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Abstract

In the area of systems biology, dynamical models of biochemical reaction networks are
used to derive model-based predictions about the related biological processes. This thesis
provides new methods to study how parametric uncertainty affects such predictions. The
focus of this study is on predictions about the steady states and the type of dynamical
behaviour, such as bistability or oscillations.

Concerning steady states, the problem of uncertainty analysis is investigated. For
a given extent of parametric uncertainty, the objective is to compute bounds on the
variations in the steady states. In view of an underlying feasibility problem, a method
based on semidefinite programming is developed to solve this problem. The approach is
also applied to compute a measure for the robustness of the location of steady states in
the presence of parametric uncertainty.

Regarding the effect of parametric uncertainty on the type of dynamical behaviour,
the robustness problem is considered. A robustness measure is defined by the extent
of parametric uncertainty for which no local bifurcations occur. An approach to solve
the robustness problem with frequency domain methods is investigated. The proposed
feedback loop breaking method allows to characterise parametric uncertainties for which
the type of dynamical behaviour is robust. On the one hand, a lower bound on the
corresponding robustness measure is computed by providing Positivstellensatz infeasibility
certificates for the underlying equations. On the other hand, the feedback loop breaking
concept is adopted for the design of a bifurcation search algorithm in a high-dimensional
parameter space. The results of the search algorithm thereby provide an upper bound on
the robustness measure.

In addition, the novel concept of kinetic perturbations is introduced. This is a class of
specific parametric uncertainties which are particularly useful for the analysis of biochem-
ical reaction networks. It is shown that a robustness analysis is performed efficiently for
kinetic perturbations by use of the structured singular value. As a side result, the direct
relation between kinetic perturbations and changes to the sensitivity of steady states in
a biochemical reaction network is demonstrated.

To complement the methodological results, a novel model for a specific biochemical
signal transduction system within the TNF induced signalling network is constructed.
The model is analysed with methods developed in this thesis. In addition to an illustrative
application of the new methods, the findings of this analysis also provide new biological
insight into TNF signal transduction.
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Deutsche Kurzfassung

Forschungsfrage dieser Arbeit

Viele Vorgéinge in lebenden Organismen basieren auf biochemischen Reaktionsnetzwerken.
Fiir Aussagen iiber das Verhalten solcher Netzwerke werden meist dynamische Modelle,
beispielsweise in der Form von gewohnlichen Differentialgleichungen, benétigt. In diesen
Modellen werden Modellparameter verwendet, deren Werte allerdings oft einer grofien
Unsicherheit unterliegen.

Parameterunsicherheiten beeintriachtigen die Mo6glichkeit, mittels des Modells Aussa-
gen iiber das betrachtete biochemische Reaktionsnetzwerk zu treffen. Das Thema dieser
Arbeit ist die Analyse solcher Auswirkungen von Parameterunsicherheiten in Modellen
biochemischer Reaktionsnetzwerke. Dabei werden besonders Aussagen iiber die Ruhelagen
sowie den Typ des dynamischen Verhaltens, beispielsweise Oszillationen und Bistabilitét,
betrachtet.

Fiir die Analyse werden zwei komplementéare Wege betrachtet: die Unsicherheitsanalyse
und die Robustheitsanalyse. Bei einer Unsicherheitsanalyse geht man davon aus, dass be-
stimmte Schranken bekannt sind, innerhalb derer die Parameterwerte unsicher sind. Das
Ziel ist dann, einen Bereich fiir das mogliche Modellverhalten, beispielsweise die Position
der Ruhelagen, zu bestimmen. In einer Robustheitsanalyse wird der umgekehrte Ansatz
verfolgt. Dabei wird ein bestimmtes gewiinschtes Modellverhalten vorgegeben, beispiels-
weise aufgrund einer Beobachtung am realen Prozess. Zu diesem Modellverhalten wird
ein Parameterbereich bestimmt, innerhalb dessen jede mogliche Wahl der Parameter zum
gewiinschten Modellverhalten fiithrt. Hieraus erhélt man Grenzen fiir die Parameterunsi-
cherheiten, welche keinen Einfluss auf eine entsprechende Aussage zum Modellverhalten
haben. Beispielsweise lassen sich mit den in dieser Arbeit entwickelten Verfahren Para-
meterbereiche bestimmen, innerhalb derer das Auftreten von Oszillationen sichergestellt
werden kann.

Einfilhrung in das Thema der Arbeit

Mathematische Modellierung biochemischer Reaktionsnetzwerke

Zentrale Prozesse auf zellularer Ebene, wie etwa der Stoffwechsel, biochemische Si-
gnaliibertragung und Genregulation, lassen sich in abstrakter Form als (bio-)chemische
Reaktionsnetzwerke beschreiben. Die Struktur eines solchen Reaktionsnetzwerkes wird
iiber eine Liste von chemischen Reaktionen definiert. Jede Reaktion beschreibt dabei ein
Umwandlungsgesetz, durch das eine Menge chemischer Molekiile (die Reaktanden) in ei-
ne andere solche Menge (die Produkte) umgewandelt wird. Die Reaktionsliste legt jedoch



nur die Struktur des Netzwerkes fest, die Dynamik ist dabei nicht beriicksichtigt. Oh-
ne Betrachtung der Dynamik kénnen jedoch nur sehr beschrinkte Aussagen iiber den
Prozess gemacht werden, dem das Reaktionsnetzwerk zugrunde liegt. Nur mittels der Dy-
namik kann jeweils die Anzahl oder Konzentration der im System vorhandenen Molekiile
und deren zeitliche Entwicklung beschrieben werden. Die Konzentrationen sind jedoch
entscheidend fiir die Funktion des jeweiligen Prozesses. Beispielsweise hingt die Wachs-
tumsrate von Organismen von der Menge der erzeugten Stoffwechselprodukte ab, und
die Aktivitéit einzelner Gene wird entscheidend von der Konzentration der fiir diese Gene
spezifischen Transkriptionsfaktoren im Zellkern beeinflusst.

Fiir die dynamische Modellierung ist die Festlegung von Reaktionsraten erforderlich.
Diese beschreiben, wie oft jedes Reaktionsgesetz pro Zeiteinheit zur Ausfithrung kommt.
Die Reaktionsraten hé&ngen typischerweise von der Konzentration der jeweiligen Reak-
tanden ab. Aus der Struktur des Netzwerkes und den Reaktionsraten kann dann mittels
Massenbilanzierung eine Differentialgleichung aufgestellt werden, welche die Entwicklung
der Molekiilmengen oder -konzentrationen iiber der Zeit beschreibt. Eine solche Differen-
tialgleichung ist ein vollstdndiges Modell fiir die Dynamik des betrachteten Netzwerkes.

Dynamische Modelle in der Form von Differentialgleichungen beinhalten meist mehrere
Parameter, d.h. Systemgrofien, deren Werte sich nicht aus dem Modell ergeben, sondern
extrinsisch vorgegeben werden miissen. In biochemischen Reaktionsnetzwerken iibliche
Parameter sind beispielsweise Reaktionskonstanten, die fiir den Zusammenhang zwischen
den Reaktionsraten und der Konzentration der Reaktanden erforderlich sind. Reakti-
onskonstanten hidngen unter anderem von physikalischen Eigenschaften der Reaktanden
ab, die bei der hier beschriebenen Modellierung nicht eigens beriicksichtigt werden, und
miissen daher als Parameter in das Modell integriert werden. Weitere Parameter, die
etwa bei Stoffwechselnetzwerken verwendet werden, sind die Konzentrationen von Enzy-
men. Diese katalysieren zwar Reaktionen, werden dabei aber nicht verbraucht oder neu
gebildet.

Analyse von Unsicherheiten in dynamischen Modellen

In vielen Féllen wird ein mathematisches Modell verwendet, um Aussagen iiber einen
realen Prozess zu machen. Dabei tritt das Problem auf, dass ein Modell nie exakt die
realen Zusammenhénge beschreibt, sondern immer Unsicherheiten auftreten. In bioche-
mischen Reaktionsnetzwerken kann bereits die Struktur des Netzwerkes unsicher sein.
Dies betrifft sowohl das Vorhandensein einzelner Reaktionen im Netzwerk wie auch die
Beteiligung einzelner Molekiile an den Reaktionen. Zusétzlich besteht eine Unsicherheit in
der Form des Reaktionsratengesetzes, d.h. des mathematischen Zusammenhangs zwischen
Reaktionskonstanten, Konzentration der Reaktanden und Reaktionsrate. Unsicherheiten
solcher Art werden als strukturelle Unsicherheiten bezeichnet.

Weiterhin treten oft sogenannte Parameterunsicherheiten auf, bei denen statt genauer
Parameterwerte nur Bereiche bekannt sind, in denen Parameterwerte liegen konnen. Fiir
biochemische Prozesse auf zelluldrer Ebene sind Parameterunsicherheiten im Vergleich zu
physikalischen oder technischen Systemen oft besonders ausgeprégt. Hierfiir gibt es meh-
rere Griinde. Einige Parameter konnen zwar direkt experimentell gemessen werden, jedoch
sind Messungen auf zelluldrer Ebene oft mit groflen Messfehlern behaftet. Falls Parame-
ter nicht direkt gemessen werden konnen, miissen sie indirekt aus potenziell fehlerhaften
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Deutsche Kurzfassung

Messungen anderer Systemgrofien ermittelt werden. Oft beinhalten Parameterwerte auch
Umgebungsgriéfien, etwa die Temperatur, von deren Wert die Dynamik des Reaktionsnetz-
werkes abhéngt. Héufig ist allerdings die Umgebung, in welcher der modellierte Prozess
ablauft, nicht genau bekannt, wodurch zusétzliche Unsicherheiten generiert werden.

Ein elementarer Teil der Modellanalyse besteht darin, die Auswirkungen der Unsicher-
heiten auf die modellbasierten Aussagen iiber den betrachteten Prozess abzuschéitzen.
Wichtige modellbasierte Aussagen betreffen beispielsweise mogliche Ruhelagen, d.h. sta-
tiondre Zustédnde, die sich bei konstanter duflerer Einwirkung nach einiger Zeit einstellen.
Die Auswirkung von kleinen Parameterunsicherheiten auf die Ruhelagen kann mittels ei-
ner (lokalen) Sensitivitédtsanalyse berechnet werden. Fiir grofie Parameterunsicherheiten,
wie sie in biologischen Systemen oft bestehen, gibt es jedoch keine etablierten determi-
nistischen Methoden fiir eine entsprechende Untersuchung. Es werden daher oft nicht-
deterministische Ansétze verwendet, bei denen die Variation der Ruhelagen nur probabi-
listisch bestimmt wird. Allerdings kénnen bei diesen Ansétzen keine sicheren Schranken
fiir die Variation berechnet werden.

Eine weitere fiir biologische Systeme relevante modellbasierte Aussage betrifft komple-
xes dynamisches Verhalten in einem biochemischen Reaktionsnetzwerk. Damit bezeichnet
man die Eigenschaft, dass der Zustand des Systems nicht zu einer eindeutigen Ruhelage
strebt, sondern beispielsweise Bistabilitdt oder Oszillationen aufweist. Unter Bistabilitét
versteht man die Eigenschaft, dass ein System in Abhéngigkeit vom Anfangszustand und
duBeren Einfliissen unterschiedliche Ruhelagen erreichen kann. Im Hinblick auf Parame-
terunsicherheiten ist fiir das dynamische Verhalten vor allem das Problem der Robustheit
interessant. Die Fragestellung ist dabei, wie grofy eine Parameterunsicherheit sein kann,
ohne dass sie sich auf den Typ des dynamischen Verhaltens auswirkt. Falls nur weni-
ge (iiblicherweise maximal zwei) Parameter unsicher sind, wird das Robustheitsproblem
durch eine Bifurkationsanalyse teilweise gelost. Dabei werden Kurven im Parameterraum
berechnet, auf denen sich der Typ des dynamischen Verhaltens verandert. Solche Kurven
bilden Grenzen fiir Bereiche, in denen sich das dynamische Verhalten nicht &ndert. Meist
kann allerdings nicht ausgeschlossen werden, dass es abseits der berechneten Kurven noch
weitere Parameterwerte gibt, fiir die eine Anderung des dynamischen Verhaltens auftritt.

Forschungsbeitriage und Gliederung der Arbeit

In dieser Arbeit werden Methoden zur Unsicherheits- und Robustheitsanalyse fiir bio-
chemische Reaktionsnetzwerke mit Parameterunsicherheiten entwickelt. Die entwickelten
Methoden betreffen die Analyse moglicher Ruhelagen sowie die Robustheit des dynami-
schen Verhaltens bei unsicheren Parametern.

Fiir die Untersuchung der Ruhelagen wird in erster Linie eine Unsicherheitsanalyse
vorgeschlagen. Dabei werden fiir einen gegebenen Parameterbereich Schranken fiir die
Variation der Ruhelagen ermittelt. Aufgrund des zugrundeliegenden Erreichbarkeitspro-
blems eignen sich fiir dieses Problem Ansitze der konvexen Optimierung, speziell der
semidefiniten Programmierung. Dieselben Ansétze lassen sich auch zur Untersuchung der
Robustheit von Ruhelagen gegeniiber unsicheren Parametern verwenden.

Fiir die Auswirkungen von Parameterunsicherheiten auf den Typ des dynamischen Ver-
haltens wird das Robustheitsproblem betrachtet. Eine wesentliche Rolle fiir das komple-
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xe dynamische Verhalten spielt die Riickkopplungsstruktur des Netzwerkes. Da sich die
Regelungstheorie auf abstrakter Ebene ausfiihrlich mit den Eigenschaften dynamischer
Riickkopplungen befasst, wird in dieser Arbeit zur Losung des Robustheitsproblems fiir
das dynamische Verhalten ein Ansatz entwickelt, der auf etablierten Konzepten der robu-
sten Regelungstheorie beruht. Ein entscheidender Schritt bei der Verwendung dieser Kon-
zepte ist die Transformation des Problems in den Frequenzbereich. Die Frequenzbereichs-
Transformation wird dabei mit dem neu vorgeschlagenen Verfahren des Aufschneidens
einer Riickkopplung erreicht, durch welches das biochemische Netzwerk regelungstechni-
schen Ansétzen zugénglich wird.

Kapitel 2 — Dynamische Modellierung biochemischer Reaktionsnetzwerke In diesem
Kapitel wird die dieser Arbeit zugrundeliegende Modellklasse zur Beschreibung bioche-
mischer Reaktionsnetzwerke eingefithrt. Zusétzlich werden Differentialgleichungsmodelle
fiir zwei in der Literatur intensiv behandelte Netzwerke vorgestellt, die in den folgenden
Kapiteln mit den neu entwickelten Methoden beispielhaft untersucht werden.

Kapitel 3 — Unsicherheits- und Robustheitsanalyse stationarer Zustande Dieses Ka-
pitel behandelt die Auswirkungen von Parameterunsicherheiten auf die Ruhelagen des
Netzwerkes. Es werden Methoden zur Losung des Unsicherheits- und des Robustheitspro-
blems fiir diese Fragestellung entwickelt. Mittels sogenannter Nichterreichbarkeitszertifi-
kate werden zur Losung des Unsicherheitsproblems Schranken bestimmt, innerhalb derer
alle moglichen Ruhelagen fiir eine vorgegebene Parameterunsicherheit liegen. In dhnlicher
Weise wird zur Losung des Robustheitsproblems ein Parameterbereich bestimmt, fiir
den garantiert werden kann, dass eine vorgegebene Variation in den Ruhelagen nicht
iiberschritten wird.

Kapitel 4 — Robustheitsanalyse des dynamischen Verhaltens In diesem Kapitel wer-
den Methoden zur Quantifizierung der Robustheit des dynamischen Verhaltens gegeniiber
Parameterunsicherheiten entwickelt. Da die Ruhelagen selbst das dynamische Verhalten
wesentlich beeinflussen, basieren diese Methoden teilweise auf den Ergebnissen des vo-
rigen Kapitels. Zur Untersuchung komplexen dynamischen Verhaltens wird ein Ansatz
vorgeschlagen, der durch ein Aufschneiden der Riickkopplung einfach zu treffende Aus-
sagen iiber Anderungen des dynamischen Verhaltens zulidsst. Mit diesem Ansatz ist es
moglich, fiir bestimmte Parameterbereiche zu garantieren, dass in diesen Bereichen keine
Anderung des dynamischen Verhaltens auftritt. Somit kann eine untere Grenze fiir die Pa-
rameterunsicherheit berechnet werden, bis zu der Robustheit des dynamischen Verhaltens
sichergestellt ist.

Kapitel 5 — Bifurkationssuche in hochdimensionalen Parameterraumen Der im vo-
rigen Kapitel entwickelte Ansatz mit einem Aufschneiden der Riickkopplung wird hier
verwendet, um in hochdimensionalen Parameterrdumen Punkte zu finden, an denen sich
der Typ des dynamischen Verhaltens éndert. Da solche Punkte eine obere Grenze fiir die
Robustheit des betrachteten Systems ergeben, ist diese Methode komplementér zu dem
im vorigen Kapitel entwickelten Ansatz. Zusétzlich ldsst sich mit dieser Methode ermit-
teln, welche Parameter besonders relevant fiir Anderungen im dynamischen Verhalten des
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Netzwerkes sind.

Kapitel 6 — Robustheitsanalyse und Verdnderung der Sensitivitat mit kinetischen
Perturbationen In diesem Kapitel werden kinetische Perturbationen als neuer, fiir bio-
chemische Netzwerke relevanter Unsicherheitstyp eingefiihrt. Kinetische Perturbationen
nehmen eine Mittelstellung zwischen strukturellen und parametrischen Unsicherheiten
ein. Es wird gezeigt, dass sich kinetische Perturbationen effizient zur Robustheitsanaly-
se des dynamischen Verhaltens nutzen lassen. Hierfiir kann der in der Regelungstechnik
etablierte Ansatz der strukturierten Singulédrwerte verwendet werden. Zusétzlich wird ein
Zusammenhang zwischen kinetischen Perturbationen und einer Anderung der Sensitivitit
von Ruhelagen hergestellt.

Kapitel 7 — Erstellung und Analyse eines Modells fiir die TNF Signaliibertragung
Es wird ein neues Modell zur Beschreibung eines TNF induzierten Signalweges vorgestellt,
wobei im Gegensatz zu fritheren Modellen besonders die Interaktionen zwischen zwei un-
terschiedlichen Rezeptortypen beriicksichtigt werden. Das Modell dient als Fallbeispiel fiir
die Anwendung der in dieser Arbeit entwickelten Methoden. Die Ergebnisse der verwen-
deten Analysemethoden erlauben dabei von biologischer Seite neue Erkenntnisse iiber das
untersuchte System.
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Chapter 1

Introduction

1.1 Research motivation

Many processes in living organisms are based on biochemical reaction networks. On the
cellular level, biochemical reaction networks describe central elements like metabolism,
biochemical signal transduction or gene regulation in an abstract way. Most predictions
about the behaviour of such networks require the use of dynamical models. A common
framework for the dynamical modelling of biochemical reaction networks is the use of
ordinary differential equations, which describe the temporary evolution of the amount of
the chemical species considered in the network.

Differential equations describing biochemical reaction networks usually include model
parameters. However, the parameter values corresponding best to the features of the real
network are typically not exactly known. This effect is denoted by the term parametric
uncertainty. Often, the uncertainty stems from insufficient biological knowledge about
the modelled network. Another source of uncertainty are the experimental difficulties
involved in measuring model parameters in vivo. Despite the uncertainty, a dynamical
model may be used to make predictions about the behaviour of the real network. However,
in such a situation, model-based predictions need to be complemented by an additional
analysis to assess their reliability. One option for such an assessment is to compute the
range of possible model behaviours for a given uncertainty directly. We refer to this
approach as uncertainty analysis. Another option, commonly called robustness analysis,
is to estimate up to which level of uncertainty a specific model behaviour is not affected
by the uncertainty. A robustness analysis thereby yields bounds on the magnitude of
uncertainty for which predictions remain reliable.

In the following, we will argue that current methods to deal with parametric uncertainty
in models of biochemical reaction network are insufficient in many cases. This insufficiency
opens a methodological gap which is addressed in this work. To fill this gap, this thesis
provides computational methods for evaluating the effect of parametric uncertainty on
the dynamics of biochemical reaction networks. The focus is on two network properties
which play major roles in the analysis of a dynamical model: the locations of steady states
and the emergence of complex dynamical behaviour, such as sustained oscillations.
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1.2 Research topic overview

1.2.1 History of modelling biochemical reaction networks

Mathematical modelling of biochemical reaction networks has accompanied general re-
search in intracellular biological chemistry for decades, but has received varying appreci-
ation from experimental biologists over time. An early landmark paper in this respect is
A. M. Turing’s (1952) paper on basic mechanisms in development, one of the first papers
where a dynamical model for an intracellular signalling process based on chemical reac-
tions was constructed. Also, gene regulation mechanisms have been modelled and anal-
ysed mathematically shortly after the discovery of the underlying molecular mechanisms
(Griffith, 1968a,b). However, most of the early studies were concerned with networks
of biochemical reactions in metabolism. Researchers in the 1960s and 70s worked on
mathematical models of metabolic pathways (Savageau, 1976), using basic mathematical
formulations for chemical reaction rates, such as the law of mass action or the Michaelis-
Menten mechanism (Michaelis and Menten, 1913). An important impulse for these efforts
was the discovery of the allosteric regulation of enzyme activity (Monod et al., 1965),
which set the basis for the construction of metabolic networks with complex regulatory
interactions. Mathematical modelling permitted to realise that such regulatory interac-
tions may induce a loss of stability, which has led to the study of stability conditions for
metabolic pathways (Dibrov et al., 1982). In this context, also the chemical reaction net-
work theory should be mentioned, which provides a thorough treatment of steady states
and their stability in certain classes of reaction networks (Feinberg, 1988, 1987). Due to
an increase in mechanistic biological knowledge, mathematical modelling of the dynam-
ics of biochemical signal transduction started to flourish in the 1990s, forming the basis
for systems biology as a new research field. This is for example marked by important
papers like the Goldbeter (1991) model of the mitotic oscillator, describing a process at
the core of the eukaryotic cell cycle, or the presentation of the first dynamical model for
the MAPK (mitogen activated protein kinase) cascade by Huang and Ferrell (1996). In
the last decade, increasingly complex dynamical models for complete pathways have been
constructed, as exemplified by a model for the EGF (epidermal growth factor) induced
MAPK cascade proposed by Schoeberl et al. (2002). Yet, small models remain useful in
order to understand various dynamical phenomena in biological signal transduction, like
bistability in the lac operon (Ozbudak et al., 2004). In recent years, the benefits of using
dynamical models to understand biochemical processes are increasingly recognised also
by experimental biologists (Eungdamrong and Iyengar, 2004).

1.2.2 Analysis tools for models of biochemical reaction networks

Let us next give an overview of established mathematical analysis tools for models of
biochemical reaction networks, also pointing out problems in relation to parametric un-
certainty analysis. Given the availability of very efficient numerical solvers for ordinary
differential equations, the most straightforward tool for model analysis is the numerical
simulation. To account for different environmental or internal conditions the system may
face, simulations are often performed for a wide range of corresponding parameter values.
The collection of all simulation results indicates the range of possible model behaviour.
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However, in most cases it will not be known whether this range is well represented by the
simulations. It is for instance possible that parameter values for which no simulation has
been performed would put the model behaviour beyond the estimated range.

Apart from numerical simulation, many analysis techniques are concerned with steady
states of the dynamical model. This is not only because steady states are more accessible
mathematically, but also due to the significant relevance of steady states for the bio-
logical interpretation of the model. However, steady states can often only be computed
numerically, and the computation of steady states for nominal parameter values is already
challenging in many cases.

Given a specific steady state, a frequent question in relation to parametric uncertainty
is how the steady state changes under variations of parameter values. The basic tool to
answer this question is local sensitivity analysis, which uses the implicit function theorem
to evaluate steady state changes in a neighbourhood of the nominal state (Rabitz et al.,
1983; Streif et al., 2009; Varma et al., 1999). For the analysis of metabolic networks,
this basic approach has opened up a whole field of research, which is commonly referred
to by the term metabolic control analysis. The origins of this field date back to 1973
(reprinted in Kacser et al., 1995), when the basic principles of this approach were first
introduced. In the following decades, various generalisations and extensions have been
proposed (Heinrich and Schuster, 1996; Kahn and Westerhoff, 1991; Klipp et al., 2005;
Reder, 1988). In practice, the methods based on local sensitivity analysis have found
widespread application in the field of metabolic engineering. They are commonly used to
suggest genetic modifications of microorganisms which may improve a metabolic process
with respect to a specific biotechnical objective (Stephanopoulos, 1999).

With respect to parametric uncertainty, local sensitivity analysis is a valuable tool,
providing basic information about how a steady state is affected by small parameter
variations. Thus, it allows to obtain a first estimate for the effect of parametric uncertainty
on the variation in steady state values. Large uncertainties, which are frequently present in
models of biochemical reaction networks, can however not be handled by local sensitivity
analysis (Streif et al., 2009).

In addition to the steady state location and local sensitivity, the dynamical properties
of the network are of interest for many systems ranging from metabolism to signal trans-
duction. This involves local stability of steady states (Dibrov et al., 1982; Prill et al.,
2005), but also different types of instability related for example to switch-like, excitable
or oscillatory behaviour (Tyson et al., 2003). With respect to variations in model param-
eters, bifurcation analysis is the major tool to evaluate how dynamical properties of a
steady state in the model depend on parameter values (Angeli et al., 2004; Breindl et al.,
2009; Conradi et al., 2007a; Eissing et al., 2007b; Miiller et al., 2009; Tyson et al., 2002).
Stability of steady states and bifurcations are directly related to complex dynamical be-
haviour in biochemical reaction networks, such as bi- or multistability, i.e. the existence of
two or several stable steady states, limit cycle oscillations, and non-periodic oscillations.
There are many examples in which it is possible to relate complex dynamical behaviour in
a biochemical reaction network to a biological function. Some examples from the specific
area of biochemical signal transduction within living cells are the bistability in the MAPK
pathway to induce developmental processes (Ferrell and Xiong, 2001), rapid activation of
caspases upon an over-threshold stimulus in programmed cell death (Eissing et al., 2004),
and sustained oscillations in circadian clocks (Leloup and Goldbeter, 2003).
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For a model in which one or two parameters are uncertain, a characterisation of the dy-
namical behaviour of the system within the relevant parameter range may be achieved by
bifurcation analysis. However, bifurcation analysis can often only give a first estimate for
possible dynamical properties, because more than two parameters are uncertain in most
models, and simultaneous variations in all uncertain parameters need to be considered for
a thorough analysis (Kim et al., 2006; Stelling et al., 2004).

1.2.3 Robustness of biochemical reaction networks

As indicated in Section 1.1, the effects of parametric uncertainty may also be evaluated
by a robustness analysis. Generally, the aim of robustness analysis is to quantify the per-
turbations which a system can tolerate before losing a specific function (Kitano, 2004).
Robustness analysis thereby allows to evaluate up to which level of uncertainty the func-
tion is maintained. A robustness analysis for a given system requires a specification of the
function to be maintained as well as the type of perturbations which are taken into ac-
count. Due to the observation that the function of biological systems is inherently robust
to many, possibly large, perturbations (Kitano, 2007; Stelling et al., 2004), robustness
issues are of particular relevance for such systems. On a biochemical level, robustness
with respect to parametric uncertainty was first noticed in the adaptation of chemotac-
tic receptors to different stimulus strengths (Barkai and Leibler, 1997). Robustness of
complex dynamical behaviour has e.g. been suggested for the circadian clock, where oscil-
lations need to be maintained to ensure biological function (Trané and Jacobsen, 2007),
or in programmed cell death, where robust bistability ensures a reliable execution of pro-
grammed cell death (Eissing et al., 2005). Robustness analysis is therefore a valuable tool
for model validation: if a biochemical network is robust, but the corresponding model is
not, then the model is not an adequate representation of the real network (Cimatoribus
et al., 2005; Morohashi et al., 2002). In addition, robustness analysis may yield insights
into the role of cellular regulation mechanisms, thereby improving our understanding of
biological systems (Trané and Jacobsen, 2007).

However, biological systems are also fragile to certain perturbations, as pointed out by
Carlson and Doyle (2002) with their concept of highly optimised tolerance. Robustness
analysis is useful in this respect, because it allows to detect fragilities, i.e. perturbations
for which the function of the system breaks down (Chaves et al., 2005; Shoemaker and
Doyle III, 2008). Knowledge of fragilities may help to find targets for pharmaceutical
intervention, either by attacking malicious systems at weak points, or by protecting the
weak points of beneficial systems which are perturbed in a disease.

With the growing industrial usage of engineered biosystems, the relevance of robustness
analysis will further increase in the future. From an analysis perspective, it will be
important to know the level of uncertainty, e.g. in the cellular environment, for which the
system maintains the function it has been designed for. In addition, robustness issues will
also directly be incorporated into the design strategies (Purnick and Weiss, 2009), with
similar goals as in today’s robust controller design methods.

Quantification of the robustness for a given system, function, and class of perturbations
requires the definition of an appropriate robustness measure. If a suitable norm for the
considered perturbations is available, a straightforward definition of a robustness measure
is the norm of the smallest perturbation leading to a loss of function. Such a definition
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is for example used by Ma and Iglesias (2002), where the function is defined by the
qualitative dynamical behaviour, the considered perturbations are variations in a single
parameter, and the perturbation norm is the factor by which the parameter value is varied.
In this case, it is possible to perform the robustness analysis by numerical bifurcation
analysis. Extending the same concept to variations in several parameters turned out to
be quite difficult. Using the structured singular value approach from robust control theory
(Zhou et al., 1996), only partly conclusive results could be obtained (Kim et al., 2006;
Ma and Iglesias, 2002). Yet, a robustness analysis with the structured singular value can
be used efficiently for structural perturbations, although it remains difficult to relate the
considered perturbation class to physically justified variations in the biochemical network
(Jacobsen and Cedersund, 2008; Trané and Jacobsen, 2008).

1.2.4 Methodological challenges

In general, methods from control engineering seem to provide efficient means to address
the outlined problems of parametric uncertainty. However, the parametric uncertainty
and robustness analysis of biochemical reaction networks generally faces three challenges,
the combination of which is typically not dealt with adequately in control engineering
methods. First, dynamical models for biochemical reaction networks are mostly non-
linear. Second, as mentioned above, one needs to consider simultaneous uncertainty of
several parameters. Third, uncertainty in parameter values almost always implies an
uncertainty in the steady states of the model. An additional point concerns the type of
dynamical behaviour being considered. Robustness analysis methods in control theory
almost exclusively focus on stability. However, for many biological systems, complex
dynamical behaviour like multistability or oscillations is of high relevance. Therefore,
methods for the analysis of these cases clearly have to go beyond the robustness of stability
usually sought for in control engineering. These observations can be seen as main reasons,
why the transfer of uncertainty and robustness analysis methods from control engineering
to systems biology is more challenging than the apparent similarity of the considered
problems may suggest.

1.3 Contribution of the thesis

To address the outlined problems of parametric uncertainty in models of biochemical
reaction networks, we develop methods for uncertainty and robustness analysis of these
models. The methods proposed in this thesis are essentially based on two concepts stem-
ming from the field of control engineering: set-based uncertainty descriptions and analysis
of feedback systems in the frequency domain. The developed methods aim at the analysis
of steady states and the qualitative dynamical behaviour. All methods developed in this
thesis are illustrated by examples, where the methods are applied to models from the
literature.

The first part of the thesis builds on set-based uncertainty descriptions. Concerning
the uncertainty of steady states, we propose the use of infeasibility certificates for the
underlying feasibility problem. Infeasibility certificates are well suited in this context,
because they can be obtained from the solution of a semidefinite program, for which
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efficient numerical algorithms are available. For the steady state uncertainty analysis,
we develop an algorithm to compute bounds on the steady state variability for a given
parametric uncertainty, making use of the proposed infeasibility certificates. In a similar
manner, we provide a robustness analysis method, for computing bounds on the para-
metric uncertainty which guarantee that a given limit on the steady state variability is
not exceeded. In contrast to previous approaches, the proposed methods for the analysis
of steady states directly consider uncertainty sets and do not rely on extrapolation from
the local sensitivity. Thus, they offer an advantage for the analysis of large parametric
uncertainties compared to sensitivity based methods.

For the qualitative dynamical behaviour, we focus on the robustness problem. To
approach this problem, a robustness measure in parameter space is proposed, yielding
bounds on a multi-dimensional parametric uncertainty which does not affect the qualita-
tive dynamical behaviour. In the specific case of robust stability, we show how classical,
Lyapunov based robustness tests can be applied to approximate the proposed robustness
measure. In particular, this requires to make use of the previously described method for
quantifying the steady state uncertainty. Otherwise, classical Lyapunov based methods
could not cope with the problem of steady state variability under parametric uncertainty.

Concerning the robustness of instability, a feedback loop breaking approach is devel-
oped, building on frequency domain methods and concepts from robust control theory
which form the core of the second part of the thesis. In particular, the feedback loop
breaking approach allows to characterise parametric uncertainties for which the dynami-
cal behaviour is robust. For typical models of biochemical reaction networks, the resulting
equations are polynomial. This motivates the development of a method where the Pos-
itivstellensatz is combined with linear programming to obtain robustness certificates for
the dynamical behaviour. Our method thus enables the robustness analysis of complex
dynamical behaviour such as sustained oscillations or bistability. Based on the feed-
back loop breaking approach, we also develop an algorithm to search for bifurcations in
a high-dimensional parameter space via a gradient-directed continuation method. This
complements the methods for robustness analysis of the dynamical behaviour by providing
upper bounds on the corresponding robustness measure.

Furthermore, the concept of kinetic perturbations is introduced as a new uncertainty
class for biochemical reaction networks. It is shown how this concept allows a stringent
robustness analysis. Thereby we use classical tools from robust control theory, in partic-
ular the structured singular value. A further application of kinetic perturbations is the
computation of small variations in the system which shape the steady state behaviour
with respect to an adjustable parameter in a specified way.

Beyond the methodological contributions, a novel model for a specific biochemical signal
transduction pathway is developed, involving the tumor necrosis factor (TNF) receptors
and the pro-inflammatory NF-xB! pathway. The application of the proposed analysis
methods to this model gives new insights into oscillatory modes of the NF-xB pathway, as
well as into mechanisms governing the network’s response in the adaptor protein TRAF22
to a stimulation with the TNF ligand. In addition, the TNF signalling model serves as a
comprehensive and realistic case study for part of the methods.

