difficult to interpret.

Let's  assume the  same  scenario  of  seven  stations,  but  containing  only  one  outlier  and  let  the

jackknife be performed only once, but right away excluding two members ( h=n−2 ). Most sub-

groups (all those excluding the outlier) will point to the same hypocenter. Few sub-groups (those

including the outlier) will not follow the trend. Looking at two of the discrepant sub-solutions will

identify the outlier as common datum in both groups. This simple example illustrates the fact that

the  dimensionality  of  the  solution  can  be  reduced  by  directly  using  smaller  sub-group  sizes,

maintaining the ability to identify and isolate bad data, as long as h<n−o  ( o  being the number of

outliers/bad data).  Following this thought  to the end, it  can be inferred that all  outliers can be

identified by only using the smallest  sub-group size possible.  To dissect  the information to the

lowest level, we could therefore attempt to apply Jackknifing in the strongest form possible, by

reducing the group size to the minimum number required by the estimator. The standard estimator

for earthquake location (operator of inversion)  relies on 4 data (since  dim(m)=4 ). The global,

overdetermined system would therefore be decomposed into exactly determinable subsystems of 4

members (h=4), which would be individually solved. The global solution could then be recomposed

based  on  the  solutions  of  the  subsystems,  whereby  stable,  outlier  resistant  solutions  could  be

obtained.  Fig.  II.1:1 shows an example  for  a  two-(space)-dimensional  problem with five  given

stations. In this example, the depth is no unknown, and the dimension of the problem and the size of

the exactly determinable subgroups is hence reduced to three. All data, except one outlier (the P-

onset of station 5) are chosen to be ideal (error-free). The five stations (panel A) are permutated into

10 three-member groups (surrounding panels). 
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Fig. II.1:1: Principle of Location Jackknifing, displayed for a two dimensional location scenario with five
given stations. The central Panel A shows the five stations, the true location (cross-hair) and the solution
(small cross) that minimizes the L2-residua sum. The global system of five stations 1,2,3,4 and station 5
of  faulty  data  is  decomposed  into  ten  exactly  determined  subsystems  of  three  stations  (surrounding
panels), which are independently solved (solid circles). The solution of the groups not relying on station 5
correspond with the true location, all other sub-solutions are scattered. The global solution for the whole
system is composed based on the superposition of sub-solutions (Panel b). The scatter of sub-solutions
indicates  the  solution  quality,  a  large  scatter  indicating  a lower quality.  Although the  large  scatter
indicates the existence of a significant discrepancy in the data,  the maximum still  identifies the true
location.
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The superposition of the 10 subgroup solutions shows a maximum at the true location, as several

groups do not rely on the faulty data of station 5. The solutions of all other groups relying on the

faulty data are scattered. This large scatter indicates the existence of a significant discrepancy in the

data. The maximum identifies the true location, nonetheless.

The amount of combinations and subgroups is given by the binomial coefficient, respectively in the

factorials  of  n  and  h  according to  the  principle  of combination without  order  and repetition

according to eq. II.1-1. The amount of combination groups grows therefore quickly with the amount

of stations, e.g. 10 stations already form 210 subsystem groups for h=4. It should therefore be noted

that such an elementary decomposition is -computationally speaking- only practical for smaller data

sets. 

When only few data are given, a subgroup of four stations is still too large to display the correlation

between data and solution on an elementary level. For a better breakdown of information, it  is

desirable to reduce the size of the data subgroups to the smallest unit possible. This can be done by

using underdetermining estimators. The smallest unit providing explicit location information (the

“quantum of information”) are pairs of onsets. We will therefore reduce the sub-group size down to

only two members (h=2), yielding underdetermined systems. This will reduce the complexity of the

problem, but will also ease the computational load as the amount of sub-groups with two members

(h=2) equals the one with h=n-2 of the earlier example, being significantly smaller than the amount

of sub-groups with four members (h=4), i.e. for 10 detecting stations, two-member groups (h=2)

result in 45 sub-groups compared to 210 for four-member groups (h=4). 

Rather than averaging the sub-group solutions as in eq.  II.1-3 (fig.  II.1:1), we will superpose the

solutions  θ̃i  in  solution  space.  This  serves  two  purposes.  For  any  regression  the  jackknifing

solution (eq.  II.1-3) will be less sensitive to outliers than L1- or L2-normed RMS schemes as the

large amount of groups not dependent on the outlier significantly outweighs the impact of the few

groups dependent on it. By superposing the sub-results and using a center-of-gravity (cog) approach

over the zone(s) of highest congruity (rather than averaging over all sub-group solutions), outliers

are  additionally  weighed  less  as  they  appear  far  off  the  cluster  of  sub-solutions.  The  second

advantage lies in the ability to directly observe the effect of parameter changes on the solution

scatter. It will become perceivable which datum constraints the solution most, i.e. input data for

which small perturbation cause little effect on the solution. Vice versa, an input datum for which a

small perturbation results in a large change in the corresponding spacial sub solution, constrains the
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global solution only poorly and may be weighed less. Summarizing, two important characteristics

should be highlighted: 1) The two-member sub-groups rely on the minimal possible subset of data.

2) Any given datum (e.g. phase-pick) will only affect the sub-groups depending on it. An Analysis

based on these two-member groups therefore allows to reveal the impact that smallest data units

exert on the solution. Further, it allows to identify outliers even for small datasets as non-conform

sub-solutions  can  be  linked  back to  the  few data  its  group  relies  on,  allowing to  identify  the

discrepant information. An example is given in fig. II.1.1:1.

II.1.1 2-Phase Groups

The earthquake location problem is a four dimensional problem ( x , y , z , t0 ). However, using sub-

groups of two members and a pair wise analysis between all observed phases, this dimensionality

can be reduced within the inversion by choosing a suitable evaluation operator. According to eq.

(I.2.1-3),  two observed  phase  onsets  t A  and  t B  stand  in  relation  to  origin  time  and location

according to

t A=t0+Tt (x , x A) (II.1.1-1)

and

t B=t0+Tt (x , xB) . (II.1.1-2)

Forming the onset time difference  Δ t  eliminates the origin time from the equations and reduces

the problems dimensionality to three dimensions, yielding a solely spatial inversion problem (which

bypasses the need for origin time estimates within the inversion process, chapter I.2.2).

Δ t= t B−t A = Tt ( x , x B)−Tt (x , x A) (II.1.1-3)

Analyzing  the  difference  of  the  two  members  (i.e  the  arrival  time  difference),  the  use  of  the

jackknife in this strong form not only dissects the data set to the lowest level, it also has technical

implications: It allows to find the solution (i.e. the source location, and from the source location the

origin time) using a three dimensional direct search solely based on travel time differences,  by

comparing such with the observed arrival time differences. 
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A sub group of two members can be formed by choosing two onsets of different phases at one

station  (class  I  constraint)  or  using  phase  onsets  that  are  recorded  at  two  stations  (class  II

constraints). For the latter, the phase type is usually the same for both phases (e.g. P) but may also

differ. A well known phase onset pair for one station is given in S- and P-phase, but the difference

between direct- and refracted P-phase is another useful choice. The first corresponds to the classical

method of  circles explained in  Milne (1886) (chapter  II.1.2.1).  For two stations,  the  difference

between P-phases is the dominant choice, which corresponds to the classical method of hyperbolas

(Milne, 1886) also known as  hyperbolic location (chapter  II.1.2.2). The same is applicable for S-

phases which increases the stability of the solution due to the lower S-wave propagation velocity, or

surface waves which are dispersive but propagate even slower. However, the lower precision in

onset  arrival  time  picking  often  compensates  that  effect.  For  local  earthquakes  P-onsets  are

therefore the phase of choice. 

Each group of constraints displays the consistency of the involved phase data: A group of P1-P2

constraints will  reveal the consistency between all  P-phases, e.g. whether two phases P1 and P2

agree with the solution that is indicated by the other stations' P-phases. A group of S-P constraints

will  validate the consistency of the S- and P-phases at  individual stations. If e.g. a certain S-P

constraint appears far off the point of highest constraint density (i.e. the region pointed out by most

S-P constraints),  it  indicates  that  either  the  P-phase-  or  the  S-phase  picking  at  that  station  is

inaccurate (if the respective velocity models are trustworthy). In combination with P-P constraints it

can be determined wether the P- or S-phase caused the discrepancy: If e.g. the corresponding P-P

constraints (those, that depend on that station's P-onset) show a high congruity with the other P-P

constraints (i.e. agree on a certain hypocenter region), only the S-onset or the local S-velocity could

be inaccurate, identifying this station's S-information as problematic (The same would have been

found by analyzing the scatter of S1-S2 constraints). This concept of constraint consistency can be

extended to any phase combination to identify outlier onsets. It can further be used to evaluate the

assumptions  that  were  made  for  underlying  parameters  which  the  constraints  depend  on:  For

example, the consistency of constraints which are based on the difference of direct and refracted P-

phase onsets P-Prefr can be used to evaluate the particular model assumption of a refractor's depth or

velocity contrast. Similar to the P1-P2 Equal Differential Time (EDT) constraints, S1-P2 EDT's that

use different phases at different stations (and appear as Pseudo-Circular shapes for a given depth)

may be used to evaluate whether the S-phase at one station yields consistent location information

with the P-phase at  another station (Ziv,  personal  communication,  2015).  Using the concept of
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constraint consistency, problematic data can be excluded and a trustworthy set of information be

constructed, on which the location can be based.

The two independent  subgroup types of S-P and P2-P1  provide an optimal representation of the

information given in P- and S phases, due to their specific constraining characteristics, which will

be laid out in chapter III.1. This information can be supplemented by a group defined through the

double difference between phase onsets of three stations (e.g. [tP,2-tP,1] – [tP,3-tP,1]). This combination

of phase differences in conjunction with a plane wave assumption allows to cancel out the local

velocity dependency and yields the spacial information of back azimuth (BA), the local direction of

wave propagation, and the apparent velocity with which the wavefront propagates in between the

stations. This constraint is especially useful for laterally homogeneous structures where the local

velocity might not be well known, but can be assumed to be constant over the inter-station distance.

This double difference hence forms the basis for the jackknife-analysis of small-aperture arrays

(chapter II.1.2.3) where the latter condition is usually met. With knowledge of the local velocity for

the analyzed phase, the apparent velocity may be translated into an incidence angle, so that the

3dim. propagation-vector can be obtained – a quantity which may be derived independently from

the three dimensional particle motion of a three component sensor (chapter IV.1). This shows that

the  computation of  the  propagation vector  can  be  obtained in  two independent  ways based on

different  information,  but always requiring three components,  either three collocated orthogonal

components or three distributed parallel ones. In principle, both methods can be used to obtain the

BA information and are laid out in chapter II.1.2.3 and IV.1.

The  three  groups,  S-P,  P2-P1  and BA,  define  the  set  of  basic  subsystems,  applied  in  the  work

presented,  to constrain the solution in the space domain (Joswig,  2005).  These three constraint

classes  will  be  referred  to  as  S-P,  P2-P1  and BA constraints.  Each constraint  type  has  its  own

constraining  characteristics  (chapter  III.1)  which  give  it  complementary  advantages  in  different

situations (e.g. locations inside- vs. outside the network, in near vs. far distance or concerning depth

constraining). As each sub group relies on a minimal set of data, it allows to trace back outlier sub-

solutions directly to the datum they rely on, offering the analysts a deeper understanding of the data

impact on the global solution. Since 2-phase groups are the result of a dataset which is jackknifed to

the lowest possible level, a pair-wise analysis of phase-onsets will be most robust to outliers in the

dataset. Schweitzer, who applied a pair wise phase analysis for HYPOSAT (Schweitzer, 2001) in the

methodological context of a linearizing inversion using a modified G  matrix, observed that in all

test cases with erroneous data, an inversion using travel-time differences yielded better solutions to
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the  true  source  than  least-square  approaches.  The  class  II  P-P  constraints,  which  appear  as

hyperbolic bands in a two space-dimensional problem (e.g. fixed hypocentral depth), shall be used

in the following paragraph to demonstrate this solution stability. Although the following chapters

will focus for the formal derivation on the classes of P-P and S-P constraints as the predominant

examples of constraints being based on one phase type at two stations and constraints with two

phase  types  at  one  station,  respectively,  the  derivation  is  valid  for  any  other  phase-type

combination. 

Let  four  stations  with  P  onsets  be  given,  generating  six  P i-Pj constraints,  with

i , j ∈ {1,2,3,4 } , i≠ j . Recalling hyperbolic location in which the solution was identified by the

intersection of the hyperbolas (Chapter I.2.4), we will now likewise look for the intersection of the

P-P constraints (regions of constraint agreement) to identify the epicenter. Of those six constraints,

one will be based on the onsets of station 1 and 2, a second one based on station 2 and 3 and a third

one on the phase onsets of station 3 and 4. (The other three constraints we will disregard for a

moment.) For all time differences consistent with the velocity model, the first and third hyperbolic

constraint must always intersect the second, since both constraints share one onset with the second

constraint. The first and third hyperbolic constraint, however, are fully independent and may not

intersect/agree, indicating an inconsistency between the phase onsets of station 1 and 4. Adding the

remaining three constraints, those based on consistent information will yield intersections, clustered

in a certain region, while those based on inconsistent information will produce spreading outlier

solutions (see e.g. fig.  II.1.1:1b). A pairwise comparison between the given phases of all stations

therefore weighs the consistency of information. An explicit example is shown in fig. II.1.1:1. Panel

a) displays hyperbolic constraints, generated from well picked P phases of five stations with proper

velocity model assumptions for a surface source in proximity to a small aperture array (ALNB) of

the DeadSeaNet array of arrays. Compared to the hyperbolic location in chapter I.2.4 the constraints

here bear a certain “thickness”. This is due to applied uncertainties in the input parameters which

cause an uncertainty in the solution space (see Chapter II.3). All constraints intersect in a common

region. Panel c) shows the corresponding L2-residual sum least-squares representation, with a well

defined minimum. This changes when the algorithm misidentifies one station's P-onset (panel b and

d) and triggers 0.02s too early. The least squares analysis yields a large minimum residuum, with a

wide spatial extent, strongly displaced from the true location (d). The constraint based approach

proves itself more stable: Although the total value of constraint agreement (intersections) decreases,

the location based on hyperbolic constraints remains stable at the original location. 
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The more constraint types are  used,  the more is  the consistency of the information base being

evaluated - revealing possible discrepancies. 

Fig.  II.1.1:1:  Hyperbolic  constraints  (a)  and  L2  least-squares  (c)  for  good
information in a local event scenario: The constraints yield a clear maximum, and
the least-squares residuum a clear minimum at the source. With one station mis-
picking,  the  least-squares  minimum indicates  a  different  location  (d)  while  the
hyperbolic location remains with its maximum at the true location (b).

Beside the stability of the solution given by the consistency measure of subgroups, outlier data can

directly be identified by constraints that don't follow the main trend: Identifying the two hyperbolic

constraints  that  disagree  with  the  majority  of  other  constraints  (fig.  II.1.1:2a,  marked  blue),

constraint   PD-PA and   PD-PC,  identifies  the  common  P  phase  of  station  D  as  inconsistent

information. Fig. II.1.1:2a) highlights all constraints which depend on station's D P-phase. One may

notice that actually no hyperbolic constraints are visible between station D&B (PD-PB), and D&E

(PD-PE). These onset time difference do not yield information consistent with the chosen velocity

model. The common datum in both constraints is again onset D and indicates again, that onset D is

erroneous. The drop of the total amount of constraints under the theoretical value of eq. II.1-1 (or
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specifically I.2.4-7 for the hyperbolic sub system) indicates therefore wrongly chosen phase onsets

or inconsistencies with the chosen velocity model. 

When we compare the results of the hyperbolic constraints with the performance of a L1-residuum

(which is significantly more robust than the L2-norm), we find that also the global L1-minimum

identifies the true location, yet, less distinct (fig.  II.1.1:2): A secondary minimum (similar to the

global one of the L2-norm) exists, which renders the solution poorer in contrast than the maximum

given by the hyperbolic constraints. It is interesting to note that several of the hyperbolic shapes can

be identified in the shading of the L1 map in vicinity of the minima (compare fig. II.1.1:2 (a) and

(b)). However, their (Jackknifing) character, which allows to directly spot the outlier, is not given.

Fig. II.1.1:2: a) Identifying the constraints that do not follow the trend (two blue hyperbolic constraints), identifies the
inconsistent phase information (phase onset at station D). Panel (b) displays the least-squares residuum using the L1
norm for comparison: Being significantly more robust than the L2 norm, the global minimum remains at the true
location. However, a comparable minima exists, which is similar to the global minimum of the L2 norm (fig. II.1.1:1d).
Comparing (a) and (b) shows that the true location is significantly richer in contrast (i.e. better identified) with the
hyperbolic constraints. It is interesting to note that -looking at the shading of the L1 map- in vicinity of the minima
clearly several of the hyperbolic curves can be identified. Yet, one of their advantages, to directly spot the source of
discrepancy (i.e. outlier), is not possible in the residua map.

After understanding how the constraint based approach adds robustness to the location,  we will

investigate  how  (i.e.  to  what  spatial  regions)  the  individual  constraints  actually  constrain  the

hypocenter location.
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II.1.2 Constraining of Location

When few data are given, the location may at times be determined based on few or even single

constraints, only. In the latter case, consistency of information can obviously not be evaluated to

gain robustness. In such a case it is vitally important to regard uncertainties in the input parameters

to obtain useful solutions. The formal and quantitative derivation will follow in chapter II.3, and for

now we will settle with the fact that uncertainties add a certain “thickness” to the mathematical

surfaces that represent the constraint. This single constraint scenario allows us to study how the

constraint, being parameterized in the time domain, actually constrains the solution in space. For a

single  constraint  within  the  four  dimensional  location  problem,  the  equation-system  can  be

described as undetermined polynomial system, which if consistent, i.e. if it has a solution, usually

has  infinitely  many  solutions.  With  a  four  dimensional  problem and  one  given  constraint  the

solution is determined to be three dimensional. The found spatial solution consists of all points that

hold  the  same  time  difference  defined  by  the  two-phase  group.  Although  the  solutions  are

degenerate for a single constraint, they nonetheless give us information about the location which in

combination  with  a-priori  knowledge  may  allow  us  to  successfully  identify  events.  A typical

example is an aftershock sequence, where weak aftershocks might only be registered at few or

single stations: A back-azimuth similar to the one of the main-shock indicates that this event may

indeed be an aftershock. The same holds for a S-P constraint, defining a fixed hypocentral distance,

which  if  consistent  with  the  main-shock,  also  provides  this  indication.  Both  constraints  in

combination at a single 3comp. station provide a well defined location region that can link the event

to the main-shock source region, allowing a trustworthy interpretation. In the following three sub-

chapters we will study how individual S-P, P-P and BA constraints define the possible hypocenter

region, before we combine them in chapter II.1.3.

II.1.2.1 Single Station S-P (Sphere) Constraint

S-P constraints are anchored to one spatial coordinate (the station's location). The time difference

between the arrivals (of the two phases traveling with different velocities) increases monotonically

with distance. For homogeneous models, the constraint consequently appears as spherical surface,
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on which the hypocenter is bound to lie on. For surface stations the solution can naturally only be

located beneath and appears for that reason as half sphere (fig. II.1.2.1:1).

Fig. II.1.2.1:1: Top and side views of all S-P hypocenter solutions for a
surface station (black point in the center). The set of solutions forms a
half  sphere.  The  top  left  panel  displays  the half  sphere  from top,  the
bottom and right panels show it from two sides (East-West and North-
South direction). Because the body is displayed as transparent object, the
color  intensity  (darkness)  scales  with  the  amount  of  solutions  in  the
direction  of  sight.  The  plot  may also  be  interpreted  as  a  stack  of  all
solutions in the direction of sight. While the horizontal panel displays the
lateral  constraint  geometry,  the side panels reveal the constraint  over
depth.

The location of an event based on several S-P constraints hence boils down to the search of  the

intersections of spherical shells. The classical method of circles treated the focal depth as negligible

compared to the epicentral distances, and reduced the spheres to two-dimensional circles with radii

corresponding to the S-P interval. But since these radii pertain to spheres (“the circle's radius varies

over depth”), the classical method of circles was bound to errors whenever the focal depth was not

negligible, e.g. for local events. 

The single S-P constraint is limited to a certain region. Its radius provides a lower bound for the

focal depth and an upper bound for the epicentral distance. When multiple S-P constraints are given,
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the lower bound for the focal depth is given by the radius of the smallest sphere constructed in the

ensemble of S-P constraints, as the intersection point of all spheres can only lie in the space above.

The S-P constraint also fixes the origin time: all locations on the S-P-sphere hold the same origin

time.  For  non-homogenous  velocity  models,  these  spheres  will  show  deformations  causing  a

complex relationship between radius and depth. Figure  II.1.2.1:2 shows examples for surface and

sub-surface stations in layered velocity models of increasing velocity. The varying velocities and

the inverse effect of refraction cause a complex surface that yields ambiguities in the inversion

process: Equal epicentral distances (“circles” of same radius) are found in several depths. This can

cause multiple,  ambiguous, equally possible  earthquake locations that require additional data  to

discriminate wrong solutions, reducing the uncertainty.

Fig. II.1.2.1:2: Examples of S-P half spheres in 1D-models of monotonically increasing velocity: a) surface station
b) subsurface station. The station location is marked by the black point.

S-P constraints  are  of  the  few that  are  limited  to  a  certain region and are  therefore of  special

importance.  On the downside, they hold a higher location uncertainty due to the lower picking

accuracy of the S-phase. In the following we will  look at  the unlimited but more accurate  P-P

constraints which are of special importance for real-time location as they are derived from the first

arriving phase.
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II.1.2.2 Two Station P-P (Hyperboloid) Constraint

For S-P spheres, which depend on one spatial reference coordinate only, three dimensional station

distributions added little complexity to the problem. P2-P1 constraints, depending on two spatial

reference points (two stations' locations), show a more complex behavior. The P-P constraint can be

thought of being constructed by the intersections of two growing spheres (fig. II.1.2.2:1): Assuming

a origin time  t0
∗ , the time interval between  t0

∗  and the following P-onset provides time for the

seismic  signal  to  travel.  Likewise  S-P constraints,  a  fixed  travel  time  can  be  translated  into  a

spherical constraint around each station. The region that fulfills the demands of both constraints (the

intersection of both spheres) resembles a circle. The earlier the trial origin time t0
∗ , the larger the

two sphere's radii, and the larger the circular region of agreement. The set of circles obtained over

all trial origin times constructs a hyperbolic surface. P2-P1 constraints therefore generally appear as

hyperbolic surfaces (fig. II.1.2.2:1c) on which the hypocenter is bound to lie. This is a fundamental

difference to S-P constraints which limit the solution in time and space: P-P constraints in itself are

infinite in time and space, i.e the source-receiver distance and origin time intervals are only one-

sided (there exists an upper limit for the origin time and a lower limit for the hypocentral distance).

Amplitude decay and SNR may be used to set an upper limit for the distance.

Fig. II.1.2.2:1: The hyperboloid as intersection of trial t0 spheres. Shifting the trial origin time t0  to earlier times, the

time difference between trial t0   and observed arrival  time increases (a-c). This time difference corresponds to a

travel-time (Tt) which similar to S-P constraints constrains the location to be found on a spherical surface, growing in
size with decreasing t0  . Taking two stations into account (located at the centers of the spheres), two spheres are

formed. b) The possible locations fulfilling both constraints lie on the circle of intersection (yellow). c) Over all trial
origin times the set of constructed intersection circles forms the hyperboloid (brown).
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The method of hyperbolas was historically solely applied for surface stations which yielded a set of

hyperbolas in the analyzed horizontal cross section. Today, hyperbolic constraints will have to be

analyzed in  the  context  of  three  dimensional  station  distributions  and events  in  non-negligible

depths  as  given  in  the  analysis  of  borehole-stations,  networks  on  strong  topography  or  mine-

monitoring. In these cases the hyperboloids will not only be oriented horizontally (like in the classic

method) but may be rotated into any space direction. 

In interactive analysis and visual inspection, the solution space is often scanned, leaving one search

parameter  fixed to  reduce the problem's complexity.  Commonly,  the focal  depth  is  fixed to  an

expected value and the corresponding epicenter is evaluated. Based on the results the focal depth is

then altered and the process repeated until a best fit solution is found. This corresponds to analyzing

the three-dimensional solution space in horizontal cross-sections. With the hyperbolic constraints

being able to be oriented in any space direction (fig. II.1.2.2:2 a-c), horizontal cross section will no

longer only lead to hyperbolic curves, but also to pseudo-ellipses and circles. This, on one hand,

renders the interpretation challenging, as P-P constraints may appear in the shape of S-P constraints.

It does, on the other hand, hold valuable practical implications, since pseudo-ellipses and circles –

contrary to the hyperbola – are finite: Vertical near-surface station layouts consisting of only two

stations would allow to constrain the hypocenter to a limited region: The arrival time difference

between the two stations constructs a vertically oriented hyperboloid, growing in epicentral extent

with  depth  (flipped  version  of  fig.  II.1.2.2:2c).  It  reaches  its  maximum  extent  at  the  lowest

seismogenic depth which bounds the hyperboloid (as no deeper solutions are possible). The deeper

the event, the narrower the hyperboloid and the smaller the maximum possible epicentral distance.

Early warning networks using this particular layout (e.g. in Japan) could therefore use this explicit

and latency independent region as first real-time location estimate, avoiding the otherwise often

applied common – but error-prone – practice of fixing it to the location of the first triggered station.

Combined with back-azimuth information, this would allow a location based on a single site that is

similarly precise as the intersection of S-P sphere and back-azimuth beam. Yet, solely working with

P-phases, it avoids the time-loss waiting for the S-phase arrival and the complications of its real-

time detection. Future early warning systems would optimally consist of three-dimensional arrays. 

With being finite, pseudo-ellipses and circles only hold a limited band of origin time values (fig.

II.1.2.2:2).  While  the  interval  for  hyperbolas  is  unrestricted  regarding  earlier  origin  times

]−∞ , t0
cmax ]  (fig.  II.1.2.2:2a), it  is limited for the pseudo-elliptical cuts  [ t0

min , t 0
cmax]  which occur

with tilted hyperboloids (fig.  II.1.2.2:2b).  t0
cmax  denotes the cut's maximum value of origin time,
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being equal  to-  or  earlier  than the latest  physically  possible  origin time  t0
max  at  the  tip  of  the

hyperboloid,  depending  on  the  cut  position.  For  borehole  analysis  with  two  vertically  aligned

stations, the hyperboloid will stand upright and the horizontal cross section will display a circle (fig.

II.1.2.2:2c). In this case, all possible hypocenter locations even hold the same origin time t0
c . 

Fig. II.1.2.2:2: Horizontal cuts of freely orientated hyperboloids. As the origin time decreases on the hyperboloid with
distance from it's apex, the different intersection curves occupy different intervals. a) Hyperbola: unlimited interval, b)
Ellipse : limited interval c) Circle: single origin time value

More complex velocity models lead to deformations in the hyperboloid body and cause a more

complex  distribution  of  possible  hypocenter  locations.  Where  refracted  phases  caused

discontinuities in classical hyperbolic location with planar  station distributions (fig.  II.1.2.2:4a),

they may even cause multiple distinct curve runs for three dimensional station distributions. 

The variation of appearance of P-P hyperboloids for different three-dimensional station distributions

and velocity models shall be portrayed in fig.  II.1.2.2:3 to  II.1.2.2:8. In the first example we will

look at the classic case of two surface stations over a homogeneous half space. With this layout the

earthquake location is constrained to lie on a horizontally oriented hyperboloid (fig. II.1.2.2:3). The

stations  are  aligned on the  East-West  axis,  wherefore  Vertical  North-South cross-sections  yield

spherical  intersection curves.  Exchanging the  homogeneous model  for  a  1D model  of  multiple

layers of increasing velocity causes refractions in the wave field which lead to discontinuities in the

hyperboloid's body (fig. II.1.2.2:4). 

56

-tt
0

cmax=t
0

max

t 0
m

in

t 0
cm

ax

-t

-t

t
0

c

a) b) c)
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Fig. II.1.2.2:3: a) cross-sections and b) projections in three space dimensions of a hyperboloid formed by the arrival
time difference between two surface stations (black points) applying a homogeneous velocity model. In the cross-
section view (a) the space is intersected by three slices (horizontal, E-W and N-S), showing the constrained regions.
The position of a slice is indicated by the dashed lines in the other two respective slices. The projection-view (b)
provides an X-ray like view on (or more accurate “through”) the constraint and space from three different sides,
conveying a volumetric visualization of the constraint's body. The cross-sections (a) on the other side provide to
view the exact constrained region intersected at a given coordinate, e.g. the top panel here showing the constrained
region on surface.

Fig. II.1.2.2:4: a) cross-sections and b) projections in three space dimensions of a hyperboloid formed by the arrival
time difference between two surface stations (black points) applying a layered model. Refractions cause sections of
different opening angle corresponding to the slope of the different travel-time-curve segments. The “thickening” of
the  constrained  region  with  distance  is  an  inherent  location  characteristic,  showing  that  any  uncertainty  in
parameters will affect the spatial solution the more, the further we distance ourselves from the recording stations.
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II Distinct Constraints II.1.2.2 Two Station P-P (Hyperboloid) Constraint

For a minutely larger measured onset time difference, the infinite hyperboloid collapses, limiting

the possible location to a small volume (fig. II.1.2.2:5). 

Fig. II.1.2.2:5: Example of a hyperboloid formed by the arrival time difference between two surface stations (black
circles) applying a layered model. The inverse effect of total reflection limits the usually infinite body to a small
region.

This  example  demonstrates  the  complexity  of  the  location  problem given  already  by  a  single

hyperbolic constraint and shows the impact that small parameter changes may have on the overall

solution. A small change in the measurement of arrival times makes the difference between the

compact,  limited  hyperboloid  segment  (II.1.2.2:5)  and  one  of  infinite  extent  (II.1.2.2:4).  It  is

therefore crucial to regard uncertainties in the input parameters properly to interpret the location and

its precision accurately. This example also emphasizes the importance of the ability to illuminate the

solution space and its uncertainties when information is sparse or questionable, to weigh the given

information properly in the overall location procedure. Had, for instance, other constraints been

given that pointed out a solution further west, the analyst (or algorithm) would have pulled the best

fit solution eastwards from there, averaging between the solution cluster in the west and the limited

hyperbolic constraint in the east. Yet, had the example of fig.  II.1.2.2:5 been analyzed including

(even small) model uncertainties, the hyperbolic constraint would have been expanded, similar to

the one of fig. II.1.2.2:4; The analyst wouldn't have mistakenly overrated the constraint, pulling the

location eastward, as he would have realized that a small model variation is sufficient to bring all

constraints into agreement at the western cluster.

58

z

z

EW

N
S

vertical
planes

horizontal plane

z

z

EW

N
S

vertical
planes

horizontal plane



II Distinct Constraints II.1.2.2 Two Station P-P (Hyperboloid) Constraint

After looking at this simple example for a standard network layout of horizontal stations, let us now

look at another complication we will face when dealing with three-dimensional station distributions,

as in mine monitoring. Let us therefore start with the simple model of a homogeneous half space,

but  shift  one  of  the  two  stations  subsurface.  This  causes  the  hyperboloids  to  become  tilted.

Consequently,  the  solutions for  a  assumed  hypocentral  depth  (a  horizontal  cross-section  of  the

solution space) will no longer appear as unlimited hyperbolic curves but as closed pseudo-elliptical

constraints (fig. II.1.2.2:6).

Fig. II.1.2.2:6: a) cross-sections and b) projections in three space dimensions of a hyperboloid formed by the arrival
time difference between two stations (black points) lying in different depths, applying a homogeneous model. The
cross-sections show pseudo-elliptical intersection curves under a certain depth.

Such pseudo-ellipses can also be observed with surface stations, given a significant topography (e.g.

mountain ranges as given in North California or Graben systems as in the Dead Sea plain of the Rift

Valley). When several constraints are given, these closed curves cause multiple intersection points

(regions  of  constraint  agreement),  yielding  ambiguous  epicenter  solutions.  Where  three surface

stations (constructing three hyperbolas) usually yield one solution for a given depth, three stations

with one being located subsurface (constructing one hyperbola and two pseudo-ellipses) usually

yield two solutions. This ambiguity appears already for an inversion with fixed focal depth. Such a

limited  inversion  is  not  uncommon,  as  automatic  location  schemes  for  e.g.  catalog  generation

initially  fix  the  focal  depth  to  an  average  depth,  being based  on the  catalog.  Due  to  the  high
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II Distinct Constraints II.1.2.2 Two Station P-P (Hyperboloid) Constraint

uncertainty in depth resolution, these initial estimates often remain unchanged. (Catalogs therefore

tend to show a large amount of events on this same depth, corresponding to the initial estimate. This

creates a positive-feed-back for the depth estimate of future events, resulting in a biased dataset.) 

While these tilted hyperboloids can be a source of ambiguity on the one hand, they can limit the

hypocenter region on the other hand with very little data: In regions where the seismogenic zone is

known not to exceed a certain depth (e.g. 10km, South California),  already a single hyperbolic

constraint as in fig.  II.1.2.2:6 may constrain the possible location to a compact region and origin

time window.

Unlike the last example, in practice we rarely deal with homogeneous half-space models. Adding a

deeper layer of higher velocity to the model of fig.II.1.2.2:6 causes refractions in the wave field.

This now leads to two seemingly independent distinct curves in the horizontal cross-sections for

certain focal depths. 

Fig. II.1.2.2:7: a) cross-sections and b) projections in three space dimensions of a hyperboloid formed by the arrival
time difference between two stations (black points) lying in different depths, applying a layer-over-half space model.
The inverted refractions cause distinct curve runs in the horizontal cross-section in a small band of focal depths
(which the horizontal cross-section is showing).

This counter-intuitive appearance of the constraint(s) makes the interpretation challenging as single

constraints may yield multiple, seemingly independent curves. For interactive location this effect

emphasizes the need for multiple orthogonal cross-sections as they complete the picture, revealing

the connection between the appearingly separated curves. However, as these are computationally
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II Distinct Constraints II.1.2.2 Two Station P-P (Hyperboloid) Constraint

expensive and unstable using existing semi-analytical iterative solvers (Eisermann, 2008; Joswig,

2005), the computation has to be approached in new ways. Multiple distinct curve-runs will also

arise with vertically-aligned stations as given in a chain of sensors in bore-holes in presence of

deeper layers of higher velocity. Fig. II.1.2.2:8 shows such an example. Here the event is detected

first by the deeper station, causing the hyperboloid to be pointing upwards, growing in size with

depth. Horizontal intersection curves (solutions for a given focal depth) will in this case appear

circular.  The solution  that  pertains  to  the  onset  caused by the  head wave,  however,  bends the

hyperboloid up again, starting at the take-over distance from direct to refracted wave-front. This lets

the hyperbolic constraint appear in the shape of a “Sombrero”, touching the surface (fig. II.1.2.2:8). 

Fig. II.1.2.2:8:  a) cross-sections and b) projections in three space dimensions of a hyperboloid formed by the arrival
time difference between two stations (black points) being positioned vertically aligned, applying a layer-over-half
space model. The horizontal hyperboloid cut resembles circular shape. The inverted refractions cause two distinct
curve runs for the horizontal cross-section of a single constraint.

The otherwise infinite  hyperboloid is  now of limited extent and causes a second distinct circle

appearing in the horizontal cross-section for certain focal depths. Each circle corresponds to a single

origin time, similar to S-P circles. Yet here, these “circles” are connected - and as the outer shrinks

with depth, so the inner grows, until both unite just above the refractor and cease to exist for lower

depths. To properly interpret  the constraints  in  the solution space,  it  is  important  to be able to

distinguish  between  the  constraint  types  (S-P,  P-P,  ...),  to  weigh  their  impact  accordingly.  In

numerical  schemes  this  knowledge  is  always  given.  For  visual  inspection  however,  where
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II Distinct Constraints II.1.2.2 Two Station P-P (Hyperboloid) Constraint

constraints used to be distinguishable by shape in classic scenarios, this quality is no longer given

(the curves in fig. II.1.2.2:8 might easily falsely be interpreted as S-P “circles”). It hence becomes

necessary  to  apply  means  as  e.g.  color-coding  for  the  different  constraint-classes.  All  these

examples show that the solution space needs to be visualized in a way that allows to perceive the

constraint's three-dimensional extent, to decipher the complexity given in the location problem. A

behavior  as given in  these last  two examples is  counter-intuitive and makes the search for  the

hypocenter challenging when several stations are given. This is especially true in the context of

ambiguous phase arrivals.  Such a  case shall  be given in  this  final example:  Here,  two surface

stations  are  added  to  the  station  distribution  of  fig.  (II.1.2.2:8),  posing  an  exactly  determined

problem (four stations). A grid search generated residual plot, however, reveals two distinct minima

for the observed arrival times (II.1.2.2:9a). The importance of comprehensive location schemes (e.g.

grid schemes) becomes obvious, as simple iterative schemes would have converged into either one

of the two minima, leaving the other solution unevaluated. A residual plot (or scatter plot like in

NonLinLoc) reveals both solutions, but does not allow to understand their coming about nor how to

interpret them. The representation of the same information using distinct constraints reveals the

connection between both solutions in the vertical cross sections. 

Fig. II.1.2.2:9: Example of three surface stations with a fourth subsurface station. a) The residual plot shows two
distinct solutions. b) Using phase encoded distinct constraints displayed on vertical cross-sections (green indicating
an involved refracted phase), reveals the connection of both solutions: The P-P constraint between station 1 and 2
(indicated in grey&green) shows that solution (1) (lying in the grey circle) corresponds to the case of t 1,p being the
onset of a P-phase that travelled on a direct wave path and solution (2) corresponding to the case that the P-phase is
of a refracted wave (green circle).
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II Distinct Constraints II.1.2.2 Two Station P-P (Hyperboloid) Constraint

The up-bending (“Sombrero”) hyperboloid of fig. (II.1.2.2:8), being formed by the two vertical

stations 1 and 2 and the refractor, explains the ambiguity. Encoding it according to the involved

phases (fig.  II.1.2.2:9b) reveals that this constraint is the result of two different travel paths. The

downward branch, in which one solution is found, corresponds to the direct path while the up-

bending branch, in which the other solution is found, is constructed by the refracted path of the P-

wave. The distant solution (2) would therefore mark the true hypocenter if the first arrival at station

2 was a P-phase of a refracted (head) wave, while solution 1 would mark the right location, if the P-

phase is of a direct path. Given this information the analyst  may re-evaluate the P-onset at  the

second station towards indication for the type of onset (direct or refracted) and possibly resolve this

ambiguity. This example shows the strength of graphical Jackknifing in resolving data to minimum

groups, which allows to trace back the influence of individual phase onsets on the global solution.

Although a constraint based location procedure can be well performed automatically in standard

situations, for examples like these, the human mind is still indispensable as guiding instance to find

the plausible solution. 

After analyzing how individual S-P and P-P constraints constrain the location, we will complete this

chapter with the analysis of the important array back-azimuth constraints.

II.1.2.3 Tripartite Array Back Azimuth (Beam) Constraint

When the inter-station distance is small in relation to the epicentral  distance but comparable or

larger than the dominant wavelength of the recorded signal, array techniques may be applied to

obtain location constraints which are independent of the local seismic velocity. Further they provide

slowness  estimates  and  inner-array  amplitude  ratios,  that  offer  advantages  in  the  event

classification.  Nanoseismic  Monitoring  (Joswig,  2008)  uses  networks  of  small  aperture  arrays.

Here,  a  small  array consists  of a central  three component  sensor,  combined with a small  scale

tripartite array of vertical sensors with an average aperture of 100m (Joswig, 2008) in its minimal

configuration. This forms a four-partite small-aperture array identified as SNS (Seismic Navigation

System) (Wust-Bloch & Joswig, 2006) (fig.II.1.2.3:1).
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II Distinct Constraints II.1.2.3 Tripartite Array Back Azimuth (Beam) Constraint

Fig. II.1.2.3:1: Tripartite small array configuration.

For distant sources (for which the plane wave assumption is fulfilled and the stations still lie within

the  correlation  radius  of  the  signals)  the  sparse  seismic  array  provides  the  velocity  model

independent back azimuth and apparent slowness estimates. In dense arrays with multiple stations,

the Direction Of Arrival (DOA) and corresponding slowness estimate is usually obtained using an f-

k analysis (Capon, 1969), which in the time domain corresponds to a two-dimensional grid search

over  azimuth  and  slowness  values  in  various  filter-bands:  Claiming  a  certain  slowness  and

propagation direction of an incoming plane-wave-front determines delay times given by the time

that the signal travels to later stations after passing the first.  Shifting the recorded seismograms

according  to  these  predicted  time  delays  leads  to  signals  that  are  in-phase  for  the  correct

combination of azimuth and slowness value. The summation of the n signals yields constructive

interference that amplifies the signal  amplitude by the factor  n .  This process is called “beam-

forming” as it  amplifies the signals coming from a certain direction (“beam”) defined by back-

azimuth and slowness. Integration over the squared amplitudes of the summation trace yields the

total energy that is recorded at the array for the given beam. A (2dim.) mapping over ranges of

azimuth and slowness values identifies the strongest beam – the horizontal direction and slowness

of the most prominent signal in the used frequency band. 

As the local noise is uncorrelated, its amplitude is increased by √n . The SNR of the array trace is

therefore improved by this factor √n  (Green et al., 1965). The increased SNR allows to improve

the phase identification of weak or masked seismic signals. Due to the significantly lower detection

threshold compared to single stations, the total amount of necessary stations and infrastructure can

be significantly reduced by using SNS networks (e.g. DeadSeaNet, Wust-Bloch et. al., 2016). The

slowness information allows a characterization of the propagation type, e.g. the identification of
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II Distinct Constraints II.1.2.3 Tripartite Array Back Azimuth (Beam) Constraint

acoustic signals or surface waves, since it provides a lower bound for the seismic wave-speed (e.g. a

P-phase cannot appear with slownesses significantly larger than the inverse of the local P-velocity.

A slowness larger than this value can therefore only pertain to a shear-/surface- or acoustic phase).

Small-aperture arrays are therefore powerful instruments for the analysis of non-standard events.

Since a  delay-and-sum beamforming may not deliver  good estimates in presence of high noise

conditions, usually frequency domain based approaches are applied (Capon, J., 1969; Kvaerna and

Doornbos, 1986). Nonetheless, when Kvaerna (1992) and Kvaerna & Ringdal (1992) evaluated the

f-k analysis for sparse arrays, they found that the low amount of stations may not sample the wave

field sufficiently,  resulting in highly ambiguous results. Also,  at  least  one of the traces usually

provided a higher SNR than a well-weighed array-trace of a four-partite SNS, which at best could

yield  a  6dB  ( = 20 log10√4 )  improvement  (Joswig,  2008).  While  these  approaches  may  find

application for extended small arrays of more stations (e.g. a central 3-comp stations and up to 9

vertical stations on 12-channel data-loggers), they are not suitable for sparse arrays. Such extended

arrays with a sufficiently high number of well distributed stations break the symmetry axes and

periodicities that lead to ambiguous results with sparse arrays. It is interesting to point out that the f-

k analysis computes the energy on the stacked trace (which would correspond to squaring the mean

corrected samples in the time domain) and therefore carries methodologically characteristics of

RMS  based  schemes.  As  concerning  location  with  sparse  data  in  general,  we  will  not  apply

summation schemes but will  analyze the data using the Jackknife framework. Where the beam-

forming approach corresponds to a grid search in the time domain in which the seismic traces are

shifted according to a predefined set of slowness-vectors (naturally satisfying the plain wave front

condition) and stacked, we will perform the analysis on the signal's side, in deriving the time offsets

between stations using the cross-correlation of their  given seismic signals.  One of the benefits,

starting from this side,  is  given in  less  ambiguous results:  In short  windows,  signals are  often

dominated by a certain frequency. Shifts, in multiples of the dominant wave-length will lead to

constructive interference in the stacked trace and yield side-maxima in the slowness map, which can

be of the same order of magnitude as the main maximum. By cross-correlating a window consisting

of pre-signal noise and the initial  signal,  these side-maxima are weakened. The initial  signal is

further expected to yield the best back-azimuth estimates as it consists of the wave packages that

travelled on the fastest path, laterally generally pointing towards the epicenter. Another benefit is,

that the array can be generalized to behave like a network for local signals while acting as array for

distant events, as no prerequisite of a plane wave assumption is taken up to the cross-correlation
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process. Rather than inverting all obtained arrival time differences in one error minimizing scheme,

the array will  be dissected in Jackknife manner into minimal sub-groups (sub-arrays) that yield

exact  solutions  for  back-azimuth  and  slowness  estimate.  Afterwards,  the  set  of  generated  sub-

solution will be used to construct the full array's back-azimuth and slowness estimates. The spread

of sub-solutions provides for a quality measure, and outlier sub-solutions (e.g. obtained through

inaccurate  arrival  time differences,  due to  low signal  similarity  or velocity  heterogeneities)  are

naturally weighed less, improving the overall accuracy.  The equation for the back azimuth beam,

which computes the direction of the event's incoming signal, is derived assuming incoming plane

wave fronts and requires three stations for an exact solution (fig. II.1.2.3:2)

For the distances between the wave front arriving at station p, and station q and r applies:

d r= c⋅t r−t p = n⋅r−p
d q= c⋅t q−t p = n⋅q−p , (II.1.2.3-1)

with p⃗ , q⃗ , r⃗  being the station locations, and t p , t q , t r  the corresponding onset times. 

 From this, the common form of the azimuth vector can be calculated as

n⃗ = ((r y− p y)⋅(tq−t p)−(q y− py)⋅(t r−t p)
(qx− px)⋅(t r−t p)−(r x− px)⋅(tq−t p)) (II.1.2.3-2)

and the slowness vector S to
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S = 1
(q y− p y)⋅(r x− px) − (r y− p y)⋅(qx− p x)

n⃗ (II.1.2.3-3)

This common form is valid when all traces are cross-correlated to one common reference trace.

Here  holds  the  equality  (t p−t q) + (tq−t r) + (t r−t p) = Δqp+Δ rq+Δ pr = 0 .  However,  when  the

similarity  of  signals  varies  over  the  array,  a  station  will  show a  higher  correlation  factor  to  a

neighboring station rather than to a distant reference trace. More accurate time differences Δ{i }{ j }

can therefore be found by a pair-wise signal cross-correlation of neighboring stations  i  and  j

(Cansi, 1995). However, here the time differences are usually not consistent  Δqp+Δ rq+Δ pr ≠ 0 .

For such a case we can derive a more robust form from eq. II.1.2.3-1, yielding

n̂=(γ2+1)−1/2(γ1 ) (II.1.2.3-4)

with

γ=−
r y⋅(t p−tq) + q y⋅(t r−t p) + p y⋅(tq−t r)
r x⋅(t p−tq) + qx⋅(t r−t p) + px⋅(tq−t r)

. (II.1.2.3-5)

The slowness vector S is hereby given as

S= n̂
3 ( tq−t r

(q⃗− r⃗ )⋅n̂
+

t p−tq

( p⃗−q⃗)⋅n̂
+

t r−t p

( r⃗− p⃗)⋅n̂ ) . (II.1.2.3-6)

Following  the  jackknifing  methodology  of  decomposition,  computing  sub-solutions  and

recomposition, the array stations are permuted into sub array groups of three stations. For a SNS of

four stations this  would yield four groups which each would yield one exact  sub-solution (fig.

II.1.2.3:3).  The  spread  of  sub-solutions  indicates  the  solution  quality.  The  most  plausible  e.g.

averaged solution is chosen as the representative global back-azimuth value, while the sub-solution

spread serves as parameter uncertainty.
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Fig.  II.1.2.3:3: Beam forming via jackknifing in a four-partite array. Decomposition of the four stations into sub
arrays of three stations, each yielding one solution (gray arrow starting at the center site), and recomposition of the
sub solution to obtain the global solution (bold black arrow).

The uncertainty of the back-azimuth is further a function of the correlation factor of the correlated

array traces. Consequently, it is implicitly also impacted by the sampling rate, especially for steep

incidence angles where the energy arrives at all traces with minimal time delay (although subsample

precision  can be  achieved  with  frequency based correlation  methods).  These  uncertainties  (see

chapter II.3.6) cause the back-azimuth direction to fan-out. As the back-azimuth is also independent

of depth, its spatial location constraint resembles a (wedge-shaped) disc segment (fig. II.1.2.3:4).

Fig. II.1.2.3:4: Two surface arrays with back-azimuth information. Due to a
uncertainty in the azimuth estimate, the constraint fans out, forming a beam.
Since the back-azimuth is depth independent, its shape is resembled by a
disc segment. The intersection region (of mutual location agreement) of both
back-azimuth constraints (highlighted) defines the epicenter, but yields no
depth constraints.
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As the velocity structure is commonly not well  known, it is often approximated by 1D-layered

models.  Since  back  azimuth  information  is  independent  of  the  quantity  of  this  (laterally

homogeneous)  velocity,  it  is  not  being  affected by  velocity  assumptions  which  affect  all  other

constraints.  It  therefore provides  a  robust  constraint,  when the structure  can be assumed to be

laterally homogeneous, but the velocity is not well known (i.e. near-surface events in sedimentary

beds). Generally, the back-azimuth beam could be constructed -starting at the station in the direction

of the measured back-azimuth- by following the steepest gradient of the wave field that a point

source, collocated with the station, would generate. For a laterally homogeneous model the gradient

shows  a  radial  pattern  and  consequently  the  back-azimuth  information  appears  as  a  beam,

increasing its width linearly with distance. This is true until the beam enters a region of lateral

inhomogeneity  (e.g.  a  dipping  layer  boundary),  where  it  will  be  “refracted”  out  of  the  initial

direction.  Its  shape  loses  its  linear  form  and  its  computation  requires  gradient  back-tracing

algorithms.  Although this  “redirection”  of  the  beam can  computationally  be  accounted for,  the

detailed information about existing velocity inhomogeneities are usually not given. In the work

presented,  the back-azimuth beam will  therefore only be applied within the context of laterally

homogeneous models, and hence be computed as linear beam.

Back-azimuth information can be obtained at a single point derived from the amplitude ratios of 3-

component  seismometer  data  (Chapter  IV.1).  The use  of  arrays,  however,  often provides  more

robust estimates as they “sample” the local wave-front, deriving the back-azimuth from the more

stable  arrival  time differences.  But  to  analyze the local  wave-front  sweeping over  the array,  it

requires an aperture large enough to capture the signal's dominant wave-length (e.g. the slow rise

time in signals of large magnitude teleseismic events may cause a less precise cross-correlation,

which causes higher relative errors for smaller apertures and arrival time differences), yet small

enough to guaranty constant wave velocity within the array and wave-form similarity between the

array  traces  to  support  signal  cross-correlation.  Small  arrays  with  multiple  stations  in  varying

apertures fulfill both criteria for a broad band of signals. At the same time, the chosen aperture

requires a minimum epicentral distance, since the analysis requires a planar wave front to interpret

the measured time offsets. Chapter III.1.1 will evaluate the methodological error for nearby sources

for  which  this  assumption  is  violated.  This  allows  to  define  distance-dependent  uncertainty

measures to account for this effect. As particle-motion back-azimuth analysis is not bound to any

aperture-related  restriction,  it  can  be  used  as  complementary  approach  to  obtain  back-azimuth

information for larger magnitude events which bear lower dominant frequencies and rise-times in
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the onset. Here again the configuration of the small-aperture array with a central three-component

sensor is favorable. Back azimuth constraints are typically used in conjunction with S-P constraints

to yield robust locations by combining distance and direction information. A real-time application

using Not-Yet-Arrived S-phases will be laid out in chapter IV.2.

II.1.3 Combining Constraints

An individual constraint, whether BA or any 2-phase group like P-P and S-P, constrains the location

to a certain sub-set of the full space. According to the constraint's uncertainty, this region may be

larger or smaller, but is in most cases not completely bounded. Among the three dominant groups,

only S-P constraints will always result in a limited region. The location can only be constrained

further by additional data, yielding additional constraints: As a solution should fulfill the demands

of all constraints (i.e. in the time-domain yield the observed arrival-time differences, in the space-

domain lie in constrained space), the possible solution interval is reduced when constraints (holding

different parameter values) are added. If all parameters were error-free (i.e. exact onsets, a perfectly

matching  model)  constraints  were  thin  surfaces  and  the  location  would  be  found  in  the  one

intersection point of all constraints, the point for which all information is consistent and constraints

agree. Naturally, all parameters are bound to errors. These would cause the curves to scatter, an

exact intersection would not exist and a best fit hypocenter would need to be chosen instead, based

on  the  region  of  highest  local  constraint  density.  However,  if  the  uncertainties  in  the  input

parameters can properly be estimated and mapped to space, constraints will gain a certain thickness

and the solution will be bound to the region in which the constraints overlap (fig.  II.1.3:1). This

overlap  region  can  be  interpreted  as  the  location  uncertainty,  being  the  set  of  all  possible

hypocenters agreeing with the data and its uncertainties. However, since a region corresponding to a

100% consistency of information is not robust to outliers or insufficiently sized uncertainties, a

more robust bounding region, defined by a 70% agreement of constraints, will represent the location

uncertainty (detailed in chapter II.3.2).

Each sub-group class (i.e. P-P, S-P or BA) may be used individually to constrain the earthquake

location  (although  BA information  only  epicentrally).  However,  a  joint  analysis  that  includes

multiple classes, evaluates the consistency of independent information and hence provides more

robust locations. A simple example is found in the problem of time drift in data-loggers, that occurs
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when e.g. GPS synchronization fails. When one station's data is un-synchronized, P-P constraints

and their  intersections will  scatter.  However,  since the constraint classes are based on different

amounts of stations (e.g. S-P on one station, P-P on two stations,...), time drift errors will only cause

inconsistencies  in  the  ensemble  of  P-P  constraints,  while  leaving  S-P  constraints  unaffected.

Likewise  particle-motion-based  back-azimuth  relying  on one  station,  as  also  array-based back-

azimuth with all array traces having the same time base (being recorded on one data-logger) will be

unaffected by these. Even for data with totally unsynchronized time stamps over the network, these

constraints allow proper location (as each is based on data running on the same clock).

