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Over the past decade, machine learning (ML) with deep neural networks (DNNs) has become

extremely successful in a variety of application domains including computer vision, natural lan-

guage processing, and game AI. DNNs are now a primary topic of academic research among

computer scientists, and a key component of commercial technologies such as web search, recom-

mendation systems, and self-driving vehicles. However, factors such as the growing complexity

of DNN models, the diminished benefits of technology scaling, and the proliferation of resource-

constrained edge devices are driving a demand for higher DNN performance and energy efficiency.

Consequently, neural network training and inference have begun to shift from commodity general-

purpose processors (e.g., CPUs and GPUs) to custom-built hardware accelerators (e.g., FPGAs and

ASICs). In line with this trend, there has been extensive research on specialized algorithms and

architectures for dedicated DNN processors. Furthermore, the rapid pace of innovation in DNN al-

gorithm space is mismatched with the time-consuming process of hardware implementation. This

has generated increased interest in novel design methodologies and tools which can reduce the

human effort and turn-around time of hardware design.

This thesis studies how low-precision quantization and structured matrices can improve the

performance and energy efficiency of DNNs running on specialized accelerators. We co-design

both the DNN compression algorithms and the accelerator architectures, enabling us to evaluate

the impact of our ideas on real hardware. In the process, we examine the use of high-level syn-

thesis tools in reducing the hardware design effort. This thesis represents a cross-domain research

effort at efficient deep learning. First, we propose specialized architectures for accelerating bina-

rized neural networks on FPGA. Second, we study novel high-level synthesis techniques to reduce



the manual effort in FPGA accelerator design. Third, we show a fundamental link between group

convolutions and circulant matrices — two previously disparate lines of research in DNN com-

pression. Using this insight we propose HadaNet, an alternative to circulant compression which

achieve identical accuracy with asymptotically fewer multiplications. Fourth, we present outlier

channel splitting, a technique to improve DNN weight quantization by removing outliers from the

weight distribution without arduous retraining. Finally, we show preliminary results on overwrite

quantization, a technique which address outliers in DNN activation quantization using extremely

lightweight architectural extensions to a spatial accelerator template.
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CHAPTER 1

INTRODUCTION

1.1 Hardware Specialization for Deep Neural Networks

Over the past decade, machine learning (ML) with deep neural networks (DNNs) has evolved

from a niche academic discipline to become an important class of algorithms widely used across

many different research domains and practical technologies. Although neural networks have

been an integral part of ML research since the 1960’s, for much of history they were out-

classed by simpler techniques such as support vector machines and decision trees. Neural net-

works would experience a massive resurgence in the early 2010s owing to three factors: (1) ad-

vancements in network algorithms and design; (2) the development of massively parallel com-

pute devices, especially general-purpose GPUs; and (3) the availability of large quantities of

training data on the internet. All three factors would eventually converge during the develop-

ment of AlexNet [KSH12], a convolutional neural network (CNN) which won the 2012 Im-

ageNet large scale classification challenge [DDS+09] by a wide margin. This victory is fre-

quently cited as the start of the modern “deep learning revolution”. Today, deep neural nets

dominate many computer vision tasks such as image recognition [KH09, DDS+09], object de-

tection [EVGW+10, XZY+18], and semantic segmentation [COR+16, LMB+14]. Deep learn-

ing is also state-of-the-art in natural language processing (NLP) tasks such as text transla-

tion [BCB14, SVL14, LPM15, WSC+16] and question answering [VL15, RZLL16, LYBP16]. Be-

yond supervised learning, DNNs have led to the emergence of deep generative models like autoen-

coders [Doe16] and adversarial networks [GPAM+14, RMC15] being applied to tasks such as im-

age in-painting [XXC12, YCYL+17], style transfer [GEB16, JAFF16], super-resolution [JAFF16,

LTH+17], and content creation [OOS17, ZXL+17]. Deep learning has also proven remarkably

transferable. Advances in network architectures, training algorithms, and feature representations

generalize well to different application domains. Recent years have seen the successful expan-

sion of DNNs into scientific disciplines where machine learning had no traditional foothold, with

1



Table 1.1: Time, Energy, and Monetary cost of training contemporary NLP models — figure
is reproduced from [SGM19]. *kWh is calculated by the authors using a power usage effectiveness
(PUE) penalty of 1.58 that is standard for US datacenters.

Model Hardware Power Hours kWh* Cloud Server Cost

Transformer (base) P100 x8 1416 12 27 $41–$140
Transformer (big) P100 x8 1515 84 201 $289–$981
ELMo P100 x3 518 336 275 $433–$1472
BERT (base) V100 x64 12041 79 1507 $3751–$12,571
BERT (base) TPUv2 x16 - 96 - $2074–$6912
NAS P100 x8 1515 274120 656347 $942,973–$3,201,722
NAS TPUv2 x1 - 32623 - $44,055–$146,848

examples including precision medicine, integrated circuit design, wireless communication, and

financial analysis. Last and not least, deep learning has been heavily adopted in a number of real-

world technologies include web search [SHG+14, WWY15, CAS16, CKH+16], language transla-

tion [SVL14,WSC+16], autonomous 3D navigation [KC15,ZMK+17,BDTD+16], robotic manip-

ulation [LFDA16, MKS+15, LHP+15], and game AI [SHM+16, SSS+17, VBC+19]. These exam-

ples serve to demonstrate both the enormous practical capability and rapidly expanding application

of deep neural networks in both academia and industry.