INF-£B — nuclear factor -light-chain-enhancer of activated B cells (a mammalian transcription factor)
2TRAF2 — TNF receptor associated factor 2



1.4 Outline of the thesis

Above, we have argued that a direct application of classical control engineering analy-
sis methods to the problem of parametric uncertainty in biochemical reaction networks
is often not possible. The results of this thesis show that, after overcoming the afore-
mentioned challenges, taking a control engineering perspective is nevertheless an efficient
way to approach the outlined problems. However, this requires that the concepts used
in control are brought into a framework which is compatible with the special features of
biochemical reaction networks.

1.4 OQOutline of the thesis

Chapter 2 contains fundamental concepts which are referred to from the remainder of the
thesis. First, the modelling framework used throughout the thesis is presented, and some
preliminaries concerning the model analysis, such as removal of conservation relations
and local sensitivity analysis, are introduced. Second, two classical dynamical models
describing specific biochemical signal transduction pathways are discussed. These models
serve as application examples for the analysis methods developed in later chapters of the
thesis.

In Chapter 3, a novel approach to the analysis of steady state location with respect to
uncertain parameters is developed. This includes the computation of guaranteed bounds
on the steady states for a given region where parameters may vary, and the computation
of parameter sets for which it can be guaranteed that the corresponding steady states are
located in a specified region.

Chapter 4 deals with the robustness of dynamical properties with respect to para-
metric uncertainty. In the first part of the chapter, we are considering specifically the
robustness of stability. Based on the results of Chapter 3, a method for computing robust
parameter sets is suggested. In the second part, the focus is turned towards the robust-
ness of instability, which is related to complex dynamical behaviour like oscillations or
bistability in biochemical reaction networks. Based on a newly introduced feedback loop
breaking approach, a robustness analysis method in the frequency domain is developed,
using the Positivstellensatz and linear programming to evaluate the robustness of stability
or instability in a biochemical reaction network.

The methods suggested in Chapter 4 provide lower bounds on the size of the parametric
uncertainty up to which the dynamical behaviour of the network remains robust. In
Chapter 5, we consider the problem of finding an upper bound, which is solved by
explicitly searching a bifurcation close to the nominal parameter values. Using again
the feedback loop breaking approach presented in Chapter 4, we suggest a gradient-
directed continuation method which is able to find nearby bifurcations from some nominal
parameters.

In Chapter 6, a new uncertainty class called kinetic perturbations is introduced.
Thereby we denote parametric or structural perturbations not affecting the nominal steady
state of the system. Such perturbations may however still affect the dynamical properties
and stationary stimulus—response characteristics of the system. We discuss the robustness
of dynamical properties of a steady state with respect to kinetic perturbations in terms
of the structured singular value. In addition, an approach to change the system’s local
sensitivity at the nominal point via kinetic perturbations is developed.
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Chapter 7 provides an exemplary application for methods developed in earlier chap-
ters. First, a novel model for a part of the tumor necrosis factor (TNF) signalling network
is constructed. Then, methods developed in this thesis are used to analyse oscillatory be-
haviour and sensitivity of the system with respect to a TNF stimulus. In this way, the
chapter provides a case study which combines new biological insight and an illustrative
application of methods developed in this thesis.



Chapter 2

Dynamical models for biochemical reaction
networks

This chapter provides some background material concerning the dynamical modelling of
biochemical reaction networks. Section 2.1 describes the derivation of ODE models, and
how to eliminate conservation relations, which may otherwise complicate the analysis of
dynamical properties, from the model. Section 2.2 contains a short summary of local
sensitivity analysis as the most basic technique to study the effect of parameter variations
on a model. Finally, in Section 2.3, we describe some established models of biochemical
signalling pathways, which will be used in examples throughout this thesis.

2.1 Basic modelling techniques

2.1.1 Construction of dynamical models

Biochemical reaction networks are composed of two main elements: Chemical species,
each of which represents an ensemble of chemically identical molecules in a specific com-
partment of the cell, and chemical reactions, which are processes transforming one group
of species into another one.

The structure of a biochemical reaction network is characterised completely by the list
of involved species, denoted as X7, X5..., X, and the list of reactions, denoted as

n

Ssx -3 SPX, j=1,...m, (2.1)

=1 =1

where m is the number of reactions in the network, and the factors SZ(; ) e Ny and Si(f ) e
Ny are the stoichiometric coefficients of the reactant and product species, respectively
(Higham, 2008; Klipp et al., 2005). Reversible reactions can always be written in the form
(2.1) by splitting the forward and reverse path into two separate irreversible reactions.

The structural information of the reaction network is usually subsumed in the stoichio-
metric matrix, given by

$=(s0-s9) e R, (2.2)

The state vector of the system consists of the concentrations of the involved chemical

species and is denoted by
= ([Xil)izy 0 € RY,



Chapter 2 Dynamical models for biochemical reaction networks

where [X;] represents the concentration of species X;.

The kinetic information for the reaction network is represented by reaction rate func-
tions, which depend on the state x € R™ and the kinetic parameters p € R?. The reaction
rates are given by the vector

-----

where v;(z,p) is the rate of the j—th reaction in (2.1). A common model for the reaction
rate functions is the law of mass action, given by

n ()

S
Uj(xap) = kj sz N ) (23)
=1

where k; > 0 is the reaction rate constant, which is integrated into the model as an element
of the parameter vector p. In metabolic networks, reaction rates are often modelled
with Michaelis-Menten expressions, which are derived from the law of mass action for
an enzymatic reaction by singular perturbation (Keener and Sneyd, 2004). A Michaelis-
Menten reaction rate where X; is the substrate of the enzymatic reaction is given by

kj.’EZ'
vi(z,p) = ———, 2.4
0 = T (24)
where k; > 0 and M; > 0 are kinetic parameters.
Independently of the chosen reaction rate mechanisms, a model for the dynamics of
the reaction network is obtained by mass balancing. The dynamics are described by an

ordinary differential equation given as

& = Sv(z,p). (2.5)

2.1.2 Elimination of conservation relations

Biochemical reaction networks are subject to the law of mass conservation. Specifically,
the amount of entities which are neither added to nor removed from the system will
not change with time. Mathematically, conservation relations in a biochemical reaction
network are described by a vector 8 € R™ such that

03 = 0T Sv(x,p) = 0. (2.6)

For a conservation relation, (2.6) is required to hold true for all possible reaction rate
vectors v(z, p). The space spanned by all conservation relations is thus given by ker ST
(Heinrich and Schuster, 1996).

If the biochemical reaction network (2.5) satisfies a conservation relation, the dimension
of the state space can be reduced by introducing the initial concentration of the concerned
species as an additional parameter py = 6Tx(0). We shortly outline the procedure to
achieve this reduction (see Heinrich and Schuster, 1996, for more details). Without loss

of generality, assume that 6; # 0. Denote 0z = (0,...,0,) and zp = (29,...,2,)T.
From (2.6) and the definition of py, we obtain
1
1(t) (po — Orzr(t)).

2

10
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Thus, a reduced model of the biochemical reaction network (2.5) is given by

b= S0 — 5en(0). 20 p) = Sen(an. . o) (27)

A conservation relation has an important effect on the dynamical properties of equi-
librium points of (2.5): it leads to a zero eigenvalue of the Jacobian S%%(zo,p) at an
equilibrium point xy. The zero eigenvalue emerges directly from the structure of the sys-
tem, and it is independent of the state and parameter values xo and p. However, the
zero eigenvalue does not have an effect on the dynamical properties of equilibrium points.
In fact, the state space of the original system is stratified into invariant hyperplanes by
the conservation relation, and the system evolves on these hyperplanes according to the
reduced equation (2.7).

Yet, if not taken into account explicitly, the existence of conservation relations may
complicate the analysis of dynamical properties of the model (2.5), where the eigenvalues
of the Jacobian at an equilibrium point are considered. To remove the problem with the
zero eigenvalue, it will be assumed tacitly in Chapters 4 to 6 that conservation relations
are not present in the model under study, which can always be achieved by the procedure
sketched above.

Example 2.1. As a very simple example, consider the reaction network X, = X5. Using
v2

mass action kinetics, the network can be modelled by the ODE

Zl":l = —k‘ll'l + k’gl’g

jfg = ]{?11’1 — kQIQ.

The network satisfies the conservation relation #; + £2 = 0. We introduce the additional
parameter x;,; = 21(0) + 22(0), and obtain the reduced order model

.’1.71 = —kflflfg + k?(xtot — .fCl).

2.2 Local sensitivity analysis

A first approach to evaluate the effect of parameter variations on the characteristics of a
biochemical reaction network is a local sensitivity analysis of the steady state. A huge
amount of literature on sensitivity analysis of biochemical reaction networks is available,
see e.g. (Heinrich and Schuster, 1996; Ingalls, 2004; Kahn and Westerhoff, 1991; Rabitz
et al., 1983) and references therein. Sensitivity analysis is restricted to small (strictly
speaking infinitesimal) perturbations of parameters from their nominal values, and aims
to characterise the resulting small perturbations of steady states. It is based on a first
order approximation of the steady state equation (Rabitz et al., 1983). Local sensitivity
analysis is also the main tool within the framework of metabolic control analysis to study
the regulation of biochemical reaction networks (Heinrich and Schuster, 1996).

For the analysis, one considers a pair (xg,pg) of a nominal steady state xy € R™ and
po € R? satisfying the steady state equation

Sv(zg,po) = 0. (2.8)

11
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Thereby, it is assumed that the steady state is non-degenerate, i.e.

det(S%(zo,po)) # 0.

As discussed before, this requires that conservation relations are removed from the system
by an appropriate order reduction. Then, by the implicit function theorem, there exists
locally around (xg, po) a function

zs : RT—= R": p— z4(p) (2.9)

which satisfies 29 = z,(po) and Sv(x4(p),p) = 0.
The local sensitivity X of the steady state xy with respect to parameter variations is

defined as 5
T

) 2.1
) (2.10)

In biochemical networks, individual state variables or parameters frequently differ by
several orders of magnitudes. It is therefore common to use the scaled sensitivity (Klipp
et al., 2005)

Y=

) _,0xy .
5 = diag() 18—"]’)@0) diag(po), (2.11)

which gives the relative variations in the steady state if parameters are varied, and is
often a better measure for the effects of small parameter variations on the steady state
than the unscaled sensitivity X.

2.3 Classical models in systems biology

In this section, we present two biochemical signal transduction pathways, the MAPK
cascade and the NF-xB pathway, for which extensive modelling efforts have been made
in the past. We shortly discuss some of the models which have been developed for these
systems. These models have found widespread attention in systems biology and provide
benchmark problems for the development of new methods in model analysis. The mod-
els discussed here are also used in this thesis to illustrate the application of the newly
developed analysis methods.

2.3.1 The MAPK cascade

A central element of signal transduction in eukaryotic cells is the mitogen activated protein
kinase (MAPK) cascade. The MAPK cascade is a conserved structure of three kinases in a
sequential pathway, where one kinase phosphorylates the next kinase in the pathway. The
basic scheme is shown in Figure 2.1. This structure appears in many eukaryotic organ-
isms, from Dictyostelium discoideum to mammals (Widmann et al., 1999). Even within
the same organism, MAPK cascades appear in several signalling pathways, and different
kinases are involved in the different variants, but always following the same structure.
Signalling pathways with MAPK cascades are involved in a number of important cellular
events, such as cell proliferation, differentiation, and response to external stress signals
(Pearson et al., 2001; Widmann et al., 1999).

12
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Figure 2.1: Schematic model for the MAPK cascade. The input stimulus S typically represents
the activity of a specific receptor complex. The molecular species in the cascade are called
(from last to first step): mitogen activated protein kinase (MAPK), MAPK kinase (MAPKK),
and MAPKK kinase (MAPKKK). Activated, i.e. fully phosphorylated forms of the individual
species are marked with an asterisk.

Due to its relevance in intracellular signalling pathways, the MAPK cascade has become
a representative object of study in the field of systems biology during the past decade.
Several dynamical models have been proposed for MAPK cascades, either directly includ-
ing all possible complexes and using mass action kinetics (Huang and Ferrell, 1996), or
based on a Michaelis-Menten approximation for the enzymatic reactions (Kholodenko,
2000). Other models do not only consider the MAPK cascade in isolation, but include
the Raf/MEK/ERK cascade as part of a model for the EGF receptor signalling pathway!
(Asthagiri and Lauffenburger, 2001; Brightman and Fell, 2000; Schoeberl et al., 2002).

In the scope of this work, the MAPK cascade is of interest, because it is one of the first
signalling pathways where bistability, a common dynamical behaviour in biological sys-
tems, has been discussed. The initial experimental observations of switch—like behaviour
in the MAPK cascade (Huang and Ferrell, 1996) have stimulated the analysis of different
MAPK cascade models with respect to bistability (Ferrell and Machleder, 1998; Ferrell
and Xiong, 2001; Markevich et al., 2004; Qiao et al., 2007).

For some MAPK cascades, feedback interconnections are known and may have a pro-
found effect on the cascade’s dynamics. For the Raf/MEK/ERK cascade, active ERK
phosphorylates and thereby inhibits SOS (son of sevenless homologue), which is required
in the activation of Raf (Brightman and Fell, 2000). This interaction constitutes a neg-
ative feedback loop around the cascade (see Figure 2.2), and has been proposed as a

I MEK — MAP/ERK kinase (more recently also called MAP2K), ERK — extracellular signal regulated
kinase, EGF — epidermal growth factor

13



Chapter 2 Dynamical models for biochemical reaction networks

Table 2.1: Simplistic reaction model for the MAPK cascade. Molecular species: S — stimulus,
KKK — MAPKK kinase, KK — MAPK kinase, K — MAPK. The asterisk denotes the activated
forms of the kinases.

’ Reaction Rate Parameter values ‘
KKK + S — KKK* + S V1 = I{IH[KKK] [S] kll =0.1 minlnM’ [S] =5nM
KKK* — KKK Vg = klg[KKK*] klg =0.2 ﬁ
KK + KKK* — KK* + KKK* v3 = kgl[KK] [KKK*] ko1 = 0.1 minlnM
KK* — KK Vg = kigo[KK*] koo = 0.2 1
K+ KK* — K* + KK* vs = ka1 [K] [KK*] ka1 = minlnM
Kr—K Vg = k’gg[K*] k’32 =0.2 ﬁ

possible mechanism for sustained oscillations (Kholodenko, 2000). The possibility of sus-
tained oscillations in the MAPK cascade has further been investigated by computational
studies (Chickarmane et al., 2007; Qiao et al., 2007). More recently, sustained oscillations
have been observed experimentally in a MAPK cascade, albeit for another type of MAPK
cascade, involved in the pheromone response of yeast cells (Hilioti et al., 2008).

A simplistic MAPK model

First, let us introduce a simplistic model of the MAPK cascade. Despite its simplicity,
it possesses some of the relevant features which are observed in experiments, such as
ultrasensitivity of the cascade and amplification of the stimulus from one step to the
next. The model is obtained by directly translating the basic scheme from Figure 2.1 into a
biochemical reaction network with mass action kinetics. The reactions and corresponding
rates describing the model are given in Table 2.1.

Synthesis and decay of the kinases are neglected, and thus the system contains three
conservation relations, one for each of the kinases. The conservation relations are given

by
[KKK] 4+ [KKK*] = KKK;,; = 100nM
[KK] + [KK*] = KK;,; = 300 nM (2.12)
[K] + [K*] = Ktot = 300 HM,
introducing the parameters KKK,.;, KK;,; and K, for the total concentrations of MAP-
KKK, MAPKK, and MAPK, respectively. The values are taken from the model proposed

by Kholodenko (2000), and they are based on direct experimental measurements of the
kinase concentrations.

Denoting u = [S], z; = [KKK*], 5 = [KK*], and 3 = [K*], and taking advantage of
the conservation relations (2.12), the reaction dynamics are described by the ODEs

Ty = k11<KKKtot - xl)u — kiaq
j?g = ]{?21 (KKtot — $2)$1 — k’ggl’g (213)

T3 = ka1 (Kot — 23)72 — ksos.

14



2.3 Classical models in systems biology

Stimulus
[ — ‘
@ ~‘\‘§\\‘~~
/\) \\\\
aTie Qinic
\/ ’ ' \\\
@ = T A
e » @ )
— /\)- )
.‘ @. MEK ‘\\
\_/ \_/ ‘ t \
@ @ /’———’ \\\5\\ \\
% N \
—_— - I

Response

Figure 2.2: lllustration of the Raf/MEK/ERK cascade model in the EGF receptor pathway
according to Kholodenko (2000). The numbers on the reaction arrows correspond to the
reaction rate numbering in Table 2.2.

A more detailed MAPK model

Next, we specifically consider the MAPK cascade as it appears in the EGF receptor
pathway (Brightman and Fell, 2000) with a negative feedback circuit around the cascade
due to inhibition of SOS by phosphorylated ERK. Here, we use a model as suggested by
Kholodenko (2000), which is a subsystem of the EGF pathway as modelled by Brightman
and Fell (2000). A schematic diagram of the biochemical reactions in the model is shown
in Figure 2.2.

In the equations, the concentrations of phosphorylated kinases are denoted as x1; =
[Raf*}, To1 — [MEK—P], Tog — [MEK—PP], Tr31 — [ERK—P], and T3 — [ERK—PP] The
concentrations of unphosphorylated, inactive kinases Raf, MEK, and ERK need not to
be included as state variables, as they can be computed via the conservation relations

[Raf] +x1; = KKKtot
[MEK] + T21 —I— Tog = KKtot
[ERK] + T3 + T39 = Ktot-

As in the previous model (2.13), KKK;,;, KKy, and K;,; are parameters for the total con-
centrations of kinases, which are constant. Table 2.2 gives the mathematical expressions
for the reaction rates. Nominal parameter values are shown in Table 2.3.

Using the reaction rates from Table 2.2, the model can be written as a system of five
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Chapter 2 Dynamical models for biochemical reaction networks

Table 2.2: Reaction rates in the MAPK cascade model according

Reaction rate numbers are according to the labels in Figure 2.2.

Table 2.3: Two sets of nominal parameter values (A and B) for the MAPK cascade model

to Kholodenko (2000).

Reaction Rate Reaction Rate
v Vi (KKKtot—x11) v V21'11
1 (14 (z32/Ki)™) (Km1+KKK¢ot —x11) 2 Ko+t
v ksx11(KK¢ot—221 —222) v kax11221
3 Kin3+KKiot —x21—222 4 Kipatzo1
Vsxao Vexo1
v, — (¥ -
5 Kms+xa2 6 Kine+za1
v krxa2 (Kiot —x31—232) v ksxoox3q
7 Km7+Kiot—x31—732 8 Kmg+ws1
Vo Voxso V10 Viozsy
Kmo+x32 Kmi0+x31

in the EGF receptor pathway (Kholodenko, 2000).

16

Parameter | Value A Value B Parameter Value A Value B
Vi 2.5 nMs™! | 2.5 nMs™! K; 9 nM 18 nM
K1 10 nM 50 nM Vs 0.25 nM st | 0.25 nMs™!
Ko 8 nM 40 nM ks 0.025 s71 0.025 s71
K3 15 nM 100 nM k4 0.025 st 0.025 s1
Ko 15 nM 100 nM Vs 0.75 nMs™! | 0.75 nMs~!
K5 15 nM 100 nM Vs 0.75 nMs~! | 0.75 nMs™!
K 15 nM 100 nM k 0.025 s71 0.025 s71
Ko7 15 nM 100 nM kg 0.025 s~ ! 0.025 s~ !
K,5 15 nM 100 nM Vo 0.5 nMs™! | 1.25 nMs™!
K9 15 nM 100 nM Vio 0.5 nMs™! | 1.25 nMs™!
K10 15 nM 100 nM n 1 2
KKKy 100 nM 100 nM KKt 300 nM 300 nM

Kot 300 nM 300 nM
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Table 2.4: Reaction rates in the Krishna NF-xB pathway model (2.16). The reaction rates
are numbered according to the labels in Figure 2.3.

Reaction Rate Reaction Rate
V1 kxazy Vg ks
U3 Qx5 V4 kN,mM
Us k[,inxl Ve k’l,out$3
vy krxsxg Ug ky(Niot — x4 — x5 — T¢)
Vg ]fNI,out(Ntot — T4 — T5 — 1’6) V10 k’txé
V11 Ym 2 V12 kqxs

ODEs with 20 parameters:
T = Up — Vg
Zi"Ql :U3+U5—U4—U6
i'gg = VU4 — Us (214)
T31 = V7 + Vg — Ug — V1o

T3 = Vg — Vg.

2.3.2 The NF-xB pathway

Recently, the TNF induced NF-xB signalling pathway has attracted much attention in
systems biology. This is due to the fact that NF-xB is a central transcription factor
involved in the inflammatory response of mammalian cells and directly interacting with
the apoptotic pathway by upregulation of anti-apoptotic proteins (Li and Verma, 2002).
Therefore, the NF-xB pathway is highly relevant for understanding cancer or autoim-
mune diseases. Several ODE based models have been suggested for the NF-xB pathway
(Hoffmann et al., 2002; Krishna et al., 2006; Lipniacki et al., 2004).

Here, we consider the model suggested by Krishna et al. (2006), which reproduces
experimentally observed oscillations. This model is therefore of particular interest with
respect to this thesis. Krishna et al. (2006) already describe several variants of the model,
which have been derived with a quasi-stationarity assumption from a basic biochemical
reaction network. In this thesis, we consider both the original model without any quasi-
stationarity assumptions, as well as a reduced order model.

The original model consists of seven chemical species and a total of twelve reactions.
Due to a conservation relation for the amount of NF-xB, only six state variables are
needed. A scheme of the model is depicted in Figure 2.3. The reaction rates are given
in Table 2.4. Parameter values are listed in Table 2.5. The state variables are species
concentrations according to the following list: z; — cytosolic I-kBa, x5 — [-kBa mRNA,
x3 — nuclear I-kBa, x4 — cytosolic NF-kB, x5 — cytosolic complex of NF-xB and I-kBa, x¢
— nuclear NF-£B. The concentration of the nuclear complex of NF-xB and [-kBa follows
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JEBa)e—
_—
®

0 AAs
@W ©
®

IKK NF-xkB ) I-kBa !

Figure 2.3: Reaction scheme for the NF-xB pathway model according to Krishna et al.
(2006). The numbers on the reaction arrows correspond to the reaction rate numbering in
the dynamical model (2.16) and Table 2.4.

Table 2.5: Nominal parameter sets for the NF-xB models (2.16) and (2.17), for two different
operating conditions. The parameters p; (Krishna et al., 2006) give sustained oscillations, and
the parameters ps lead to damped oscillations of the nuclear NF-xB concentration.

Parameters P p2  Unit
knin 54 54 min™?
k1 in 0.018 0.018 min™*
K7 out 0.012 0.012 min™*
ENT out 0.83 0.83 min!
kg 30 30 (uMmin)~?
Ky 0.03 0.03 min !
Ky 1.03 0.1 (pMmin)™?
ky 0.24 0.2 min!
a 0.525 0.525 min!
Y 0.017 0.017 min™*
Niot 1 1 uM
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2.3 Classical models in systems biology

from a conservation relation of total NF-xB as
INF-£Bn/I-kBan]| = Ny — x4 — x5 — X, (2.15)

where the parameter N, denotes the total NF-xB concentration. The resulting ODE
model is given by
jfl :—?)1+U2—U5+’U6+1)12
Ty = V19 — V11
.1:/’3 = Uy — Vg — U7 + Vg (216)
513'42—’01+U2+U3—U4
$5:U1—U2—U3+U9
i’ﬁ = U4 — U7 + Usg.

The original parameter values proposed by Krishna et al. (2006) result in sustained
oscillations of the active NF-kB amount in the nucleus for a constant stimulus. In this
thesis, we will also consider a second set of parameter values, where the transcription and
translation rates for I-kBa have been reduced from the original values. This corresponds
to a situation where the cell has a reduced gene expression, such as in certain cell cycle
phases or under specific environmental conditions. Notably, the model does not show
sustained oscillations for the modified parameters, but rather damped oscillations towards
an asymptotically stable equilibrium point.

A reduced order model is obtained from a fast equilibrium assumption for the associa-
tion and dissociation of the NF-xB/I-xkB complex. The reduced order model contains four
state variables according to the following list: x; — cytosolic I-kBa, 25 — [.kBae mRNA,
xr3 — total nuclear I-kBa, x4 — total nuclear NF-xB. The parameter values are the same
as given in Table 2.5. As a short-hand notation, the additional dependent parameters

K, — ky + «
ky
Ky = Fy + :Nl,out
f

are introduced.
The equations for the reduced order model are then given by

. a(Niot — T4) 11 ErouwK T3
= kyo — — Kiin —_ -
L= R K+ 1, LinT1 + Ky + 24
'j72 = ktmi — YmT2
kErowKNTs  ENIouwtT3T4 (2.17)

’ Lt Ky + x4 Ky + x4

_ k‘N,z‘nKI(Ntot - $4) _ kNI,out$3$4
K+ x4 Ky + 24 )

T4

Since complex formation is fast, i.e. ky is large compared to the time-scale of the
system’s dynamics, the reduced order model (2.17) has a similar behaviour as the original
model (2.16).
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Chapter 3

Uncertainty and robustness analysis of steady
states

In this chapter, we consider the problem of how uncertainty in the parameters affects the
steady states of the network. Section 3.1 contains an introduction to the problem, and
a formal definition of steady state uncertainty and robustness analysis in terms of set-
based uncertainty descriptions. In Section 3.2, we suggest the computation of infeasibility
certificates for the uncertain steady state equation by semidefinite programming. Using
this approach, a solution to the uncertainty analysis problem is proposed in Section 3.3,
and a solution to the robustness analysis problem is developed in Section 3.4. Parts of
this chapter are based on Waldherr et al. (2008c).

3.1 Introduction and problem statement

One of the most relevant properties of biochemical reaction networks is the location of
steady states. Steady states in biochemical networks correspond to operating points in
metabolic networks, cell differentiation states in gene regulatory networks (Thomas and
Kaufman, 2001), or the signalling state reached after adaptation in biochemical signal
transduction (Alon et al., 1999). In a dynamical model of a biochemical reaction network,
the steady states will vary with parameter changes. As outlined in Section 2.2, sensitivity
analysis is an efficient method to study the effects of small parameter variations. However,
the assumption of variations being small does often not hold for biological systems. In
particular, gene mutations, variations in the environment and experimental techniques
such as gene knockout, gene knockdown or overexpression of a protein all correspond to
rather large parameter variations. In contrast to sensitivity analysis, which is restricted
to local considerations, the goal of uncertainty analysis generally is to estimate the range
of feasible model predictions under a specific uncertainty in the independent variables
or parameters (Cacuci, 2003). Thus we will refer to the analysis of the effect of large
parameter variations on steady states as steady state uncertainty analysis.

In this chapter, we deal with two problems in the analysis of steady states of biochemical
reaction networks: the steady state uncertainty analysis and the steady state robustness
analysis. Both problems consider the steady state equation

0 = Sv(x,p) (3.1)

of the biochemical reaction network (2.5). Throughout this chapter, it is assumed that
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reaction rates are modelled using the law of mass action, where v takes the form
tsm )
vj(x,p):ij:ci’, j=1,...,m. (3.2)
i=1

However, the method can easily be extended to rational reaction rate expressions (Hase-
nauer, 2008), thereby allowing to consider also Michaelis-Menten reaction rates. For the
sake of clarity, we restrict the description of the results to the polynomial case.

Since the stoichiometric coefficients SZ(; ) are derived from the structure of the network,
they are considered to be constant, and the parameter vector is built from the reaction
rate constants, p = (ki,...,k,)T. Thus, if the state space dimension is not reduced via
conservation relations, the number of parameters is in general equal to the number of
reactions, and p € R™.

In this chapter, the state of the system (2.5) will generally be restricted to the set
Xy C R”, which is assumed to contain all states which are physically plausible without
considering parameter values. With state variables being concentrations or molecular
amounts, we have Xy C R’.. Often, there are additional upper bounds on state variables,
derived from conservation relations which are not subject to parametric uncertainty.

3.1.1 The uncertainty analysis problem

The goal of steady state uncertainty analysis is to compute the set of possible steady state
values, given a set of allowable parameter values. Formally, the steady state uncertainty
analysis problem is posed as follows. Given a set P C R™ in parameter space, compute
the set of all states satisfying the steady state equation (3.1),

X*={xe Xy |IpeP:Sv(zx,p) =0} (3.3)

For models of typical complexity, computing X* is often very difficult or even impossible.
X* may show different complex features, such as non-connectedness, or a non-smooth or
self-intersecting boundary. Instead of trying to compute X* explicitly, the goal pursued
in this work is to compute outer bounds on possible steady state values, in the form of
another set Xy C R’} such that

Xs DA™ (3.4)

Then it can be guaranteed that all feasible steady states are located within X, and the
set Xy can be interpreted as an outer bound on feasible steady state values. Clearly, the
goal in the computation of X, is to make the bounds as tight as possible.

3.1.2 The robustness analysis problem

The robustness analysis problem is the inverse to uncertainty analysis. Thereby, a set
X C X of tolerable steady states is given, corresponding to a certain biological function
of the considered network. The problem is to find the set of parameter values which
ensures that all steady states are located within X'. We denote this parameter set by

P ={peR"|VzeX,: Sv(x,p) =0=2x € X} (3.5)
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The set P* typically cannot be computed explicitly. Our approach will rather be to
compute inner bounds in the form of a set P, C R™ which satisfies

P, C P (3.6)

Then one can guarantee that for any parameter p € P,, the steady states of the system
will be located within the allowable set X. The set P, can therefore be used to evaluate
the robustness of steady states with respect to parameter variations.

3.1.3 Established solution approaches

If the model has the S-system structure (Savageau, 1976), a transformation to logarithmic
coordinates makes the steady state depend linearly on parameters. In this case, the
uncertainty and robustness problems can be solved efficiently (Chen et al., 2005).

However, most biochemical reaction networks do not have this special structure. Then,
a classical approach to study both the uncertainty and the robustness problem is to
extrapolate the local sensitivity of the steady state with respect to parameter variations.
For nominal parameter values py and a corresponding steady state xq, the local sensitivity
> can be computed easily, as discussed in Section 2.2. The idea is then to approximate
the steady state by the equation

z4(p) = xo + S(p — po). (3.7)

With this approximation, estimates for both the steady state region under parametric
uncertainty and the robust parameter region for an allowable steady state set can be
computed. For a non-linear relation between parameters and the steady state, and for a
parameter variation which is not small, this method has severe drawbacks: the quality
of the estimates is not known, nor is there any guarantee that the estimated regions
either underapproximate or overapproximate the exact result. Notice that for biochemical
reaction networks, a non-linear relation between parameters and the steady state is very
common'. In addition, as argued above, parameter variations for biochemical reaction
networks are not small in typical applications. As a conclusion, steady state uncertainty
and robustness analysis based on local sensitivity is usually insufficient. Therefore, other
ways to approach the two problems have been proposed in the literature.

One approach to broaden the validity of results from local sensitivity analysis is to
include higher order approximations at the nominal point (Streif et al., 2007). Although
such an approach may extend the validity of the approximation, it still gives results
which are generally only valid for small parameter variations, and no bounds on the
approximation error for large variations are available.

The study of uncertain trajectories of dynamical systems by set based methods is
commonly called reachability analysis, and results for this problem are mainly available
for linear systems (e.g. Girard, 2005). Although methods for reachability analysis of
non-linear systems have been suggested, these remain often restricted to special system
classes (Ramdani et al., 2008), or do not consider the problem of uncertainty in the
system’s dynamics (Asarin et al., 2003).

'Even if the model is affine in the states and parameters, the steady state may be non-linear in the
parameters. Consider e.g. the system & = —pjx + po, with the steady state x;, = g—f.
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Due to the difficulties involved in obtaining an analytic solution, non-deterministic
approaches are frequently applied. A common tool are Monte Carlo methods (Robert
and Casella, 2004), which are routinely used in the analysis of uncertain biochemical
reaction networks (Alves and Savageau, 2000; Feng et al., 2004). However, Monte Carlo
methods do not give reliable results, because it is possible to miss important solutions.
This is particularly problematic for highly non-linear dependencies of the steady state on
parameters. Also, Monte Carlo methods require that all of the possibly multiple steady
states for specific parameter values can be computed explicitly, which is often a difficult
task in itself. Despite these drawbacks, Monte Carlo methods present a suitable way to
obtain an estimate of the conservatism involved in the methods developed in this chapter.
By computing points in the steady state set X'* explicitly, these methods provide a lower
bound on the possible steady state variation for the uncertain parameter set P.

Global optimisation methods employing branch and bound techniques or interval arith-
metics would in principle be suited to compute steady state regions (Maranas and Floudas,
1995; Neumaier, 1990). However, it seems that the corresponding computational cost has
obstructed their application to the analysis of biochemical reaction networks so far.

3.1.4 Solution approach with infeasibility certificates

In this thesis, solutions to the uncertainty and robustness analysis problems which over-
come the drawbacks of established approaches are proposed. To this end, we directly
consider the system of constraints

Sv(x, p) =0

3.8
reX 67? (3:8)

where X C R™ and P C R™ are test regions which will be chosen iteratively in the algo-
rithms for uncertainty and robustness analysis, respectively. As we show in Section 3.2,
for suitable test regions X and 77 it is possible to obtain a computational proof that
(3.8) does not have a solution. We refer to such proofs as infeasibility certificates. The
computation is based on semidefinite programming and can therefore be implemented
with good numerical efficiency.

To solve the uncertainty and robustness analysis problems, the test regions X and P
are constructed in an appropriate manner. This construction is done iteratively, and in
each iteration, we try to obtain an 1nfea81b1hty certificate for (3. 8) In the steady state
uncertainty analysis, the parameter test region P is kept fixed at P = P, while the state
test region X is changed in iterations. Each test region X which yields an infeasibility
certificate for (3.8) is excluded from the approximation X of the steady state uncertainty
set. In the steady state robustness analysis, the state test region X is fixed (see Section 3.4
for more details), while the parameter test region P is varied in iterations. The largest
test region P yielding an infeasibility certificate for (3.8) is taken as the approximation
P, of the robust parameter set.
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3.2 Steady state infeasibility certificates via semidefinite
programming

Notation. S* denotes the space of real symmetric k x k matrices. W > 0 means that
the symmetric matrix W is positive semidefinite. By M > 0, we denote that the matrix
M is elementwise non-negative.

3.2.1 Construction of the feasibility problem

In the following, we restrict the class of regions in state and parameter space to hyperrect-
angles. This restriction is mainly introduced for ease of notation. In general, the methods
can directly be applied for any convex polytopes. However, in applications it may not be
obvious how to choose the polytopes, and the generalisation does not necessarily offer an
advantage. Using hyperrectangles, the test regions X and P are described by

X:{weRn|Ii,min§xi§xi,maajy 221,771}

~ (3.9)
P={p €R" | Djmin < Dj < Pjmaz, J=1,...,m}.
Then, the constraints (3.8) are described by the feasibility problem
find reR" peR™
(P) - s.t. Sv(x,p) =0 (3.10)

L min <z < Timaxr T = 17'--an

Djmin < Dj < Djmaz J=1,...,m.