While for cases where the phase type association is clear and information is consistent, automatic

algorithms can be applied to scan the solution space for the most plausible solution, manual analysis

may become necessary when information is significantly inconsistent (e.g. a large spread between

the  solutions  obtained  by  the  individual  classes  or  several  outliers  within  one  class).  For  an

interactive location, the solution space needs to be represented in a way that maximizes insight for

the  analyst.  To  analyze  multi-dimensional  problems,  the  dimensionality  is  usually  reduced  by

splitting off one or more dimensions. Hereby, a parameter (typically the hypocentral depth) is kept

fixed during the analysis and the analysis is subsequently repeated with different quantities of the

parameter until a best fit is found. For a fixed hypocentral depth, this would result in a 2(-space)-

dimensional  evaluation  of  the  location  constraints.  To  visualize  the  three-dimensional  space,  a

common approach lies in displaying intersecting slices, each keeping one spatial coordinate fixed.

Following  this  approach,  for  planar  surface  networks  the  horizontal  slices  reveal  Milne's  well

known S-P “circles” or P2-P1  “hyperbolas” (fig.  II.1.3:1, A-C). Vertical slices display the plausible

hypocentral interval. 

Fig.  II.1.3:1 displays  a  location  scenario  given several  constraints,  using  the  constraint  classes

individually  (a-c)  and  combined  (d).  While  BA constraints  (c)  may  provide  precise  epicenter

locations, they do not constrain the focal depth. P-P constraints (a) constrain the hypocenter well for

local sources, but yield elongated, even open regions for distant sources, resembling BA beams. The

combined use of all constraint classes provides for precise location, robust location boundaries and

a quality measure based on the amount of fulfilled constraints (chapter II.3.2).
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Fig. II.1.3:1: Jackknifing scheme of distinct constraints. A) Hyperbolic location B) S-P trilateration C) Back azimuth
beams. A-D) The superposition of the individual constraints allows to identify the hypocenter as region of strongest
constraint intersection/overlay (white contour) (i.e. highest constraint agreement), marking the global solution. The
hypocenter region is defined as the region that corresponds to a 70% constraint agreement (black contour), yielding
robustness in presence of outliers. D) shows the combined use of all constraint classes, which are in agreement in this
synthetic example.

Since the constraints are based on arrival time differences, the origin time is not explicitly solved

for during the inversion.  After the hypocenter  region is  constrained,  the origin time interval  is

determined by forward calculation of the travel times between hypocenter and stations.
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II.2  Real-Time Direct Search Methodology

This chapter outlines the methodological innovations developed in this work. Graphical Jackknifing

using location constraints given in S-P-, P2-P1 and BA information was developed as interactive

method for Nanoseismic Monitoring (Joswig, 2008). It enables the analyst  to gain insight into the

solution space and instantaneously observe the effect of parameter changes visually to find the most

plausible location: This instantaneous response enables the analyst to test  ambiguous phases for

plausibility and to change model parameters, evaluating the stability of solution. Inconsistencies can

be traced back to minimal groups of data, allowing to re-evaluate the corresponding phases and

applied models. Using this concept of elementary constraints, outlier resistant location estimates

may be obtained. 

However, the requirement of a real-time applicability (to provide for a responsive visualization) was

a  limiting  factor  for  the  complexity  of  the  problem  description  and  its  analysis.  A constraint

calculation dependent on live travel time calculations limited the complexity of the velocity model

to layered models of monotonic increase in velocity with depth. As the constraints were calculated

as  exact  mathematical  bodies  resp.  intersections  thereof  (Eisermann,  2008),  the  semi-analytical

algorithms tend to  fail  in  case  of  the  complex intersection  curves  that  may  occur  for  a  three

dimensional distribution of stations. This complexity also limited the analysis to an evaluation on

horizontal  cross  sections  only,  not  allowing for  vertical  cross  sections  revealing  the  constraint

behavior over depth. Detailed picking and model uncertainties had to remain unaccounted for. An

idea of the uncertainties would instead be gained through interactive modification of the input-

parameters (e.g. phase onsets or the model parameters) with a real-time response, which would

reveal  their  impact  on  the  solution  and  individual  constraints.  The  solution  quality  was

(qualitatively) indicated by the spread of constraint curves, but could not yet be quantified.

The application of Nanoseismic Monitoring in environments of strong topography and a high local

variance  in  the  velocity  field  raised  the  need  for  the  treatment  of  three-dimensional  station

distributions and heterogeneous (three-dimensional) velocity models. The political importance and

concern for correct locations in e.g. CTBT (“Comprehensive Test Ban Treaty”) applications or the

interpretation  of  sources  in  gas-fields  called  for  the  correct  treatment  of  picking  and  model

uncertainties to obtain robust hypocentral regions that would provide reliable location bounds. The

same is of high importance for earthquake early warning systems, which derive information as
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magnitude  and  expected  arrival  times  from  the  early  and  uncertain  estimate  to  issue  public

warnings.

To support all given requirements, yet uphold the real time applicability to provide for real-time

algorithms as used in Earthquake Early Warning Systems on the one hand and for analyst guided

interactive Visualizations on the other, posed the technological challenge of this work. It was solved

by reformulating the methodology into a direct, global search scheme (chapter  II.4): In a direct

search scheme the  algorithms for  constraint  calculation  simplify and become extremely  robust,

allowing  to  map  complex  constraint  geometries  as  occur  with  three-dimensional  station

distributions  or  heterogeneous  velocity  models.  The  constraint  condition  based  on arrival  time

differences [ tB−t A]  is in principle evaluated by equalities in the form of 

[Tt xyz
B −Tt xyz

A ] = t B−t A (II.2-1)

at each grid node, where Tt xyz
A  denotes the travel time between corresponding station and grid cell

[x , y , z ]  of phase  A . As there is no difference in complexity for evaluating this condition on

horizontal or vertical cross-sections, the display of the constraint behavior over depth may in this

manner directly be obtained. A picking uncertainty ( u ) (chapter  II.3.1) can directly be evaluated

using inequalities in form of

∣[Tt xyz
B −Tt xyz

A ]−[ tB−t A]∣< u . (II.2-2)

As travel times do not change for a fixed station layout and velocity model, they may be pre-cached

at each grid point with the need to be recomputed only when velocity model or spatial parameters of

the grid are changed (fig. II.2:1). The decoupling of travel time and constraint calculation allows for

a real-time analysis  using velocity  models of any complexity as  e.g.  inverse layering or three-

dimensional heterogeneous models with cavities as needed in e.g. mine-monitoring. 

More important than picking uncertainties are the uncertainties in the applied model(s). Velocity

model uncertainties will therefore be introduced by using two travel time grids per station, holding

the values of the minimal and maximal possible travel times (chapter II.3.5). 
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Taking account of both, picking and model uncertainties, constraints will occupy “volumes” (i.e.

3dim. regions) in space rather than being represented by (thin) surfaces. Multiple constraints which

due to their errors did not intersect in a common region, will now intersect in congruent regions of

mutual  constraint  agreement  due  to  appropriate  uncertainty  measures,  defining the  hypocenter

region  (chapter II.3.2). Congruent regions, corresponding to a region of 70% constraint agreement,

are robust in presence of outliers (e.g. wrongly chosen ambiguous phases), but may grow large in

presence of model uncertainties. A probabilistic analysis for non-gaussian error distributions will be

introduced (chapter  II.3.3) to  find the most  probable location within these large regions and to

quantify the trustworthiness of location.
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Fig. II.2:1: Conceptual sketch for the location scheme. The inversion is split into a rendering and analysis process.
First, all required travel times (e.g. direct and refracted P- and S-phases ttp,ttp,ref,tts,tts,ref) are computed between all
grid points and stations. Each station “sees” its own travel time field. Depending on the velocity model this step can
take between fractions of- up to several seconds ( Using model uncertainties of 3D Grids the rendering process may
take up to minutes). In the analysis, all given information as S-P, P1-P2, back azimuth beams, Not-Yet-Arrived-Data
(being introduced in chapter ) and residual maps can be calculated in real time, being evaluated at all grid cells at
given cross sections.
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An optimal visualization of the solution space is important for the interactive feedback system, in

which the analyst re-evaluates questionable phase onsets after understanding their behavior in the

solution  space,  evaluating  their  impact  on  the  global  solution.  The  real-time  computation  of

constraints provides the analyst with the ability to directly evaluate the effect of parameter changes

and explore the solution space in the search for the most plausible location. The solution space will

for  this  be  visualized  using  three  cross-sections,  projections  or  3D  rendered  graphics.  To

differentiate between the constraint classes, the constraint groups are displayed in different color

channels, that superposed add up to white. The intensity/brightness of each channel scales with the

amount of overlapping constraints in that class. This supports the psychophysical perception, as

regions  of  higher  constraint  agreement  appear  in  higher  intensity.  The  likelihood of  a  solution

therefore scales with the perceived brightness. The region of global solution is featured by high

brightness and a white color if all constraint groups agree (fig.  II.2:2), leading the analyst to the

most plausible solution. 

Fig. II.2:2: Display of constraints on cross-sections in a) 3D- and b) planar visualization, consisting of horizontal,
E-W and N-S cross-section. Probabilistic representation of  P-P (red) and S-P (green) information (see chapter
II.3.3). Here, additionally the L2-residua sum is displayed on the blue channel. Colors superimpose to white at
points  of  mutual  agreement,  while  the  brightness  of  a  given  color  generally  correlates  with the  agreement  of
information within the corresponding constraint class.

When information is sparse, the low number of constraints will appear as distinct objects, each

having a high impact on the solution. For a large amount of information resulting in a high number

of constraints, the individual constraint will comparably fade weaker. Since the normalized density
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of constraints at a given point scales with the point's likelihood to be a solution, the graph will

eventually resemble a topological likelihood function (fig.  II.2:3b). The distinct visibility of the

individual constraint is therefore also a measure of its impact on the global solution.

Earlier  chapters  stressed  the  importance  of  global  and  complete  solutions,  referring  to  an

algorithm's ability to avoid converging into local minima, but to find the global extremum, even

revealing the set of best fit locations if multiple ambiguous solutions exist. The requirement for

global  solutions  calls  for  coverage  on  two levels.  On the  large  scale,  the  grid  must  cover  the

complete space containing all relevant solutions. Due to secondary solutions outside the network

having amplitude ratios and arrival time differences similar to a solution within the network, grids

of large spatial extent are needed. Secondly, as grid searches only sample the search domain at

certain trial positions, they may overlook sharp solutions that lie in between grid points. On the

lower end of the scale the distance between grid points should therefore be very short. Neither of

both demands can technically be met, especially in the context of a real-time analysis. To provide

truly complete solutions, the grid search will be modified on both ends of the scale. On the lower

end, we will integrate constraint probabilities over grid cells rather than evaluating constraint at grid

points only (chapter  II.4.1). This renders it impossible to miss sharp minima or maxima. On the

77

Fig. II.2:3: Superposition of a) 10 P-P constraints generated from the P arrival times of 5 stations (grey triangles)
and b) 66 constraints generated from the P arrival times of all 12 stations. While the constraints still appear as
individual objects in (a), they are indistinguishable, resembling a likelihood distribution in (b). Example taken from
chapter V.1.
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upper end of the scale  the problem is met by a variable grid resolution (chapter  II.4.2). As the

spatial extent of constraint uncertainties grows with the distance from corresponding stations, the

grid resolution may be reduced with distance without loss of precision. Larger space intervals can

therefore be analyzed with equal computational power, providing for truly complete solutions. The

following chapters will shed light on all these subjects. 

For robust locations, the proper description and mapping of uncertainties plays a key role to cover

all associated errors. We will therefore begin with the formulation of constraints in the presence of

uncertainties. 
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II.3 Constraint Uncertainties

The less data are given, the stronger is their individual impact on the solution and the stronger their

errors will  affect the solution. Analyzing sparse data as if  it  was error-free will  produce results

showing a spurious precision. Given an exactly determined system (e.g. four surface stations with

P-triggers, a scenario common in realtime location), constraints are bound to agree perfectly in at

least  one  location  (i.e.  in  one  point).  This  result  of  highest  precision  will  most  likely,  due  to

inaccuracies in the velocity model and possibly unprecisely picked phase-arrivals, be inaccurate.

Especially with the ill-conditioned problem for the hypocentral depth, the focal depth will often be

non-representative  of  the  true  one.  Trusting  this  spurious  precision  would  lead  to  wrong

interpretations. We face the same problem if we have less data (underdetermined systems), only

here the solutions are additionally degenerated. With multiple given constraints in overdetermined

systems  on  the  other  hand,  we  would  usually  notice  a  discrepancy-  as  no  zone  of  complete

constraint agreement could be found. However, also in this case it would be difficult to define a

bounding region for the hypocenter. The key component for accurate results and an estimate of their

precision is therefore the estimation of the input parameters' uncertainties and their mapping to the

solution space. Doing so will reveal the fact that the solution might be found in a much broader

space than the solution, that was based on an error-free assumption, did indicate. In the following

chapters  we  will  address  the  question  how  these  parameter  uncertainties  are  mapped  into

(uncertainties in) solution space. In the work presented, two types of uncertainties are regarded:

those  of  picking  and  those  of  the  model.  Hereby,  the  picking  uncertainty  consists  of  a)  the

uncertainty in arrival time estimation and b) uncertainties that are due to phase type determination

and ambiguous phase-arrivals. Mapping the uncertainties will have two major effects: 1) Individual

constraints will gain a certain “thickness”, in such a way that a forward calculation of the travel

times from any location inside the constrained region will always yield arrival times that correspond

with  the  two  measured  phase-arrivals  within  their  assigned  uncertainties.  The  constraint

corresponds therefore to the set of solutions (locations) that all possible perturbations of the input

parameters within their uncertainties could have produced. As such, it portrays already during the

inversion process the result of a sensitivity analysis that otherwise would only have been performed

after inversion. This allows to find trustworthy locations even when only few data is given, e.g. in

exactly determined or even underdetermined problems where no redundancy exists to evaluate the
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solution quality. 2) With multiple constraints, overlap regions of constraint agreement will be found.

Such  a  region  provides  for  robust  boundaries  for  the  hypocenter  and  signifies  the  hypocenter

uncertainty. To account for outliers, the hypocenter region will be defined as the region in which at

least 70% of constraints overlap i.e. agree (chapter  II.3.2). The degree of agreement (congruity)

serves as measure for the solution quality.  This measure allows for robust automatic  constraint

based location algorithms, e.g. for real-time location. To obtain best-fit estimates, chapter II.3.3 will

introduce a probabilistic approach for the analysis of constraints and their uncertainties. The focus

of this work lies, however, not in finding a best fit solution, but to find a solution interval that is

robust and accurate: Accuracy is weighed higher than a high precision, that may be spurious. As

such,  the  guiding  philosophy  is  to  only  constrain  the  solution  as  much,  as  the  data  in  its

uncertainties  truly provides:  Initially  (applying no constraints),  the  possible  solution interval  is

given in the full set of points that make up the sub-surface space. From here, only those points will

be eliminated that can not be brought into agreement with the data in its uncertainties. Solution

regions may therefore be less precise (i.e. larger), but also more robust  in truly containing the

hypocenter. 

It was mentioned before that  uncertainties cause the constraint to acquire a certain “thickness”.

However, the relationship between the uncertainties in parameter space (time) and those in solution

space (space) is not trivial, as fig. II.3:1 reveals. Here a two dimensional example is displayed, in

which two stations detect  three surface  events.  For each event  a  P-P constraint  can  be formed

according  to  the  measured  arrival  time  difference  between  the  two  stations.  Here,  each  event

location yields a different arrival time difference, but the picking uncertainty is the same for all

detections. The constraint's “width” (i.e. the uncertainty mapped into solution space) varies strongly

between the three examples, contrary to intuition, as all hold the same parameter uncertainty. For

the constraint based on the largest arrival time difference, the “width” is also strongly asymmetric

around the “exact” (error-free) constraint. Most significant though is the fact, that the constrained

region significantly differs between a constraint incorporating uncertainties vs. one neglecting them.
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This simple example shows that neglecting uncertainties may cause a fundamental misinterpretation

in event location and that their proper consideration is crucial when data are few. The following

chapters will establish different types of uncertainties. Beginning with non-Gauss-shaped picking

uncertainties, which are important for the evaluation of unclear and ambiguous phases, the velocity

model  will  be assumed to be perfectly known. After introducing a probabilistic formalism, this

concept  will  be  expanded  to  a  multi-pick  evaluation,  formulated  for  a  direct  search  approach.

Finally,  velocity  model  uncertainties  will  be  added,  completing  the  evaluation  of  uncertainties

considered in this work.

II.3.1 Picking Uncertainties

The  determination  of  phase  onsets,  whether  manually  or  automatically  picked,  is  bound  to

uncertainties. This uncertainty is caused by the fact, that the point at which the signal arises from
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Fig.  II.3:1:  Three  hyperbolic  constraints  with  the  same  picking
uncertainty  of  δtp=0.01s  yield  a  very  different  spacial  precision,
depending  on  the  arrival  time  difference  Δt p.  Especially  in  the  left
example of largest arrival  time difference, the epicenter may lie in a
much larger region than the exact constraint  (solid curve) indicates.
Arrival time perturbations alter the location the stronger, the larger the
arrival time difference is. 

200m

Δtp = 0
Δtp = 0.2s

Δtp = 0.27s

δtp  = 0.01s
        = const.
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the  surrounding noise  or  signal,  can only  be  determined with  limited  accuracy.  For  dispersive

surface  waves  the  signal's  different  wave  lengths  arrive  at  different  times.  The  apparent  onset

therefore varies with the chosen frequency band (also due to the filter's phase shift which remains

often unaccounted for). Also, the corner frequency of a fracture decreases as the fracture grows with

time, causing lower frequencies to arrive later. The data-logger time drift that occurs when GPS

time synchronization delays due to reception problems, causes additional uncertainty in the absolute

picking  time.  In  the  analysis  of  doubtful  data  with  signals  close  to  noise  level,  onsets  might

additionally be masked and multiple possible onset candidates might exist. Here, the incorporation

of  error  and uncertainty analysis  is  crucial  for  proper  location,  as  the  absence  would feign an

unrealistic  high  constraint  accuracy  and  may  cause  misleading  interpretations  of  results  and

subsequent  mislocation.  Especially  for  large  arrival  time differences,  small  deviations  of  phase

onsets have a large impact on the constraint location and “width” (fig.  II.3:1) - a counter-intuitive

behavior  (increasing  impact  with  decreasing  relative error)  that  is  linked to  the  existence of  a

maximum  value  (chapter  I.2.4)  that  growing  arrival-time  differences  are  approaching.  For  the

formal  derivation,  errors will  be first  constructed as symmetrical  uncertainty around the arrival

time, similar to physical parameters with absolute errors. Within the later concept of probabilistic

constraints the uncertainty will then be generalized to a (weighted) arrival time interval, for which

only the interval boundaries and weights are used as information parameterizing the constraint. This

allows  to  properly  address  the  fact,  that  picking  errors  are  usually  one-sided  (late)  and  the

uncertainties therefore asymmetrical. Such an approach will mark point(s) in space according to

their likelihood to correspond with the hypocenter location. For now, however, we will not focus on

discriminating the point(s) most likely, but rather illuminate the whole region of physically possible

solutions. While this will disregard the level of likelihood varying over this region, it will allow to

define a solution region in space, which can be trusted to contain the hypocenter. For this, the phase

onset time t  will now be expressed as measured physical parameter t̄  with associated error δ t

t= t̄±δ t , (II.3.1-1)

the error expressing a strict bound for the parameter value.  The true value of t will therefore lie

between the minimum and maximum value 

tmin= t̄−δ t  and tmax= t̄+δ t (II.3.1-2)
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and the maximum discrepancy between any possible  t  and  t̄  is  given by  δ t .  As all  location

constraints rely on more than one onset, the collective error associated with the constraint has to be

evaluated.  When deriving  values  from uncertain  parameters,  the  uncertainties  propagate  to  the

computed  values.  The  rules  of  error  propagation  for  fundamental  mathematical  operations  on

uncorrelated variables are

δ( x+ y )= δ x+δ y (II.3.1-3)

δ( x− y )= δ x+δ y (II.3.1-4)

δ( x⋅y)= x̄⋅ȳ ( δ x
x
+δ y

y
) (II.3.1-5)

δ( x / y )= x̄
ȳ
( δ x

x
+δ y

y
) . (II.3.1-6)

Most fundamental location constraints rely on the difference of two onsets, as e.g. P-P-hyperboloids

which are based on the difference of the P onsets at two stations:

T pp=Δ t p=t2
p−t1

p , (II.3.1-7)

defining the constraint parameter T . According to eq. II.3.1-4, the overall constraint uncertainty is

given by the sum of both onset's uncertainties,  which can be confirmed evaluating the extreme

values of the possible parameter interval. Introducing uncertainties, (II.3.1-7) can be written using

eq. II.3.1-1 as

T̄ pp±δT pp=( t̄ 2
p±δ t2

p)−( t̄ 1
p±δ t1

p) (II.3.1-8)

Sorting the terms to obtain the extreme values, the minimum and maximum value of the interval of

possible values for T pp ϵ[T min
pp ,T max

pp ]  become

T max
pp =T̄ pp+δT pp= t̄ 2

p− t̄ 1
p+(δ t2

p+δ t1
p) (II.3.1-9)

T min
pp =T̄ pp−δT pp= t̄ 2

p− t̄ 1
p−(δ t2

p+δ t1
p) (II.3.1-10)

The collective constraint uncertainty δT p  is given in agreement with eq. II.3.1-4 by 

δT pp=(δ t2
p+δ t1

p) , (II.3.1-11)
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defining the general error for constraints based on the time difference 

of two uncertain onsets A and B as

δT AB=(δ t A+δ tB) . (II.3.1-12)

The following example (Fig. II.3.1:1) for two simultaneously detected onsets, shows the validity of

this relation (II.3.1-11) also for overlapping or coinciding uncertainty intervals:

Fig.  II.3.1:1:  Overlapping  uncertainty  intervals.  Even  when
intervals are overlapping, the minimum and maximum arrival
time differences follow eq. II.3.1-11.

In this case both onsets were detected at the same time, thus T̄ AB equals zero.

T̄ AB= t̄ B− t̄ A=0 (II.3.1-13)

Nonetheless, the interval of possible T AB  extends from −(δ t A+δ t B)  to (δ t A+δ tB)  according to

equations (II.3.1-9) to (II.3.1-11)

T AB
max= t̄ B+δ t B⏟

t B
max

−( t̄ A−δ t A)⏟
t A

min

=δ t A+δ t B=δT AB (II.3.1-14)

T AB
min= t̄ B−δ t B⏟

t B
min

−( t̄ A+δ t A)⏟
t A

max

=−(δ t A+δ tB)=−δT AB (II.3.1-15)
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Each T ϵ[T min ,T max ]  corresponds to an exact (uncertainty free) constraint surface S (T ) . The set

of  constraints,  that  can be constructed  from all  possible  T ϵ[T min , T max ]  forms a  region  R  in

solution space which - if the whole interval corresponds to physically sound solutions - is bounded

by  the  two  constraint  surfaces  S (T min)  and  S (T max) ,  enclosing  the  mean  constraint  surface

relating to  T̄ . This is demonstrated in figure  II.3.1:2 for a hyperbolic constraint, being based on

two stations observing a P-onset at the same time. Each T ϵ[T min ,T max ]  corresponds to a hyperbola

in 2D (a hyperboloid in full space), the central hyperbola ( T̄ AB=0 ) resembling a line (plane). The

set  of  all  hyperbolas  constrains  the  hyperbolic  region  R ,  which  with  T̄ AB=0  is  in  this  case

symmetric biconcave.

 

Fig. II.3.1:2: Constraint region constructed by set a set of constraint surfaces for the example of
hyperbolic constraints. T̄ AB=0

It is, however, not a given that the full parameter interval  [T min ,T max ]  corresponds to physically

possible solutions. In case of P-P constraints, parts of the interval may correspond to (absolute) time

differences too large to be consistent (i.e. physically possible) with the given velocity model and

station distance (See chapter III.2). In case of S-P constraints, an observed arrival time difference

smaller than the associated picking errors would lead to overlapping uncertainty intervals. Part of

the S-P interval would therefore include negative values, which would express that the S-phase had

arrived earlier than the P-phase. Although this is physically impossible, the formalism is still valid

and does not affect the results since the constraints are analyzed in the space domain. The spacial

constraint is not affected by unphysical arrival-time differences due to the fact that a grid search

comparing  arrival  time  differences  with  travel  time  differences  will  only  map  the  physically
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II Distinct Constraints II.3.1 Picking Uncertainties

possible part of the parameter interval: The negative S-P arrival time difference, for example, will

be compared to  the  difference of  the  times that  P- and S-phase travel  from the  station to  any

evaluated point in space. Since the S-phase will always require a longer time to travel to any point

in space than the corresponding P-phase, only positive travel time differences will be found. The

negative part of the interval will not “find” a corresponding spatial solution. Hence, these pseudo

solutions will naturally be ignored and the interval effectively reduced by the velocity model to an

interval  of  consistent  information  (i.e.  a  consistency  between  observables  and  model:  Model

uncertainties hence need to be addressed, so that observations being critical but consistent within

the vagueness of the model, are not excluded). In the solution space, a reduced interval corresponds

to a constraint appearing with a reduced “width”. If a T  interval does not contain any valid arrival

time difference information (e.g.  due to mis-picked phases),  no space is  being constrained: the

constraint is not being “displayed”. This is an indication that either a wrong phase was picked or

that the applied model does not sufficiently represent the actual velocity structure. 

After laying the ground-works of constraint uncertainties, in viewing how timing errors affect the

constrained hypocenter region, we will investigate how such constraints may be analyzed.

II.3.2 Constraints Congruity, Feasible Regions and Representative Best Fit Locations

Given several stations and phase onsets, various constraints are generated. A global solution would

be found in the common intersection of all constraints, as this point fulfills all constraints' demands

(fig. II.3.2:1). This constraint based location approach can mathematically be defined as a flexible

constraint satisfaction problem (SCP) in the framework of optimization where all constraints are

given in equalities or inequalities (Dubois et al., 1996). In standard SCP, the problem is given in

finding  the  set  of  points  that  fulfills  all  given  constraints.  A set  of  points  that  meets  all  the

constraints' conditions is called a feasible region and defines a first set of solutions which at later

stages may be refined e.g. using likelihood measures. If the constraints are mutually contradictory,

no  feasible  region  can  be  found  and  the  solution  corresponds  to  the  null  set.  If  we  disregard

uncertainties, location constraints correspond to equalities and hardly ever yield a feasible region in

SCP. Hence, the estimation of location and location uncertainty is left to qualitative measures. The

last chapter showed that “exact” location constraints appear as “thin” surfaces in space (curves in

2D).  When uncertainties  are  accounted  for,  the  constraints  can mathematically  be described as

inequalities, spanning out regions (fig. II.3.2:1b). 
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Fig. II.3.2:1: Comparison of constraints a) disregarding and b) regarding uncertainties. The four spheroids and four
hyperboloids constrain a congruent region (intersection of all constraints, black), identifying all points possible for
location corresponding to the given uncertainties. The cluster of sensors has an aperture of 100m. A homogenous
model with 4.5km/s and uniform picking uncertainties resembling 1 sample for P picks and 2 samples for S-picks at a
sample rate of 500Hz are being used. While the congruent region in panel (b) allows to quantify the precision of the
solution, (a) this is difficult for panel (a).

Where deviations from the true onset would lead to a spread of curves and intersection points in the

classical approach with “exact” constraints, here the intersection remains a congruent region that is

robust concerning picking errors within the assigned uncertainties. This is demonstrated in figure

II.3.2:2:  Where exact  constraints  scatter  for perturbated arrival  times,  uncertain constraints  still

form  congruent  regions  containing  the  event  location.  Also,  attempting  to  define  location

uncertainties qualitatively from the set of exact constraints will lead to very different results than

the computed congruent regions indicate! (The interested reader may try this experiment with fig.

II.3.2:2, covering the right panel.) To visualize the impact of smallest parameter uncertainties, here

an uncertainty of only one sample  (δtp=0.002s, @500Hz sample rate) has been applied. For this

small  scale  scenario,  this  already  causes  large  spatial  uncertainties.  Leonard  (2000)  reports  an

average of ±0.067 sec for the difference in onset time picking by different analysts for teleseismic P

phases,  with  a  standard  deviation  of  0.15  sec.  The  actual  picking  and  solution  uncertainty  is

therefore expected to be significantly larger.
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Fig.  II.3.2:2:  Exact
constraints  (left)  vs.
uncertain constraints.

Panels  a-d)  show a  set  of
hyperbolic  constraints  for
the  same  event  with  the
onset picks only varying up
to one sample (500Hz data,
δtp  ≤  0.002s.  This  time
interval  can  be  viewed  as
the  minimum  uncertainty
concerning  the  signal  due
to  discretization.  On  the
left,  exact  constraints
(neglecting  uncertainties)
are  used,  showing  the
spread of curves that arises
from  this  minimum
uncertainty. The right side,
displaying  uncertain
constraints  with  a uniform
uncertainty  of  0.002s,
reveals  the  corresponding
uncertainty in space, which
for  some  constraints  is
quite  large.  Note,  that  the
spatial uncertainty ('width')
is strongly varying between
the  constraints,  although
all hold the same the (time-
based)  parameter
uncertainty.

While  exact  curves  scatter
and  require  an  averaging
procedure  to  identify  the
rough  location  of  the
epicenter,  constraints
regarding  uncertainties
intersect in feasible regions
of  congruent  information.
The  hatched  area  (top
right), shows the congruent
region  magnified:  The
epicenter  (black  plus)  is
always enclosed.

Accounting  for
uncertainties  therefore
serves two purposes. First,
it  adds confidence that the
event  truly  lies  in  the
computed region. Secondly,
it  displays  the  state  of
knowledge  concerning  the
precision of the result.
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Accounting for uncertainties can serve several purposes. First and most, it adds confidence that the

event  may  be  found  in  the  region  having  been  computed.  Secondly,  using  an  expected

representative uncertainty, the expected precision of future location estimates (based on the given

network  geometry)  can  be  mapped  over  the  region  of  interest,  to  evaluate  whether  the  given

network suffices to reach the required resolution or whether it would be beneficial to strategically

deploy additional stations (chapter III.1).

The congruent  zone displays all  possible  locations for  the  uncertain parameters,  e.g.  the set  of

locations  that  would  be  obtained  by  all  combinations  of  exact  picks  possible,  within  assigned

uncertainty  bounds.  If  all  uncertainties are  properly addressed,  the  congruent  zone will  form a

maximum region,  in  which  the true  location should lie.  This maximum boundary is  of special

importance, e.g. for earthquake early warning location estimates, allowing to derive minimum and

maximum hypocentral  distances and magnitude estimates; or in CTBT applications, to yield the

confidence that the possible source location area does not extend over geographic boundaries of

political  entities.  Again,  as timing (picking) errors represent  only a part  of the total  error,  it  is

important  to  incorporate  all  significant  uncertainty  measures  (e.g.  sensor  orientation  for  BA

constraints), but especially model uncertainties (Chapter  II.3.5). Now, applying a “hard” SCP for

earthquake location, whereby “hard” indicates that all constraints need to be fulfilled, is not robust:

Outlier picks, for instance, will generate constraints appearing outside the zone of highest congruity

and reduce the maximum congruity of the system. As not all “hard” constraints are satisfied, no

“feasible” region exists and no solution would be given. Rather than using “hard” constraints that

have to be fulfilled for a solution to exist, the SCP construct of “flexible” constraints needs to be

applied.  Flexible constraints do not necessarily have to be satisfied. The quality of the systems

solution is rather valued by the number of satisfied constraints. This corresponds to the theory of

coherence,  in  which  the  degree  of  a  claim's  trustworthiness  is  assessed  by  evaluating  the

consistency of a set of related statements. An event's location would accordingly be trusted to be

found within that region that is supported consistently by most constraints. Where all constraints (

κ ) agree (i.e. overlap or intersect), the congruity c  is defined as c=1

[∩
i=0

nκ

κi]≠∅ → c=1 (II.3.2-1)
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with nκ  being the amount of given constraints. In regions of lower constraints agreement, c  drops

in value, indicating a less robust or trustworthy solution. To compensate for mis-picks and the fact

that the true uncertainties might not always have been applied, a solution will be declared “feasible”

if at least 70% of constraints agree. A region is therefore becoming part of the hypocenter region if

it holds a congruity  c≥0.7  (fig.  II.3.2:3). This particular choice of threshold causes the feasible

region to be identical to a region of 100% constraint-agreement for underdetermined systems of

hyperbolic constraints (3 or less P-phase detections), which lack the redundancy to support outlier-

robust solutions. [With three stations, three hyperbolic constraints are generated: A region where

only two out of the three constraints agree holds a congruity of  c=2 /3=0. 6̄<0.7  and therefore

doesn't qualify as “feasible” – the feasible region is in this case identical to the region of 100%

constraint agreement: the region on which all three constraints agree. This avoids an overestimation

of  the  feasible  region  since  zones,  in  which  only  two  out  of  three  constraints  agree,  may  be

extensive. Given four different P-phases, also regions where five out of the six P-P constraints agree

will become part of the feasible region, since c=5/6=0.83̄≥0.7 ).] This particular threshold acts

therefore  as  natural  “switch”,  adding  robustness  to  the  feasible  region  when  sufficient  data  is

available, at the same time avoiding its overestimation when data is few.

Fig.  II.3.2:3: The superposition of individual constraints allows to identify the hypocenter as region of strongest
constraint agreement/congruity (white contour), marking the global solution. The hypocenter region is defined as
the region that corresponds to a 70% constraint agreement (black contour), yielding robust hypocenter regions in
presence of outliers. Panel A) shows hyperbolic constraints, panel B) S-P constraints.
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Using the concept of distinct constraints and their uncertainties, the normalized congruity can be

defined in a general form as

c x , y , z=
1
nκ
∑
i=1

nκ

H (V i ,U i) with H (v ,u)={1, ∣v∣<u
0, else

(II.3.2-2)

with  c x , y , z  denoting the congruity at coordinate  (x , y , z)T .  V i  denotes the constraint deviation

and  U i  the  constraint  uncertainty.  The  constraint  deviation  V i  (“violation  of  the  constraint's

demand”)  denotes  the  difference  between  observed  and  modeled  constraint  parameters:  If  the

modeled parameters confirm the observation, the constraint's demand is fulfilled; if the modeled

parameters deviate from the observation, the constraint is violates.  H  is a boxcar function that

increases the congruency by one increment if the deviation is smaller than the assigned  uncertainty.

For e.g. a P-P hyperboloid, eq. (II.3.2-2) takes the specific form 

c x , y , z=
1
nκ
∑
i=1

nκ

H (T x , y , z
M −T i

O , δT ) (II.3.2-3)

with  T x , y , z
M  being the modeled constraint parameter for a given coordinate (i.e. the difference of

modeled travel times between trial location and both involved stations) and T i
O  being the observed

constraint parameter (i.e. the observed difference between the  arrival times of both stations). The

difference between both quantities defines the constraint deviation V i . The constraint uncertainty

U i  is e.g. given in the picking uncertainty δT .

The congruent (“feasible”) region allows a reliable interpretation of the source location, reflecting

the possible variance in location. Its shape is determined by a) the network geometry, b) the used

constraint classes and c) the assigned uncertainties and represents the uncertainty in the location of

the (point source) hypocenter. 

     

Note: It was mentioned before that a network's ability to yield precise locations can be evaluated

by using  synthetic  arrivals  of  test  locations  in  conjunction  with  the  expected  uncertainties,

analyzing the extent of the feasible region. A mapping of the precision (chapter III.1) will reveal
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the regions,  in whom precise locations can be obtained, and those where the deployment of

additional sensors would be beneficial.  In this context it is worth to note that the congruent

region (usually obtained from the overlap of distinct constraints) may also be obtained from

residua-sum approaches, as the number of hyperbolic constraints grows with (N s)2 , ( N s  being

the number of involved stations) while the residual sum scales linearly with N s . For automatic

schemes only focussing on the congruent region (e.g. network precision mapping/optimization)

the computational cost can therefore be reduced. The congruent region corresponds to the region

for which an “uncertainty truncated residuum” (eq.  II.3.2-4) vanishes, identifying all locations

which are possible within the given uncertainty intervals. Where the residuum is defined as the

difference between observed and modeled arrival time of the corresponding phase

Ri
P = t i

P−ti
P , M , (II.3.2-4)

a uncertainty truncated residuum will be defined as

R̄i
P =Λ(∣ti

P−t i
P , M∣−δ t P) (II.3.2-5)

with Λ  being the ramp function

Λ( x)={x , x≥0
0, else

, (II.3.2-6)

which simply sets the residuum to zero, if it's within error bounds ( δ tP ). 

The region for which the truncated RMS

RMS =∑
i

( R̄i
P)2

(II.3.2-7)

vanishes  ( RMS = 0 )  corresponds  to  the  constraint  intersection  region  as  formed  of  P-P

constraints (solely P-phase based location). Since only the area of ̄RMS = 0  is evaluated, the

choice of the used norm is of no effect. For the congruent region obtained from the intersection

of  S-P and P-P constraints  (i.e.  the  region  constrained  by  P-  and  S-information,  as  in  fig.
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II.3.2:1b) the truncated residuum sum is given by

RMS SP =∑
i

( R̄i
P)2+∑

j

( R̄ j
S)2 , (II.3.2-8)

with i and j iterating over all stations with given P- resp. S-detection. Instead of  1/2(n2−n)

hyperbolas  the  RMS estimate  requires  only  n  iterations,  however,  demands  an  additional

iterative search for the origin time. The RMS estimate of the congruent region is suitable for the

analysis of denser networks.

After the feasible region is constrained, one might look for an optimal, representative (e.g. most

likely) solution to represent the point-source hypocenter location. Such a representative solution can

be estimated using the center of congruity Rc  which is defined in analogy to the physical quantity

of the center of mass Rm , which is described as

Rm=
1
M ∑

i=1

n

mi r i with M =∑
i=1

n

mi . (II.3.2-9)

There, M  is the total mass of n  particles with locations r i  and particle masses mi . 

Following Rm , the center of congruity Rc  can be defined as

Rc=
1
C
∑

x
∑

y
∑

z

Λ0.7(c x , y , z)⋅( x
y
z ) with C=∑

x
∑

y
∑

z

Λ0.7(c x , y , z) . (II.3.2-10)

Here,  c x , y , z  represents the congruity value at grid point  (x , y , z) , representing that coordinate's

weight ( 0≥cx , y , z≥1 ), while the Ramp function Λ0.7  truncates every congruity value below 0.7 to

0, making that coordinate's influence void.

Λ0.7( x)={x , x≥0.7
0, else

(II.3.2-11)
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In this way, points of low congruity are disregarded while points of highest congruity exert the

highest attraction, pulling the solution into the center of highest constraint agreement. 

Chapter III.2 will lay out that in certain cases one even ideal set of arrival times may yield multiple

distributed  feasible  regions  (with  c=1 ),  i.e.  ambiguous  solution  candidates.  Seeking  one

representative single-point location in such a case (where actually several equivalent maxima exist)

is critical as it hides the existence of the other solutions. For ambiguous solutions, the center of

congruity  approach  (as  any  other  averaging  scheme)  will  fail,  yielding  a  solution  that  is  not

representative - that might even not be part of the set of feasible regions, as the averaged location

might lie in between all of them. Automatic algorithms should therefore rather use all distributed

feasible regions to define an extended region (i.e. a convex polyhedron enclosing all maxima) to

represent the uncertainty in hypocenter location. 

With an increasing amount of stations, these ambiguous solutions that fulfill all constraints perfectly

( c=1 ) are less and less likely to exist. However, when assigned parameter uncertainties are too

small to cover the true errors (e.g. mispicks), no congruent region might be found in overdetermined

problems. Instead several, spatially separated weak solutions (holding a  c<1 ) would be found,

surrounding the true location. Fig.  II.3.2:4 shows such a case. A center-of-congruity approach as

described above, which would attempt to average over the distributed weakly congruent regions,

would  fail  to  determine the  best  fit  solution (red plus,  fig.  II.3.2:4).  Again,  here a  polyhedron

formed by the distributed weak solutions could be used to define the possible hypocenter region. A

best fit  solution could be obtained by “artificially” increasing the assigned uncertainties until a

region  with  sufficiently  high  congruency  ( c≥0.7 )  is  found.  For  constraints  with  comparable

uncertainties the so found congruent  region generally agrees well  with the minimum found by

residua-sum approaches  (while  remaining  to  be  more  accurate  in  presence  of  very  discrepant

outliers as such would be weighed less). However, this approach is slow and only patching the

problem.  In  the  following  we  will  derive  a  solution  for  this  problem  concerning  the  most

predominant  case for automatic  and real-time locations,  the P-phase based location,  to  provide

robust estimates even when uncertainties are not properly assigned. Therefore we recall that the

scattered hyperbolic constraints (fig.  II.3.2:4) were obtained using underdetermining estimators in

the jackknifing scheme, relying on only two data.
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Fig. II.3.2:4: Due to too small assigned uncertainties, no
zone  of  congruity  ( c≥0.7 )  is  formed.  Instead,  sub-
solutions of lower congruity (e.g. the intersection point of
three  constraints)  scatter  around  the  optimal  location
(black  plus).  Using  a  simple  center-of-congruity
approach,  ambiguous  sub-solutions  (multiple  crossing
points of the same three constrains) pull the “optimal”
solution (red plus) away.

If the concept of constraining fails due to discrepancies, we need to remember that it is actually the

solutions of 4-member sub-groups (“four stations with P-onsets”) that relate to the 4dim. earthquake

location problem, yielding exactly determined sub-solutions. It is  their scatter that describes the

location uncertainty. To find an optimal solution (“explaining the data best”), it  is therefore the

ensemble of exactly determined sub-solutions that needs to be evaluated - not the hyperboloids

themselves. Understanding their relationship to the 4-member groups, however, will allow us to

define a set of rules, which will  allow us to use the hyperbolic constraints to find the exact 4-

member (“quad”)-group solutions, to eventually construct the optimal solution. 

To do so we will look at the relationship between related groups of different member size, following

the hierarchy of information downwards and then upwards again. The key for understanding this

walk lies in the following Lemma: All groups that can be derived by rearranging n elements of a n-

member group into (n-1)-member groups, will always intersect in the solution of the n-member

group. The decrease of the member size by one increases its solution's dimension by one:  A quad-

group (yielding one solution with no degree of freedom: A point) can be split into 4 triple-groups

(yielding 1dim. solutions: Curves). These four curves are bound to intersect in the point of the quad-
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group  solution.  Each  triple-group  itself  can  be  split  into  3  two-phase-groups  (yielding  2dim.

solutions: Surfaces): Here, the P-P-hyperboloids which we use to constrain the earthquake solution. 

The P-P-hyperboloid, being defined by the arrival times and positions of two stations, is the lowest

object  in  this  hierarchy of information and the highest  in  dimension. We will  now step up the

hierarchy again and keep track of the stations on which the groups rely: Three hyperboloids a,b,c

(based on stations {1,2},{2,3} and {3,1}) intersect in a single curve corresponding to the solution of

the superior “parent” triple-group Ta,b,c (being based on stations {1,2,3}). [Note: The intersection of

any two of these hyperboloids forms the same curve. The third hyperboloid is not independent but

redundant being based on the same parameters that determine the other two hyperboloids and is

therefore  bound to  run  through  the  same  intersection  curve].  Intersecting  the  four  triple-group

curves (being based on stations {1,2,3}, {1,2,4}, {1,3,4} & {2,3,4}), where each can be found by

intersecting  the  corresponding  “child”  hyperboloids,  would  bring  us  back  to  the  quad-group

solution (being based on stations {1,2,3,4}. In total we find with the P-phases of four given stations

(1,2,3,4), six hyperbolic constraints (a,b,c,d,e,f) based on stations {1,2}, {1,3}, {1,4}, {2,3}, {2,4}

& {3,4}, which can be grouped into 4 triple-groups ({a,b,d}, {a,c,e}, {b,c,f}, {d,e,f} which use the

information of stations {1,2,3}, {1,2,4}, {1,3,4} & {2,3,4}). The exact solution of the quad-group

can therefore either be identified over the exact intersection of the 4 triple-curves or likewise the

exact intersection of the 6 hyperbolic constraints. The algorithm for the optimal solution, however,

has to evaluate the intersections (congruent regions) according to their belonging to certain quad-

group stations.  To find  the  optimal  solution  we will  again use the  center-of-gravity (center-of-

congruity) approach, but now only consider congruent regions that contain all constraints belonging

to a quad-group. Two complications need to be overcome:

The first is of a mathematical nature: There can be more than one exact solution of a quad-group.

Since the travel time equation is already of second order for the most simple model (homogeneous

half-space), there can be two exact locations for the same set of arrival times (chapter III.2). In more

complex models this number can even be higher, e.g. in a 1D-model the number of exact solutions

can possibly be as high as twice the number of existing refractors (see fig. II.3.2:5). Averaging over

these ambiguous, equivalent solutions will usually divert from the best fit location. Instead, these

ambiguous solutions should be interpreted as possible solution candidates. Only the one agreeing

best with all data is to be evaluated in the averaging process. 

The second complication is technical in nature and lies in the fact that distant solutions of inherently

higher location uncertainty would additionally pull the solution towards them. This is due to their
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larger  spatial  extent which causes them to be spread over more grid cells than precise near by

solutions, which in turn causes them to exert a higher weight in eq. II.3.2-10. Rather than weighing

the region of congruity,  only the one point of this region that  causes the least  violation should

therefore be evaluated. Both problems can be observed in this example (fig. II.3.2:5b). 

Instead of identifying the exact sub-solutions in the three-dimensional space and averaging them,

we will continue to see the focal depth as a free but fixed parameter, meaningly the inversion is

being  performed  in  two  space  dimensions,  repeated  for  several  depths  (i.e.  horizontal  cross-

sections). This is beneficial as the depth is inherently the least constrained solution parameter for

the standard case of planar surface networks and doesn't need to be scanned as fine as the horizontal

components. Now, as we temporary reduce the dimensionality of the problem, our focus will shift

from the quad-group solutions to the solutions of the triple group, the triple points. The triple points

correspond to the crossing point(s) of three hyperbolic constraints being based on three stations'

onsets.  To  find  the  optimal  solution  in  this  2D-problem we will  apply  the  center-of-congruity

approach  to  the  scattered  triple-group  solutions.  Recalling,  that  the  scatter  of  sub-solutions

correlates with the agreement of information (solution quality), the optimal solution for the global

3D problem is near the 2D-optimum at the depth where the triple-points are least scattered. What

we therefore actually do corresponds to following each set of scattered 3D triple-group curves until

they all intersect in the corresponding exact quad-group solution, which corresponds to one of the

jackknifed hypocenter location estimates. In a example of four stations, four triple-point curves

exist that intersect in exactly one quad-group solution. With more than four stations, several quad-

group exist,  each having it's own set of triple-group curves that exactly intersects in it.  As this

optimum is computed by the general spread of all triple-group solutions, it can deviate from the true

optimum of the quad-groups if these are located in significantly different depths.

Fig.  II.3.2:5a shows an example of four given stations with the inversion done in a certain focal

depth. Triple-group solutions (curves in 3D) appear as exact intersection points of three hyperbolas

in 2D cuts. As mentioned before, do some triple-groups not only produce a single intersection but

multiple  ambiguous solutions (in fig.  II.3.2:5a connected with dashed lines).  If  we regarded all

ambiguous  solutions  it  would  pull  the  best  fit  solution  (fig.  II.3.2:5a,  red  plus)  from the  true

optimum (fig.  II.3.2:5a,  black plus).  For  the true optimum, only the one solution of the set  of

ambiguous solutions that is most consistent with the other data, is meaningful - the others need to

be disregarded. The same holds for solutions in larger distance which due to their larger uncertainty

(i.e.  larger region) would impose more weight and pull the optimal solution towards them (fig.
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II.3.2:5b, red plus) – also here only the one point that causes the least discrepancy within that region

is weighed, and the others disregarded. These two mechanisms correspond to the general rule, that

among ambiguous solutions only those are meaningful that follow the trend of the whole dataset.

Additional solutions can be disregarded as non-qualifying solution candidates. However, if there is

not enough data to evaluate the candidates, the ambiguity cannot be resolved and all solutions have

to be kept, increasing the location uncertainty. Following these mechanisms yields the expected and

true optimum (fig.  II.3.2:5, black plus), which in this example is equivalent to the one found by

artificially increasing the uncertainties until congruity is reached.

Fig. II.3.2:5: Averaging over all weak congruent solutions vs. triple point evaluation. Given is a set of hyperbolic
constraints without congruent (c>0.7) region. The background shading in (a) corresponds to the L1-residua-sum,
darker regions indicating a lower residua sum. The best fit solution obtained from the hyperbolic constraints should
lie close to the darker region. a) The red cross marks the best fit solution obtained by averaging over all existing
solutions belonging to the set of triple groups. These triple points are marked by the black arrow. In this example
multiple equivalent solutions exist, and pull the solution from the expected location. Ambiguous solutions (multiple
intersection points of the same three hyperbolic constraints) belonging to the same triple group are connected by
dashed lines. The three triple points marked with 1-3 belong to the same triple group (this means that the onsets of
three stations yield three location for the given depth), and are caused by two refractors at 10.6km and 15.5km
depth increasing the near surface velocity of 3.5km/s to 5.7km/s and 6.4km/s. Points where only two hyperbolas
intersect  (indicated with brackets  (  ))  correspond to an intersection point  with inconsistent  time base (i.e.  the
constraints describe the same location but a different origin time: This means that the indicated location cannot
yield an origin-time that would be consistent with the subset of the three or four involved travel- and arrival times:
The hyperbola between station 1 and 2 may intersect with the hyperbola of station 2 and 3, yet the arrival times of
station 1 and 3 do not yield a hyperbola running through the same point). b) For the same set of non-congruent
constraints, yet with higher uncertainties assigned, the regions of sub solutions in greater distance are inherently
larger than those close by. Using the averaging scheme, these extended zones attract the solution, although their
location uncertainty is larger than the compact zones of the solutions close by. The optimal location (“explaining
the data best”) can be found by focussing on one representative triple point per triple group instead (black cross, in
panel a&b).
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The set of triple points Жg  of triple group g  are identified by grid cells that involve all stations of

the g-th triple group and have three or more hyperbolic constraints running through them. 

Жg :={ r⃗∣cH ( r⃗ )⋅N H≥3 ∧ S g
TG⊆s( r⃗ )}  

and

{r⃗∣all grid points}

(II.3.2-12)

with cH ( r⃗)   being the congruity value concerning hyperbolic constraints and N H  the total number

of  hyperbolic  constraints.  The  term  cH ( r⃗ )⋅N H  therefore  relates  to  the  amount  of  hyperbolic

constraints running through the grid cell at location r⃗ . S TG  is the 3-tuple (triple) containing all 3-

combinations of stations with P-onsets S . 

S={1, 2, ... , N s} with
N s

 : total number of stations 

with P-onsets
(II.3.2-13)

S TG=S3=(S
3) (II.3.2-14)

S g
TG  is therefore the g-th element of the tuple S TG , the set of 3 stations that defines the g-th triple

group. With e.g four stations S TG  consists of S TG={{1,2,3}, {1,2,4}, {1,3,4} , {2,3,4}} . 

s ( r⃗ )  refers to the set of stations, whose information constructs the hyperbolic constraints running

through the grid cell at location r⃗ . G  is the number of possible 3-combinations of the set S, i.e.

the total number of triple groups.

G=(N s

3 ) . (II.3.2-15)

The best fit solution R⃗  is now the point that is closest to the representative solution Жg
N ( r⃗)  of each

triple group g: the solution of the set of possible solutions per triple group that causes the smallest

violation.
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R⃗=argmin
r⃗

∑
g

G

∣ r⃗−Жg
N ( r⃗)∣2 (II.3.2-16)

Жg
N ( r⃗)  is identified as the closest point of all triple points Ж⃗g

n  of group g  to the trial location r⃗

N ( r⃗ )=argmin
n

∣⃗r−Ж⃗g
n∣ . (II.3.2-17)

By focussing only on that solution of the set of possible solutions per triple group that causes the

smallest violation, both problems are solved: Firstly, for multiple equivalent solutions only the one

fitting all data “best” is used. Secondly, the paradox that less precise locations (larger areas) assert

more weight than more precise solutions is solved by only evaluating one solution of each patch.

For spheroidal S-P constraints the “best fit” solution holding the least constraint violation follows

the same scheme established here for P-P constraints, but using binary groups.

When  limiting  the  analysis  to  regions  of  constraint  congruity,  the  theory  of  error  and  error

propagation is  sufficient  to  map the  parameter  uncertainties  into the  solution space.  Averaging

schemes can provide an estimate for the best fit solution. When model uncertainties are applied,

constraints grow wider, forming larger congruent regions. However, as these constraints wrongly

convey the same likelihood for a solution to be found over the whole constraints  “width” (i.e.

claiming,  that  the locations  being constrained by parameters  from the  edges  of  the uncertainty

intervals are as likely as those being obtained from the interval center), they must inherently fail

when it comes to the estimation of “best fit” solutions. For such it is therefore necessary to use more

advanced approaches to determine the solution most probable. Applying a probabilistic approach

will  fill  this  gap  and  allow to  use  variable  weights  over  the  picking  interval  and  later  model

uncertainties. It further opens up for new applications in the field of automatic location within the

context of ambiguous phase onsets, i.e. noisy data. For a complete treatment of uncertainties the

problem will be examined in the context of probability theory, outlined in the next chapter. 
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II.3.3 Probabilistic Constraints 

Congruent regions, as regions which comply with most or all constraint conditions within error

bounds, define an (extensive) bounding region for the hypocenter location.  This forms a robust

measure but offers no information on the most likely hypocenter location within that region. Often,

significant  parts  of  the  region may  be  highly  unlikely  to  be  the  solution  sought  for,  although

physically  possible.  Choosing  a  probabilistic  perspective  will  allow  us  to  obtain  the  needed

information  and  yield  enhanced  quality  control  measures,  beside  opening  doors  for  advanced

methods, like multi-pick evaluation (chapter II.3.4) for ambiguous arrival times.