In general, this is a non-convex problem and hard to solve. Such a problem is also
considered in the context of parameter identification in a recent paper (Kuepfer et al.,
2007). We will show in the next section that the Lagrangian dual to a suitably relaxed
feasibility problem allows to obtain (possibly conservative) infeasibility certificates for
problem (3.10).

3.2.2 Relaxation to a semidefinite program

A relaxation of the feasibility problem (3.10) to a semidefinite program (Vandenberghe
and Boyd, 1996) makes the problem amenable to an efficient computational solution. The
applied relaxation is based on a quadratic representation of a multivariate polynomial of
arbitrary degree (Parrilo, 2003). In the first step, we construct a vector £ containing
monomials which occur in the reaction flux vector v(x,p). In the special case where no
single reaction has more than two reactants, a starting point for the construction of ¢ is

T _
5 - (17291; - s Pmy L1y -5 Ty, P12, - - - Jpj'ri7 s 7pmxn)7

which usually can be reduced by eliminating components which are not required for rep-
resenting the reaction fluxes. Define k such that ¢ € R¥. Note that this approach is not
limited to second order reaction networks. In more general cases, one has to extend the
vector £ by monomials which are products of several state variables.
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Using the vector £, the elements of the flux vector v(z, p) can be expressed as

vi(z,p) =&, j=1,...,m, (3.11)
where T; € S§* is a constant symmetric matrix. The choice of T; is generally not unique:
for example, an expression of the form p;x;z; can be decomposed as either (p;x;)(z;) or
(py) (2:).

Using (3.11), the system’s ODE (2.5) can be written as
i, =&Y, i=1,...,n, (3.12)
where m
Ui:ZSijTjGSk, 1=1,...,n.
j=1
By the non-uniqueness of the decomposition for terms of order three or higher, we have
additional equality constraints of the form

TUE=0, i=n+1,...,n+1 (3.13)

with U; € S*, and [ the number of additional equality constraints.
The original feasibility problem (3.10) is thus equivalent to the problem

find é“E]Rk
t. TUE=0 i=1,...
P st. &UELE=0 1 yoo,n 1 (3.14)
K&E>0
51:17

where the matrix K € R(Z#=2%k is constructed to cover the inequality constraints in (3.10),
e.g. the constraint pi min < D1 < Pimas 1S Tepresented as

—P1,min 1 0O ... 0
<p1,m0w: -1 0 ... O)ézo

The constraints on x and p in the feasibility problem (P) also yield constraints on the
higher order monomials in &, given by

PjminTimin < p;iT; < PjmazTimax, 1= 17 AR (D) ] - 17 cee, M.

These constraints are also included in the matrix K to reduce the conservatism of the
subsequent relaxation.

A relaxation to a semidefinite program is found by introducing the matrix W = &£7T.
The problem is then first transformed to the equivalent feasibility problem

((find  WeS
st.  tr(UW)=0 i=1,...,n+1
tr(eje; W) =1
KWe, >0
W =0
L rank W =1,

(3.15)
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where e; = (1,0,...,0)T € R*. The two last constraints assure the existence of a de-
composition of W as W = ££T. In the second step, the problem is relaxed by omitting
the non-convex constraint rank W = 1. The relaxed version of the original feasibility
problem (3.10) is thus obtained as

((find  WeS”
st.  tr(U;W)=0 i=1,...,n+1
tr(ere; W) =1
KWe, >0
KWK">0
\ W =0,

(RP) : (3.16)

which is a semidefinite program.

Note that the constraint KW KT > 0 would be redundant in the non-relaxed prob-
lem (3.15), because it is automatically satisfied if W can be decomposed as W = £€7T.
However, when the decomposition constraint is relaxed, the constraint KW KT > 0 is
not redundant and serves to reduce the conservatism of the relaxation.

By removing the non-convex rank constraint, the feasible set of the problem has been
enlarged. Thus, the basic relationship between the original problem (3.10) and the relaxed
problem (3.16) is that feasibility of the original problem implies feasibility of the relaxed
problem. In the next step, the Lagrange dual problem is used to check infeasibility of the
relaxed problem, which then also allows to certify the original problem as infeasible.

Although the derivation of (RP) as outlined above is restricted to polynomial reaction
rates, the approach can easily be extended to rational reaction rates. This can either be
achieved by multiplying the equations with the denominators, thus arriving at polynomial
equations, or by introducing additional variables for rational terms (Hasenauer, 2008).
Whether the first or the second approach is more efficient in dealing with rational terms
depends on the individual model.

3.2.3 Infeasibility certificates from the dual problem

The Lagrange dual problem can be used to certify infeasibility of the primal problem.
First, the Lagrangian function L (Boyd and Vandenberghe, 2004) is constructed for the
primal problem (3.16). By the standard construction of L in convex optimisation (Boyd
and Vandenberghe, 2004), we obtain

LW, A1, A2, A3, v) = =M\ KWep — tr(Ay KWK™)
n+l
3.17
—tr(AgW) = vi(tr(eref W) — 1) = > vipy te(UiW), (3.17)
i=1
where \; € R?*72 )\, € 8?72 )3 € S¥ and v € R"*!. Using the cyclic property of the
trace operator, i.e. tr(ABC) = tr(BCA) = tr(CAB), we rewrite

tr(\g KWKT) = tr(KTAy KW)
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and \T \
M EWe, = tr(q?lKW) + tr(elTéKTW)
AT A
— tr((eléK + elTElKT)W).
Based on the Lagrangian L, the dual problem is obtained as
max inf L(W, Aj, A, A3, v)
AL, 2, 3,0 WeSk (318)
s.t. )\1 Z O, )\2 2 O, )\3 = 0.

Observe that L as given in (3.17) is affine in W and thus the infimum in (3.18) yields
an equality constraint to zero for the term multiplying W. With this constraint, the
Lagrangian becomes L(0, A\, A2, A3, ) = v1. Thus, (3.18) is equivalent to the semidefinite
program
([ max v
A17A2,A37V

1 n+l
(D) . S.t. KT)\QK —+ 5(61)\}‘K + KT)\le’lI‘) + )\3 + V1616'1T + Z Vi-i—lUi =0 (319)
i=1

)\1207 )\2207 )\3¢O

\

It is a standard procedure in convex optimisation to use the dual problem in order to find
a certificate which guarantees infeasibility of the primal problem (Boyd and Vandenberghe,
2004). For the problem at hand, this principle is formulated in the following theorem.

Theorem 3.1. If the dual problem (3.19) has a feasible solution with vy > 0, then the
primal problem (3.10) is infeasible.

Proof. Note that the constraints of the dual problem (3.19) are homogenous in the free
variables: if (A1, Ao, A3, 1) is feasible, then also (aAi, als, @)z, av) with any o > 0 is
feasible. Choosing all free variables to be zero is always a feasible solution of the dual
problem (3.19).

Let up be the optimal value of the dual problem (3.19). By the previous argument, it
is clear that either up = 0 or up = co. Under the assumption made in the theorem, we
have up = oo.

To the primal feasibility problem (3.16), we can associate a minimization problem with
zero objective function and the same constraints as in (3.16). Let up be the optimal value
of this minimization problem. We have pup = 0, if the primal problem (3.16) is feasible,
and pp = oo otherwise. Weak duality of semidefinite programs (Vandenberghe and Boyd,
1996) assures that up < pp. In particular, up = oo implies up = oo, and the primal
problem (3.16) as well as the original feasibility problem (3.10) are both infeasible. [

Theorem 3.1 provides an infeasibility certificate for problem (3.10), since any feasible
solution for the dual relaxed problem (3.19) with a positive objective function value is
a certificate for the infeasibility of problem (3.10). In the uncertainty and robustness
analysis algorithms which are developed in the following sections, infeasibility certificates
will be computed for suitable, iteratively chosen test regions X and P in order to compute
uncertainty regions X, and robustness regions P, for the given problems.
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Chapter 3 Uncertainty and robustness analysis of steady states

3.3 Uncertainty analysis for steady states

3.3.1 Bounding feasible steady states

In this section, we present an approach to find bounds on the steady state region A,
based on the results obtained in the previous section. As a basic additional requirement,
we assume that the a prior: state set Xy is bounded. For ease of notation, we restrict the
discussion to hyperrectangles. Then A, can be written as

Xo={x € R" | Zisower < T < Tjupper, 0 =1,...,0}. (3.20)

In biochemical reaction networks, such bounds can often be obtained from mass conser-
vation relations, as in the example in Section 3.3.2. Also, it is often possible to show
positive invariance of a sufficiently large compact set in state space for the system (2.5),
as we will do for the NF-xB model (2.17) in Proposition 4.5. These bounds may be very
loose though, and the main objective of the proposed method is to tighten them as far as
possible.

To this end, we use a bisection algorithm (Jaulin et al., 2001) which computes the
maximum ranges [Z;ower, Ljmin] 804 [T} maz, Tjupper] for which an infeasibility certificate
can be obtained via Theorem 3.1. The algorithm iterates over j = 1,...,n, while the
steady state values x; for ¢ # j are assumed to be located within the intervals defined by
the set Aj.

The algorithm for computing the lower bound 1 ., is given in Figure 3.1. The com-
putation of the upper bound z; ., is implemented in essentially the same way, with some
small modifications, primarily in the construction of the steady state test set X.

Solvers for semidefinite programs are quite efficient, and for the bisection method used
here, the number of solver calls is only O(log, t—il), where tol is the remaining gap between
the lower and upper estimate in the bisection algorithm (see Figure 3.1). Therefore, the
uncertainty analysis algorithm can be executed efficiently on standard desktop computers,
as we will see in the example discussed in the following subsection.

In our analysis method, the algorithm shown in Figure 3.1 is executed for all state
variables, and as both maximization of the lower bound and minimization of the upper
bound of the steady state values. Its output is the hyperrectangle

Xs = {l’ € R" ‘ L min S X S Timazx) 1= 17 s 7n}7 (321)

which contains all possible steady states for parameters in the uncertainty set P. In this
way, Xs quantifies the uncertainty about the steady states of the model.

Note that the proposed algorithm is independent of the number of steady states for
any fixed parameter and may directly be applied to models where multiple steady states
are possible. In such a case, the obtained uncertainty set X will be an outer bound on
the convex hull of the possibly disconnected steady state set X*. Thus, while multiple
steady states do not affect the application of the algorithm, it is also not possible to detect
this situation. If such a detection is desired, it may be more appropriate to use a multi-
dimensional bisection algorithm with the same infeasibility certificates as applied here
(Hasenauer et al., 2009a). However, a multi-dimensional bisection algorithm generally
requires a significantly higher computational effort compared to the approach suggested
here, becoming quickly prohibitive for a high-dimensional parameter space.
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3.3 Uncertainty analysis for steady states

Initialisation:

X1 = T1,upper

T1,lo = T1lowers L1,hi -— L1,upper

!

regions

P

P

Construct (D) from (3.19) with test

.)? = A&p N {17 € R" | L1 lower <m < ‘%1}

)
yes = no

T1lo = T1 T1,hs = X1
T i1,LoJ2r€f31,m
!
no
yes

Final result:

T1,min = T1,lo

Figure 3.1: Flowchart for the steady state uncertainty analysis algorithm based on semidefinite
programming. The algorithm takes an initial bounding set A, and the uncertain parameter
set P from the problem data. As a numerical parameter, the stopping tolerance tol needs to

be supplied.

3.3.2 Example: Uncertainty analysis of an enzymatic cycle

As an example for the uncertainty analysis, we consider an enzymatic cycle. These cycles
appear very frequently in cellular reaction networks, in particular in the form of phospho-
rylation and dephosphorylation cycles (Shacter et al., 1984). In this example, we consider
a cycle as suggested by Goldbeter and Koshland (1981) for a hypothetical protein A. The

reaction network is given by

E+ A

P+ A"

k1
—
=

ko

Cy

OB py A

(3.22)

k4
= (9
ks

C, 5 py A
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Chapter 3 Uncertainty and robustness analysis of steady states

The network is subject to the three conservation relations

Denoting a = [A*], ¢; = [C}] and ¢y = [C], and using the law of mass action, the reaction
flux vector is given by

]{?1(140 —a—C — CQ)(EO — Cl>
kacy
kscy
/{?4(P0 — CQ)CL
ksca
kGCQ

Due to the conservation relations, we only need to use three differential equations in the
model, which is given by

g (e 00 1 -1 1 0
Zla)={1 -1 -1 0 0 0] (3.23)
e 00 0 1 -1 -1

For the uncertainty analysis, the parameters k; and k4 as well as the total concentrations
Ay, Ey and P, are assumed to be fixed at k; = 10° ky =5-10*—% Ag = 1uM

1
M min’ p#M min’
and Fy = Py = 0.01uM. The other parameters are assumed to be uncertain parameters,
with variations around their nominal values k2 yom = K5 nom = 1mli][1 and k3 pom = K6 nom =
1031

min °

From the conservation relations and invariance of the positive orthant we have the
steady state bounds

0<a<A, 0<a<E,, 0<ulh,

which are valid for any parameter values.

We apply the analysis method proposed in this section to find tighter bounds on pos-
sible steady state values, comparing three different regions in which parameters of the
enzymatic cycle are allowed to vary. The three different regions are given by Py, Py and

Ps, where Py, Py, Ps C R* and

o (ko ks, ks, ks) € P1 < 0.98k; nom < ki < 1.02k; 0m, corresponding to parameter
variations of up to 2%,

o (ko ks, ks, ks) € Pa < 0.9kinom < ki < 1.1k;,om, corresponding to parameter
variations of up to 10%, and

o (ko ks, ks, ke) € Ps < 0.5k nom < ki < 2k nom, corresponding to parameter varia-
tions of up to a factor of 2,
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3.4 Robustness analysis for steady states

with ¢ = 2,3,5,6 in all three cases.

The dual problem (D) is constructed by using ¥ = (1, ko, ks, ks, ke, a, c1, c2) and
deriving appropriate matrices U;, K, for the steady state equations and the constraints,
respectively. The uncertainty analysis algorithm (Figure 3.1) was then used to compute
bounds on the steady state concentrations. We compare these results to an estimate for the
region of steady state concentrations obtained by Monte Carlo tests. The results are shown
in Figure 3.2. The average computation time to obtain the feasible intervals for all three
state variables and one parameter region was about 25 seconds. The Monte Carlo tests
conducted to produce the figures consistently took about 20 % more computation time,
using 1000 parameter points for each test. However, for a reliable evaluation by Monte
Carlo methods, much more points should be used, which would increase computation time
significantly.

As can be seen from the figure, our approach is able to find tight intervals for the
steady state values of the individual concentrations. However, the results also highlight
the limitations of using hyperrectangles if different state variables are highly correlated
in steady state under the considered parameter uncertainty. A potential extension to
deal with this problem is to use the infeasibility certificates within a multi-dimensional
bisection algorithm, as suggested by Hasenauer et al. (2009a).

As illustrated with this example, the result of the uncertainty analysis indicates the
range of possible variation in the steady states, for a given level of parametric uncer-
tainty. From a biological perspective, this result needs to be interpreted with respect to
a biological function. For the present example, such an interpretation is given by the
property of ultrasensitivity in the enzymatic cycle (Goldbeter and Koshland, 1981). For
a further discussion of this point, we refer to Waldherr et al. (2008c¢).

3.4 Robustness analysis for steady states

3.4.1 Robustness analysis method

In this section, the infeasibility certificates proposed in Section 3.2 are used to compute
an approximation to the robust parameter set defined in Section 3.1.2. The robustness
analysis is more challenging than the uncertainty analysis. In the uncertainty analysis,
for a physically plausible model, the steady state set X* to be approximated should be
compact for a compact set P of physically plausible parameters. Thus there is a reason-
able definition of the “optimal” approximation X5 to A* as the smallest hyperrectangle
which contains X*, and the so defined X is unique. Although the method presented
in the previous section may not compute the optimal approximation exactly due to the
conservatism in the computation of infeasibility certificates, the examples show that the
result can come quite close to the optimum. In the robustness analysis, the goal is to find
inner bounds P, C P*. Note that P* is typically non-compact, and a good, i.e. large,
inner bounding set cannot be defined uniquely in a reasonable way. To overcome this
problem, we resort to the consideration of nominal parameter values pgy, and ask for the
robustness of the steady state values with respect to (possibly large) parameter variations
around pg. We then compute a robust parameter region P, by looking at hypercubes of
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0 02 04 06 08 1 1.2 % 02 04 06 08 1 1.2
Steady state value of [A*] (u M) Steady state value of [A*] (u M)
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ation) variation)
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Figure 3.2: Feasible steady states for the enzymatic cycle with three different parameter
regions, comparison of reliable bounds obtained by the uncertainty analysis algorithm and
Monte Carlo estimates. All steady states are guaranteed to be located inside the white regions.
Light gray regions have been certified infeasible by Theorem 3.1. Black dots are steady
state values obtained from Monte Carlo tests. The darkest gray regions, where [A*] > 1 or
[C1] > 0.01, are known to be infeasible from conservation relations.
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3.4 Robustness analysis for steady states

the form )
PT<Q7p0):{pERm|_§p_JSQa ‘:1,...,771}, (324)
0 Do,
where ¢ € R is a measure for the size of the hypercube P,.(g,po). o can also be interpreted
as the logarithmic radius of P,.(o,po). In this framework, the optimal approximation to

P* is defined as P,.(0*, po), where p* is computed according to the following definition.
Definition 3.2. The steady state robustness radius o* € [1,00) is given by

*

¢ = supo

3.25
s.t. Pr(0,p0) C P*. ( )

In this way, we arrive at a unique definition of an optimal set P, and can devise an
algorithm to approximate it.

Recall that the allowable steady state values are given by the set X'. As in Section 3.3,
we assume that a set Xy containing all steady states is known a priori. Then by definition
Xo \ X should not contain steady states for any parameter p € P,. Let X be such that
we can decompose Xj \ X into hyperrectangles X;, i = 1,...,1:

K\ X =], (3.26)

In analogy to the uncertainty analysis, we propose a robustness analysis algorithm
which combines a bisection on the radius p of the parameter hypercube P.(o,po) with
suitable semidefinite programs. These programs are constructed to compute infeasibility
certificates for the steady state feasibility problems obtained with the test regions P, (o, po)
in parameter space and the & in state space. The algorithm is illustrated in Figure 3.3. As
a result, the algorithm returns a lower bound p* < o* of the steady state robustness radius
0*. Note that due to the conservatism involved in the computation of the infeasibility
certificates, it may be that the lower bound is not tight.

All steady states are guaranteed to be located within the set X, for any parameter
taken from P, (0", pg). As for the uncertainty analysis, a sampling based approach can be
used to estimate the conservatism of the computed robust parameter set. To this end,
we have to find steady state-parameter pairs (z,p) with z € Xy \ X and p ¢ P.(0*, po)-
The gap between ¢* and the multiplicative variation between such parameters p and the
nominal parameters pg is an indication of how conservative the approximation P,(g*, po)

to Pr(0*, po) is.

3.4.2 Steady state robustness of the MAPK cascade

The steady state robustness analysis method has been applied to the simplistic model
(2.13) of the MAPK cascade presented in Section 2.3.1. From conservation relations, we
have the a priori set of physically plausible steady states

Xy = {33 e R’ | 0 <2 <Ko, 0 <29 KKKy, 0 <3 < KKKtot}-
Throughout this example, the allowed steady state region is given by
X = {.CL’ < XO | O.SKtot S T3 S Ktot}; (327)
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Initialisation:

1o =1, 0pi 1= 00
1:=0, oo :=2

l

Construct (D;), j = 1,...,1 ac-
cording to (3.19) with test regions

P :=Pr(0i; po)

.o Qlot0hsi

Final result:

Sk

0 = Oio

Figure 3.3: Flowchart for the steady state robustness analysis algorithm based on semidefinite
programming. The algorithm takes nominal parameters py and the hyperrectangles X; from
the problem data. As a numerical parameter, the stopping tolerance tol needs to be supplied.
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Table 3.1: Robustness radii for steady state robustness of the MAPK cascade. The uncertain
parameters are ki and kjo. Divisions of the hyperrectangular test region X \ X' in [ subsets
as defined in (3.26) are compared according to the resulting approximation of the robustness
radius and the corresponding computation time.

| [1=1 1=4 1=8]
Robustness radius p* < p* | 9.5 48.3 48.3
Comp. time (sec) 3.1 11.0 194

i.e. the output of the cascade should reach at least 80 % of its maximum activity level.
The robustness radius ¢* is computed for parameter variations around the nominal values
given in Table 2.1.

For the model according to the ODE (2.13), the equilibrium point can be computed
analytically. This example therefore serves as a test case of the proposed robustness
analysis algorithm. From the analytical solution for the steady state, we can infer that
the parameters satisfy the robustness condition whenever

K11k kst KKK o KK oru

0.8 < .
T ki1 kor ks KKK o KK ort + ko (k11 kot KKK i + koo (k1w + k12))

(3.28)

In the following, we consider different uncertainty cases, and compare the results of the
proposed algorithm to the optimal robustness radius obtained from the analytical con-
dition, in order to evaluate the performance of the algorithm. We will also see that the
results of the robustness analysis lead to interesting conclusions about the properties of
the MAPK cascade.

Uncertainty in two kinetic parameters

Let us first consider two cases where only two of the kinetic parameters are assumed to
be uncertain. We compare uncertainty on the first level of the cascade, i.e. in k;; and
k12, to uncertainty on the third level of the cascade, i.e. in k3; and k3. With nominal
parameters as given in Table 2.1, the analytical robustness radius for the allowed steady
state set as given in (3.27) is computed as ¢* = 67.5 for uncertainty on the first cascade
level, and o* = 6.04 for uncertainty on the third cascade level. The results from the
proposed algorithm are given in Table 3.1 for uncertainty on the first cascade level and in
Table 3.2 for uncertainty on the third level. The corresponding robust parameter regions
for the first case are also illustrated in Figure 3.4.

As can be seen from the results, the proposed algorithm for robustness analysis is well
able to approximate the steady state robustness radius according to Definition 3.2. The
examples show that conservatism of the results can be traded for computation time by
partitioning the test region Ay \ X into more subsets. For large robustness radii, conser-
vatism may also be reduced by partitioning the parameter test region P into subsets, and
solving one optimisation problem per subset in each iteration of the bisection algorithm.
Such an extension might for example reduce the conservatism in the analysis regarding
the first level of the MAPK cascade, where a further partitioning of the state space does
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Table 3.2: Robustness radii for steady state robustness of the MAPK cascade. The uncertain
parameters are k3; and ksp. Divisions of the test region Xy \ X' in [ subsets as defined in
(3.26) are compared according to the resulting approximation of the robustness radius and the
corresponding computation time.

| [1=1 1=4 1=8]
Robustness radius o* < o* | 5.1 6.0 6.0

Comp. time (sec) 33 80 156
102 L
L
- Pr(05)
| ol
g 10 Pr(07)
El x
~ Po

)

1072

1073 1072 1071 10° 10!
kll [minfl]

Figure 3.4: Robust parameter regions of the MAPK cascade for different divisions of the test
region. The uncertain parameters are ki1 and ki5. The robust parameter regions P, (0}, po)
and P,.(03, po), where o7} is from | = 1 and g5 from [ = 8 in Table 3.1, are shown as rectangles.
In this example, the region P*, below the inclined line, is known to be robust from an analytical
analysis.

not seem to help (Table 3.1). The estimated robustness radius for uncertainty on the
third level of the MAPK cascade is already very close to the analytical optimal value.

Comparing the robustness analysis results for uncertainty on the first and third level of
the MAPK cascade leads to a striking observation. On the first level, the system can tol-
erate a level of uncertainty which is about a factor of ten larger than the one it can tolerate
on the third level. A possible explanation for this effect is that the downstream levels typ-
ically operate in a more saturated regime, and as a consequence variations on upstream
levels are not propagated downstream strongly. In any case, this result highlights the
compelling ability of biochemical signal transduction networks to tolerate perturbations
or uncertainty in the upstream part of a pathway.

Uncertainty in all kinetic parameters

To show that the proposed algorithm also works efficiently in higher dimensional parame-
ter spaces, we next turn to the case where all six kinetic parameters in the model (2.13) of
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Table 3.3: Robustness radii for steady state robustness of the MAPK cascade. All reaction
parameters are assumed to be uncertain. Divisions of the test region Xy \ X in [ subsets
as defined in (3.26) are compared according to the resulting approximation of the robustness
radius and the corresponding computation time.

| [1=1 1=4 1=8]
Robustness radius o* < p* | 1.9 3.5 3.5
Comp. time (sec) 41 16.7 314

Table 3.4: Upper bounds on the robustness radius in the MAPK cascade obtained from Monte
Carlo tests.

| Number of sample points [ 10* 10° 10° |

Robustness radius g, > 0* | 6.2 4.9 4.1
Comp. time (sec) 0.4 40 3705

the MAPK cascade are assumed to be uncertain. The results are given in Table 3.3. The
results should be compared to the optimal robustness radius p* = 3.69 obtained via con-
dition (3.28). Although some conservatism remains, the robustness radius computed via
the proposed algorithm comes quite close to the analytical result. Clearly, the robustness
radius is reduced compared to the case where only two parameters are uncertain.

As discussed previously, Monte Carlo tests are a general approach to obtain an estimate
for the conservatism of the computed lower bound on the robustness radius. It is illustra-
tive to apply this approach to the considered example, even though an analytical solution
is available. The Monte Carlo tests are performed by randomly generating a number of
sample points within the set of non-desirable steady states X \ X, and computing cor-
responding parameter values such that the steady state equation (3.1) is satisfied. For
each sample point, the maximum deviation of a parameter value from the corresponding
nominal parameter value is an upper bound on the robustness radius. The upper bound
resulting from the test is taken as the minimum upper bound over all sample points.
This test has been applied to the estimation of the robustness radius in the considered
example. The resulting upper bounds for different choices of the number of sample points
are shown in Table 3.4.

A comparison of the proposed algorithm with the Monte Carlo estimates yields two
observations. First, the computation time required for the Monte Carlo test in order to
obtain a reasonable upper bound on the robustness radius, i.e., for a large number of
sample points, is significantly higher than the computation time required by the proposed
robustness analysis algorithm in this example. Second, the gap between the conservative
lower bound and the analytical robustness radius is comparable in magnitude to the gap
between the upper bound and the analytical robustness radius for the highest number
of sampling points used in this example. Although these conclusions apply only to the
example considered here, they indicate that the proposed algorithm provides an efficient
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complement to existing methods of steady state robustness analysis.

3.5 Summary and discussion of the steady state analysis

We have studied the problems of steady state uncertainty and robustness analysis with
respect to parameter variations in biochemical reaction networks. This is an important
problem in systems biology, where parameter values are frequently uncertain up to several
orders of magnitude. Due to this large uncertainty, classical approaches based on local
steady state sensitivity are often inappropriate.

Our approach is based on formulating a feasibility problem for suitable test regions in
state and parameter space in order to check whether there are solutions to the steady
state equation (3.1) within the test regions or not. This feasibility problem is relaxed to
a semidefinite program, and the Lagrangian dual may provide infeasibility certificates for
the considered test regions.

The first application of the infeasibility certificates is the steady state uncertainty ana-
lysis. In Section 3.3, we develop an algorithm which computes an outer bound on the
region of possible steady states for a given set of parameter values. The proposed un-
certainty analysis method is illustrated with a simple example network. To evaluate the
obtained approximation, we compare the bounds obtained from our algorithm to steady
state values obtained through Monte Carlo tests. In this example, our approach was
computationally more efficient than Monte Carlo tests. Also, it gives guaranteed bounds
on the steady state values, which cannot be achieved by sampling based methods such as
Monte Carlo tests. Based on the premise that we are working with hyperrectangles only,
the obtained bounds are fairly tight, and the conservatism in the infeasibility certificates
did not have a significant impact in this example. In summary, the uncertainty analysis
method proposed in this thesis is a reliable and computationally efficient method to esti-
mate the range of possible steady state variations due to multiple simultaneous parameter
variations in biochemical reaction networks, and thus provides a valuable tool for global
uncertainty analysis.

The second application of the infeasibility certificates is the steady state robustness
analysis with respect to uncertain parameters. The algorithm proposed in Section 3.4
can be used to compute a lower bound on the maximal parameter variation maintaining
the steady state within a predefined region. In general, lower bounds are more important
in robustness analysis, because they give guarantees on the allowable parameter varia-
tion. Upper bounds can not achieve this. The proposed robustness analysis method is
applied to different models of the MAPK cascade. The results are compared to upper
bounds on the robustness radius obtained via a Monte Carlo approach. In the examples
considered in Section 3.4, the proposed algorithm based on semidefinite programming is
computationally much more efficient than Monte Carlo tests, if a reasonably large number
of sample points is used. Although there is some conservatism in the lower bounds, it is
shown that the conservatism can be reduced at the expense of additional computation
time by subdividing the test regions into more subsets.
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Chapter 4

Robustness analysis of qualitative dynamical
behaviour

This chapter deals with the robustness of dynamical behaviour with respect to parameter
variations. An introduction to the problem and a formal problem statement is given in
Section 4.1. We propose two new methods for robustness analysis. The first one, described
in Section 4.2, directly builds on the results of Chapter 3 by computing the uncertainty
in the Jacobian at steady states. The second method, given in Section 4.3, uses the
newly introduced concept of feedback loop breaking, and in contrast to the first method
also allows to evaluate the robustness of nominally unstable systems. The feedback loop
breaking approach was first introduced in Waldherr and Allgower (2007).

4.1 Introduction and problem statement

The previous chapter was concerned with the location of steady states for uncertain
parameters. However, the characteristics of non-constant trajectories were not considered.
In this chapter, we turn to the qualitative dynamical behaviour around equilibrium points
in the system, considering the characteristics of trajectories in a neighbourhood of the
equilibrium points. In biochemical reaction networks, the dynamical behaviour around
equilibrium points is frequently also the most distinct aspect of the global dynamical
properties. Since the qualitative dynamical behaviour is usually classified into very few
types (e.g. stability, instability with a single positive eigenvalue, instability with two
complex conjugated eigenvalues, ... ), the uncertainty analysis problem is not as relevant
in this respect as in the previous chapter. Therefore, we focus exlusively on the robustness
analysis problem.

Under parametric uncertainty, changes in the qualitative dynamical behaviour around
equilibrium points are always related to the occurence of local bifurcations of equilibrium
points. Bifurcation analysis is therefore frequently applied to biochemical reaction net-
works (Angeli et al., 2004; Conradi et al., 2007a,b; Eissing et al., 2007b). In particular, lo-
cal bifurcations typically correspond to emergence or loss of complex dynamical behaviour
such as sustained oscillations or bistability. These types of dynamical behaviour have been
studied in a large number of cell-biological systems, including metabolic networks, signal
transduction systems like the MAPK cascade or apoptosis, and gene regulation systems
like the circadian clock and the cell cycle (Eissing et al., 2004; Ferrell and Machleder, 1998;
Leloup and Goldbeter, 2003; Madsen et al., 2005; Novak and Tyson, 1993; Pomerening
et al., 2003).

In this framework, the robustness analysis problem is to estimate the deviations from
nominal parameter values that the system may tolerate without any local bifurcations
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occuring. Such a robustness concept has been utilized in several previous studies. Bifur-
cation analysis can in fact be applied easily if only one or two parameters are assumed
uncertain (Ma and Iglesias, 2002; Morohashi et al., 2002). Yet, a major difficulty is that
the bifurcation surface can usually not be computed explicitly in a high-dimensional pa-
rameter space. To deal with multiparametric uncertainty, it was suggested to use the
structured singular value as analysis tool (Kim et al., 2006; Ma and Iglesias, 2002). How-
ever, the uncertainty in the steady state upon parameter variations cannot be taken into
account directly with this approach.

Although robustness analysis is a classical topic in control engineering, it remains sur-
prisingly challenging to apply established methods to the analysis of biological networks.
As discussed in Chapter 1, the difficulties of applying classical control methods to the ana-
lysis of biochemical reaction networks may be caused by the challenges of non-linearity
and dependence of the steady state on uncertain parameters. In addition, the typical
question in control engineering is the robustness of stability, whereas in biochemical net-
works also the robustness of complex dynamical behaviour, such as bistability or sustained
oscillations, is highly relevant.

The approach developed in this thesis overcomes the outlined problems and is directly
applicable to typical models for biochemical reaction networks. Two methods for robust-
ness analysis are presented, both making use of convex optimisation to obtain robustness
certificates for a given parametric uncertainty in a computationally efficient way. In our
approach, a robustness measure is defined based on an uncertainty of parameters around
a nominal parameter value py which does not affect the qualitative dynamical behaviour
of the system. Such a definition clearly implies that the robustness of a given system
depends on the nominal parameter values. The basic idea of the proposed robustness
definition is that dynamical properties of steady states should not be affected by param-
eter variations. A change in the dynamical properties of steady states is characterised by
the condition that the system’s Jacobian, evaluated at a steady state, has an eigenvalue
on the imaginary axis. We assume throughout that all steady states are hyperbolic for
nominal parameters pg, i.e. none of the nominal steady states yields eigenvalues of the
system’s Jacobian on the imaginary axis.

The proposed concept for robustness of dynamical properties is formalised in the fol-
lowing definitions. As in the previous chapter, we consider an a prior: known set Xy C R”
in which all physically relevant steady states are contained. We denote by Path(p, po) the
set of all paths in R? connecting two points p, pg € R?. The spectrum of a square matrix
A is denoted by spect(A).

Definition 4.1. The set
P*(po) = {p € RY | 3T € Path(p, po)Vj € TV € &, :

P (4.1)
Sv(z,p) =0= spect(Sa—x(x,ﬁ)) NJjR = @}

is called the robust parameter set for the system (2.5) with nominal parameter values py.

In words, the robust parameter set is the set of all p € R? for which there is a path to
po on which the system’s Jacobian evaluated at a steady state does not have eigenvalues
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4.2 Robustness analysis based on Jacobian uncertainty

on the imaginary axis. From this definition, it is guaranteed that no local bifurcations
occur in P*(pg).

In most cases, it will not be possible to compute the robust parameter set P* explicitly.
Also, in many cases the exact global shape of P* is not even relevant for robustness
analysis. This is related to the observation that e.g. a large volume of the robust parameter
set does not imply large robustness, if P* is very “thin” around the nominal parameter
values, and may easily be left by only slight variations in the parameter values (Chaves
et al., 2009; Morohashi et al., 2002). For robustness issues, it is more informative how
large a compact region of regular shape (like a hyperrectangle or -ellipsoid) around the
nominal parameters can be, while still being contained in P*. Therefore, the following
definition is a natural way to define a robustness measure.

Definition 4.2. The dynamical robustness radius ¢* € [1,00) is given by

¥ = sup v
4.
St Pyt po) C P (po), (4.2)

wherepr(l/}mo):{pERﬂiﬁjf;—fjﬁl/), i=1....q}.

The set P,.(1, po) is a hyperrectangle of all parameter values within a factor variation
of at most ¢ from py. The dynamical robustness radius is defined by the supremum of the
logarithmic radius ¢ of all such hyperrectangles inside the robust parameter set P*(po).
Thus, if the dynamical robustness radius is finite, it is equal to the minimal factor by
which parameter values have to be varied from pq in order to leave the robust parameter
set. N

In the following sections, the goal will be to compute a lower bound * < 9" on the
dynamical robustness radius. By definition 4.2, P,.(¢¥*, pg) C P*(po). Thus, knowledge of
a lower bound allows to guarantee that the system does not undergo local bifurcations of
steady states for parameter variations up to a factor of ¢*.

As for the steady state analysis, we propose a bisection approach to solve problem (4.2).
The first result is a computational test to decide whether it can be guaranteed that a test
region P (1, pg) is a subset of the robust parameter region P,.(1)*, pp). This step is applied
iteratively for different values of ¢, by doing a bisection on ¢ depending on the results of
the robustness test in each step. The estimate ¥* returned by the algorithm is the largest
1 for which robustness can still be guaranteed by the applied computational test.

4.2 Robustness analysis based on Jacobian uncertainty

4.2.1 Introduction

The first method for robustness analysis of dynamical properties proposed in this thesis
focuses on the uncertain Jacobian at an uncertain steady state. The robustness test for a
given parameter uncertainty is thereby based on Lyapunov techniques. This implies that
only systems where all steady states in the considered region are nominally stable can be
analysed. For ease of notation, all sets in state and parameter space are assumed to be
hyperrectangles. In general, the approach is directly applicable to any convex polytopes.
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Chapter 4 Robustness analysis of qualitative dynamical behaviour

In the method developed in this section, we need the concept of a linear differential
inclusion (LDI), defined as follows (Boyd et al., 1994).

Definition 4.3. A polytopic linear differential inclusion (PLDI) is given by
re{Az| AeQ} (4.3)
with Q = Co{A, ..., An} C R™™ where Co. A denotes the convex hull of the set A.

The goal of the robustness test developed in this section is to certify, if possible, robust
stability for all equilibrium points within a region &j of the state space, for uncertain
parameters from a test region P. The approach proposed in this section is to transfer
the problem of robust stability in the non-linear model with uncertain steady states to
the problem of robust stability of a related PLDI. We show in the sequel that the steady
state bounds proposed in Chapter 3 provide the means to achieve such a transfer.

4.2.2 Robustness analysis algorithm

As afirst step in the robustness test, we compute an outer bound & on feasible equilibrium
points contained within the region AXj for parameters in P. Using the global uncertainty
analysis developed in Section 3.3, it is possible to compute a set X satisfying

XD>{xeX|IpeP:Sulxp) =0} (4.4)

In the second step, let us consider the Jacobian of the system (2.5), evaluated at a point
x € X and parameter p € P. The Jacobian is given by

Ale,p) = §50(2,) (1.5

where %(:C,p) depends polynomially on x and p. Using the bounds x € X and p € P
obtained in the previous step, the goal is to compute a polytope {) containing all feasible
Jacobians A(z,p) for any z € X and p € P.

To this end, let us write the Jacobian as a sum of constant base matrices A®, i =
0,..., M, multiplied with uncertain scalar terms v;, j = 1,..., M:

Alx,p) = AO 4 71($7P)A(1) Tt VM(%P)A(M) (4.6)

with 7v;(z,p) € R and A® ¢ R™"  This is often useful to exploit the specific structure
of biochemical reaction networks, where some terms appear in several elements of the
Jacobian. The decomposition (4.6) may then help to reduce the number of vertices in
the polytope §2. Using the uncertainty analysis as described in Section 3.3, one can then
compute bounds on the v;(x,p) as

xexvpeﬁ:>7j,min§/7j(xap)S’Yj,ma:m ]:lvaM (47)

The number M depends on the specific network under study. As an example, consider a
biochemical reaction network with m reactions, modelled with mass action kinetics, where
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4.2 Robustness analysis based on Jacobian uncertainty

each reaction is assumed to involve two reactants. Then, there are generally 2m distinct
terms in the reaction rate Jacobian %, and therefore M = 2m.

The set €2 for the PLDI is then obtained as 2 = Co{A4;,..., Ay}, where the vertex
matrices are computed as

Al = A(O) + P)/l,minA(l) + ’72,minA(2) +- ’yM,mznA(M)

A2 = A(O) + Vl,maxA(l) + 72,minA(2) + -+ PYM,mmA(M)
(4.8)

AN = A(O) + ’Yl,mazA(l) + 72,ma:cA(2) +---+ ’}/M,maxA(M)

with N = 2M_ Thus, the number of vertices is exponential in the number of reactions.
This makes the computation NP-hard, which may pose a problem to the computational
implementation for medium- to large-scale systems. However, the optimisation problem
may be simplified by further relaxations (Chesi, 2003; Schwenk and Tibken, 2008), leading
to a reduced number of vertices in the stability test. In this way, the computational effort
may be reduced.

In the third step, the remaining task is to check robust stability of the PLDI (4.3), with
vertex matrices as in (4.8). This is a standard problem in robust control theory, and is
conveniently achieved via the use of Lyapunov techniques and linear matrix inequalities.
In this exposition, we only use the most basic result for this problem, namely the quadratic
stability theorem (Boyd et al., 1994). The robustness test is thereby based on finding a
common Lyapunov function for all systems described by the PLDI (4.3), and is formulated
as follows.

Theorem 4.4. If there exists a matriv P € 8™ such that P = 0 and ATP + PA; < 0,
i =1,...,N, then all feasible steady states x5 € {x € Xy | Ip € P : Sv(x,p) = 0} are
asymptotically stable.

Proof. A sufficient condition for asymptotic stability of all feasible steady states is that
the Jacobian A(z,p) is Hurwitz for any = € Xy and p € P with Sv(x,p) = 0. Using the
bounds from the uncertainty analysis, it can be established that A(x,p) € 2 for all  and
p which need to be considered. It remains to show that all matrices in €2 are Hurwitz.
By standard Lyapunov stability arguments, a sufficient condition for this is that there
exists P € 8" with P = 0 and ATP + PA < 0 for all A € Q. From the conditions in
the theorem, this can be established by convex combination of the terms AF P+ PA; (see
Boyd et al., 1994, for more details). O

Since a positive result of the robustness test requires that the same Lyapunov matrix
P can be used for any uncertain matrix A € €0, the robustness test is conservative. In the
recent literature, more elaborated results than the basic quadratic stability theorem have
been obtained, significantly reducing the conservatism of the robust stability test. The
main idea behind the suggested extensions is to use a parameter-dependent Lyapunov
function. It has been shown that, for any robustly stable PLDI, there exists a Lyapunov
function which depends polynomially on the uncertain parameters used in the convex
combination representing A € ). Moreover, it is possible to compute this Lyapunov
function by solving LMIs (Bliman, 2004). The provided conditions are thus sufficient and
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Chapter 4 Robustness analysis of qualitative dynamical behaviour

asymptotically necessary for robust stability, where necessity is achieved in the limit of an
unbounded degree of the polynomial. However, the robust stability test based on these
conditions may involve a huge computational effort. Several other approaches for the
considered problem have been proposed, e.g. (Chesi, 2005; Henrion et al., 2004; Oliveira
and Peres, 2006). Each of these methods could be used to design a robust stability
test, but for ease of exposition we restrict ourselves to the use of the quadratic stability
condition as proposed in Theorem 4.4.

Based on Theorem 4.4, an algorithm for computing a lower bound on the dynamical
robustness radius ¥* is devised. The algorithm takes the nominal parameter values py and
the decomposition of the uncertain Jacobian A(x,p) as given in (4.6), with base matrices
AW i =0,...,M and value functions v;(z,p), 7 = 1,..., M, as input. The output of

the algorithm is a certified lower bound ?* on the dynamical robustness radius ¥*. A
flowchart illustration of the proposed algorithm is shown in Figure 4.1.

Upper bounds on the dynamical robustness radius can be obtained from testing param-
eter samples for stability of the corresponding equilibrium points. For each sample, the
largest variation in each parameter compared to its nominal value is an upper bound on
the dynamical robustness radius ¢*. The overall upper bound from such a sampling test
is then given by the minimal upper bound across all samples.

4.2.3 Application to the NF-xB pathway model

As an example application, the algorithm developed in this section is used to analyse the
model (2.16) of the NF-xB pathway described in Section 2.3.2. Nominal parameter values
are taken from vector p, in Table 2.5, where the model shows damped oscillations towards
an asymptotically stable equilibrium point.

The uncertain parameters were chosen as k;, ky, ¥m, and «. These parameters are a
lumped representation of complex processes within the cell, and are therefore expected
to be subject to some variability, depending on internal and external conditions. Other
parameters describe only simple processes or direct biochemical interactions and are ex-
pected to be much less variable.

In order to apply the algorithm developed in Section 4.2.2, an a priori set Xy containing
all steady states has to be constructed. For the NF-xB pathway model (2.16), determi-
nation of the a priori set deserves special attention, since for this model, such a set is not
obvious from conservation relations. The set A} is constructed by considering the reduced
order model (2.17). Since the reduction is based on a quasi steady state assumption, and
the parameters k¢ and k; involved in complex formation are not assumed to be uncertain,
the reduced order model (2.17) and the original model (2.16) are equivalent with respect
to steady states. Boundedness of steady states reachable from relevant initial conditions
in the NF-xB pathway model (2.17) is established by the following result.
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Initialisation:
¢lo = 17 whi =00
1:=0, 1y =2
I

| Set test region P; = P,(¢s, po)
(Definition 4.2).
!

Compute corresponding steady state
uncertainty set &; as in Section 3.3.

¥
Construct vertices of € according to
(4.8).

'

() quadrati-
cally stable?

Yo = Y, Y =Y

yes @ no

Vi = 24y, Py 1= Yetm

no

Final ;\esult:

V=

Figure 4.1: Flowchart for the robust stability analysis algorithm based on Jacobian uncertainty,
using semidefinite programming for the uncertainty analysis and the quadratic stability theorem
for the robustness test. As numerical parameter, a stopping tolerance tol needs to be supplied.
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Proposition 4.5. The set defined by the constraints

0 <y, i=1,....,4 (4.9a)

k,N?
Ty < —tol (4.9b)

Ym
T4 < < Ntot (490)
k[ outKinS (KN + Ntot)(kl,inxl + OéNtot) (49d)

kiky N2
Kykrinxy — Ky~ et < (k1. out KN + ENTout Niot) T3 (4.9¢)
kK

Tl$2 + a1+ a3 < L, (49f)

is positively invariant with respect to the system (2.17), where L > 0 is such that xo >

ktktlf:;gNtNm) for any x satisfying the constraints (4.9a)—(4.9¢) and %xz +a1+23 = L.

Proof. By Nagumo’s theorem (Blanchini, 1999), it is sufficient to show that the vector field
for the model (2.17) is contained in the tangent cone to the set defined by the constraints
(4.9). In this case, we need to show that, for each of the affine constraints in (4.9), the
vector field is contained in the half-space satisfying the corresponding constraint.

The constraints (4.9a)—(4.9¢) result directly from the differential equations for the in-
dividual state variables in the inequalities.

Let us next consider the constraint (4.9d). If (4.9d) is satisfied with equality, then
21 = kywe + Nyt — %ﬁm > 0 and @3 = —aNwt — knrowgs; < 0. Thus
the vector field is contained in the half-space corresponding to (4.9d). Using a similar
argument for (4.9e), we find that #; < 0 and @3 > 0, if (4.9e) is satisfied with equality,
and thus again the vector field is contained in the corresponding half-space.

Considering finally the constraint (4.9f), we find that < (k” To + 21 + x3) < 0 for any

Ty > kik”f::};(]j?" tNt"t) Thus, if the constraints (4.9a)—(4. 96) are satisfied, the vector field

is contained in the half-space corresponding to (4.9f) whenever k” ot a +ay=L O

For any given parameter set P, a set A containing all steady states of the model
(2.16) is constructed by Proposition 4.5. To obtain a lower bound on the dynamical
robustness radius, we apply the robustness analysis algorithm developed in this section
(Figure 4.1). For the example considered here, we have M = 8 base matrices in the
Jacobian decomposition (4.6), and the resulting size of the PLDI (256 vertices) is handled
well by current numerical SDP solvers. The result from the algorithm is a lower bound
on the robustness radius of ¢* = 1.54 < ¢*. The computation takes about six minutes
on a standard desktop computer. Upper bounds have been computed using simple Monte
Carlo tests, and are shown in Table 4.1. The best bound is 1.83 > v*, found with 10°
samples after a computation time of about 37 hours. Probably this bound is still not
tight, but as the computation time is proportional to the number of samples, the sample
number cannot be increased much further while maintaining a reasonable computational
cost.

From the results of the robustness analysis, we conclude that the steady state in the
NF-xkB pathway model (2.16) with nominal parameters ps from Table 2.5 will remain
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Table 4.1: Upper bounds on the dynamical robustness radius in the NF-xB pathway model
obtained from Monte Carlo tests.

| Number of sample points | 10* 5-10° 10° |

Robustness radius ¢, > ¢* | 1.93 1.86  1.83
Computation time (hours) | 0.35 18 37

stable for parameter variations of up to a factor 1.54. In particular, a Hopf bifurcation
with a corresponding onset of oscillations is excluded up to this level of uncertainty.
Biologically, this means that small to medium perturbations in the processes described
by the uncertain parameters seem not to affect the qualitative dynamics of the NF-xB
pathway in the configuration considered here.

On the methodological side, we observe that the proposed algorithm quite efficiently
provides a reasonably good lower bound on the robustness radius for relevant small to
medium scale problems. Such a lower bound is a valuable complement to the upper
bounds available from common “robustness tests” via Monte Carlo sampling.

4.3 Robustness analysis via Positivstellensatz infeasibility
certificates

The approach developed in the previous section is limited to considering robustness of
stability. This may be well suited for control engineering applications, but it is often
insufficient for analysing dynamical behaviour in biochemical reaction networks. In fact,
biological function based on complex dynamical behaviour like sustained oscillations or
bistability is typically directly related to instability of an equilibrium point (Eissing et al.,
2007b; Schmidt and Jacobsen, 2004). This observation motivates the study of robust in-
stability for models of biochemical reaction networks. Although converse Lyapunov the-
orems provide sufficient conditions for instability (Khalil, 2002), they are not as useful
for dynamical robustness analysis, because the admissible functions to be used are not
as convenient as in the stability analysis case. The approach proposed in this section
avoids this drawback by building on frequency domain methods, specifically the gener-
alised Nyquist criterion. We propose conditions for robustness of instability as well as a
computational algorithm to compute a lower bound on the dynamical robustness radius
for a model with a nominally unstable equilibrium point.

To simplify the notation, let us rewrite the right hand side of the system (2.5) as
Sv(x,p) = F(z,p). Thus, the system to be considered is given by

&= F(x,p), (4.10)

with x € R", p€ P C R? and F : R" x R? — R" being a smooth vector field.
To deal with steady states for uncertain parameter values, we introduce the notation
of a state—parameter pair y as

X = (z,p) € R" x R (4.11)
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We call x a steady state—parameter pair if the corresponding x and p satisfy the equation

F(z,p)=0. (4.12)

Let M C R"™ x P be a g-dimensional manifold of steady state—parameter pairs in R" x P,
ie.

V(z,p) € M : F(x,p) = 0. (4.13)

In the simplest case, there is a unique steady state for each p € P, and one could use
a function z4(p) to characterise the manifold of steady state-parameter pairs more eas-
ily. However, such a function is usually difficult to compute explicitly. In addition, the
approach taken here is more general and also allows to consider e.g. saddle-node bifurca-
tions, where uniqueness of an equilibrium point for each p € P is not satisfied. For most
applications, M can just be defined by the equilibrium point equation F(z,p) = 0. In
some cases, it may however be beneficial to reduce the steady state equation by analytical
means. To account for this, we introduce the function ® : R"*? — R” which characterises
the manifold M via

M ={x e R | &(y) = 0}. (4.14)

In most cases, we can choose ® = F'. Yet, the definition of M used here is more general
and e.g. allows to remove steady state branches which should not be considered in the
analysis from the problem.

4.3.1 Characterisation of critical points via the loop transfer function

The major structural feature in biochemical reaction networks contributing to changes
in the local dynamical behaviour are feedback circuits (see e.g. Waldherr et al. (2008a)
and references therein). Mathematically, the system (4.10) is said to contain a feedback
loop if the influence graph of its Jacobian ‘3—5 contains a nontrivial loop (Cinquin and
Demongeot, 2002). The sign of the feedback loop is defined as the product of the weights
on the edges, taken from the corresponding entries in the Jacobian. Concerning the
dynamical behaviour, it can be shown that a positive feedback circuit in the system is
required for multistationarity (Kaufman et al., 2007), whereas a negative circuit is required
for limit cycle oscillations (Snoussi, 1998). As a consequence, it seems quite intuitive to
characterise the occurence of local bifurcations by considering the feedback circuits of a
dynamical system.

In the remainder of this section, we will assume that (4.10) contains a feedback loop.
If this assumption is not satisfied, the problem is simplified significantly. Without a
feedback loop, the analytical expressions for the eigenvalues in terms of parameters and
the state variables can directly be taken from the diagonal of the Jacobian g—f. In this
case, it is usually easy to find parameter values for a change in stability properties of the
equilibrium points, if such values exist. Based on these considerations, the robustness
analysis method proposed in this section is built upon a feedback loop breaking approach,
where properties of the original system are characterised by studying an appropriately
constructed input—output system. The original system is then interpreted as the closed
loop description of the constructed input—output system. Formally, we define a feedback
loop breaking as follows.
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<

|
=
=

Figure 4.2: lllustration of feedback loop breaking

Definition 4.6. A feedback loop breaking for the system (4.10) is a tuple (f,h), where
f R xR xR?— R" is a smooth vector field and h : R — R is a smooth function, such
that

F(z,p) = f(z, h(z), p). (4.15)

The corresponding open loop system is then given by the equation

&= fl@up) (4.16)

y = h(z),
and the closed loop system (4.10) is recovered by setting u = y. This situation is illustrated
in Figure 4.2. Note that there is a direct relation between steady states in the closed and
the open loop system: for a steady state-parameter pair (xq,p) of the closed loop system
(4.10), setting the input u = h(xg) in the open loop system (4.16) leads to (zg,p) being
a steady state-parameter pair of the open loop system (4.16). We denote ug = h(xg).

To deal with the question whether different steady state—parameter pairs in M can
have different stability properties, it is reasonable to consider the linear approximation of
the system (4.10) close to some x € M. Only the pairs y where the Jacobian %—I;(X) has
eigenvalues on the imaginary axis are candidate points for local bifurcations. Any such
pair is called a critical point, and is denoted as ..

The linear approximation for the open loop system (4.16) in the neighbourhood of the
steady state—parameter pair y € M is given by

iAw = A,(x)Az + B,(x)Au

dt (4.17)
Ay - CO<X>AI7

where Ar = r—xo, Ay = Y—o, Au = U—1Uup, AO(X) = %(an u07p)7 BO(X) = %(‘Tmuo’p)?

CO(X) = %(Zlfo)
Denote the Jacobian of the closed loop system (4.10) as

_OF

=20, (4.18)

A(x)

As a relation between A(y) and the linearised open loop system (4.17), we have the
following result.
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Proposition 4.7. The closed loop Jacobian A(x) satisfies
A(x) = As(x) + Bo(X)Co(X)- (4.19)
Proof. This follows directly from the loop breaking definition (4.15) and the chain rule. [

The linearised open loop system (4.17) can also be described by its transfer function,
which is defined as

Co(X) 0
det(sl, — Ay(x))

sl, — Ao(x) —Bo(x)
det
G(x,s) = Co(x) (sI, — AO(X))_1 Bo(x) = < ) (4.20)

with the complex variable s € C.
The following lemma is a tool to characterise eigenvalues of the closed loop Jacobian
A(x) by analysing the linearised open loop system (4.17).

Lemma 4.8. sy € C is an eigenvalue of A(x), if and only if either of the following
conditions holds:

(i) so is not an eigenvalue of A,(x) and G(x, so) = 1;

. . . . SOIn - AO(X) _BO(X) —

(ii) so is an eigenvalue of A,(x) and det ( () 0 ) =0.

The proof is provided in the appendix, Section A.1. In the following, Lemma 4.8 is
used with sy on the imaginary axis to characterise critical points x. with the condition
G(Xe, So) = 1. To this end, the transfer function G is represented as a complex rational
function with real coefficients

Q(x, s)

G(x,s) = m,

where Q(x, s), R(x,s) are polynomials in s with real scalar functions of y as coefficients.
The following result then characterises critical steady state—parameter pairs.

(4.21)

Theorem 4.9. Assume that the open loop Jacobian A,(x) does not have an eigenvalue
on the imaginary axis for any x € M N Xy X P. Also assume that the degrees of Q(x, s)
and R(x,s) in s are constant with respect to x € M N Xy X P. Then the following two
conditions are equivalent.

(i) There exists a critical point x. € M N Xy x P.
(i1) The system of equations
Q(x, jw) = R(x, jw)
o(x) =0
in the variables x € R"™ and w € R has a solution with x € Xy x P.

(4.22)

Proof. By assumption, there does not exist w € R such that jw is an eigenvalue of A,(x).
(i) = (i1): Let jw. be an imaginary eigenvalue of A(y.). By Lemma 4.8, y. and w,
solve (4.22).
(i) = (i): Let x and w be a solution of (4.22). In particular, by (4.14), we have
X € MNAy; x P. By Lemma 4.8, x is a critical point, with jw being an eigenvalue of
A(x)- O
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The assumption that A,(x) does not have an eigenvalue on the imaginary axis for
any x € M N Ay x P is made since we are interested in case (i) of Lemma 4.8. From a
control engineering perspective, this assumption assures that no pole-zero cancellations of
eigenvalues on the imaginary axis occur in the transfer function G(x, s). The assumption
on A,(x) can often be satisfied by structural properties. For instance, if the open loop
system does not have a feedback circuit, the eigenvalues can directly be read from the
Jacobian. In this case, it is typically easy to check whether imaginary eigenvalues are
possible for p € P and = € &. Otherwise, one may use the following result.

Proposition 4.10. Assume that no pole—zero cancellations occur in the transfer function
G(x,s). If the system of equations

R(x, jw) =0

20 = 0 (4.23)

does not have a solution with x € Xo X P and w € R, then A,(x) does not have eigenvalues
on the imaginary axis for any x € M N Ay X P.

Proof. Under the assumption that no pole-zero cancellations occur, we have R(y, jw) =
det(jwl, — Ao(x)). The proof is by negation: if there exist y € M N Xy x P and w € R
such that jw is an eigenvalue of A,(x), then x and w satisfy (4.23). [

4.3.2 Robustness certificates from the Positivstellensatz

In this section, we develop an approach to test whether the dynamical behaviour of the
system (2.5) is robust with respect to uncertain parameters inside a given region P C R?
and a given region of equilibrium points Xy C R™. From Theorem 4.9, this is equivalent to
checking infeasibility of (4.22). Observe that, for reaction rates v(x, p) which are rational
in state variables and parameters, (4.22) is a system of polynomial equations. In the
next step, we use results from real algebraic geometry and convex optimisation to obtain
robustness certificates.

As usual, let us denote the ring of polynomials in the vector variable x over the field of
real numbers as R[] (Cox et al., 1995). The following definition states two prerequisites
for the further discussion in this section.

Definition 4.11. The ideal generated by a set of polynomials Y = {Y1,...,Yn} C R[x]
is defined as

N
I(%,....Yw) = {31 | T e R}, (4.24)
i=1
The cone generated by Y is denoted by C(Y1,...,Yn) and defined by the properties
(i) T € Ry = T2 € C(Y, ..., Yu),
(ii)) Y €C(Y1,...,Yn), Y €C(Y1,....YN) =Y +Y €C(Y1,...,Yn),

(ZZ’L) YEC(Y&,...,Y]\”, ?EC(Y&,...,YN) :>YY€C<}/1,,YN)
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The basic result from real algebraic geometry required in our approach is the Posi-
tivstellensatz, cited from Bochnak et al. (1998).

Theorem 4.12 (Positivstellensatz). Consider a system of polynomial (in-)equalities
given by
Yix)=0, i=1,...,N

4.25
Zi(x) >0, j=1,...,M, (4.25)

with x € R"™9. System (4.25) does not have a solution in R, if and only if there exist
YeI(Yy,...,Yy)and Z € C(Zy,...,Zy) such that

Y+Z+1=0. (4.26)

In the recent literature, the Positivstellensatz has been combined with sum of squares
relaxations (Parrilo, 2003) to obtain computationally efficient proofs for the infeasibility of
inequality systems of the form (4.25). In particular, positive semidefiniteness constraints
on multiplier polynomials in the parametrisation of the cone C(Z,...,Zy) can be for-
mulated as a positive semidefiniteness constraint on a suitably constructed matrix. Thus,
the problem of existence of Y and Z satisfying (4.26) can be relaxed to a semidefinite
program. However, the sum of squares relaxation typically leads to very large semidefinite
programs, which may pose computational problems even for the efficient solvers which
are available. In addition, numerical studies of this approach suggest that the resulting
semidefinite programs may be intrinsically degenerate and thus impracticable for typical
numerical solvers (Monniaux, 2009).

To avoid these difficulties, the problem under consideration is further transformed, such
that it reduces to the solution of a linear program, for which solvers are more efficient
than for semidefinite programs. The basic tool for this further transformation is the
Handelman representation theorem (Handelman, 1988). This theorem makes use of so-
called Handelman monomials H,;. These are constructed from the inequality constraints
Z as

Hy(x) =[] Z;00%, (4.27)

where d € N} is the vectorial degree of the Handelman monomial H,;. The Handelman
representation theorem is given in the following statement.

Theorem 4.13 (Handelman, 1988). Let K C R be a compact polytope defined by
the equations
Zi(x) >0, j=1,...,M, (4.28)

with x € R and Z; : R"™ — R affine functions. The polynomial Y : R"*7 — R is
non-negative on K, if and only if Y can be represented as

Y= cnatly (4.29)

deN}!

with non-negative coefficients cp q.
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4.3 Robustness analysis via Positivstellensatz infeasibility certificates

Example 4.14. Consider the polynomial Y (x) = —2x? + 7x — 5 in the variable z € R.
The polynomial is non-negative on the domain 1 < x < 2. This domain is represented
by the constraints Z;(x) = x — 1 > 0 and Zy(z) =2 — 2 > 0. Using the two Handelman
monomials H oy(z) =z — 1 and H( 1y(z) = (¢ — 1)(2 — x), a Handelman representation
for the polynomial Y is given by

Y(z)=-224+Tx—-5=1-(z—1)+2-(z—1)(2—2).

The original result by Handelman (1988) gives a necessary and sufficient condition for
positivity of a single polynomial Y on a compact polytope. Compared to the Positivstel-
lensatz, the assumption that the inequalities (4.28) describe a compact polytope is more
restrictive, since the Positivstellensatz makes no specific assumption on the Z;. Yet this
restriction is not an obstacle for the application pursued in this section, as we are gener-
ally working with polytopic sets anyway. Another restriction is that the result concerns
positivity of a single polynomial only. However, in the present problem, it is necessary to
guarantee non-existance of solutions for a set of polynomial equations within a polytope.
The following result combines the Positivstellensatz with the Handelman representation
theorem to achieve a statement suitable for this purpose.

Theorem 4.15. Let K C R"" be a compact polytope defined as in Theorem 4.13. Then
the following two conditions are equivalent.

(i) The system of equations
Yilx) =0, ¢=1,...,N (4.30)
with x € R"™ and polynomials Y; € R[] does not have a solution in K.

(i1) There exist polynomials T; € R[x], i = 1,..., N such that the polynomial

N
Y = ZTm -1 (4.31)
i=1
can be represented as
V=) cually (4.32)
deN}!

with non-negative coefficients cp 4.

Proof. (i) = (ii). By the Positivstellensatz, there exist polynomials Y € T (Y1,...,Yx)
and Z € C(Zy, ..., Zu) such that Y+Z+1=0. By Z>0onK, we have that —Y — 1 >0
on K. Since Y € I(Yl, ..., Yy), it can be represented as Y = Zz L 1Y with T; € R[y].
Thus, there exist T;, ¢ = 1,..., N such that the polynomial Y as defined in (4.31) is
non-negative on K. The result then follows from Theorem 4.13.

(i1) = (i). By Theorem 4.13, Y is non-negative on K. Since any Z € C(Z1,...,Zy) is
also non-negative on /C, there does not exist such Z satisfying Y + Z + 1 = 0, and, from
the Positivstellensatz, (4.30) does not have a solution on K. O
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Chapter 4 Robustness analysis of qualitative dynamical behaviour

Ezxample 4.16. Consider the system of equations

74+ 3xy —4x9 =0

4.33
$2—$1—1IO. ( )

Using Theorem 4.15, we want to establish that (4.33) does not have a solution in the set
X={reR?|0< 1z <2, i=1,2}. To this end, consider the polynomial

Y:7+3ZL‘1—41'2+{L’2(I‘2—£L'1—].)—1,

constructed with the multipliers 77 = 1 and Ty = x5 according to (4.31). By algebraic
manipulation, we find the Handelman representation

Y = T+ ZL’1(2 — $2) + (2 - l’g) + (2 - $2)2, (434)
which shows that (4.33) does not have a solution in X.

A relaxed result for which only the conclusion (77) = (i) in Theorem 4.15 is valid can
be obtained by restricting the degree of the multipliers 7;. With this relaxation, a finite
parametrisation of the problem is achieved, where the coefficients of the polynomials 7;
are free parameters. The procedure to compute an infeasibility certificate, i.e. specific
multipliers 7; such that condition (i) is satisfied, then reduces to the solution of a linear
program and is outlined as follows.

1. Construct the multiplier polynomials T;, i = 1, ..., N, according to
_ (i) . d
T, = Z CraX > (4.35)
deD;

where D; C Nj™ contains all vectorial degrees to be used in the multipliers, cgf)d S

R are free parameters to be chosen later, and x¢ = [[2{ x%. From (4.31), the
coefficients of the polynomial ¥ are then given as affine functions of the multiplier
coefficients ng)Di'

2. Construct all Handelman monomials Hy() of the form (4.27), for all d € N} such
that the vectorial degrees of H,; do not exceed the vectorial degree of Y.

3. Construct the Handelman polynomial

Y= Y cmalls (4.36)
demaac

where d,,u. € Ny is the maximal vectorial degree of Yy, and the cyq € R are
non-negatively constrained parameters to be determined in the next step.

4. Check whether the linear program

find C%)d 1=1,...,N, deD,
ca >0 d < dppaz (4.37)

s.t. coeff, (V) = coeff, (Yy)

is feasible or not, where coeff, (Y') denotes the coefficient vector of Y with respect
to monomials in y.
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4.3 Robustness analysis via Positivstellensatz infeasibility certificates

The conclusion obtained from the above procedure is given in the following result.

Corollary 4.17. If the linear feasibility problem (4.37), constructed for the equations
(4.22) with affine constraints x € Xy X P, is solvable, then there does not exist a critical
point x. € MNAXy x P.

Corollary 4.17 provides a Positivstellensatz robustness certificate for the considered
system under the parameteric uncertainty p € P, in the sense that any feasible solution to
the corresponding linear program proves robustness of the system’s qualitative dynamical
behaviour. R

Similarly to the algorithm proposed in Section 4.2.2, a lower bound * on the robust-
ness radius ¢* is computed by a bisection on the logarithmic radius v of the parameter
uncertainty region P (1), po), using the Positivstellensatz robustness certificates according
to Corollary 4.17 in each step.

4.3.3 Application to the NF-xB pathway model

The robustness analysis method developed in the previous section is applied to the reduced
order NF-kB pathway model (2.17), with parameter values given by p; in Table 2.5. For
nominal parameter values, there is an unstable equilibrium point and a stable limit cycle,
giving rise to periodic oscillations.

For the purpose of this example, let us assume that translation and transcription rates
for I-kBa are uncertain. The question to be addressed is how much the two corresponding
parameters k; and ky may be varied while maintaining the oscillatory behaviour. The
algorithm computes a lower bound on the robustness radius for instability of the equilib-
rium point by bisection on the parametric uncertainty factor . In each bisection step,
the algorithm tries to obtain an infeasibility certificate for the critical point condition
(4.22), with P (), ki, ky) = [ikt,@bk’t] X [iktl,wktl] C R?, where k; and ky are taken from
the nominal parameter vector p; in Table 2.5. As loop breaking point, the influence of
nuclear NF-£B on the transcription of the I-kBar gene is used (Reaction 10 in Figure 2.3).
This influence is part of the negative feedback circuit responsible for oscillations in the
NF-kB pathway model, and therefore is a reasonable choice for the loop breaking point.

In the computation of the robustness radius for the NF-xB pathway model, it is crucial
to get good bounds on the set X; of possible steady states to be considered for any given
parameter uncertainty. Here, we use bounds obtained from the steady state uncertainty
analysis method developed in Chapter 3. Thereby, the positively invariant set derived in
Proposition 4.5 was used as a prior: set &jp.

Another critical factor is the number of variables which need to be considered in the
polynomial equations (4.22), as the computational effort grows significantly with the
number of variables. For the NF-xB pathway model, a good way to reduce the number of
variables is to solve partially for the equilibrium point of (2.17). In steady state, it holds
that
i
’.)/m
krint1(Kn + 4)

kl,outKN + kNI,outxZL

.Ig:kt

€3

95



Chapter 4 Robustness analysis of qualitative dynamical behaviour

Exploiting this relation, the critical point conditions (4.22) involve only the five variables
x1, T4, ki, ky, and the frequency w.

The maximum degree of the critical point conditions (4.22) for the NF-xB pathway
model is four. In the analysis, the degree sets D; for the multipliers 7; are chosen such
that all terms 7;Y; in the construction of Y have degree five with respect to any individual
variable. To this end, a total of 635 unknown coefficients cgf?d for the multipliers T;
has to be used. With a lower and upper bound on each individual variable, we have
M = 10 inequality constraints. Constructing the Handelman polynomial Yy according
to (4.36) up to the required degree results in 168282 Handelman monomials of the form
(4.27). Expanding the Handelman polynomial Yy 4 in monomials based on the original five
variables gives 2162 terms, with coefficients depending affinely on the 168282 unknown
parameters cy g in the Handelman representation. On a standard desktop computer,
constructing these coefficients takes about 2.3 hours. However, this step is only carried
out once in the analysis, since the resulting coefficients can be reused in all iterations of
the bisection algorithm.