Already on single constraint level, locations that correspond to a vanishing constraint deviation (i.e.

the  locations  that  fulfill  the  exact  “uncertainty-free”  constraint,  corresponding  to  the  “central”

constraint  slice  relating  to  T̄ )  should  be  of  higher  probability  than  locations  for  which  the

constraint deviation equals the uncertainty, being located on the constraint's outer edge. This should

be true for two reasons. Firstly, the probability that the true phase is located at  t= t̄  should be

higher than the chances of being located at t= t̄+δ t  or t= t̄−δ t . Secondly, even if a flat level of

confidence over the whole interval of picking uncertainty was given, T=T̄  may statistically occur

more often within this time window than  T=T̄+δT  or  T=T̄−δT . To obtain the most likely

location we will introduce level-of-confidence measures, that allow to express the likelihood that

the phase arrival is found at a certain sample. This will yield constraint weights which vary over the

deviation axis (e.g. the constraint will “fade out” at it's edges). A simple weight distribution would

be given in a triangular weight  function, having it's  maximum at  T=T̄ .  As picking errors are

generally assumed to be gauss distributed, Gaussians are often used as weight function (Lomax,

2009). Over the course of this chapter both functions will prove themselves to be indeed special

cases of a general probabilistic form. More realistic though are functions with a shallow ramp,

reaching it's maximum close to the later end of the interval followed by a quick decay to zero, since

it is easier to determine the point in time that follows the phase-arrival than the point that is truly an

early  bound  for  the  emerging  signal.  For  low  SNR  data,  onsets  are  less  distinct  (even  being

ambiguous) and vary in degree of confidence. It is hence necessary to allow and solve for more

complex  probability  functions.  The  phases  within  t̄±δ t  will  be  weighed  with  their  level  of

confidence, yielding a constraint probability density function defined in the uncertainty window,

which will then be projected onto the constraint region.
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Given two independent random variables X and Y, the probability  pXY (x , y)  that X takes the

specific value X=x and Y the value Y=y is given by the product of their individual probabilities

pXY (x , y)= p X (x) pY ( y) . (II.3.3-1)

Let  pA(t A)  define  the  probability  that  the  true  onset  A  is  found  at  t=t A±ε , ε=δ t /2  and

pB(tB)  define the probability that the true onset B  is found at t=t B±ε , ε=δ t /2 , with δ t  being

the inverse of the sample rate. Let further π(t)  be the corresponding probability density at time t ,

e.g. given in the user defined level-of-confidence curve. The probability 

p(t )= ∫
t−δ t

t+δ t

π(t )dt (II.3.3-2)

is therefore sample-based: describing the probability that a phase onset is found at a certain sample.

For a low SNR, waveforms vary significantly between stations wherefore manual picks may be

assumed to be uncorrelated. Even when the signal is matched (i.e. cross-correlated) via it's spectral

pattern in the sonogram event identification, the following phase picking in the seismograms still

fulfills  the requirement of independency:  Due to the frequency-time uncertainty,  the frequency-

analysis requires significantly larger time slots and allows only a rough determination of the phase

arrivals using a cross-correlation of the spectral pattern, which is afterwards refined performing a

picking  in  the  seismograms.  Both  variables  may  therefore  be  treated  as  independent.  The

probability for the coincidental occurrence of two such events ('event' according to probabilistic

terminology, not seismological), i.e. finding phase onset A  at the sample of t A  and onset B  at the

sample of t B , is given according to (II.3.3-1) by

pAB(t A , t B)= pA(t A)⋅pB(t B) . (II.3.3-3)

For a constraint with  T̄ AB= t̄ B− t̄ A ,  pAB( t̄ A , t̄ B)  describes the probability of the event that the

onsets are located at the midpoints t̄ A  and t̄ B  of the uncertainty interval. For a given probability
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mass function (PMF) representing the sample-wise level-of-confidence over the uncertainty interval

of the onset, the constraint parameter  T=T̄ AB  is not only found between the midpoints of both

uncertainty intervals, but also for the event that both onsets  t A= t̄ A  and  t B= t̄ B  are shifted by a

constant η  from their interval midpoint (Fig. II.3.3:1)

T AB=( t̄ B+η)−( t̄ A+η)= t̄ B− t̄ A=T̄ AB (II.3.3-4)

as long as t A= t̄ A+η  and t B= t̄ B+η  remain in their corresponding uncertainty intervals

t̄ A−δ t A<t A< t̄ A+δ t A (II.3.3-5)

and

t̄ B−δ t B<tB< t̄ B+δ tB , (II.3.3-6)

effectively limiting the shifting range to

∣η∣≤min(δ t A ,δ t B) . (II.3.3-7)

Fig. II.3.3:1: Constraint parameter probabilities in the uncertainty interval. The same arrival
time difference is found multiple times between the intervals.  The total probability for the
arrival time difference is therefore given by the sum over all such occurrences, weighed by the
(product of the) individual likelihoods in interval A and B.

The total probability corresponding to the constraint parameter T=T̄ AB  is therefore given by the

sum of all events

p(T=T̄ AB)= ∑
{η ∣ ∣η∣<min(δ t A ,δ t B)}

pAB( t̄ A+η , t̄ B+η) . (II.3.3-8)
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Using (II.3.3-3) this yields

p(T=T̄ AB)= ∑
{η ∣ ∣η∣<min(δ t A ,δ t B)}

pA( t̄ A+η)⋅p B( t̄ B+η) . (II.3.3-9)

Recalling,  that  a  single  constraint  (based  on  uncertain  parameters)  can  be  thought  of  being

constructed by a continuous set of constraints based on exact parameters, obtained from all value

combinations  in  the  uncertainty  intervals  (i.e.  the  constrained  space  can  be  constructed  by  a

continuous set of surfaces, chapter II.3.1), this probability p(T̄ AB)  weighs the surface that relates

to  T=T̄ AB . Computing the probability p(T )  for all other T ϵ[T min ,T max ]  provides the complete

probability distribution over the whole constraint's “width”. Mapped to space, this attributes certain

likelihoods to spatial  coordinates,  describing the likelihood to find the hypocenter  at  the  given

coordinate. The general relation for any  T ϵ[T min ,T max ]  can be derived from eq.  (II.3.3-8) using

t A=t B−T AB  

p(T AB)= ∑
{η ∣ −δ t B<η<δ t B

t̄ A−δ t A< t̄ B+η−T AB< t̄ A+δ t A

}

p A( t̄ B−T AB+η)⋅pB( t̄ B+η) ,
(II.3.3-10)

imposing further restrictions for the range of η: A deviation of T AB  from T̄ AB  has the effect, that

the condition for the arguments of pA  and pB  to lie within the uncertainty intervals

−δ tB<η<δ tB

t̄ A−δ t A< t̄ B+η−T AB< t̄ A+δ t A

(II.3.3-11)

is less often met. The quantity of events  η is the highest for  T=T̄ AB  and is equal or less for all

other T . Fig. (II.3.3:2) shows a discrete example for the frequency distribution of events over the

interval [T min ,T max ] .

104



II Distinct Constraints II.3.3 Probabilistic Constraints 

 

Fig.  II.3.3:2: Discrete frequency distribution of events (i.e. the occurrence of a certain arrival-
time difference between the intervals) in probabilistic interpretation. The continuous signal and
level-of-confidence function is discretized into time bins (samples). This yields a quantized shift
η  and a quantized amount of this shift  to be found for the given arrival-time in the interval

bounds. The arrival-time difference between the interval-midpoints (mid-samples, respectively) is
statistically found most often. This causes a triangular frequency-distribution, showing a central
plateau for intervals of different length.

With  constant  level-of-confidence  curves  over  two  uncertainty  intervals  of  equal  length,  the

frequency  distribution  of  η would  cause  a  triangular  constraint  probability  distribution.  For

dissimilar  arrival-time uncertainties  δ t A≠δ t B ,  the  frequency distribution  of  η causes a  central

plateau to appear in the probability distribution (see fig. II.3.3:2). In more complex distributions this

effect causes the central region to be stretched out. This is generally observed with S-P constraints

whose weight appears “flat” over the constraint's middle axis only fading out at it's edges (see fig.
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II.3.3:5b),  due to the S-phase uncertainty being at  least  twice as high as the uncertainty of the

corresponding P-phase.

Reformulating eq. (II.3.3-10), using explicit summation boundaries that satisfy equation (II.3.3-11)

allows to compute the discrete distribution pT  for the arrival-time difference T AB=tB−t A , based

on both finite level-of-confidence curves. These are represented by the discrete distributions  pA

and pB  with lengths n A  and n B , weighing each sample. Following the scheme displayed in fig.

II.3.3:2, the vector representing the distribution pT  with length  nT=nA+nB  is given in

pT [i ]=∑
d=0

D(i)

pA[amin(i)+d ]⋅p B[bmin(i)+d ] with 0<i<n A+nB , i∈ℕ (II.3.3-12)

and

amin(i)={nA−i , nA≥i
0, else

(II.3.3-13)

bmin(i)=bmin(i , amin)=amin+i−nA (II.3.3-14)

bmax(i)={nB , mB<i
i , else

(II.3.3-15)

amax(i)=amax(i , bmax)=nA−i+bmax (II.3.3-16)

D(i)=amax(i)−amin(i) (II.3.3-17)

with  amin  being the minimal possible argument of  pA  at position  i ,  bmax  being the maximal

possible argument of  pB  for given i,  bmin  the minimal possible index for given amin  and i, and

amax  the  maximal  possible  index  for  given  bmax  and  i.  The  position  i  (i.e.  the  i th vector

component) relates to the parameter T AB  via T AB=T̄ AB+(2⋅i /nT−1)δT AB , wherefore

p(T AB)= pT [ (
T AB−T̄ AB

δT AB

+1)⋅nT /2 ] . (II.3.3-18)

The mathematical operation behind eq. II.3.3-12 stands out, when we rewrite equation (II.3.3-10) to
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p(T AB)=∑
t=−∞

∞

pA(t−T AB)⋅pB(t ) with t= t̄ B+η . (II.3.3-19)

The reformulation of the summation boundaries is valid, since pA  and pB  are vanishing outside

their intervals (II.3.3-5) - (II.3.3-6). This form corresponds to the mathematical definition of the real

valued discrete correlation

{ f ∗g (−(.))}(k )=∑
i=−∞

∞

f (i)g (i−k ) , (II.3.3-20)

which in statistical inference describes the difference Z=F-G (here  T AB=tB−t A  ) of two discrete

random variables F and G (while the convolution  f ∗g  describes their sum Z=F+G, as can be

easily  derived,  defining  G '=−G ).  This  operation  naturally  preserves  the  constraint  error

δT AB=(δ t A+δ tB)  as  laid  out  in  chapter  (II.3.1).  The  level-of-confidence  curve  indicates  the

likelihood for a phase arrival to be found at a certain sample (by definition this sample is contained

in  the  chosen  uncertainty  interval).  The  level-of-confidence  is  therefore  normalized  over  the

uncertainty interval

∫
t−δ t

t+δ t

π(τ) d τ=∑
τ

p(τ)= 1 . (II.3.3-21)

Again,  the  operation  of  correlation  (of  both  level-of-confidence  functions  over  their  intervals)

preserves this quality, yielding a normalized distribution.  Mapping the likelihood distribution of

T AB  over  the  constraint's  width  to  space,  ascribes  these  likelihoods  to  the  covered  regions,

expressing how likely  the  constraint  values  them to be part  of  the hypocenter  region (see  fig.

II.3.3:4). While the level-of-confidence functions are usually discrete (weighing each sample in the

uncertainty interval surrounding the pick), analytical  level-of-confidence functions may be used

instead,  which  allows  to  solve  the  problem  analytically  and  speed  up  calculation  time.  The

constraint likelihood function is then calculated using the continuous form of the cross-correlation, 

{ f ∗g (−(.))}(τ)=∫
−∞

∞

f (t ) g (t−τ)dt . (II.3.3-22)
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This allows to enhance the detail (resolution) with which the weighted constraints can be mapped.

For the discrete numerical code, the computed likelihood function is finally sampled back into a

discrete form with probability slot lengths usually corresponding to the waveform's inverse sample

rate f , weighing each sample using 

pmf (t)=∫
t−δ t

t+δ t

pdf (t)dt with δ t= 1
2⋅f

. (II.3.3-23)

Fig. II.3.3:3 displays the constraint likelihood function for different types of the parameter's level-

of-confidence  functions  pA  and  pB .  The  constraint  weights  in  form of  triangular  and  gauss

functions having been mentioned in the beginning of the chapter are special solutions of the general

probabilistic approach, which may result in complex distributions (fig. II.3.3:3d). 

Fig. II.3.3:3: Cross-correlation of level-of-confidence curves pA  and pB  for a) constant levels of confidence yielding
a triangular likelihood function b) triangular distributions yielding a Gaussian-like shape c)  Gaussian distributed
levels of confidence yielding a Gaussian distribution d) complex level-of-confidence distribution as given in a multi-
pick-analysis (chapter II.3.4) yielding a irregular distribution. The upper two rows relate to the parameter uncertainty
distributions; The bottom row displays the resulting constraint likelihood curve. The ordinate scaling varies over a)-d).
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Fig.  II.3.3:3(a) displays the advantage of the probabilistic analysis over the approach of chapter

II.3.1, which solely mapped parameter uncertainty intervals (unweighed picking errors) into space

to identify regions of congruity as physically possible solutions, but disregarded how likely they

are: Such uncertainty intervals would correspond to a flat weight as in fig.  II.3.3:3(a). Where the

mapping  of  chapter  II.3.1 yielded  a  (flat-weighed)  spatial  constraint  (e.g.  fig.  II.3.3:5a),  the

probabilistic approach shows that even in this simple case the constraint's edge is highly unlikely to

mark the hypocenter location (fig. II.3.3:5b). 

A typical  level-of-confidence  curve  for  emerging  signals  is  shown  in  fig.  II.3.3:4,  displaying

negative-skewed distributions. These account for the fact that the point at which the signal arises

from the noise floor cannot be determined as precise as the latter end of the uncertainty interval. 

Fig. II.3.3:4: Two typical negative-skewed level-of-confidence distributions at station A and B construct a positive-
skewed constraint likelihood function. In this example the picking uncertainty at distant station B is twice as large as
at  station  A.  The skewed level-of-confidence  distribution  is  a  typical  shape for  emergent  signals,  reflecting  the
difficulty  of  pinpointing  the  phase  onset  emerging  from the  noise.  The  uncertain  constraint  is  weighed  by  the
likelihood function over it's deviation axis, forming the probabilistic constraint. 

The constraint's likelihood function (as in fig. II.3.3:4) describes the likelihood for a given location

to correspond with the hypocenter location. Outside the constrained space this likelihood is zero.
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With several given constraints,  the global likelihood function will be defined as the sum of the

individual  constraint  likelihoods,  following  the  concept  of  congruity  as  used  for  uncertain

constraints. 

The  example  of  the  skewed  level-of-confidence  distribution  (fig.  II.3.3:3)  shows  that  the

parametrization used for the derivation, i.e. onset time (interval midpoint) and measurement error,

now  lose  their  physical  meaning  as  the  maximum  of  the  level-of-confidence  curve  might  be

significantly  dislocated  from  the  interval's  center.  Rather  than  using  the  measurement  and

measurement  error  as  input  parameter  representing  the  observables  (e.g.  eq.II.3.1-1),  we  will

generalize  the  concept  by  directly  using  the  boundaries  of  the  level-of-confidence  interval  to

represent the parameter uncertainties

t=t±δ t → t ϵ[tmin , tmax] (II.3.3-24)

and likewise for the constraint parameter

 T=T̄±δT → T ϵ[T min ,T max] , (II.3.3-25)

while using their distributions over the interval to describe the corresponding likelihoods.

Fig.  II.3.3:5 shows an example using a constant level-of-confidence function over the parameters'

uncertainty intervals. This allows us to compare the results of two approaches, based on the same

information:  a)  uncertain  constraints,  yielding  “flat  weights”  solely  highlighting  the  regions  of

physically possible solution regions and b) probabilistic constraints, representing the likelihood of

such solutions. The probabilistic approach yields a triangular constraint weight having its maximum

in the constraint's center, while falling to a zero-likelihood at the constraint's edge. This reveals that

the solution at the constraint boundaries are unlikely to mark the hypocenter location. The likely

solution interval for several given constraints is therefore a subset of the congruent region. 
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Fig.  II.3.3:5:  Comparison of  S-P and P-P constraints  with a constant level-of-confidence  distribution over  the
uncertainty  interval,  using  uncertain  constraints  (a)  and  probabilistic  constraints  (b).  The  point  of  highest
probability  is found within the region of  congruity.  While P-P constraints show a single peak  in the likelihood
function, S-P constraints show a wide plateau (they appear “flat”) as the uncertainties for S onsets are significantly
larger than the P-uncertainty (see example of fig. II.3.3:2).

Probabilistic constraints are an instrument to refine the solution obtained by uncertain constraints.

The  underlying  concept  of  the  level-of-confidence,  however,  opens  doors  to  several  advanced

approaches like weak constraints and a multi-pick analysis, yielding complex multi-peak constraint

weights by the use of irregular level-of-confidence functions, as laid out in the next chapter.
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II.3.4 Variable Weights and Multi Pick Evaluation

In  the  last  chapter  we  laid  the  theoretical  foundation  for  the  handling  of  timing  uncertainties

concerning a single phase. This phase-onset uncertainty, mainly used to account for the picking

uncertainty, further allows to account for e.g. the time-drift of unsynchronized data-loggers or the

data-loggers internal timestamp error, which both affect class II constraints (using the data of two

stations). In this chapter we will build on last chapter's concepts to handle the uncertainty that arises

when the true phase of interest cannot be distinguished from multiple ambiguous, equally-possible

phases or when the type of the arrived phase is unclear. This is a common problem with low SNR

data, where the true phase of interest can often not be discerned from several other possible phases

in the vicinity of the true onset, often related to local noise bursts. Let fig. I.1:1 of the introduction

chapter serve as example.

We will use three concepts to improve the location accuracy when phase onsets are questionable,

often  even  yielding  precise  hypocenter  locations,  even  though  phases  may  not  be  properly

identified. The foundational concept behind this is, that the true set of correlated phases must share

a common source region: The location can therefore serve as a parameter itself, feeding back into

the phase identification process. The second concept lies in the fact that the information about the

hypocenter region cannot be falsified by extending the region (increasing the location uncertainty,

decreasing it's precision). This follows the fundamental demand for a location analysis: To display

the  true  state  of  knowledge  concerning  the  location  region,  weighing  accuracy  higher  than

precision. This can be achieved by using uncertain parameters: As long as the data interval (e.g. the

lower and upper time limit around the (unknown) phase) can properly be determined, the data is

accurate, even though the true datum itself is not precisely known. When the true data is enclosed in

the data intervals, the corresponding solution interval consequently has to be accurate, enclosing the

true hypocenter. So, to obtain accurate results the inversion has to use all possible data, rather than

using a (spuriously) precise phase information. This in itself will expand the location region and can

therefore only increase the accuracy of a result, and never diminish it. However, as this decreases

the results precision, the solution may become meaningless if its uncertainties are too large to draw

useful conclusions concerning the source. 

The challenge of the location problem therefore lies in reducing the full  space to a meaningful
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subset thereof by subsequently using additional information, without erroneously eliminating the

true (but unknown) location from the solution interval (which would produce an inaccurate result

with a spurious precision). Countering the second concept, which assures accuracy but lowers the

precision,  the  third  concept  will  increase  the  precision  by  using  the  fact,  that  not  all  given

information  will  lead  to  physically  possible  solutions.  Where  the  second  concept  enlarges  the

solution interval (i.e. the hypocenter region), the third one diminishes it. 

When now n competing phase onsets are found at one station, they could individually be evaluated

by solving the location problem n times, each time for a different phase candidate. Using the fact

that the true set of correlated phases must share a common source region, we could evaluate which

candidate yielded a solution of high congruity in conjunction with the other data. Such a solution

would identify the used phases as the  set  of  correlated phases.  If  multiple phase combinations

yielded  highly  congruent  solutions,  then  their  distribution  will  represent  the  location's  macro-

uncertainty due to unknown phase onsets or types. However, when ambiguous phases are found at

more than one station (e.g. fig. I.1:1) such an approach would require a large amount of inversions

to identify the most plausible location. Instead, we can use the concept of the level-of-confidence

(LOC), which provides us with a framework that allows to evaluate all possible phase combination

within a single inversion. Hereby, the location constraint is formulated in a way that may decrease

its precision but will guarantee its accuracy, meaningly forming an extended region that ensures to

enclose the hypocenter that is constructed by the true set of correlating phases. The simplest way to

obtain such a result would be to increase the onset uncertainty window until it encompassed all

possible phases. So formed congruent regions would indicate the extent of the location region, but

their  large size would most  probably prohibit  to draw useful conclusions concerning the event.

More detailed information can be obtained by extending the concept of confidence level of single

onsets for multiple phase onsets. To do so, we will weigh all phase candidates within one LOC

interval, which will describe the macro likelihood for the phase arrival (fig.  II.3.4:1). Contrary to

the single pick approach, where the LOC-curve p(t )  has one clear maximum, here several phases

will  be  weighed  using  comparable  weights  over  a  larger  uncertainty  window  [ tmin , tmax ] ,

encompassing all phases (fig. II.3.4:1). 
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Fig.  II.3.4:1:   Multi  pick analysis:  Level  of  confidence defined over several ambiguous phases
inside the interval [t min , t max] .

The  constraint  is  therefore  no  longer  observed  and  treated  as  an  object  relating  to  the  time

difference of two distinct observables.  The constraint parameter  T ,  expressing the arrival time

difference, will be rather interpreted as a parameter of a family of surfaces  S (x , y , z ,T )  which

span over  the  whole  three-dimensional  Euclidian  space.  If  the  LOC-interval  would be  used  to

describe e.g. ambiguous P-phases, S (T )  may be thought of the set of all possible hyperboloids that

can be formed over the interval of the minimal and maximal physically possible T , occupying the

whole three-dimensional space. (That  S (T )  indeed occupies the whole space becomes obvious

when the problem is reversed: Given a seismic source, a forward travel time calculation for the two

involved phases would determine an arrival time difference, defining parameter T ∗ , which in turn

causes the surface S (x , y , z ,T ∗)  to pass through that coordinate. As the seismic source could be

located at  any coordinate  in space,  S must  consequently fill  the whole space.)  Via  T ,  certain

regions (modes)  in  space can now be weighted with values between 0 and 1 according to  the

likelihood function obtained from the cross-correlation of the involved LOC functions. With an

interval [T min ,T max ]  (which is defined by the two time series of ambiguous phases), the set of T -

modes outside this interval will be muted, shrinking the solution space to a subset of full space.

Over all  T  within the interval, now regions in space are weighed according to the constraint's

likelihood  function,  which  is  determined  by  the  level-of-confidence  being  defined  over  the

questionable phases (fig. II.3.4:2).
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Fig. II.3.4:2: Hyperbolic T-Modes between two stations. The weight of the
modes p(T )  is given by the two observables' LOC-curves.

The  location  and orientation  of  the  T-modes depends on  the  geometric  layout  of  the  involved

stations.  With  multiple  LOC-intervals  given,  the  different  and  differently  oriented  modes  will

superpose (as observed for classic constraints) and highlight regions of congruity. The resulting map

displays the spread and clustering of maximum likelihood zones and is equivalent to the combined

representation of all possible combinations of onset choices, as if evaluated via single onset picking

(fig.  II.3.4:3 (a)=(c)+(d)).  This  scheme  provides  therefore  a  complete  view  on  all  location

possibilities, with the scatter of congruent regions displaying the macro-uncertainty in location due

to the unknown or ambiguous phase. 
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Fig. II.3.4:3: Example of four stations in a P-phase based location, with station 4 showing two ambiguous
phase arrivals. a) Weighing both phases equally with a 0.5 LOC yields three weak constraints (those
being based on the 0.5 LOC phases) and three strong constraints (those being based on the unique phase
arrivals with a 1.0 LOC, marked by arrows). This yields 4 solutions, three being weak (being dominantly
determined  by  weak constraints)  and one  showing a high congruity,  marking the  best  fit  hypocenter
location. This corresponds to the superposition of the results of two individual location runs, one for each
possible phase candidate: c) choosing the second candidate as the suspected phase and d) choosing the
first candidate. The superposition of both individual results (panel b) corresponds to the one of a single
run with two 0.5 LOC curves.

Since the true phase of interest is expected to be among the ambiguous phases contained in the

LOC-interval (and can only be one of them), the LOC-curve is normalized (eq. II.3.3-21). 

∫
tmin

t max

π(τ) d τ = ∑
i

n

{∫
tmin ,i

tmax ,i

πi (τ) d τ} = 1 (II.3.4-1)
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with the sub-interval over each phase onset holding one n -th of the total likelihood

∫
tmin , i

tmax ,i

πi (τ) d τ = 1/n (II.3.4-2)

with n  being the amount of ambiguous phases. This normalization brings in an interesting concept,

which can be visualized if we interpret the T-modes again classically as location constraints in a P-

phase based location: Let e.g. four station be given of which three have weak but unique phase

onsets while the fourth one shows two possible onset candidates due to local noise spikes (fig.

II.3.4:3). For the first three stations the LOC-curve only spreads over one phase, which due to the

normalization causes all location constraints based on these phases to obtain a 100% weight. At the

fourth station the 100% probability of the onset to be found in the LOC-interval distributes over two

onsets, both sub-intervals holding a 50% chance to contain the phase arrival of interest. The P-P

constraints  being based on station  pairs  [1,2],  [1,3]  and [2,3]  will  therefore each hold  a 100%

likelihood  to  contain  the  hypocenter  location  (since  a  cross-correlation  of  two  normalized

distribution yields a normalized distribution). The constraints based on pairs [1,4], [2,4] and [3,4]

will each only yield a 50% likelihood. This expands on the concept of flexible constraints (chapter

II.3.2), applying different weights to the constraints by the level of trust in their underlying data. In

this example,  this leads to one strong solution given in  the exact  intersection of the first  three

constraints (being based on trustable data given in unique onsets), and three weak solutions for each

of the two ambiguous onset candidates. Here, each weak solution depends on two weak constraints,

which each depend on one ambiguous phase. Compared to the strong solution, the weak solutions

only hold a 2/3rd likelihood to contain the location that corresponds to the true phase-arrivals. Since

the  method  determines  the  possible  solutions  for  all  arrival  time  combinations,  at  least  one

maximum corresponding to  a high congruity of phase information  should be found among the

solutions, corresponding to the set of correlated phases. 

In this example, from the -in total- seven sub-solutions, five are closely clustered while only three

weak ones are scattered – the three that utilize the incorrect phase onset. A following forward travel

time calculation from the likely solutions to the stations identifies the set of correlated phases by the

predicted arrival times. This demonstrated that we can use the fact that the corresponding phases

originate  from  the  same  source  location,  to  identify  the  location  even  though  ambiguous  or

questionable phases are given. Since it is the velocity model that links the corresponding phases by
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their source location, this method requires an accurate model or the treatment of model uncertainties

in the inversion (as will be introduced in chapter II.3.5.1). 

The concept of weak&strong constraints, i.e. applying different weights to different phases (using

non-normalized LOC-intervals) is also useful in standard scenarios with unique onsets, to weigh the

constraints and solutions according to the trustworthiness of their underlying data. Now, however,

we will need to make the concept of weighted (weak & strong) constraints void to identify the set of

correlated phases: Probabilistic constraints point out the likely location but do not inform about the

congruity of the solution, i.e. how many LOC-intervals support this solution. All locations which

are supported by any of the ambiguous phase arrivals in one LOC interval should yield a congruity

of c=1  as expected for non-probabilistic constraints. This can be achieved by transforming these,

by cross-correlation of LOC-curves obtained multi-peak probabilistic constraints, into multi-peak

flat-weight constraints (fig. II.3.4:4)

Fig.  II.3.4:4:  Heaviside  transformation  of  p(T)  yielding  w(T).  w(T)
corresponds to  a flat-weighed uncertainty  based constraint  for  ambiguous
onsets.

using the Heaviside transformation

w(T )=H [ p(T ) ] with H ( x)={1, x>0
0, else

. (II.3.4-3)

Applying this transformation shows that the determined hypocenter location in fig.  II.3.4:3 is not

only likely but holds a congruity of c=1 , being confirmed by all LOC-intervals. 

When multiple ambiguous phase arrivals are observed at several stations, there is a chance that the

ambiguities  are  not  due  to  uncorrelated  local  noise  spikes  but  that  simultaneous  events  were
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recorded. In such a case more than one region of high congruity may be found. A forward travel

time calculation from each congruent region would again identify the sets of correlated phases.

However, ambiguities may also lead to (random) congruent regions that aren't caused by a common

seismic  source  at  the  indicated  location,  but  are  merely  coincidental  (mathematically  possible)

solutions of uncorrelated phase arrivals and station geometries. If such location ambiguities cannot

be resolved (e.g. by additional amplitude criteria evaluating the consistency between distances and

the attenuated observed amplitudes), they must be accepted as macro-uncertainty due to unknown

or ambiguous phases. Here, however, the third concept initially mentioned may often reduce this

uncertainty and the amount of possible solutions. In chapter II.3.4 we laid out, that only physically

possible solutions, i.e. arrival time differences consistent with the velocity model can be mapped.

Arrival-time differences too large, will be “filtered out” by the model. This quality of “filtering”

supports the identification of inconsistent phase onset combinations: Unphysical combinations of

phases are often “filtered out” and the true combination of arrival phases yields often locations of

higher congruity and likelihood than other phase combinations. This supports to identify the true set

of correlated phases and the most probable location. The scenario of the introduction chapter (I.1)

can serve as example (fig. II.3.4:5): There, six stations with multiple ambiguous weak phase arrivals

are given. The low SNR does not permit a precise phase packing in the velocity waveform and

several weak phases can only be identified using sonograms, a noise-adapted spectral representation

of the data. These however,  allow only for a rough estimation of the onset due to their low time

resolution.
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Fig.  II.3.4:5:  Sonogram (i.e.  noise-adapted  spectrogram)  traces  (top)  and  seismogram traces  (bottom,  red)  of  6
stations showing ambiguous phase-arrivals. Blue boxes indicate onset uncertainties (top). The LOC curves (black solid
lines, bottom) extend over all phase candidates at given station. Several onsets can only be identified in the sonograms.
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Representing the phase arrival at each station, we can form one LOC-interval stretching over all

ambiguous phases where it shows distinct maxima. According to all possible phase-combinations,

several regions in space show various levels of congruity. Regions of high congruity are found

dominantly south of the stations, indicating the region in which the true location is expected to be

found (The true set of correlated phases will yield (at least) one congruent region. Exchanging one

of these phases for another phase candidate will  divert the solution from that region and likely

reduce the congruity: Therefore clusters of (often less congruent) solutions are expected around the

true location).

Choosing the region of highest congruity, we can identify the set  of corresponding phases by a

forward travel time calculation to each station. Isolating this congruent patch by now only choosing

the identified phases, yields a laterally and in depth well constrained region, holding the true event

location.

Fig.  II.3.4:6: a) Display of all T-modes obtained from the given LOC-curves. The result shows a region of higher
congruency south of the network and b) only showing the region of highest congruency. The ground-truth location is
enclosed in the identified region.

This  example  is  in  detail  outlined in  chapter  V.1.  A multi-pick  analysis  may be  interpreted as

explicit and pick-based form of the delay-an-sum method “source-scanning” (Kao & Shan, 2004).

Source-scanning uses synthetic arrival times pertaining to trial hypocenters and trial origin times to

sum up the corresponding portions of signals recorded at several stations.  The normalized sum,

121

SSPA

BINY

NCB
LBNH

HRV

LSCT

z
z

EW

N
S

vertical
planes

horizontal plane

a) b) 

z
z

EW

N
S

vertical
planes

horizontal plane

SSPA

BINY

NCB
LBNH

HRV

LSCT



II Distinct Constraints II.3.4 Variable Weights and Multi Pick Evaluation

mapped over space and time, illuminates the space time distribution of seismic energy and allows to

identify seismic sources by searching for the “brightest” region – the location and origin time for

which the synthetic arrival times fall on the higher event amplitudes in the signal. The advantage

lies in the fact that -by only summing up the observed amplitudes- it does not rely on phase-picks

and is therefore beneficial for emergent signals like tremors. The multi-pick analysis on the contrary

requires-  and  is  solely  based  on  phase-pick  data  (and  ignores  amplitudes).  The  information

contained  in  the  picks  (determining  phase  type  &  arrival  time)  allows  an  explicit  and  direct

calculation of this “brightest” spot, eliminating the unknown quantity time. It should generally yield

lower spatial uncertainties as side maxima that stem from inconsistent combinations of different

phase types are avoided.

A multi-pick analysis can be used to display the macro uncertainty in two ways. In the first (type I)

previously laid out, multiple phase onsets were declared as possible onsets for one phase type (e.g.

P-phase). The second way (type II), is to declare one phase onset as multiple phase types (e.g. Pn

and Pg). This would allow the proper treatment of onsets for which the association is unclear: Any

method based on phase-picking faces the danger of wrong phase type association, i.e. mistakingly

assigning the wrong phase type (e.g. P or S) for a detected onset. For instance, if the amplitude of

the Pn-phase of a distant source falls below noise level, the following Pg phase might be wrongly

misinterpreted as Pn phase. Consequently, wrong ray-paths and travel-times would be associated

and  the  location  wrongly  constrained.  For  a  S-P constraint,  being  based  on  the  onsets  of  the

questionable P-phase and the following S-phase, this error is expected to have a far stronger impact

on the location than a simple mis-pick in the vicinity of the true phase. Obviously, in the given

example, the suspected but invisible Pn-phase cannot be picked. However, the identified P-phase

can be picked both, as Pn-phase as well as Pg-phase (type II). In the same manner, for a clear P-

onset and a questionable S-onset with two possible candidates, the Level-of-Confidence curve can

be raised over both S-candidates to identify both equally, as equivalent S-phases (type I). In both

cases, this S-P constraint would appear as two concentric spheres of different radius (rather than

one). The one sphere will correspond to the classic S-P constraint based on the true set of P- and S-

onsets. The other sphere would mark the region based on the misidentified phase. This extended

region consisting of two spheres, reflects the macro uncertainty due to uncertainties in the phase

type association, and ensures that the constraint will enclose the hypocenter. In conjunction with

several constraints, one solution will usually be disqualified while the other will be confirmed by
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the solution trend of the whole data set. In this way, scattering solutions with a lower congruity are

avoided and the location problem is formulated robustly according to the true state of knowledge.

Again, as the solution (or the spread of solutions) depends much on the chosen velocity model, it is

of fundamental necessity to properly address model uncertainties. This aspect, which is of major

importance for many applications, shall be outlined in the following chapter (II.3.5). 
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II.3.5 Effect of Velocity Model Uncertainties

Previous  chapters  addressed  the  uncertainties  of  the  time-domain  based  observables,  by  which

accurate location estimates can be obtained, if accurate velocity models are used. This, however, is

seldom the case and the location-error due to wrong model assumptions often outweighs the error

that is caused by timing. The location estimate, which strongly depends on the chosen model, is

often significantly displaced due to inaccurate models. While for events within a network, model-

inaccuracies mainly affect the hypocentral depth, they displace the hypocenter estimate significantly

stronger, laterally and vertically, if the event is located outside of the network (fig. II.3.5:1). 
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Fig. II.3.5:1: The two panels (left) and (right) show the sensitivity of the hypocenter location estimate towards
model assumptions: The same arrival times (simulated for an event in a homogeneous model of vp= 4km/s) are
inverted using (left) the proper model and (right) a model estimate which underestimates the true velocity by
5% (vp= 3.8km/s).  The  left  panel  therefore  displays  the  ground-truth  using the  accurate  (but  in  practice
unknown) model. The right panel on the contrary represents the scenario that we may face in practice, with a
location estimate based on our (always inaccurate) model choice. Depending on network geometry and source
location, the discrepancy between the true source location (left) and the estimated solution based on the model
(right) can be significant; In this example the discrepancy in hypocenter location is approximately 20km. The
top panels display horizontal cuts showing the discrepancy in epicenter location. The bottom panels show the
corresponding vertical cuts, revealing the discrepancy in focal depth. The arrival times are noted to the right of
the respective station and the picking uncertainty is uniformly 0.005s.
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The example shows that small inaccuracies in the model may significantly displace the hypocenter

location. Unfortunately, the knowledge concerning the constitution of the sub surface is generally

(very) limited, which brings us to the realization that the locations which we obtain from time based

observables may well be biased by model errors. Especially for regions for which little data exists,

analysts have to default to simple velocity models, particularly 1-D layered models. If enough data

(events  and  stations)  are  given,  Minimum-1D  models  in  conjunction  with  station  corrections

(Kissling, 1988, 1995) can be used to find an optimal 1D-model, reducing the overall RMS misfit.

As parameters are averaged over extensive areas, and may only poorly reflect the true local velocity

configuration, station corrections are used to reduce the corresponding error. Yet, any derivation

from the “true model” displaces the hypocenter location wherefore accurate results can only be

obtained, if we reflect the model uncertainties in the solution, i.e. compute constraints that account

for the model uncertainty. Geophysical prospecting additionally often only provides velocity models

for one type of wave propagation,  while  others are inferred using theoretical relationships, e.g.

regionally averaged S/P ratios. The error of such “inferred models” is therefore even higher. For a

sensitivity analysis, the arrival time information could be inverted for a variety of probable models

and the solution scatter be used as model correlated uncertainty. This means practically, to repeat

the inversion with every model. While we will later indeed use such a post-processing approach to

refine our solutions and obtain more precise results, it is not suitable for an interactive location in

which ambiguous arrival times need to be evaluated within the inversion process. For this, model

uncertainties have to be treated within and during the inversion. 

The velocity model  in conjunction with the process of wave propagation can be viewed as the

operator that projects  the time based input  data into spatial  information.  As the “true” velocity

model is hardly ever known, solutions consequently rely on the goodness of used approximations. If

we suspect  inaccuracies  in  our  models,  it  is  crucial  for  a  proper  location  to  derive  a  form of

uncertainty measure that takes the uncertainties of the given velocity model into account, and will

allow us to reflect this state of uncertainty in the constraint location and shape. Early attempts to

measure  and  display  the  uncertainty  in  earthquake  location  are  found  in  Pavlis  (1986),  who

computed a bounding box around the location estimate to account for the model error emodel

∣(emodel)∣≤s⋅Δ u with Δ u=∣(u true−umodel)∣ (II.3.5-1)

125



II Distinct Constraints II.3.5 Effect of Velocity Model Uncertainties

which dimensions he estimated by multiplying the length of the corresponding ray path ( s ) with

the maximum expected discrepancy between modeled and true slowness along the path ( Δ u ).

This,  however,  is  only  true  for  small  perturbations  for  which  the  ray  path  does  not  differ

significantly.  How  to  determine  Δ u  remained  an  open  question.  The  general  probabilistic

approach of Tarantola and Valette (1982) provided for a separate treatment of velocity model and

picking  uncertainties.  However,  all  implementations  as  Moser  et  al.  (1992)  or  Lomax  et  al.

[NonLinLoc] (2000) used a Gaussian description in a-priori density functions, combining timing

and assumed model  errors (Husen and Hardebeck,  2010).  Pavlis showed for  a  simple  example

where the model-error yielded a bi-modal distribution, that the Gaussian assumption and combined

treatment of picking and model errors can cause misleading results, concluding that picking and

model errors should be treated in a different way. Husen and Hardebeck conclude therefore that “all

location methods suffer from an inappropriate handling of velocity model errors”. Mentioned be the

work of Lin & Sanford (2001) who introduced the idea of an empirical uncertain velocity model for

the case of homogenous models, which would produce correct uncertainty measures for events in

large distance traveling through a homogeneous medium. Uncertainties in the arrival time were

translated into velocity uncertainties, which together with lower and upper bounds of each phase's

propagation velocity were used to map S-P and hyperbolic constraints for a fixed focal depth. 

Based on the same concept of velocity uncertainties, that already formed the foundation for Pavlis'

bounding box approach and Lin&Sanford's velocity bounds, the approach laid out in the following

will  allow  us  to  obtain  location  uncertainties  for  more  complex  models,  independent  of  the

hypocentral distance and depth. From the interval approach for picking uncertainties (chapter II.3.1)

we will derive a general concept for uncertain models in both a discrete and probabilistic context, to

account for model uncertainties, independent of the model complexity. Applied to a homogeneous

model, this approach could be depicted as replacing the travel-time-curve by a travel-time-band,

where its shape (width) is being determined by the uncertainties of the model parameters. Similar to

the other approaches (e.g. eq.II.3.5-1), this will provide minimal and maximal travel times, which

will then be implemented in the formulation of the velocity-model-dependent distinct constraints. 
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II.3.5.1 Uncertain Models

The velocity models we use are our best guesses for representing the existing velocity structure. A

model attributes precise velocity values to all spatial coordinates and hereby allows to map (invert)

the time based data precisely to spatial locations. Such precise velocity values are, however, never

exactly  known.  As  the  velocity  structure  is  not  precisely  known,  neither  should  our  model  be

defined this way. Our data rather gives us an idea of velocity ranges, e.g. “ v p ε [3.9, 4.1] km / s  can

be  attributed  to  a  region,  which  extends  til  a  depth  of  d ε [−2, −2.3] km “.  Instead  of  using

spuriously precise values, we should therefore attribute velocity ranges to fuzzy spatial regions,

reflecting the state of knowledge much better. This defines the basic concept of “uncertain models”

as used in the following.

To understand how model uncertainties affect the solution, we can evaluate the influence of these

uncertainties on phase arrival times. For the simplest case of an homogenous half space the true

velocity v  is believed to lie in the vicinity of the estimated velocity v̄ , with a maximum deviation

of δ v

v=v̄±δ v . (II.3.5.1-1)

For further evaluation it is useful to express this relationship using relative errors

v=v̄⋅(1±∂ v) with ∂ v=δ v
v

, (II.3.5.1-2)

For an event being located in distance d  from a sensor on surface, the travel time for the estimates

is given by

t̄t= d
v̄

. (II.3.5.1-3)

Using eq. (II.3.5.1-2), the uncertainty bound travel time can be expressed as
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tt= d
v

= d
v̄⋅(1±∂ v)

= 1
(1±∂ v)

⋅t̄t . (II.3.5.1-4)

As travel  times  tt  correspond with phase arrival times  t  when zero adjusting the origin time

t0=0 , eq. (II.3.5.1-4) could be written including arrival time uncertainties as

t= (1±∂ t )
(1±∂ v)

⋅̄t (II.3.5.1-5)

since the relative arrival error ∂ t  could be expressed as

t= t̄±δ t= (1±∂ t)⋅̄t (II.3.5.1-6)

(see eq. II.3.1-1). Although a relative arrival time error doesn't make physical sense (except when

used to describe time drift errors of unsynchronized data loggers) it allows us here to compare the

effect of timing vs. velocity uncertainties: Timing uncertainties stand in a linear relationship with

location uncertainties - velocity model uncertainties influence it inverse proportional. This means

that timing uncertainties enlarge the travel-time uncertainty symmetrically, while velocity model

uncertainties increase it  asymmetrically,  causing also a shift  of the interval's  mid point. Due to

acting  as  denominator,  model  uncertainties  naturally  have  a  larger  effect  on  the  constraint's

uncertainty (it's “width”) than arrival time uncertainties. 

Already for simple and often applied 1D-layer models, the effect  of model  uncertainties on the

travel time is complex and generally not solvable in an analytical manner. The strategy to treat

uncertainties for these models will therefore lie in finding an upper ( ttmax ) and lower bound ( ttmin )

for the predicted travel times, e.g. for the homogenous half space

tt min=
1

(1+∂ v)
⋅t̄t   and  ttmax=

1
(1−∂ v)

⋅t̄t . (II.3.5.1-7)

Each spatial (grid) point will hold a minimum and maximum travel time to each station, which will

be evaluated in conjunction with the arrival-time-difference interval (LOC-interval): In the simplest

case this would mean a check wether there is an intersection between the intervals of min&max
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arrival time difference and min&max travel time difference, which would identify the evaluated

spatial coordinate as a physically possible hypocenter location. For this it is hence sufficient to

know the minimum and maximum travel times, which in the following we will derive from the

model parameter uncertainties. It should be noted though, that if the relative error ∂ v  is small and

similar over the whole model, eq. II.3.5.1-7 proves to be already a good first approximation also for

more complex models. The solution is not exact since it neglects the different ray paths (e.g. direct,

refracted head) and yields very different spatial constraint shapes, but yields comparable results for

the most likely location for well behaved problems, since the mid points of the uncertainty interval

are  significantly  stronger  weighed  than  the  borders.  This  simplification  provides  a  first

approximation of the model uncertainties and may be sufficient for a broad area of applications. It

fails, however, to properly assess the full region of possible solutions.

Already for simple layered models the relationship between minimum and maximum travel time is

complex and needs to be found computationally. The used travel time algorithm which is ray tracing

1D-velocity models (Eisermann, 2008) allows to compute several ten thousand travel time curves

per second on current single processors (3GHz). The interval  [ tt min , tt max]  can therefore be found

using a Monte Carlo analysis. The model input parameter uncertainties are hereby mapped to travel

time uncertainties by calculating a sufficiently large set of random models within the uncertainty

specifications. The travel time interval is given in the envelope of the set of travel time curves (see

fig. II.3.5.1:2).

The 1D-velocity model layers are defined by layer velocity v  and layer depth d . For the i th layer

the uncertainty parameters (fig. II.3.5.1:1) are now defined as

vi= v̄i±δ vi (II.3.5.1-8)

d i= d̄ i±δ d i , (II.3.5.1-9)

based on the given model parameters v̄i  and d̄ i  and their absolute errors δ vi  and δ d i  or 

generalized as 

vi ε [vi ,min , vi ,max ] (II.3.5.1-10)

and

d i ε [d i , min , d i ,max] . (II.3.5.1-11)
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Fig. II.3.5.1:1: Uncertain 1D-velocity model definition

For each Monte Carlo analysis, a random model is created for which each layer i obtains values

according to 

vi= v̄i+2⋅(χv ,i−0.5)⋅δ vi (II.3.5.1-12)

and

d i= d̄ i+2⋅(χd ,i−0.5)⋅δ d i (II.3.5.1-13)

with χv ,i  and χd ,i  carrying random values between 0 and 1. With χv ,i  and χd ,i , all parameters

are treated as uncorrelated. For correlated parameters, all correlated parameters would be a function

of a shared random variable  χv ,i= f (χv) . For instance, with not precisely known absolute layer

velocities  but  assumed constant  velocity  ratios between the layers,  all  random-model  velocities

would use the same (synchronized) random value  χv ,i= χv .  The same simple approach can be

applied  for  a  wide  range  of  models,  e.g.  dipping  layers  (Eisermann,  2008),  using  additional

fluctuating parameters as e.g. the layer's dip angle. Fig. (II.3.5.1:2) shows the travel time curve

ensemble for a Monte Carlo evaluation with 20 respectively 1000 runs. A good resolution of the

uncertainty interval and min and max curves is usually achieved with approximately 103  to 104
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runs, which are performed within seconds on current standard hardware. Transcribing these curves

onto the grid yields minimum and maximum travel times concerning the uncertain model at each

grid cell.

Fig.  II.3.5.1:2: Travel time curve Ensemble, derived by n runs of random 1D-layered
velocity models. For n=1000 the interval is sufficiently resolved delivering minimal and
maximal travel times for every distance.

A cell hit count in a space time grid, plotting the travel time curves for a simulation with 106  runs

(fig.  II.3.5.1:3) shows the probability distribution of travel time curves. The maximum lies in the

vicinity of the default model's travel time curve, slightly asymmetric in distance to minimum- and

maximum travel time curve, as expected from eq. II.3.5.1-7. While inhomogeneities in the velocity

model smooth out over longer distances, increasing the accuracy of predictions, the impact of mis-

chosen models  on predicted travel  times increases with  distance.  This effect is  reflected in  the

minimal  and  maximal  travel  time  curves  (fig.  II.3.5.1:3)  which  increase  in  discrepancy  with

distance. 
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Fig.  II.3.5.1:3: Probabilistic representation ( n=106 ).  Asymmetric spreading between extreme curves and
curve of standard model as in the case of simple uncertain 1D-layered-model. Effect of model uncertainties
grow with distance.

The concept  of minimum and maximum travel times can be applied independent  of the model

complexity,  although the  calculation time and the amount  of necessary runs increases  with the

complexity  of  the model.  For  a  Monte  Carlo analysis  of  3D heterogeneous models,  where the

velocities  are  varied  randomly  according  to  a  relative  uncertainty,  the  calculation  on  standard

hardware would take significantly longer and therefore needs to be rendered and stored prior to the

analysis.

The obtained travel-time uncertainties provide the information required for mapping the time-based

observables to space. We recall that the likelihood of a spacial coordinate to correspond with the

hypocenter is (in principle) evaluated by comparing the difference of two modeled travel times

T M=tt B
M−tt A

M  with the difference of two arrival times T O=t B
O−t A

O , observed at the station(s). The

two travel times relate to the paths on which the two phases travel between the evaluated coordinate

and the corresponding station(s). The previous chapters established that the observed arrival-time

difference is rather described as an interval T O ϵ[T min
O ,T max

O ]  due to the uncertainties in t A
O  and t B

O .

Since we discretize space and evaluate grid cells that have a spatial extent, it is also not a single

travel  time  value  (as  for  a  coordinate),  but  a  (small)  band  of  travel  times  T M ϵ[T min
M ,T max

M ]

proportional to the grid's spatial extent, that describes T M  for the cell.  T M  serves as comparison

interval for T O  at any given location. A grid cell hence qualifies as physically possible solution if
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there is a overlap of both intervals, i.e.

T O∩T M≠∅ . (II.3.5.1-14)

In a scenario in which only one constraint is given and this constraint is running in all it's width

(which is determined by the time based observables' uncertainties) through a grid cell, then this grid

cell will obtain the maximum possible likelihood value of 1 (due to the normalization of the LOC

curves). In this case the T O  interval is fully contained in the T M  interval, ∣T O∩T M∣=∣T M∣ . If the

constraint's width is larger than the grid cell's extent, then the T M  interval only holds a subset of

the  T O  interval,  ∣T O∩T M∣<∣T M∣ .  The  cell's  likelihood  will  be  less  than  1  and  is  found  by

integrating π(T O)  (which is obtained by the cross-correlation of both involved LOC-curves) over

the interval [T min
M ,T max

M ] . 

Now, if we incorporate the uncertainties of the model, the [T min
M ,T max

M ]  interval will grow. Where

the interval describing the cell was interpreted as equi-probable, the uncertainty interval will now

also hold it's own uncertainty distribution, based on the uncertainty distributions of both involved

travel  times.  This  means  that  the  T M ϵ[T min
M ,T max

M ]  are  varying  in  likelihood  to  occur. Every

possible  travel  time difference  that “meets” an arrival  time difference obtained from the LOC-

curves adds to the total likelihood of the cell to possibly contain the hypocenter, in proportion to the

likelihoods of travel- and arrival-time differences. The probability for each  T M  and T O  to “meet”

is  found in the  product  of their  individual  probabilities  pM (T )  and  pO(T ) ,  according to  eq.

(II.3.3-3). The sum over all elementary pairs (fig. II.3.5.1:4) over the possible T  defines the cells

total likelihood.

pMO= ∑
τ=T min

T max

pM (τ)⋅pO(τ) (II.3.5.1-15)

Using the probability densities  π(T M )  and  π(T O ) , the total likelihood over the intersection of

both intervals [T min
M ,T max

M ]  and [T min
O ,T max

O ]  is then given in
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pMO= ∫
T min

T max

πM (τ)⋅πO(τ)d τ (II.3.5.1-16)

with

T min= max (T min
M ,T min

O ) (II.3.5.1-17)

and

T max= min(T max
M ,T max

O ) . (II.3.5.1-18)

Figure II.3.5.1:4 shows the integration over the overlap area of both distributions schematically.

Fig. II.3.5.1:4: The cell's likelihood as constructed from model and constraint probabilities.

For a precise location, the region of highest likelihood will spread over few cells, while it  will

spread over several when the location problem is only poorly constrained. For a most conservative

approach assessing the model-related location uncertainty, the two travel-times would be treated as

uncorrelated, wherefore pM (T M )  would be obtained in the same manner as pO(T O) , which was

computed by cross-correlating the likelihood distributions (LOC-curves) of both arrivals defining

the  constraint.  For  this  case,  pM (T M )  is  constructed  accordingly,  by  cross-correlating  the

distributions of both travel time ensembles. The true travel time distribution function can, however,

only be obtained using a high number of runs far above n=103  (fig. II.3.5.1:3). Also the caching of
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this data for every station, phase type and grid point would require a significant amount of memory.

These reasons render the evaluation of distributions in real time (on current standard hardware)

difficult. What can be estimated sufficiently reliable for lower amounts of runs ( ≈103 ) is the lower

and upper limit of the travel time ensemble, which we will focus on in the following. To represent

this  information  we  will  use  a  flat  distribution  over  the  given  interval.  The  effect  of  this

simplification will be an over-estimation of the likelihoods at the interval boundaries or the mapped

constraint  edges,  respectively.  It  therefore lowers the precision of the location,  and results  in a

conservative location estimate. 

Translating the model uncertainties into travel-time uncertainties between every station and grid-

cell  constitutes  the  computationally  expensive  part  in  the  description  of  the  model  dependent

location uncertainties. There is, however, a second aspect that defines the uncertain model as much

as the uncertainties in geometry and velocity parameters do. This aspect relates to the treatment of

model variations when we compute the travel-time difference between both involved phases that

define  the  constraint.  The most  conservative  case  was  already mentioned:  When we define  an

uncertain model with e.g an average velocity of  4km / s  and an uncertainty of  ±0.1km / s  it is

reasonable that some station may observe a local seismic velocity of  3.9km / s  while others may

see  4.1km / s , or that the wave's travel path from a grid-cell of evaluation to station A may run

through a region of 3.9km/ s , while it runs through one of 4.1km / s  to station B (fig. II.3.5.1:5 b).