In each iteration of the bisection algorithm, a linear program with 635 free parameters,
168282 non-negatively constrained parameters and 2162 equality constraints from the
comparison of coefficients has to be solved. To solve the linear program, we use the
Matlab toolbox SeDuMi (Sturm, 1999), which deals well with the sparsity of the equality
constraints and the large number of non-negatively constrained parameters. One call to
the linear program solver requires about 13 minutes of computation time on a standard
desktop computer for this example.

The lower bound on the dynamical robustness radius obtained for the NF-xB pathway
model is * = 2.25 < ¥*, up to a tolerance of tol = 0.1 used as termination criterion for
the bisection. To find an upper bound, we compute a Hopf bifurcation locus by numerical
continuation methods (Kuznetsov, 1995). In this way, a Hopf bifurcation is discovered at
(ki, ky)* = (0.45,0.10), corresponding to an upper bound of 2.31 > ¢*. Notice that the
lower bound computed with our method is exact within the chosen tolerance. The results
are also depicted in Figure 4.3. In conclusion, the NF-xB pathway as modelled by Krishna
et al. (2006) can tolerate an uncertainty in gene expression parameters of more than a
factor 2 without experiencing a loss of sustained oscillations. The pathway is therefore
expected to maintain the biological function related to the oscillations for a considerable
amount of uncertainty in gene expression parameters.

4.4 Summary and discussion of dynamical analysis

In this chapter, we study the robustness of qualitative dynamical properties in biochemical
reaction networks, in particular the question whether equilibria of the system maintain
their dynamical properties under parametric uncertainty or not. Note that most ap-
proaches to robustness analysis in control engineering assume that the steady state does
not vary with parameters. This assumption can typically not be sustained when consid-
ering biochemical reaction networks, where most parameters influence both the position
of a steady state and the dynamical behaviour of the system in its neighbourhood. For
this reason, classical robustness analysis tools from control theory need to be extended to
deal with biochemical reaction networks.
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Figure 4.3: Region of guaranteed robustness and Hopf bifurcation locus for the NF-xB path-
way model (2.17) in the ki—ky; plane. The Hopf bifurcation locus is computed with the bifurca-
tion analysis software auto (Doedel et al., 2006), while the region with certified non-existence
of bifurcations is computed by the algorithm developed in this section.

We propose two different robustness analysis methods which are well suited for the
analysis of biochemical reaction networks. The first approach relies directly on the results
of Chapter 3. From the bounds on steady state values obtained via global uncertainty
analysis, we can directly compute bounds on the Jacobian of the system at steady state.
Using classical conditions for robust stability of a linear differential inclusion, robustness of
stability can be checked. The drawbacks of this approach are that it may be conservative,
and that only robustness of stability, but not instability, can be checked.

The motivation for the second approach is to check robustness of instability, which
is of high relevance in the analysis of complex dynamical behaviour such as sustained
oscillations or bistability. We propose a feedback loop breaking approach to obtain condi-
tions for non-existence of local bifurcations for uncertain parameters. The conditions are
checked computationally by constructing a Handelman representation for a Positivstel-
lensatz robustness certificate. This construction is efficiently accomplished with linear
programming. Although theoretically such a certificate does always exist, if the equations
are infeasible, in practice the method is conservative due to limitations on the polynomial
degree. Yet, the approach is quite efficient, and is, to the best of our knowledge, presently
the only method to check robust instability of non-linear systems with respect to generic
parametric uncertainty.

Both methods have been applied to models of the NF-xB signalling pathway. The
application shows that the proposed methods are suitable for the analysis of small to
medium size biochemical reaction networks.
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Chapter 5

Locating bifurcation points in high-dimensional
parameter spaces

Based on the feedback loop breaking approach developed in Chapter 4, an algorithm
to search bifurcation points in a high-dimensional parameter space is developed in this
chapter. In Section 5.2, criteria for topological equivalence of equilibria are developed
for use within the feedback loop breaking approach. Section 5.3 describes the bifurcation
search algorithm, and also contains a discussion where the approach is set into relation
with classical bifurcation analysis methods. Applications to oscillations in biochemical
signal transduction are given in Section 5.4. The bifurcation search algorithm is based on
work published in Waldherr and Allgéwer (2009).

5.1 Introduction

The methods developed in Chapter 4 can be used to compute a parameter region for
which dynamical robustness, i.e. non-existence of local bifurcations, can be guaranteed.
However, the methods are conservative in the sense that the resulting region usually
constitutes a lower bound only, and it may be the case that a fragile parameter point is
actually further away than the results suggest. To estimate the degree of conservatism,
one has to compute upper bounds on the allowable parameter variations, usually in the
form of actual parameter values for which a change in dynamical behaviour occurs. In
Chapter 4, such points were searched for by simple Monte Carlo tests. In this chapter, we
develop a more sophisticated approach, which is based on classical concepts from control
engineering.

As discussed in Section 4.3.1, the characteristics of feedback circuits are the main factor
for occurence of local bifurcations in biochemical reaction networks, and are typically re-
lated to emergence or loss of complex dynamical behaviour (Schmidt and Jacobsen, 2004;
Waldherr et al., 2007). In this chapter, we develop a method to search for local bifurca-
tions of equilibrium points, based on the feedback loop breaking concept introduced in
Section 4.3.1. Such bifurcations typically hint to underlying mechanisms for the emer-
gence of complex dynamical behaviour. Standard cases of complex dynamical behaviour
are multistability, i.e. the existence of several stable steady states, limit cycle oscillations,
and non-periodic oscillations.

Bifurcation analysis is a classical tool for analysing the influence of parameter values on
the location and stability of equilibrium points. However, the common numerical continu-
ation methods are only suited for bifurcation search along a pre-specified one-dimensional
search direction in parameter space (Kuznetsov, 1995). Methods for numerical bifur-
cation analysis with several uncertain parameters are now being developed (Henderson,
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5.2 Loop breaking and steady state stability properties

2007; Stiefs et al., 2008), but due to practical considerations, they remain limited to two
or three adjustable bifurcation parameters.

The challenge to find parameter values for bifurcations in a high-dimensional parameter
space is of particular relevance in the area of biological systems. This is due to the fact
that biochemical systems contain a high number of model parameters, usually even more
parameters than state variables. Due to the limited knowledge of the system, it is usually
required to assume that most of these parameters are allowed to vary simultaneously
over a wide range of values. In order to apply classical continuation methods in a multi-
dimensional parameter space, it is necessary to pre-define a line in parameter space along
which parameter values are varied during the continuation. A good choice of this line
is essential for obtaining meaningful results. Yet, this choice is often made by intuitive
understanding of the system in the better case or iterative trials in the worse. Often only
a single parameter is varied at a time, but then again the choice of the varying parameter
is not trivial and needs to be taken e.g. via sensitivity considerations.

In this chapter, we develop a new method to locate points in a possibly high-dimensional
parameter space where a change in the stability properties of equilibrium points occurs.
Such points may then be used as an upper bound on the robustness measures derived in
Chapter 4. To this end, we extend the results from Section 4.3.1 by further characterising
the relationship between local bifurcations and the properties of the open loop transfer
function G(y, s) as defined in (4.20). With the obtained conditions, a numerical method
for searching parameter values leading to a change in stability properties is developed. In
theory, the method can be applied for parameter spaces of arbitrary dimension, as neither
the conditions nor the algorithm we use depend on the dimension of the parameter space.
We consider only codimension one bifurcations, as they are the case usually encountered
for generic parameter variations in non-linear systems.

The use of frequency domain methods for bifurcation analysis has already been intro-
duced by Allwright (1977) (see also Mees and Chua, 1979), and relevant results have also
been presented by Moiola and coworkers over the last decade (Moiola et al., 1991, 1997).
Several authors have also studied the problem of finding bifurcations in systems with
many parameters using geometric tools. Based on a description of vectors normal to a
bifurcation manifold (M6énnigmann and Marquardt, 2002), a method to search for locally
closest bifurcations from a given reference point has been developed by Dobson (2003).
These approaches can be seen as complementary to our results. A recent application of
the geometric concept to biological systems has been discussed by Lu et al. (2006).

5.2 Loop breaking and steady state stability properties

5.2.1 Feedback loop breaking and critical frequencies

In this section, we directly build on the feedback loop breaking (Definition 4.6), linear
approximation and transformation to the frequency domain as outlined in Section 4.3.
From these results, specifically Lemma 4.8, we see that the main object to be studied is
the open loop transfer function G(x, s). Let us recall the representation of G as a complex
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rational function with real coefficients from (4.21):

Q(x, s)
R(x,s)’

where Q(x, s), R(x,s) are polynomials in s with real scalar functions of x as coefficients.
A key result obtained in Section 4.3 to be reused in this chapter is Lemma 4.8, which
allows to characterise imaginary eigenvalues jw of the Jacobian A(x) by the condition
G(x, jw) = 1.

The following technical assumption is required for the next steps.

G(x,s) = (5.1)

Assumption (Al): For any xy € M, the Jacobian A,(x) of the open loop system (4.17)
does not have an eigenvalue on the imaginary axis, and the transfer function G(x;, s)
does not have zeros on the imaginary axis, i.e.

Vx € MVw e R:Q(x,jw) # 0 and det(jwl, — A,(x)) # 0. (5.2)

In addition, the degrees of Q(x, s) and R(y, s) in s are assumed to be constant with
respect to y € M.

Starting from the premise that we are interested in stability changes produced by changing
the characteristics of the feedback loop broken in Definition 4.6, this assumption is usually
satisfied.

The notion of a critical frequency which is introduced in the next definition will be
useful to compute possible eigenvalues of the closed loop Jacobian A(x), as given by
(4.19), on the imaginary axis.

Definition 5.1. w. € R is said to be a critical frequency for the transfer function G(x, s),
of
G(x, jwe) € R. (5.3)

Obviously, different values of x will result in different critical frequencies. For a specific
X, all critical frequencies are given by the solutions of the equation

Im(Q(x, jwe) R(x, —jwe)) = 0, (5.4)

which is a scalar polynomial equation in w,, with coefficients which are real scalar functions
of x.
We define the set of all critical frequencies for a specific x as

R(x) = {w € R | Im(Q(x, jw)R(x, —jw)) = 0} . (5:5)

In classical control theory, R is also called the realness locus of G(x, jw) (Hinrichsen and
Pritchard, 2005). Since only the imaginary part is considered, the polynomial in (5.4) is
odd. The following properties of the set R(x) can then be shown easily.

Proposition 5.2. For any x € M, the set R(x) satisfies the conditions

(i) 0 € R(x);
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5.2 Loop breaking and steady state stability properties

(i1) we € R(x) implies that —w. € R(x);
(111) either R(x) =R or R(x) has finitely many elements.

Note that R(x) = R whenever Im(Q(x, jw)R(x, —jw)) is the zero polynomial, which
in turn is the case whenever only the even powers of s in the polynomials Q(x, s) and
R(x, s) have non-zero coefficients. This case is highly non-generic and usually does not
occur in the applications we are interested in. Consequently, this case is not considered
specifically.

The concept of critical frequencies can be understood intuitively when considering the
Nyquist curve of the transfer function G(x, s). A critical frequency is any value w, at which
the Nyquist curve crosses the real axis. This is obviously a necessary condition for having
G(x, jw.) = 1, which corresponds to the existence of an eigenvalue on the imaginary axis
as shown in Lemma 4.8. Our concept is thus closely related to the idea of the gain margin
for robustness analysis of linear control systems (Skogestad and Postlethwaite, 1996). An
illustration of critical frequencies in the Nyquist plot is shown in Figure 5.1 on page 64.

Since a variation of the steady state—parameter pair y influences the polynomial equa-
tion (5.4), the set of critical frequencies R(x) may change significantly with x. In partic-
ular, the number of elements in R () generally does not have to be constant with respect
to x, which complicates the analysis. However, one can show that there is a minimal
number of critical frequencies of the transfer function G(x, s). As we will show below,
this minimal number depends on the number of open loop poles and zeros and whether
they are located in the right or the left half complex plane. To this end, define the number

6= M = My o — Ny |, (5.6)

where n,; (n,-) is the number of poles of G(x, ), and n., (n._) is the number of zeros
of G(x, s) in the right (left) half complex plane. Under Assumption (A1), § is constant
with respect to x € M. The number of elements in the set of critical frequencies can now
be characterised by §.

Proposition 5.3. Let [ be defined by (5.6) and assume that (A1) is satisfied. Then, for
any X € M, R(x) has at least 3 distinct elements, if 3 is odd, and at least 3 —1 distinct
elements, if 3 is even.

The proof is presented in the appendix, Section A.2. Proposition 5.3 is used to formulate
the property of minimality for the set of critical frequencies.

Definition 5.4. Under Assumption (A1), the set of critical frequencies R(x) is called
minimal, if it contains exactly 3 elements, where

B, if 3is odd
R (5.7)
6 —1, if 3is even.
The concept of minimality is applied in the second assumption made to derive the main
results.

Assumption (A2): The set of critical frequencies R(x) is minimal for any x € M.
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Given a transfer function G(yx,s) and a corresponding set of critical frequencies R(x),
Proposition 5.3 can be used to easily check the minimality of R(x). Graphically, a suf-
ficient condition for minimality of R(x) is that the Nyquist curve G(x, jw) encircles the
origin monotonically as w varies from —oo to oo. This is e.g. satisfied for stable trans-
fer functions without zero dynamics, or with an anti-stable zero dynamics. In practice,
minimality of R(y) is satisfied by many stable transfer functions.

If Assumption (A2) holds, we can label the roots of the polynomial equation (5.4) in a
consistent manner, writing

R(x) = {wi(x), w2(x), -, wl ()}, (5.8)

where the w’ are continuous functions of the steady state—parameter pair y and can be
identified with different solution branches of the polynomial equation (5.4).

5.2.2 Topological equivalence of equilibria

Changes in stability properties of equilibrium points are most easily studied using the
concept of topological equivalence. Here, we consider topological equivalence of hyperbolic
equilibrium points only, for which by definition the Jacobian does not have eigenvalues
on the imaginary axis (Kuznetsov, 1995).

Definition 5.5. Let x1,x2 € M be two hyperbolic steady state-parameter pairs of the
system (4.10). x1 and xo are said to be topologically equivalent, if the Jacobians %—f(xl)
and g—f()@) have the same number of eigenvalues in the left and right half complex plane,
respectively.

It is a well known result from dynamical systems theory that the topological equivalence
of all equilibria in two systems is a necessary condition for topological equivalence of the
flows (Kuznetsov, 1995). Let us consider two variants of the system (4.10), one with
parameter values p; and the other with parameter values p,. In the simple case when
there is only one steady state in each variant of the system, corresponding to the pairs
x1 and xe, topological equivalence of y; and ys is a necessary condition for topological
equivalence of the flows. In applications, we often aim at finding parameter values po
such that the system (4.10) changes its dynamical behaviour when parameters are varied
from initial values p; to py. For this problem, it is sufficient to find pairs y; and x»
which are not topologically equivalent. Due to the continuous dependence of eigenvalues
on parameters, this can only happen when the Jacobian g—i(xc) has eigenvalues on the
imaginary axis for some critical point y. € M. At this point, we can make use of the
methodology developed in the previous subsection.

To this end, consider the set of critical frequencies R(x) for a specific value of the
steady state—parameter pair y. Define the number 5*(x) to be the number of elements w
in R(x) such that G(y, jw) > 1, i.e.

B*(x) = card {w € R(x) | G(x, jw) > 1}, (5.9)

where card A denotes the number of elements in the set A.
Geometrically, if R(x) is minimal, §*(x) gives the winding number of the graph of
G(x, jw) around the point 1 in the complex plane (see Lemma A.3 on page 116). The
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Argument Principle (Whittaker and Watson, 1965) can then be used to characterise topo-
logically equivalent steady state-parameter pairs of the system (4.10) via the number
3*(x). This characterisation is given in the following result.

Theorem 5.6. Assume that (A1) is satisfied. Let x1,x2 € M be two hyperbolic steady
state—parameter pairs of (4.10) such that R(x1) and R(x2) are minimal. Then x; and
X2 are topologically equivalent, if and only if

5*(X1) = 5*(X2)-

The proof is given in the appendix, Section A.3. It makes use of several intermediate
statements which are given as lemmas in Section A.3. There are two main steps in the
proof. First, we observe that minimality of the set of critical frequencies implies that the
graph of G(x, jw) cuts the positive and negative parts of the real axis in an alternating
manner. The second step is to show that §*(x) is equal to the winding number of the
graph of G(x, jw) around the point 1.

5.2.3 Existence of marginally stable equilibria

Let us now turn to the problem of how to find parameter values for which a change in
stability properties of equilibria can occur. This is equivalent to searching for critical
points y. at which the Jacobian %—’i(xc) has an eigenvalue on the imaginary axis. This
typically means that y. is part of a submanifold of M which separates regions of topo-
logical equivalence. In view of Theorem 5.6, there are typically steady state—parameter
pairs y;1 and yo close to x. such that 5*(y1) # 6*(x2). Equivalently, for a specific critical
frequency branch w’, the transfer function value G(x, jw:(x)) on that branch has to cross
the value 1 when Y is varied continuously along a path from y; to x2. These observations
are formalised in the following theorem.

Theorem 5.7. Assume that Assumptions (A1) and (A2) are satisfied, and that M is
connected. There exists a critical point x. € M such that ?9_1;<XC) has an eigenvalue on the
imaginary axis, if and only if there exist x1, x2 € M such that, for some i € {1,2,..., 5},

G(x1, jwi(x1)) <1 < G(xe, jwilx2)), (5.10)

where wi(x) € R(x). In that case, +jwi(x.) is an eigenvalue of % (x.).

Proof. With Lemma 4.8, Assumption (A1) assures that a point x. is critical if and only
if Gxe, jui(xe)) = L

Necessity. Under the condition G(x., jw.) = 1, take x1 = x2 = x. and (5.10) follows
trivially.

Sufficiency. Let x1 and xo be such that (5.10) holds. Connectivity of M implies that
there is a path from x; to x» in M. Continuity of the critical frequency w!(x) and the
transfer function coefficients result in continuity of G(x, jw!(x)) with respect to . This
implies existence of y. such that G(x., jw'(x.)) = 1 along any path from y; to xs. O

A graphical illustration of Theorem 5.7 is given in Figure 5.1. The figure also illustrates
the relation to the classical Nyquist stability criterion.
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Figure 5.1: lllustration of Theorem 5.7 in the Nyquist plot. Full line: G(x1, jw), dashed line:
G(x2,jw), both drawn only for w > 0. The theorem asserts existence of a critical point x.
on any path between y; and x» in M.

The proof shows that the critical point . is usually far from unique. It may be unique
if M is of dimension one, i.e. there is only one free parameter to vary. In general, one
will expect that there is a submanifold of critical points in M separating regions which
represent different topological equivalence classes, where y; is an element of one such class,
and Y9 is an element of the other class. On this submanifold, the bifurcations which can
be encountered generically are codimension one bifurcations. Therefore, the bifurcation
condition provided by Theorem 5.7 is mainly useful in the search for codimension one
bifurcations, although condition (5.10) also holds for bifurcations of higher codimension.

Using Theorem 5.7, it is easily possible to distinguish dynamical bifurcations from static
bifurcations. In fact, if ¢ is chosen such that the critical frequency w’(x) = 0 is considered,
A(x.) has a zero eigenvalue, which generically corresponds to a saddle-node bifurcation. If
a critical frequency w!(x) # 0 is considered, A(x.) has conjugated imaginary eigenvalues,
and generically a Hopf bifurcation will occur.

To conclude this section, we give an illustrative example for the application of the loop
breaking approach to a small biochemical network. In this example, all the computations
can be done analytically.

Example 5.8. Consider a biochemical reaction network described by the ODE

1
1448
. 1 (5.11)
To = T1 — <=T2

2
T3 = Ty — T3,

T — I

with one uncertain parameter 6 > 0 (Griffith, 1968a). It is easily verified that xy =
(%, 1,1)T is a steady state for any value of 5. We apply a loop breaking such that the
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5.3 Bifurcation search via feedback loop breaking

open loop system is given by

1
14l
L 1 (5.12)
To = T1 — 51‘2

{t'g = Ty — I3.

T1 T Yy=x3

The linear approximation of the open loop system (5.12) around the steady state xg is
described by the matrices

The resulting transfer function is

0
As+1)%(s+ 1)

G5, s) = — (5.13)

and Assumption (A1) holds true for any value of § > 0. The set of critical frequencies is
given by

R = {0,£v2}, (5.14)

independently of 4. By Proposition 5.3, R is minimal.

Considering the critical frequency w? = /2, we obtain G(§,jv/2) = %. Thus, by
Theorem 5.7, there exists a critical parameter value . in any interval [151,52], where
01 < 18 and 6, > 18. In this example, we see that the critical parameter value is unique
and given by 6. = 18. For this value, the Jacobian of system (5.11) around z, has
eigenvalues at +j4v/2, and we conclude to the occurrence of a Hopf bifurcation.

For systems with a structure as in (5.11), the secant condition provides a necessary
condition for instability (Arcak and Sontag, 2006; Thron, 1991; Tyson and Othmer, 1978).
For this example, it implies that § > 16 is necessary for instability. However, the secant
condition is not sufficient for instability, and clearly underestimates the actual critical
parameter value d. = 18 in this example.

5.3 Bifurcation search via feedback loop breaking

5.3.1 Bifurcation search algorithm

In this section, we develop an algorithm to search for parameter values which lead to
a change in stability properties of an equilibrium point. This algorithm has first been
proposed in Waldherr and Allgéwer (2009). We assume that a preliminary parameter
vector p; and a corresponding steady state x; are known, which we combine in the pair
X1 = (z1,p1) € M. It is reasonable to assume that the pair x; is not critical, otherwise it is
usually straightforward to find parameter values yielding equilibrium points with different
stability properties. The aim of the algorithm is to find a steady state—parameter pair
X2 € M such that y, is not topologically equivalent to x;. The main theoretical basis of
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Chapter 5 Locating bifurcation points in high-dimensional parameter spaces

the algorithm is the result of Theorem 5.7. Thus it is also possible to search specifically for
either static or dynamic bifurcations on a path from y; to x2 by choosing an appropriate
critical frequency.

In order to put the problem in the previously developed framework, a loop breaking for
the system (4.10) has to be defined. Then, by looking at the resulting transfer function
G(x1,s), possible changes in stability properties can be determined. In particular, one
has to decide whether to search for a static or for a dynamic bifurcation. This leads to
the choice of a critical frequency w’ which is to be considered in the algorithm.

Denote the transfer function value for the critical frequency branch w’ at a point x as
g'(x). At the starting point 1, this value can be computed as

9'(x1) = Gxi: jwi(xa))- (5.15)
Now two cases have to be distinguished:
1. If g'(x1) < 1, the algorithm searches a pair yo € M such that g*(ys) > 1.
2. If g'(x1) > 1, the algorithm searches yo € M such that g*(x2) < 1.

The algorithm proposed here is best described by the term gradient-directed continua-
tion method. Continuation methods (Richter and DeCarlo, 1983) are popular in numerical
bifurcation analysis, where they are used to trace the equilibrium curve in the combined
state-parameter space. In our algorithm, continuation is used to stay on the manifold
M. However, a continuation method alone is not sufficient, as M is ¢-dimensional with
typically ¢ > 1. Thus, the continuation is complemented by a gradient ascent or descent
approach to achieve the desired value for g*(x2).

Since the algorithm is based on Theorem 5.7, Assumptions (A1) and (A2) need to be
checked. Depending on the system under consideration, this may be a difficult problem
globally over the steady state-parameter manifold M. However, for the validity of the
algorithm’s results it is sufficient that (A1) and (A2) are satisfied locally along the path
used for the continuation. These checks can directly be included into the algorithm. If
the assumptions are violated at any point, the algorithm issues a warning message. The
results may still be valid, but need to be checked separately in this case.

In detail, the algorithm works as follows. For the sake of conciseness, we are discussing
case 1 only. Small extensions are required for dealing with both cases.

1. Initialisation. Set x(®) = y;. Choose numerical parameters: Ag for the minimal
required change in ¢'(x) per iteration, 6(°) as the initial step size and min (Gmaz) as
minimal (maximal) step size.

2. Checking assumptions. (A1) is checked locally by computing the poles and zeros
of G(x"),s). (A2) is checked locally by computing the critical frequencies R(x"))
and applying Proposition 5.3. If the assumptions are not satisfied, issue a warning
message.

3. Prediction step. This step assures the desired increase in g*(x).

a) Compute the gradient Vg’ (X(j)).
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5.3 Bifurcation search via feedback loop breaking

b) Compute the subspace which is tangent to M in the point x¥) (Appendix A
in Isidori, 1995):

ov ,
T;)M = null o (X(J)) , (5.16)

where null A denotes the null-space of the matrix A.

¢) Project Vg' (x\)) on T, ;) M:
99 = Proj (Vgi (X(j)),TX(j)M) . (5.17)
d) Set the predicted point
X}(){jgl) = ) 4§09l (5.18)
Step size control is used in the sense that ¢V is varied to assure that
g (xSEY) — ¢' (x¥) = Ag, (5.19)

while keeping 6min < 09 < 8as-

4. Correction step. Generally, X,(ﬁil) ¢ M, and a correction step is required to

achieve xU+Y) € M. To this end, the Gauss-Newton method is used to solve the
non-linear equation
(I)(X(j+1)) =0

i (LG i (G
g (xU) = g' (Gt
for xU+Y), where Xéﬁl) is used as starting point for the Gauss-Newton algorithm.

If the Gauss-Newton algorithm converges, take the solution as value for yU+Y and
proceed to the next step. Otherwise, reduce the step size §¢) and go back to 3d).

(5.20)

5. Finishing criterion. Compute ¢'(xU*V). If ¢’(xU™) > 1, finish successfully,
otherwise iterate to step 2.

If the algorithm finishes successfully, it does so in a finite number of steps with a
previously known upper bound due to step size control via inequality (5.19).

However, in the same way as classical continuation methods, the algorithm may fail
if the Gauss-Newton algorithm in step 4 does not converge, and the step size §¢) may
not be reduced further due to the constraint &,,;, < 6¥) at the same time. This problem
may appear if the system is numerically ill-conditioned, but can typically be avoided
by choosing a smaller value for either Ag or for d,,;,,, with the drawback of increased
computational effort. Also, it can generally not be excluded that the function g*(x) has
local extrema, which may pose problems to the algorithm. Such problems may be detected
numerically from the vector 9V) taking very small values.

The algorithm as described above does not consider constraints on the parameters p.
Such constraints can typically be included by slight modifications of the system equations,
e.g. by a diffeomorphic transformation which maps a constrained parameter set onto the
full parameter space RY.
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Chapter 5 Locating bifurcation points in high-dimensional parameter spaces

5.3.2 Discussion of the feedback loop breaking approach

Two key steps in the approach taken in this section are (i) the transformation of the
problem to the frequency domain and (ii) the consideration of the critical frequencies. This
is quite different from established methods in numerical bifurcation analysis, and shall
be discussed from the perspective of more classical approaches. In classical bifurcation
analysis, so-called bifurcation test functions are used to check whether a bifurcation may
occur when changing a parameter value (Kuznetsov, 1995). The test function VU is defined
such that W(y.) = 0 if the bifurcation being tested for occurs at x.. For example, a test
function for the saddle—node bifurcation, which requires a zero eigenvalue in the Jacobian,
is given by the determinant of the system’s Jacobian, W(x) = det(g—i(x)). Bifurcations
are detected by the test function W(y) changing sign when the parameter is varied, i.e.
if a bifurcation occurs between x; and x2, then W¥(x1)¥(x2) < 0. For bifurcations of
codimension one, suitable test functions are known and are routinely used in numerical
continuation algorithms. Note that in the frequency domain approach, the expression
G(x,jwi(x)) — 1 is a test function for a generic saddle-node bifurcation, if we consider
w’ =0, and it is a test function for a generic Hopf bifurcation when considering w? # 0.
Computing classical test functions for a given point x requires a similar or slightly less
computational effort as computing the transfer function values at the critical frequency.
So we need to justify why we do not use classical test functions for bifurcation search in
a high-dimensional parameter space.

Since classical continuation methods cannot be used in a high-dimensional parameter
space, one has to search for different approaches. A naive approach to find parameters
for a bifurcation would be trying directly to solve the equations

(5.21)

However, in most cases this will be numerically infeasible with classical test functions, even
if the combined parameter /state space is of very low dimension. A more sophisticated
approach could basically use the algorithm we have presented in Section 5.3, the gradient-
directed continuation method, and just use the gradient of a classical bifurcation test
function instead of the gradient of the transfer function G(x,jw.(x)). We have also
implemented this approach for several examples, but run into numerical problems for any
system of medium complexity. In particular, the example presented in Section 5.4.1 could
not be handled in this way with a classical bifurcation test function for a Hopf bifurcation
due to numerical problems. A potential explanation for these problems is that the value of
the classical bifurcation test function seems to be numerically much less well behaved with
respect to parameter variations than the transfer function value at critical frequencies.
Using the transfer function value g'() as bifurcation test function in fact also allows to

apply generic optimisation methods to locate bifurcations in high-dimensional parameter
spaces (Waldherr and Allgdwer, 2007).
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5.4 Application to biochemical signal transduction

5.4.1 Oscillations in a MAPK cascade model

The model of the MAPK cascade as given in (2.14), Section 2.3.1, shows sustained os-
cillations for the parameter values given in Table 2.3 (Kholodenko, 2000). The analysis
in this section is based on the parameter value set A in Table 2.3. Compared to the ac-
tual reaction mechanism of the MAPK cascade as proposed by Huang and Ferrell (1996),
Kholodenko’s model contains a considerable simplification by using the Michaelis-Menten
mechanism for the individual phosphorylation and dephosphorylation reactions.

Using Michaelis-Menten reaction rates is a good approximation of the underlying re-
action mechanism, if the concentration of the enzyme is significantly smaller than the
concentration of the substrate (Keener and Sneyd, 2004). In other cases, the Michaelis-
Menten rate law is typically not a good approximation of the actual reaction flux. In
Kholodenko’s model of the MAPK cascade, the different kinases are present at compa-
rable concentrations, which would usually prohibit the use of Michaelis-Menten reaction
rates for the phosphorylation reactions catalysed by MAPKKK and MAPKK.

To obtain a more faithful description of the underlying reaction mechanisms, we extend
the original model of the MAPK cascade as given in (2.14) by explicitly introducing the
complexes of the kinases with their substrates, and adding appropriate reactions to the
network. This procedure is actually a reversal of the quasi steady state assumption
underlying the Michaelis-Menten reaction rate, and has been referred to as unpacking of
the reaction network by Sabouri-Ghomi et al. (2007). For example, the reaction 3 in the
original model is replaced by the corresponding association, dissociation, and catalytic
reactions, yielding

v3, :  Raf® + MEK = CKK1

) (5.22)
U3y CKK1 — Raf* + MEK-P,

where CKK1 is the intermediate complex for reaction 3. The corresponding reaction rates
are constructed from the law of mass action as

V3q = kgf[Raf*] [MEK] — kgr[CKKl] (5 23)

VUsp = k‘g [CKKl], .
where the additional parameters k3 and ks, are introduced. From the construction of the
Michaelis-Menten rate, these parameters have to satisfy

kgt ks

K,
3 a7

(5.24)

ks and K ,,3 are parameters of the original model as given in Table 2.3. For typical enzyme—
substrate kinetics, ks, is expected to be fast compared to k3 (Sabouri-Ghomi et al., 2007).
In this example, we choose ks, = 2ks. The value for ks; then follows from (5.24). In the
same way, the other phosphorylation reactions 4, 7 and 8 are replaced by pairs of reactions
Viq and v, © € {4, 7,8}, introducing new parameters k;; and k;, as above. The parameter
values for the unpacked MAPK cascade model are given in Table 5.1 as parameter vector

D1
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Table 5.1: Reference parameters p; and parameters for instability py in the unpacked MAPK

cascade model.

70

Param. P1 Do Unit rel. change
i 2.5 3.03 nM/s 1.21
K; 9 10.2 nM 1.13

K 10 9.1 nM 1.107¢
Va 0.25 0.31 nM/s 1.22
Ko 8 4.9 nM 1.6471
ks 0.025 0.030 1/s 1.19
ks, 0.05 0.052 1/s 1.05
k¢ 0.005 | 4.6-1073 | 1/(s nM) | 1.087!
ky 0.025 | 0.0254 1/s 1.01
k4 0.05 0.054 1/s 1.08
kaf 0.005 | 4.3-1073 | 1/(s nM) | 1.1571
Vs 0.75 0.50 nM/s 1.57¢
K5 15 5.5 nM 2.7271
Ve 0.75 0.95 nM/s 1.26
K6 15 14.6 nM 1.037¢
ke 0.025 0.023 1/s 1.0871
k7, 0.05 0.091 1/s 1.83
k7 0.005 | 1.8-1073 | 1/(s nM) | 2.767!
ks 0.025 0.022 1/s 1.167!
ks, 0.05 0.05 1/s 1.00
kss 0.005 | 4.8-1073 | 1/(s nM) | 1.037!
Vo 0.5 0.44 nM/s | 1.157!
K 15 14.7 nM 1.027!
Vio 0.5 0.69 nM/s 1.39

Ko 15 17.3 nM 1.15
KKKy | 100 130 nM 1.30
KK,y 300 323 nM 1.08

Kot 300 297 nM 1.017¢




5.4 Application to biochemical signal transduction

It has been observed that such unpacking of a reaction network can drastically alter the
dynamical behaviour of the network, if the assumptions for the Michaelis-Menten approx-
imation are not satisfied. In particular, Sabouri-Ghomi et al. (2007) consider an example
where the original network shows hysteresis with respect to a particular stimulus, while
the unpacked network is not hysteretic. In the example considered here, the unpacking
has a similarly drastic effect: the oscillations occuring in the original model vanish in
the unpacked model. Instead, trajectories in the unpacked model converge towards an
asymptotically stable steady state, as shown in Figure 5.2. Whereas Sabouri-Ghomi et al.
(2007) discuss various additional mechanisms for their example to restore hysteresis in
the unpacked model, we follow a different route here. Using the method developed in this
chapter, our goal is to find parameter values in the unpacked model of the MAPK cascade
for which sustained oscillations are restored.