In such a case we treat the travel times -and in turn the model variations- that both stations see as

uncorrelated, following the same formalism that we already used within the context of arrival-time

uncertainties.  The  travel-time  difference  (which  is  the  modeled  arrival-time  difference)  can

therefore take all values between

T M ϵ [ tt min
B −tt max

A , ttmax
B −tt min

A ] . (II.3.5.1-19)

Such a travel-time difference measure is typical for class II constraints (i.e. involving two stations),

inside and in close proximity of the network. This measure produces the most conservative location

estimates as it holds the highest uncertainty in allowing maximum fluctuations between the models.

Contrasting this, we find the case where both phases travel on similar paths. Here, both phases

“see” the same model. The model variations for both phases are therefore treated as correlated. The

smallest and largest travel-time differences are then given in
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T M ϵ [ tt min
B −tt min

A , ttmax
B −ttmax

A ]  : (II.3.5.1-20)

When phase  1 experiences the  smallest  travel  time,  so does  the  other.  The same holds  for the

maximum travel time: The model variation that causes the largest travel time for the one phase, will

do so also for the other. This behavior is typical for some class I constraints like S-P constraints,

traveling on nearly the same path (if v p /v s≈const. ). Also with class II constraints both phases may

travel on a similar path, requiring the use of synchronized models. This is generally the case when

the evaluated region is distant from the corresponding stations.

 

Fig.  II.3.5.1:5:  Correlated models (a)  vs.  uncorrelated models in the difference of  travel-times of  two
phases.  In  a)  both phases  experience all  model  variations synchronized,  while  in b)  each phase may
simultaneously experience a different variation of the same model.

This measure produces significantly smaller location uncertainties than the uncorrelated case. This

is linked to the different axes of action (fig.  II.3.5.1:6): For each model variation -when treated

correlated-  the  travel-time  uncertainties  shift  the  location  dominantly  parallel  to  (or  along)  the

“exact” spatial  constraint [“exact” referring to the “thin” constraint that is  constructed when all

uncertainties are ignored]. Contrary for unsynchronized (uncorrelated) model variations: Here the

location is shifted perpendicular to the exact constraint. Over all model variations, synchronized

models therefore hardly change the width of the constraint, while it's shape is significantly widened

for unsynchronized models. 
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This  effect  makes  uncorrelated  models  especially  useful  for  situations  where  events  are  to  be

located within a network but the model is only poorly known and can hence only be approximated

by 1D models. The reason for this is that uncorrelated 1D models approximate more complex ray

paths than physically possible in a pure 1D structure: Generally, the applied model type must reflect

all the complexity that we expect to see represented in our location estimate. If, for instance, we

assume the existence of tilted layers, it is not sufficient to use variations of a 1D model, as these can

not describe effects like lateral refraction. Rather, the model has to be defined as tilted-layer model

with varying angles as additional uncertainty parameter. Although this is generally true, the use of

unsynchronized  (uncorrelated)  models  relaxes  this  requirement  as  it  often  covers  the  expected

effects even when solely using 1D models: With synchronized (correlated) models, two stations will

simultaneously only see the same model-variation.  As laterally homogeneous models can never

refract a ray path out of it's original plane as would occur with tilted layers, laterally homogeneous

models  when used  synchronized  will  not  account  for  laterally  refracted  paths.  Unsynchronized
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Fig. II.3.5.1:6: Correlated (a) and uncorrelated (b) travel paths for
class II (i.e. two station) constraints. In far distance, both paths are
correlated, running through the same model. In near distance, both
paths  are  uncorrelated  and  may  see  different  variations  of  the
uncertain model.

For the example of an arrival time difference of 0 seconds, in case
(a)  the location uncertainty corresponds to a line,  while for (b) it
spans out a region. The minimal and maximal travel-times indicated
relate  to  a  single  model  variation  in  (a),  or  two  variations,
respectively, in (b). Over all model variations a line is stretched out
in (a), while it defines a broad region in (b).
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(uncorrelated)  models,  on  the  other  hand,  allow for  fluctuations  in  the  model  velocities:  Two

stations may simultaneously see different variations of the model. This means, that solely using

laterally homogeneous (i.e. 1D) models, both phases may travel with different velocities from any

point in space to the receiver(s). Although not physically modeled, this reflects effects as refractions

that  are  caused  by the  true  (non-1D)  structure,  in  the  location  uncertainty,  causing  the  spatial

constraint to include e.g out-of-plane locations. Treating model variations as uncorrelated therefore

often yields robust location regions even when simplified models are used. Yet, with distance from a

station pair, uncorrelated models largely overestimate the uncertainty. One way to overcome this

downside lies in using mixed models, in which we will apply uncorrelated models in the near- and

correlated models in the far-field (Chapter II.3.5.2).

In  the  following  we  will  address  the  identification  of  the  T M  distribution  for  both  modes

(correlates/uncorrelated)  and look at  how they constrain  the solution space,  beginning with the

mode for the most conservative location estimate (i.e. most accurate, least precise) obtained by

uncorrelated  models.  For such,  the  T M  interval  is  obtained by cross-correlating the likelihood

distributions of the two travel-time intervals. Although the true distributions could be obtained by a

sufficiently high amount of runs, we will simplify the evaluation for computational purposes and

reduce the information to the travel-time interval limits, which can be obtained with lower amount

of runs. The most conservative distribution, representing this information are flat distributions. The

cross-correlation of two flat distributions results in a three segmental linear curve (fig.  II.3.5.1:7)

which can be solved analytically, providing for a fast computation and evaluation. Since the cross-

correlation of two normalized distributions is also normalized, the maximum value of the resulting

distribution is given by

pmax=
f −1

ΔAB−Δmin

(II.3.5.1-21)

with

Δ AB=Δ A+ΔB (II.3.5.1-22)

and

Δmin=min {Δ A ,ΔB } (II.3.5.1-23)

where
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ΔA=ttmax
A −ttmin

A  and ΔB=ttmax
B −ttmin

B (II.3.5.1-24)

describe the “width” of the travel-time curve ensemble. f  is the discretization factor defining the

number of probability bins per time unit, usually chosen as the sample rate in consistency with the

discrete arrival-time likelihood distributions. The distribution representing the model uncertainty is

then given in the three segmental curve 

pM (T )= pM (T , ttmin
A , ttmax

A , ttmin
B , tt max

B )

= {T red
M ⋅δt p , 0<T red

M <Δmin

pmax , Δmin<T red
M <ΔAB−Δmin

pmax−(T red
M +Δ AB−Δmin)⋅δt p , ΔAB−Δmin<T red

M <ΔA+ΔB

0, else

(II.3.5.1-25)

with the reduced constraint parameter

T red
M =T−T min

M (II.3.5.1-26)

representing the adjusted difference in travel times and

T min
M =tt min

B −tt max
A (II.3.5.1-27)

being the lower limit of the interval. The derivative

δt p= pmax /Δmin (II.3.5.1-28)

describes the slope of ascending and descending segments as seen in fig. II.3.5.1:7.
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Fig.  II.3.5.1:7:  Three  segmental  analytical  solution  for  the
cross-correlation of two probability distributions.

After having obtained the T M  interval and distribution, the constraint can be mapped. To map it's

(unweighed)  shape  it  is  sufficient  to  solely  use  the  T M  interval  according  to  eq.  II.3.5.1-14,

displaying the non-probabilistic constraint (fig. II.3.5.1:8). The example shows, that a solution that

appears precise and localized, may actually become unconstrained in distance when (uncorrelated)

model uncertainties of 5% are introduced. The congruent region (which now extends into distance)

corresponds to possible  solutions,  but most  of them are highly unlikely (being close to several

constraints' edges). This can be quantified, applying the T M  distribution according to eq. II.3.5.1-

15 in a probabilistic plot (fig. II.3.5.1:9).
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II Distinct Constraints II.3.5.1 Uncertain Models

Fig.  II.3.5.1:8:  Comparison  of  uncertain  hyperbolic  P-P  constraints  where  a)  regards  (uniform)  picking
uncertainties and b) regards (uniform) picking and model uncertainties. Where picking uncertainties lead to a linear
growth of constraint width, model uncertainties yield a exponential growth. This reflects the fact that uncertainties in
velocity affect the solutions the stronger, the longer the signal travels. The localized solution volume in (a) becomes a
open  volume  in  (b).  [For  this  example  an  array  aperture  of  100m,  P  pick  uncertainties  of  0.0005s  and  a
homogeneous velocity model of (4.5 ± 0.225) km/s (5% variation) was used.

Fig.  II.3.5.1:9:  Probabilistic  constraints,  corresponding
to the example of fig. (II.3.5.1:8). The most likely region
is compact, despite large model uncertainties . 
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The  probabilistic  analysis  shows  that  (although  the  congruent  region  is  large)  the  most  likely

location is confined close to the true (simulated) source location. It further shows, that the constraint

edges, which correspond to the limits of the T M  interval, hardly affect the most likely solution. The

same  must  hold  for  the  travel-time  interval  limits  (from which  the  interval  limits  of  T M  are

determined).  Inaccuracies  in  such,  which  may be  caused  by the  lower  amount  of  used  model

variations (causing an insufficient sampling of the set of all possible variations) therefore do not

significantly affect the most likely location. If we, however, are interested in the most conservative

location estimate,  using uncorrelated models  in  a  non-probabilistic  analysis,  it  may require  the

additional use of class I constraints to obtain precise locations:

After introducing arrival time uncertainties, the width of azimuthal (class II) constraints will always

grow with  distance  to  the  corresponding  station  pair  (since  the  difference  between  two  paths'

lengths or travel times is less affected by lateral perturbations the smaller the average angle between

them). In distance from both stations, a hyperbolic  constraint,  for instance,  will  therefore grow

linear in width.  This is the case when we use an exact model (i.e. a distinct “thin” travel time

curve). As velocity model uncertainties now additionally enlarge the width of the travel-time curve

ensemble with distance and we additionally allow maximum fluctuations between the two involved

travel-time ensembles,  the  constraints  width  now grows exponentially  with  distance  from both

stations.  For  a  pure  P-phase  based  location,  the  impact  of  velocity  model  uncertainties  may

therefore be strong (see fig.  II.3.5:1). Although class I constraints (e.g. S-P) are equally affected,

they allow to confine the location in distance (even in a non-probabilistic analyses where congruent

regions may be large (see fig. II.3.5.1:10 and II.3.5.1:11)). The constraints characteristics as laid out

in chapter  III.1 are amplified in presence of model uncertainties. P-P information may become

unconstrained in distance. S-P constraints on the contrary tend to larger azimuthal uncertainties. The

effect is amplified for both, the further the distance from the network.  But as the uncertainties are

bound to (perpendicular) axes, the combination of both stabilizes and confines the solution in space

(fig.  II.3.5.1:10).  The combination  of  both  constraint  classes  using  a  non-probabilistic  analysis

therefore  provides  for  robust  hypocenter  regions,  to  obtain  accurate  results  in  uncertain

environments. Figures (II.3.5.1:10) and (II.3.5.1:11) show the same example of fig. (II.3.5.1:9) for

added S-P constraints.
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Fig.  II.3.5.1:11: Location using probabilistic S-P and P-P constraints for a) picking uncertainties only, b) picking
and model uncertainties for the example of fig. II.3.5.1:10. 

The examples show that by the combined use of class I and class II  constraints even the most

conservative uncertainty measure can yield precise hypocenter  locations.  So far  we were using
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II Distinct Constraints II.3.5.1 Uncertain Models

purely uncorrelated models for class II constraints to obtain robust location estimates. However, if

the two stations, which define the constraint, not happen to lie on two sites of a fault, uncorrelated

models will always overestimate the uncertainty in distance from the corresponding station pair. In

the  next  chapter  we  will  introduce  mixed  models,  using  a  combination  of  uncorrelated  and

correlated models, cross-fading between both modes depending on the given scenario. This will

allow us to increase the precision of the result without decreasing it's accuracy.

II.3.5.2 Physical Correlation Correction and Model Ensembles

When we treat model variations as uncorrelated, we do not necessarily describe a physical system

(which has one true structure). Uncorrelated models allow different stations to simultaneously see

different variations of the model. Depending on the scenario, this may or may not lead to physically

sound  travel  time  differences  (since  the  travel  times  may  have  been  obtained  from  different

models), which in turn result in unrealistic solutions. Uncorrelated models allow us to approximate

a heterogeneity that surpasses the (rendered paths according to the) model specifications and hereby

allows a fast computation using simpler models. If, however, we treat models as uncorrelated when

they  are  actually  correlated,  we  allow a  higher  fluctuation  in  the  travel  times  than  physically

possible, which would lead to an overestimation of the travel-time difference. This shall be laid out

by looking at both modes (correlated vs. uncorrelated) in detail: 

When we treat models as uncorrelated we give room to fluctuations in the fixed model-assigned

velocities by allowing different phases to simultaneously see a different variation of the model. If,

on the  opposite,  we wanted  to  express that  exactly  one  of  the  model  variations  must  globally

represent the true velocity structure, we would treat them as correlated with the phase(s) seeing the

same variation. An example of the first case would be defining an uncertain (homogeneous) model

with v=(5 ± 0.2)km/s, to describe a scenario where certain regions may hold a velocity of v=4.8km/s

while others may hold one of  v=5.2km/s (opposed to expressing that all regions hold the same

velocity, being unknown but limited to lie between v=4.8km/s and v=5.2km/s for the second case).

This is reasonable when the two analyzed travel paths differ from one another,  e.g.  if  the trial

location lies in between two stations of a class II constraint. In the unknown velocity structure, one

phase might truly propagate through a region of higher velocity (v=5.2km/s) while the other travels

through a region of only v=4.8km/s. On the other hand, when both paths indeed are physically
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coupled, allowing such fluctuations would overestimate the travel time difference and in turn the

location uncertainty, as both phases in reality experience simultaneously the same (or a dependent)

model variation: The model variations are “synchronized”, i.e correlated. This is the case for certain

class I constraints (e.g. S-P) where both phases travel on a similar and physically coupled path. But

also for class II constraints both paths can be correlated. This is the case when the trial location is in

far distance: Now the phase would propagate on a very similar path to both stations. When both

paths are similar, the same phase can not experience 5.2km/s and 4.8km/s simultaneously, but must

rather see the same model variation, which means that the phase experiences on both paths either

4.8km/s or 5.2km/s or everything in between, synchronized. Both stations see synchronized either

the shortest possible travel time or the longest, or any proportional and consistent value in between. 

To understand the geometrical effect that the choice of mode (uncorrelated/correlated) makes, we

will  re-use the example of figure  II.3.5.1:6, visualizing the effect of the path correlation on the

estimated location uncertainty in the near- and in the far-field (fig. II.3.5.2:1): For the example we

assume that a phase arrives at two stations at the same time with a negligible picking uncertainty.

Coming from far distance, the two travel paths to station A and B see the same physical velocity

model (i.e. the travel paths are correlated). Here, this causes all possible locations (due to the model

uncertainty) to lie on a line (a plane in 3D). 

Fig. II.3.5.2:1: Correlated (a) and uncorrelated (b) travel paths for
two station constraints.  In far distance, both paths are correlated,
running through the same model. In near distance, both paths are
uncorrelated and may see different variations of the uncertain model.

For the example an arrival time difference of 0 seconds is used. In
case (a) the location uncertainty lies on a line, while it stretches out
a region in (b).
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But for a source region in near distance, the phase can see different variations of the velocity model

(i.e. the travel paths are uncorrelated). Here, the model variation causes a location uncertainty which

acts  perpendicular  to  the  constraint's  run,  increasing  the  constraints  width  with  distance.  Not

correcting for physical correlation would in larger distance massively overestimate the effect of

model uncertainties and let the constraint grow unrealistically wide (in large distance even causing

it to surround the whole network). In proximity to the network, additional constraints would be

needed to constrain the solution to a smaller region (e.g. fig. II.3.5.1:10), but in larger distance the

location uncertainty would remain enlarged. This overestimation will affect the solution less in a

probabilistic  analysis since the most  likely travel time usually pertains to a  model close to the

default  model,  and  the  broad  constraint  edges  would  hardly  be  weighed.  Yet,  pertaining  to

congruent zones, the enlarged constraints would display a spurious agreement among constraints,

that would bring even mispicks into (spurious) agreement with other constraints. This agreement,

however,  would  only  be  due  to  the  unphysical  description.  To  reduce  this  effect,  we  will

approximate the information of physical correlation, which will limit the lateral  uncertainties in

large distance: When both phases travel on the same path and are physically closely related, the

modeled constraint parameter T M  may range between 

T min
M = tt min

B −ttmin
A (II.3.5.2-1)

and

T max
M = ttmax

B −ttmax
A , (II.3.5.2-2)

T M ϵ [ tt min
B −tt min

A , ttmax
B −ttmax

A ] , (II.3.5.2-3)

both seeing the same variation of the velocity field. The corresponding likelihood distribution over

the interval will be approximated as flat. Since the T interval is given for uncorrelated travel paths

in

T M ϵ [ tt min
B −tt max

A , ttmax
B −tt min

A ] , (II.3.5.2-4)

a mixed form 

T M ϵ [ tt min
B −(tt min

A ⋅cf +ttmax
A (1−cf )) , ttmax

B −(tt max
A ⋅cf +ttmin

A (1−cf ))] (II.3.5.2-5)
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can be formulated that yields eq. (II.3.5.2-4) and (II.3.5.2-3) as end-members, with cf  being the

correlation factor, describing whether travel paths are probabilistically (to be) treated as physically

correlated ( cf =1 ) or uncorrelated ( cf =0 ). Eq.  II.3.5.1-5 now allows to linearly fade between

both  end-members  to  describe  a  mixed  state  when  none  of  the  end-members  seems  to  be

appropriate to use (“A” and “B” stand for both involved phases). A correlation factor of one ( cf =1

) may be used to describe scenarios with fixed velocity ratios without perturbations (i.e. the velocity

model is structurally identical with the subsurface configuration, except for an unknown globally

constant  velocity  scaling  factor).  For  very  estranged  models  of  P  and  S  velocities  (very

inhomogeneous  vp/vs-ratios)  both  phases  may  significantly  differ  and  intermediate  cf -values

might yield an appropriate estimate to use. The same holds for one station Pdir- Pref constraints,

where the phases travel on very different paths, yet are physically correlated as they both strongly

depend on the layering (structure) of the model. For class II constraints (e.g. the P-P constraint)

between two stations this is more complex and, as previously laid out, depends on the distance

between trial location and both stations: For short distances, both stations may see different models

( cf =0 ), while in larger distance the model variations have to be treated as correlated ( cf =1 ).

The relative distance

r=d xyz /DA , B (II.3.5.2-6)

can hence be used to control the correlation factor, with  DA , B  being the distance between both

stations A and B and d xyz  being the distance from the station's midpoint to the evaluated location.

For short distances ( r≤rnear ), both rays are expected to be capable of seeing different variations of

the  same model,  as  paths  are  independent.  For  large  distances  ( r>r far ),  wave-paths  are  very

similar and both stations should see the same model variation. In between, both intervals are cross-

faded

cf = { 0, r≤rnear

(r−rnear)/(r far−r near) , rnear<r<r far

1, r≥r far

. (II.3.5.2-7)

The values for rnear  and r far  stand in relation to the dominant frequency of the evaluated signal,

which determines the width of the fresnel-zone (“banana-doughnut”, Born-Fréchet kernel theory).

Lower  dominant  frequencies  (larger  wavelengths)  correspond  to  a  larger  correlation-radius,

lowering rnear  and r far , while higher dominant frequencies increase their values. In the following,
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we will use static values for  rnear  and r far , with rnear  chosen to correspond to an average angle of

10° between both ray paths, and  r far  corresponding to a narrower 5° angle. This causes a quick

initial  growth of the constraint's width in the near field (accounting for velocity  perturbations),

which stabilizes in the intermediate field and gains precision (decreases in width) in larger distances

(fig. II.3.5.2:2).

Fig.  II.3.5.2:2: Model correlation correction for a) 1% model
uncertainty  and  b)  2%  model  uncertainty.  The  hatched  area
corresponds to uncorrelated measures, which overestimate the
uncertainty  in  distance.  The  correction  limits  the  region  in
distance  (solid  area).  The  correlation  factor  increases  with
distance from stations according to eq.  II.3.5.2-7. The curves
correspond to two stations in 2km distance in a homogeneous
velocity field of 4.5km/s. Picking uncertainties are 0.005s.

Additional  azimuth-dependent  correction  terms  could  be  derived  that  would  allow  for  further

corrections, narrowing down estimated uncertainties for strongly bent hyperbolas for trial locations

in intermediate distances to the stations. Here the signal may travel partly in regions of correlated-

and partly in regions of uncorrelated paths. This behavior, however, is complex and will not be

regarded in the work presented. For the real-time application, rather than looking for physically

likelier  cases  increasing  the  correlation  factor  and  the  precision,  we  continue  to  use  lower

correlation factors, supporting accuracy (To support higher degrees of precision, we will introduce

model-ensembles the next sub section). 
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After having obtained measures to include the model uncertainty in the constraint mapping, we will

apply such in the following example, showing the analysis of a gas field event (the full analysis can

be  found  in  chapter  V.1).  With  picking  uncertainties  being  applied  but  model  uncertainties

disregarded, no region of constraint agreement is found (fig. II.3.5.2:3).

This changes when we include model uncertainties. A 3% uncertainty in the P-velocity model is

sufficient to bring all information into agreement. Since the whole region is in proximity to the

stations, model variations are treated as uncorrelated. Looking at an isolated subset of 7 stations,

one can see the corrected constraints'  run,  as well  as  the  region of full  congruity  in  which all

constraints overlap (fig. II.3.5.2:4 a&b). 
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Fig. II.3.5.2:3: The example shows 12 surface stations that registered an
event in a gas field. For clarity only the constraints of a 5-station subset
(dark grey filled triangles) are shown. Although picking uncertainties are
applied and widen the  constraints,  no region of  common agreement  is
found. The color intensity scales with the amount of agreeing constraints.
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Fig.  II.3.5.2:4:  Applying  a  3%  model  uncertainty  brings  all  information  into  agreement.  Panel  a)  shows  the
constraints for a 7-station subset (dark grey filled triangles) and panel b) the corresponding congruent region with
100% agreement.

When plotting the 66 constraints of all 12 stations, the map takes the character of a continuous

likelihood map, showing a well constrained hypocenter region.

Fig.  II.3.5.2:5:  Adding  the  remaining  constraints  reveals  a  clear  and  precise  maximum.  Panel  b)  shows  the
corresponding congruent region of 100% agreement.
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As powerful as these uncertainty measures are, they are only a rough proxy for the true uncertainty:

Even when we use correlated models, they are only treated correlated per individual constraint, but

not between the constraints. This means that one location (point) that is marked by two constraints,

may have seen one model variation in the one constraint and a second variation in the other, which

should not be the case for correlated models. This means that the effect of model uncertainties on

the solution region will always be overestimated. To display the exact constraint- (and location-)

uncertainty based on the defined model uncertainties, we need to utilize model-ensembles. 

MODEL-ENSEMBLES

Uncertain  models  yield  robust  uncertainty measures  which  can  be  applied  in  real  time,  as  the

computationally  expensive  part  of  Monte-Carlo  simulations  (i.e.  the  travel  time  rendering)  are

performed prior to the analysis. They do, however, overestimate the effect of the described model

uncertainty  on  the  location  uncertainty  and  only  provide  upper  bound  approximations  of  the

location uncertainty, both when used uncorrelated or correlated. Not only because the correlation of

travel-time differences is only valid per constraint and not globally for all, but also because we take

for granted that the travel-times that two stations “see” are linked to the same model variation: In

the correlated case, for instance, we calculate the maximum possible travel-time difference between

two stations by subtracting both their largest travel-times, assuming they relate to the same model.

This, however, is only strictly true for laterally homogeneous models under surface networks and is

not a given in heterogeneous environments. We will conclude this chapter on model uncertainties

with a short look on the (computationally more expensive) approach of model-ensembles, which

will  allow  us  to  a)  describe  uncertainties  with  highest  precision,  b)  treat  model  variations

completely correlated over all constraints, and c) have travel-time differences linked to individual

models, hence accurately mapping the exact effect of model uncertainties unto the location. The

underlying idea shall be laid out in the following: 

In  previous  chapters  we  used  one uncertain  model  (it's  parameters'  mean  values  believed  to

represent  the  real  velocity  structure  to  a  good  degree)  in  which  we  accounted  for  imaginable

inaccuracies by allowing parameter perturbations (velocity uncertainties). Although this strategy is

reasonable -since the true velocity field is unknown- there is at least one (unknown) true and exact

model (free of uncertainties) that links the data to the true hypocenter and origin time. We could
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therefore (theoretically) test  for all possible models that confirm the given structural subsurface

information, calculating all constraints for each model to identify the small fraction of models that

produce  congruent  regions.  Merging  the  found  regions  would  then  display  the  true  model-

dependent location uncertainty. Stacking all constraints computed over all models would provide a

map indicating the most likely solution in respect to the model uncertainty.  Technically, such a

method repeats the fundamental location procedure (i.e. mapping the arrival-time-difference based

constraints for a given velocity/travel-time model) for all predefined models in the ensemble. The

difference to the method of uncertain models, which uses the same model description and likewise

renders all Monte-Carlo generated models, is that constraints need to be computed for every model

of the ensemble (while they are only computed once using minimum and maximum found travel-

times in the method of uncertain models). Since this is computationally too expensive to be run in

real-time, this method mainly serves to refine the solution in a post-processing step using more

accurate uncertainty estimates. Obviously, the location scheme can not be rerun for each of the

(infinite) possible models. When we define the set of models in the ensemble, the dimensionality of

the  problem  is  too  high  to  be  sampled  sufficiently,  even  in  the  simplest  case  because  of

sampling/discretization problems: For instance, to express a velocity range in a certain layer, one

might use ten models increasing the velocity with each model at one tenth of the range starting from

the minimal velocity. For minute picking uncertainties, none of these models may actually bring all

constraints into agreement (if the true velocity lies in between the sampled instances). Instead of

defining the models as exact models (which would result in a location that corresponds to totally

correlated models) we may define them instead as uncertain models in which small uncertainties are

assigned to account for the transition of one sampled model instance to another, allowing for small

fluctuations in each of the ensembles' models.

Fig. II.3.5.2:6 compares the methodologies of uncertain models and model ensembles for the simple

case of a homogeneous model, the velocity known within an error margin of five percent. In the

framework of uncertain models the travel-times obtain a  ±  5% uncertainty, leading to broadened

spatial constraints, which in turn broaden the congruent region. Model-ensembles determine the

solution  region more  precisely,  by  evaluating  an  ensemble  of  models  with  different  velocities,

treating picking uncertainties  as usual.  For each model,  the congruity regions and probabilistic

constraints are computed. These regions and the most likely solutions are stacked on summation

grids. The stacked constraints again represent probabilistic constraints respecting picking and model

uncertainties, showing the clusters of locations in space for which the respective models explained
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the observed phase arrivals best. The merged congruent regions reveal the true model-uncertainty-

dependent location uncertainty.

Fig. II.3.5.2:6: Uncertainty measures. The top panel shows constraints and congruent region (black
outlined polyhedron) based on a picking uncertainty of approximately 0.05s. In the bottom left panel
a  5% (synchronized/correlated)  model  uncertainty  is  added.  The  right  panel  shows  the  stacked
constraints  (as  in  the  top  panel)  over  10.000  model  variations,  hence  guarantying  complete
correlation among constraints. The congruent region is therefore thinner as the corresponding proxy
using (synchronized) uncertain models.

Since the models are now fully correlated between all constraints, the congruent region obtained

from the model-ensemble is narrower than the one obtained from uncertain models. Mapping the

model uncertainties in this manner can hence increase the precision of the location significantly,

especially  when uncertainties  are  very  large.  This  is  demonstrated  in  fig.  II.3.5.2:7,  where  we

assume  the  mean  velocity  only  to  be  known  with  a  50%  uncertainty.  The  uncertain-model's

153

horizontal cut

5km

horizontal cut

5km

horizontal cut

5km

(Non-
probabilistic)
location
based
solely 
on picking 
uncertainty

(Non-probabilistic) 
     location based on
          picking uncertainty 
                and correlated 
                    uncertain models

Location based on 
stacked constraints of 
an ensemble of 10.000 
exact models



II Distinct Constraints II.3.5.2 Physical Correlation Correction and Model Ensembles

congruent region is  here extremely large. Yet, using the given information of homogeneity and

complete model correlation in model-ensembles reduces the location uncertainty drastically (fig.

II.3.5.2:7, dashed polyhedron).

Fig. II.3.5.2:7: Comparing uncertain models and
model-ensembles: One set of arrival-times leads
to  two  significantly  different  location
uncertainties when the the uncertainty in velocity
is  large  (here  50%).  For  uncertain  models  the
congruent  region  is  significantly  larger  (solid
polyhedron),  since  models  are  only  treated
correlated  per  constraints,  overestimating  the
location  uncertainty.  Model-ensembles,  which
keep  the  correlation  valid  amongst  all
constraints,  describe  the  location  uncertainty
precisely.

The interesting point is that the dashed region not only corresponds to a 50% but 100% uncertainty

in velocity - in fact, marks the region of all possible hypocenter locations for a completely unknown

velocity. Solely the information that the velocity structure is homogeneous is sufficient to constrain

the solution to the confined dashed region (fig. II.3.5.2:8): When we look at the models similar to

the true model (1.0·vp) we find that for this source location only models with values between 97%

and 104% of vp are able to bring the constraints into agreement. Merging the solutions of all models

yields the dashed region of congruency of fig. II.3.5.2:7. Since it is only this small band of models

that confirms the arrival-time data, the region of possible locations would not increase even when

extending the range of vp to v p ϵ[0,∞] . This small elongated region would increase (in width) if we

allowed for inhomogeneities in the model, which we could express simply by describing each of the

ensembles' models as uncertain model of small uncorrelated uncertainty. 
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Fig. II.3.5.2:8: Solutions for some of the ensemble's models. Top: Congruent regions obtained for models between
[0.96, 1.05]·vp. Only a small band of model parameters lead to constraint agreement. Merging these solutions
displays the total location uncertainty. Bottom: Constraints for certain models: Left: Velocities too slow do not
bring information into agreement. Middle: constraints for the true model. Right: Largest velocity that still yields a
small region of congruency.

The example shows that we can expect more precise location uncertainty estimates by using model

ensembles, whenever the model uncertainties become large. This, for instance, is the case when the

model uncertainty includes varying geometries and hence large fluctuations in velocity. A common

example  for  1D models  are  unknown layer  depths,  in  which  proximity  the  velocity  fluctuates

between two layer velocities. 

For real time analysis, uncertain models provide a robust measure of location inaccuracies, yet tend

to overestimate location uncertainties, when using model variations synchronized concerning the

wave paths, between pairs of phase arrivals. A post processing using model-ensembles allows to

obtain more accurate  uncertainty estimates and hence more precise  location uncertainties.  It  is,

however,  computationally  more  expensive,  evaluating  only  tens  of  1D-models  per  second:

Evaluating  the  common  amount  of  1000  model  variations  requires  therefore  up  to  a  minute

computation time, rendering this method as inapplicable for real-time/interactive schemes. Complex

models require larger ensembles of Monte-Carlo-generated models.

Having estimating the effect of model uncertainties unto the model-dependent location constraints

(and in turn the location uncertainty), we will conclude the general topic of uncertainty, looking at

the construction of the model-independent constraints of back-azimuth beams, before we will go

over to the technical aspects and problems of the constraint computation in the following chapters.
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II.3.6 Array Beam Uncertainty

The scheme of distinct constraints, which is applied in this thesis to constrain hypocenter regions,

can as well be used to constrain any other parameter. In this chapter, it will be used to constrain the

array  back-azimuth  interval,  providing  robust  opening  angles  for  the  back-azimuth  beam as  a

function of the data quality. 

The total uncertainty of the array back-azimuth estimate relies on, however, two other significant

aspects. The first, although neglected in the following, relates to the given velocity structure. The

concept of a “Back-Azimuth” (BA), which is the direction to the source -measured at a seismic

station- only makes sense for laterally homogeneous media. Structures as e.g. dipping layers can

refract the ray out of the onsite measured direction – an effect well known in optics, commonly

leading  to  an  underestimation  of  an  object's  depth  under  water.  The  related  error  can  only  be

corrected if sufficient knowledge about the velocity structure is given. In that case, the ray may be

traced  back  through  the  medium,  starting  with  a  vector  in  the  direction  of  the  back-azimuth,

following  the  gradient  of  the  travel-time  field  obtained  from  the  given  velocity  model.  This

generates a complex back-azimuth constraint for laterally inhomogeneous models. However, this

detailed model information is seldom given. In practice, simple BA correction functions are applied,

which are obtained by comparing observed and catalog BA. These 360° periodic functions can e.g.

appear in the form of a sinusoidal curve for dipping layer structures below the array. In this work,

sufficiently lateral  homogeneous models will  be assumed and a fixed angular uncertainty of 5°

being assigned to cover the impact, small structural inhomogeneities may exert. 

The second aspect is linked to the equation deriving the slowness estimate, which requires planar

station layouts (which will be assumed to be given or otherwise to have been corrected for) and

plane wave fronts, which are only given for events in larger distance. The methodological error that

arises for events in near distance will be evaluated in chapter III.1.1.

The  last  aspect,  being  the  subject  of  this  chapter,  is  linked to  the  signal-correlation  in  (small-

aperture) arrays: An aperture too small  to capture the signal's  dominant  wavelength prohibits  a

proper  cross-correlation  (or  would  lead  to  wide  maxima  with  a  f-k-analysis,  respectively).  An

aperture too large, on the other hand, will lead to a large variability in the waveform between the

array stations, causing the quality of the cross-correlation to drop (or the semblance to be low,
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respectively) affecting the estimate's accuracy. Further, if the signal is correlated in the time domain,

a sample rate too small will – especially with small-aperture arrays or steep incidence angles –

cause large azimuthal inaccuracies due to the poor discretization. Eq. II.1.2.3-6 provides an unique

back-azimuth estimate based on the two time shifts between three traces. However, all these aspects

add errors to the estimate, which need to be covered by a proper parameter uncertainty to yield

congruent hypocenter regions and accurate results. This measure will now be established using the

concept of distinct constraints as in previous chapters, only that here the slowness-space is being

constrained, to identify the uncertainty interval of the back-azimuth parameter. This will determine

the beam opening angle based on the given waveform- and geometrical data, covering the errors

pertaining to low data quality, poor sampling/discretization and short station-station distances in

small-aperture arrays. Where constraints, based on the difference of two arrival times, were used to

constrain a congruent solution region in space, here will the two time shifts between a set of three

stations  be  used  to  constrain  a  congruent  region  in  the  back-azimuth/slowness  phase  space,

constraining the feasible back-azimuth interval, which defines the direction and opening angle of

the back-azimuth beam. We will therefore

a) jackknife the dataset (of array traces)

to form 

b) uncertain (slowness) constraints 

that 

c) narrow down the solution in (slowness) space

to 

d) identify the feasible region for the (back-azimuth) estimate, 

which provides us with the data-based uncertainty for the back-azimuth location constraint. Since

the slowness estimator (eq. II.1.2.3-6) requires the coordinates of three stations and the time shifts

between the three corresponding waveforms, the array stations will hence be permuted into triple-

groups,  exactly  solving  eq.  II.1.2.3-6 for  the  slowness  (a).  The  constraint's  (triple-group)

uncertainties are determined by the uncertainty of the time-shifts (taking the station coordinates as

error-free). The time-shifts are usually obtained via a cross-correlation of the waveforms, since this

provides a very accurate and precise measurement of the time difference - given that the waveforms

are similar! Cross-correlation factors (i.e. the height of the maximum peak in the cross-correlation
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of the normalized waveforms)  significantly smaller than one,  wide maximum peaks,  close side

peaks of similar height, are all indicators that the estimate may not be accurately determined. In

such  a  case,  a  “feature”-based  correlation  provides  better  estimates,  only  focussing  on  the

correlation of a single peak or trough rather than the whole wave-train. This is often the case with

very  weak  signals  (typical  for  Nanoseismic  Monitoring)  where  the  coherency  drops  over

neighboring wave crests. Of special interest is the correlation of the first phase arrival, since this

traveled on the fastest path and is hence the favorable segment for the directivity analysis, i.e. the

derivation of the back-azimuth. This avoids the mixing of different phase-arrivals in the wave-train,

in  which  later  phases  as  propagating  from the  source  and  earlier  phases  traveling  on  slightly

different (longer) paths superpose, hence yielding slightly different back-azimuth estimates. We will

therefor focus on the most “pure” i.e. the first arriving phase. Even this first oscillation, observed on

several traces (stations), will slightly vary in length, which means we can correlate the rising ramp,

the peak, or the decreasing segment and will in all three cases obtain slightly different time-shifts

(see the first phase in the P-phase of fig. II.3.6:1). 

Fig. II.3.6:1: Overlay of four array traces, shifted according to the cross-correlation lag. The approx. first
0.5s of the low-SNR P-phase are used as correlation time window [09:41:10.4, 09:41:10.9].

As we are interested in the direction of the first arrival of energy, we would therefore attempt to

obtain the time-shifts of the first ramp. Both standard approaches, signal cross-correlation and f-k-

analysis, however, weigh the maximum (crest) significantly stronger than the phase onset. In noise

conditions (as in fig. II.3.6:1), where a cross-correlation is not suitable, it may even be favorable to

use direct onset picking rather than cross-correlation, weighing the onset of energy stronger than the

later maximum (crest) of it.  Transition to a picking based approach is straight forward, since the

offsets obtained from cross-correlation can also be translated into a set of correlated onset times t ∗ ,

fixed to the beginning of the emerging signals. The t∗  can therefore directly be obtained through

picking and the uncertainties  manually be assigned,  following chapter.  II.3.1.  Where the cross-

correlation would have yielded correlated uncertainty distributions, individual picking keeps them
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uncorrelated, which describes the data in these high-noise conditions better. For the shown example

of dissimilar waveforms (fig.  II.3.6:1), the full wave-train cross-correlations of the array signals

would yield discrepant sub-solutions in the Jackknifing scheme (fig.  II.3.6:2, white vectors), with

none pointing towards the true direction. Manual correlation (manual alignment of the array traces)

is  highly  ambiguous,  yielding  strongly  varying  back-azimuth  estimates.  The  f-k-analysis  (fig.

II.3.6:2,  map)  confirms  the  Jackknifing  trend and  shows the  maximum energy for  the  stacked

waveforms in direction of approx. 295°.

Fig.  II.3.6:2: For the given lags, most of the four sub-solutions (white
lines) indicate seismic velocities, yet diverge strongly in back-azimuth.
The  fk-analysis  shows  a  maximum  at  approx.  295°  with  seismic
velocities.

To obtain better results, we will now focus on “correlating” solely the first trough instead of the full

signal.  The uncertainties for the correlation are determined manually by the uncertainties of the

trough's onset (fig. II.3.6:3). Due to low signal similarity and noise contamination the uncertainties

will be treated as uncorrelated, following the standard formalism used in previous chapters.

Chapter  II.1.2.3 laid  out  how  a  constraint  (triple-group)  for  azimuth  and  slowness  can  be

constructed for a given set of three array stations {A , B ,C } , based on equation II.1.2.3-6. 
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Fig.  II.3.6:3: Weak P-phase on four small-aperture array stations.  The P-phase is being identified by its
higher dominant frequency. A global cross-correlation yields erroneous results, as the signal loses phase from
one crest to the next. Instead the onset of the first trough is being used to correlate the four array traces. Due
to the low SNR the onset is uncertain (blue windows mark the possible onset intervals). 

Each of such constraints results in a point in the azimuth-slowness phase space, if uncertainties are

neglected.  For  several  constraints  these  points  will  usually  scatter,  the  scatter  indicating  the

agreement and robustness of the given estimates. Following the approach of chapter II.3.1, we will

now project the uncertainties in arrival-times obtained from fig.  II.3.6-3 into uncertainties in the

phase-space to compute congruent regions identifying slowness and azimuth values consistent with

all measured time differences: The uncertainties in the time domain are projected into phase-space

by computing the set of points that is given by the slowness vectors obtained for every possible

permutation of the set of  t {i } ∈ [ t {i } , t {i }] . This yields a slowness map, 

expressing the likelihood p
( sx
sy )

A , B , C

 that a certain slownesses vector (sx
sy )  is constrained:

p
( sx
sy )

A , B ,C

=∑
t A

t A

∑
t B

t B

∑
tC

tC {1, S (t A , tB , tC)=(sx
sy)

0, else } (II.3.6-1)

with

t {i }  and t {i } (II.3.6-2)

representing  the  lower  and upper  limit  of  the  onset  times  ( t∗ ϵ [ t {i } , t {i } ] ).  S  is  the  function

computing the slowness vector based on the three onsets and station locations (eq. II.1.2.3-6). Fig.
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II.3.6:4 shows, that contrary to the error free scenario where the solution is defined by one point in

phase space obtained from S (t A
∗

, t B
∗

, tC
∗ ) , here a solution region is constrained in slowness-space by

p
A , B , C

. 

Fig.  II.3.6:4: Slowness  p
( sx
sy)

-map displaying all solutions in azimuth/slowness phase

space  for  given  cross-correlation/picking  uncertainties  in  a)  Polar  coordinates  b)
Cartesian coordinates. The back-azimuth interval for this subgroup stretches from 175°
to 260°.

Each triple-group permutated from the set of array stations yielded one constraint in the azimuth-

slowness phase space. The sum of all subgroup likelihoods 

P
( sx
sy)
=∑

A=1

n

∑
B=A+1

n

∑
C=B+1

n

p
( sx
sy)

A , B ,C

(II.3.6-3)
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identifies the azimuth-/slowness values most likely for the full array, with n  being the number of

array stations.

Fig. II.3.6:5: Using all four triple groups generated from the four array stations {{1,2,3},
{1,2,4},{1,3,4},{2,3,4}} yields four constraints for the azimuth/slowness phase space. 

Here, however, we are interested in the congruent region, spanning out the back-azimuth interval.

We can therefore mask eq.  II.3.6-3 to identify the intersection of all  constraints  as region with

P
( sx
sy)

m = 1 :

P
( sx
sy)

m = 1
g ∑A=1

n

∑
B=A+1

n

∑
C=B+1

n

'
⏟

g triple groups

{1, p
(sx
sy)

A , B ,C

>0

0, else } (II.3.6-4)

with g  defining the number of triple groups
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g= 1
6
(n3−3n 2+2n ) . (II.3.6-5)

This identifies the azimuth and slowness values, that are consistent with all time differences and

uncertainties in the array:

Fig. II.3.6:6: Non probabilistic display of fig.  II.3.6:5, identifying the congruent region
(dark  blue)  in  which  all  slowness  constraints  agree  (back-azimuth  Interval  I).  Any
slowness vector from within this region will cause arrival time differences, conform with
the assigned uncertainties  on all  traces.  As the local  p-wave velocity  at  the array is
known to be approximately 2.2km/s,  only slowness values lower than 1/(2.2km/s)  are
physically possible. The congruent region under this slowness threshold is limited to the
interval J (grey zone) and defines the signal-based beam uncertainty.

Fig.  II.3.6:6 shows that the congruent region for the given uncertainty intervals on the four noisy
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signals traces spans out a large back-azimuth interval (I) of BA≈[176,265] . This interval displays

the signal-based uncertainty that would define the minimum width of the beam constraint. Since

the low SNR signal is followed by a S-phase signature, it can be safely assumed that the signal is a

seismic signal. The average local P-velocity is approximately 2.2km/s. This allows to narrow down

the back-azimuth interval to BA≈[187,262]   (resembling “the beam”, fig. II.3.6:6: Grey cone) since

the observed slowness defines the lower bound of the signal's propagation velocity (Based on the

incidence angle, the apparent velocity can only be higher than the absolute wave velocity). 

The signal stems from an air-plane crash approx. 20km South-West of the small aperture array, with

a back-azimuth of approx. 253°. While automatic (or manual) cross-correlation of the signal in fig.

II.3.6:3 produced highly fluctuating back-azimuth results, using uncertainty windows around the

phase arrival provides a quantitive measure for the back-azimuth uncertainty, identifies the right

solution. Hereby, the back-azimuth beam's opening angle is brought into dependency to the data

quality  and  array  geometry.  By  defining  a  minimum  uncertainty  of  e.g.  one  sample,

sampling/discretization  effects  are  naturally  covered.  Coherent  signals,  a  well  distributed  array

geometry and a locally homogeneous velocity structure yield narrow beam angles while the angle

widens  when  these  qualities  are  diminished.  The  example  of  fig.  II.3.6:6 lacks  both,  coherent

signals as well as structural homogeneity. In combination with the modification for near distances

where the plain wave assumption is violated (chapter  III.1.1), a robust back azimuth constraint is

formed. With good data, cross-correlation is the method of choice to provide precise time-shifts

[Note:  in that  case,  the sensitivity  analysis  (eq.  II.3.6-1) needs to be performed in a correlated

manner], but when the signal quality drops in low SNR conditions, a “feature”-based correlation,

even using the  “picking”  of  the onset  of  energy becomes useful  to  constrain the  (less-precise)

solution robustly in slowness-space.

This chapter concludes the translation of time based uncertainties into constraint uncertainties. The

following chapter will  address the technical aspects of mapping these time-based constraints to

space, in the context of a direct search formalism.
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II.4 Constraint Evaluation in a Sampled Region

One of  the complications that  arise  when only few stations  are  given are  ambiguous solutions

(chapter III.2). These multiple, equally possible hypocenter locations (which are not due to errors in

the parameters but due to equivalent mathematical solutions to the underlying system of equations),

may cause significant misinterpretations of the source, if one of the solution candidates is overseen

and/or the false one is trusted to mark the hypocenter location. One fundamental, but technically

complex demand for the analysis are therefore global and complete solutions, revealing all existing

solutions both a) extensive solution regions in large distances as well as b) compact regions near by.

This, however, is not trivial: Complex velocity models and multiple cross-sections are only some of

the aspects that make up the complexity of the constraint-based real-time location analysis  and

necessitate the use of global direct search methods a.k.a. grid searches. In such, the solution space is

sampled and evaluated at a set of coordinates (e.g. points of a regular grid). But whenever space is

sampled, solutions can be overlooked: The direct search method is limited in two ways, in a) the

extent of the search region (the grid size) and b) the evaluation point density (the grid resolution).

For  complete  solutions,  it  requires  a)  extensive  search  regions  and  b)  high  evaluation  point

densities, to identify compact hypocenter locations and evaluate the solution neighborhood. Yet,

both aspects increase the computation time and hinder real-time analysis. The task of the following

chapters is therefore to derive methods that satisfy both requirements in a real-time capable manner.

The importance of these aspects can be easily demonstrated with the following example taken from

the field of real-time location: When one of today's running Earthquake-Early-Warning codes was

tested on the 2015 Ml 4.2 Dead-Sea event, using the four first triggering stations, it mis-located the

earthquake by roughly 200km (fig.  II.4:1) although the event was situated in between the first

triggering stations - in only (approx.) 10km epicentral distance. This overestimation of epicentral

distance would have lead to a significant overestimation of the magnitude and in turn to a false

alert.  How could it  have produced such a  wrong location estimate? The cause  is  found in the

algorithm's attempt to identify the hypocenter by the grid point of lowest residuum sum value. Two

complications caused this attempt to fail, one fundamental one, being an inherent problem of the

arrival-time based location, and a second technical one. The first complication was that the set of

arrival times yielded two possible locations. This circumstance of ambiguous locations (multiple

exact solutions) is covered in detail in chapter III.2, which shows: Based on P-arrival times only, the
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true location cannot be identified. The algorithm, only expecting one solution, also identified only

one of the locations. 

Fig. II.4:1: Falsely identified hypocenter location: a) The true hypocenter location is marked by a minimum
in the residuum plot. The algorithm, however, located the event approx. 200km south-west. b) Zooming out
reveals a secondary, less distinct, minima. c) Zooming out even further shows the location chosen by the the
algorithm. d) Viewing the evaluation grid explains the mis-chosen hypocenter: The compact primary solution
falls between grid points in such a way that grid points in the center of the secondary solutions reach lower
residuum values than the points in proximity to the true location. The four grid points of lowest residuum
values are marked yellow

In this  case,  one of the two solutions was even less  likely than the other  as it  required larger

uncertainties in the input parameters to render it an exact solution. However, the algorithm chose
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this  solution,  being  the  wrong  solution.  Now,  the  answer  is  found  on  the  technical  side:

Dynamically refined grids (e.g. oct-trees) are technically able to identify all minima, but even the

commonly applied Oct-tree algorithm can overlook sharp and compact minima that are situated in

between grid points. Exactly this was the second complication, that surfaced in the example of fig.

II.4:1: A secondary minimum in larger distance from the network existed and the primary solution

with lowest residua sum was situated between two grid points, so that grid points at the secondary

minimum yielded lower residua values than those in proximity to the primary and true solution. The

example emphasizes the importance of grid schemes that provide  complete solutions and do not

neglect part of the true solution set. In the following we will tackle the problem of completeness on

both ends of the scale: the limited extent of the grid and it's resolution.

In  the  simplest  case,  the  three  dimensional  space  is  discretized  into  an  equally  spaced  multi

dimensional grid. To increase the grid's extent, we can introduce spatial transformations to increase

the grid cell size with distance, effectively reducing the grid resolution in distance of the network,

improving  performance  and allowing  to  cover  larger  regions.  This  approach does  not  increase

computational cost during the analysis, since the spatial (forward) transformation is only performed

during the initial grid-rendering procedure (assigning travel-times to all grid points); and the back-

transformation is only required whenever a region is declared as hypocenter and the geographical

coordinates become of interest. This procedure is, however, only helpful if we can form a method

that solves the second aspect: to provide complete solutions even when the grid resolution is low.

The following chapter will focus on this aspect, while the spatial transformation will be covered in

detail in chapter II.4.2. To derive a method that can analyze between grid points and hence provide

complete solutions independent of the resolution, we will start looking at the fundamental concept

of a grid point based direct search:

To map constraints, which are based on observed arrival-time differences, into space, it requires a

comparative quantity at each grid point, that connects time and space. The same way that velocity

describes and connects changes in space and time, the velocity model connects the time defined

constraints with locations in space. For constraints which are based on arrival time differences, the

comparative  quantity  can  be  established  by calculating  travel  times  from each  grid  cell  to  all

stations. This is due to the equivalence of travel time tt ( x̄ , s̄)  and arrival time tO( s̄ )  for a zero

adjustment concerning the origin time t0=0 ,

tO( s̄ )= t0+tt ( x̄ , s̄)  (II.4-1)
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with x̄  being grid cell- and s̄  station coordinates. Differences in onset times ΔO  in general are

equal to differences in travel times Δ tt , since

ΔO=tB
O−t A

O=(t0+tt B)−(t0+ttA)=tt B−tt A=Δtt . (II.4-2)

With cached travel times at each grid cell, the comparative value based on given models can be

evaluated  in  real  time  at  each  grid  cell  for  every  constraint  due  to  the  simplicity  of  required

operations. Cached travel time tables can nowadays be found in many applications inverting time

based data e.g. seismic imaging or location schemes (Lomax, 2009). In the following chapter we

will now derive a direct search approach that evaluates grid cells rather then grid points.
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II.4.1 Grid Discretization

When we compute location constraints on the points of regular or irregular grids, resolution is a

critical  aspect.  A resolution  too  high  causes  the  analysis  to  be  computationally  expensive,  a

resolution too low may significantly falsify the result in regions where the constraint's width is

comparable to the grid spacing (aliasing). In regions where the constraint's width drops below the

grid spacing the constraint evaluation may be fully suppressed (fig. II.4.1:1). 

Fig. II.4.1:1: Comparison of evaluation a) on grid points and b) over grid cells. A point based approach may
underestimate the true value, not identifying the global solution (a). A simple interval based approach may
overestimate the true value, but will identify the global solution, independent of the grid resolution. The central
region is shown magnified (below). 

With several constraints, these regions are distributed differently for every constraint depending on

the station layout, which makes the effect unto the solution mapping unpredictable. As solutions can
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completely be missed, a point vise computation of constraints is unfavorable. The problem can,

however, be solved by evaluating the constraints (or more accurately: integrating their likelihood

distributions) over the grid cell rather than solely using the values on the grid points. This way,

constraints and the global and secondary solutions are identified even when the grid resolution is

too low for  grid  points  to  “see” them. For readability,  the  following derivation will  be shown

disregarding model uncertainties, whose interval based formulation follows the same pattern. The

difference between the constraint parameter T O  (i.e. the arrival-time difference) and the modeled

value T M  (i.e. the travel-time difference) at grid point  (x , y , z)  defines the constraint deviation

V  (i.e. the discrepancy between modeled and observed quantities)

V=T OM=T M−T O . (II.4.1-1)

A region is marked as part of the constraint if the deviation is less than the constraint uncertainty.

Now, if we attempt to integrate over grid cells rather than to evaluate on grid points only, we need

to  estimate  the  range  of  constraint  deviation  over  the  grid  cell's  extent.  This  range  can  be

approximated by the values of T M  at the surrounding grid points (fig. II.4.1:2). 

Fig.  II.4.1:2:  Constraint  evaluation  over  a grid cell.
Where a grid point holds one travel-time value, the grid
cell holds a range of travel-times. This interval can be
approximated  as  stretching  from the  minimum to  the
maximum travel-time found at the cells corners. 
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As the grid is evaluated along horizontal and vertical cross sections (in interactive location) as well

in  full  3D  (for  automated  analysis),  different  sets  of  surrounding  grid  points  are  needed.  Let

Θ(x , y , z)
XY  define the set of values at surrounding grid points of index (x , y , z)  for horizontal cross

sections

Θ(x , y , z)
XY = {T ( x , y , z)

M ,T (x−1, y , z)
M ,T ( x−1, y−1, z)

M ,T (x , y−1, z)
M } (II.4.1-2)

Θ(x , y , z)
XZ  and  Θ(x , y , z)

YZ  the sets for vertical cross sections

Θ(x , y , z)
XZ = {T ( x , y , z)

M ,T (x−1, y , z)
M ,T ( x−1, y , z−1)

M ,T ( x , y , z−1)
M } (II.4.1-3)

Θ(x , y , z)
YZ = {T ( x , y , z)

M ,T (x , y−1, z)
M ,T ( x , y−1, z−1)

M ,T ( x , y , z−1)
M } (II.4.1-4)

and Θ(x , y , z)
3D  the set for the full grid cell

Θ(x , y , z)
(3D) = {Θ( x , y , z)

XY ,Θ( x , y , z−1)
XY } . (II.4.1-5)

The  lower  bound Θ of  signed  deviations  at  grid  index  (x,y,z)  can  now  be  estimated  by  the

minimum value of the relevant set Θ(x , y , z) . The upper bound Θ is approximated by the maximum

value of the set.

Θ≈ min(Θ( x , y , z)) (II.4.1-6)

Θ≈ max(Θ( x , y , z)) (II.4.1-7)

The likelihood that this cell is constrained by the arrival-time difference is then given by 

p( x , y , z)(Θ≤T≤Θ)= ∫
Θ

Θ

pdf (T )dT= ∑
τ=0

⌊(Θ−Θ)/δ t⌋

pmf (Θ+τ⋅δ t ) , (II.4.1-8)

with δ t  being the sample length. As this evaluation has to be performed at every grid cell for each

constraint,  the summation of likelihoods over the given interval would become computationally
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expensive.  This  can  be  avoided  deriving  the  local  constraint  likelihood  from  a  cumulative

distribution function P  instead, which is defined as

P (X )= ∫
−∞

X

p (x)dx= p( x≤X ) (II.4.1-9)

Fig. II.4.1:3: Cumulative distribution function

The likelihood over a given interval is then obtained via the difference of P  at upper and lower

bound

p(a≤x≤b)= ∫
a

b

p (x)dx= P (b)−P (a) , (II.4.1-10)

replacing the summation in eq. II.4.1-8 by 

p( x , y , z)(Θ≤T≤Θ)=P (Θ)−PΘ . (II.4.1-11)
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The cumulative likelihood function has to be calculated and stored only once per constraint, making

this formulation favorable for realtime calculation as it eases computation cost, but as the likelihood

of constraint fulfillment is evaluated over the spatial extent of a grid cell, it causes the undesirable

behavior that areas of true equal likelihood show different apparent likelihoods (fig. II.4.1:4). This

is due to the discretization of space: Where the constraint in its uncertainty passes through one

single grid cell, the likelihood is at its maximum. Where in larger distances the constraint surface

widens  and  runs  over  several  cells,  the  likelihood  per  cell  drops  below that  value.  This  area

dependent likelihood is misleading as points with constant constraint deviation should obtain the

same weight e.g. the maximum for points with zero deviation at the constraint's center. This would

be the case if infinitesimal small grid cells could be used. To compensate this effect that is caused

by numerical discretization, the maximum value that could occur in one imaginary infinitesimal

cells is ascribed to the grid cell in whole. Instead of eq. II.4.1-11 the following formulation will be

used to evaluate the likelihood of the constraint at each grid cell:

p( x , y , z)(Θ≤T≤Θ)≡ pmf (Θm) (II.4.1-12)

with

Θm=arg max
Θ≤Θ≤Θ

pmf (Θ) . (II.4.1-13)

Figure  (II.4.1:4)  shows the  effect  of  integrated  likelihoods  vs.  the  use  of  the  maximum value

occurring within a grid cell. While integrated likelihoods lead to pseudo solutions, the maximum

value approach correctly represents the likelihood distribution.
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Fig. II.4.1:4:  Probabilistic representations. a) Likelihood that a constraint will lie in a certain grid cell, obtained by
integration of likelihoods over the grid cell interval. Where a constraint's width is comparable to the grid cell size,
the likelihood may integrate up to the maximum value of one. This value is not reached in places where the growing
constraint is much larger than the grid cells. This effect of grid discretization causes pseudo-solutions as constraints
“fade out” with distance. b) Using the maximum value occurring in a grid cell as representative likelihood corrects
for this discretization, displaying the likelihood resolution independent.

This grid-cell-based concept avoids the problems that surfaced in the example of the mis-located

hypocenter of fig. II.4:1 at the beginning of the chapter: Fig. II.4.1:5 shows the congruent region in

correspondence to the minimum residuum of fig. II.4:1 for different zoom levels and varying grid

resolutions. The congruent region, spanned out by P-phase-based hyperbolic constraints, confirms

the (neglected) solution of the residuum based approach. The extensive secondary solution that was

identified as hypocenter by the grid-point approach, turns out to exceed the assigned uncertainties

(the  constraints  do  not  overlap)  and  is  therefore  naturally  neglected.  The  identification  of  the

compact hypocenter solution is independent of the grid resolution: Even with extremely low grid

resolutions the hypocenter is (with lower precision) accurately located. 
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Fig.  II.4.1:5:  Constraint  based  solution  corresponding  to  the  example  of  fig.  II.4:1.  Panel  a)  shows  the
congruent region formed by the hyperbolic P-P constraints, corresponding with the minimal residuum of fig.
II.4:1a). b) Zooming out, it becomes obvious that the secondary solution of low residuum (dashed region) does
not lie within uncertainty bounds (the constraints do not overlap in this region) and is therefore naturally
neglected. Using the grid  cell based approach, even lowering the grid resolution correctly reproduces the
solution (c) and even for extremely poor resolved grids the solution is successfully identified. 

Where the grid-point based evaluation of residua sums missed the compact primary minimum, the

grid-cell  based constraint evaluation identifies even most compact location regions with low grid

resolutions. This provides internal solution completeness and allows in the following to apply a

variable grid resolution to comply with the second aspect of completeness: A large grid extent to

identify possible ambiguities in larger distance.
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II.4.2 Travel-Time Grids and Grid Organization

Direct  search grids  are  often initialized with a  constant  grid cell  size  and subsequently locally

refined around found minima (e.g. see the Oct-tree scheme). This serves to identify all local minima

that  could  not  be  found  using  the  initial  grid  point  spacing,  eventually  identifying  the  global

solution. Such an approach is, however, not favorable for a real-time constraint-based analysis (e.g.

location algorithms in earthquake early warning systems or interactive visualization),  especially

when complex velocity models are used. Looking at the organization and the computation of the

direct search grid tells us why:

If we can disregard a) uncertainties and constraint congruity, b) a probabilistic analysis, c) complex

velocity models, d) three dimensional station distributions and e) the use of vertical cross sections

of the solution space, constraints can be computed extremely fast using semi-analytical approaches

(Eisermann, 2008). For each of item a-e), the iterative semi-analytical approaches either lack the

capability or lack robustness, which reflects in a significantly increased computation time. If any of

item a-e) are required, a real-time computation and analysis of constraints can only be achieved by

evaluation on multidimensional grids, either in full or at given cross sections (eg. xy, xz, yz), using

a  simple,  fast  and  robust  direct  search.  The  direct  search  utilizes  two  groups  of  three-space-

dimensional  grids,  each  holding additional  dimensions  for  the  various  information:  One group

contains grids holding  the results of the constraint evaluation (i.e. the “mapped” constraints). Every

calculation during the analysis is performed on such. They consist of three spatial dimensions and

one additional dimension for each constraint type to allow a separate representation and evaluation

of the independent constrain groups and supplementary residua sum attractors. The computation of

velocity-model-dependent  constraints  is  based  on  the  travel  times  of  all  phases  between

corresponding stations and all grid points. These travel times can be calculated prior analysis and

stored in cache matrices, guarantying realtime applicability independent of the complexity of used

velocity models. These travel-time grids make up the second group of grids. The grid's dimension is

determined by the three spatial dimensions and twice the amount of evaluated phases, as minimal

and  maximal  possible  arrival  times  are  required.  Since  the  analysis  requires  the  travel-times

between any given coordinate and all n stations, n of such grids exist. 

The travel-time of the analyzed phases is one of the fundamental quantities in the location inversion

problem. Its calculation is a forward problem and can be performed using analytical, raytracing or
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waveform solving schemes, depending on the model's complexity. While analytical solutions can

only be obtained for simple models as the homogenous space, they allow most precise estimates, in

travel time and amplitude. Ray tracers allow a fast computation of travel times but fail for estimates

of  signal  energy  or  amplitude  as  only  a  thin  ray  bundle  (“banana  model”  of  high  frequency

approximation) within the wave field is evaluated (Dahlen et al., 2000). The amplitude relations of

diffracted waves are highly complex and for refracted waves only solved for special cases (Berry et

al.,  2013).  For  heterogeneous (3D)  models  wavefront  solvers  are  used  (Podvin  and Lecompte,

1991), which leave hardly restrictions for the velocity field but suffer in precision (and often require

soft velocity transitions). In this work, all are utilized, depending on the model requirements. The

travel  time  calculation  in  parallel  and  dipping  layer  models  is  performed  using  raytracing

algorithms described in detail in Eisermann (2008). Per default, picks are interpreted as first arrivals

of a given wave type, having travelled on the fastest path. In heterogeneous models this requires the

computation of direct and refracted wave paths. Reflected paths are neglected, as they cannot yield

first arrivals, being always slower than either the direct or refracted path. While the refracted path's

travel-time can be found analytically for parallel  layer models, the travel time pertaining to the

direct path between two points is an iterative process (since the ray's starting angle is unknown).

Hence, the calculation of the fastest travel time between two points may require many iterations and

would  create  a  high  computational  effort  for  the  calculation  at  every  single  grid  point.  This

calculation, however, can be sped up since the continuous travel time curve can be computed very

efficiently for parallel (1D) layer models: For the first point corresponding to a vanishing epicentral

distance, the ray's starting angle is zero (pointing vertically downwards from the station). The travel

time for this point can therefore be obtained in a single iteration. Also, all following travel times for

growing epicentral distances can usually be computed in a single iteration: The starting angle for

the next ray is hereby slightly increased based on linear extrapolations from travel times of previous

epicentral distances. This allows a sampling of the travel time curve with a nearly constant step size

in epicentral distance. The computational cost concerning the complete travel time curve until the

maximal epicentral distance occurring in the grid, is minimal: It is comparable to the effort of a

single travel time calculation between two random points. After the travel time curve for a certain

depth is computed, it is interpolated onto the grid points according to the epicentral distance of each

grid point to the station. This is done for all depths over the grid. Travel time grids for parallel

models are computed within fractions of seconds. For dipping layer models, additional ray leveling

algorithms have to be applied, which increase the computational cost (Eisermann, 2008) and the
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time needed for travel time caching. For fully heterogeneous models the finite-difference code of

Podvin and Lecompte (1991) (also used in NonLinLoc (Lomax et al., 2000)) was ported, which

allows an extremely fast  travel time computation in high contrast  models with sharp first-order

velocity contrasts (up to a ratio of 1:10). The scheme yields first arrival's travel times, taking into

account all propagation modes as diffracted and refracted (head) waves. The scheme is based on

solving the Eikonal equation 

(∇ t )2 = s2 (II.4.2-1)

(with  s ( x )  being  the  slowness  and  t ( x )  the  arrival  time  at  location  x ),  by  systematically

applying Huygen's principle in treating neighboring grid points as secondary sources, approximated

by stencils of multiple propagating local plane wavefronts. This scheme provides fast and robust

results for high contrast slowness fields, given that the grid resolution is sufficiently high (Nyquist)

and the analyzed wavelength sufficiently small (ray approximation). The computation of a travel

time grid is computed within seconds. However, to derive a Monte-Carlo estimation of the model

dependent travel-time uncertainties, it requires thousands of rendering processes. With every change

of  the  spacial  analysis  window  or  of  velocity  model  attributes,  cache  matrices  have  to  be

recomputed. For this reason, dynamically refined grids are problematic in real-time applications,

especially when complex models are used. Exempt of the need of re-rendering are attribute changes

concerning phases with dependent  travel-times,  e.g.  varying S-velocities when they are derived

from the P-velocities over S/P-ratios (if the ratio is globally valid over the whole model). In these

cases  no  recalculation  is  required  as  the  travel  time  of  one  phase  is  simply  a  function  of  the

unaltered phase travel time tt x , y , z
P

tt x , y , z
S =tt x , y , z

S (tt x , y , z
P ) ; (II.4.2-2)

In this case applies

tt x , y , z
S =γ⋅tt x , y , z

P with γ=
v s

v p

. (II.4.2-3)

In such cases the model modification can be treated within the real time calculation of constraints,
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allowing a modification of the phase's velocity model in real time. This is often used to evaluate the

correlation between S-P and P-P information when no detailed S-model is given. 

As changes in the grid geometry require the re-rendering of all travel-times (multiple times for

model uncertainties), a static (i.e. not changing) grid resolution is favorable for real-time schemes,

given  that  it  allows  to  yield  complete  solutions.  The  previous  chapter  showed  that  internal

completeness can be achieved by integrating likelihoods over the grid cell's travel-time-difference

interval. Having guaranteed completeness for the lower end of the scale (“overcoming the problem

of lower limits for the grid cell size”), it remains to fulfill the demand for complete solutions (i.e.

identifying all possible hypocenter locations) also on the upper end of the scale (i.e. overcoming the

problem of upper limits for the grid extent). Both increase the total amount of grid cells which is

limited by memory and computation power. A common phenomenon that appears, when only a

small number of stations is given, is an ambiguous solution (Chapter III.2); One of the solutions is

usually found within the network, while the other is often located further outside. For this reason,

automatic schemes often misinterpret teleseismic events as local events (or vice versa), as arrival

time differences and amplitude ratios are comparable for both. This aspect is of special importance

for fully-automated Earthquake Early Warning systems, which base their location estimates on few

stations only. Disregarding either of the ambiguous solutions would be problematic: An incorrectly

chosen  near-by  solution  underestimates  magnitudes  and  may  lead  to  missed  alarms,  while  an

incorrectly chosen distant solution overestimates magnitudes and may in turn cause a false alarm,

beside  the  fact  that  predicted  arrival-times  for  strong  shaking  are  misestimated  for  both.  For

automated schemes it is therefore important to have grids covering extensive areas. As the spatial

constraints  grow with  distance  (“in  width”),  the  grid  resolution  may be  reduced with  distance

without causing the precision to be significantly decreased, allowing to expand the grid's extent

without additional computational cost. As the grid is often analyzed on orthogonal cross-sections

(e.g. solutions may be searched in certain bands of hypocentral depth), the grid cell position (and

consequently size) is not set in relation to the cartesian- but a component wise distance from the

network center (“distance per axis”) (fig. II.4.2:1). 
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A general form for the mapping of coordinates P  to grid points with index I  can be written as

P i( I i)=C i + F (2⋅I i/ni−1)⋅Δi , (II.4.2-4)

with C  being the coordinate at grid center, ni  being the number of grid cells per coordinate axis i

and Δ i  the quarter grid size length on axis i . The mapping function F  determines the spacing

between grid points. The scaling, individual for each coordinate axis, assures planar cross sections

corresponding to the analyzed axes. Regular Grids are described by F  being the identity function.

Here, F  will be formulated to yield a linear behavior close to the interval center and to follow a

power function towards the boundaries with

F (γ)={ 2γ , γ<0.5

2γ+[2⋅(2γ−1)]3 , else
. (II.4.2-5)

This choice of F  provides an inner window corresponding to a regular grid, but yields a five times
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Fig. II.4.2:1: Grid of variable resolution. Constant resolution in vicinity of the network
(blue  cells).  Reduced  resolution  outside  with  varying  grid  cell  size.  Vertical  cross
sections (bold black lines) hold the same third coordinate like regular grids.
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larger grid extent than regular grids through the peripheral interval, to allow the identification of

distant secondary solutions (fig.II.4.2:2). 

Fig. II.4.2:2: Stretched Grid. Left) Regular grid of constant resolution. Secondary solutions lie often outside of the
analysis  window.  Right)  Central  region  of  constant  resolution,  outer  region  with  grid  point  coordinates  being
assigned by a power function. Grid point A (GPA) still lies in the linear regime, while GPB lies in the non-linear
extension zone. This functions as a wide angle mirror increasing the field of view: Secondary solutions are identified.

Fig.  II.4.2:3: De-skewed visualization of fig.  II.4.2:2 showing
the   increase in grid cell size with distance from the detecting
stations.
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The different modes for central and peripheral intervals cause e.g the first 15km of depth to be

analyzed in high resolution, decreasing from there until e.g. 100km depth at the grid's boundary. In

this manner, computational resources are assigned to where they are needed: Local solutions are

precisely analyzed using a high resolution, while distant- or solutions in depth that are less compact

are evaluated less detailed, keeping the relative error of estimates comparable over the whole grid

extent. The mapping of coordinates to grid points occurs at the time of travel time computation

during the grid initialization and does therefore not affect the real time analysis through additional

computational  cost.  The  use  of  a  variable  grid  spacing  allows  to  cover  a  larger  region  with

comparable  computational  effort  and supports  the aspect  of  solution  completeness on the large

scale. After having derived a direct search scheme that allows to identify all solutions of interest, the

following chapter will lay out the formal description of all constraint classes in this variable sized

grid-cell based direct search evaluation.

II.4.3 Fundamental Constraints in a Grid Formulation

Previous chapters served do derive the general formulation of the different constraints and their

uncertainties,  both  in  picking and in  model.  This  chapter  serves  as  library,  listing  the  detailed

equations for the evaluation of constraints, adapted to the evaluation on grids in a direct search

scheme. For the interactive analysis, constraint types are composited and plotted in certain color

channels, which allows to comprehend the individual impact of the different constraint types e.g P-

P, S-P, P-P-P separately on the global solution. Each color intensifies near the solution, showing the

internal agreement of each constraint type. Where all constraint groups are in agreement, the basic

colors add up to white, marking the solution by a bright shine. v xyz  is the value for the constraint

channel at grid cell  (x , y , z) .  cc  stands for the total number of constraints per channel while

nc(A−B)  identifies the total number of constraints of type (A-B). Θ(x , y , z)  and Θ(x , y , z)  are lower and

upper bound of the modeled constraint parameter (i.e. travel-time difference) of all grid points of

grid cell (x , y , z) , including the effects of model uncertainty. The modeled constraint parameter at

grid point (x , y , z)  is given by 

Θxyz=tt xyz
B −tt xyz

A (II.4.3-1)
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while the observed constraint parameter based on onset times is defined as

T (B−A)=t B−t A . (II.4.3-2)

For S-P constraints,  T (B−A)  becomes  T (S ,i−P ,i) , with  i  being the station index. The number of

constraints nc(S−P)  equals the number of stations with detected P- and S phase. The same pattern

applies for all evaluated phase differences at  a single station,  e.g. the difference between direct

phase and refracted phase T (P ,i−P ref , i) . For hyperbolic constraints, T (B−A)  becomes T (P ,i−P , j)  for P-

phase based - or T (S ,i−S , j)  for S-phase based hyperbolic constraints, respectively, with i≠ j  being

obtained by permutation of stations into groups of two. The total number of hyperbolic constraints

is given by

nc(P ,1−P ,2)= 1
2
(n2−n) (II.4.3-3)

(accordingly for  nc(S ,1−S ,2) ) with n being the number of stations that detected the corresponding

phase. Constraints may be analyzed in either a probabilistic (p) or non-probabilistic (n) manner. In

both cases they might be evaluated either solely using picking uncertainty (P) or additionally model

uncertainty (PM). The general formulation for constraints based on the time difference between

different phases/stations is listed in the following.
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Constraints using picking uncertainty (P)

-Non-probabilistic-

The standard comparative form which is valid only for infinitesimal small grid cells

(P-n) v xyz
(A−B)= 1

cc(A−B) ∑
i=0

nc(A−B)

Ι ( [ tt xyz
B −tt xyz

A ]−[ tB−t A] , δ t A+δ tB) (II.4.3-4)

with

(P-n) Ι(v ,δ v)={1, v<∣δ v∣
0, else

(II.4.3-5)

becomes 

(P-n) v xyz
(A−B)= 1

cc(A−B) ∑
i=0

nc(A−B)

Ι ( Θxyz , Θxyz , T (B−A) , δ t A+δ tB ) (II.4.3-6)

with

(P-n) Ι(m , m ,v ,δ v)={1, [m ,m]∩[v−δ v ,v+δ v ]≠{}
0, else

(II.4.3-7)

using a grid cell size independent interval formulation.

-Probabilistic-

Discrete grid-cell size dependent form:

(P-p) v xyz
(A−B)= 1

cc(A−B) ∑
i=0

nc(A−B)

PO(A−B)(Θxyz)−PO (A−B)(Θxyz) , (II.4.3-8)

where PO(A−B)  is the cumulative (eq. II.4.1-11) of the constraint likelihood distribution p  obtained

from the cross-correlation of both phases' LOC functions. 

Grid-cell  size corrected form:

(P-p) v xyz
(A−B)= 1

cc(A−B) ∑
i=0

nc(A−B)

p ( arg max
Θxyz≤Θxyz≤Θxyz

p (Θxyz) ) (II.4.3-9)
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Constraints using picking and model uncertainty (PM)

-Non-probabilistic-

(PM-n) v xyz
(A−B)= 1

cc(A−B) ∑
i=0

nc(A−B)

Ι ( Θxyz , Θxyz , T (B−A) , T (B−A) ) (II.4.3-10)

with

(PM-n) Ι(m , m ,v , v)={1, [m , m]∩[v , v ]≠{}
0, else

(II.4.3-11)

The congruent region obtained from truncated residua (according to eq. II.3.2-5) becomes 

(PM-n) R̄i
P =Λ(∣ti

P−t i , xyz
P , M∣−δ t P−max (tt xyz

P −tt xyz
P , tt xyz

P −tt xyz
P )) , (II.4.3-12)

with Λ being the ramp function (eq. II.3.2-6).

-Probabilistic- (PM-p)

(PM-p) v xyz
(A−B)= 1

cc(A−B) ∑
i=0

nc(A−B)

P̄ M (A−B)⋅P̄O(A−B) (II.4.3-13)

with

(PM-p) P̄O(A−B)= p A∗pB (II.4.3-14)

and P̄ M (A−B)  being calculated according to eq. (II.3.5.1-25)

(PM-p) P̄ M (A−B)-| pM (T , ttmin
A , ttmax

A , ttmin
B , ttmax

B ) (II.4.3-15)

P̄ M (A−B)  and  P̄O(A−B)  are  vectors  containing  the  values  derived  from  the  discrete  likelihood

distributions  pA ,  pB  and  pM  (fig.  II.3.5.1:4).  Both  vectors  are  defined  over  the  parameter

interval  [T min ,T max ]  according to eq.  (II.3.5.1-17) and  (II.3.5.1-18).  Using the same resolution,

they consequently contain the same number of elements ne . The grid cell volume corrected form

uses

185



II Distinct Constraints II.4.3 Fundamental Constraints in a Grid Formulation

(PM-p) v xyz
(A−B)= 1

cc(A−B) ∑
i=0

nc(A−B)

P̄ M (A−B) ,C⋅P̄O(A−B) ,C (II.4.3-16)

with 

C = arg max
cϵ[1,ne]

P̄ M (A−B) , c⋅P̄O(A−B) ,c
(II.4.3-17)

Instead. Here, C  and c  denote column number C  resp. c  of the probability vectors (i.e. the 

vector's cth component).

Back azimuth Beam

The  back  azimuth  obtained  by  small  aperture  arrays  of  particle  motion  is  velocity  model

independent. Contrary to other constraints, in it's basic form it therefore does not rely on computed

travel times but is determined purely geometrically

-Non-probabilistic- (n)

(n) v xyz
Beam= 1

cc
∑
i=0

n(sP)

{1, B≤1
0, else

(II.4.3-18)

with 

(n) B= 1
ΔΦ

cos−1 ( x
y)⋅n̂B

(II.4.3-19)

Here,  n̂ B  describes the back azimuth unit vector and  ΔΦ  the angular uncertainty or maximum

expected  discrepancy being half  the  beam opening  angle.  Further,  ΔΦ  may  be  a  function  of

epicentral distance and array geometry as described in chapter III.1.1.

-Probabilistic- (p)

(p) v xyz
Beam= 1

cc
∑
i=0

n(sP)

{1−B , B≤1
0, else

(II.4.3-20)
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This chapter concludes the formal derivation and description of constraints. Over the last chapters

we have  mapped  picking  and  model  uncertainty  intervals  to  spatial  constraints,  advancing  the

accuracy of hypocenter estimates in uncertain environments: Congruent regions provide maximum

bounds for the hypocenter region, and a probabilistic analysis  provides the corresponding most

likely location. A multi-pick analysis was introduced to provide robust estimates when ambiguous

phase onsets exist, to increase accuracy where mis-picks are expected. Evaluating constraints over

grid-cells of varying size allows to identify sharpest locations independent of the grid resolution,

near by and in far distance. In the following chapter we will build on these qualities to understand

the constraint characteristics, identifying their advantages and disadvantages, and how they can be

combined  to  obtain  optimal  hypocenter  estimates.  This  will  lead  us  to  the  important  topic  of

ambiguous locations, which we may face if we attempt to locate with few stations based on P-phase

arrivals. We will  tackle the question, why they happen and if we can predict where the second

solution may be found.
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III Constraint Precision and Location Ambiguity

Given the different constraint types and a way to map their uncertainties, one can analyze their

ability  to  constrain  hypocenter  regions.  Mapping  the  precision  is  one  way  to  visualize  the

advantages and disadvantages of each constraint type or their combinations. It further serves as

means to design networks yielding precise locations in the area of focus, respecting the type of

analyzed  data  expected  to  become  available.  The  precision  depends  strongly  on  the  network

geometry and the amount of given stations. When the number of stations decreases to a critical

limit,  solution ambiguities arise. It  is  of fundamental  importance to understand why,  when and

where they arise to yield a correct location and event interpretation. In the following two chapters

these points will be outlined. 

III.1 Constraint Precision

“Accuracy” and “precision” are closely linked terms that describe the quality of our results. While

“accuracy”  describes the degree of  the result's  truthfulness  (“the  true value  is  contained in  the

estimated interval”), “precision” pertains to the related uncertainties, the result's vagueness (“the

size of the interval”). An accurate result with low precision may be meaningless; An inaccurate

result  of  highest  precision  renders  the  precision  spurious  and  the  result  misleading.  This  will

generally be the case if we ascribe a higher precision to the input parameters (e.g. picking and

model)  than they truly hold,  yielding inaccurate results.  Just  as accurate  results (e.g.  locations)

depend on accurate assumptions (e.g. picks, models), so does the result's precision depend on the

precision of the input parameters - but further on the methodology's ability to constrain a given

location.  As different  constraint  classes usually  yield high  precisions in  different  regimes,  their

combination is useful to stabilize the location quality over extended regions. The precision mapping

hence also provides us with more than just an estimate of the preciseness of location that may be

expected in certain regions and depths (making it an useful tool for network layout planning) but

also allows us to visualize and study the advantages and disadvantages of each constraint type (or

combinations of several types) concerning their ability to locate. The different constraint types vary

strongly in character: Class I constraints, like S-P (or P-Pref) constraints, hold the advantage that

their  spatial  resemblance  is  finite,  limiting  the  possible  hypocenter  region.  They vary  strongly

radially but little in distance. Class II constraints (as well as back-azimuth constraints) on the other
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hand resemble infinite bodies, wherefore it (usually) requires at least two constraints to obtain a

limited region. General exceptions are class II constraints based on parameter  ratios between two

stations (e.g. amplitude ratios), which yield non-concentric spheres around those stations. Back-

azimuth  constraints  are  additionally  fully  unconstrained  in  focal  depth,  as  the  information  of

incidence  angle  is  often  neglected.  To  understand how precise  the  various  constraints  actually

constrain the location inside or outside the network or in depth, we will map their precision for a

simple network geometry. 

This is achieved by quantifying the feasible region (which describes the set of possible locations,

chapter II.3.2) given by the intersection of all used constraints, for all possible hypocenter locations

of interest. Since the input parameters are treated to behave ideally (i.e. we do not need to deal with

mis-picks), this region will be defined by a congruency of one ( c=1 ). To evaluate the precision at

any location, we will use the travel-times to all stations to generate a set of (ideal, non-perturbed)

synthetic arrival times, based on which we will construct the constraints. The estimate is therefore

void  of  errors  due  to  inaccurate  picking  or  models.  Using  expected  values  for  the  picking

uncertainty,  the  location  uncertainty  can  be  assessed  by  quantifying  the  feasible  region.  The

mapping over the whole grid is performed by repeating this scheme at many grid points. Using a

spatial interpolation, the final map is generated for several depths, stretching over the region of

interest. 

The feasible region could be described by it's  volume, but it  is more meaningful to quantify it

separately,  for  epicentral  spread  and  vertical  extent.  Straightforward  measures  to  describe  the

epicentral spread would be given in its area (a) or the distance between the furthest feasible location

and the evaluated epicenter location (b). However, the area (a) does not give information about the

shape (i.e. the distribution of solutions around the true location) and the maximum distance (b)

gives no information about the surface. In the following, we will therefore use the moment of area

(mA) with reference point at the evaluated location, as it quantifies the distribution of the epicentral

surface. The moment mA weighs each surface element by its distance to a given axis. In this case the

axis will be chosen to lie vertically, perpendicular to the plane of analysis, located at the point of the

epicenter. It will therefore weigh each surface element dA  according to it's distance d  to the true

epicenter

mA=∫
A

d⋅dA (III.1-1)
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and describe the distribution of the epicentral  surface.  Epicentral  surfaces with large maximum

distances  but  small  area  (e.g.  elongated  ellipses)  are  weighed  similar  to  surfaces  of  smaller

maximum distance but of larger area (e.g. circle). For comparability the correlation between mA,

radius and area of a circular surface is given in the following (table III.1.1, fig. III.1:1).

Radius (km) Area (km2 ) MoA (km3)

0.001 π⋅10−6 2.094⋅10−9

0.01 π⋅10−4 2.094⋅10−6

0.1 π⋅10−2 2.094⋅10−3

1 π⋅100 2.094⋅100

10 π⋅102 2.094⋅103

100 π⋅104 2.094⋅106

Table III.1.1: Correlation between mA and the surface of a circular surface of a given radius.

Fig. III.1:1: Correlation between mA and the surface of a circular surface of a given radius.

To evaluate a network's precision in locating events, several combinations of individual constraint

types  have  to  be  considered,  as  different  phase  types  and information might  become available

during the analysis. In single station networks, classic multilateration (SA-PA) is applied as well as

hyperbolic  location (PB-PA),  as  well  as both in  combination.  At a  small  aperture array,  (SA-PA)

distance information is coupled with the array back azimuth beam estimate. In small aperture array

networks also the beam individually finds application when the S-phase is not identifiable or does

not exist. When small-aperture arrays are not available, at times the less precise three-component
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single-station back-azimuth estimate is used (chapter IV.1). This one shows the same characteristics

as P-P-P estimates, however, generally less precise (holding a typical beam-opening angle of 20°-

30°). In the following, we will look at precision maps for the following six constraint groups (fig.

III.1:2): 

A) P-P-P beams,

B) S-P,

C) P-P,

D) S-P and P-P combined,

E) S-P and P-P-P beams combined,

and all constraints combined:

F) S-P, P-P and P-P-P beams.

Fig.  III.1:2: Cross section display of  the constraints of groups A-F. The surface projection of the three-
dimensional feasible region, which is used to quantify the precision, is superposed in blue.  The feasible
regions appear larger than the constraint intersection in the cross sections, as the intersection extends over a
range of depths.
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The precision map is generated by simulating epicenters at every location of the map. For each

epicenter the phase arrival times are computed for all stations as input data for the subsequent

computation of the feasible region as constrained by each group of fig. III.1:2. The region's moment

of area is used to quantify the precision in the map. The color scale used in fig. III.1:3 - III.1:8 spans

over the full precision range observed among the constraint groups for the given network geometry.

The  individual  group's  range  is  indicated  by  white  triangles  in  each figure.  The  used  network

example  (see  fig.  III.1:3)  is  taken  from  a  Nanoseismic  Monitoring  campaign  at  Mont  Terri,

Switzerland, using a  small  network consisting of  four  SNS small  aperture arrays.  The network

extends  over  an  area  of  roughly  6km  times  1.5km,  being  strongly  elongated.  The  region  of

surveillance reaches down to a depth of -4km. Precision maps are generated for sources in depths of

0km, -1km, -2km, -3km and -4km. The local velocity in the top four kilometers averages around

4.5km/s. The onset detection uncertainty is chosen as 0.0125s for P onsets and 0.025s for S onsets.

The time differences in P-P-P beams are obtained using cross-correlation of the waveforms at the

three  stations.  The  beam uncertainty  (opening  angle)  is  dependent  on  the  array  geometry  and

strongly affected by the plain waveform assumption in the vicinity of the array. For simplicity, here

the opening angle is set to 10° which is valid for hypocentral distances larger then three aperture

lengths. The detailed analysis of array beam precision follows in chapter III.1.1. For the simulated

event location it is assumed that all stations detect the event. Although weak signals may in practice

not be detected at distant stations, the result should be comparable nonetheless since the constraints'

“width” grows with distance: Given a certain constraint type, more distant stations may stabilize the

location but will hardly increase the precision. 

The constraint groups' precision is displayed in the following six figures.
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(A) Precision of P-P-P beams

Fig.  III.1:3 shows, that back-azimuth beams yield a high precision inside the network.  Outside,

especially along the major axis of the network, the epicentral area grows rapidly, leaving the region

quickly unconstrained. 

P-P-P Beam precision

Fig. III.1:3: A) P-P-P Beam precision. Triangles mark the four SNS
locations, each consisting of central station and a surrounding small
aperture tripartite array. The closer the epicenter location to a pair
of  arrays,  the  higher  the  precision.  The  color  scale  holds  the  full
precision range observed in fig.  III.1:3 -  III.1:8, the white triangles
mark the range observed in the individual figure.

We find that the closer two stations are, the higher is the location precision in the area between

them. The precision pattern depends on the network geometry and on the goodness of the back-

azimuth estimates (“beam opening angle”). Contrary to array estimates, particle-motion estimates

do not rely on a plain-wave assumption and are therefore applicable even in the immediate near-

field. Particle-motion estimates are, however, of less precise. Back-azimuth information is stable

against variations in the velocity model, given it is laterally homogeneous. If the velocity structure

is  known, the incident  angle may be used to  constrain the depth.  Otherwise the depth remains

unconstrained.

(B-D) Precision of  S-P and P-P constraints

Location based on S-P spheres yields the highest precision close to the stations for near surface

sources (fig. III.1:4). In that case the sources are approximately in one plane with the stations, and

the sphere of the closest station is compact, yielding a small epicentral surface around that station.

This local peak in precision, however,  appears only in large sparse networks or regions of low

seismic velocity. This is due to the fact that the S-phase can only be distinguished from the P-coda

and be picked after a certain travel time.
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Fig. III.1:4: B) S-P precision. Left – horizontal precision, Right: vertical precision Simulation depth ranging from first
to last row between 0km and 4km.

S-P precision
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The horizontal precision decreases quickly with depth, showing the highest precision towards the

network center:  The deeper the source,  the more it is located at  the bottom of the constraining

spheres where their horizontal overlap is the largest - but their vertical extent the smallest possible.

Contrary to the behavior of other constraints, this causes the vertical  precision to stabilize with

depth, at times even to increase (see fig III.1:6). This counter intuitive behavior is due to the fact

that contrary to other constraints, which grow wider with distance, the sphere shell's thickness is

independent of the sphere radius (when disregarding velocity model  uncertainties).  The highest

precision is again found at the network center. While beam and hyperbolic constraints show an

extreme decrease in horizontal precision close to the stations leaving the network (in elongated

networks at the stations lying on the major axis), the precision of S-P constraints only decreases

slowly. Yet as the picking uncertainty for S-onsets is higher than for P-onsets, hyperbolic location

generally yields a higher horizontal precision inside the network (fig. III.1:5). 

Hyperbolic  location  shows  the  highest  horizontal  precision  at  the  network  center.  The  vertical

precision quickly decreases with depth while the horizontal precision does so only slowly, contrary

to the behavior of S-P constraints. Combination of S-P and P-P constraints combines the strengths

of both methods and increases vertical and horizontal precision and stabilizes the location at the

network edges (fig III.1:6). Outside the network the congruent zones of S-P spheres form a sliver,

well constraining the distance, yet only poorly the azimuth. The P-P hyperboloids on the contrary

form a beam-like congruent zone that constrains the azimuth but not the distance. Combination of

both  constraints  merges  complementary  information  and  is  therefore  of  special  importance  for

locating sources outside the network, leading over to the field of seismic arrays.
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Fig. III.1:5: C) P-P precision. Left – horizontal precision, Right: vertical precision Simulation depth ranging from
first to last row between 0km and 4km.
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Fig. III.1:6: D) S-P and P-P precision. Left – horizontal precision, Right: vertical precision Simulation depth ranging
from first to last row between 0km and 4km.

S-P and P-P precision
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E) Precision of S-P and P-P-P beam constraints, combined

Similarly  advantageous  to  combining  S-P  and  P-P  constraints  outside  the  network,  is  the

combination of S-P and back-azimuth constraints, as obtained from seismic arrays (fig.  III.1:7).

Around the network-edge, P-P constraints may offer a slightly higher precision than back-azimuth

beams, but the latter is less affected by velocity model errors, which adds robustness to the estimate.

Additionally,  this  combination  benefits  of  the  high  horizontal  precision  of  the  back-azimuth

constraints and reduces the vertical uncertainty of the pure S-P constraint by 50%, despite the fact

that P-P-P constraints by themselves not even constrain the depth. 

In larger distance, P-P constraints again gain importance, since errors in the assumption of lateral

homogeneity introduce azimuthal errors, which the travel-time dependent P-P constraint are less

prone to.

F) Precision of S-P, P-P and P-P-P beam constraints, combined

The highest precision is obviously obtained when all constraints (P-P, S-P and back-azimuth) are

available and the congruent region can be based on all constraint types combined (fig.  III.1:8). In

this case, the horizontal precision (mA) ranges between 2.8⋅10−5 km3 and 1.3⋅10−1 km3. This can be

compared to (circular) epicentral surfaces with areas ranging between  1.7⋅10−3 km2 and  0.5 km2

which  corresponds  to  maximal  epicentral  uncertainties  between  2.3⋅10−2 km  and  0.4 km,  i.e.

roughly 20 to 400 meters. The vertical extent of the hypocentral volume ranges up to 2.86 km. The

minimum value falls  below the  grid-spacing and can therefore  not  properly  be  identified.  The

applied grid resolution with a grid cell height of 200 m technically limits the possible resolution for

the lower estimate to 200m. All quoted precision values pertain to the situation of a perfectly known

velocity structure.
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Fig. III.1:7: E) S-P and P-P-P Beam precision. Left – horizontal precision, Right: vertical precision Simulation depth
ranging from first to last row between 0km and 4km.
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Fig. III.1:8: F) S-P and P-P and P-P-P Beam precision. Left – horizontal precision, Right: vertical precision.
Simulation depth ranging from first to last row between 0km and 4km.
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These precision maps were composed to display the methodological limitation to the precision that

can  be  achieved  by  application  of  the  various  constraints.  To  obtain  the  pure  methodological

limitation,  the  velocity  structure  was  treated  as  perfectly  known and  model  uncertainties  were

switched off. To obtain realistic precision estimates, model uncertainties need to be considered. As

this  network  example  is  compact,  such  uncertainties  would  have  predominantly  affected  the

estimates close to the network edge and outside the network. The back-azimuth precision estimate

was technically treated as obtained from single three-component-stations, since the back-azimuth

source was linked to one single coordinate.  The precision map of small-aperture array networks

will,  however, show a similar character (yet more precise), despite two major differences in the

approach: Small-aperture arrays consist of distributed stations analyzing plane wave fronts. This

means on the one hand, that back-azimuth estimates will suffer at close distances where the plain

wave assumption is violated. For sources in it's vicinity, on the other hand, the array takes over the

character of a network, being able to be analyzed using S-P and P-P constraints. The distinction

between array and network is solely given by the correlation radius of the signals (Bormann, 2012).

If  a  group of  sensors lies  within the  signal's  correlation radius it  is  called  'array',  otherwise  it

resembles a 'network'. Now, for intermediate source distances, the array may either be still used as

network or already as array providing back-azimuth information which is less dependent on the

velocity model assumptions than the P-P and S-P constraints used in a network analysis. For these

intermediate cases the precision and errors of back-azimuth estimates become of interest and shall

be analyzed in the following chapter.

201



III Constraint Precision and Location Ambiguity III.1.1 Precision of Tripartite Array Back-Azimuth Beams

III.1.1 Precision of Tripartite Array Back-Azimuth Beams

Seismic arrays  deliver  important  information as  slowness  and coherency measures and provide

source-azimuth information. The back azimuth beam constrains the location robustly as it is derived

independent of the velocity model for laterally homogeneous media, as the local velocity cancels

out of the equations. The equation for the back azimuth beam, which computes the direction of the

event's incoming signal, is derived assuming incoming plane wave fronts. 

This assumption is correct for distant sources (fig.  III.1.1:1), but is violated for shorter epicentral

distances.  The error  due to  the violation is  reported to  be less than 7.1 degrees for equilateral

tripartite  arrays  and  epicentral  distances  larger  than  the  arrays  inter  station  distance  (aperture)

(Bregman et al., NDC). This determines a practical back azimuth beam opening angle to roughly 15

degrees, given the absence of lateral inhomogeneities. For an equilateral triangle configuration the

estimate accuracy further increases with source depth. This is, however, not the case for all array

configurations given in the field as e.g. in the Jackknifing analysis of 4-station small-aperture-arrays

used in Nanoseismic Monitoring. These consist of a central station, surrounded by three (equally

spaced) satellite stations in an aperture of approx. 100m. Three stations are required to obtain a

back-azimuth (or slowness) estimate (eq. III.1.1-2). With 4 given stations, 4 three-station sub-arrays

can be formed,  each providing one back-azimuth  estimate that  can be analyzed in  Jackknifing

manner.  The sub-array that consists  of the three satellite stations has the shape of a equilateral

triangle.  The  other  three  of  the  four  evaluated  sub-arrays  are,  however,  increasingly  collinear,

describing isosceles triangles with an obtuse angle of 120°. For these, the depth behavior is very
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Fig.  III.1.1:1:  Tripartite  array
and  incoming  wave  front.
Plane wave assumption.
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different and the 15° opening angle rule is not valid. The solutions of the four sub-systems are

therefore not equally trustworthy, a fact that needs to be considered since Jackknifing reconstructs

the global solution based on the solutions of the sub-systems. Chapter  II.3.6 derived sub-solution

beam-opening angles for each  sub-system in dependance of  its  data  quality,  using a  sensitivity

analysis based on eq. III.1.1-2. This equation, however, relies on the plane-wavefront assumption,

which if violated, renders the result inaccurate. In the following, we will therefore analyze the error

arising from this violation, in intermediate distances, for various array geometries and focal depths,

to  obtain  estimates  for  the  minimal  distance  from which the  error  becomes  negligible  and the

estimate  reliable.  It  further  allows  us  to  provide  appropriate  uncertainty  terms  to  cover  the

associated error, if the back-azimuth estimate is used for shorter distances. The exact solution for

the array's back-azimuth vector (chapter II.1.2.3) was derived as

n̂=(γ2+1)−1/2(γ1 ) (III.1.1-1)

with

γ=−
r y⋅(t p−t q) + q y⋅(t r−t p) + p y⋅(tq−t r)
r x⋅(t p−t q) + qx⋅(t r−t p) + px⋅(t q−t r)

(III.1.1-2)

and p⃗ , q⃗ , r⃗  being the station locations, and t p , t q , t r  the corresponding onset times, which appear

only in differences and are obtained by cross-correlation of the given waveforms. As reference point

serves the geometrical center of the array

C⃗=1
3 ( px+qx+r x

p y+q y+r y
) . (III.1.1-3)

Due to the plain wave front assumption, the beam vector shows a angular variation in accuracy,

depending on the geometry of the distributed array stations. As the assumption only holds for far

distant sources, the accuracy suffers for sources near by - with well distributed array configurations

dominantly for shallow source depths. The associated error shall be mapped in the following.

Given a source location, we can compute all involved travel-times to provide the onset parameters

t p , tq , t r  for  eq.  (III.1.1-2) (setting  the  origin  time  to  t0=0 ).  This  allows  to  calculate  the
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corresponding  back-azimuth  vector  n̂  for  a  given  station  geometry  using  eq.  (III.1.1-1).  The

angular discrepancy between true back-azimuth ñ  and the tripartite array based back-azimuth n̂  is

given by

ϵ=cos−1 n̂⋅⃗n (III.1.1-4)

and is mapped in fig. III.1.1:2 for different array geometries and simulated hypocenter depths.

Fig. III.1.1:2: Angular precision of tripartite array geometries over depth [surface level, 1x aperture, 3x aperture].
Gray areas signify errors under 5 degrees, blue mark areas above 5 degrees and dark green areas signify errors
above 10 degrees. The first row corresponds to the largest sub-group configuration of a four-partite array. The last
row to the smallest sub-group, formed by the central station and two outer array stations.
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An equilateral  configuration  (fig.  III.1.1:2,  top  row)  generally  holds  the  highest  accuracy  with

maximum errors not exceeding 10°, the error decreasing with source-depth. The error is below 5°

for distances over three aperture lengths (fig. III.1.1:3) - and if the source lies below a depth of two

aperture  lengths  (which  is  usually  the  case),  the  error  does  not  exceed  2.5°,  independent  of

epicentral  distance.  For  this  case,  narrow  beam opening  angles  of  5°  suffice  to  constrain  the

possible epicenter location. For the general case (independent of depth) an opening angle of 10°

suffices for hypo-central distances above three aperture lengths. 

Fig.  III.1.1:3: Maximum error of equilateral tripartite array back-azimuth estimates. This graph pertains to the
array configuration of fig. III.1.1:2, top row and plots the highest observed discrepancy between true and calculated
back-azimuth values for events in different distances (i.e. for a given distance that discrepancy is chosen that is
highest amongst all azimuth directions). Highest discrepancies are given for sources lying on a circle around the
triangle centroid with a radius equal to one aperture (with the back-azimuth beam originating from the triangle's
geometrical center). To avoid large errors, the back-azimuth constraint should only be used for epicentral distances
above several apertures, where the plane-wave assumption is sufficiently valid. Instead, the beam could also be
convoluted  with  this  distance-dependent  discrepancy  curve,  yielding  a  beam  width  that  varies  with  distance,
computed for the given array geometry (i.e. the graph above would determine the minimum beam width (in degrees)
at a given distance). 

For an equilateral configuration, the three medians of the triangle (lines that run from each vertex

through the centroid of the triangle) form three high accuracy axes, for which the back-azimuth

estimate is always exact. For non-equilateral configurations the medians are asymptotes to the exact

regions, which distance themselves with depth (fig. III.1.1:2). The estimate error increases with the
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collinearity  of  the  layout,  yielding  errors  up  to  180°  in  the  vicinity  of  the  array  center.  With

increasing depth the error (usually) decreases, except for strongly collinear layouts (fig.  III.1.1:2,

bottom row). For such, the error even increases with depth, but the extent of the inaccurate region

converges with depth (fig. III.1.1:4). 

Fig.  III.1.1:4: Angular error of a tripartite array with center-array station configuration (fig.  III.1.1:2 bottom
row) for larger depths. The extent of the low accuracy zone (blue and green areas) is confined, not exceeding a
maximum distance of approx. 3.7 aperture lengths for the error>10° zone (green) and approx. 7.5 aperture lengths
for the error>5° zone (blue).

The error remains below 5° for sources with epicentral distances larger than approx. 7.5 aperture

lengths.  This  value  increases  with  collinearity.  Aperture  length  is  here  defined  as  the  longest

distance between the centroid and any station. At 3.5 lengths the maximum error reaches 10° and

40° at 1 aperture length. This has practical implications for the analysis of events in intermediate

distances (e.g. in hill-slope monitoring, locating (near-)surface events in distances of 1-10 aperture

lengths): With four-partite arrays being analyzed in a Jackknifing manner, significant weight should

be put on the back azimuth estimate given by the sub-array consisting of the three outer (satellite)

stations rather than on the three other estimates that include the central station, holding obtuse 120°

angles. 

The described errors reflect the inherent methodological accuracy. Chapter II.3.6 already provided

uncertainty measures to cover errors based on the signal quality  relying on eq.  (III.1.1-1).  The

accuracy analysis showed that the estimate of four-partite arrays can be trusted for distances larger

then approx. 20 aperture lengths. Here, the maximum error of eq.  (III.1.1-1) is less than 1°. For

shorter distances down to 7.5 aperture lengths, the estimate can be biased with an error of up to 5°

In this intermediate field, with distances lying between 7.5 and 20 aperture lengths, it is sufficient to

add 5° to the signal-based uncertainty for the beam opening angle to obtain accurate results. If the
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estimate, however, is used to locate closer events, the more complex distant-dependent uncertainty

curve, following fig. III.1.1:3, would need to be applied, shaping the back-azimuth with a non-linear

varying width.  Inhomogeneities in the velocity model, distort the wave front and display another

source of error for the back-azimuth estimate. Tilted layers for instance redirect the back azimuth

beam from it's initial direction, depending on azimuth and incidence angle. This aspect is hard to

incorporate as the detailed model-information is usually not given, but as the absolute error grows

with distance, this aspect hardly affects estimates in near distance.

Using appropriate uncertainty measures, the intersection of two (or more) linear beams will always

yield a unique solution. This is different for the standard (non-linear) P-onset based location. Over

the  previous  chapters  several  examples  where  shown in  which  an  unique  set  of  arrival  times

counter-intuitively led to multiple, equally possible hypocenter locations, predominantly when only

few data was given. P-onset based location is the one mostly applied and plays the dominant role in

real-time location as applied in earthquake early warning systems, today. Yet, it is right there where

all conditions are met for these ambiguities to arise, which have the potential to strongly falsify the

location estimate. A well known example are signals of teleseismic sources, which are often mis-

interpreted  and  mis-located  as  local  sources  appearing  to  be  situated  inside  the  network.  The

following chapter will address why, when and where these ambiguities arise.
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III.2 Location Ambiguities in Hyperbolic Location

An event surrounded by three stations can easily be located. So, we may think - and this is true, if

the right data is available: Three S-P constraints could be constructed, which intersect (in an error-

free world) in one common point: the hypocenter location. The location could likewise be identified

by three (or even two) back-azimuth beams, which would intersect in the same point. The location

could also be solely based on P-arrivals: This would lead to three hyperbolic constraints, which

likewise would intersect in a common point in the middle of our small network. A location based on

the arrival-times of P-phases is the dominant location technique used today, since P-phases can be

detected most precisely and also arrive first, which makes them the phase of choice for real-time

location schemes. It is, however, also the one technique which may render locating this event a bit

more complex than we may have thought:  A shift  from the network center towards one of the

stations is sufficient to cause a second solution to appear (fig. III.2:1).

Fig. III.2:1: Ambiguities in a residual map. For a set of arrival-times corresponding
to location a, one clear residual minimum is found. For onsets that yield a solution
lying in b1 or in b2, two minima b1 and b2 exist. Non-global-search methods risk to
find and present only one of the two possible locations.

This solution is exact, but less precise, being situated outside of the network - in a way that not only
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the travel-time differences are the same for both solutions – also the amplitude ratios are similar, so

that  it  may be difficult  to  identify  the  true  solution solely  based  on the  P-arrivals.  A network

location  based  on  P-arrival  times  is  a  non-linear  problem  -  even  in  the  simplest  case  of  a

homogeneous (half-) space due to the non-linear relationship between travel-time and hypocenter

coordinates. It therefore shouldn't surprise us that more than one solution may be possible. It comes,

however,  counter-intuitive and it  is  not straightforward  why and where these ambiguities  arise.

While the effect is the same whether we use a residua based approach or hyperbolic P-P constraints,

it can be analyzed more illustrative for the latter:

The time difference between one phase arriving at two stations constrains the source to lie on a

hyperbola (in 2D), which led to the name “hyperbolic location”. A hyperbola is formed with each

pair  of  stations  and  displays  a  spatially  one  dimensional  solution  like  the  classical  S-P circle.

Contrary to the circle on which the origin time t0 is constant, t0 varies on the hyperbola and can thus

be interpreted as the parameter of the curve. The permutation of all given stations into pairs yields a

set of hyperbolae. With three stations, three hyperbolae are generated - usually intersecting in one

common point. For shallow events  this would give sufficient, but non-redundant data, to allow a

rough determination of the hypocenter.  Yet,  situations are  observed where the three hyperbolae

intersect in two points (fig. III.2:2) or even cease to intersect at all.

Fig.  III.2:2:  Three  station  network  (red
circles) in a 2D location scenario.   Three
detected  P-onsets  constrain  three
hyperbolae  which  intersect  in  two
locations.

Assuming error-free data, a location can be constrained uniquely if the corresponding system of

equations is overdetermined concerning the underlying model assumptions,  as is the case when

many stations with P-detections are given. When the amount of available stations drops to a certain
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limit, the set of equations becomes exactly determined. This limit is reached with 4 stations due to

the 4 dimensional model vector, consisting of three space- and one time dimension. One is tempted

to assume that the 4 P-arrivals uniquely determine the four unknowns (origin time and hypocenter),

but this would be true only for a set of linear equations, which is not given for this approach, which

is interdisciplinary referred to  as  TDOA (i.e.  Time Difference Of Arrival).  The low amount of

stations  doesn't  only  lead  to  an increase in  location uncertainty,  but  may also cause  secondary

solutions to arise. Contrary to an uncertainty that stretches the solution in space and time, these

ambiguities are exact and distinct solutions, similar to those that are expected with a linear station

setup, where the degenerated solution is only constrained in distance around the axis of stations, but

no longer fixed to one spatial coordinate. Indeed we will find, that this case is only a special case of

the more complex problem. 