The first step in our analysis is to choose a suitable loop breaking. For the considered
model, an intuitive approach is to break the loop at the feedback inhibition of reaction v,
by ERK-PP (cf. Figure 2.2). This is achieved by choosing h(z) = x3s and replacing x3s
by the input « in the reaction rate v;. A linearisation of the resulting open loop system
around the equilibrium point and a Laplace transformation give the transfer function
G(x, s), whose graph is shown in Figure 5.3. The problem is now to find parameters p,
with a corresponding unstable steady state xs. To reach this goal, the numerical algorithm
presented in Section 5.3 is applied.

The set of critical frequencies is minimal with § = 5. Note that in Figure 5.3, two of
the critical frequencies cannot be observed from crossings of the Nyquist curve with the
real axis, since the corresponding transfer function values are very small compared to the
scale of the figure. The critical frequency with the largest positive transfer function value
is w(x1) = 0.006s7!. We will consider only w? in the search for destabilising parameters,
because our goal is to find a Hopf bifurcation. The corresponding transfer function value
is G(x1,jwi(x1)) = g*(x1) = 0.065, corresponding to the steady state x; being stable in
the closed loop system.

The goal for the parameter search algorithm is to find a steady state—parameter pair
X2 such that g*(x2) > 1. The corresponding steady state x, will then not be topologically
equivalent to the nominal steady state x;, and we can expect a Hopf bifurcation when
varying parameters from the nominal value p; to the new value p,. To ensure that the
algorithm does not stop at the bifurcation point, but continues to vary parameters until
the oscillations have reached a considerable amplitude, we aim for g*(x2) > 1.3 in the
implementation used here.

With these settings, the algorithm returns the parameters p, and a steady state x
with the transfer function value G(x2, jwi(x2)) = 1.3 and the critical frequency wi(x2) =
0.003s™!, where xo = (z2,p2). The parameter values in p, are shown in Table 5.1.

The graph of G(xs, jw) is shown in Figure 5.3. For the new parameters p,, the graph
now encircles the point 1. By Theorem 5.6, we see that the equilibria x; and x5 are not
topologically equivalent. Indeed, x5 is unstable, and the trajectories converge to a limit
cycle for parameters ps. The time course of these oscillations is plotted in Figure 5.2.

In conclusion, our method is able to compute parameters which render the correspond-
ing steady state unstable and thus lead to the emergence of sustained oscillations in the
treated example. As a biochemical interpretation, we conclude that occurrence of sus-
tained oscillations in the MAPK cascade is not in conflict with the unpacked description
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Figure 5.2: Dynamical behaviour in the unpacked MAPK cascade model: convergence to
steady state for nominal parameters p; (grey line) and sustained oscillations for parameters po
(black line). The oscillations coexist with the unstable steady state xo (dotted line).
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Figure 5.3: Nyquist plots of open loop unpacked MAPK cascade model for parameters p;
(grey line) and po (black line).

of enzymatic reactions. In fact, oscillations can be recovered in the unpacked model by
appropriate parameter changes. In contrast to the approach taken by Sabouri-Ghomi
et al. (2007), it is not necessary to introduce additional mechanisms into the network to
recover the dynamical behaviour of the original model in this example.

5.4.2 Oscillations in the NF-xB pathway

The second example is an application to the NF-xB pathway as presented in Section 2.3.2.
The results obtained in Section 4.2.3 show that the equilibrium point in the model with
low transcription and translation rates is robustly stable, with damped oscillations, for
parameter variations up to a factor of ¢¥* = 1.54. However, this value is a possibly
conservative lower bound. From computationally expensive Monte Carlo simulations, we
have an upper bound on the allowable variation of 1.83.

The aim in this example is to find a Hopf bifurcation in the NF-xB pathway, specifically
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Table 5.2: Reference parameters p; (damped oscillations) and parameters p, for instability
(sustained oscillations) in the NF-xB pathway model (2.16).

Param. | p; Do Unit rel. change
ky 0.1 |0.136 | (uMmin)~! | 1.36
ky 0.2 | 0.256 min~! 1.28
Vm 0.525 | 0.309 min ! 1.707¢
« 0.017 | 0.02 min~! 1.18

the model given in (2.16), via the feedback loop breaking approach. To be consistent
with the analysis in Section 4.2.3, only variations in the parameters k;, ky, 7m, and a are
considered. The nominal values for this parameters are denoted as p; € R* and indicated
in Table 5.2.

To apply the feedback loop breaking approach to the NF-xB pathway, we first have
to choose an appropriate loop breaking. The NF-xB pathway features several feedback
circuits. From biological intuition, we presume that the feedback circuit which underlies
the oscillations most likely involves the NF-xB regulated expression of the inhibitor I-
kBa (Reaction 10 in Figure 2.3). Thus the loop breaking is defined by choosing nuclear
NF-xkB as an output: h(x) = zg. Correspondingly, the input acts on the transcription
rate of I-kBa, i.e. we change the corresponding reaction rate to v = ksu?. The refer-
ence parameters are the same as in Section 4.2.3 and given in Table 5.2. The resulting
open loop model is linearised around the (unique) equilibrium point. By transforma-
tion to the frequency domain, we obtain the loop transfer function G(xi,s), where x;
is the steady state—parameter pair for nominal parameters p;. The Nyquist plot of the
transfer function is depicted in Figure 5.4. There are three critical frequencies, with
one of them being positive, w?(y;) = 0.14 ﬁ, and yielding the transfer function value
*(x1) = G(x1, jw3(x1)) = 0.43. Thus, we expect that a Hopf bifurcation may be reached
with a suitable parameter variation.

The algorithm developed in Section 5.3 is applied to the model, with the goal of finding
a steady state—parameter pair x, such that the transfer function value satisfies g(x2) > 1.
From Section 4.2.3, we already know that the steady state looses stability for parameter
variations by a factor of 1.83. Therefore, we restrict the allowable parameter variations in
the gradient-directed continuation algorithm to less than a factor of 2 by an appropriate
parameter space transformation. After 324 iterations, the algorithm returns the parameter
vector py, which is given in Table 5.2. The Nyquist plot of the corresponding transfer
function is shown in Figure 5.4. The Nyquist graph of the transfer function now encircles
the critical point 1. By Theorem 5.6, we conclude that the steady state is unstable for
the parameter values p,. By inspection of the critical frequency, we also see that a Hopf
bifurcation occurs for this parameter change. The emerging sustained oscillations in the
nuclear NF-xB concentration are shown in Figure 5.5.

The parameter values which have been found by the gradient-directed continuation
method in this example are of particular significance when comparing them to the results
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Figure 5.4: Nyquist plot of the open loop transfer function for the NF-xB pathway. Grey line
from nominal parameters py, black line from p,.
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Figure 5.5: Time courses of the nuclear NF-xB concentration. Damped oscillations for
nominal parameters p; and sustained oscillations for perturbed parameters p,.

in Section 4.2.3. Using extensive Monte Carlo sampling, an upper bound of 1.83 > ¢*
on the dynamical robustness radius has been obtained. In the results obtained here,
parameters are maximally varied by a factor of 1.7. This factor is a new upper bound of
1.7 > 9* on the dynamical robustness radius for this example, which is significantly better
than the bound obtained by Monte Carlo sampling. It should be pointed out that single
parameter bifurcation analyses leads to much higher variations in this example before
a bifurcation is detected. Therefore, such a low upper bound on the robustness radius
would not have been encountered by classical continuation analysis in a single parameter.
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5.5 Summary and discussion of the bifurcation search
method

Based on the loop breaking introduced in Chapter 4, we present results on topological
equivalence of equilibria in systems with high-dimensional parameter spaces and on the
existence of critical parameters, for which stability properties of equilibria may change. In
addition, an algorithm is given to systematically search for critical parameters. Using an
ODE model for a MAPK cascade, we show that the algorithm can be used to efficiently
search for parameter values leading to limit cycle oscillations in the system. As another
example, we consider the NF-xkB pathway model as already studied in Section 4.2.3.
From the application of the proposed algorithm, a new upper bound on the dynamical
robustness radius is obtained in this example which is significantly better than the one
obtained from simple Monte Carlo tests.

Non-uniqueness of critical parameter values is a problem inherent to this kind of ana-
lysis. If the dimension of the parameter space is higher than the codimension of the
bifurcation, then there will be a submanifold of bifurcation points in the parameter space.
Our algorithm computes one of these points. Starting from a critical point thus found, one
can then use continuation methods to further explore the structure of the set of critical
points.

Another possibility for further studies would be to search for a bifurcation which is
locally closest to some reference parameter values. A method for this has been presented
by Dobson (2003). The method requires a bifurcation point where the search is started,
and we expect our algorithm to give a starting point which is better suited for the method
discussed in (Dobson, 2003) than a bifurcation search along a random line in parameter
space.

The biological examples we study in Section 5.4 are simple in that they contain only
one biologically meaningful feedback loop. For systems with a single feedback loop, the
results of the proposed analysis method are independent of how the loop breaking point is
chosen (Reinschke, 1988). Of course, many biological systems contain several intertwined
feedback loops. Then, the choice of the loop breaking point needs more attention, because
the results in general depend on this choice. In our experience, it is often beneficial to
choose a loop breaking point where several feedback loops are affected simultaneously.
Furthermore, a comparison of different loop breaking points is usually helpful and could
give hints to the role played by individual loops in the dynamical behaviour of the sys-
tem. The differential roles of individual feedback loops for the dynamical behaviour of a
biochemical network are in fact of great interest in systems biology, but are so far mainly
studied by a combination of simulation and biological insight (Kim et al., 2007; Waldherr
et al., 2008b).
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Chapter 6

Kinetic perturbations for robustness analysis
and sensitivity modification

In this chapter, we introduce kinetic perturbations as a special uncertainty class for bio-
chemical reaction networks. Section 6.2 formalises the concept and discusses the applica-
bility of kinetic perturbations to various network types. Two applications of this concept
to the analysis of biochemical reaction networks are proposed in this chapter. In Sec-
tion 6.3, we show how robustness analysis with respect to kinetic perturbations can be
used to find fragilities in the model. In Section 6.4, we propose a method to shape the
steady state response of a network to an adjustable parameter by kinetic perturbations.
The concept of kinetic perturbations and the robustness analysis are based on Waldherr
et al. (2009a).

6.1 Introduction

In the previous chapters, the effects of generic parametric variations on the properties of a
given model have been analysed. From a systems analysis viewpoint, generic parametric
variations have the disadvantage of affecting the steady states of the system, which in turn
generically leads to variations in all parts of the system. This makes modular approaches
to model analysis impossible and obscures structural insight into the effects of perturba-
tions. In this chapter, we consider a more specialised perturbation class, which is less
general than arbitrary parameter variations, but well motivated from a biochemical per-
spective. It also allows to obtain more stringent results than with generic perturbations.
In addition, the considered perturbation class is related to the type of structural uncer-
tainties which have been considered previously, e.g. arising from unmodelled dynamics in
the system (Jacobsen and Cedersund, 2008; Trané and Jacobsen, 2008).

The novel concept proposed here is an intermediate between parametric and structural
uncertainty. The basic idea is to consider variations in the reaction rate expressions which
leave the steady state reaction rates unaffected, but lead to changes in the reaction rate
slopes. We define such perturbations as kinetic perturbations. We show that kinetic
perturbations are directly related to specific parameter variations in important network
classes. Kinetic perturbations may e.g. be used to study the possible effect of unmodelled
additional interactions in a network. A systematic approach to analyse the robustness of
the qualitative dynamical behaviour with respect to kinetic perturbations is proposed. In
fact, the problem can directly be transformed to the framework of the structured singular
values, which are studied extensively in robust control theory, and it admits explicit
solutions in relevant simple cases. In addition, the concept of kinetic perturbations is
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6.2 Theory of kinetic perturbations

used to change the local sensitivity of a nominal steady state with respect to an adjustable
parameter (e.g. an external stimulus) in a specified way.

6.2 Theory of kinetic perturbations

6.2.1 Definition of a kinetic perturbation

First, let us define the perturbation class considered in this chapter. For the moment, let
us neglect the dependence of the model (2.5) on parameters, and consider a model given
by

& = Sv(x). (6.1)

The approach is local in the sense that it aims at properties of the network (6.1) around
an equilibrium point zg, where Sv(xg,p) = 0. The corresponding steady state reaction
fluxes are denoted as vy = v(zg). For ease of notation, we will denote V' = %. Locally
around g, the dynamical behaviour is characterised by the Jacobian of the system (6.1)
evaluated at xg, which we denote by

A = SV (). (6.2)

From a biochemical perspective, the stoichiometric matrix S contains the structural mass
flow interactions, while the reaction flux vector v(z) describes the dependence of reac-
tion rates on the substrate concentrations, and also captures the structural regulatory
interactions.

Perturbations to the system which leave the mass flow structure unaffected can therefore
be characterised by a change in the reaction flux vector, yielding the perturbed system

i = So(x), (6.3)

where ¥(x) is the perturbed reaction flux vector.

As can be seen from (6.2), the Jacobian A depends on the stoichiometry S as well as
the local kinetic slopes V, i.e., the rate derivatives with respect to reactants at the steady
state. In general, a perturbation of reaction parameters will have two separate effects
on the local kinetic slopes. First, the perturbation will directly modify the slope of the
corresponding reaction. Second, the perturbation will in general also affect the reaction
rates and thereby the steady state of the complete network. This secondary effect implies
that the local slopes of most reaction rates will change from the perturbation of a single
parameter because of their dependence on x. This complicates the robustness analysis
and, more importantly, obscures structural insight.

Here, we introduce kinetic perturbations, which affect the steady state Jacobian V()
of the reaction fluxes, but leave the stationary fluxes vy, and as a consequence also the
steady state concentrations x(, unchanged.

Definition 6.1. The system (6.3) is said to be subject to a kinetic perturbation, if

0(zo) = vy. (6.4)
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Chapter 6 Kinetic perturbations for robustness analysis and sensitivity modification

From condition (6.4), we directly obtain So(zg) = Svy = 0 and conclude that x, is also
a steady state of the perturbed system.

Perturbations are often related to parameter variations in a parameter dependent reac-
tion flux vector v(x,p), where p € R? is the vector of reaction parameters. The nominal
reaction flux vector is then given by v(z) = v(z, p), and the perturbed reaction rate vector
is

{)(I) = U("L‘vﬁ)v (65)
with perturbed parameters p. Parameter variations corresponding to kinetic perturbations
can be characterised by the perturbation set P = {p € R? | v(zo,p) = vo}-

Kinetic perturbations of parametrised reaction rate expressions can also be related
to structural perturbations by introducing implicit parameters. With the term “implicit
parameters”, we denote any parameters which do not appear in the nominal parametrised
model (2.5), but are introduced as free parameters only during the model analysis. Typical
examples are parameters which are supposed to be fixed at trivial constant values through
choice of the model class (as in mass action networks), or which are related to interactions
within the system which have been neglected in formulating the nominal model. Still,
perturbations which affect implicit parameters may be relevant to the system and thus
should be considered in robustness analysis.

While the steady state reaction rates are not affected by a kinetic perturbation, the
reaction rate Jacobian V' at the steady state will generally change. Similar to the nominal
case, we denote V = %. The change in the reaction rate Jacobian at the steady state is
denoted by .

A =V (xg) — V(o). (6.6)

The perturbed Jacobian of the system at the steady state zo is denoted by A € R™*"
and is given by . ) B
A= SV(xg) = A+ SA. (6.7)

We conclude that with respect to the dynamical behaviour in the neighbourhood of the
steady state zg, any kinetic perturbation is completely characterised by the perturbation
matrix A.

For kinetic perturbations introduced by parameter variations, it is important that for
any given perturbation matrix A, the corresponding parameter change is determined
uniquely. This will for example allow to relate a specific A, computed e.g. as a fragile
perturbation in the robustness analysis, to the system by appropriate parameter varia-
tions. In the following sections, we show that the parameter change corresponding to
a given A can be computed analytically for the common modelling frameworks of gen-
eralised mass action networks, Michaelis-Menten kinetics and metabolic networks where
enzymes are subject to allosteric regulation.

6.2.2 Kinetic perturbations in generalised mass action networks

Kinetic perturbations have an illustrative physical interpretation for generalised mass
action (GMA) networks. In a GMA network, reaction rates are given by the expression

UZ'<.T>=]€¢H.T?U, i=1,...,m, (6.8)
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6.2 Theory of kinetic perturbations

where k; > 0 is the nominal reaction rate constant, and «;; € R is the nominal kinetic
order of the j-th species. Note that in contrast to classical mass action networks, non-
integer kinetic orders cy; are allowed in GMA networks. Non-integer kinetic orders are
supported by simulation studies of reaction systems under diffusion constraints (Kopel-
man, 1988; Macheras and Ilidias, 2006; Savageau, 1995), or may represent the aggregation
of mechanistic detail in a single reaction step (Vera et al., 2007). For a GMA network
with reaction rates as given in (6.8), a parameter vector p is introduced which contains
the rate constants k; as well as the kinetic orders a;;, ¢ =1,...,m, j=1,...,n.

If the nominal model is a classical mass action network, the «;; can be considered
as implicit parameters, fixed to the values given by the stoichiometry of the reaction.
Furthermore, a value of ;; = 0 means that the j-th species does not affect the i-th
reaction. Changing this value then corresponds to a structural perturbation of the nominal
model.

In the following, we derive explicit expressions for parameter variations in a GMA net-
work subject to a kinetic perturbation. From (6.4), a kinetic perturbation is characterised
by the condition

or equivalently

Considering the elements of the reaction rate Jacobian V', we obtain
Vij(z) = aggey toi(x),
and a kinetic perturbation where the reaction rate Jacobian V' is changed additively by
A is given by
&ijl'ajl-vo,i = ozz-jxa’jl-vo,i + Ay,
or equivalently

~ I‘O’] A
Oéij — Ckij = U_A”
0,2

For the further analysis, let us introduce a suitable scaling of the perturbation A as
A = (diag vy) ' A diag o, (6.9)

where A € R™*" is the scaled perturbation matrix. The same scaling is commonly used in
linear sensitivity analysis of biochemical reaction networks (Heinrich and Schuster, 1996).
With this scaling, kinetic perturbations by parameter variations in a GMA network are
characterised by

O~éij = Oy + Az‘j (610)

and

ki =K [ Jwos - (6.11)
j=1
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v(x) 0, A=0.4
v(x) =0.7x
. 7, A=-04

%

Figure 6.1: lllustration of kinetic perturbations to the nominal reaction rate v(z) = 0.7z.
The nominal state at which the perturbation is applied is 2o = 1.

In conclusion, we see that kinetic perturbations of a GMA network change the kinetic
order of species in reactions, while at the same time adjusting the reaction rate constants to
keep steady state reaction rates and steady state concentration values unperturbed. The
scaling suggested in (6.9) thus directly relates the kinetic perturbations to an established
property of the reaction rates. An illustration of the variation in a reaction rate for a
kinetic perturbation is shown in Figure 6.1.

Remark The outlined approach is not applicable if zy; = 0 for some j. However, a
kinetic perturbation in the reaction v; can still be found if a;; = 1. Then,

Vis(wo,p) = ki | [ 251 (6.12)

I#j

and the kinetic perturbation f/ij (o, p) = Vij(xo,po) + Aij can be realised by perturbing

~ A
ki = =Y

6.2.3 Kinetic perturbations in metabolic networks

Metabolic networks describe conversions among metabolites which are catalysed by en-
zymes, where the metabolite concentrations are used as state variables, and the enzyme
concentrations are usually considered as constant parameters. Classically, such reactions
are modelled by the Michaelis-Menten law, with reaction rate expressions given as

k‘ifﬁj

vi(7) = ————, 6.14
) = Ty (6.14)
where z; is the substrate concentration and k;, M, are parameters. For the derivative, we

have
8% kz

oz, W = T M

(6.15)
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As we will show in the sequel, a kinetic perturbation can be constructed by using a
perturbed reaction rate of the form

@z(l’) = i

=7 (6.16)
1+ Mil'j

We distinguish two cases for the computation of the parameters k; and M; such that
they correspond to a kinetic perturbation.
Case 1: zo; = 0. Then, a kinetic perturbation is characterised by

ki = ki + Ay, (6.17)

and M, > 0 is arbitrary, as it affects neither the steady state flux nor the Jacobian.
Case 2: xy; # 0. From (6.4) and (6.6), we have

];Z'.CEO,]' . k’i.CEOJ
1+ M,’SEOJ 1+ Mz
ki ki <

A + Ay
(14 Mzo;)? (14 Mz ;)? !

Solving for l%z and M, yields

- k;
ki= ————
N 1 » .
My = (2 — 1),

Io,j 1 + nijAz’j
where 7,; = 1 4+ M,z ;. Note that we obtain the fundamental limit

1 1

— < Aij <1l—— (619)

Thij Mij

on the scaled perturbation, which is related to the fact that the slope of the Michaelis-
Menten curve is always positive and achieves its maximum at the origin. The variable
ni; can also be interpreted biochemically as the extent to which the reaction is saturated:
In the linear regime, we have M;z; < 1 and 1 < n < 2, whereas n = 2 means that
the reaction flux is half the maximum flux, and for n > 2 the reaction operates in the
saturated regime. We also see from (6.18) that the parameter change required to achieve
a given change in the reaction rate slope increases with the saturation measure 7;;.

A more interesting network structure than with simple Michaelis-Menten reactions is
obtained when considering regulatory influences of metabolites on enzyme activities. We
use a reaction rate expression which is standard for modelling allosteric inhibition, given

by

n

vi(z,p) = kix; H(l + M;,x, ). (6.20)

r=1
For a standard Michaelis-Menten reaction, a;; = —1 and oy, = 0 for r # j. A common
description of an inhibitory regulation is obtained by setting oy, = —1 for some r # j.
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To describe a positive regulatory influence, we may also use «;, > 0. Also, perturbations
in the interaction structure may be formulated by considering o, as implicit parameter
with nominal value a;, = 0. Regulatory interactions of a similar form, with «a;, = £1, are
also considered by Wolf et al. (2005).

The derivatives of the reaction rate expression (6.20) are given by

ov; _ Ui (1 L o M )
afL'j X 1+ Mijzj
ov; s M;

KA — Z 18 8 f ~‘
0z v 1+ M;xs or s 7 J

(6.21)

In the reaction rate expression (6.20), we have two parameters for each state variable,
plus the variable k; to adjust the steady state reaction flux. In the same way as above,
we seek for a kinetic perturbation of the reaction rate by a parameter variation, where
the perturbed reaction rate takes the form

n
bi(z,p) = ki [ [(1 + M) (6.22)
r=1
To account for kinetic perturbations, we just need one adjustable parameter per state
variable, so we can e.g. fix beforehand

Qij = Qij

N _ (6.23)
M;s = M;s for s # j.

Solving the equations defining the kinetic perturbations for ]\Zfij and s, § # j then
yields
- 1 1ij

M;; = - - 1), 6.24
! %J(l — ag; M A ) (6.24)

with Nij = 1+ Mijxo,j and

6.25
Qs + My, Aim Xo,s = 07 ( )

v0,s

- (078 + nj.ii_lAim xO,s # 0
Qg = s

where we use again the scaled uncertainty
ij = _77Aij- (6.26)

As in the simple Michaelis-Menten case, we require 0 < Mij < 00, which translates into

the bounds
1 JAVY 1
——-1< < —. (6.27)
i Qij g
Perturbations not satisfying these bounds can only be realised by perturbing the kinetic
order «;; in addition.

To keep the steady state reaction flux unaffected by the perturbation, we finally set

~ _%Air _ i
ki = ki H”ir T = agitng D). (6.28)
r#j
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6.2.4 Kinetic perturbations of generic reaction rates

In this section, we construct a kinetic perturbation for a generic reaction rate. This is
of relevance for networks which do not use the GMA or Michaelis-Menten type reaction
kinetics. It is shown that kinetic perturbations can still be applied by directly intro-
ducing the perturbation A;; as an implicit parameter into the reaction rate. Consider a
modification to the reaction rate v;(x) given by

0;(z) = vi(x)xfijxafij. (6.29)
This is clearly a kinetic perturbation which changes only the slope gg;, as we have
i(wo) = vi(wo)
1) = g) + o)) (6:30)
0, Oy

axs (.’170) - axs (x[))? S 7&]

However, in some cases it may be biologically more relevant to implement kinetic pertur-
bations by varying other parameters in the reaction rate v;(z). In these cases, a separate
analysis has to be done, such as for the Michaelis-Menten reaction rate in Section 6.2.3.

6.3 Robustness analysis with kinetic perturbations

6.3.1 Problem statement

The problem of local robustness analysis is to evaluate the effects of perturbations on the
signature of the system’s Jacobian A. Since steady state concentration values and reaction
fluxes are often well characterised for biochemical reaction networks, we are specifically
considering perturbations which do not affect these values, i.e. kinetic perturbations.

Using kinetic perturbations with a scaled uncertainty matrix A as given by (6.9), ac-
cording to (6.7) the perturbed Jacobian becomes

A(A) = A + S(diag vy) A(diag z9) ™" (6.31)

In general, the robustness problem for kinetic perturbations through parameter vari-
ations can be formulated as follows. First, one needs to introduce a measure for the
perturbation strength. Usually, an operator norm ||A|| is chosen as perturbation mea-
sure. Next, define the robustness radius of the system (6.1) at the equilibrium x, as

Y = inf{||A] | in(A(A)) # in(A)}, (6.32)

where in(A) denotes the inertia of the square matrix A. In local robustness analysis, two
goals are usually pursued. The first goal is to compute the robustness radius 1, or at
least lower and upper bounds. The second goal is to construct a minimum-size non-robust
perturbation A* such that ||A*|| = ¢ and in(A(A*)) # in(A). Depending on the specific
network class, a corresponding non-robust parameter vector p* can be obtained through
the expressions derived in Section 6.2.
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Due to the proposed reformulation (6.31), the robustness problem with respect to kinetic
perturbations can be solved by using the concept of the structured singular value (or p—
value) developed in the 1980s (Doyle, 1982). Since we are considering static perturbations
to the reaction rate slopes only, the problem translates into a real p problem (Qiu et al.,
1995). The real u—value is defined as (Hinrichsen and Pritchard, 2005)

-1

pa(Glw) = (nf{|A] | A € R™", det(L,, — AG(jw)) = 0})

To compute the robustness radius ¢ for the perturbed Jacobian A(A) in (6.31), the
transfer function G : C — C™*™ which needs to be considered in the pu—value is given by

G(jw) = (diag zo) ' (jwl, — A)~'S diag vo. (6.33)

Computation of the robustness radius from the py—value is then a standard problem in
robust control theory (Hinrichsen and Pritchard, 2005), with the solution

0= (swppaGie)) (6.34)

Usually, the robustness analysis will result in a symmetric interval around the nominal
value Ay = 0. However, in some cases it may be more reasonable to consider asymmetric
intervals, e.g. if a perturbation in one direction is much more likely than in another one.
The analysis can be extended to such cases by defining a new interval center Ay # 0.
Thus, we substitute the nominal Jacobian A by

A(A) = A+ S(diagvg) Ag(diag zo) ",

and the robustness radius is computed by considering the perturbed Jacobian fl(A) =
A(Ap) + S(diagvg) A(diag xq) L.

In general, computation of the p—value for real uncertainties is a difficult problem
(Hinrichsen and Pritchard, 2005). For general matrix perturbations, usually only lower
and upper bounds can be obtained. Fortunately, in the analysis of biochemical reaction
networks, already scalar and vector perturbations give a useful insight into robustness
properties of a system. For these perturbation cases, it is possible to compute the robust-
ness radius ¥ and a corresponding non-robust perturbation A* explicitly. The scalar case
is discussed in the following section, whereas the case of vector perturbations is described
in Waldherr et al. (2009a). Scalar perturbations are relevant for the analysis of biochem-
ical reaction networks, in order to detect single fragile interactions, where a perturbation
can change the dynamical properties of the network.

6.3.2 Scalar perturbations

If we restrict all elements of A apart from one to zero, we have a scalar perturbation.
For a biochemical reaction network, this corresponds to the case where only the influence
of a single species on a single reaction rate is subject to a perturbation. In the analysis
of biochemical networks, this approach will be useful for the detection of single fragile
interactions. In terms of the robust control approach outlined in Section 6.3.1, such a
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perturbation translates into a scalar uncertainty problem, for which the robustness radius
and a non-robust perturbation are easily computed.

Assume that the derivative Vj; of reaction ¢ with respect to the species j is subject to
perturbations. Then, we have

A= el AT, (6.35)

with the uncertainty A;; € R, where ef* € R™ (e} € R") is the unit vector in the i—th
(j—th) coordinate direction. The perturbed Jacobian is then given by

A(A) = A+ S(diagvg)e" A e? . T(diag )" (6.36)
Denote B = S(diagvg)e” and C' = ¢} " (diag x9)~". Define the transfer function
G(jw) = C(jwl, — A)'B. (6.37)

For the robustness radius we obtain (Hinrichsen and Pritchard, 2005)

v = (s pa(G)) = (max|Gli)l) (6.39)

where

R={weR|Im(G(jw)) = —wC(Ww[+A*)"'B =0}

is the realness locus of G(jw).

The remaining task is now to construct a minimum-norm non-robust perturbation A”,
for which the Jacobian A( el" A} ;‘T) has an eigenvalue on the imaginary axis. Such a
perturbation exists, if and only if ua(G(jw)) > 0 for some w € R. To construct a non-
robust perturbation, let w* = arg max,er |G(jw)|. The non-robust scalar perturbation is

then given by
1
Af =~ .
Y= GG (639

In the scalar case, it is also possible to compute non-symmetric robustness radii: Define
i =sup({|GGw)| | w € R, G(jw) < 0} U {0})
e =sup({|G(jw)| | w € R, G(jw) > 0} U{0}).
Then we have in(A(A)) = in(A) for
—uZt < Ay < pih (6.40)

FExample 6.2. Before considering networks of typical complexity, let us first illustrate the
use of kinetic perturbations for robustness analysis with a very simple example, comprising
only one species X and two reactions v; and vy. The ODE model is given by

i=Sv(z)=(1 -1) (%> , (6.41)

T

where the nominal values for the two parameters in vy are £k = 3 and M = 2. Let
us consider the steady state xy = 1, yielding the stationary reaction rates vy = (1,1)"

85



Chapter 6 Kinetic perturbations for robustness analysis and sensitivity modification

, U2
v(x) 7
7
L7 U1
7
s U1
Vs
1
v
7
7,
7
7,
7
7
7
1 2 7

Figure 6.2: lllustration of kinetic perturbations for the simple system in Example 6.2.

and V(xg) = (%, 1)T. According to (6.2), the nominal Jacobian is given by A = —%,
corresponding to the steady state xy being stable. For a scalar kinetic perturbation

A1 € R, i.e. the slope of reaction v; is uncertain, we obtain the perturbed Jacobian

1
A(A) = A+ S <(1)) Ay =5+ A, (6.42)

*

A minimal non-robust perturbation is readily constructed as A}, = %, with the critical
frequency w* = 0.

In the next step, we seek for perturbed parameters k and M corresponding to the
perturbed system with A;; = Aj,. From the conditions (6.4) and (6.6), we have

01(zo) = v1 () k 1
oty oy 122 M (6.43)
%(1’0) = %(1’0) + A & m =1,
and the perturbed parameters are given by
~ e (6.44)
M =1.

The nominal and perturbed reaction rates are shown in Figure 6.2. From the figure,
we see that the system undergoes a saddle—node bifurcation at o = 1 for the perturbed
parameter values k and M. For a kinetic perturbation Ay > %, the steady state xq will
turn unstable.

6.3.3 Application to the MAPK cascade

The robustness analysis with kinetic perturbations is illustrated by applying it to the
model of the MAPK cascade (2.14) described in Section 2.3.1. For nominal parameter
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Table 6.1: Fragile interactions in the MAPK model (2.14). The table is structured, such that
all lines grouped in one field correspond to the same change in the Jacobian. This is due to
the structure (non-empty kernel) of the stoichiometric matrix.

’ Nr. ‘ Reaction i Species j | A} w* [s71] ‘
la Uy T11 —0.21 0.55-1072
1b Vg T11 0.21  0.55-1072
2a Uy T39 0.47 0.5-1072
2b Vg T30 —0.47 0.5-1072
3a U3 11 —0.42 0.55-1072
3b Vg T11 042 0.55-1072
4a o To1 —0.46 0.56-1072
4b Vs To1 0.46  0.56- 1072
5a N T99 —0.21 0.55-1072
5b Vs Too 0.21  0.55-1072
6a Uy T30 —0.26 0.58 - 1072
6b Vs T39 0.26 0.58-1072
Ta V7 Too —0.44 0.54-1072
7b V10 To9 0.44 0.54-1072
8a vy T39 —0.43 0.57-1072
8b V10 T390 0.43 0.57-1072
9a Vg T11 0.18 0.58-1072
9b Ug T11 —0.18 0.58-1072
10a g T39 —0.18 0.55-1072
10b Vg T39 0.18 0.55-1072

values, the model shows limit-cycle oscillations around an unstable equilibrium point. The
analysis in this section is based on the parameter value set B in Table 2.3. The Jacobian
evaluated at the equilibrium point has two complex conjugated eigenvalues with positive
real parts. The goal of the robustness analysis is to determine kinetic perturbations which
could lead to a loss of sustained oscillations.

We consider only kinetic perturbations where the influence of each species on each
reaction is perturbed individually, i.e. the scalar uncertainty case. Table 6.1 shows the
interactions where a scaled kinetic perturbation smaller than 0.5 is sufficient to induce

eigenvalues of the Jacobian on the imaginary axis.
The following perturbation cases are of particular biological relevance:

la/b Change of the substrate order in the first cascade element;

2a Modification of the characteristics of the feedback interaction (Kholodenko, 2000);

3a, 7a Reduction of the efficiency of the first phosphorylation step in each cascade level;
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Figure 6.3: Relation between kinetic perturbation A; 3, and corresponding parameter change
0 in the interaction z35 — v; of the MAPK cascade model.

8b, 10b Induction of the MAPK-phosphatase MKP-1 by active MAPK-PP (Bhalla and
Iyengar, 2001; Bhalla et al., 2002);

9a Direct feed-through in kinase phosphorylation (impaired specificity of MAPKKK*).

From these results, we see that there are several interactions where oscillations are
fragile with respect to kinetic perturbations. For some of these interactions, biochemical
mechanisms that may affect them have already been suggested in the literature (Bhalla
and Iyengar, 2001; Bhalla et al., 2002; Kholodenko, 2000).

The perturbation case 2a is now investigated further by constructing explicit model
perturbations and a bifurcation analysis, in which the model is changed gradually from
the nominal to the fully perturbed case. The linear analysis of this perturbation indicates
that a Hopf bifurcation is induced, where the unstable eigenvalues are moved to the
imaginary axis. Thus, we expect that the perturbed model will no longer show sustained
oscillations.