Most single event location approaches rely on the arrival time differences between the first arriving

phases at different stations (TDOA). Hence, this effect was not only observed in seismology. The

first  observation  of  this  effect  reaches  back  to  as  far  as  1928  when  Iglada  observed  multiple

solutions while locating via TDOA. Cete reaffirmed this observation in 1977 and Rindorf (1981,

1984) proved that maximal two solutions can arise for the TDOA approach. Chan (1994) showed

the same in signal processing and Spiesberger (2001) observed the effect in bio-acoustic application

of multi-lateration. Although this effect was recurrently observed, it stayed hardly noticed (e.g. in

Swanson et al., 1992) or analyzed by the seismological community, since usually far more than four

stations are given and used. Consequently, literature often quotes the minimum amount of stations

with P-detections too low to yield only unique solutions, e.g. three in two-dimensional problems

(Ruff,2001,  Pujol,2004).  For  the  standard  situation  where  more  than  the  minimum  amount  of

stations is given, the secondary solution is usually disqualified in being inconsistent with some of

the  P-arrivals.  This  is,  however,  only  the  case  if  the  stations  are  not  located  on  a  common

hyperboloid  (Xiaochun,  2008),  which  would  render  the  geometrical  information  redundant  and

allow ambiguities to arise with any amount of stations. This was in type observable in the opening

example of chapter  II.4:  P-detections on 4 stations and a fixed focal depth rendered the three-

dimensional problem overdetermined, yet, two distinct solutions were found in the residual plot.

Looking  at  the  4  stations  confirms  that  they  can  all  be  fixed  to  one  hyperbolic  curve.  This

demonstrates that ambiguities can arise even when not expected and how important it is to mould

algorithms to properly treat ambiguities. This is crucial for real-time location schemes based on P-

arrivals as used in earthquake early warning systems, today (Allen et al., 2009) that locate based on
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few arrivals only. But also where due to high effort and cost only few stations can be deployed (e.g.

European Rosetta comet mission) or due to weak seismic signals only few network stations register

the events (Walter&Joswig, 2009), this ambiguity may arise and must be treated properly to be

either resolved (if possible) or taken into account as additional uncertainty in location. 

In the following, we will identify the boundary conditions that lead to this degeneration and then

analyze the relationship between the two locations. This will allow us to identify the regions that

yield unique- and those that lead to ambiguous solutions, a knowledge which is also useful for

network planning. It will further enable us to predict  the approximate location of the secondary

solution. We will find that although this degeneration is a boundary effect in the time domain (i.e.

that for well distributed stations it only occurs for large arrival-time differences), it actually affects

large areas in the space domain, with at least 1/3 of all possible  hypocenter locations having a

secondary solution. To understand when and where the ambiguity occurs, the solution will first be

derived analytically in two space dimensions in an homogeneous environment. Following this, we

will  map the ambiguities to identify these zones for different network layouts in two and three

dimensions.

III.2.1 Deciphering Hyperbolic Location

The problem of determining the hypocenter location and origin time can be expressed as the search

for  the  intersection  of  hyperboloids.  This  search  in  3-space  dimensions  (in  a  four-dimensional

problem)  can  be  reduced  to  a  search  in  two  space-dimensions  (x,y,t0),  the  search  for  the

intersections of hyperbolae. In this three dimensional problem the system is exactly determined with

three stations, forming three hyperbolae. To resolve the true nature of the ambiguity, the system is

treated  as  ideal  (void  of  uncertainty),  meaningly  infinitely  thin  hyperbolic  curves. Each  one

individually  displays  the  possible  epicenters  over  the  corresponding origin  time which  may be

interpreted as the parameter of the curve. These objects are hence three dimensional (x,y,t0) but are

projected into two dimensional curves. Expanding them back into their three dimensions in space-

time-diagrams will allow us to understand the source of the ambiguity and will  provide for the

mapping of the solution space. 
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In the following the epicenter and origin time are represented by the vector

e=x , y ,t 0 (III.2.1-1)

 while si  represents the position (x i , y i)  and recorded arrival t i
p  of station i

si=(xi , yi , ti
p) . (III.2.1-2)

The constitutive equation

l i=l (P ,C , tt i)=0 . (III.2.1-3)

connects the wave's travel time tt i  

tt i=ti
p−t0 (III.2.1-4)
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Fig. III.2.1:1: Three hyperbolae as created from the intersections of growing hypothetical travel-time circles: A trial
origin time determines a travel-time between origin-time and the P-arrival tp, which translates into circular spatial
constraints around the both stations of the P-P constraint. Decreasing the (unknown) origin-time causes the circles to
grow. The intersection of both circles over all origin-times forms the hyperbola. The hyperbola does therefore display
all epicenter solutions that are possible for all trial origin-times. The permutation of 3 stations into pairs yields 3
hyperbolae. Their intersection marks the global solution, identifying epicenter and the true origin-time.
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between hypocenter and i th station over the model C  and the fastest travel path P (r xy)  with the

epicentral distance r xy . P  is a function of the different ray paths

P={D , L , R} , (III.2.1-5)

with D denoting the direct, L the reflected and R the refracted paths. For now we will assume a

homogeneous half space, therefore C  will  be a constant velocity C →c  and the ray path P=D a

direct one. Equation III.2.1-3 becomes then

                      

l i
D= √(x i−x0)

2+( y i− y0)
2⏟

rxy
2

+(z i−z0)
2⏟

Z 2

− c⋅tt i = 0 .
(III.2.1-6)

The epicentral distance r xy  is therefore accordingly

r xy= √(c⋅tt i)
2−Z 2 (III.2.1-7)

The focal depth affects the solution via the vertical distance Z  from station i ,

Z=z i−z , (III.2.1-8)

while Z  is used as external parameter that will be left constant during the search for the planar

solution. 

The hyperbola displays all possible spatial solutions concerning the arrival-time difference between

two stations over all possible origin times, which decreases along the extending branches. For each

pair  of stations,  a sequence of decreasing possible  trial  origin times  t0
j  is  being assumed. The

corresponding travel time tt ij  to station i  is found in the difference between arrival time and trial

origin time, tt ij=ti
p−t0

j . Using eq. (III.2.1-7), the epicentral distance rij  is derived for each of the
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two stations, which results in a circular, degenerated solution around each station (fig.  III.2.1:1).

The two circles' intersections mark the points in the right distance r1j  and r2j  to both stations and

build -in  sequence of decreasing trial  origin-times  t0
j - the hyperbola.  The permutation of three

stations into pairs yields three hyperbolae, which (usually) intersect in one common point, but may

also have two or no point of intersection. These points of threefold intersection  (“triplepoints”)

display the solution which is consistent with the information of all three stations (fig. III.2.1:2). Fig.

III.2.1:1 and III.2.1:2 show that the hyperbola corresponds to the sequence of intersections of two

growing  (t i
p−t0

j) -circles.  The  triplepoint,  which  is  the  intersection  of  three  hyperbolae,  can

likewise be expressed as the intersection of three circles with the same t0
j  (fig. III.2.1:3). 

Fig.  III.2.1:2:  Fusion  of  Fig.
III.2.1:1:  (1-2),(2-3)  and  (3-1).
The triplepoint  is  the  intersection
of  three  hyperbolae,  and  at  the
same  time  of  three  circles
constructed  from  the  same  trial
origin time (see fig. III.2.1:3)   

Fig.  III.2.1:3:  A triplepoint -the
intersection of 3 hyperbolae- is
also the intersection of 3 circles
with the same t0

j
 . 

Using this circular representation, we will display the system of fig. III.2.1:2 in it's three dimensions

in a space-time-diagram with the axes x , y  and t0 . Beginning with two of the three stations, s1

and  s2  (which provide the basis for one hyperbola), both data sets and constitutive equation are

visualized (fig.  III.2.1:4): With Z=0 , the constitutive equation (eq. III.2.1-6) takes the form of a

cone, touching the station vector with it's tip (which points out that no solution can exist later than

the  earliest  P-onset,  which is  evident  since the  event  has to  occur before it  is  recorded).  With
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decreasing origin time (note that the vertical axis is inverted) the radius of the cone grows as the

phase is given more time to travel. Cutting out a x-y-plane for any given t0
j  reveals the correlation

with the previously used circular description.

The hyperbola appears in the diagram as the cone-cone intersection (dashed curve, fig. III.2.1:4). A

projection into the x-y-plane would display its well known form. 

The cone's slope m  for Z=0 is given as

 m =
∂ r xy

∂ tt i

=
c2⋅tt i

√(c⋅tt i)
2−Z 2

=Z=0
c

and is equal to the seismic velocity c . With an event laying in another depth than the analyzed x-y-

plane ( Z≠0 ), m  is no longer constant, deforming the cone's tip (fig. III.2.1:5).
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Fig. III.2.1:4:  Space-time diagram. Points represent
the  data  vectors  s1 &  s2,  the  cones  display  the
constitutive  equation  for  Z=0.  The  two  cones
intersection curve represents the hyperbola (dashed
line).
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Instead of the tip touching the data vector, the “cone” starts rounded and vertically shifted. This

shift (i.e. a time offset) can be derived from eq. III.2.1-7 as

Δ t i= c−1⋅Z , (III.2.1-9)

which is the time that the wave needs to travel from the hypocenter to the evaluated x-y-plane. With

decreasing time ( tt i  increasing) the deviation to the undisturbed cone becomes negligible

r xy
Z ≠0(tt≫0)= r xy

Z=0 (III.2.1-10)

For simplicity, we will continue to use cones with Z=0 . Having expanded the hyperbolae to it's

three dimensions as the cone-cone intersection curve, the triplepoints may now be constructed and

analyzed by adding the third data vector  with its cone into the diagram. This will  allow us to

directly see that ambiguous solutions are no strange phenomena but a natural part of hyperbolic

constraining.  As  the  intersection  of  three  hyperbolae  marks  the  triplepoint(s),  so  does  the

intersection of the three cones. Since the intersection of the third cone with either, cone 1 or cone 2,

216

Fig.  III.2.1:5:  Cone
deformation for Z≠0. 

-t

Δt

m



III Constraint Precision and Location Ambiguity III.2.1 Deciphering Hyperbolic Location

has to lie on the intersection curve of the first two cones, we will only display the intersection curve

(i.e. the three-dim. hyperbola) and the third cone for better visibility (fig. III.2.1:6): By placing s3

and it's cone strategically, we can indeed yield between zero and two intersections. The simplest

case for ambiguous solutions is found by placing the third cone anywhere on the imaginary line

connecting  s1  and  s2 .  The  third  cone  will  intersect  both  branches  of  the  intersection  curve

symmetrically,  which  corresponds  to  a  linear  station  layout:  For  any  time-difference  (i.e.  the

vertical  shift  between  the  si )  two  intersections  exist.  Moving  s3  off  the  axis  still  yields

intersections on both branches, but no longer symmetrically: One intersection will move closer to

the apex of the intersection curve, the other further away. This is the typically observed behavior of

hyperbolic  ambiguity,  with one solution being near-by (and usually inside) the  network,  and a

secondary distant solution outside. 

Moving s3  further off the axis causes the intersection close to the apex to actually cross over to the

other branch, while the distant intersection on this branch simultaneously ceases to exist (due to the

branches  becoming  increasingly  steep  with  decreasing  origin-time).  This  correlates  with  the
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Fig.  III.2.1:6:  Possible  intersections  of  three  cones.  By
shifting s3 along the three axes, 0..2 intersections can be
achieved  between  the  third  cone  and  the  (dashed)
intersection curve between cone 1&2, (besides the case
of infinite solutions when two cones (and stations) are
collocated).  The  example  shows  the  case  of  2
intersections. A projection into the y-t-plane shows the
two intersections (yellow circles).
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intuitive, general case with only one solution. For a stronger tilt of the intersection curve (which is

given with larger vertical distances between s1  and  s2 , i.e. larger arrival-time differences Δ t p ,

fig. III.2.1:7) the third cone might not intersect at all with the intersection curve. 

Fig.  III.2.1:7:  Cone-cone intersection curve increasing
curvature with increasing arrival-time difference  Δ t p

(i.e. increasing vertical shift): Lifting the right cone to
earlier  arrival  times  (yellow)  increases  the  curvature
around the  right  station;  Lowering  it  to  later  arrival
times than the left cone, increases the curvature around
the left station.

For plausibility, the  si  mustn't  lay within another cone. This is the graphical equivalent  to the

plausibility  condition  that  the  arrival-time  difference  of  two  station  can't  be  greater  than  the

(longest) time a signal travels on the slowest ray path that connects both stations: Since all cones

hold the same slope m , no intersection would exist. Using space-time-diagrams, we witnessed that

hyperbolic location yields either no, one or two solution(s) (with a homogeneous model). We will

now use the underlying circular description of triplepoints to derive an analytical solution, which

will allow us to map the regions of ambiguity.
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III.2.2 Analytical Solution for the Homogeneous Space

The number of triplepoints can be quantified analytically by using the circular representation (in

which the problem is analyzed per fixed origin time), with the attempt of calculating all possible

intersections of the three circles. To do so, we will again start to calculate the intersection between

two circles and then continue to evaluate if the third circle also intersects this point.

The intersection of the two circles can be projected onto the axis connecting both station. The

distance from the projected point to the first station is given in

ε=(r1
2+d 2−r2

2) / 2d ; ri=√c2⋅(t i
p−t0)

2−Z 2 , (III.2.2-1)

with ri  being the radius of station i  and d  being the distance between both stations. The

intersection point between both circles (that constructs the hyperbola) can then be identified as

il / r t = S⋅dr1
2−2⋅− d y

d x
 , (III.2.2-2)

with S⃗  being the coordinate of station 1 and d̂  being the normalized direction vector, pointing

from station 1 to station 2. This intersection point is a triplepoint if the third circle also intersects

this point, when
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Fig.  III.2.2:1:  Calculation  of  the
triplepoint  as  intersection  of  three
circles.  S=p1-p0  ,  Q=p2-p0  ,  with  pi

being  the  position  of  station  i.  The
intersection  (marked  yellow)  is
projected  on  the  axis  connecting
station 1&2.
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∣ ⃗i l / r(t0)∣=! r0(t0) . (III.2.2-3)

This condition yields the following equation 

f (t0)=

S x
2+S y

2+2 t0(a (S⃗⋅d̂ )+c2(t 0
p−t1

p))
+c2((t1

p)2−(t0
p)2)+2b (S⃗⋅d̂ )+2γ⋅(d̂×S⃗ )⋅

√ t0
2(c2−a2)−2 t0(c

2 t1
p+ab)+c2 t1

p−b2−Z 2

=! 0

, (III.2.2-4)

with

a = c2

d
t 2

p−t1
p (III.2.2-5)

and

b = c2

2d
((t1

p)2−(t 2
p)2) . (III.2.2-6)

The gamma factor

=〈1,−1 〉 (III.2.2-7)

determines  the  side  (left/right)  of  the  hyperbola  branch.  With  f (t0)  being  of  second  order,

f t =
!

0  provides up to two solutions per branch as also for the whole system. The united curve's

run (both curves for both γ=±1 ), which describes the complete hyperbola, shows that there can be

0, 1 or 2 solutions (fig. III.2.2:2), meaningly 0, 1 or 2 triplepoints in a system of three stations (see

eq.  III.2.2-8),  depending on the position and orientation of  f (t0) .  For a  linear  layout,  f (t0)

becomes linear and the solutions for  =±1 degenerate to be identical equal. There exist therefore

only two cases: two symmetrical triplepoints (one on each branch) or none.
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Sorting eq. III.2.2-4 concerning the origin time yields the quadratic equation

t 0
2+

2 (c2 t1
p+ab+αβ)

α2+a2−c2 ⋅t 0+
c2(t1

p)2−b2−β2−Z 2

c2−a2−α2 =0 (III.2.2-8)

with 

= =
a S⋅d c2t1

p−t0
p

−  d×S 
(III.2.2-9)

and

β(γ)=
S x

2+S y
2+c2((t1

p)2−(t0
p)2)+2b( S⃗⋅d̂ )

−2γ( d̂×S⃗ )
. (III.2.2-10)

Solving this equation for the origin time yields the explicit form

t0
1/2=

c2 t1
p+ab+αβ

c2−a2−α2 ± √( c2 t1
p+ab+αβ

α2+a2−c2 )
2

⏟
ℵ

−
−c2(t1

p)2+b2+β2+Z 2

α2+a2−c2⏟
ת

. (III.2.2-11)
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Fig. III.2.2:2  f(t) with two roots, being constructed of two segments
corresponding to the two hyperbola branches.
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To avoid singularities in a linear setup, the term  d̂×S⃗  should in practice be factored out of the

terms  α  and  β ,  but is here left unchanged for better  readability. Note that    vanishes in all

occurrences  [ 2  =  , 2=  ,  =  ],  making  all  distinction  void  between  left

and right  branch.  This  shows again  that  max.  two triplepoints  may exist  in  a  system of  three

stations. With the discriminant 

D=ℵ−ת (III.2.2-12)

a first measure for the maximum number of solutions Nmax is given:

D<0  : no solution (Nmax=0)

D=0  : max. one solution (Nmax=1)

D>0  : max. two solutions (Nmax=2).

(III.2.2-13)

This, however, only serves as upper limit for the amount of solutions, since eq. III.2.2-11 allows for

a-causal events. The true number of solutions may therefore be less when those are filtered out. The

term  Z 2  in eq.  III.2.2-11 can only act negatively within the root (compare with eq.III.2.2-15).

Therefore,  if no solution/triplepoint (representing the hypocenter for a given focal depth) exists

within the plane which is being expanded by the station locations ( Z=0 ), no solution will exist at

all (for any Z≠0 ): No hypocenter can be determined based on the given data and model.

If eq. III.2.2-11 has a solution, back substitution of t0
1/2  into eq. III.2.2-1 and III.2.2-2 provides the

location T⃗ n  of the corresponding n th triplepoint

T⃗ n= S⃗+
(r1

2+d 2−r2
2)

2d
⋅d̂+√ r1

2−
(r1

2+d 2−r 2
2)2

4d2 ⋅(−d̂ y

d̂ x
) (III.2.2-14)

with

ri=√c2⋅(t i
p−t0

n)2−Z 2 , (III.2.2-15)

t0
n  being either t0

n=t 0
1  or t0

n=t 0
2 , collectively for all ri .

Examples for the three cases that are possible with f (t0)  (eq. III.2.2-11): No, one or two solutions,

are presented in the following (fig.  III.2.2:3 -  III.2.2:5). Following this, we will use eq.  III.2.2-11

and III.2.2-14 to map the critical regions that lead to ambiguities.

222



III Constraint Precision and Location Ambiguity III.2.2 Analytical Solution for the Homogeneous Space

Two ambiguous solution

a)
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b)

 S0=(0,0)km t0
p= 1.3 s

S1=(15,100)km t1
p= 2.0 s vp= 10km/s

S2=(100,-100)km t2
p= 14.63 s

Fig. III.2.2:3 Two solutions. Panel a) shows the curve run of f(t) with two roots. Panel

b) shows the three hyperbolae constraining the corresponding two ambiguous locations

(yellow circles). The station positions (Si , red circles) and arrival times are listed above.

223

S2

S0

S1



III Constraint Precision and Location Ambiguity III.2.2 Analytical Solution for the Homogeneous Space

One unique solution

a)
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 b)

 S0=(0,0)km t0
p= 1.3 s

S1=(15,100)km t1
p= 1.7 s vp= 10km/s

S2=(100,-100)km t2
p= 10.33 s

Fig. III.2.2:4 One solution: Panel a) shows the curve run of f(t) with one zero crossing.

Panel b) shows the three hyperbolae constraining the corresponding unique location

(yellow circle). The station positions (Si , red circles) and arrival times are listed above.
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No solution
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b)

 S0=(0,0)km t0
p= 1.3 s

S1=(15,100)km t1
p= 2.0 s vp= 10km/s

S2=(100,-100)km t2
p= 16.63 s

Fig. III.2.2:5 No solution. Panel a) shows the curve run of f(t) with no zero crossing. Panel b) shows

two hyperbolae with no intersection. The dashed curve corresponds to the third hyperbola as would

exist with slightly altered tp. The station positions (Si , red circles) and arrival times are listed above.
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III.2.3 Mapping Ambiguities

Having obtained an analytical form to identify the maximum amount of possible solutions and their

locations, we may now identify the boundary conditions that lead to ambiguous solutions and can

map the regions of ambiguity. To do so, we will perform a 3dim. grid search varying the three P-

arrival times for a given network geometry. The three dimensional parameter space can be reduced

to a two dimensional one by expressing two of the arrival times relative to the third. Solving eq.

(III.2.2-11) and determining D  (eq.  III.2.2-12) for all possible arrival time differences yields the

fig. III.2.3:1 with the horizontal axes (t1
p−t0

p) , (t2
p−t 0

p)  and the discriminant D=ℵ−ת  assigned

to the ordinate.

Fig. III.2.3:1: Mapping of D  for all possible arrival time differences. Dark
gray indicates regions with no solution (D<0); Yellow indicates regions of
maximal  two solutions (D>0).  Both regions are separated  by  a fine line
(white) of maximal one solution (D=0).

Areas of max. two solutions are highlighted yellow, areas of no solution in dark gray. These areas

are separated by lines of maximal one solution (white). 

The condition of plausibility demands that the arrival time difference between two stations cannot

be greater than the longest physically possible travel-time (slowest path) from one station to the

other. Requiring this condition for every station pair, 
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∣t1
p−t0

p∣≤ ∣⃗s 1− s⃗0∣/v p (III.2.3-1)

∣t2
p−t0

p∣≤ ∣⃗s 2− s⃗ 0∣/v p (III.2.3-2)

∣t 2
p−t1

p∣≤ ∣⃗s 2− s⃗ 1∣/v p (III.2.3-3)

with s⃗ i  standing for the three station coordinates and v p  for the corresponding seismic velocity

shrinks the valid area unto the central singularity of fig.  III.2.3:1. Eq.  (III.2.2-11) also disregards

causality: It solves equally for events that have not yet happened (i.e. for an origin time after one of

the involved P-arrivals) as for those that occurred in the past (i.e. an origin time before the first P-

arrival). Filtering out a-causal solutions now yields the true number of solution (Fig III.2.3:2 d). 
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Fig. III.2.3:2: Top view of the central region of fig. III.2.3:1, mapping D. The Color
coding denotes the amount of existing solutions for the given onset parameters:
Yellow: Two solutions, light blue: One solution, Dark Gray: No Solution. 

Panel a) shows the maximal amount of solutions based on the determinant D and
corresponds to a top view of fig. III.2.3:1's central region.

b) Solely requiring causality reduces the amount of solutions in most regions.

c) Solely requiring plausibility masks the valid region close to the origin of the
coordinate system (small arrival-time differences). Areas outside yield no solution:
Areas  with horizontal  hatching are  disqualified by violating eq.  III.2.3-1.  Areas
with vertical hatching violate eq. III.2.3-2. Areas with diagonal hatching violate eq.
III.2.3-3 and are therefore disqualified.

d) Requiring plausibility and causality yields the true number of solutions for the
given arrival-time parameters. Even within the plausible parameter interval, there
exist combinations of arrival-time differences that do not yield a solution (raising
the question which physical principle is violated there).

Fig. III.2.3:2 (d) shows that the case of ambiguous or non-existing solutions is a boundary effect in

the time domain, occurring only with extreme P-arrival time differences. Solving eq.  (III.2.2-14),

the corresponding locations can be plotted. Examining the solution in the space domain reveals that,
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although ambiguity is a boundary effect in the time domain, significant parts in space are actually

ambiguous (fig. III.2.3:3).

Between 1/3 and the whole space are bound to ambiguities (depending on the network geometry):

For every solution being found in a dark yellow area, a second one exists in the enclosed light

yellow area, and vice versa. This displays an additional source of uncertainty, requiring additional

information to identify the true solution. Let us now see how the two ambiguous solutions relate to

each other. We will therefore look in detail into the dashed region of fig. III.2.2:3.
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Fig.  III.2.3:3:  Space  diagram marking  regions  with
one solution (blue gray) and two solutions (yellow).
For each point in a dark yellow zone a corresponding
solution exists in the enclosed light yellow zone. The
shading indicates the location precision: The brighter
the  color,  the  more  precise  the  location.  This
distribution is valid for events with depth << station
distance. For deeper events see fig. III.2.3:7.
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Starting at  t0
p=t1

p=t2
p= 0 , the solution is  located at  the center  of fig.  III.2.3:3.  Decreasing  t 0

p

moves the solution vertically towards station S 0  and in the time diagram (fig. III.2.3:2d) towards

the upper right corner.  As soon as we enter the yellow area (fig.  III.2.3:3 &  III.2.3:4) the one

location estimate splits into two. One solution will  slowly continue to move toward the station

while the other approaches fast from infinity (fig.  III.2.3:4). When the upper right corner of fig.

III.2.3:2d is  reached,  both solutions  will  join into one.  With further growing onset  differences,

parameters leave the plausible space and solutions cease to exist. 

Well  separated  ambiguous  solutions  can  easily  be  distinguished  and  resolved  by  additional

measures like S-P information (even if the S-onset can only be picked poorly) or particle motion,

possibly pointing at  the true solution.  For solutions close to the border of the plausible region,

however, the two solutions draw near to each other. This prevents a discrimination based on S-P-

information or particle motion due to their lower precision, which practically means that we may

observe two solutions and have to accept  both (similar to the meta uncertainty in a multi-pick
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Fig.  III.2.3:4:  Zoom  into
the  dashed  slice  of  fig.
III.2.3:3,  showing  three
examples  of   sets  of
ambiguous locations (white
circles). See text below.
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analysis). Low accuracy zones are observed close to each station, extending outwards along the

connection axes of two stations (fig. III.2.3:3 and III.2.3:5). This can be understood observing the

ambiguous  solutions  in  fig.  III.2.3:5:  For  a  small  area around any given axis  (red  ellipse),  all

corresponding solutions (white-blue circles) are spread along the axis. An event having been found

to lie close to one of the axes will therefore always appear to be blurred elongated to it.

The  area  of  degeneration  depends  strongly  on  the  geometry  of  the  network  layout,  but  is

independent  of  the  seismic  velocity.  The  same  is  true  for  the  relative  position  between  two

ambiguous  solutions  –  A solution  at  location  A will  always  have  a  sister-solution  at  point  B,

independent of the seismic velocity. The area enclosed by the connection axes (low accuracy zones)

can hereby always be determined as degenerated (fig. III.2.3:6). 

Fig. III.2.3:6: Ambiguous zones. Areas enclosed by
the low accuracy axes are always degenerated. 
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Fig.  III.2.3:5: An event location with the uncertainty of
the  red  ellipse  has  corresponding  solutions  along  the
whole axis. This causes locations close to the axes to be
of higher uncertainty, appearing blurred along the axis.
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It is therefore beneficial, if an event is located in between stations (e.g. the side of the triangle, the

network edge), rather than being located close to a station (i.e. the corner of the triangle). This

representation is valid for events whose depth is significantly smaller than the station distance. For

deeper events, the cone-shaped regions distance themselves from the network while their boundary

belts (bright yellow) widen. 

For asymmetric network layouts the three ambiguous regions hold different widths (fig. III.2.3:8) -

the wider the region, the slower it distances itself with depth. In the following, we will look at

different station distributions, transitioning from an ideal to a linear layout. Mapping both, spatial

and temporal representation, we will see that it is not only the area between the low accuracy axes

(which  are  always  ambiguous),  for  which  the  arrival-time  based  location  approach  may  yield

ambiguous location estimates (fig. III.2.3:8).
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Fig.  III.2.3:7: Ambiguous regions for different hypocenter depths relative to the network aperture. The
deeper the event, the further is the ambiguous region located from the network and the thicker the (dark
yellow) rim. The latter means that regionally, both locations are found in intermediate distances, while for
the standard case (panel (a): station distance>seismogenic depth) the majority of locations within the
light yellow region maps to secondary solutions very close to the station.
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Fig. III.2.3:8: Network layouts with φ between 60° and 180°.  Left: Spatial representation,
Right: Temporal representation (black indicates the non-plausible parameter space).

233

 

φ: 60° 

φ: 90°

φ: 120°

φ: 140°

φ: 160°

φ: 170°

φ: 180°

(tp

1 
- tp

0
)

(tp

2 
- tp

0
)

φ



III Constraint Precision and Location Ambiguity III.2.3 Mapping Ambiguities

In  an  uniformly  distributed  layout,  ambiguous  solutions  only  appear  for  extreme  arrival-time

differences. With φ increasing, ambiguities start to occur also for smaller differences. Likewise does

the ambiguous region in the space domain (only) occupy about one third of space for an uniformly

distributed layout,  but  quickly increases to  full  space  when the  station distribution  reaches the

resemblance of a linear layout. During this transition, the ambiguous region bulges into the network

and at φ=140° already fills most of it. The temporal representation shows that for flatter network

geometries  (larger  φ's)  ambiguous  solutions  start  to  occur  already  with  smaller  onset  time

differences. For a linear layout the zone of unique solutions has disappeared and every arrival-time

difference yields either an ambiguous solution or none. In the following transition (fig. III.2.3:9) the

network geometry is distorted asymmetrically, shifting the north station on a East-West axis. For

well distributed stations, the low accuracy axes (constructed following the scheme of fig. III.2.3:6)

enclose the majority of ambiguous solutions. Flatter geometries (φ=120°, fig.  III.2.3:8) widen the

band around this zone.
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Fig. III.2.3:9: Ambiguity zones for distorted network geometries. The horizontal position
x0  of the upper station is moved from x2  to x1.
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The  opening angle of  the  cone-shaped ambiguous regions  varies  over  the  transition.  It's  tip  is

always pointing toward areas that are of unique solutions and the larger the region of ambiguity is,

the larger is the region of unique solutions on the opposite side.

The effect of location ambiguities stresses the importance of global search methods. Evaluating the

solution space solely at sample points (in iterative methods) or grid points (in direct searches) risks

to  identify  only  one  of  both  solutions,  possibly  basing  the  event  interpretation  on  the  wrong

location. Due to the larger spatial extent of the distant solution, algorithms will also tend to iterate

toward that solution, if not prevented by an initial trial location close to the near-by solution (see

fig.  III.2:1).  The  analyzed  case  in  2-space-dimensions  is  a  typical  case  for  Earthquake  Early

Warning  systems,  which  attempt  to  locate  based  on  a  minimum amount  of  stations,  therefore

initially even fixing the hypocentral depth (to the dominant depth of the catalog). In sparse networks

the early location estimate may remain the official estimate over a significant time. This renders the

topic of ambiguities so important, especially since no (known) algorithm today attempts to resolve

the ambiguity but only chooses the most attractive (but possibly false) one. We will conclude the

topic  of  hyperbolic  ambiguities  with  mapping  the  ambiguous  regions  for  the  three-

(space-)dimensional  case  with  4  given  stations,  tackling  a  standard  scenario:  locating  low

magnitude events.

III.2.4 Ambiguities in 3D Environments

To avoid  ambiguities  and ensure  unique  solutions  in  two-(space-)dimensional  problems (e.g.  a

known focal depth or shallow events in hill slope monitoring with planar station distributions), it

requires four given stations. The general situation is, however, that one needs to deal with  unknown

hypocenter  depths  and at  times non-planar  network geometries  (e.g.  surface  stations  on  strong

topography,  borehole  stations  or  subsurface  mine  monitoring).  In  good  natured  three

(space-)dimensional scenarios the hypocenter is fixed with four stations. However, this is not the

general  case:  For  a  one  dimensional  space  (i.e.  a  line)  it  requires  three  stations  to  rule-out

ambiguous  solutions.  For  a  two  dimensional  space  (i.e.  a  plane),  four  stations  are  required.

Following this pattern confirms what Xiaochun (2008) showed formally: that 5 stations are required

to avoid ambiguities in three space dimensions (given that they don't lie on a common hyperboloid).

For weak events, however, this amount of stations might not always be given, e.g. for a four-partite
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small-array detecting a local event. In this case, it is useful to know which regions are prone to

ambiguities and if the location estimate is trustworthy. Starting with a three-dimensional station

distribution in full  space, a grid search identifying ambiguous solutions (fig.  III.2.4:1) reveals a

pattern similar to the two dimensional case (fig. III.2.3:3).

Fig.  III.2.4:1:  Equally  distributed  4-station setup in full
space. Within the four cones, solutions are ambiguous. The
cones are pointing to the geometrical  center of the four
stations.  Dark  blue  areas mark  extrapolated  ambiguous
areas (white dashed lines). 

Fig.  III.2.4:1 shows a symmetrically distributed set of four stations with ambiguous cone-shaped

regions, similar to fig. III.2.3:3. The four stations form a tetrahedron whose corners likewise point

to regions of ambiguity while its faces are oriented to regions of unique solutions. The four cones

are pointing to the geometrical center of the station distribution and are symmetrical, similar to the

2dim. case. This changes, when we distort the network geometry: When lowering the top station,

the cone of the approaching station widens while the others narrow, collectively creating a larger

region of ambiguity. Fig. III.2.4:2 displays this scenario, with the top station being lowered to two

thirds of it's original height. 
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Fig.  III.2.4:2: The center station is lowered to two thirds
of the initial height of Fig.  III.2.4:4. Similar to the 2dim.
case,  the  widening of  the  upper  ambiguity  cone  can be
observed.

If we continue to lower the station, the three dimensional geometry will eventually collapse into a

two  dimensional  one  (once  the  central  station  reaches  the  plane  of  the  other  three  stations):

describing a planar network. Alike the end-member of the 2dim. case, this will render all solutions

to be ambiguous - the ambiguous region filling the full space. However, like for the 2dim. case, also

here  the  corresponding  solutions  are  symmetrical  -  mirrored  through  the  plane  containing  the

stations. 
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Fig.  III.2.4:3: All solutions become ambiguous when the
3dim.  station  setup  collapses  into  a  2dim.  plane,  the
secondary solution being mirrored to the other side of the
plane. For the wide class of applications where stations
are  located  on  surface  and  no  strong  topography  is
involved,  the  secondary  solution  will  always  be  located
above surface (but not mirrored due to different media and
velocities) and can be neglected. However, this also means
that a sonic bang can appear as shallow earthquake.
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This  means  for  the  wide  class  of  applications  that  use  surface  networks  (with  no  significant

topography),  that  the  secondary  solution  will  always  be  located  above  surface  (although  not

“mirrored” due to media with different velocities) and can hence be neglected. In this case, four

stations are sufficient to always yield unique location estimates. [Note: On the other side it also

means  that  acoustic  sources  (as  jets  or  thunderstorms)  can  be  “projected”  into the  subsurface,

appearing as shallow seismic events (shallower, due to the higher seismic wave speed). Practically,

this  is  only  problematic  for  high  sources  directly  above  the  network,  or  for  networks  on  e.g.

sedimentary basins,  in  which the seismic velocity is  only a few times the acoustic  velocity,  as

otherwise the large arrival-time differences would be inconsistent with the seismic model, and could

not be matched.]

Given a stronger topography or a subsurface three-dimensional station geometry, four stations are

likely do yield ambiguities.  The extent  of  the  problem can easily  be visualized by turning fig.

III.2.4:2 upside down (fig. III.2.4:4). This resembles the geometry of a four-partite array, where the

central station is installed in a borehole to yield a better SNR and detection quality: But the majority

of solutions situated in the space right underneath the network would be ambiguous (while the open

space above would yield unique solutions). 

This forms a dilemma, as a sunk central station would indeed allow to lower the detection threshold,
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Fig. III.2.4:4: A central borehole station added to three surface stations in
a homogeneous half-space.  The majority  of  locations derived would  be
ambiguous.
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but unfortunately also decreases the location accuracy. For three dimensional distributions (as in

mine monitoring), the distribution should be oriented to face (i.e. not point at) the focus area to

provide there for unique solutions.

We can conclude the following concerning a location that is based on the arrival-times of a single

phase type:  

For the amount of stations that is generally described as the “required minimum” (three in 2D, four

in 3D) we find a significant part being ambiguous. In 2D, this is the case for at least one third of all

solutions. These ambiguous zones do not only lie outside of the network, but also bulge into it and

grow in size for flatter station distributions. To solely obtain unique solutions in two dimensional

problems four stations are required, which must not lie on a common hyperbola. In the general case

of three  dimensional  problems, at  least  five stations  are required (not  lying on a  hyperboloid).

However, for the wide class of applications where the station setup is planar on surface and no

strong topography is  involved, four stations suffice.  When two distinct solutions are found, the

ambiguity can usually be resolved using S-P distance- or particle motion back-azimuth information.

Additionally, if the stations are part of a larger network and the event is solely detected on a small

subset because of it's low magnitude, then the distant solution can often be neglected, as it should

have been detected at other network stations first (→ Voronoi cells).

When only three or four stations can be deployed due to high effort, they should be oriented facing

(i.e. not pointing at) the region of interest to cover the focus area with zones of unique solutions.

Signals from regions outside the network being “pointed at” by the network (fig.  III.2.3:6) will

always lead to location ambiguities. It should be noted that this two-fold solution was obtained

analyzing a homogeneous half space. In case of refractions caused by e.g. a layered subsurface, the

amount of ambiguous locations might even scale up with the number of refracting layers. This can

be inferred from observations as in fig.  III.2.4:5, in which a solution (Point 1) appears with two

other  solutions  (Point  2  & 3)  although all  lie  in  a  region that  can only yield unique  solutions

(compare  fig.  III.2.3:6).  The other  two solutions stem from faster  travel-paths running through

deeper  regions  of  higher  velocity  in  a  two-layer  (over  half-space)  model.  With  every  existing

refracting layer-boundary another solution is generated in larger distance. For naturally ambiguous

solutions this limits the total amount of solutions per set of arrival-times to 2⋅n , with n  being the

amount of refractors.
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When only few stations are given one needs to be aware of ambiguities to continue the location

process  until  the  inapplicable  solution  may  be  disqualified  and  excluded.  Even  more  so  for

(automatic) algorithms, which need to be laid out to expect, (possibly) resolve - but in any case

correctly  evaluate  these  equally  possible  location  candidates.  Especially  in  earthquake  early

warning this is crucial, as only identifying one of both locations may cause major estimate errors

resulting in false or neglected warnings.
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Fig. III.2.4:5: Multiple ambiguities for a single triple-group caused by two refractors
at 10.6km and 15.5km depth increasing the near surface velocity of 3.5km/s to 5.7km/s
and 6.4km/s. The changes in the curvature (highlighted in grey on the left side) of the
three hyperbolas (HA,B,  HA,C, HA,B) are caused by the velocity changes around the
refracting  layer  boundaries  and  mark  the  regions  in  which  one  travel-path-type
changes to another (direct to once-refracted and once-refracted to twice-refracted) -
corresponding  to  the  points  in  the  travel-time  curve  whose  first  derivation  is
discontinuous. These changes in curvature provide for additional crossing-points i.e.
for  the  existence  of  additional  ambiguous  solutions.  Through the  existence  of  the
refractors  the  amount  of  solutions  exceeds  the  limit  of  2  (which  was  valid  for
homogeneous models). Here, all solutions are located in a region that is classified  as
zone of unique solutions. The two solutions (2 & 3) are merely “echoes” of solution 1,
due to  additional  travel-paths that move in higher velocities  below the refractors,
allowing constraint agreement in larger distances. 
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IV Constraints for Real-Time Location

The term “real time location” refers to the evolving and subsequent constraining of hypocentral

location from the time of first detection onward, long before the complete set of information (i.e.

the complete waveform data of all stations) is received. As at this time information is sparse, the

early location estimate is prone to ambiguities; not only in location, but also in detection as only

fractions of seconds of waveform data are available as base for the detector, raising the risk for

onsets to be wrongly picked or wrongly associated by the event associator. All these aspects call for

a robust locator, making the derived constraint based approach well suited. Especially concepts like

the multi-pick evaluation become useful here, to increase robustness when multiple pick candidates

exist. Starting with rough estimates at the time of first detection, the solution is subsequently refined

with every arrival of new phases - or by the information that can be extracted from the delaying of

such. A real-time analysis is generally applied to improve reaction time: Time sensitive issues as

e.g. pressure control in fracking or gas storage processes require a real-time analysis due to the risk

of induced seismicity. Real-time location, however, in it's extreme form is applied in Earthquake

Early Warning systems (EEW), where location and magnitude estimates are required in matter of

seconds to  improve warning time and decrease  the  blind zone (i.e.  the region surrounding the

hypocenter for which no alert  can be issued in time),  before the later S and (most destructive)

surface waves arrive at population centers. As the fault plane of large magnitude events grows over

several- to tens of seconds, early magnitude estimates usually saturate at ML 6.0 and can only serve

as  minimum  magnitude  estimate.  This,  however,  is  sufficient  for  warning  as  the  magnitude

threshold for warning is usually fixed to ML 5.0. The process between detection, event association,

and finally parameter (i.e. location and magnitude) estimation is complex and this chapter will focus

solely on the aspect of real-time hypocenter location. Inevitably there exists a trade off between

accuracy and stability on the one side and time available for location on the other. The more time is

given,  the  more  information  can  be  gathered,  the  range  of  applicable  methodologies  grows,

gradually  increasing  the  precision  of  early  estimates  of  e.g.  event  location  and  magnitude,

eventually later focal mechanism or extended source and propagation history. Early in time, most

information is not yet available and predictions might turn out inaccurate or wrong. Todays running

EEW codes usually start after 4-6 detections and under- (or over-) estimate epicentral distance and

magnitude in the initial stadium. Accounting for uncertainties, especially of the one of the model, is
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of major importance for real-time location, especially for events close to- or outside the network

edges.  Using  the  uncertainty  based  constraint  approach  enables  us  to  report  valid  uncertainty

intervals for the reported parameters, yielding e.g. minimal and maximal hypocentral distances or

min. Magnitude, rather than over- or underestimates.

Good predictions  require  a  set  of  reliable,  stable  and early available information on which the

automated processing can be based on. Most automated systems rely on the analysis of several

arrived  P-phases,  due  to  the  accuracy  and  confidence  with  which  these  can  be  automatically

identified. However, all fundamental constraints presented in earlier chapters are useful for real time

location, constraining the hypocentral region further once the corresponding phases are detected.

Equal Differential Time (EDT) P1-P2 constraints can precisely constrain the location, but might only

become available with time, as they require the detection of at least a second station for generating

the constraint, and at least three to four detections to yield unique solutions (also using focal depth

estimates). Depending on the event-station geometry and network density this might require time.

Some constraints  are  of  special  importance  as  they  require  few detections,  yet  provide  robust

location estimates (fig. IV:1): Back-azimuth information can be retrieved from the first detection on

and allows to resolve ambiguities that usually occur in the early stage. It hence stabilizes the early

location with fewer stations and allows to shorten the warning time. S-P constraints provide the

important estimate of hypocentral distance. Yet, S-P constraints require the A) more complex and

error-prone detection of the S phase which B) only arrives later in time, depending on the epicentral

distance. We will therefore introduce using the absence of the S-phase to derive lower bounds for

the hypocentral distance (chapter IV.2). The delaying of P-phases at other stations, on the other side,

provides the estimate of the maximum distance. These three methods are applicable instantaneously

with the first detection and reduce the possible solution interval with time. Fig.  IV:1 displays the

four constraint classes, that will be used for the real-time scheme.
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Fig.  IV:1:  Realtime  location  constraints.  Comparison  of  amount  of  detections,  detected  stations  and
constraint characteristics. Back-azimuth and NYAD constraints can be used from the first detection on.

It is not only due to location issues that EEW systems require detections at 4-6 stations before

raising an alarm: Usually, at least two or three detections at different sites are required to gain the

confidence that the signal belongs to a seismic event and is not of anthropogenic (or e.g. acoustic)

origin. Here, small-aperture-arrays present a powerful solution to increase confidence with fewer

detections, due to their ability to characterize and evaluate the signal. Small aperture arrays do not

solely measure at a single point but -consisting of distributed stations- are able to sample the local

wavefront, which allows for quality checks based on slowness, inter-station amplitude ratios and

signal coherency. For location, they yield the valuable back-azimuth (BA) information, which in

combination with Not-Yet-Arrived-Data concepts (i.e. shrinking “Voronoi cells” and growing No-S

exclusion zones, chapter ) allow initial location estimates in fractions of seconds that improve those

of today's real-time location schemes (like e.g. PRESTO, ELARM-S) (Satriano et al., 2011, Kuyuk

et al., 2014). Small-aperture-arrays are therefore ideal measurement units for hybrid onsite-regional

systems, which function on the local level as individual and independent warning systems (e.g. at

nuclear  reactors,  factories),  but  further  report  their  data  instantaneously  to  real-time-analysis
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centers,  where the data from all arrays is combined for regional wide EEW. However, the vast

majority of networks today consists only of distributed single (three-component) sensors. There

have been attempts early on to derive back-azimuth information from the three-dimensional particle

motion recorded on single stations (Ruud et al., 1988), based on the fact that the seismic phases

propagate in a polarized manner. These approaches, however, were not reliable enough for EEW as

they  often yielded inaccurate  results.  However,  since  back-azimuth information is  important  to

resolve the early ambiguities, a new single station approach, yielding trustworthy estimates, will be

derived in the following chapter.

IV.1 Particle Motion Back-Azimuth

While  most  standard  real-time  location  schemes  today  rely  solely  on  P-phase  based  location,

providing  first  proper  location  estimates  after  4-6  detections,  the  addition  of  back-azimuth

information  stabilizes  the  early  location  and  allows  to  obtain  robust  results  already  after  two

detections. Below four detections the hypocentral depth is usually fixed to e.g. 10km depth. With

three available  P-phases the solution is often ambiguous and the three EDT's pose a dependent

system.  This  means  that  for  all  physically  possible  inter-station  time  differences  a  solution  is

provided.  Without  redundancy,  there exists  no quality  control:  Even three uncorrelated  random

picks in a narrow time window, may produce a reasonable looking location. Using back-azimuth

information,  already after two detections three independent  constraints  are  available,  two back-

azimuth beams and one EDT. This allows a quality control based on constraint congruity, showing

whether constraints agree or not. Fig. IV.1:1 shows an early location example, comparing P-based

hyperbolic  location  and  back-azimuth  constraints.  The  hyperbolic  location  shows  two  possible

locations after three detections, one closer and one more distant to a main population center. What

the figure doesn't show, is that a small change in the modeled velocity will shift the locations, with

the three hyperbolic constraints still intersecting with the same maximum congruency: In this early

stage  (where  no  redundancy  exists),  congruency  is  meaningless.  The  picture  is  fundamentally

different  when  we  use  back-azimuth  information:  Not  only  is  the  ambiguity  resolved  (clearly

identifying the distant region as solution), also three independent constraints are given, which allow

to use the constraint congruity as parameter indicating the trustworthiness of the result – both after

only two detections.
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Fig.  IV.1:1:  Analyzing  three  P-arrivals  a)  based  on  P-onsets  only:  two solutions  exist,  given  by  three
dependent constraints (EDTs) b) Implementing back-azimuth information, a unique solution is given by
three independent constraints already with two detections (BA).

Ruud et al. showed 1988 that this information may also be obtained analyzing the particle motion of

the incoming P-wave recorded at three component single stations. Contemporaneously, Nakamura

(1988) developed an automatic algorithm computing single station back azimuths in real time. Yet,

Lockman and Allen (2005) pointed out the significant amount of estimates with errors too high to

still  render  this  method  reliable  for  predictions  in  earthquake  early  warning  applications.

Alessandrini et al. (1994) demonstrated that the data yielding best results is found at the onset of the

first P-wave arrival, while later parts of the signal are not linearly polarized due to effects of local

scattering  at  heterogeneities.  Later  signals  might  further  not  travel  on  direct  paths,  may be  of

different wave type and therefore yield incorrect azimuth values. Accordingly, Noda et al. (2012)

found that the accuracy can be increased by limiting the waveform data to  the signal  between

detection and first maximum on the 1-2Hz bandpass filtered vertical trace. This fact would allow an

almost instantaneous constraining of location as the required data is usually obtained in 0.2-0.3

seconds. Yet, Lockman and Allen's observation remained confirmed, as 40% of estimate errors still

ranged between 30 and 180 degrees.  Eisermann et  al.  (2015) shows, that bad estimates can be

filtered out by requiring congruity between different back-azimuth estimators, leaving reliable back

azimuth  estimates  for  automatic  real  time  location.  The  methods  being  used  range  between

approaches  being  based  on  a  single  sample,  an  evolving  moving  average,  and  a  principal

components analysis. 
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While the overall performance of each method is good, each method produces a significant number

of wrong estimates. However, robust and accurate estimates tend to show similar values across the

methods, while outlier values tend to fluctuate. This allows to use consistency between the methods

as  a  filter  to  eliminate  bad estimates.  The three  methods  shall  be  qualitatively  laid  out  in  the

following (quantitative details are described in appendix 1).

Method 1: Single Value (SV).  The direct approach for the extraction of the back azimuth from

particle motion relies on the peak amplitude values of the horizontal traces (Bormann, 2012), and

hence will be identified in the following as peak single value (SV) method. The back-azimuth Φ is
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Fig.  IV.1:2: a)  Horizontal projection of particle Motion and projection into EW-, NS, and Vertical plane
(right).  The  gray  zone  marks  the  variable  analysis  window defined  by  detection  and  first  significant
maximum on the vertical trace. b) Single Value method: The particle motion direction is obtained from the
values at the one sample of highest horizontal amplitude. The sign of the vertical velocity amplitude solves
the directivity  ambiguity.  c)  Moving average  method:  The  direction  is  evaluated  at  each  sample  and
averaged with previous estimates in a way that the latest samples receive the highest weight. d) A two-
dimensional Principal Component Analysis is used to analyze the trend of direction.
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obtained from the NS-EW amplitude ratio at one of the maxima of the horizontal traces. The time

window for evaluation will be defined according to Noda et al. (2012) from detection of the P-phase

to the first maximum of the vertical trace. The amplitude values A
E
 (NS-trace) and A

N
 (EW-trace)

are chosen at the point where one of the two traces reaches the most significant maximum (fig.

IV.1:2, see tsv). For physical consistency, both amplitude values need to be estimated at the same

sample ī  on both NS and EW traces. The back-azimuth, computed from the horizontal amplitudes,

is geometrically bound to a 180 degree (forward or backward) ambiguity. This ambiguity can be

resolved looking at  the vertical  amplitude using the fact  that the corresponding particle  motion

vector cannot point outside the lower half space, as the event has to lie below surface. If the vector

does, it needs to be flipped to point toward the event. This flipping condition pertains to p-waves

and is applicable for surface stations in absence of strong topography. It is valid, independent of the

source  mechanism  (strike  slip,  explosions  and  implosions)  and  its  radiation  pattern,  which

determines the signal  polarizations.  Although it  is  solely based on the amplitude values of one

single sample, the SV approach delivers robust back-azimuth estimates with few outliers for high

SNR (fig. IV.1:5), but outlier population increases with decreasing SNR. 

Method 2: Moving average (MA). The approach proposed by Nakamura (1988) can be described

as a continuously applied form of the SV approach. Back-azimuth values are computed at every

sample,  derived  from a  cumulative  smoothed  average  over  the  horizontal  traces.  The  flipping

condition is applied at every sample.  Noda et al. (2012) showed that for PCA-based back-azimuth

estimations,  accuracy  can  be  improved  by  using  a  variable  time  window  ending  at  the  first

maximum  of  the  vertical  trace  (Noda  et  al.,  2012).  Applying  this  dynamic  window,  also  the

estimates of this MA approach improves: Figure  IV.1:3 displays how the realtime back-azimuth

error  decreases  with  shorter  data  window  lengths  [3s  and  0.6s,  dynamic  window].  This  is

advantageous for real-time EEW, as shortest  time intervals  of  on average 0.25s  yield the most

accurate results. While the original approach averages over all smoothed sample-wise back-azimuth

estimates, applying Noda's modification, the last estimate of the moving average at the maximum of

the vertical trace was found to yield the highest accuracy. 
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For  low  magnitude  (M<4.0)  events,  a  significant  improvement  of  back-azimuth  estimates  is

obtained by applying a muting condition for samples with amplitudes under noise level,

S hor<N hor ∨ S vert<N vert , (IV.1-1)

avoiding the chaotic influence of noise. The independent condition for the vertical SNR is important

to  avoid large  errors  at  zero crossings:  The  flipping condition is  contingent  on the sign of the

vertical amplitude. It is hence prone to errors in proximity of zero crossings, being able to falsify

the back-azimuth value by 180 degrees, if erroneously applied. Zones of small Z-amplitudes, which

are especially sensitive to sign flipping (e.g. even solely through the windowed offset correction)

are therefore excluded from the analysis.

Method 3: Analysis using Principal Component Analysis (PCA). A principal component analysis

(PCA) is an eigenvalue decomposition that transforms the data into a new coordinate system, such

that the data on the first axis holds the largest variance. Subsequent orthogonal components are

computed in sequence of decreasing variance. Since the P-polarized particle motion should hold the

largest variance on the axis pointing towards the hypocenter, the axis of the back-azimuth can be
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Fig.  IV.1:3 Cumulative discrepancy for MA (N) estimates
for three different time windows (3s, 0.6s, dynamic window
according to Noda). The accuracy of estimates increases
with shorter time windows. Using the last estimate (N.FV)
at  the  maxima  of  the  vertical  trace  yields  a  higher
accuracy than the standard averaging approach.
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obtained from the the orientation of the first Eigenvector. A two-dimensional PCA was performed

on the horizontal data, analyzing all non-muted samples (eq.  IV.1-1) of the N-S and E-W traces

within the time window selected according to Noda et al. (2012). As the PCA only determines the

axis, but not the direction, there is a 180° ambiguity in direction that can be resolved by evaluating

the segment-wise direction at all samples to find the dominate direction of the particle motion on

this  axis  (a  “segment”  being  defined  as  the  vector  between  two  subsequent  samples  of  the

horizontal  data).  The  elementary  flipping  condition  (using  the  vertical  amplitudes)  is  thereby

applied at every segment. 

To obtain good results, signal samples used should lie significantly above noise level in order to

limit the arbitrary influence of noise on the back-azimuth estimates. Analysis of a South California

data set has shown that most outliers indeed hold a SNR smaller than 10. The amount of bad back-

azimuth estimates reduces significantly, when only data is  analyzed that hold a SNR
vert

>10 and

SNR
hor

>10. Signals of  interest  for  EEW originate  usually  from nearby locations,  have  stronger

amplitudes and thus should naturally  fulfill  these conditions.  The three optimized back-azimuth

calculation techniques (SV, MA and PCA) provide similar levels of accuracy (fig.  IV.1:4) while

using different computation techniques with individual flipping conditions. Each estimator produces

outliers,  the  values,  however,  tend to  vary  between  the  methods.  With  many signals  the  three

waveform components initially oscillate coherently but later loose coherence. In other cases they

gain coherency after initial fluctuations, emerging from the noise. In the first case SV is expected to

yield  more  accurate  back  azimuth  estimates,  in  the  latter  case  MA should  do.  This  can  be

understood, remembering that SV delivers an estimate based on the amplitude ratio of one single

sample only which usually lies before the end of the interval. MA averages over the full window,

but gives more weight to the latest samples at the interval's end. PCA weights each sample of the

interval equally. Similar estimates of all three methods indicate therefore lasting coherent waveform

oscillations, providing for trustworthy estimates. This can be used to construct a filter, based on the

similarity of the three estimates, only trusting the result when estimates are similar within a certain

error margin: Requiring the three independent methods to agree within 4° filters out all outliers of

the dataset. (fig. IV.1:4, bottom panel).
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Fig.  IV.1:4:  Histograms  for  SV,  MA,  PCA and  post-screened  estimates.
White  histogram  bars  include  low  SNR data,  while  grey  exclude  these
(values in parentheses).
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The individual methods have errors with a mean between 13.6° and 14.0° and a standard deviation

between 15.9° and 16.7° with outliers up to 180°. Requiring a SNR>10 and a 4° method-coherency

removes all outliers. The coherency threshold is obtained by evaluation of the existing catalogue; A

value too high will filter out good estimates and a value too low will allow inaccurate estimates to

increase.  For this choice of method-coherency the resulting mean error lies at  9.8° with a 7.8°

standard deviation, errors not exceeding 30° (fig. IV.1:5). 

Fig.  IV.1:5: (a) Post-Screening real time back-azimuth over Catalog back-azimuth. Black circles denote estimates
that passed SNR and coherency filter. Only requiring method coherency allows five more estimates to pass (grey
disks),  yet  makes  the  system  prone  to  wrong  estimates  for  less  strict  coherency  angles.  The  coherency  filter
predominately filters low SNR estimates. 75% of data over SNR threshold passes the coherency filter. (b) Cumulative
discrepancy for coherent estimates. Contrary to fig. IV.1:3, a narrow peak is given, ending at 30 degrees.  

The data window required for analysis averages to roughly a quarter second. 75% of the significant

data relevant for Earthquake Early Warning applications with SNR>10 pass the filter. These results

show, statistically speaking, that for seven out of ten events reliable back-azimuth azimuth estimates

are available to speed up and stabilize the early location. In the other cases the scheme will fall back

to a location solely based on NYAD  cells (next chapter), EDT and S-P regions.

Stations that produce a significant amount of bad estimates for catalog events should be excluded

for back azimuth estimations. Problems may be related to strong local topography or surrounding

lateral velocity variations, in which the particle motion would have to be back traced through the

model.  Seismometer orientation is a critical  factor that must be taken into account. Niu and Li
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(2011)  evaluated  the  China  Digital  Seismic  Network  (CDSN),  the  largest  permanent  seismic

network worldwide, towards rotation of seismic traces. They found that 270 of 803 evaluated broad

band stations had either a misorientation of the horizontal traces larger than 8 degrees, or falsely

named components or flipped polarities. The transportable array of the USArray, valued as one of

the best-installed networks worldwide, was set up using an interferometric fiberoptic gyroscope for

sensor orientation. Yet, Ekstrom and Busby (2008) found that 7.4% of stations were misoriented by

more than 7 degrees. This stresses the fact, that sensor orientation is an important parameter, that

can not be neglected when using single station back azimuth estimates in real time location.

Today's realtime location schemes rely on the P-phase detection of at least 4 stations. Introducing

BA information into the schemes yields already three independent location constraints (2 BA, 1

EDT), given only two detections.  Two of the three are being independent  of the local velocity.

Ambiguous solutions that often occur in the early stage of location are in most cases resolved by

BA information. Beside the stability aspect for the early solution, it is also the time gain that renders

realtime BA information valuable, especially for sparse networks. Using BA information, the largest

gain in time is given when events are located distant from the network station's Voronoi cell edge or

corners, meaningly lying significantly closer to one station than another. Events close to Voronoi

cell  corners result  in at  least three detections within a short time and therefore often yield fast

locations  solely  using  P-onset  information.  Depending  on  the  variance  of  the  network  latency

(which  may  slow  down  the  detection  of  later  phase  arrivals),  back-azimuth  information  can

significantly speed up the location process also in these cases, as it becomes available with the data

of the first detection. 

IV.2 Not-Yet-Arrived-Data

Horizontal back azimuth information may be obtained from arrays or three dimensional particle

motion. Alessandrini et al. (1994) showed that three dimensional back-azimuth/incidence vectors

may at times even successfully be traced back through the 3D-medium, which may open the door

for  early  hypocenter  depth  estimates.  Nonetheless,  with  only  one  back  azimuth  information

available, the constraint mapped into space is infinitively long, linearly widening with distance.

Once second and third detections occur, enough information is given to constrain a limited region

using S-P, P-P or additional back azimuth information. As this additional information may only
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arrive with time, it is useful to apply hypothetical constraints to constrain the location faster. So far,

location constraints were derived from seismic phases having arrived at one or multiple stations. In

this section, the location will be constrained by the absence of arrivals at one or multiple stations.

Rydelek  and  Pujol  (2004)  applied  the  concept  of  Not-Yet-Arrived-Data  (NYAD)  proposed  by

Horiuchi (2003), to cap inherently infinite EDT (P-P) curves which were obtained after two stations

triggered. Here, in the same manner, the NYAD cell can be used to cap the infinite back azimuth

beam. The NYAD concept translates the information that the event's signal has arrived at some

stations, but not yet at other ones, to a geometric region constraint. Accordingly the event can only

lie within a certain region, that depends on the network geometry and the time difference between

first detection and the latency corrected real time. Satriano et al. (2008) applied the concept from

the  time  of  first  detection  on,  using  the  NYAD region  as  initial  location  constraint,  which  is

shrinking  with  time.  The  uncertainty  of  picking  and  velocity  model,  however,  were  generally

neglected  for  NYAD  computations,  likewise  was  the  impact  of  latencies  underestimated  and

neglected  in  previous  studies.  The  EDT uncertainties,  if  considered,  were  treated  empirically,

attempting a one parameter correction to account for both, picking and velocity model uncertainties.

But as model uncertainties affect the constraint geometry differently than picking uncertainties, the

computed EDT regions did usually not reflect the true region based on given information. The same

holds for the computed NYAD region. In the following, we will derive a corrected form of the Not-

Yet-Arrived-Data (NYAD) concept, which will  then be used to cap the otherwise infinite back-

azimuth beams - already in the earliest  stage of real  time location: with only one detection. In

absence of three component stations or small aperture arrays, the NYAD region itself remains the

first region constraint. 

For now, the concept shall be laid out for a scenario disregarding uncertainties (fig. IV.2:1): Given

are two stations at  time  t=t P ,1  when station 1 triggers for a P-onset. If  station 2 would have

triggered in the same moment,

t P , 2=t+ε , ε→0 (IV.2-1)

an EDT hyperboloid could be constructed between both stations (taking the shape of a plane), on

which the hypocenter would be determined to lie on. Considering a sampled (gridded) space, the

simple equation defining the EDT surface (neglecting uncertainties) is given in
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(tt xyz
P , 2−tt xyz

P ,1)−(tP , 2−t P ,1)= 0 , (IV.2-2)

with  tt xyz
P ,i  being the P-phase travel-time between grid-point coordinate  [x , y , z ]  and station  i ;

and t P ,i  the P-arrival time at this station. As station 2 might trigger at this moment, but also up to a

certain point later in time, the possible area for location is not only given by the surface of the

hyperboloid  but  by  the  whole  inner  region of  the  hyperboloid  that  encloses  the  first  triggered

station. This is expressed by the inequality derived from eq. (IV.2-2)

(tt xyz
P , 2−tt xyz

P ,1)−(tP , 2−t P ,1)≥ 0 . (IV.2-3)

This inequality may also be evaluated at later points in time, with  t  in eq.  (IV.2-1) denoting the

current real time. A latency independent form is given by

(tt xyz
P , 2−tt xyz

P ,1)−( t̃ P , 2−t P ,1)≥ 0 , (IV.2-4)

with  t̃ P ,2  being the last  timestamp of station 2 that arrived at the computation center. As time

progresses without the second station triggering, t̃ P ,2  grows, wherefore the region, defined by the

inequality, shrinks. The region's boundary bends convexly around the first station, according to the

geometrical  behavior  of  EDT constraints  (fig.  IV.2:1,  top  right  panel).  Using  the  last  arrived

timestamps  (rather  than  the  current  true  time)  has  the  advantage  that  varying  latencies  and

interrupted data flow will not lead to inaccurate results but will just delay the shrinking process. 
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Fig.  IV.2:1:  NYAD concept  (2D  horizontal  cut).  Top:  Two  station  example.  Bottom:  Multi
station example. Left: At time of first detection. Right: advanced time before second detection.

If several stations are given, the region containing the hypocenter will fulfill all inequalities that are

composed  using  all  station  pairs  formed  between  the  first  and  every  other  station.  As  time

progresses,  this region shrinks in size and provides increasingly precise location estimates. The

region  is  bounded  by a  set  of  hypothetical  EDT constraints  corresponding  to  time  differences

between the first station's detection time stamp and the current time stamp of the other stations. The

binary probability (“mask”) for a location to fall into this region at any time is then given by

V xyz(t)= {1, ∧
s=2

D

[ tt xyz
P , s−tt xyz

P ,1 = t P , s−t P ,1]
⏟

a

∧ ∧
s>D

S

[ tt xyz
P , s−tt xyz

P ,1 ≥ t̃ P , s−tP ,1]
⏟

b

0, else

. (IV.2-5)

D  is  the  number of  stations  with  detections,  while  S  is  the  total  number of  stations  in  the

network. The logical “AND” iteration starts at index 2, comparing the first triggered station's arrival

time (index 1) with those of all other triggered and not-yet-triggered stations. Term a  accounts for
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stations  that  already detected (index 2 ...  D) while  b  evaluates the inequalities  determined by

stations without detections (index D+1 ... S). Without latency fluctuations, the region would start

out as Voronoi cell at time of first detection (Cua, 2005; Cua&Heaton, 2007). In practice, station-,

network- and system latency exists  and cause the cell  to  start  out  as  concave region,  possibly

several times larger than the Voronoi cell. The time t̃ s  which corresponds to the last time stamp

received from station s  lags behind the true time t  by the (prior unknown) total system latency

t lat
s .

t= t̃ s+t lat
s (IV.2-6)

The processing time at station and computation center may usually be neglected, but significant

latency variance is caused by network data transport delay and data packet length. 

t lat
s =tdelay

s +t packet
s . (IV.2-7)

The packet length causes a unpredictable variation in the latency, since a packet must be completely

filled  with  data  before  it  is  being  sent.  Contrary to  the  transport  latency,  its  concrete  value  is

unpredictable, but smaller then the packet length. Depending on the station- and event location, one

station might record the event's signal onset at the beginning of a packet while another station might

receive and pack it as last sample of the packet. In the latter case no latency would be caused by

packeting, while in the first the full packet length would add to the amount of total latency. The

maximum packeting delay possible is therefore given in the packet length t packet
s  itself. The packet

length in national networks often compasses several seconds but may be expected to average around

one second in near future. The South California seismic network began to update this length from 5

seconds to 1s starting in 2011. A reasonable network transport delay averages in national networks

today around 5 seconds (Brown et. Al, 2011), but varies strongly, with values of 10 seconds not

being  uncommon.  The  station  latency  could  be  predicted  for  the  next  incoming  samples,

extrapolating the transport latencies of the last received samples. Although simply using the last

available  time stamp (eq.  IV.2-4)  avoids  this  source of  error,  in  the following we will  use  the

predicting form to demonstrate the impact of latency on the NYAD region. Term b  of eq. (IV.2-5)

including latency variation then becomes

b= ∧
s>D

S

[ tt xyz
P , s−tt xyz

P ,1 ≥ (t−tdelay
s −t packet

s )−t P ,1] . (IV.2-8)
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If every station just experienced the same latency ( t lat
s =t lat ), the NYAD cell would again start out

as Voronoi cell, as not only timestamp t P ,1  would be observed t lat  seconds after true time t , but

also all other stations' data – the location would hence merely be delayed by t lat  seconds. However,

since  t packet
s  and  tdelay

s  denote uncertainties in latency (i.e. a latency variance rather then a fixed

constant delay) the maximum cell volume corresponding to this uncertainty is a multiple of the

constant-latency-scenario  (fig.  IV.2:2),  even  encompassing  other  stations.  This  enlarged  cell

displays the worst case scenario, with all stations lagging the assumed maximum latency behind the

station of first  detection.  In practice,  the true cell  will  therefore be more compact:  Some EDT

boundary segments will be closer to the outer cell, others closer to the Voronoi cell. Neighboring

stations with a smaller latency then the one of the first trigger will even generate EDT boundaries

that will concavely surround the epicenter –lying inside the Voronoi cell– at the time the first trigger

arrives.

Fig. IV.2:2: Effect of latency variation on a NYAD cell (light grey). In a latency-free
scenario the NYAD cell starts out as Voronoi cell (light grey), enclosing the station of
first detection (black triangle). Latency variance enlarges the initial cell to a concave
volume, constructed by hypothetical EDT surfaces. Now also other stations (grey
triangles) may be encompassed, as the wave might already have arrived at those
stations but the signal not yet have been received at the data center. The epicenter is
marked by a white x.

Data of neighboring stations with much smaller latencies may arrive significantly earlier, such that
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even phase pickers could trigger out of order (as the arrival of the P-phase to a later station could be

observed at the data center before its arrival at the first).  This circumstance caused many to be

skeptical towards the NYAD approach, as the algorithm would have to interpret this later arrival as

first arrival and consequently choose the “wrong” NYAD cell. Although this is true, the consecutive

deduction that the event would be mis-located because of that, is wrong. It would only be true if we

disregarded the latencies (e.g. by using the true time instead of the time stamp of the last arrived

sample). A simple geometric proof (fig. IV.2:3) shows that although the wrong cell would indeed be

initially chosen, the true location will yet be contained in that (due to respected latencies) larger

concave cell.

259



IV Constraints for Real-Time Location IV.2 Not-Yet-Arrived-Data
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Fig. IV.2:3: Geometric proof showing that a (due to latencies) wrongly chosen “first triggered station” does not lead to
mis-locations, if the NYAD cell is based on the last timestamps having arrived at the data center:

The figure shows different NYAD cell sizes for a minimal network (consisting of four stations A,B,C and D) in which the
data center received a trigger (only) from station A. The dark grey triangular cell (ending at the -0s edge towards B)
corresponds to a realtime configuration in which no station experiences significant latencies and only A has triggered
so far. A cell ending at the hyperbolic  -1s edge (consisting of the dark grey and intermediate gray region) would be
given if station B lagged 1 second behind. Due to the latency we cannot know if B actually did trigger in the last second
– at the same time as A or even up to a second earlier. The cell ending at the -2s edge (all grey regions) would be given
if B lagged 2 seconds behind. We will chose exactly this case for the proof:

Let be given that A,C and D show no significant latencies – their data arrives in true real-time. Only station B lags 2
seconds behind. Let also station B be the one that is closest to the event and experiences the first trigger. Let station A
experience the next trigger, 1 second after B. However, since A has no latencies, its P-arrival will be received first at
the data center and consequently be interpreted as the first trigger. The NYAD cell is consequently constructed around
A instead of B, whose P-trigger will only arrive 1 second after the one of A at the data center  (since B's trigger
occurred 1 second prior to A, but the transmission took 2 seconds). Since B lags 2 seconds behind, the initial NYAD cell
will be ending at the (-2s) edge (largest cell configuration). We remember that the NYAD edges are constructed from
hypothetical EDT surfaces (“the EDT would be here if  the trigger was reported right now”).  E.g.  the (-2s) edge
between A and B corresponds to an actual EDT that would be constructed if B triggered exactly 2 seconds earlier than
A: With the 2-seconds latency both triggers would arrive simultaneously at the data center and the EDT would be
generated based on the two trigger timestamps. Since (in this scenario) B experienced the trigger only one second
before  A,  the  (-1s)  edge  corresponds to  the  true  EDT curve that  will  be constructed once  the  trigger  of  B has
eventually arrived.  The epicenter location must therefore be located on the (-1s) edge,  which lies inside the initial
cell. The exact evolution is as follows:
At the instance of time when A's trigger is received, the cell ends at the (-2s) edge (largest cell configuration). The
trigger of B is received 1 second later: By this time the hypothetical EDT edge moved to the (-1s) position. Also the
edges related to C and D moved towards A, taking now a convex shape. The NYAD region hence shrunk to the dashed
blue region. Now B's trigger is received and the location is constrained to the EDT corresponding to the blue (-1s) edge
towards B.  As the NYAD edges shrink monotonically with time and the initial cell contains all later cells and all
possible future EDT segments (containing the epicenter), any event whose phase arrival occurred at B not earlier
than “the time corresponding to the latency” before A, must consequently lie within the initial NYAD cell. We know
that it did not occur earlier than that, as it would otherwise have arrived first at the data center.  The initial cell's
prediction concerning the location was hence accurate.

- 0s
- 1s

- 2s

A

B

C

D
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An “incorrectly” chosen cell will hence only lead to a less precise location constraint until the time

the  true  first  arrival  eventually  appears.  Once  two  P-arrivals  are  given,  the  NYAD  cell

instantaneously collapses into an EDT segment.

Usually, NYAD calculations are based on a discrete velocity model, like empirical minimum-1D-

models. While for EDT constraints often at least a one parameter uncertainty was added to account

for  picking  and  model  uncertainties  (Satriano  et  al.,  2008),  this  was  fully  neglected  for  the

computation of the NYAD cells (although they are constructed from hypothetical EDT segments).

Like  for  EDT's,  the  impact  of  model  uncertainties  unto  the  NYAD  region  is  large.  These

uncertainties are even amplified in depth, where EDT uncertainties occupy significantly more space

than in the plane spanned out by the network stations (NYAD cells are typically calculated for an

assumed hypocentral depth of 10km). To derive an uncertainty corrected from, we will reformulate

eq.  (IV.2-5) to include picking and model uncertainties. Term  a , corresponding to fixed NYAD

edges given by EDT's obtained from stations already having detected, then becomes

a= [ T max
M [1, s]≥T min

O [1, s]] ∧ [T max
O [1, s]≥T min

M [1, s] ] (IV.2-9)

with the minimum and maximum travel time values

T xyz ,min
M [1, s]=tt xyz , min

P , s −tt xyz , max
P ,1 , (IV.2-10)

T xyz ,max
M [1, s] =tt xyz ,max

P , s −tt xyz ,min
P ,1 , (IV.2-11)

and onset values

T min
O [1, s]=(t P , s−t P ,1) − (δ tP ,1+δ tP , s) , (IV.2-12)

T max
O [1, s]=(t P , s−t P ,1) + (δ tP ,1+δ tP , s) . (IV.2-13)

Term b , corresponding to the stations not yet having triggered, becomes simply
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[ T max
M [1, s]≥T min

O [1, s]] (IV.2-14)

with the same minimum and maximum travel time values but different hypothetical onset values

T min
O [1, s]=( t̃ P , s−t P ,1) − (2⋅δ tP , 1) , (IV.2-15)

T max
O [1, s]=( t̃ P , s−t P ,1) + (2⋅δ tP , 1) . (IV.2-16)

As the later station's P-onset is only a hypothetical one, its picking uncertainty is assumed to be

similar to the one measured at the first station. If the current time is chosen to be used rather then

the time stamp of the last sample arrived, t̃ P , s  needs to be replaced according to eq. (IV.2-6). Eq.

(IV.2-5) including travel time and picking uncertainties is finally given in 

V xyz(t )= {1, ∧
s=2

D

[ T max
M [1, s ]≥T min

O [1,s ]] ∧ [T max
O [1, s]≥T min

M [1, s] ]
⏟

a

∧ ∧
s>D

S

[ T max
M [1, s ]≥T min

O [1, s ]]
⏟

b

0, else

. (IV.2-17)

NYAD  would  be  sensitive  to  wrongly  identified  first  stations  if  latencies  are  not  correctly

addressed. Due to varying latencies, later detecting stations may arrive first in the data center and

appear as station of first detection, in which case a wrong bounding NYAD region would be chosen

and analyzed. However, when latencies are properly treated (e.g. by simply using the time stamp of

the last arrived sample rather than current true time), no false information is generated. Initially, still

the wrong cell may be chosen due to latencies, but it would always enclose the true hypocenter due

to it's extended size.

NOT-YET-ARRIVED-S

NYAD information allows to constrain the maximum hypocentral distance at the early stage of the

location  process.  This  allows  to  cap  otherwise  infinite  constraints  like  back-azimuth  beams or
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EDTs. This maximum distance is, however, not the most important information for early warning

systems.  The  minimum  distance,  which  translates  via  the  observed  amplitudes  to  a  minimum

magnitude, would be of much higher value, as its exceeding of the ML5.0 threshold is sufficient to

raise a warning. The real-time magnitude estimate is calculated from the peak amplitude prior to the

S-phase arrival (Lior et al., 2015) – the maximum value observed so far: Since larger amplitudes

may still be recorded afterwards,  the magnitude estimate may still grow, but  not decrease.  The

estimate  based  on  a  minimum  distance  would  therefore  provide  a  true  lower  bound  for  the

magnitude, allowing to warn at earliest times. However, there is no proxy for a minimum distance

in EEW, today.

To obtain this  information,  we can apply the concept  of  Not-Yet-Arrived-Data,  which  uses the

delaying of a P-phase at different stations, to the delaying of the S-phase at a single station. Like the

shrinking NYAD cell evolutionary constrains the location based on inter-station hyperbolic P1-P2

constraints, we can use the delaying of the S-phase at one station to construct a growing S-P sphere

- as evolutionary version of a S-P location: When a station detects a S-phase, the time difference to

the  earlier  arrived  P-phase  allows to  construct  a  (“circular”)  S-P constraint  that  surrounds  the

station. From this constraint (that due to uncertainties resembles a “band” surrounding the station)

can in turn the minimal and maximal hypocentral distance be derived. This standard use of S-P

constraining  is  in  particular  useful  in  cases  where  the  faster  P-phase doesn't  quickly  reach the

required amount of stations to constrain the hypocenter,  or in  cases where the event is  located

outside the network (where EDTs fail to resolve epicentral distances precisely). 

However, even  before the S-Phase arrival, valuable information about the minimum hypocentral

distance can be obtained, if it is certain that the S-phase has indeed not yet arrived: Counting the

seconds between lightning and thunder in a warm summer thunderstorm allows the estimation of

the distance (in meters) to the electric discharge by multiplying the counted seconds with approx.

350. While still counting the seconds, the minimum distance could be updated every second, in

calculating the distance as if the thunder arrived at this very instant of time. In the same manner a

growing hypothetical  S-P-constraint  can  be  constructed  at  any given time before  the  S-arrival,

defining a minimum hypocentral travel-time and -in turn- the minimum hypocentral distance to the

event. This constraint will be referred to as Not-Yet-Arrived-S-Phase (NYAS). As it constrains only

the  minimum travel-time,  the  spatial  resemblance  of  the  hypothetical  S-P constraint  will  be  a

“band” of “infinite thickness”, holding an inner radius but being unconstrained in the outer radius:

Every location in larger distance than the inner radius (i.e. the minimum distance) is a possible
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hypocenter  location.  This  constraint  forms  therefore  a  spherical  exclusion  zone  concerning  the

possible hypocenter location around the station, which grows with time. NYAS and NYAD together

-NYAS serving as inner boundary, and NYAD as outer boundary- form a location constraint that is

shrinking with time (fig.IV.2:4). 

Fig. IV.2:4:  NAYD – NYAS region for a near-surface event. a) The P-wave (wavefront indicated by blue circle)
propagating from the epicenter (black plus) reaches the first station (black triangle). Snapshot taken 0.1s after
first  detection.  The  S-wavefront  (red  circle)  will  arrive  8s  later.  b)  2  seconds later  the  hypothetical  S-P
constraint spans out an spherical exclusion zone with a 5km radius. c) 5s after first detection the minimum
hypocentral distance grew to 17km. d) 0.1s before the S-phase would arrive, providing a hypocentral distance
of approximately 33km, the NYAS minimum distance grew to 30km.

The minimum hypocentral distance can be derived from the minimum travel time obtained from a

hypothetical S-P-constraint. For a grid point (x,y,z) in space, the standard S-P constraint (neglecting

uncertainties) is defined as

(tt xyz
S −tt xyz

P )−(tS−tP)= 0 , (IV.2-18)
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with  t P  being  the  time  of  P-phase  arrival  at  a  given  station  and  t S  being  the  time  of  the

corresponding S-phase arrival at the same station. tt xyz
P  and tt xyz

S  are the travel times of the P- and

S-phase between the station and a given point (x,y,z) in space. Before the S-phase arrival, t S  is still

unknown but must be later than the current time t , or more correct respecting latencies, later than

the timestamp t̃  of the last received data package. t̃  lags behind real time t  by the latency t lat ,

again consisting of packaging and transport latency

t̃= t −t lat= t −t delay−t packet . (IV.2-19)

The region defined by 

(tt xyz
S −tt xyz

P )−( t̃−t P)< 0 (IV.2-20)

is therefore excluded from the solution space of possible hypocenter locations and can hence be

used to define a minimum hypocentral travel-time. For the special case of a homogeneous velocity

model, the hypocentral distance is given in

d min = v p⋅tt p = v p⋅
t̃−t p

(v p/vs−1)
= t̃−t p

(1 /v s−1/v p)
. (IV.2-21)

Including picking and model uncertainties the constraint can be formulated as

C xyz( t)= {1, [ T max
M ≥T min

O ]
0, else

(IV.2-22)

with the maximum value for the modeled travel time difference at grid point (x,y,z),

T xyz ,max
M =tt xyz ,max

S −tt xyz ,max
P (IV.2-23)

and the minimum value for the hypothetically observed arrival time differences
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T min
O =( t̃−t P) − (δ tS+δ t P) . (IV.2-24)

For the common case that tt xyz
S  is obtained from tt xyz

P  using vp/vs ratios, then tt xyz ,max
S  is given by

using  the  maximum  possible  value  for  vp/vs  tt xyz ,max
S =(v s /v p)max⋅tt xyz ,max

P .  Eq.  (IV.2-23) then

becomes

T xyz ,max
M =((vs /v p)max−1)⋅tt xyz ,max

P . (IV.2-25)

The picking (or detection) uncertainty for the S-phase δ tS  depends on the performance of the used

detection-algorithm:  The approach of NYAS requires the ability to know that the S-phase has not

yet arrived - or ideally, to detect the S-phase arrival in real-time in a reliable manner. Since the

scheme aims for the determination of the minimum travel-time, late detections of the S-phase would

be critical as they lead to an overestimation of the travel-time. Early detections, on the other side,

are uncritical as they only lead to an underestimation of the minimum - rendering the estimate for

the  lower  bound  of  the  travel-time  (and  distance)  less  precise  but  still  accurate.  Advances  in

automatic S-phase detection, like autoregressive prediction (Küperkoch et al. 2012) of the S-Phase,

allow a confident picking with error margins of ± 1s, albeit not completely in real-time as data after

the S-arrival is required to identify changes in the data's statistical properties. A small percentage of

S-phases is not picked at all. Although today's near real-time S-phase detectors are not yet able to

provide the immediate response NYAS requires, the following section shall show that the absence

of S-wave signatures can be determined confidently in real-time (trigger less than 0.5 seconds after

the S-arrival). As early detections are uncritical, but late detections must be avoided, the algorithm

aims to “drop-out” as early as S-phase similar signatures are detected (even if they do not stem from

a S-phase). The next section shall show that simple proxies tracking the quantities and changes in

polarization, amplitude, rectilinearity and dominant frequency allow a drop-out usually less than

0.2s after the S-phase arrival, with approx. 80% dropping out no earlier than 1 second before (fig.

IV.2:5). Setting the picking/detecting uncertainty δ tS  to 0.5s therefore allows to obtain robust real-

time estimates for the minimum S-P interval. 
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Fig.  IV.2:5:  Real-time  S-P  estimate  over  catalog  S-P  time  interval.  Using  the
described detector concerning the absence of S-wave signatures, for most cases the
drop-out  occurs  at  the  time  of  the  S-arrival.  Adding  a  half-second  picking
uncertainty  (dashed  diagonal)  is  sufficient  to  avoid  significant  over-estimations.
Early drop-outs occur frequently, but very little within the first two seconds (second
fine dashed line) after which the first magnitude estimates are calculated (requiring
distance estimates). Since the scheme doesn't yield late S-picks, it allows to provide
accurate lower bounds for the S-P interval and in turn the hypocentral distance.

Real-time detections are bound to be late, as a phase has to arrive before it can be detected and a

certain amount of post-arrival data has to be analyzed. Some characteristics may additionally only

become pronounced enough with time, e.g. when the S-phase emerges from a strong P-coda. In

such a case, e.g. the polarization will start to change from the time of the S-phase arrival but may

reach the trigger  threshold only seconds later,  when the  amplitudes  grew sufficiently.  One key

strategy to reduce delays to a insignificant minimum and yield real-time detections is to put the

reporting of hypothetical S-P time-differences on hold whenever the drop-out condition is expected

to be approached. If, following, the drop-out condition is reached, the algorithm marks a potential

S-phase as having arrived. As the last reported hypothetical S-P time-difference was given at the

time when the algorithm switched to “on-hold”, the true S-P interval is properly determined even

when the  drop-out  condition is  reached late.  If,  however,  the parameters  fall  back below their

thresholds  before  the  “drop-out”  condition  is  reached,  the  reporting  of  now  larger  S-P time-
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differences is resumed. This is typical for phases in the P-coda showing indications of S-phase

characteristics (e.g. rise in amplitude), but not reaching the drop-out condition -  the reporting is put

on hold until the phase passed by and the parameters fell back significantly under their thresholds. 

The detailed detector scheme, monitoring the absence of S-phase energy shall be constructed in the

following, beginning with the strongest parameter: the polarization.

Polarization. This parameter is the most important indicator for an S-phase arrival as the change in

polarization is (usually) the most robust and fastest to track and often sufficient to yield good S-

arrival time estimates. It will be computed as follows:

Given a three component velocity seismogram with traces X, Y and Z, the initial data window that

reaches the highest rectilinearity following the P-arrival is used to rotate the components into Eigen-

space using a Principal Component Analysis. The window is maximally allowed to extend to 0.3

seconds past the P-phase arrival, which corresponds to a ~2.5km hypocentral distance. Since the

seismogenic depth itself is generally deeper, no S-phase arrival is expected in this interval. The

rotated trace V ∥  will carry the significant part of the energy of the just recorded initial P-wave. As

the S-phase will follow a similar path, its energy is expected to appear on the two perpendicular

traces  V 1
⊥  and  V 2

⊥ . Similar to the H/V ratio, here the relationship between the Energies  E  on

∣V ⊥∣  and ∣V ∥∣  will be analyzed, where ∣V ⊥∣  is being defined as

∣V ⊥∣= √(V 1
⊥ )2+(V 2

⊥ )2 . (IV.2-26)

Here,  we  will  evaluate  the  difference  between  E ⊥  (S-polarization)  and  E∥  (P-polarization),

computed over a sliding window of one second interval

E[LS ]
⊥−∥= E [LS ]

⊥ −E[LS ]
∥ = ∑

s=LS−w

LS

(V [s]
⊥ )2−(V [ s]

∥ )2 , (IV.2-27)

with [ ] (brackets) indicating the sample index, LS  indicating the last available sample and w  the

1  second  window  length  in  samples  (i.e.  the  sample  rate).  For  larger  amplitudes  on  the

perpendicular polarized traces, E ⊥−∥  will be positive. Since the energy scales with the squares of
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the amplitudes (and since those are significantly higher during the S-arrival than when emerging

from the noise during the P-arrival),  E ⊥−∥  shows a clear distinct positive peak at  the S-phase

arrival (fig. IV.2:6-IV.2:9). E ⊥−∥  is, however, not normalized and therefore unreliable for realtime

picking. For automated picking and quality control a normalized difference-over-sum measure E R

will be used, comparing the energy of both components

E R =
E ⊥−E∥

E ⊥+E∥ =
E ⊥−∥

E total . (IV.2-28)

E R  displays the normalized energy difference between both components ∣V ∥∣  and ∣V ⊥∣ , ranging

from -1 to +1. Starting with  E R∼−1  at  the strongly polarized P-arrival,  it  rises  with time to

eventually  approach  +1  at  the  arrival  of  the  S-phase.  If  polarization  was the  only  parameter

evaluated,  the  drop-out  condition  could  be  defined  as  E R=0.7  and  the  on-hold  condition  as

E R=0.5 . Reliable pre-S timestamps (as the interval devoid of S-energy) would then be obtained by

delaying the update of t̃  (“the growth of the exclusion zone”) when E R  exceeds 0.5, continuing to

update when it falls back below 0.5, and fully stopped (drop-out) once it exceeds 0.7. The detection

uncertainty of 0.5s makes up for late detections, effectively delaying the report by a half second.

Figures IV.2:6 - IV.2:9 demonstrate this scheme on the data of a Ml 4.2 Dead Sea event recorded at

different sites with hypocentral distances ranging between 14km and 101km.  
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Fig. IV.2:6: Ml4.2 event in 14km hypocentral distance. The gray bar marks the early data used to rotate
the traces into the Eigensystem. Orange bars mark times where the reporting would be put on-hold due
to E R>0.5 . The growth of the NYAS-sphere is put on-hold for 0.4s prior the arrival of the S-phase at
approx. 3.7s. The S-phase arrives at the beginning of the second on-hold phase, which is followed by the
final drop-out condition ( E R>0.7 ). With the assigned S-detection uncertainty of 0.5s, the S-P interval is
accurately determined.

Fig. IV.2:7: Ml4.2 event in 47km hypocentral distance. The gray bar marks the early data used to rotate
the traces into the Eigensystem. Orange bars mark times where the reporting would be put on-hold due
to ER>0.5 . The growth of the NYAS-sphere is delayed (on-hold) for 0.2s prior the arrival of the S-phase
at approx. 7.7s. The algorithm marks the end of the S-P interval 0.2 seconds before the arrival of the
significantly higher amplitudes of the S-phase.
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Fig. IV.2:8: Ml4.2 event in 53km hypocentral distance. The gray bar marks the early data used to rotate
the traces into the Eigensystem. Orange bars mark times where the reporting would be put on-hold due
to ER>0.5 . The growth of the NYAS-sphere is delayed (on-hold) for 0.9s in total prior the arrival of the
S-phase at approx. 9.4s. The time of drop-out ( E R>0.7 ) agrees with the S-phase arrival, but is slightly
late. Subtracting the assigned S-detection uncertainty of 0.5s, the S-P interval is accurately determined.

Fig. IV.2:9: Ml4.2 event in 101km hypocentral distance. The gray bar marks the early data used to rotate
the traces into the Eigensystem. Orange bars mark times where the reporting would be put on-hold due
to ER>0.5. The growth of the NYAS-sphere is delayed (on-hold) for 0.4s prior the arrival of the S-phase
at approx. 16s. Despite the lower SNR conditions, the ER curve still identifies the S-energy. However, the
first higher amplitudes arrive shortly before the drop-out of the algorithm, which in this case relies on
the 0.5s detection uncertainty to properly determine the S-P interval.
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These timelines show that a simple detector could be based solely on the polarization. However, as

the last example (IV.2:9) demonstrates, may relying on a single parameter lead to late drop-outs

when the  S-phase characteristic  is  not  as  pronounced -  alike for amplitudes,  whose increase is

typical for S-phase arrivals, albeit not always observed with short epicentral distances. A late (or

missed) drop-out can only be avoided by lowering the parameter's threshold, e.g. drastically for the

amplitude criteria, where we can only demand it not to decrease. For a single parameter, this would

of course often lead to very early drop-outs. To avoid this, we will now add other parameters and

require  their  mutual  fulfillment  -  meaningly,  all  (or  most)  parameters  need  to  exceed  their

thresholds for  a  drop-out.  This  condition  of  a  mutual  fulfillment  of  multiple  parameter criteria

“pushes” the otherwise early drop-out back to later times, as earlier phases do exhibit some but not

all  characteristics  of  S-phase  arrivals.  It  hereby  provides  the  stability  that  is  needed  to  apply

individual parameter thresholds that are low enough to always be met (avoiding late picks). 

The sum of parameters exceeding their respective thresholds θ  forms the S-potential ϕ  ,

ϕ= [E R>θE] + [Δt E R>θdE ]⏟
polarization

+ max([R>θR] , [∣Δt R∣>θdR])⏟
rectilinearity

+ [AC>θA]⏟
amplitude

+ max([Δt f 0<θdf ] , [∣Δt Δt f 0∣>θddf ])⏟
frequency

(IV.2-29)

using the Iverson bracket notation

[C ]={1, if C is true
0, otherwise

(IV.2-30)

being  based  on  the  energy  ratio  E R  ,  the  rectilinearity  R ,  the  amplitude  contrast  AC ,  the

dominant frequency f 0 , their change rates ( Δ t ) and their corresponding detection thresholds θ .

The max function serves as logical “OR” for parameters where both, a high value or a significant

change over time signify the S-arrival. With the used parameter set the S-potential ranges in values

between 0 and 5. Where the first example (fig. IV.2:6-IV.2:9) demonstrated the “drop-out” and “on-
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hold” concept concerning a single parameter, it  will now be applied to  ϕ . The drop-out occurs

when  ϕ=5 . The algorithm switches to “on-hold” when approx. two thirds of parameters exceed

their  individual  thresholds,  when  ϕ=3 ,  indicating  the  possibility  of  an  approaching  S-phase

arrival. The additional parameters shall be laid out in the following.

Polarization change. Since the S-phase arrival is always accompanied by a positive trend in E R

we will require as first additional criterion that the smoothed change rate Δ t E R  has to be positive.

The smoothed change rate Δ t  measures the difference in arithmetic mean between two neighboring

sliding  windows  to  avoid  high  frequency  fluctuations  that  would  occur  using  a  simple  finite

difference (representing ∂/∂t ) between neighboring samples. We further use a significant shorter

second window (approx. 0.1s long, compared to a 1s long first window) ending at the latest sample

available (LS) to detect property changes faster.

 

(Δt ER)[LS ]=
sr

w1+w2 ([ 1
w1 ∑

s=LS−w1−w2

LS−w2

ER ,[s]] − [ 1
w2 ∑

s=LS−w2

LS

E R , [s ]]) (IV.2-31)

The quotient of the sample rate (sr) and both window lengths in samples (w1 & w2) takes account

of the time interval over which the change is being observed. 

Rectilinearity. Both, arriving P- and S-phases are linear polarized (in a homogeneous medium) and

should exhibit an increased rectilinearity R ,

R[LS ]=1−(λ1+λ2

2⋅λ0
)[LS−w , LS ]

. (IV.2-32)

The three Eigen-values  λ0,λ1,λ2  ( λ0  being the largest) are obtained by a Principal Component

Analysis  over  a  1s  long window.  Although the  S-phase  is  linear  polarized,  its  arrival  is  often

accompanied by a decrease in rectilinearity. This is because the polarization direction changes from

the less polarized P-coda to the S-phase.  While the S-phases slowly increase in  amplitude,  the

superposition  of  the  perpendicular  polarized  phases  often  causes  a  drop  in  the  observed  total

rectilinearity.  To account for this  effect,  not  only a  high rectilinearity  but  also a  change in  the
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rectilinearity

∣(Δt R)∣ (IV.2-33)

is considered as trigger condition, which may be positive or negative. Δ t  Is again computed as in

IV.2-32.

Amplitude  contrast. The  S-phase  is  usually  characterized  by  an  increase  in  amplitude.  This

increase is significant for distant events, where P- and S-phase are separated, but may be weak with

local events, where P-and S-phase overlap. The amplitude criterion for potential S-phase arrivals is

therefore reckoned to be fulfilled if the contrast is at least unity

AC≥1 , (IV.2-34)

although the optimal threshold for the analyzed data set is slightly higher (~ 1.2). This criterion

could be further optimized to reduce early drop-outs by a time-dependent threshold, which increases

as time elapses from the P-arrival. The amplitude contrast is defined as

AC ,[LS ]= [ max
LS−w2<s<LS

∣V [ s]∣ ] / [ max
LS−w2−w1<s<LS−w2

∣V [s]∣ ]
with

V [ s ]=√X [s ]
2 +Y [s ]

2 +Z [s ]
2 ,

(IV.2-35)

comparing  the  peak  amplitude  between  two  sliding  windows.  A shorter  second  window  (w2)

(approx. one tenth of the 1s long first window)  allows again for an early and close-to-real-time

recognition of the increasing amplitude.

Dominant Frequency. The fourth quality used is the S-phase’s lower dominant frequency f 0 .  At

the S-phase arrival we therefore expect to observe a decrease, yielding a negative frequency change

rate 

Δ t f 0<0 . (IV.2-36)
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As positive and negative rates are observed at all times, also a high impulsiveness of the frequency

change

∣Δt Δt f 0∣ , (IV.2-37)

is required, constituting the last criterion for in this detector. To estimate the impulsiveness localized

around the evaluated time, the second application of  Δ t  uses a much shorter length for the first

window (w1) than usual (~ 0.2s long). The dominant frequency observed on the horizontal traces

will be approximated by 

f 0,[LS ]=
sr
4w

⋅
∑

s=LS−w

LS

√ ( X [ s]−X [s−1])
2+(Y [ s]−Y [ s−1] )

2

max
LS−w<s<LS

√X [ s]
2 +Y [ s ]

2
, (IV.2-38)

measuring the arc length of the signal, which is proportional to the signal's dominant frequency. The

quotient of the sample rate (sr) and window length in samples (w) normalizes the duration. The

factor 4 relates to the fundamental arc length of a 1Hz sine with unit amplitude. Since the arc length

also scales with the amplitude, we further normalize by the highest amplitude observed in the 1s

interval. Due to this correction, the approximation decreases for both, a signal whose frequency

decreases as also for a signal whose amplitude increases. Both are characteristic for the S-phase

arrival.

The optimal thresholds were determined by a multi-dimensional grid-search to

θE=0

θdE=0.15 1
s

θR=0.3, θdR=0.11 1
s

θA=1.2
θdf=−0.02 1

s2 , θddf=0.14 1

s3

. (IV.2-39)

Figure IV.2:10 shows typical timelines of the individual parameters and the resulting S-potential. 
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Fig. IV.2:10: Typical evolution of parameters and S-potential (bottom panel) between P-and S-phase arrival (vertical
dashed line). The second vertical dashed line indicates the end of the data interval being used to rotate the traces into
their Eigen-space ( ∣V ∥∣ , V 1

⊥  and V 2
⊥ ). The top panel displays the three components of the recorded seismicity. The

next four panels display polarization, rectilinearity, dominant frequency change and amplitude. Blue curves indicate
the respective change rates. After rising from -1, the polarization fluctuates around 0 in the coda and approaches +1 at
the S-arrival, accompanied by a positive growth rate. The rectilinearity shows high absolute values and change rates at
both  phase  arrivals.  The  S-phase  shows  the  expected  drop in  dominant  frequency  and two  distinct  peaks  in  the
impulsiveness. The amplitude contrast is slightly raised at the arrival. The S-potential reaches its drop-out threshold
(top horizontal dashed line) at the beginning of the S-phase arrival. The algorithm switches to on-hold (pausing the
reporting of times) when reaching the on-hold threshold (lower horizontal dashed line), e.g. several times in the P-coda
and just before the S-arrival. Since the algorithm is still on-hold when the drop-out is reached, the latest timestamp
concerning the absence of S-phase energy is reported right before the visual S-phase arrival.
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The use  of these  four  parameters and their  time derivatives provides assurance  concerning the

absence of S-phases in real-time (fig. IV.2:5) and thereby allows to assess a lower bound for the S-P

interval and (via the P- and S velocity model) of the hypocentral distance. This information in turn

can be used to obtain real-time estimates of the lower bound of the event magnitude, e.g. using the

peak displacement of the early P-phase. (The peak displacement of the first 2 seconds following P-

arrival correlates well with the event magnitude, saturating at about M≃6.5  (Lancieri and Zollo,

2008).) For larger magnitudes, the longer rupture process requires larger time windows for proper

estimates. Early estimates can therefore generally only provide a lower bound for the magnitude, as

the rupture and received signal amplitudes may still grow with time. This estimate requires the

knowledge  of  the  hypocentral  distance.  NYAS  provides  minimum  hypocentral  distances,  and

supports therefore true minimum magnitude estimates at a given point in time, often already before

a second P-phase detection occurs. This allows an efficient warning when the minimum magnitude

exceeds the common warning threshold of M L=5  (given the confidence that the signal is indeed

seismic,  which can be gained by arrays). The NYAS' growing lower bound for the hypocentral

distance complements the shrinking maximum bound obtained from the NYAD cell. As the growth

of the NYAS sphere freezes as soon as possible S-signatures are registered (“on-hold”), it is more

reliable than real time S-picks and S-P constraints, as only a lower bound is predicted and the drop-

out condition may be set very low. Taking up for instance the initial example that solely relied on

the polarization parameter (fig. IV.2:6 - IV.2:9) - even for a low drop-out condition of E R>0  (i.e.

as  much energy on the traces  perpendicular  to  the  P-trace as  on the  P-trace itself),  significant

information is added to the system at barely any risk. With this drop-out condition, prediction would

have stopped in figures (IV.2:6 -  IV.2:9) with a minimum hypocentral distance of 7km for a true

hypocentral distance of 14km (fig. IV.2:6), 14km of true 47km (fig.IV.2:8), 16km of true 53km (fig.

IV.2:10) and 33km of true 101km (fig. IV.2:9). As the magnitude depends on the logarithm of the

distance ( 1.6⋅log10(d ) ) these early estimates would have caused an underestimation of less then 1

magnitude unit. This shows that NYAS can be formulated in a safe way that allows to add valuable

information without adding the risk of late picks. In contrast to NYAD cells, the Not-Yet-Arrived-S

(NYAS) constraint is based on single (independent) stations. It is therefore not affected by inter-

station latencies and can be applied independent of the network at any given station, e.g. allowing

the application in on-site-systems. Such systems may be established using small-aperture-arrays,

providing location by back-azimuth and NYAS, slowness estimates for event characterization, inter-

array  relative  amplitudes  as  discriminator  between  anthropogenic  and  seismic  events  (via  the
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distance), and advanced S-phase picking based on beam-steering and variations in slowness. These

real-time small-aperture networks are currently developed and evaluated within the DeadSeaNet

project (Wust-Bloch et. al., 2016). 

IV.3 Sequential Real-time Constraining of Hypocenter Locations

After having derived and analyzed the different constraints (NYAD,BA,EDT,S-P) individually in

the context of a real-time analysis, these can be now used combined to constrain hypocenters in

real-time. The use of these (mostly independent) constraints adds robustness in case of ambiguities

and is therefore well suited for an early location that is based on the few data given by the onsets of

one to five stations. Evaluating latency corrected NYAD and NYAS regions, back azimuth beams,

hyperbolic EDTs and S-P constraints, it integrates the search for the point of highest likelihood in

space-time  as  well  as  its  uncertainties.  Evaluating  uncertainties  in  picking  (e.g.  by  multi-pick

analysis)  and velocity  model  allows to  yield  robust  congruent  regions,  identifying  the possible

hypocenter  region,  by  superposing  the  individual  constraints.  This  allows  to  obtain  reliable

minimum and maximum distance estimates, contrasting the widely used approaches in realtime

location schemes today that  only  identify the  most  probable epicentral  distance  by minimizing

residua sums or evaluating likelihood functions (e.g. based on hyperbolic constraints) (Satriano et

al.,  2011).  Having  minimum  and  maximum  bounds  for  the  distance  allows  for  a  real-time

assessment  of  lower and upper  bounds of  the  event  magnitude  at  a  given time.  Especially  the

minimum distance, yielding a lower limit in magnitude, is of special importance as the magnitude

can only grow with time (e.g. for a still growing fault plane). The minimum magnitude rising over a

given  threshold  (e.g.  ML  5)  may  therefore  be  used  as  a  warning  trigger.  The  focal  depth  is

commonly fixed (to an expected value based on the catalog) until  the fourth P-phase detection,

when first depth estimates become available. Fig. (IV.3:1) shows an example for a typical real-time

location procedure, using a shallow event scenario in the Dead Sea Region with the DeadSeaNet

network  configuration:  The  detection  of  a  first  P-onset  initiates  the  location  procedure  by

computing a NYAD cell, whose volume gradually shrinks with time, combined with a NYAS sphere

growing with time  (fig. IV.3:1a). Until the time of second detection this distance interval narrows.

Only fractions of seconds after the first  detection,  a first  back-azimuth beam can be formed to

intersect NYAD edges, thus often reducing the maximal distance (fig. IV.3:1b). 
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Fig. IV.3:1: Evolving location
(dashed  region)  by
superposition of constraints.

a) t=0.3s. A third of a second
after first detection at ENGD,
the  first  back  azimuth  limits
the  maximum  epicentral
distance  in  conjunction  with
the  large  NYAD region.  The
blue  dashed  circle  indicates
the p-wave front, propagating
from  the  epicenter  (bold
black cross).

b) t=2.5s. Until the S-arrival
at  ENGD,  the  not-arrival  of
the  S-phase  spans  out  a
growing  sphere  around
ENGD,  effectively
constraining  a  minimum
hypocentral  distance.  The
shrinking  NYAD  cell  further
reduced  the  maximum
distance.

c)  t=2.8s.  The  arrived  S-
phase  constrains  a  circular
region around ENGD, defines
an  updated  minimum  and
maximum distance, as well as
maximum hypocentral depth.
The  intersection  with  the
back azimuth defines a small
region,  enclosing  the
hypocenter.  Also,  the
maximum  hypocentral  depth
is fixed.

d) t-2.9s. The arrival of the p-
wave  at  the  second  station
(OVNT) creates a hyperbolic
location  constraint  (EDT)
between both stations, which
in  conjunction with  S-P and
back  azimuth  constrains  a
precise patch, containing the
hypocenter. 

e)  t=3.2s.  Shortly  after,  the
second  back  azimuth
obtained  at  OVNT stabilizes
the location.

f)  t=5.4s.  The  p-wave
arriving  at  the  third  station
KALI  generates  2 additional
EDTs,  further  constraining
the hypocenter location.
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After  2-3  seconds,  first  magnitude  estimates  based  on  peak  velocity  resp.  displacement,  are

provided.  Since  a  three  second  window  contains  enough  spectral  content  to  determine  the

magnitude up to ML 6.5, a minimum magnitude (depending on the minimum hypocentral distance)

may already be determined (and possibly exceed the warning level) at this time. Once the first S-

phase arrives and can be detected with a sufficiently high confidence level, the hypocentral distance

interval is fixed to a narrow interval (fig. IV.3:1c). In combination with the already determined back

azimuth beam, the hypocenter location would be limited to a small region. However, often the P-

phase is registered at a second (or even third or fourth) station before the S-phase reaches the first

station and not every S-detection reaches a confidence level high enough to be used in automated

schemes. With a detection at a second station the location is constrained to lie within an EDT region

within the bounds of the further shrinking NYAD cell and growing NYAS sphere (fig. IV.3:1d). The

first back-azimuth had already further constrained this region. Often, the location is sufficiently

constrained by EDT and back-azimuth that NYAD cell information becomes redundant. Fractions

of  seconds  later,  the  second  back-azimuth  beam  further  stabilizes  estimations  of  minimal  and

maximal  epicentral  distance  (fig.  IV.3:1e).  With three P-detections,  three hyperbolic  constraints

exist, which intersect in (at least) one common region (fig. IV.3:1f). Inside the network this region is

usually  precise,  outside  the  network  it  may  be  extensive.  In  both  cases,  multiple  ambiguous

congruent regions may exist at this stage for the hyperbolic system, but are usually resolved by the

back-azimuth information. 

Two real-time scenarios of California events are presented in the following chapter, demonstrating

the  performance  gain  that  is  obtained  by  harnessing  the  various  constraints  (especially  back-

azimuth), over a standard P-phase based location.
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V Application Examples

This chapter will provide several examples of the application of distinct constraints for earthquake

location, demonstrating the different techniques and measures, derived in the previous chapters. The

first example will describe the analysis of a weak event that was recorded at the Voelkersen Gas

field, Nov 22nd 2012. Here the the uncertainty driven analysis will be contrasted with the classical

approach, further demonstrating the importance of 3D-models and proper uncertainty measures. In

the second example an anthropogenic event will  be used to demonstrate the analysis for highly

ambiguous phase arrivals.  While  in the first  two examples the data  of up to twelve stations is

evaluated, the third example will focus on a scenario working with a minimal amount of given

information in the field of real time location for earthquake early warning.