The perturbation 2a can be implemented by changing the exponent of x3; in the reaction
rate vy, which is related to the cooperativity of MAPK-PP in the feedback inhibition. We
construct the perturbed reaction rate as

X1 — T11

(14 (232/K;)?0) (K + 10 — 211)

where 0 € R is an implicit parameter used to modify the characteristics of the feedback
inhibition of reaction 1 by MAPK-PP. The multiplicative change to the reaction rate

k(o) = Lo/ K9 7
1+ (z032/Ki)?

is constructed to maintain the same stationary reaction rate in the perturbed and nominal
models. In this case, the value of § corresponding to a specific kinetic perturbation A 39
cannot be computed analytically. However, a numerical computation is possible, and the
results are shown in Figure 6.3. The relation seems to be linear, with a slope close to
—1. Thus increasing the exponent of x3, in vy, while maintaining the stationary reaction

b = k(6)V; (6.45)

(6.46)
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Figure 6.4: Bifurcation diagram for the kinetic perturbation x3; — v; in the MAPK cascade
model. The Hopf bifurcation is marked by a star.

rate, corresponds to a proportional (almost equal) decrease in the slope 881—1;12. Another
interpretation is that increasing the cooperativity in the feedback inhibition (which is
achieved by a positive §) corresponds to a reduction in the feedback strength, as measured
by the corresponding Jacobian element. The non-robust kinetic perturbation A* = 0.47
obtained in Table 6.1 corresponds to a parameter change of 6* ~ —0.42. Typically, it is
expected that an increase in feedback strengths tends to support sustained oscillations.
However, in this example, we observe that a decrease in the exponent, corresponding to
an increase in the strength of the feedback inhibition, actually is more efficient to stop
oscillations than a decrease in the feedback strength.

The bifurcation diagram for varying the parameter ¢ is shown in Figure 6.4. Since this
is a kinetic perturbation, the steady state value is not affected by §. However, stability
does depend on the value of 9, and, as predicted by the robustness analysis, there is a
Hopf bifurcation correlating with loss of oscillations at 0* ~ —0.42.

6.4 Local sensitivity modifications via kinetic
perturbations

6.4.1 Problem setup

As a second application of kinetic perturbations in biochemical networks, we study their
effect on the local sensitivity of the steady state with respect to a generic parameter
variation, as defined in Section 2.2. For simplicity of presentation, we only discuss the
special case of sensitivity with respect to an adjustable, scalar parameter denoted by
¢ € R. The parameter ¢ may e.g. represent a stimulus which is expected to vary around
a nominal value. It is assumed that ¢ is not affected by kinetic perturbations, but is
subject to additional uncertainty.
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Let us consider a parameter dependent ODE model of the network given by
& = Sv(z, ). (6.47)

In this section, we will generally assume that, locally around a nominal parameter value
©o, the steady state can be written as a smooth function z(¢) € R™ of the parameter ¢,
i.e. we have

Sv(zs(p), ) =0 (6.48)

for ¢ in a neighbourhood of . Denote the nor_ninal steady state by z¢ = ().
As discussed in Section 2.2, the sensitivity > of the steady state with respect to the
parameter ¢ at the nominal steady state is defined as

- Oz,
Z =
a(p (WO);
which is usually computed from the sensitivity equation
_ ov
Iy
where 9
v
Vo = %(1'07 ©o)- (6.50)

In the application of kinetic perturbations discussed here, we will study the problem
how a specific change in the sensitivity ¥ is related to a kinetic perturbation of the system
(6.47). Kinetic perturbations are particularly relevant for this problem, because they allow
changing the sensitivity, while keeping the nominal steady state value xq fixed. Let the
requested change in ¥ be given by

G=%-% (6.51)

where 3 € R” is the sensitivity of the steady state with respect to the parameter ¢ in the
modified system. We seek to achieve this sensitivity change by a kinetic perturbation,
where the modified system is given by

&= Sv(z,p), (6.52)

and v is the reaction rate vector subject to a kinetic perturbation as defined in Section 6.2.
As in the robustness analysis problem, we denote the change in the reaction rate slopes
Vo with respect to the state variables by

A=V, -V
In addition, the change in the reaction rate slopes with respect to ¢ is denoted by

- ov v
Ag& == %(IWSOO) - %(3307 900)

Using (6.49), the sensitivity change & has to satisfy the equation
SVoo + SA(S +5) + SA, = 0. (6.53)

In the next section, we will address the problem of computing perturbations A and &p
satisfying (6.53) for a specific sensitivity change &.
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6.4.2 Kinetic perturbations for a specific sensitivity change

For a given sensitivity change 7, (6.53) is a system of n linear equations in the unknowns
A € R™" and A@ € R", amounting to nm + n free variables. Thus, the solution of
(6.53) is generally not unique. We consider two approaches in order to obtain specific
perturbations A and A, satisfying (6.53). In the first approach, the degrees of freedom
are used to construct an explicit solution with some sparsity properties. In the second
approach, we use linear programming to compute minimal-norm perturbations.

For a specific solution of the equation (6.53), we set

A, =0
and denote _ _ _
Y =(2,...,5)"
= (61,...,00)"
% = (%,17 s 7‘/0,n)
A: (Aola "aAon )
where ¥;,5; € R and Vo.is As; EiRm.
We then rewrite (6.53) with A, =0 as
S (Voudi + Ay(Si +63)) =0, (6.54)
i=1
and a specific solution is constructed as
— 6—
Aoi =—-W i = : . .
0 i+ 0 (6.55)

As discussed in Section 6.2, A can always be realised by explicitly computable parameter
variations for certain network classes. Note that zero elements of Vj are not affected by
the perturbation, and the interaction structure of the original system is maintained.

In applications, it is usually desirable to find a kinetic perturbation which modifies the
network as little as possible, while still leading to a specific sensitivity change. This is
achieved by searching for a solution A of (6.53) of minimal norm. For a given sensitivity
change &, a perturbation A of minimal norm can be obtained by solving the optimisation
problem

min [A] + 4,
— o ) (6.56)
s.t. SVoo + SA(X +0)+ SA, =0.

For biochemical reaction networks, relevant norms to use in this problem are the 1- and the
oo—norm. The 1-norm is a reasonable choice if individual perturbations are independent,
and their magnitudes add up to the overall perturbation magnitude. On the contrary, the
oo—norm is appropriate if perturbations are likely to occur in parallel, e.g. a change in
kinase activity affecting all corresponding phosphorylation reactions simultanously. Then,
the optimisation problem can be reformulated as a linear program and admits an efficient
computational solution. In addition, it is possible to include structural constraints in the
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optimisation problem, e.g. that certain elements of A or &p are equal to zero. Also upper
and lower bounds on individual elements of Aw can be added to the constraints.

For an example of the sensitivity modification, we refer to Section 7.4. There, it is shown
that this approach provides an efficient method for modifying the stationary stimulus—
response behaviour of a biochemical reaction network with respect to an adjustable stim-
ulus.

6.5 Summary and discussion of the kinetic perturbation
approach

This chapter introduces kinetic perturbations as a new uncertainty class for biochemical
reaction networks. It is shown that these perturbations are directly related to variations
in the reaction order for general mass action networks and thereby admit an illustrative
physical interpretation. We also construct parametric changes for kinetic perturbations in
enzymatic networks, and show how to apply a kinetic perturbation to a generic reaction
rate.

The advantage of considering kinetic perturbations for robustness analysis is that we can
use the well developed theory of linear robust control, and even obtain exact solutions for
the robustness radius in the scalar and vector uncertainty cases. The example considered
in this chapter shows that a robustness analysis with this approach easily allows to detect
possible fragile points in the network’s interactions, and to transform the non-robust
perturbations to physical variations in the biochemical network. In addition, the analysis
method can also be used to consider variations in the network’s interaction structure itself,
by introducing implicit parameters.

Another application for kinetic perturbations is the variation of a network’s steady state
sensitivity, while maintaining the original steady state unperturbed. A minimum-norm
kinetic perturbation leading to a specified sensitivity change can be computed by solving
a linear program. An exemplary application of this method is given in Chapter 7.

The use of kinetic perturbations is motivated by the fact that steady state concentration
values and reaction fluxes are often well characterised in biochemical networks, whereas
the exact reaction kinetics are much less well known. In this respect, an important
application of robustness analysis with kinetic perturbations will be model validation.

It should also be pointed out that the proposed approach does not require an explicit
model of the network, apart from the problem of relating kinetic perturbations to param-
eter variations. It is in fact sufficient to know the steady state concentrations, reaction
fluxes, and Jacobian elements for the robustness analysis, which can be inferred more
easily from experiments than explicit rate expressions (Kholodenko et al., 2002).
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Chapter 7

Construction and analysis of a TNF signal
transduction model

This chapter describes the construction and analysis of a dynamical model for a TNF sig-
nal transduction network, serving as a comprehensive application example for the methods
developed in the two previous chapters. After a brief introduction to TNF signal transduc-
tion, the system to be modelled and the model construction are described in Section 7.2.
Section 7.3 contains an analysis of oscillations in the model by the methods developed in
Chapters 5 and 6. In Section 7.4, we use the concepts developed in Chapter 6 to study the
effect of perturbations to the network on the steady state response of TRAF2, a specific
target of TNF signalling. In addition to the biological contribution, this chapter thereby
also serves as a case study, where the methods developed in the two previous chapters
are applied within a larger and more realistic context. An uncertainty analysis with the
methods described in Chapter 3 has been performed by Hasenauer (2008) for a previous
version of the model presented here. Due to the complexity of the model, the analysis
methods developed in Chapter 4 are not applicable in this case.

7.1 Introduction to TNF signal transduction

The tumor necrosis factor (TNF) is a cytokine which coordinates the mammalian immune
response. TNF activates several intracellular pathways, notably apoptotis via the caspase
cascade and the NF-xB, JNK, and MAPK pathways (Wajant et al., 2003). A misregula-
tion of TNF and the associated pathways is involved in various high-impact diseases, such
as cancer or autoimmune diseases (Feldmann and Maini, 2003; Hanahan and Weinberg,
2000; Rae et al., 2007). The interplay between the apoptotic and anti-apoptotic path-
ways activated by TNF also makes these networks worth studying from a more theoretical
perspective.

TNF signalling is mediated by membrane receptors of the TNF receptor family, com-
prising about a dozen different receptors, of which the two receptors TNF receptor 1
(TNFR1) and TNF receptor 2 (TNFR2) are the main binding partners for the TNF-«
ligand (Grell et al., 1998). The TNFRI1 plays a major role in apoptosis induction by
signal transduction to the caspase cascade (Eissing et al., 2007a; Wajant et al., 2003),
but it also activates anti-apoptotic pathways. The TNFR2 does not directly signal to the
caspase cascade, but may have a strong influence on the results of TNFR1 signalling by
crosstalk effects (Fotin-Mleczek et al., 2002) and induction of TNF expression, leading to
autocrine signalling. The anti-apoptotic effects of TNF signalling are mainly mediated
via the transcription factor NF-xB, which is a known inducer of several anti-apoptotic
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proteins like the inhibitor-of-apoptosis proteins (IAP) (Stehlik et al., 1998; Wang et al.,
1998).

In this chapter, we develop a model for the NF-«B related part of the anti-apoptotic
TNF signalling network, with a special focus on crosstalk between the two receptor types
through recruitment of the same adaptor proteins. The model contains the formation of
TNF receptor complexes, crosstalk effects between TNFR1 and TNFR2, as well as the
TNF induced NF-xB pathway. The model is then analysed with methods developed in
this thesis to gain further insights into the mechanisms of TNF induced anti-apoptotic
signalling.

7.2 Development of a model for the anti-apoptotic TNF
network

7.2.1 Structure of the model

The model proposed in this chapter aims at describing the response in nuclear NF-xB
activity to the separate or combined stimulation of the TNF receptors 1 and 2. The model
is specifically developed for the Kym-1 cell type, which is a human rhabdomyosarcoma
cell line grown in cell culture. Kym-1 cells express both TNF receptor 1 and 2, and thus
constitute an ideal experimental system for the study of TNF receptor crosstalk effects.

The structure of the model has been derived from basic knowledge of relevant proteins
which are involved in the signalling network, and from literature data on their interactions.
For the NF-£B pathway downstream of the receptor complexes, we rely mainly on previous
modelling efforts. The structure of this part of the model is adapted from Lipniacki et al.
(2004). Other sources are the models described in Hoffmann et al. (2002), Lipniacki et al.
(2007), and Ashall et al. (2009). For the receptor complex formation, the construction of
mathematical models is not as advanced as for the NF-xB pathway. The TNFR1 complex
formation has been modelled by Schliemann et al. (2007), although focusing on different
adaptor proteins than considered here. For the formation of the TNFR2 complex and its
signalling, no previous mathematical models are known to the author.

The structure of the model developed in this chapter is coarsely depicted in Figure 7.1.
The model is organised into four modules: the TNF receptor complex formation, the
activation of the I-kB kinase (IKK), the activation and nuclear translocation of NF-xB,
and the NF-£B induced gene expression.

Upon ligand binding, the TNF receptors start to recruit adaptor proteins to form the
relevant signalling complexes. The TNF receptor 1 first recruits TRADD (Ermolaeva
et al., 2008; Micheau and Tschopp, 2003; Pobezinskaya et al., 2008), but for simplicity,
this step is not explicitly included in the model. Rather, TRADD is assumed to bind
instantly, or to be already associated to the TNFR1. In the next step, the TNFR1
recruits the adaptor proteins RIP1 and TRAF2. From available biological data, it is
not clear whether these adaptor proteins can only bind sequentially, and, if so, what the
sequence is, or whether RIP1 and TRAF2 can independently bind to the TNFR1 under
in vivo conditions. In our model, we use the hypothesis that TRAF2 is recruited to the
receptor complex only after RIP1, as proposed by Festjens et al. (2007). Concerning signal
transduction from this complex, there is experimental evidence that signalling from TNF
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Figure 7.1: Coarse model structure of the TNF induced NF-xB pathway.
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receptor 1 towards the NF-xB pathway requires both RIP1 and TRAF2 (or TRAF5 as
a substitute) to be in the receptor complex (Micheau and Tschopp, 2003; Pobezinskaya
et al., 2008; Wertz et al., 2004).

The situation is much more simple for the TNF receptor 2: the receptor directly recruits
TRAF2, and the thus formed complex transmits the signal towards the NF-xB pathway
(Bryde, 2004; Ye and Wu, 2000). A relevant additional effect is the ubiquitination and
subsequent proteasomal degradation of TRAF2 at the TNF receptor 2 complex (Li et al.,
2002; Wu et al., 2005). Such observations have not been made for TRAF2 when recruited
to the TNF receptor 1 complex. The fact that both receptor complexes require TRAF2 for
efficient signal transduction constitutes a crosstalk between the two receptor complexes,
with potentially important effects on TNF signal transduction (Bryde, 2004).

The crucial mediator between the TNF receptor complexes and the NF-xB pathway
is the I-xkB kinase complex (IKK) which is activated at the TNF receptor complexes by
TRAF2. Active IKK then phosphorylates I-xBa, which is subsequently degraded, thus
liberating NF-xB to move to the nucleus (see Hayden and Ghosh, 2008, for a recent
review). For the NF-xB, IKK and part of the gene expression modules, the species and
reactions to be included in the model are adapted from the previous model developed
by Lipniacki et al. (2004). Modifications are made in the transcription rates, where we
assume a saturated rate expression, and in the activation of IKK, where we use the
structure proposed more recently by Ashall et al. (2009). Whereas Lipniacki et al. (2004)
explicitly consider intermediate complexes of IKK and its substrates, we use a quasi-
steady state assumption for these complexes to arrive at a Michaelis-Menten type rate
law for IKK mediated I-kBa degradation (Krishna et al., 2006). An important additional
inhibitor of NF-xB is the protein A20, for which we consider an inhibition of the NF-xB
pathway acting directly on the level of IKK (Mauro et al., 2006).

The complete lists of species, reactions and reaction rate expressions which are used in
the model are given in the appendix, Sections B.1 and B.2.

7.2.2 Setting parameter values

After defining the species and reactions involved in the model, it remains to determine
the model parameters, such as reaction rate constants or total concentrations of proteins
subject to a conservation law. The complete list of nominal parameter values for the pro-
posed TNF signal transduction model is given in the appendix, Section B.3, for reference.
For each parameter, we also indicate how the value was obtained.

A substantial part of the parameter values could be taken from literature data, mainly
from previously published models of the NF-xB signalling pathway (Ashall et al., 2009;
Hoffmann et al., 2002; Lipniacki et al., 2004, 2007), or from models of the TNFR1 complex
formation and signal transduction (Schliemann, 2006; Schliemann et al., 2007). Several
parameters involved in the formation of the TNF receptor signalling complexes have been
measured directly by Peter Scheurich and coworkers (Eissing, 2002; Grell et al., 1998;
Schliemann, 2006).

In support of the model construction described in this chapter, the degradation kinetics
of TNFR2 and TRAF2 have been measured, and the corresponding parameters have
directly been computed from the measurements under the assumption of a first order
decay rate (Doszczak and Scheurich, unpublished data).
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Yet, a significant number of parameters remain, for which neither previously deter-
mined values are available in the literature, nor values could be determined directly from
experimental measurements. Part of these parameters do not have a significant effect
on the model’s trajectories (Sinini, 2008). For such parameters, we fix arbitrary values
within a biologically reasonable order of magnitude. This is indicated by the comment
“assumed” in the list of parameter values (Section B.3).

The values for the remaining part of the parameters need to be determined by identifi-
cation from dynamical measurements. To this end, experiments have been conducted by
the group of Peter Scheurich at the Institute of Cell Biology and Immunology (University
of Stuttgart). In these experiments, Kym-1 cells in culture were subjected to specific
stimulation of either the TNFR1 or the TNFR2, and the resulting dynamics in protein
concentrations were measured by Western blotting (Doszczak and Scheurich, unpublished
data). In total, 14 parameter values for the model have to be determined from these
measurements by parameter estimation methods.

Over the last decade, large efforts have been made in parameter estimation for biochemi-
cal reaction networks from dynamical measurements (Balsa-Canto et al., 2008; Chou et al.,
2006; Feng and Rabitz, 2004; Polisetty et al., 2006; Raffard et al., 2008; Voss et al., 2004).
Yet significant challenges remain, which are typically due to non-linearity of the models,
non-convexity and even non-continuity of the employed performance functions (Ljung,
2008; Radde, 2009). Constraints from the experimental side such as large measurement
uncertainties, limited measurement frequency and the difficulty to measure absolute con-
centration values on a cellular scale complicate matters further. Typical restrictions for
parameter estimation algorithms are that they only find local optima (Balsa-Canto et al.,
2008; Raffard et al., 2008; Voss et al., 2004), are tailored to specific classes of models
(Chou et al., 2006; Polisetty et al., 2006), or have a high computational cost (Feng and
Rabitz, 2004). For the purpose of this thesis, the choice of nominal parameter values is
not critical. In fact, we found it sufficient to adjust parameter values manually while com-
paring simulation results to measurement data visually. The relation between simulation
results and measurement data which has been achieved with manual parameter tuning is
shown in the next section.

7.2.3 Simulation results

The comparison between model simulation results and the experimental measurements is
shown in Figure 7.2. Since the experiments provide only relative, not absolute, concentra-
tion data, the values are scaled to fit with the simulation results or, in the case of TRAF2,
the experimentally determined initial condition. The comparison indicates a good qual-
itative fit of the model results to the available experimental data. There is a significant
difference between experimental data and simulation results for TNFR1 stimulation after
about 70 minutes. However, this might be explained by the fact that Kym-1 cells quickly
activate the apoptotic pathway after TNFR1 stimulation, which has not been included in
our model.

For the TNFR2 stimulation, most of the data points are fitted very well. The export of
NF-xB from the nucleus between 50 and 70 minutes after stimulation seems to be slower in
the model than observed in experiments. However, the timing of this export corresponds
to the rise of the cytosolic I-kBa amount, and the fit for the NF-xB data cannot be

97



Chapter 7 Construction and analysis of a T'NF signal transduction model

x10%

W~

molecules
no

0 100

200 300

time [min]

400

(a) TRAF2 amount (TNFR1

stimulation)

x10%
2

molecules

0 500

1000

time [min]

1500

(¢) TRAF2 amount (TNFR2

stimulation)

x10%

—_
[e=]

molecules
ot

0 50

100

time [min]

nuclear

()

(TNFR2 stimulation)

Figure 7.2: Simulation results for the TNF network model and comparison to experimental
Lines: simulation results; squares: experimental data points.
indicate standard deviation of experimental data. For all data points, cell cultures have been
stimulated with 10 22 TNF ligand. Experimental measures have been taken to assure specificity

data.

150

NF-kB amount

molecules
=

.
-4 g --Ek_
0 £ N B ~E
0 100 200 300 400
time [min]

(b) cytosolic I-kBa amount
(TNFR1 stimulation)

molecules

0 100 200 300

time [min]

(d) cytosolic I-kBa amount
(TNFR2 stimulation)

10000

5000

molecules

400

ST E

50 100

time [min]

150

(f) active IKK amount (TNFR2

stimulation)

for either TNFR1 or TNFR2, as indicated below the individual figures.

98

Errorbars on squares



7.3 Analysis of oscillatory behaviour

Table 7.1: Four stimulation cases for the TNF network model. Numbers given in the table
correspond to TNF ligand amount used in the individual cases.

Identifier | TNFR1 stimulation | TNFR2 stimulation

LL 0.01 % 0.01 %

HL 10 % 0.01 %

LH 0.01 % 10 %

HH 10 % 10 %
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Figure 7.3: Model simulation results with four different mixed stimulations. See Table 7.1
for the definition of the stimulation strengths.

improved without compromising the fit of the I-kBa data. One possible experimental
reason for this discrepancy is that NF-xB might be precluded from the measurement
while being exported from the nucleus.

In a second step, we use the model in a predictive way to study different scenarios
for co-stimulation of the two TNF receptor types. Each of the receptor types is either
stimulated weakly or strongly, resulting in a total of four scenarios simulated with the
TNF network model. The resulting trajectories for nuclear NF-xB activity and TRAF2
amount are shown in Figure 7.3.

7.3 Analysis of oscillatory behaviour
The simulations described in the previous section result in oscillatory trajectories for some

of the stimulation cases. In fact, oscillations in nuclear NF-xB activity have attracted
significant attention over the past years (Ashall et al., 2009; Krishna et al., 2006; Nelson
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et al., 2004). The idea now emerges that genes under the control of NF-xB respond
differentially not only to the amount of NF-xB, but also to the temporal characteristics of
its activity (Ashall et al., 2009). In this section, we use analysis methods developed in this
thesis to further understand the mechanisms involved in oscillatory NF-xB activity. The
bifurcation search method developed in Chapter 5 and the robustness analysis method
developed in Chapter 6 are used to study the influence of parameter values and specific
interactions on the existence and properties of sustained oscillations.

7.3.1 Searching a Hopf bifurcation

The bifurcation search method developed in Chapter 5 is used to find Hopf bifurcation
points in the TNF network model, i.e. parameter values where limit cycles emerge or
vanish. We consider again the four scenarios of TNF receptor stimulation defined in
Table 7.1 and compare them to each other. The simulations shown in Figure 7.3 already
indicate that the stimulation type has a significant effect on the existence and properties
of oscillations. The analysis in this section aims at understanding whether oscillations are
affected by similar parameters in all stimulation cases or not.

In all four stimulation cases, the bifurcation search algorithm is able to locate a Hopf
bifurcation within physiologically reasonable parameter variations. The suggested pa-
rameter variations are summarized in Table 7.2. Note that the stimulation where the
TNFRI1 is strongly and the TNFR2 weakly stimulated (HL stimulation case) yields an
unstable equilibrium point and sustained oscillations for nominal parameters, while the
other three cases give an asymptotically stable equilibrium point. Consequently, converse
parameter changes are suggested to achieve a Hopf bifurcation for the HL stimulation
case, compared to the other three. In general, the suggested parameter variations for a
Hopf bifurcation are significantly smaller for the HH stimulation case than for the other
cases. This indicates that oscillations are less robust, or more dependent on internal cel-
lular conditions, under TNF receptor co-stimulation than if only one of the receptor types
is being stimulated.

Apart from the case where both receptor types are only weakly stimulated, the most
significant parameter changes are consistently suggested on the level of the IKK activity
regulation. As second most relevant part of the system, we can identify the expression of
the I-kBa gene. The implications of these results are discussed in Section 7.3.3, together
with the results from the kinetic perturbation analysis obtained in Section 7.3.2.

7.3.2 Robustness of oscillations with respect to kinetic perturbations

As an alternative approach to estimate the model variations which perturb the system
from non-oscillating to oscillating or vice-versa, we apply the dynamical robustness ana-
lysis method for kinetic perturbations from Section 6.3. Again, we consider the four
different stimulation cases defined in Table 7.1. For the analysis with kinetic perturba-
tions, reversible reactions are split up into two elementary reactions, one for the forward
and the other for the reverse path.

For the analysis, we consider only perturbations where existing interactions are per-
turbed, i.e. the interaction structure of the system is not modified. The resulting non-
robust kinetic perturbations are shown in Tables 7.3-7.6 for the four stimulation cases.
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Table 7.2: Parameter variations leading to a Hopf bifurcation in the TNF network model
for different stimulation cases. See Table 7.1 for a definition of the four stimulation cases.
Parameter variations for a Hopf bifurcation are indicated through a percent change compared
to the nominal values.

| Param. | LL HL* LH HH |
kas 0.5%  +33%  -39.9%  -5.7%
katoe 0.0% +01%  -87%  0.0%
kar 0.0%  0.0% +60.0% +1.4%
kars 0.0%  01%  -253%  -0.4%

kpia | +13.8% -35.6%  +83.7% +10.8%
kB +0.2% 0.0% -282% +1.5%
kpsa | +14.0% -70.9% +1252%  +4.0%
A20s +0.2%  -60.7% -34.3% -0.2%
kca -83% +51.7%  -408%  -1.6%
kce 0.0% +0.8% +0.9% 0.0%
kpia | +77.7% -42.3%  +89.0%  +3.3%
kpip +69.3% -16.6%  +29.9% -1.4%
kpap +0.4% -12.3%  +47.6%  +2.8%
kpsy +0.4%  +4.9%  +61.0% -1.0%

*The equilibrium point is nominally unstable for the HL stimulation case.

Only perturbations below a certain threshold (depending on the stimulation case) are
shown in the tables. For the LL stimulation case, the most fragile reaction is the degra-
dation of I-kB transcript. This confirms the relevance of the properties of the I-xB gene
expression for oscillations. However, from the bifurcation search in the previous section,
the specific fragility at the transcript degradation has not been observed. This may be
due to the fact that a saturation cannot be introduced in this reaction by parameter
variations alone.

The two cases where only one receptor type is stimulated (LH and HL) appear to be
quite robust with respect to kinetic perturbations. We find only few fragile interactions,
and none of them show a strong fragility. In contrast, the HH case, where both receptor
types are stimulated, is quite close to a Hopf bifurcation under kinetic perturbations,
and there are many fragile interactions. This confirms the finding from the bifurcation
search in the previous section, that the system is less robust with respect to existence of
oscillations in the co-stimulation case than if only one receptor type is stimulated.

Based on the results of the previous investigation, let us consider the kinetic perturba-
tions for two of the previously found fragile interactions more closely.

First, a fragile interaction with respect to kinetic perturbations in the HH stimulation
case is the influence of A20 on reaction vgs. This reaction corresponds to the A20-
inhibited recycling of IKK to the neutral form. As indicated in Table 7.6, an increase in

101



Chapter 7 Construction and analysis of a T'NF signal transduction model

Table 7.3: Fragile kinetic perturbations in the TNF network model for the LL stimulation

case. Only perturbations where A}, < 0.8 are shown.

Table 7.4: Fragile kinetic perturbations in the TNF network model for the HL stimulation

Reaction Species | A} *
Ve NI | —-0.68 6.8-10741
Ve NFkB | —0.46 6.8-107*1
ves (forward) NFkBn | —0.33 7.3-107%1
ves (forward)  TkBn 0.68 7.5-107*1
VD2 kBt | —0.12 7.0-107*%

case. Only perturbations where Aj; < 0.8 are shown.

Table 7.5: Fragile kinetic perturbations in the TNF network model for the LH stimulation

Reaction Species | A} *
Ve IKKa | —0.79 7.3-107%1
ves (forward)  IkBn | —0.75 5.9-107*1
Up2 IkBt 0.67 6.9-107*1
Up3 NFkBn | —0.64 7.3-107*1

case. Only perturbations where Aj; < 0.8 are shown.
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Reaction Species A7 w
Vars TNFR2C1 | —0.52 1.6-107*1
VB2 IKKa —-0.31 19-10*1

Voo (reverse) IkBt —-0.30 1.9-10*1
Up1 NFkBn | —0.27 19-10*1
Up2 IkBt —0.77 59-10*1
Upa A20t —0.79 22-10*1
Vpe TRAFt | —0.35 1.7-107%1
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Table 7.6: Fragile kinetic perturbations in the TNF network model for the HH stimulation
case. Only perturbations where A7, < 0.4 are shown.

Reaction Species Ay w*
vag (reverse)  TRAFt | —0.32 6.5-10*1
VA TRAF | —0.34 6.5-10*1
Vas TNFRIC1 | 0.39 6.3-107*1
B IKKi 021 6.4-107*1
U1 TNFRIC1 | —0.30 6.5-10*1
VB IKKa | —034 56-10*1
UBs A20 —0.21 6.2-10*1
vp4 (reverse) A20¢t 0.22 6.2-10_4%
Voo (reverse) kBt —0.26 51-10*1
vor (forward) kB —0.36 5.9-107*1
Up1 NFkBn | —0.23 5.1-107*1
Up2 IkBt —0.12 6.4-10*1
Up3 NFkBn 017 62-10*1
Up4 A20t | —0.32 6.0-10*1
Ups NFkBn | —0.26 6.5-107*1
Upg TRAFt 033 64-107*1

the inhibition strength (corresponding to a negative Ap; 4y4) induces a Hopf bifurcation in
the system. The effect of the kinetic perturbation on oscillations in nuclear NF-xB activity
is shown in Figure 7.4(a). Clearly, a perturbation of this interaction has a profound effect
on the existence and amplitude of oscillations, even for rather small perturbations.

A second fragile point with biological significance is the slope of the reaction rate
va13. The reaction A13 describes the degradation of TRAF2 at the TNFR2 complex,
with respect to the reactant species TNFR2C1. As indicated in Table 7.5, in the LH
stimulation case, a decrease in this slope leads to a Hopf bifurcation. From a biochemical
perspective, such a decrease in the slope may be the result of a saturation in the reaction
rate. Therefore, in this specific case, we consider a kinetic perturbation which is induced
by gradually increasing the saturation with the Michaelis-Menten type perturbed reaction
rate

k413[TNFR1C1]

, (7.1
1 + M 413[TNFR1C1]

VA3 =

where M 413 is an implicit parameter with nominal value M43 = 0. For a given kinetic
perturbation A 413 7nFr201, the perturbed value of Myy3 is computed from (6.18) with
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Figure 7.4: Variation of oscillatory behaviour through kinetic perturbations in the TNF net-
work model
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[TNFRIC1] 1 + Aaisrnrrect

Mugz = — (7.2)

The value for k43 is chosen such that 0a13(0) = va13(wo), where z is the considered
steady state. Varying the saturation beyond the critical value A% 3 ryprocr = —0.52
leads to a Hopf bifurcation and results in sustained oscillation in the system as illustrated
by the simulation results shown in Figure 7.4(b).

The different critical frequencies computed for the two kinetic perturbation cases con-
sidered above already indicate that the occuring periodic oscillations are significantly
different with respect to their frequency. Indeed, in the first case, the observed oscillation
period is about 200 min (predicted at Hopf bifurcation: 170 min), while in the second
case, the period is about 800 min (predicted at Hopf bifurcation: 650 min). The differ-
ence in predicted and observed frequency may be explained by a change in frequency as
the perturbation goes beyond the critical value where the Hopf bifurcation occurs. These
observations indicate a variety of oscillatory behaviour in the TNF regulated NF-xB
pathway which has not been observed in previous studies. The fact that the two different
ranges for critical frequencies occur in several perturbation cases indicates that different
oscillatory modes are not just relevant for one specific interaction, but are an inherent
property of the system. Note however that the low frequency oscillations only appear
in cases where the TNFR2 is stimulated, while the higher frequency appears in all four
cases. The implications of these different oscillatory modes are discussed in Section 7.3.3.
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7.3.3 Discussion of the results on oscillations

Let us now discuss the implications of the previous results for the oscillatory behaviour
in TNF induced NF-xB signalling. From simulations, for example Figure 7.3, we observe
that the existence and properties of oscillations depend on the type of stimulation. This
indicates that the oscillations are at least partially controlled by factors outside of the core
NF-£B/I-£B signalling module. However, the main influential factors cannot be deduced
from simulations.

The results of the multiparametric bifurcation search method, given in Section 7.3.1,
indicate parameters which seem to be most relevant for the existence of sustained os-
cillations. In all four stimulation cases, we find that parameters related to I-xB gene
expression are relevant in this respect. In the cases where a high TNF stimulus is ap-
plied, we observe that also parameters involved in the regulation of IKK activity play a
significant role. In summary, the results of the bifurcation search can be interpreted in
the way that, for a given stimulus, existence of sustained oscillations is mainly controlled
by parameters intrinsic to the IKK/NF-xB pathway.

The analysis based on kinetic perturbations gives additional insight into the properties
of oscillations in NF-xB activity. First, we are able to confirm the finding from the
bifurcation search, that I-xB gene expression characteristics are of high relevance for
oscillations. Also, the relevance of the IKK regulation mechanism is confirmed for the
cases where a high TNF stimulus is applied. These findings are in agreement with previous
studies, which have already indicated the relevance of IKK activity regulation for existence
of sustained oscillations in NF-xB activity (Hayot and Jayaprakash, 2006; Park et al.,
2006).

Both the bifurcation search and the robustness analysis with kinetic perturbations
indicate that the oscillations in the network are fragile towards variations in internal
conditions for the co-stimulation case. This is in contrast to the exlusive stimulation of
either receptor type, where existence or non-existence of sustained oscillations is much
more robust. Giving a biological interpretation for this observation remains difficult, as
long as no definite results on the biological function of NF-xB oscillations in relation
to the different stimuli are available. Yet, regardless of what the function may be, our
observation indicates that this function is more affected by additional influences, if both
receptor types are stimulated, compared to the case where only one receptor type is
stimulated.