V.1 Voelkersen Gas Field Event 

On Nov 22nd, 2012 an event of Magnitude ML2.9 was detected in the Voelkersen Gas field. The

official report (Bischoff et al., 2013) located the event to 52,97° North ± 1,6 km, 9,212° East ± 2,5

km in a focal depth of 4,9 km ± 1,6 km using HYPOSAT (Schweitzer, 2001) with a 1D-layer-

model. The gas field consists of a sandstone layer in 4.8km depth, from which 1.2⋅109 m3  gas are

extracted every year. The continual decrease in pore-pressure within the reservoir leads to stress

changes which may induce seismic events. According to the report, the event seems to be located in

the depth of the gas field sandstone layer. Since 2008 three other events have been located in the

vicinity of the gas field with Magnitudes between ML1,9 and ML2.8 for which the focal depths were

determined to 5-10km, 4 ± 5 km and the third being undetermined. The following analysis serves to

demonstrate the concept of distinct constraints, side by side with residua estimates and classical

jackknifing,  demonstrating  the  impact  that  stations  at  different  depths,  different  models  and

uncertainty  measures  exert  on the  solution.  It  is  further  meant  to  visualize  the  uncertainties  in

location that we usually overlook. The report (Bischoff et al., 2013) was based on a 1D-layer model,

which is derived from Dahm et al. (2007). Here, we will take this model as starting point and will

finally constrain the solution using a now given 3D-velocity model. 
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V.1.1 Data

The used dataset consists of 12 stations of velocity and accelerometer sensors, on which P- and S-

phase onsets are manually picked. While p-phases can be determined with high accuracy, the S-

phases are often masked. After rough p-picking, a pre-location is performed. 

Fig.  V.1.1:1:  Pre-location.  RMS  plot.  A  pre-location  based  on
preliminary  P-picks  allows  to  sort  stations  by  epicentral  distance  for
better phase identification by visual correlation..

This allows to sort the the stations by their (approximate) epicentral distance, providing the analyst

the  possibility  to  follow the  phases  through the  expanding  wave  field,  yielding  a  better  phase

identification. The epicentral distances range between 6km and 43km. Several traces (e.g GROSS,

fig. V.1.1:3 marked by dashed box) show a clear bi-modal wave-package in the S-phase. Tracking

this signal pattern in traces where the S-phase can hardly be identified (eg. BGR3), provides also

there for a rough identification. In some of those cases, however, we need to settle with a rather

large picking-interval than with a pick of a specific onset (e.g. TRIFS).
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Fig. V.1.1:2: Recorded three-component signals of BGR3, TRIFS, BGR7 and HB6S. Blue dashed lines
mark the phase onset, resp. the center of the uncertainty interval (blue box). Dashed boxes mark the
pattern of the S-phase wave package.Time axis is in seconds after 20:37:30.
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Fig.  V.1.1:3: Recorded three-component signals of BGR1, ABW5S, GROSS and LOENS. Blue dashed
lines mark the phase onset, resp. the center of the uncertainty interval (blue box). Dashed boxes mark
the pattern of the S-phase wave package. Time axis is in seconds after 20:37:30.
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Fig.  V.1.1:4: Recorded three-component signals of VOR1B, BGR5, LANGS and SCHUS. Blue dashed
lines mark the phase onset, resp. the center of the uncertainty interval (blue box). Dashed boxes mark
the pattern of the S-phase wave package. Time axis is in seconds after 20:37:30.
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As the  system is  well-overdetermined,  it  is  sufficient  to  treat  picking-uncertainties  as  intervals

rather than Level-of-confidence curves. As the stations are part of different networks, we will make

the assumption  that all digitizers are synchronized and that the error (due to e.g. unsynchronized

drifting data loggers) is well below the picking uncertainty. Practically this would be evaluated by

analysis of teleseimic signals, allowing the time shifts be corrected. 

Station ID lat lon elevation P-onset S-onset dP [s] dS [s]

ABW5S 53.113699 9.223998 23 20:38:15.00 20:38:18.48 0.17 0.13

GROSS 53.109322 9.399226 20 20:38:15.66 20:38:20.21 0.11 0.71

HB6S 52.999569 9.087641 28 20:38:14.51 20:38:17.87 0.10 0.69

LANGS 52.860865 9.591874 39 20:38:17.50 20:38:22.61 0.08 0.20

LOENS 52.987822 9.582618 60 20:38:16.57 20:38:21.44 0.11 0.17

SCHUS 53.119762 9.787329 87 20:38:19.91 20:38:27.67 0.11 0.53

TRIFS 52.916618 9.243451 20 20:38:13.66 20:38:16.00 0.26 0.10

VOR1B 53.196064 9.147802 -173 20:38:17.05 20:38:21.83 0.09 0.44

BGR1 52.99475 9.39985 [0] 20:38:14.29 20:38:17.60 0.12 0.36

BGR3 53.01995 9.24733 [0] 20:38:13.07 20:38:15.29 0.07 0.17

BGR5 53.04473 9.57024 [0] 20:38:16.80 20:38:21.87 0.12 0.41

BGR7 52.95723 9.3143 [0] 20:38:13.32 20:38:15.49 0.04 0.24

Table  V.1.1.1: Station data; dP and dS specify the picking uncertainties for P- and S-phases. Vor1B is a

borehole station.  Depths  for  BGR stations were  undefined in  the data set.  Based on topography their

elevation would range between 41m-63m. Due to the large station-to-station distances the depth error is

insignificant for the analysis.

V.1.2 P-P based Location

Classical  graphical  Jackknifing  would  now  search  for  the  region  of  highest  line  density  (fig

V.1.2:1a), disregarding the timing uncertainties. Even so, using all given data, the epicenter can be

roughly identified.  Now available  vertical  cross  sections  also reveal  the  agreement  over  depth,

indicating the focal depth, but a quantitative description of the hypocenter region in this manner is

difficult.  A close look reveals that not all constraints agree with the solution: Choosing a small

subset  of  data  given  in  the  onsets  of  BGR1,  BGR3,  BGR5,  LOENS  and  SCHUS  for  better

overview, shows that the point of maximal line density stands in discrepancy to several constraints.

Re-evaluating the discrepant constraints concerning their phase onsets shows that the P-onsets are

non-ambiguous.  In  classical  Jackknifing  the  analyst  would  now  vary  the  onsets  of  discrepant

constraints to estimate their impact on the constraint shape and possibly bring the constraints into

agreement. This sensitivity analysis can now simply be bypassed by 
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Fig. V.1.2:1: Cross-sections of exact hyperbolic constraints of a) all P-phases b) the subset of BGR1, BGR3, BGR5,
LOENS and SCHUS. The point of highest line density in (a) stands in discrepancy to several individual constraints
(b).

applying the assigned picking uncertainties of fig. V.1.1:2 - V.1.1:4:

Fig.  V.1.2:2:  Applying  picking  uncertainties  widens  the  constraints.
Although this increases overlap and agreement of constraints, no region
of  common  agreement  is  found.  The  color  intensity  scales  with  the
amount of agreeing constraints.
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This widens the constraints to cover all regions that would have been covered by varying all onset

picks  in  all  combinations  within  the  assigned  uncertainty  windows.  Although this  creates  here

regions of increased constraint agreement, no feasible region can be found. With properly assigned

picking uncertainties and the station locations being properly known, the error should be found in

the used velocity model.  Most inconsistent constraints can be linked to the most distant  North-

Eastern station SCHUS, which indeed indicates inconsistent model assumptions. The next step is

therefore to include velocity model uncertainties. Although more detailed information is available,

we will now apply a simple globally constant model uncertainty: For the selected subset of stations,

first congruent regions appear with a 1% uncertainty in velocity (fig. V.1.2:3a). To obtain a point for

which the constraints of all 12 stations agree, a 3% uncertainty is required (fig. V.1.2:3b, only the

subset of stations is shown). The congruent zone now describes all the locations that are possible by

variation  of  onsets  and  velocity  model.  Looking  only  at  the  subset  of  stations,  this  region  is

extensive (unlimited) (fig. V.1.2:3b).

Fig. V.1.2:3: Constraints with picking- and model uncertainties. a) 1% model uncertainty b) 3% model uncertainty.
For (a) small clusters of congruent agreement appear. To satisfy the constraint conditions of all twelve stations a 3%
velocity uncertainty is required. For the subset of stations this yields an extensive zone of congruency.

Adding the constraints of stations BGR7 and VOR1B reduces the congruent region (fig.  V.1.2:4)

significantly. Yet, the current subset of solutions is located on one side of the location, which poses

an ill-conditioned problem (as given for an event right outside the network edge): The solution is

robust in azimuth but not in distance. 
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Fig. V.1.2:4: Added stations BGR7 and VOR1B. a) cross sections of constraints. b) projection of congruent zone. The
depth is well constrained.

The congruent region (in fig. V.1.2:4b) shows that the solution is already well constrained in depth.

This is due to the refractor at 5.5km depth where the velocity jumps from 4.1km/s to 5.85km/s,

which limits certain hyperboloids (e.g. PBGR1-PSCHUS) to the space above. Using the complete set of

constraints  the mapping takes  over  the character  of a  discrete  PDF with a  localized maximum

region  of  constant  likelihood  (fig.  V.1.2:5a).  The  congruent  zone  is  a  compact  sharp  region.

However, due to the lack of additional data, the uncertainty in the velocity model is unknown. Until

now, a homogeneous uncertainty in velocity of 3% was assumed. This leads to coherent agreement

of all hyperbolic constraints, resembling the point of maximum likelihood for location, yet, it does

not  provide  a   reliable  extent  of  the  hypocenter  region  (i.e.  location  uncertainty).  The  model

uncertainty might be well larger which would lead to larger regions of constraint agreement. Indeed,

strong perturbations exist in the first layer boundary, which resembles a geological fold. Due to the

fold-structure, several regions are assigned the wrong (layer) velocity by the 1D-model. Increasing

the uniform velocity uncertainty from 3% to 10% leaves the solution well constrained horizontally

but extends the congruent depth interval to [-1.6, -9.5]km (fig. V.1.2:6).
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Fig.  V.1.2:5: Solution for the complete set stations for 3% variation in velocity model. Similar to the first RMS
solution  (fig.  V.1.1:1)  the  a)  region  of  similar  probability  appears  vertically  stretched,  but  horizontally  well
constrained. b) the congruent zone limits the solution to a small sharp region.

Fig.  V.1.2:6:  Solution for  the complete set  of  stations for  10% variation in  velocity  model.  a)  Cross-section  of
constraints b) projection of larger, but constrained congruent region.

However, due to the high contrast of velocities at this border (jumping from 4.1km/s to 5.85km/s at

the  Zechstein-base),  this  leads  to  velocity  errors  of  even  up  to  30%.  Increasing  the  model

uncertainty uniformly to this amount, would leave the solution hardly constrained as the example

with only a 20% uniform uncertainty (fig. V.1.2:7) shows,
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Fig. V.1.2:7: Solution for the complete set stations for a uniform 20% variation in velocity model. a) Cross-section of
constraints b) projection of larger, but constrained congruent region.

providing  no  useful  information.  Always,  when  additional  information  is  available,  general

uncertainties can be reduced and the precision increased. By increasing the precision of the model

description, we can increase the precision of the location: Since we are aware of the fact that mainly

the  layer-boundary  at  -5.5km depth  is  affected  by  this  strong perturbation  (the  Zechstein-base

reaching up to -1.3km depth in a fold structure), we may assign the uncertainty to the depth of the

layer boundary, rather than assigning it to the velocities in general. Additionally, the uncertainty in

velocity is increased to 5% in the perturbation zone while it is left at 3% for the rest of the model.

This description yields a well constrained location, showing a hypocentral depth interval ranging

from surface to -6.5km (fig.  V.1.2:8). This region encloses the point that will be identified as the

most likely location when we use a 3D model that was made available by the industry.
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Fig. V.1.2:8: Solution for a specific variation in velocity model. The 5.5km layer depth is varied between this depth
and the depth of -1.3km. In this region the velocity uncertainty is increased to 5%, the rest of the model holds a
general uncertainty of 3%. The vertical extent of the coherent zone reaches from surface to -6.5km depth. The lateral
a) Cross-section of constraints b) projection congruent region.

With this 3D-model for P-velocities, 100% constraint congruency is already achieved with a sub

percent model uncertainty. The model error for P-velocities is expected to be less than 2%, yielding

the solution displayed in fig. V.1.2:9.

Fig. V.1.2:9: hyperbolic constraints using the 3D velocity model with 2% uncertainty. a) Cross-section of constraints
b) projection of the congruent region.

To visualize the accuracy of the 3D-model, the subset  of stations used in fig. (V.1.2:1), BGR1,

BGR3, BGR5, LOENS and SCHUS is plotted disregarding velocity uncertainties (fig.  V.1.2:10a)
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and  disregarding  every  uncertainty  (picking&model)  (fig.  V.1.2:10b),  respectively.  While  no

agreement was found for the layered model, here the constraints form a significant congruent region

only regarding picking uncertainties.  Further  disregarding picking-uncertainties  (fig.  V.1.2:10b),

most constraints still intersect in one point, but  all constraints lie within a circle of small radius

(dashed black circle). The model and the location can therefore be trusted to be of good quality. 

Fig.  V.1.2:10: Subset  BGR1, BGR3, BGR5, LOENS and SCHUS in the 3D-model a) disregarding velocity model
uncertainties and b) disregarding every uncertainty. Most constraints intersect in a single point. All constraints run
through the black dashed circle.

This  example  shows how we can use  simple  1D models  with  simple uncertainty  proxies  (fig.

V.1.2:8) to obtain reliable hypocentral bounds, yielding the confidence and accuracy that otherwise

only much more detailed model information can provide (fig. V.1.2:10). To complete the picture, we

will add the available S-phase information in the following chapter.

V.1.3 Additional S-P Constraints

Adding  S-P  constraints,  we  will  continue  to  use  the  3D-model.  Since  S-velocities  were  not

determined in the geophysical prospecting, a higher uncertainty of 3% will be applied to them. The

S-velocity-model will be based on the the P-velocity model over a fixed vp/vs-ratio. The most likely

ratio  will  be  estimated  using a  Wadati-diagram respecting  the  picking uncertainties.  Using that

Tt p=t p−t0 ,  the  vp/vs-ratio  can  be  derived  from  equation  I.2.3-6 (chapter  II.1.2.1)  and  be
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V Application Examples V.1.3 Additional S-P Constraints

expressed as

v p

vs

= 1+
t s−t p

t p−t0

. (V.1.3-1)

Averaged values from the Wadati-diagram yield a vp/vs of 1.74 for a regression curve respecting all

uncertainty intervals (fig. V.1.3:1, graph A). A more likely regression, focussing on closer stations,

yields a higher ratio of 1.81  (fig. V.1.3:1, graph B), which will be used for the location.

Fig. V.1.3:1: Wadati-diagram. Data is displayed indicating its picking uncertainties dP
and d(S-P)=dS+dP according to  table (V.1.1.1).  Regression line A respects  all  dSP
uncertainty intervals and yields a vp/vs-ratio of 1.74. A more likely regression is shown
in line B, putting the focus on closer stations, yielding a vp/vs-ratio of 1.81.

As no fixed model for the S-velocity exists, we can interactively change the value of the vp/vs-ratio

around the value of 1.81 to  observe its impact on the solution and to  check for other possible

maxima in likelihood. The solution for S-P information based on this ratio of 1.81, is shown in the

following  figure  (fig.  V.1.3:2).  The  3%  uncertainty  proves  to  be  sufficient  to  achieve  S-P
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congruency, centered around the solution of the P-P-constraints. For smaller vp/vs-ratios the S-P

congruent zone moves South-West-ward and descends in depth, in discrepancy to the precise P-P

constraints.  For  higher  vp/vs-ratios  up  to  1.92  the  solution  centers  well  around the  P-P based

location, moving North-East-ward, rising in depth while shrinking the possible congruent zone and

depth interval to the one determined by the P-P solution. Above that value the congruent zone splits

in several zones before it disappears. This behavior supports the most likely vp/vs-ratio derived

from the Wadati-diagram. For comparison, using the layered model and uncertainty free constraints,

BGR1, BGR7 and TRIFS would have required an extremely high vp/vs-ratio of 2.15 to bring the

corresponding S-P constraints into agreement. 

Fig.  V.1.3:2: S-P constraints regarding picking and 3% S-wave velocity uncertainties for a vp/vs-ratio of 1.81. A
large but well constrained congruent region is formed  a) cross-sections of constraints b) projection of coherent zone.

The derived ratio of 1.81 leads to a stable congruency between both constraint groups over a range

of vp/vs-ratios.  The larger uncertainties in S-picking and S-velocities causes the congruent  S-P

region to  be significantly larger  than the one solely based on P-onsets.  Fig.  V.1.3:3 shows the

overlap of both regions. While varying the vp/vs-ratio, both congruent zones never fully overlap.

The zone of common congruency (for both S-P and P-P) corresponds to the Southern part of the

congruent region of the P-P constraints (fig.V.1.3:3b, S-N Panel). 
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V Application Examples V.1.3 Additional S-P Constraints

Fig.  V.1.3:3: S-P and P-P constraints with 2% P-wave velocity and 3% S-wave velocity uncertainties.  a) cross-
sections of constraints b) projection of congruent zone. P-P coherency is marked orange for visibility purposes. The
overlap region of both constraint groups is black.

For the most likely vp/vs-ratios, the intersection of both zones further corresponds to the deeper end

of the P-P region (fig.V.1.3:3b, S-N Panel). The point most trusted lies at [52.979115, 9.248010] in

a depth of -6.3km. Figure (V.1.3:4a) shows the overlap of the congruent regions at this point. An

increase  of  model  uncertainties  of  P to  3% and S to  4% displays  the  stability of  this  solution

(V.1.3:4b).

Fig. V.1.3:4: Overlap of coherent regions at the chosen hypocenter. a) model uncertainties of 2% (P) and 3%(S). b)
Test for solution stability and solution uncertainties by increasing constraint model uncertainties to 3%(P) and 4%
(S).P-P coherency is marked orange for visibility purposes. The overlap region of both constraint groups is black.
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The  congruent  region for  P-P constraints  reaches  from -4.4km to  -6,7km for  a  2% P-velocity

uncertainty. The congruent region for combined S-P and P-P constraints assuming a 3% S-velocity

uncertainty reaches from -6.1 to 6.7 km depth. This solution represents the collection of points that

satisfies  both  constraint  groups,  marking  all  locations  that  are  possible  within  the  uncertainty

margins. However, while a significant region of the P-P region intersects with the S-P region, this is

not the case vice-versa. While the point of highest probabilities for the P-P constraints lies close to

that intersection region, it lies south-west and deeper for the S-P information. This signifies that the

S-P information based on the velocity model assumptions is not very trustworthy. Higher vp/vs-

ratios like 1.87 would lead to a full coverage with the congruent P-P region. Likewise would a S-

model variation of 6% do: Similar to the case of the P-based location in the layered model, the

given S-uncertainties do not allow to further constrain the P-based location in a reliable way, but

only to stabilize the solution. The impact of the S-P information to constrain the hypocenter would

have been significantly larger if the event was situated “outside” the network. More precise model

information could possibly be obtained by assigning material dependent vp/vs ratios to the layers

described in the 3D-model using core hole data. However, especially within the reservoir the ratio

would still vary by several percent, dependent on pore pressure changes. Here, we will therefore

base the event interpretation solely on the P-P region. This yields a most probable hypocenter at

52.979° North,  9.248° East,  -6.3km depth and a reliable hypocenter interval [52.977°,  52.990°]

North, [9.242°, 9.257°] East, [-6.7km, -4,4km] depth. This corresponds to horizontal spans of 1.5km

(N), 1.1km (E) and a vertical span of 2.3km (z). 

The official report based on the 1D model (Bischoff et al., 2013) located the event to 52,973° North

± 1,6 km, 9,212° East ± 2,5 km in a focal depth of 4,9 km ± 1,6 km, 2.5km west of the location

determined  here.  It  places  the  location  dominantly  above  the  modeled  Zechstein-base  (-5.5km

depth). The location determined by the use of the 3D model including the location uncertainties

determined by the distinct constraints places the hypocenter well below the Zechstein-base, which

actually lies at -4km depth in this area. This seems to be supported by the wave forms, since no

significant splitting in P-onset due to refracted and direct travel paths can be observed. For an event

just above the base (as reported), the time difference (Pref – Pdirect) would go up to approx. 2.5s for

the stations in largest distance.
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V.2 Probabilistic Multi-Pick Analysis

The following location example pertains to the class of on- or near surface events of anthropogenic

nature,  typically  given  in  impact  events  (e.g.  airplane  crashes,  structure  collapses),  im-  or

explosions. These weak events (M<2) usually only generate one usable phase, and can often be

identified by the nonexistence of the typical spectral energy signature consisting of an impulsive

high frequent P-onset, followed by S-energy of lower frequency. If no arrays are given, location will

be predominantly based on hyperbolic location. Being generated near surface, the highest observed

amplitudes are carried by surface waves, while phases of weaker induced body waves may not be

visible. Surface (Rayleigh-Lamb) waves hold velocities below the shear velocity and are slightly

affected by the velocity model. This type of “Ground Roll” surface wave travels with approximately

92% of the near surface shear wave velocity (Xia et al., 1999)

vsurface= 0.92⋅vshear . (V.2-1)

Due to the lower velocity, location is less affected by picks off the true onset as it would be the case

for  P-phase  based  location.  Additionally,  the  amplitude  of  surface  waves  decays  slower  with

distance ( A~ r−0.5 ) than for body waves. However, due to these events' low magnitude, they are

often only seen on few stations and might be masked by local events or disguised by local noise

bursts.  Correlated  phases  are  usually  identified  by  their  signal  pattern,  showing  similarity  in

waveform or spectral signature. For low SNR conditions this signature may be not identifiable at

every station, and ambiguities might exist in the phase onset determination. However, phases do not

only show their  correlation by signature but  are linked by their  common source. Being able to

account for velocity model (and picking) uncertainties, the set(s) of truly corresponding phases and

the most probable location may be found by searching for (all) the combination(s) of phases that

can be mapped to a common source - in a single step using a multi-pick-analysis (chapter II.3.4):

The robust velocity model is hereby used to “filter out” (most) improper combinations (usually by

arrival-time differences, too large to be consistent)  and is “associating“ the set(s)  of reasonable

phases. The treatment of model uncertainties is crucial for this analysis, assuring that corresponding

phases are  not  filtered out  because  of  model inaccuracies.  Depending on phase pattern,  station

distribution  and  velocity  model,  the  result  may  appear  as  one  single  zone  or  as  a  cluster  of

distributed congruent zones. When several zones are shown, then these depict a macro uncertainty
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in location due to the ambiguity in phase picking. This cluster may be caused by an interference of

several simultaneous events, or the improper combination of uncorrelated phases in general, that

yield congruent solutions 'just by chance'. With several simultaneous events, the congruent region

will  consist  of  all  events'  hypocenters  alongside  possible  pseudo-locations,  that  are  caused  by

incorrect combinations of phases. A forward modelling of travel times from the congruent region

identifies  the  set  of  related  phases  and  allows  the  analyst  to  re-evaluate  their  signal  pattern

concerning similarity and plausibility. [If pseudo-locations exist, the forward modelling from one of

such would identify a pseudo-associated set of phases. These can, however, often be ruled out due

to inconsistent signatures, amplitudes, etc... .] 

We will now pick up the example given at the beginning of this thesis (chapter I.1), in which the

true phase (that originated from the unknown source) can not be clearly identified on all traces. This

event is the third in a sequence of signals (fig. V.2:1).

 

Fig.  V.2:1: Sonogram (noise adapted spectral density maps) plot of the three component stations HRV, SSPA,
BINY, LBNH, LSCT and NCB of the IU and US network. Two windows (dashed boxes) with significant events but
multiple possible phase onsets are marked. The bold window (bottom) marks the analyzed event.  Significant
signal energy is found between 1 and 15Hz.
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Fig.  V.2:2: Sonogram (top) and Seismogram (bottom) traces of the event window (fig.  V.2:1) with selected phases (blue boxes
indicate onset uncertainties, top) and probability curves (black solid lines, bottom), extending over all phase candidates. Between the
candidates the LOC curve is “muted”, falling to zero.
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We will use this probabilistic constraint approach to evaluate the observed phase pattern on those

six stations in a multi-pick analysis (fig.  V.2:2). Here, the various ambiguous phase onsets would

have yielded 576 trial  combinations (although many being not  likely) but are  instead elegantly

analyzed  using  the  probabilistic  constraint  approach,  displaying  a  combined  solution  for  all

physically (or model based) possible phase combinations. 

The sonogram traces allow a comparison of spectral signatures and a rough picking. Station LSCT

shows two clear onsets, which can still be identified on station HRV, some 165 km away. Stations in

larger distance (HCB and SSPA) show similar signatures, but make the discrimination between both

phase onsets difficult. Additionally, station SSPA shows three similar signatures, where two of them

seem to stem from local events. At station BINY the correlation becomes difficult as three different

phase onsets with different signatures exist. 

According to  chapter  II.3.4 the  level-of-confidence (LOC) curve  is  now raised  over  all  phase-

candidates per station. The LOC curve only differs from zero in the vicinity of the phase-candidates,

and can be interpreted as being “muted” in between. For every constraint being formed between two

stations, several bands of hyperbolic “modes” are now “muted” according to the “muted” regions in

the cross-correlated LOC curves. Likewise can the visible bands be described as “exitated modes”,

based  on  the  non-zero  regions  of  the  LOC-curves.  The  following  figure  (V.2:3)  shows  the

hyperbolic bands created between the phases of stations SSPA and LBNH. Based on the S-velocity

model for the Appalachian and Grenville Province (Viegas et al., 2010) the propagation velocity for

the surface waves is estimated as vsurface= (3.5±0.07) km/s .
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Fig. V.2:3: Hyperbolic modes excitated for the multiple phases of
stations SSPA and LBNH. 

This information hardly constrains the location and requires additional stations to disqualify most of

the  proposed hyperbolic  bands:  Using all  stations,  the  modes corresponding to  the  set  of  truly

correlated phases lead to a congruent region south of the network in the resulting map (fig. V.2:4),

surrounded by side lobes of lower likelihood generated by other phase combinations. 

Fig. V.2:4: a) Multi-phase likelihood map using all six stations showing a region of increased congruity south of the
sub-network and b) only showing the congruent zone for which all constraints agree.
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The multi-pick analysis therefore displays the solution spread in regard of ambiguous phases and

supports the identification of the most plausible phase-set and location. It is hereby important that

the true phase is among the chosen ones as otherwise the true location itself would only appear as

side lobe in the likelihood map. Additional constraints (e.g. particle motion back-azimuth) could be

applied to discriminate the true solution in case of multiple equivalent maxima. However, in this

example only one confined region exists south of the network. Figure V.2:5 shows the stability of

the solution (constrained region) over the model assumption (mean surface wave velocity): While a

velocity of 3.5km/s was chosen for the analysis based on the regional S-velocity, runs for different

velocities show that the congruent region is stable for mean surface velocities above 3.4km/s, up to

3.8km/s. For slower velocities the solution moves into depth, for faster velocities it would have

ceased to exist. 

The correlated set of phase onsets originating from the determined location can be identified via a

forward modelling from the constrained congruent region, yielding the set of arrival-times (dark

blue boxes in fig. V.2:2). Using only these identified phases yields fig. V.2:6.
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Fig.  V.2:5:  Robustness  of  the  constrained  region  over  the  chosen
surface  wave  velocity.  The graph displays  the  constrained  region's
epicentral- and hypocentral distance interval to the ground truth (GT)
location: A graph touching the X-axis means that the congruent region
encloses the ground truth location. A mean velocity of 3.5km/s (mean
velocity factor 1.0) was chosen for the analysis based on the regional
S-wave  velocity.  Based  on  the  hypocentral  distance  graph,  mean
velocities  between  3.4km/s  and  3.8km/s  yield  correct  location
estimates.
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Fig. V.2:6: Constraints for the selected set of phases a) using flat weights describing the congruent zone and b) in
probabilistic representation using the assigned level-of-confidence curves. The dashed box defines the zoom window
for fig. V.2:7 over the region of increased congruity.

A zoom into the zone of higher congruity yields figure  V.2:7. The point of highest likelihood on

surface (marked as +) lies in 3.9km distance to the point marked by the red star in the congruent

zone. The signals displayed in fig. V.2:1 were recorded on September 11th, 2001 and are witnesses

of the catastrophic and tragic event of the collapse of the first and second tower of the World Trade

Center. Its location is marked by the red star. 
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V Application Examples V.2 Probabilistic Multi-Pick Analysis

Fig. V.2:7: Zoom into region of highest coherence of fig (V.2:6). a) Coherent region of constraint agreement. The
region that fulfills  all constraint  demands is marked by the polyhedron (solid black line).  The point  of highest
probability on surface (panel (b)) is marked by a +. The red star marks the location of the World Trade Center Twin
Towers.

An unofficial report based on the seismic records of the Palisades station (PAL), 34km North of the

WTC, estimates the magnitude of the second collapse to ML2.3. However, the data of that station

was not made available to IRIS over this time frame and was therefore not used in the analysis. The

closest station to the event given was LSCT with 126 km epicentral distance. While the signal could

be clearly observed at PAL with a Peak-to-Peak SNR over 50, LSCT, which showed the strongest

signal of the data set used, only held a SNR of 5. Although the SNR at station HRV ranges between

only 0.75 and 1.07, the event signature and phase onset is clearly identifiable in the sonogram plot.

This displays the strength of sonogram detection and probabilistic location in the context of sparse

and doubtful data.
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V.3 Real-Time Location

In this last example, we will use the concept of distinct constraints for real-time locations in the

context of earthquake early warning (EEW). In this case the P-phase onsets are clear due to the high

event  magnitudes and can be detected automatically.  But  contrary to earlier  examples, here the

location procedure begins with the first available P-phase arrival and is hence prone to ambiguities

and  larger  uncertainties.  Incorporating  model  uncertainties,  the  concept  of  distinct  constraints

provides for the robustness needed in EEW, providing trustworthy estimates. The real-time location

of two events will be presented with focus on back-azimuth information, which is not yet used in

today's EEW algorithms but  will  allow to yield robuster estimates  with fewer detections -  and

further allows to resolve ambiguities in the early location estimate. The first event will demonstrate

a sparse network scenario being situated at the network edge (fig.  V.3:1 (1)). The other event is

situated inside the network (fig. V.3:1 (2)), in a region of higher station density. 

Fig. V.3:1 Location map (Southern California) with 17 (3.2 < M < 5.7) earthquakes
(stars)  selected  for  the  study  of  real-time  locations  focused  on  the  back-azimuth
estimate  obtained  from  particle  motion.  White  circles  indicate  CISN  stations  that
triggered and black circles show CISN stations that provided 3 component data used
for  the  analysis.  (1)  and  (2)  mark  the  two  events  that  are  shown in  this  chapter,
demonstrating a real-time location.
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The aim of early-warning is to provide reliable warning in the shortest time possible, decreasing the

blind-zone and providing enough time for public warning and triggering automatic mechanisms (as

stoping trains etc...). P-phase arrival based location estimates become useful with three detections

(if the focal depth can be roughly estimated based on the catalog). Depending on station density and

distribution, this amount of detections may only become available with time and will, even then,

often produce ambiguous results (e.g.fig. II.4:1). Back-azimuth information (BA), on the other side,

can be obtained within fractions of seconds, either by arrays or particle motion estimates. In future,

small-array-networks may deliver fast and precise back azimuth information. However, these are

usually not given today and particle motion estimates must fill the gap. It was shown in chapter IV.1

that such estimates can be obtained reliably within fractions of seconds in most cases. Back azimuth

information  can therefore  be  used almost  instantaneously to  constrain  the  epicenter region and

resolve ambiguities in the early location estimate (chapter  III.2). Automatic detection of the later

arriving S-phase is based on changes in polarization and signal frequency content (e.g. Nakamura,

1988). Its detection, however, is less trustworthy and is therefore neglected in these examples. In

real-time location, the location problem is (initially) under-determined. The focus therefore doesn't

lie on a point of highest likelihood but on the region of congruency that provides reliable location

estimates, in particular estimates of the minimum and maximum distance to the first stations to

compute  reliable  magnitude  estimates  (Sadeh et  al.,  2014).  Since  the  final  magnitude  of  large

earthquakes  is  still  increasing  with  time  (while  the  rupture  still  grows)  it  may  not  always  be

determined within a few seconds. For this reason, especially the minimum distance is of interest,

which allows to determine a true lower bound for the magnitude: The minimum magnitude cannot

decrease with time and it rising over a certain threshold (commonly ML5) may be used as reliable

early alarm trigger. The concept of NYAS (chapter IV.2) can be used to reliably constrain the lower

bound of the hypocentral distance based on the absence of the S-phase and hence do so before the

S-phase arrives. For earthquake early warning, a-priori information like the average hypocentral

depth of the region is used to fix the focal  depth for the early estimates. This concept  will  be

followed for this example. In praxis, however, the constraints should rather be evaluated over a

given depth interval. 

In  the  following,  the  application  of  distinct  constraints  will  be  demonstrated  for  the  real-time

analysis  of  two  California  earthquakes  (marked  as  (1)  and  (2)  in  fig.V.3:1),  focussing  on  the

stability  and gain in  time that particular  back-azimuth estimates provide for the early real-time

location.
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V.3.1 Off-Network Event

The event of Magnitude Mw4.6 occurred June 14th,  2002 in an area of low station density, just

outside the CISN network. The first detection occurred at station FUR 9.5s after the event, in 59km

epicentral distance. Figure V.3.1:1 displays the evolving location. 

[The plus marks the epicenter from which the wave front (dashed black circle) propagates. Detected stations

are marked solid black. The hypocenter region is given in the congruent region (indicated by the darkest

shading). The minimum and maximum distances are indicated in each panel. Values in parentheses indicate

results without the use of back azimuth beams. The procedure was performed twice, for latency variations of 4

[resp. 5] seconds to demonstrate the large impact that these values have on the formation of the NYAD cell.

Both values lie below the actual values based on transport and package size of most networks today. Values

pertaining the 5s variation are noted in square brackets.]

The location procedure is initiated by the arrival of the first P-phase at station FUR. The NYAD cell

provides  the  first  location  estimates,  which  extends  far  outside  the  network  with  a  maximal

epicentral distance of 302 [500] km (figure V.3.1:1a). A third of a second after the first detection the

first back azimuth beam is computed, allowing a reduction of the maximum distance from 269

[450] km to 172 [190] km (figure V.3.1:1b). While time progresses and the wave front expands, the

NYAD cell shrinks in size and constrains a maximum distance of 111km just fractions of seconds

before the P-phase arrives at the second station (figure  V.3.1:1c). With the second detection, 5.6s

after the first  arrival,  a hyperbolic EDT surface is formed by the difference of first and second

arrival  time (figure  V.3.1:1d).  In  itself,  it  constrains  a  minimum distance of 21 [22] km and a

maximum of 107 [120] km in conjunction with the NYAD cell.  The back-azimuth beam further

increases the minimum distance to 44 [42] km. The second back azimuth beam is established within

0.17 seconds and stabilizes the solution (figure V.3.1:1e). The third detection occurs 7.1s after the

first detection and constrains the epicentral distance to between 46 [42] km and 63 [62] km (figure

V.3.1:1f).  The  stations  of  the  first  three  detections  are  aligned  nearly  linearly  and  yield  two

ambiguous solutions - a scenario quite common for detections at the network edge. Back-azimuth

and  NYAD  information  are  both  able  to  disqualify  one  of  the  solutions.  NYAD  information,

however, is  stronger affected by network latencies. Particle motion, on the other hand, may at times

produce estimates that are 180° off the true direction due to a non-effective flipping condition. This

problem can be bypassed by locating by axis rather than by direction (additional back-facing beam,

blue). From the second station on, the true direction is usually identified by the intersection of both

azimuth-axes'.
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Fig. V.3.1:1: Real time location for an off-network event (+). Detailed description is given in the text. 
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Figure (V.3.1:2) shows four snapshots of the congruent  region for the 5s latency variation.  The

larger latency yields significantly larger NYAD regions and therefore larger maximum distances.

Fig.  V.3.1:2:  Evolving  location  constraints.  The  possible  area  containing  the  epicenter  lies  within  the
dashed polygon, which is defined by (t1): the area of the (infinite) back-azimuth beam being cropped by the
NYAD cell; (t2): the intersection of EDT surface (white dashed line) and back-azimuth beam. (t3): the
intersection  of  EDT  surface  (right  edge  of  NYAD  cell)  and  two  back-azimuth  beams  and  (t 4):  the
intersection of three EDT surfaces and two back-azimuth beams.

Figure (V.3.1:3) displays the improvement gained by including back azimuth information into the

location  process.  The  time  marks  correspond  to  the  snapshots  of  fig.  (V.3.1:2).  The  gain  is

quantified comparing the congruent zones using and neglecting BA information. The size of the

congruent zone is expressed by its moment of area (MoA) (chapter III.1) with reference point at the

epicenter.  The evolution  of  the  epicentral  distance interval  (fig.  V.3.1:3)  shows that  the  largest

improvement is gained in the time between the first and second detection, where the BAZ beam

reduced the NYAD's hypocentral region, which in turn also lowered the maximum

Fig. V.3.1:3: Time evolution of estimated min and max distances and ratio of moment of area, comparing
realtime location using (MoABA) and neglecting (MoA) back-azimuth information. Dark grey indicates
the possible epicentral distance interval disregarding back-azimuth information. Light grey marks the
evolution using back-azimuth information.
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V Application Examples V.3.1 Off-Network Event

hypocentral distance. The additional use of NYAS would have provided a minimum distance that

would have grown to 44km already before the arrival of the second trigger (at t=5.5s<t2 ).

V.3.2 Intra-Network Example

The event of Magnitude Mw4.73 took place Aug 15th, 1992 in the Mojave Desert,  in only 2km

epicentral distance to station BRCC. Despite the given high station density, the initial NYAD cell is

large due to package lengths of several seconds. This results in large variations in total latency,

which  cause  the  cell  to  even  encompass  near  by  stations  (fig.  V.3.2:1a).  Here  again,  latency

variations of 4 [resp. 5] seconds are used. The first back azimuth information becomes available

0.08  seconds  after  the  first  detection.  This  reduces  the  constrained  NYAD  region  almost

instantaneously to  the small area which is  being defined by the BA-beam within this cell  (fig.

V.3.2:1b).  The maximum distance of 90 [183] km based on NYAD information only is  hereby

instantly reduced to 46 (50) km. Just before the second detection, the NYAD cell has significantly

reduced its size, limiting the BA-beam to a maximum distance of 23 (36) km (fig.  V.3.2:1c). The

second detection occurs 2.3 seconds after the first. The generated EDT surface constrains the area to

the Northern part of the previous NYAD cell. Due to the event being very close to the station, the

EDT  is  extremely  bent.  The  uncertainties  in  the  velocity  model  and  the  given  station-event

geometry cause the  strongly bent  EDT to be extremely  wide,  keeping it  from constraining the

maximum  distance  any  further  (fig.  V.3.2:1d).  Within  0.1  seconds  the  second  BA-beam  is

computed, also stabilizing but not further constraining the location (fig.  V.3.2:1e). With the third

detection 2.95 seconds after the first arrival, the back azimuth beam is further constrained by one of

the three generated EDT surfaces to a compact area with a maximal epicentral distance of 7 [8] km

and a minimal epicentral distance of 1.7km, for a true epicentral distance of 2km (fig. V.3.2:1f). 

A location based solely on the three hyperboloids and NYAD constraints would at this stage still

only be poorly constrained. Neglecting BA information would have resulted in significantly larger

areas with a smaller minimal distance of 1.2 km and maximum distances of 19.2 [27] km (compared

to 7 [8] km with BA information). Additional later P-arrivals would have been required to narrow

down this region. This example shows that back-azimuth information is capable of speeding up the

location procedure also inside networks where higher station densities are given: The further the

event is situated from the network's Voronoi cell corners (which corresponds to events being closer

to one or two stations than they are to the third), the higher is the potential to speed up the location

procedure by back-azimuth information.
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Fig. V.3.2:1: Real time location for an intra-network event (+). Detailed description is given in the text. 

312

max = 90.0km (90.0km)
min = 0km
true = 2.5km

max = 45.7km (87.8km)
min = 0km
true = 2.5km

max = 22.5km (22.5km)
min = 0km (0km)
true = 2.5km

max = 7.0km (19.2km)
min = 1.7km (1.2km)
true = 2.5km

max = 23.1km (23.1km)
min = 0km (0km)
true = 2.5km

max = 23.2km (23.2km)
min = 0km
true = 2.5km

a) initial NYAD ( t = 0.00s) b) 1st BAZ (t = 0.08s)

c) NYAD before 2nd P-arrival (t = 2.29s) d) 1st EDT (t = 2.30s)

e) 2nd BAZ (t = 2.40s) f) 3rd EDT (t = 2.95s)

20km

20km

20km

20km

20km 5km
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Figure (V.3.2:2) shows snapshots of the congruent region for the 5s latency variation. The larger

latency yields significantly larger NYAD regions and therefore larger maximum distances.

Fig.  V.3.2:2:  Evolving location constraint.  (t1): Large NYAD cell due to large latency variance. (t2): The
area of the strongly curved EDT surface extends over the Northern bounds of the NYAD cell. (t 4): Due to
the first EDT surface being large, the epicenter is constrained only poorly (white dashed line) even using
three  available  EDT surfaces.  Using  back-azimuth  information  the area is  further  constrained  (black
dashed line).

The figure (V.3.2:3) shows the time evolution of the constrained region, expressed as ratio between

the moment of area (MoABA) using BA information and the moment neglecting it  (MoA). The

minimum and maximum distances are plotted in fig. V.3.2:3. The MoA ratio jumps down at the end

of the time evolution (t4) where one would expect it to rise (see fig. V.3.1:3). This is caused by the

station-event geometry. In this example the event is very close to the first station which leaves the

congruent region only poorly constrained when BA information is neglected.

Fig.  V.3.2:3: Time evolution of estimated min and max distances and moment of area ratio, comparing realtime
location regarding (MoABA) (light grey) and neglecting (MoA) (dark grey) back-azimuth information.
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V Application Examples V.3.2 Intra-Network Example

Both examples show the stability and time gain that back-azimuth estimates may bring to real-time

location schemes. This study used a worst case scenario for the NYAD region, with all stations

lagging behind the first triggered station with maximum latency. This is obviously not the standard

as latency varies with each station as well as over time: Some station's data will be delayed, while

other stations data will already have arrived. Some data flow will stall, and will later be received

faster than standard recording speed.  This will  cause very dynamic NYAD cell  boundaries and

would render the actual NYAD cell-size smaller than here displayed. However, considering that the

actual variation in today's networks' latencies may significantly exceed the used values (Brown et

al.,  2011),  the  displayed  NYAD cell-size  may  be  reasonable.  Since  the  impact  of  the  latency

variance  on  the  NYAD cell-size  is  large  (compare  the  values  of  the  5s  and  4s  scenarios)  -  a

reduction  of  the  variance  by  even  a  single  second  through  e.g.  smaller  data  packets  will

significantly improve (reduce) the maximum distance estimates. Ideally, data transport is switched

from discrete data packets to continuous streams to minimize quantization latencies, as currently

being implemented in the DeadSeaNet small-aperture array network.  Chapter  IV.1 showed, that

back  azimuth  estimates  can  be  obtained  reliably  from the  particle  motion  of  three-component

sensors for  large magnitude events,  independent  of  the epicentral  distance.  These  estimates are

sooner available than most other constraints and allow to resolve the ambiguities that may occur

with P-P constraints in early location, allowing to stabilize and speed up the location procedure.

With  only  two  detections,  three  independent  constraints  are  obtained  (two  BA- and  one  EDT

constraint).  This  provides  the  redundancy  needed  to  assess  the  trustworthiness  of  the  location

estimate. Even with three detections, a standard P-arrival-time based location would provide only

the  same number  of  constraints,  those  however,  being mutually  dependent  (which  impedes  the

assessment  of  the  solution's  trustworthiness),  often yielding  ambiguous solutions.  Especially  in

sparse networks, at network edges, for off-network events, or when events are closer to the first

than to later stations, significant improvement can be gained by the incorporation of back-azimuth

information.  Coupled  with  NYAS  information,  which  provides  growing  minimum  hypocentral

distances from the time of first detection, this becomes the real-time equivalent of classical array

location  combining  azimuth  and distant  information.  Together  with  the  incorporation  of  model

uncertainties  for  the  travel-time  dependent  constraints,  the  methodology  of  distinct  constraints

provides for early and trustworthy location estimates for earthquake early warning.
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VI Summary and discussion

The objective of this work lied in a methodological development that would provide for a more

accurate single event location in the context of sparse and uncertain data, advancing the analysis to

the complexity of the location problem demanded by recent applications, and accounting for the

uncertainties, often hidden in location. Especially the impact of wrongly chosen velocity models

remains un-evaluated in most location approaches, today. This makes the interpretation of single

event catalogs difficult, as the listed error bounds only give a rough idea of the uncertainties, but do

not  reflect  the  true  error  margins  (as  they  only  pertain  to  the  model  having  been  used).  The

hypocenter estimate may actually be significantly displaced to the true location - outside of the

assumed error margins. In the location with sparse and doubtful data this problem is amplified and

may easily lead to the misinterpretation of events. Not only is the pre-requisite of a Gaussian-based

analysis  not  given  (which  makes  RMS  schemes  error-prone),  but  due  to  often  only  poorly-

constrained problems, location uncertainties are larger and errors due to mis-picked phases and

wrongly  chosen  models  have  a  significantly  larger  impact.  Frequently  appearing  location

ambiguities additionally complicate the hypocenter determination. 

To provide for accurate location estimates, use was made of the Jackknife to dissect datasets into

under-determined  subgroups,  which  yielded  a  pair-wise  evaluation  of  phase  arrivals  (or  triple

groups  for  array  beams,  respectively).  Analyzing  the  two-member  groups  over  the  difference

between both arrival-times, eliminated the time dimension from the location problem and lead to a

purely spatial problem of three dimensions that provided for a direct search for the hypocenter. In it,

the hypocenter region is constrained by each arrival-time difference-group, identifying all points

whose  respective  travel-time  difference  confirms  the  observed  arrival-time  differences.  In  this

constraint based approach, discrepancies between the constraints can be traced back to individual

phase data; Their impact on the solution can be evaluated and a plausible and trustworthy database

be established, based on which a global outlier-resistant location estimate is recomposed. 

To this  fundament,  a  non-gaussian  description of  picking-uncertainties  was added as  well  as  a

general formulation translating model uncertainties into uncertainties in travel-time, to cover errors

in the model  assumptions. Mapping these time-based constraints in their uncertainties to space,

corresponds to a sensitivity  analysis performed within the location procedure, identifying every

possible location that can be brought into agreement with the observed arrival-time data&model in
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their uncertainties. This provides for robust hypocenter regions, even when stations are sparse and

data few. 

Level-of-confidence functions were introduced to weigh the arrival-time (i.e. picking) interval. This

in turn puts weight on regions in space, leading to a most likely hypocenter location. Together with

reconstructed, approximated probability distributions for the model uncertainty, a fully probabilistic

analysis is formed. This doesn't only serve to identify the most likely location, but is an important

instrument indicating the trustworthiness of the congruent (or feasible) region: Almost any (wrongly

picked)  phase could  be  brought  into mutual  agreement  with other  data,  when uncertainties  are

assigned  unrealistically  high:  At  the  point  when  uncertainties  are  just  high  enough  to  yield

constraint  agreement,  the  congruent  zone  is  extremely  small  for  a  well-conditioned  problem,

indicating a high precision. This precision is obviously only apparent. Towards the constraint edges

the likelihoods are very low. A probabilistic analysis identifies this solution of apparent precision as

unlikely. It is therefore the product of likelihood and precision of the feasible region that quantifies

the solution quality.

Raising the Level-of-confidence function over ambiguous phase candidates introduced the concept

of multi-pick evaluation, which provides accurate hypocenter regions by excitating (e.g. hyperbolic)

constraint modes in space, identifying the possible regions that correlate with all reasonable phase

combinations. As most arrival-time differences of phase-candidate combinations are not consistent

in itself nor with the model, they do not yield feasible regions, in which case precise hypocenter

regions are estimated for highly ambiguous input data.

Several aspects required a change in the numerical approach computing the constraints, to provide

for  all  given  demands  in  real-time.  These  were:  the  proper  treatment  of  picking  and  model

uncertainties; The requirement to use velocity models and station distributions of any complexity;

and the  need to  “open”  the  solution space  via  vertical  cuts  for  the  analyst  to  comprehend the

increasingly  complex  constraint  behavior.  These  demands  could  be  satisfied  by  decoupling

constraint algorithms and travel-time (model) calculations (which where combined for earlier semi-

analytical approaches computing exact constraints). On the model side, fast interpolating travel-

time calculation schemes were developed for grids,  rendering layered models.  The portation of

Podvin&Lecomte's wave-front travel-time code (1991) enabled the use of 3D models for distinct

constraints, providing for more accurate predictions whenever this information is available. Global

travel-time scaling factors allow to modify models per station in real-time by scaling the cached

316



VI Summary and discussion VI Summary and discussion

travel-time field and its uncertainties. This allows to study the impact that e.g. variations in one

station's vp/vs-ratio have on the solution. Fast uncertainty approximation schemes were developed

that support a real-time analysis: For uncertain models, computed via a Monte-Carlo-approach that

varies structure and velocity, minimal and maximal travel times are extracted to approximate and

reconstruct a real time applicable travel-time likelihood distribution. Alternatively, in a (slower)

post processing step (with a significantly larger memory consumption), the full density function

may be evaluated and be used for location. To describe the effect of model uncertainties more

accurately,  model-ensembles  may  likewise  be  used  for  post-processing:  Keeping  the  model

variation synchronized among all constraints, allows ensembles to yield more precise locations and

more accurate location uncertainty estimates. All uncertainty intervals are formulated as discrete

probability  mass  functions,  allowing  the  incorporation  of  any  given  likelihood  distribution,  to

provide for the proper treatment in the context of few and/or doubtful data. For the direct search,

constraints are evaluated over grid cells rather than grid points, to ensure the identification of sharp

hypocenter regions, independent of the grid's resolution. A varying resolution (the grid cell  size

increasing with distance) is used to extend the grid to identify possible ambiguous solutions in

distance without higher computational cost. As the spatial uncertainties grow likewise with distance,

this keeps the (discretization based) precision comparable over the whole grid's extent.

The analysis of ambiguities in multilateration revealed a zonation scheme that allows to identify

locations prone to showing ambiguous solutions. This provides a simple measure for evaluating the

stability  and trustworthiness of locations,  e.g to  estimate whether existing catalog locations are

trustworthy. A precision mapping allows to estimate the expected precision of hypocenter regions

for a given network layout and the used constraint classes. In combination, these aspects support for

better network layout planing. 

By having incorporated the uncertainties in picking and model (which, mapped to space, may be

interpreted as a performed sensitivity analysis),  provided for automated schemes identifying the

most likely solutions as well as the corresponding feasible region using the parameter of constraint

congruency (which may be further used to e.g. identify the most likely phase onsets in a multi-pick

analysis). This real-time capable global search scheme provides robust location estimates based on

few  data,  providing  e.g.  for  accurate  predictions  that  are  crucial  in  earthquake  early  warning

systems.  At  the  early  stage,  arrival-time  based location  commonly  yields  ambiguous  solutions.

Back-azimuth information was shown to be available early on and to be capable of resolving these

ambiguities, by disqualifying either one of them. As small-array networks are not the norm today, a
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robust real-time particle-motion back-azimuth estimator was developed for three-component single

stations (accurate for signals with SNR>10). This opens the door for rapid location in earthquake

early warning, today. The concept of Not-Yet-Arrived-Data was extended to the delaying of the S-

phase (NYAS), alongside a real-time S-phase detector that provides true lower bounds for the S-P

interval.  This enables  the  early  estimation  of  lower  bounds for  the  magnitude  and with  that  a

possible reduction of the blind-zone and an increase in available warning-time. As NYAS (contrary

to NYAD) does not rely on other network stations, it provides for the use in independent on-site

systems based on small-aperture arrays, currently being evaluated in the DeadSeaNet project.

So far, the concept of phase-difference-based constraints has been applied to constrain the solution

based on the phase-differences of S and P-onset [S-P], direct and refracted P-onset [Pref-Pdir] at one

station, the difference of P-, S- or surface phase arrivals at two stations and can be applied to every

phase that the travel time solvers support. For the small-array based analysis, stacking might reveal

reflected phases that may be included in future. Another useful type of location constraint (although

not a precise one) may be given in amplitude ratios. The ratio of the amplitudes of a phase recorded

at two stations, yields similar to S-P constraints a spherical constraint (but non-concentric). This

requires site-corrections and is further impeded by the focal mechanism and radiation pattern of

shear-failure events, which complicates the amplitude comparison between different stations. This

constraint  will  therefore  hold  large  uncertainties,  rendering  the  location  less  precise.  However,

becoming available with only two detections it may complement the determination of the distance

estimate  in  on-site  systems,  before  S-information  becomes  available.  Amplitude  modelling  is

complex  and  requires  wavefront  construction  algorithms  (Vinje  et  al.,  1993).  However,

approximating amplitude estimates can also indicate, whether first arrivals might fall below noise

level, and may be prone to unintentional neglection. Another future requirement will probably lie in

the implementation of anisotropic model solvers (e.g. Sadri and Riahi, 2010).

The first application example visualized the extent of uncertainties in location due to unknowns in

the velocity model.  Although we may properly include uncertainties into our location codes,  it

remains difficult to quantify the unknown. How much our simplified used models differ from the

true velocity field, only becomes quantifiable with many events or by geophysical prospecting that

provides uncertainty measures for the velocity field inverted (i.e. the model). As long as there is no

exact knowledge of the model (which includes all its static and dynamic parameters), one can only

default to the use of security parameters as is custom in engineering. As Lomax (2009) indicated,

new formulations have to be developed to communicate location errors. Today's methods that do
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not only resolve the point of smallest RMS but the more complex solution environment, demand a

more  complex  form  for  reporting  location  “errors”,  or  better,  location  “uncertainties”.  With

increasing computational power we are able to increase the dimensionality of the location problem,

which  we  once  reduced  in  complexity  until  our  few data  could  provide  for  “overdetermined”

systems  (using  fixed  model  estimates).  Performing  a  higher  dimensional  analysis  (i.e.  varying

models) causes also the complexity of the solution and its uncertainty measures to increase. One

way to report the location uncertainty could follow the suggestion of the first chapter, in reporting

the bounding polyhedron around the feasible hypocenter region.

I  hope that this  work has  added to the  robustness and accuracy of single event  locations.  The

presented ideas leave much room for future development - and although this last chapter concludes

this thesis, the last chapter on this topic is surely long not yet written.
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