From robustness analysis with respect to kinetic perturbations, we discover in addition
that a high stimulation of TNFR2 together with a weak stimulation of TNFR1 may give
rise to oscillations with significantly higher period, about 800 minutes, compared to the
period of about 200 minutes which is typically encountered in the other stimulation cases.
To our knowledge, this is the first indication of different oscillatory modes in the TNF
induced NF-xB network within a single model. At the moment, there is no experimental
evidence of different oscillatory modes. However, recent findings suggest that the temporal
characteristics of NF-xB activity play a major role for the induced gene expression (Ashall
et al., 2009; Nelson et al., 2004; Tian et al., 2005). This effect is mainly ascribed to a
clustering of the genes under NF-xB control into an “early”, “middle” and “late” group,
among which the exact mechanisms of transcription initiation in response to NF-xB seem
to be different (Tian et al., 2005). Our observation of different oscillatory modes fits well
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Figure 7.5: Sensitivity modification for the TNF network model. The goal is to vary the
characteristics of the stationary TRAF2 curve with respect to a TNF2 stimulus. Full line:
nominal response curve. Dashed lines: response curves with sensitivity modification achieved
by kinetic perturbations.

to these results. In fact, such modes could provide a mechanism by which different stimuli
can activate different NF-xB induced gene expression programs.

7.4 Sensitivity modification by kinetic perturbations

A stimulation of the TNFR2 has two conflicting effects on the long-term TRAF2 amount
in the cell. First, Li et al. (2002) and Wu et al. (2005) have discovered that recruitment of
TRAF2 to the receptor complex targets TRAF2 to proteasomal degradation. This effect
is accounted for in the model by reaction A13. Second, the signal transduction from the
TNFR2/TRAF2 complex activates NF-xkB, which in turn upregulates the production of
TRAF2. Using the mathematical model for the TNF signalling network developed in this
chapter, we can make predictions about the net effect of a sustained TNFR2 stimulation
on the resulting steady state, specifically the long-term TRAF2 concentration. As shown
in Figure 7.5, up to a TNF stimulus of about 1 2, the model predicts that the activating
effect will dominate, while for higher stimuli it predicts a significant decrease of the steady
state TRAF2 amount.

Using the sensitivity modification method proposed in Section 6.4, we investigate per-
turbations in the model which lead to specific variations in the dependence of the long-term
TRAF2 amount with respect to a stimulation of the TNFR2.

First, we seek for a perturbation which reduces the stationary TRAF2 amount in the
intermediate stimulus range of 0.1 to 12% TNF. Therefore we construct a sensitivity
modification which reduces the local sensitivity of the TRAF2 amount with respect to
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Table 7.7: Suggested kinetic perturbations for a decrease of the sensitivity of TRAF2 with
respect to the TNF2 stimulus by |7|, at a nominal stimulus of 7.5 - 1073 22 and a nominal

ml
unscaled sensitivity of 9.6 - 104%.

Reaction Species Kinetic perturbation A;; for

a sensitivity change & [gl—gl]

orrar = —4- 10 Grrar = —8 - 10*
VA1l TNFR2CO 0.016 0.074
VA13 TNFR2C1 0 0.051
VA10b TNFR2L 0 0.039
va3 (reverse only) TRAFt -0.26 -0.5

the concentration of TNFR2 ligand. The sensitivity modification is applied to the steady
state reached for a stimulus of 7.5-1073 2% The desired sensitivity change is achieved by
kinetic perturbations as given in Table 7.7. Thereby, the linear programming approach
as proposed in Section 6.4.2 has been used to select a kinetic perturbation of minimal
1-norm, with the constraint that no element of A should be less than —0.5. The kinetic
perturbations shown in Table 7.7 are scaled as suggested in (6.9), and have been applied to
the model as described in Section 6.2.4. Figure 7.5(a) shows the resulting changes in the
global behaviour of the TRAF2 amount with respect to a varying stimulus. It illustrates
that the suggested kinetic perturbations provide an effective way of reducing the peak in
the TRAF2 amount for an intermediate stimulus, while not having a significant effect on
the steady state TRAF2 amount for either a low or a high stimulus. From the results
in Table 7.7, we conclude that the most effective way to reduce the intermediate peak in
TRAF2 amount seems to be a saturation of the TRAF2 translation rate for increasing
levels of the TRAF2 transcript. Such a saturation is biologically quite reasonable, and
may for example be the consequence of a limitation in either ribosome activity, amino
acid supply, or specific translation factors required for TRAF2 translation.

Second, we seek for a perturbation which reduces the decay of the TRAF2 amount for
a strong stimulation of the TNFR2. For this problem, we choose the steady state corre-
sponding to a TNF stimulus of 0.5 28 as nominal point. From this nominal point, we aim
for a sensitivity modification by kinetic perturbations which flattens the TRAF2 curve
for increasing TNF stimuli. In a first solution to this problem, the suggested perturbation
implies an increase in the kinetic order of the TRAF2 translation reaction. However,
since this is not biologically reasonable, a constraint has been added to the optimisation
problem to prevent such a perturbation. When adhering to this constraint, we obtain
the kinetic perturbations for the specified sensitivity change as shown in Table 7.8. As
previously, we use the linear programming approach to minimise the 1-norm of the per-
turbation. Applying these perturbations to the system indeed results in an increased
TRAF2 concentration for high TNF stimuli, as shown in Figure 7.5(b).

In contrast to the previous problem, the analysis with kinetic perturbations now sug-
gests that the most effective way to achieve this effect is not a variation in TRAF2 pro-
duction, but rather a saturation in the degradation of TRAF2 within the TNF receptor
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Table 7.8: Suggested kinetic perturbations for an increase of the sensitivity of TRAF2 with
respect to the TNF2 stimulus by &, at a nominal stimulus of 0.5 28 and a nominal unscaled
sensitivity of —1.96 - 1043—;.

Reaction Species Kinetic perturbation A;; for
a sensitivity change [gl—gl]

OTRAF = 1- 104 OTRAF = 1.8- 104

VA1l TNFR2C0 -0.28 -0.5
VA13 TNFR2C1 -0.25 -0.44
VA10b TNFR2L -0.19 -0.34
va3 (forward only) TRAF 0 0.28

complex. This is likely to occur if proteasome activity or the mechanisms tagging TRAF2
for proteasomal degradation are saturated.

In summary, the sensitivity modification approach with kinetic perturbations is able
to detect efficient ways of influencing the behaviour of the TNF signalling system with
respect to stimulus strength. For intermediate TNF stimuli, a reduction of the TRAF2
amount seems to be achieved most efficiently by a perturbation of the TRAF2 production,
while an increase in the TRAF2 amount for high stimuli seems to be most easily reached
by a variation in the degradation mechanisms.

7.5 Discussion of the TNF network model analysis

In this chapter, a dynamical model for the interaction of TNF receptor 1 and 2 via the
adaptor protein TRAF2, and the TNF induced signal transduction by the NF-xB pathway
is developed. The model parameters are adjusted to match experimental data, which is
available for the specific stimulation of either TNFR1 or TNFR2. The model is then used
to obtain new insights into the system with the help of the analysis tools developed in
Chapters 5 and 6.

The model analysis conducted in this chapter pursues two goals: first, to understand
the relevance of specific mechanisms in the model for occurrence of sustained oscillations,
and second, to evaluate how perturbations affect the TRAF2 steady state response for a
varying TNFR2 stimulation.

For the first goal, as initial step the bifurcation search method developed in Chapter 5
is applied. In accordance with previous studies, the analysis confirms the possibility of
sustained oscillations for the proposed model of the TNF induced NF-xB pathway. Sec-
ond, the bifurcation search indicates which parameters are most relevant for the existence
of sustained oscillations. It suggests that, for all considered stimulation cases, similar
mechanisms are responsible for the generation of sustained oscillations. The relevant
mechanisms proposed here are in concordance with the mechanisms found to be relevant
for earlier models of the NF-xB pathway.

To analyse the sustained oscillations further, we also apply the robustness analysis with
respect to kinetic perturbations as developed in Chapter 6. The results of this analysis
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suggest that the system exhibits modes of oscillations which are very different in frequency,
mainly depending on the type of stimulation. To our knowlegde, this observation has not
been made previously, and should be tested experimentally for further evidence.

Both the bifurcation search and the robustness analysis with kinetic perturbations
indicate that existence or non-existence of sustained oscillations is rather robust with
respect to internal perturbations, if only one receptor type is stimulated strongly. In
contrast, for the co-stimulation of both receptor types, we observe that a Hopf bifurcation
can be induced by small perturbations in the internal mechanisms.

In the second model analysis task, we consider the dependence of the long-term TRAF2
amount on the TNF stimulus strength, where only the TNFR2 is stimulated. This is of
particular interest because of the bimodal response seen in the model, in the sense that
TRAF?2 is first accumulating for an increasing stimulus up to about 0.5 7%, but then
reduces to far below the original level for higher stimuli.

We have used the method of sensitivity modification by kinetic perturbations proposed
in Chapter 6 to evaluate what kind of model perturbations would most efficiently achieve
specific variations in the TRAF2 response to a stimulation of the TNFR2. A remarkable
result from this study is that two qualitatively different modifications are suggested for
the two cases being considered. Depending on the considered stimulus range, the two
modifications are either targeting the production or the degradation of TRAF2 to achieve
a change in the sensitivity of TRAF2 with respect to a TNFR2 stimulation. This result
may be useful to guide further experimental studies, and eventually to suggest effective
drug targets for a specific desired effect on the system.
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Chapter 8

Conclusions

8.1 Summary and discussion

In this thesis, new methods for the analysis of parametric uncertainty in dynamical models
for biochemical reaction networks are developed. The methods concern both uncertainty
and robustness analysis. In particular, the challenges of non-linearity, dependence of the
steady state on uncertain parameters, and the need to consider simultaneous uncertainty
in several parameters are embraced throughout.

The methods introduced in this thesis depend on different techniques and concepts from
the fields of convex optimisation and robust control theory. The steady state analysis re-
lies mainly on semidefinite programming. Based on a control engineering perspective, the
feedback loop breaking approach is suggested to deal with the robustness of dynamical be-
haviour. As another method for robustness analysis, kinetic perturbations are introduced
and studied with the help of structured singular values, using well established techniques
from robust control theory.

In Chapter 3, semidefinite programming is used to construct computationally efficient
infeasibility certificates for the steady state equation under uncertainty. These certificates
are used to construct an algorithm both for the steady state uncertainty analysis and the
robustness analysis of steady states with respect to parametric uncertainty. The advantage
of this approach compared to established methods is that guaranteed bounds on the steady
state variations can be obtained even for large uncertainties.

The steady state uncertainty analysis also forms the basis for one of the methods
developed in Chapter 4. Thereby, robust stability with respect to parametric uncertainty
is studied. A solution to the robustness problem is proposed, where the steady state
bounds are used to translate the problem to the question of robust stability for a linear
differential inclusion. For the latter question, classical tests are used to check robust
stability.

In addition, a feedback loop breaking approach is suggested in Chapter 4 for the ro-
bustness analysis of qualitative dynamical behaviour in biochemical reaction networks.
This approach leads to the construction of robustness certificates via the Positivstellen-
satz and linear programming. Importantly, with this approach it is also possible to study
the robustness of instability, which is of relevance in the analysis of complex dynamical
behaviour, such as oscillations or bistability.

A limitation of the approaches developed in Chapters 3 and 4 is that the computational
complexity increases significantly with the number of variables in the underlying optimi-
sation problems. From experience, the steady state uncertainty analysis as proposed in
Chapter 3 remains computationally feasible up to about thirty variables, including states,
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parameters, and higher order terms. For the robust stability analysis based on the Jaco-
bian (Section 4.2), ten reactions may already be too large. For the loop breaking based
robustness analysis (Section 4.3), between five and ten variables (states and parameters)
seems feasible, although the use of a partial analytical solution for the steady state, as
in Section 4.3.3, may reduce the computational burden. Of course, these values are only
rough estimates and may improve with advances in optimisation algorithms or computing
power. Despite this limitation, the examples given in Chapters 3 and 4 illustrate that
the proposed methods are a valuable tool for the analysis of small biochemical reaction
networks.

The feedback loop breaking approach is also applied in Chapter 5, where it is used to
characterise topological equivalence of two models by the transfer functions of appropriate
open loop input—output systems. Based on this characterisation, a bifurcation search
method is developed which allows to find bifurcations of specific type in a high-dimensional
parameter space. The results from the search method provide efficient upper bounds for
the robustness analysis suggested in Chapter 4, but may also be used independently to
obtain estimates for the influence of individual parameters on the qualitative dynamical
behaviour of the network.

In Chapter 6, we introduce the new uncertainty class of kinetic perturbations, which
are particularly suited for the analysis of biochemical reaction networks. By definition,
these perturbations affect the reaction rate slopes in steady state, but not the steady
state itself. It is shown that kinetic perturbations relate in a one-to—one fashion to specific
parametric perturbations in generalised mass action and enzymatic networks. Apart from
parametric uncertainties, kinetic perturbations can also describe a structural uncertainty
of the interactions within the network. We demonstrate that a robustness analysis with
kinetic perturbations can be conducted efficiently by classical robust control methods, and
that such an analysis gives valuable insight into potentially fragile interactions within the
network. In addition, the concept of kinetic perturbations is used to construct system
modifications which affect the local steady state sensitivity in a specific way, and thereby
allow to shape a stationary stimulus-response curve in a desired way. A limitation of
the kinetic perturbation concept is that only one steady state can be analysed at a time.
However, in the analysis, it is sometimes desirable to consider ranges of steady states,
which relates back to the methods discussed in the preceding chapters.

In addition to the methodological results, we have developed a dynamical model of TNF
signal transduction, in particular TNF receptor complex formation and anti-apoptotic
signalling by the NF-xB pathway. The model was fitted to experimental data, and the
fitted model was analysed with methods developed in this thesis. From this analysis,
we obtained several biologically significant predictions, such as the possibility of different
oscillatory modes in the model. Together with the examples discussed in earlier chapters,
the analysis of the TNF network model illustrates the broad applicability of the methods
developed in this thesis, as well as the relevance of conclusions which can be drawn from
such an analysis.

In conclusion, the methods developed in this thesis constitute significant progress to-
wards a stringent uncertainty and robustness analysis for the dynamics of biochemical
reaction networks under parametric uncertainty. As explained above, several issues re-
main open for further research. In the following section, we discuss possible research
directions in this context.
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8.2 QOutlook

This thesis focuses almost exlusively on parametric uncertainty, where the structure of
the network is assumed to be known. However, in a thorough uncertainty analysis, both
structural and parametric uncertainty need to be considered. One aspect of structural
uncertainty are dynamic perturbations (Jacobsen and Cedersund, 2008), which may e.g.
result from unmodelled species in the network. In order to capture both structural and
parametric uncertainty, a coupling of the methods developed in this thesis to methods of
structural uncertainty analysis may be useful. Such a coupled analysis is already done in
linear robust control theory (Zhou et al., 1996), and the development of similar approaches
for the analysis of biochemical reaction networks is desirable.

An additional point concerns the high stochasticity in intracellular processes (Rao et al.,
2002). Biological processes face the problem of maintaining their function despite a high
amount of noise in both the environment and the individual process itself. This defines a
robustness problem different to the one considered in this thesis, but also of high relevance
for biological systems. While some effects of stochasticity can be linked to parametric
uncertainty and thus fall within the scope of this thesis, most analyses will need to be
done within a stochastic framework. To give just one example, it has been observed
that, due to stochastic effects, sustained oscillations may still persist in a biochemical
reaction network, although a deterministic model suggests asymptotic convergence to an
equilibrium point (Lang et al., 2009). A relevant question in close relation to the results
of this thesis is then, how much the parameter regions in which oscillations occur can be
extended due to such an effect of stochasticity.

From a more general perspective, parametric uncertainty in models for cellular pro-
cesses is often related to heterogeneity among individual cells of a population. Under the
precondition that this heterogeneity can be quantified efficiently (Waldherr et al., 2009b),
it would be interesting to set the results of this thesis in relation to cellular heterogeneity.

Let us next give an outlook on more specific ideas to build on the results obtained in this
thesis. The steady state infeasibility certificates described in Chapter 3 are restricted to
continuous models with polynomial or rational equations. An extension of this approach
to other system classes, involving e.g. non-polynomial equations or switching behaviour, is
a subject of ongoing research (Hasenauer et al., 2009a). Furthermore, the applicability of
the method would greatly benefit from a reduction in computational complexity. One way
to achieve this might be a modularization of the system, where the uncertainty analysis
can be applied iteratively to the individual modules, thereby avoiding the exponential
growth of the computational cost with problem size. Such a modularization has been
implemented for one example with convincing results (Hasenauer, 2008), but a general
framework for this approach is still open. Using the infeasibility certificates, it is also
possible to estimate parameter sets which are compatible with uncertain measurement
data (Borchers et al., 2009; Hasenauer et al., 2009b) or to perform experimental design
with little or no a priori information (Hasenauer et al., 2009b).

Regarding the feedback loop breaking approach, two lines of further research are con-
ceivable, particularly aiming at systems with multiple feedback circuits. First, for a system
with multiple feedback circuits, the choice of the loop breaking point could be a subject
of further theoretical investigations. Second, it may be possible to extend the results by
using a MIMO loop breaking approach. Such investigations may also give insights into
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the relevance of multiple feedback circuits in biochemical networks, which is a question
of significant interest in the field (Brandman et al., 2005; Kim et al., 2008).

The appeal of kinetic perturbations for the analysis of biochemical reaction networks
is due to the fact that they admit a natural relationship between changes in the reaction
rate Jacobian and biochemically plausible variations in the network. It seems promising
to explore further methodological applications of this concept, in addition to robustness
analysis and sensitivity modification.

Finally, the analysis of the TNF model constructed in Chapter 7 yields several observa-
tions of biological significance, which should be tested experimentally. An experimental
application of kinetic perturbations for sensitivity modification could also establish a new
design approach for synthetic biology.
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Appendix A

Proofs

A.1 Proof of Lemma 4.8

For simplicity of notation, we drop the dependence on y of matrices A,, B, and C,. By
Schur’s lemma, we have

sl,— A, —B,
det(sl, — A, — B,C,) = det ( o, 1 ) )

Let (sI, — A,)_; € R®=D>" denote the matrix (sI,, — A,) with the i-th row deleted. Then,
by cofactor expansion (Lancaster and Tismenetsky, 1985),

SIn_AO _BO — _ _ - _1\n+144p (SIn_Ao)fi
det( "o . )_1.det(sln A,) ;( 1) bldet( . :

where b; is the i—th element of B,. In the same way,

Sln - Ao _Bo _ . n+l+iy (SITL - Ao)—i
det( o o )_—Z(—n bzdet( .

i=1

and with Proposition 4.7 it follows that

det(sI, — A) = det(sT, — A,) — det (3[" G Ao _50) . (A1)

o is an eigenvalue of A if and only if det(sol, — A) = 0. For condition (7), we have
det(sol, — A,) # 0, and thus, the equation

50[n — Ao _Bo
det( c 0 ) 1

det(sol,, — Ay) N

is equivalent to sy being an eigenvalue of A. The claim then follows from (4.20). The
other case where det(sq/ — A,) = 0 is considered in condition (i), and (A.1) can be used
directly to prove the claim.

[
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A.2 Proof of Proposition 5.3

A.2 Proof of Proposition 5.3

Note that 3 is constant over M due to Assumption (A1). Consider the transfer function
G(x, s) for a constant y € M. For ease of notation, we drop the dependence on y in the
transfer function in the following.

It is well known from linear control theory that the argument of G(jw) changes by 3
when varying w from —oo to oo (D’Azzo and Houpis, 1975):

|arg G(joc) — arg G(—joo)| = .

The symmetry G(jw) = G(—jw) implies that arg G(joo) = —arg G(—joo). From these

two facts, it follows that the argument of G(jw) spans the open interval Iz = (—%”, %)

for w € (—o00,0). Moreover, by Definition 5.1 the condition w, € R(x) is equivalent to
arg G(jw.) = zm, z € 7.

If /3 is even, the claim follows directly, since there are 3 — 1 different integers z such that
zm is inside the interval I5. This corresponds directly to having # — 1 or more critical
frequencies.

In the other case, if 3 is odd, some additional reasoning is needed to prove the propo-

sition. In this case one has
2041 20+1
Is=1|— , T,
2 2

for [ € Ny such that B = 20 + 1. Thus, the borders of the interval I; are not at integer

multiples of 7, which implies that in this case there are (3 different integers z such that
zm is in I3, corresponding to at least [ critical frequencies. u

A.3 Proof of Theorem 5.6

The proof of Theorem 5.6 uses the Argument Principle from complex analysis, which is
repeated here for completeness (Whittaker and Watson, 1965).

Theorem A.1 (The Argument Principle). Let f be a meromorphic function on the
domain D C C and I' a simply closed curve in D such that f does not have a zero or pole
on I'. The winding number wn(f(I"),0) of the image of T under f around the origin is
given by

wn(f(),0) = z5 — py,
where zy (py) is the number of zeros (poles) of f in the interior of the curve I, counted
according to their algebraic multiplicities.

Note that the winding number is counted in the counter-clockwise direction. As typi-
cally done in linear control theory, we will generally use the imaginary axis for I". Then,
the interior of I' is the right half plane.

We will first proof some intermediate results, given in Lemmas A.2-A .4, before proving
Theorem 5.6.
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Lemma A.2. [f the set of critical frequencies R(x) is minimal, then in the ordered
sequence of critical frequencies wl(x) < w?(x) < -+ < w?(x), we have

G (x, Jwe(X))G (x; jwe(x)) < 0
where i =2,...,0.

Proof. If R(x) is minimal, then there is exactly one w, € R(x) such that arg G(x, jw.) =
zm for each z € Z with 2w € I3 (where I is the interval defined in the proof of Proposi-
tion 5.3). This implies that

|arg G(x, jwi(x)) — arg G(x, jwi " (x))| > .
In addition, since the critical frequencies are ordered and the transfer function G(x, jw)
is continuous in w, we have

|arg G (x, jwi(x)) — arg Gx, jwe ()] < 7.
Combining these results, we find that G(x, jw’(x))G(x, jwi (X)) < 0. O

Lemma A.3. Under the assumptions of Theorem 5.6, the winding number of the image
of the Nyquist curve I under the transfer function G(x;,-), i = 1,2, around the point 1 is
given by

lwn(G(x:, T), DI = 6" (xa)-

Proof. Note that the loop breaking (4.15) assures that G has at least relative degree 1, and
therefore G(x, joo) = G(x, —joo) = 0. Considering also Lemma A.2, it follows that every
cut of G(x;,I') to the right of the point 1 is preceded and followed by a cut of G(x;,I)
with the negative real axis. Thus, each cut to the right of the point 1 corresponds to
one winding of G(x;,I') around the point 1. Moreover, Lemma A.2 assures that these
windings all have the same direction and thus several windings cannot cancel each other
in the total winding number. O]

Lemma A.4. Under the assumptions of Theorem 5.6, we have

B*(x1) — B*(x2)|.

Proof. From Assumption (A1), the transfer functions G(x1,-) and G(x2, -) have the same
number of zeros and poles in the left and right half plane. Thus for the phase differences
we have

‘wn(G(Xla F)v 1) - wn(G(XQ, F), l)l =

arg G(thoo) - argG(Xl) —jOO) = arg G(XQajOO) — arg G(X?v _.]OO)

This implies that the winding numbers wn(G(x1,"), 1) and wn(G(x2, ), 1) have the same
sign. With Lemma A.3, we conclude

lwn(G(x1,T),1) = wn(G(x2, 1), 1)| = |[wn(G(x1,T),1)| = lwn(G(x2, 1), 1)
B*(x1) — B*(x2)|.
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A.3 Proof of Theorem 5.6

We are now ready to give the proof of Theorem 5.6.

Proof. (Theorem 5.6) By Definition 5.5, topological equivalence of x; and x, is equivalent
to the condition that the matrices A(x1) and A(x2) have the same number of eigenvalues
with positive real part. From the proof of Lemma 4.8, we know that

~det(sl, — A(x))
1-G(x,s) = det (s, — As(x))

Using the Argument Principle, it follows that

wn(G<X7 F)? 1) - nc(X) - no(X)a

where n.(x) (n,(x)) is the number of eigenvalues of A(x) (A,(x)) with positive real part.
By assumption, n,(x1) = n.(x2) and thus x; and x, are topologically equivalent if and
only if

’LUTL(G(Xl, F)? 1) = wn(G(X27 F)? 1)

The claim of the theorem then follows from Lemma A .4. O]
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Appendix B

TNF network model summary

B.1 Molecular species

The following lists specify the molecular species which are considered in the TNF receptor
signalling model developed in Chapter 7.

B.1.1 Species of the receptor module

RIP TNF receptor interacting protein (RIP) 1

TRAF TNF receptor associated factor (TRAF) 2

TNFR1 TNF receptor 1 trimer

TNF1 TNF« ligand (trimer) which binds specifically to TNFR1
TNFRI1L complex of TNFR1 and its ligand

TNFR1CO complex of TNFRI1, ligand, and RIP

TNFR1C1 complex of TNFR1, ligand, RIP and TRAF2
TNFR2 TNF receptor 2 trimer

TNF2 TNFa ligand (trimer) which binds specifically to TNFR2
TNFR2L complex of TNFR2 and its ligand

TNFR2CO complex of TNFR2 and ligand, ready for adaptor protein recruitment

TNFR2C1 complex of TNFR2, ligand, and TRAF2

B.1.2 Species of the IKK module

IKKi inactive I-xB kinase (IKK), ready for activation
IKKa active (phosphorylated) IKK
IKKd deactivated IKK, not ready for activation

A20 Ubiquitin ligase A20
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B.2 List of reactions

B.1.3 Species of the NF-xB module
NFkB NF-xB, free in cytosol

IkB inhibitor of NF-kB, I-kBa, in cytosol
NI complex of NF-xB and I-kBa;, in cytosol
NFkBn NF-xB, free in nucleus

IkBn inhibitor of NF-xB, I-kBa, in nucleus

NIn complex of NF-xB and I-xBea, in nucleus

B.1.4 Species of the gene expression module

IkBt I-xBa transcript
A20t A20 transcript
TRAFt TRAF2 transcript

B.2 List of reactions

B.2.1 Reactions in the receptor module

# Description

Reaction law Reaction rate
Al TNF receptor 1 turnover

TNFR1 « kata TNFR1 — kaqp
A2 RIP1 turnover

RIP <« kAga RIP — kAgb
A3 TRAF2 turnover

TRAF kasa TRAF — cp3sTRAFt
A4 TNF1 and TNFR1 form the complex TNFRI1L

TNFR1 + TNF1 < TNFRI1L % TNFR1 TNF1 — ka4, TNFRIL
A5 TNFRIL and RIP form the complex TNFR1CO0

TNFRIL + RIP — TNFR1C0 VL}\?A TNFRI1L RIP

A6  TNFR1CO and TRAF form the complex TNFR1C1
TNFR1C0 + TRAF — TNFR1C1 \}‘—% TNFR1C0 TRAF
A7a TNFRI1CO is degraded

TNFR1C0 — TNF1 ka7 TNFR1CO
A7b TNFRIL is degraded
TNFR1L — TNF1 ka7 TNFRI1L

A8 TNFRI1C1 is internalised, adaptor proteins are released
TNFR1C1 — TNF1 4+ RIP + TRAF kas TNFR1C1
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Appendix B TNF network model summary

# Description

Reaction law Reaction rate
A9  TNF receptor 2 turnover

TNFR2 < kaga TNFR2 — kagy,
Al0a TNF2 and TNFR2 form the complex TNFR2L

TNFR2 + TNF2 « TNFR2L \i‘;—l&l TNFR2 TNF2 — ka10p TNFR2L
A10b TNFR2L reorganisation, e.g. clustering

TNFR2L — TNFR2C0 karoc TNFR2L

A1l TNFR2CO0 and TRAF form the complex TNFR2C1
TNFR2C0 + TRAF — TNFR2C1 \i‘A—I{fA TNFR2C0 TRAF
Al12a TNFR2CO is degraded

TNFR2C0O — TNF2 kaio TNFR2CO
A12b TNFR2C1 is degraded

TNFR2C1 — TNEF?2 ka2 TNFR2C1
A13 TRAF is degraded when bound to the TNFR2 complex

TNFR2C1 — TNFR2L ka3 TNFR2C1

B.2.2 Reactions in the IKK module
# Description

Reaction law Reaction rate
Bl IKK is activated at TNF receptor complexes
IKKi — IKKa ﬁ(kma TNFRI1C1 + kg, TNFR2C1)IKKi
B2 IKK is deactivated
IKKa — IKKd kgo IKKa
B3  IKK is recycled, inhibition by A20
IKKd — IKKi s smg Ve A TKKd
B4  A20 turnover
A20 — kB4 AQO — CD2 A20t

B.2.3 Reactions in the NF-xB module
# Description

Reaction law Reaction rate
Cl1 NFkB and IkB form a complex
NFkB + IkB « NI v NFKB kB — koy, NI
C2  IkB turnover (constitutive and IKK induced)
IkB « (koo + 192005 ) IKB — cpy TkBt
C3 IkB is degraded when bound to NFkB
NI — NFkB (kesa + %)NI
C4  NFKkB translocates to the nucleus
NFkB — NFkBn kcys NFkB
C5 NFkBn and IkBn form a complex
NFkBn + IkBn < NIn \Iff—li& NFkBn IkBn — ko, NIn
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B.3 Nominal parameter values

C6  NIn translocates to cytosol

NIn — NI kos NIn
C7  IkB is shuttled between cytosol and nucleus
IkB < IkBn keza IkB — ke IkBn

B.2.4 Reactions in the gene expression module

# Description

Reaction law Reaction rate
D1 transcription of kB mRNA
kp1a NFkBn
D2 degradation of IkB mRNA
IkBt — kps 1IkBt
D3  transcription of A20 mRNA
kpsa NFkBn
D4  degradation of A20 mRNA
D5  transcription of TRAF2 mRNA
— TRAFt kpsa NFkBn
kD5b+NFan
D6  degradation of TRAF2 mRNA
TRAFt — kps TRAFt

B.3 Nominal parameter values

Many parameter values are taken from previous models of the NF-xB pathway. A few
insensitive parameters are fixed at reasonable assumed values. Other parameters have
either been measured directly or are chosen to match experimental data as described
in Section 7.2.2. Parameters measured recently at the Institute of Cell Biology and
Immunology (Doszczak and Scheurich, unpublished data) are indicated by (MD).

B.3.1 Experimental and physical parameters

’ Parameter \ Value \ Comment /Source ‘
Ny 6.022 - 10%—— | Avogadro’s constant
Veell 3-10712 cell volume (MD)
N, 0.2 ratio nuclear to total volume (MD)
Vieat 3.33-107°1 | volume of extracellular medium (MD)
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Appendix B TNF network model summary

B.3.2 Parameter values for the receptor module

’ Parameter \ Value \ Comment /Source
kanp 0.28% Schliemann (2006)
kA2q 1.7-107*% | Schliemann (2006)
ka3 1.4-10755 | (MD)
k A4a 1.83- 1075 | Grell et al. (1998)
ks 3.5-107*% | Grell et al. (1998)
kas 1.5- 105 L assumed
kg 2-10° 1\%5 assumed
ka7 1-10~ 35 assumed
kas 5-10° 4§ fitted
kaa | 9.6-1071 | (MD)
kaoa | 251070 | Grell et al. (1998)
k a100 1.05- 10~ 21 Grell et al. (1998)
k 410¢ 2.10731 " | fitted
kan 4-10°5 1 assumed
k 412 2.5-10" 41 fitted
k13 1-10™ 31 fitted
TNFR1s 1000 stationary TNFRI1 trimers, Grell et al. (1998)
TNFR2s 1-10% stationary TNFR2 trimers, Grell et al. (1998)
RIPs 1.1-10° stationary RIP trimers, Eissing (2002)
TRAFs 1.9-10% stationary TRAF2 trimers, Eissing (2002)

B.3.3 Parameter values for the IKK module

’ Parameter ‘ Value ‘ Comment/Source

kpia 1-1075 | fitted

ka1 1- 105ﬁ fitted, less than kg,
kpo 3-10731 | Ashall et al. (2009)

kB3a 3-107*2 | fitted, Ashall et al. (2009) use 5-107*2
kp3p 2-107°M | Ashall et al. (2009)
kpa 2.5-107*L | Lipniacki et al. (2004)

A20s 1-10% fitted

IKK; 2-10° total IKK amount, Lipniacki et al. (2004)

122




B.3 Nominal parameter values

B.3.4 Parameter values for the NF-xB module

’ Parameter \ Value \ Comment /Source

kcia 5 - 105ﬁ Hoffmann et al. (2002)
ke 5-107*1 | Hoffmann et al. (2002)
kcoq 1-107*< | Hoffmann et al. (2002)
koo 4. 10*% Hoffmann et al. (2002)
kcoe 0.24 - 107°M | derived from Hoffmann et al. (2002)
kcaa 2-107°1 | Hoffmann et al. (2002)
kcsp 2-107%. | Hoffmann et al. (2002)
kcae 0.4-10""M | derived from Hoffmann et al. (2002)
kca 3.7-10731 | fitted, Ashall et al. (2009) measured (2.6 +1.8) - 1072
kce 3.7-1072% | fitted, Ashall et al. (2009) use 0.01+
kcta 7-107*2 | Ashall et al. (2009)
ke 3.5-107*% | Ashall et al. (2009)

NFkBy: 1-10° Hoffmann et al. (2002)

B.3.5 Parameter values for the gene expression module

] Parameter \ Value \ Comment /Source ‘
cp1 0.51 Lipniacki et al. (2004)
kpia 0.14% fitted, Lipniacki et al. (2004) use 0.1
leb 5 - 104 fitted
kpa 4-107*1 | Lipniacki et al. (2004)
l{ipgb 2- 104 fitted
kpa 7.5-107*% | Lipniacki et al. (2007)
kDBb 3 - 104 fitted
kpe 1-107%% | assumed
A20ts 5 stationary A20 mRNA amount, assumed
TRAFts 1.5 stationary TRAF2 mRNA amount, assumed

B.3.6 Derived parameters

The following list gives dependent parameters, which are derived from other (independent,)
parameters. The maximal transcription rates depend on the steady state value of NF-
kB in the unstimulated case, denoted by [NFkBnlg, which can be computed from the
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Appendix B TNF network model summary

independent parameters given in the previous sections.

Vo=(1—=N)Veey (cytosol volume)
Vi = N Veeu (nuclear volume)
katp
kare = e kaop = ka0, RIP
Ale ™ TNFRI1s A2 = Raza RIPS
k?D3b + [NFan}O
k =k aTNF 2 k o = ks A20t
A9p = Kag R2s D3 NFkBul, pa A20ts
kDE)b -+ [NFkBH]O kBg A20s
kpsa = kps TRAFt LY 5 kit
Ds [NFkBn],  7° P2 T 0t
. k’Ag TRAFs

D3 = TTRATts
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