Growing DNN compute requirements – Although neural networks have advanced the quality

of results in many domains, they have a critical drawback: training and serving a modern DNN

model requires enormous amounts of computational power and electrical energy. Table 1.1 re-

produced from Strubell et al. [SGM19] provides examples of the time, energy, and monetary cost

of training a state-of-the-art NLP model. The same work also discusses the environmental im-

pact of DNN training, reporting that training the state-of-the-art language model BERT [DCLT18]

releases the equivalent quantity of CO2 as a trans-American flight. It is not merely the case that

deep neural networks are inherently computationally expensive compared to prior techniques; their

depth and complexity has only increased over time. Figure 1.1 shows the exponential increase in

DNN training cost since AlexNet. Note that during the timespan depicted, DNN compute and

parameter efficiency have actually improved dramatically. However, greater algorithmic efficiency

2



Figure 1.1: Growing compute cost of DNN training over time — training cost is measured in
Peta-floating-point operations per second (FLOPS)× days of training, taken from an OpenAI blog
post [AH18].

also leads to greater scalability. Early networks like AlexNet [KSH12] and VGG [SZ15] have

difficulty scaling beyond 10 layers while contemporary architectures such as ResNet [HZRS15]

and DenseNet [HLWvdM17] can scale to over 1000 layers and still see accuracy improvement.

Training a bigger and more powerful network is usually a foolproof way to improve results, and

consequently these algorithmic innovations have only encouraged machine learning practitioners

to deploy ever larger models on bigger datasets. For example, the latest advancements in lan-

guage modeling features unsupervised pre-training on huge amounts of unlabeled web-scraped

text [DCLT18, RWC+19], requiring days to weeks even on 64 GPUs.

Breakdown in technology scaling – Since the 1970’s, integrated circuits saw periodic in-

creases to the number of transistors per area. This phenomenon, named Moore’s Law, was ac-
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companied by a design ruled called Dennard Scaling [DGR+74] which described how to scale

transistor size as to reduce the switching delay while keeping power density constant. These two

scaling laws together provided substantial improvements to processor clock frequency and stor-

age density each year while the manufacturing cost and power draw of a chip remained constant.

However, by the mid 2000s, Dennard scaling had slowed considerably. Transistors stopped becom-

ing cheaper, and chip manufacturing costs have steadily increased at each new technology node

since 2012. Issues with leakage current prevented the scaling of power, and clock frequency was

forced to level off to limit thermal dissipation. Unfortunately, the slowdown of scaling occurred

around the same time deep learning began to gain traction. While transistors are still shrinking (at a

slower pace than before), technology scaling today cannot provide the performance and efficiency

improvements necessary to keep pace with the growing demands of DNN workloads.

Specialized hardware DNNs acceleration – In response to the previous two trends, computer

architecture has moved towards specialized hardware for deep neural networks. Hardware acceler-

ation for DNNs date back to AlexNet, which was first to utilize multiple GPUs to perform training

in a reasonable timespan. In the years following, GPUs would supplant general-purpose CPUs

as the go-to platform for DNN training [CHW+13, CL14]. General-purpose GPUs can efficiently

parallelize linear algebra operations such as matrix multiplies, which make up the bulk of DNN

workloads in the form of convolutional and fully-connected layers. Over the years, GPUs have

become ubiquitous in deep learning and enjoy widespread support in popular ML experimenta-

tion frameworks. However, recent years see both academia and industry shift towards dedicated

hardware for neural networks. DNN accelerators have become a major topic in the computer ar-

chitecture research community, with works such as the DianNao variants [CDS+14, CLL+14],

Eyeriss [CKES17], Cambricon [ZDZ+16], EIE [HLM+16], CirCNN [DLW+17, WDL+18], and

OLAccel [PKY18]. Many of these architectures specifically target the complex, compute-heavy

convolutional layers found in CNNs. In the commercial space, major cloud providers have be-

gan to offer ML services such as image recognition, automated speech, and targeted advertising.

These cloud companies were the first to develop mass production systems dedicated solely to DNN
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execution, with examples such as Google’s TPU [JYP+17] and Microsoft’s Brainwave [CFO+18].

A similar trend has also emerged in the mobile and embedded space. Deep neural net-

works have become a fundamental algorithm in computer vision and language analysis. These

two technologies are in turn critically important to a variety of edge devices including mobile

phones, camera drones, autonomous vehicles, and IoT sensors. Unlike in a datacenter, edge

devices are limited by their small physical form factor, short battery life, and basic means of

heat dissipation. These factors impose hard constraints on the compute and storage available

for DNN execution (typically around 500 Mega-floating-point operations (MFLOPs) and 10s of

Megabytes [HZC+17, ZZLS17]). Recently, the largest mobile handset vendors have also be-

gun to incorporate dedicated neural processors into their mobile SoCs; examples include Ap-

ple’s A12 (iPhone X), Samsung’s Exynos 9820 (select Galaxy S10s), and Huawei’s Kirin 970

(Honor 10, P20, others). Embedded DNN accelerators have also been extensively studied in

academia, with particular focus on FPGAs (e.g., Zhang’15 [ZLS+15], AngelEye [QWY+16],

FINN [UFG+17], ESE [HKM+17], C-LSTM [WLD+18], SkyNet [ZLH+19, XZY+18]) and

ASICs (e.g., Origami [CGM+15], BinarEye [MBY+18], YodaNN [ACRB16]).

Algorithms for specialized DNN hardware – Throughout most of the 2010’s deep learn-

ing revolution, ML researchers were constrained by the computer hardware they had access to.

Any novel neural network algorithm must be well-suited to the best commodity training device

(i.e., general-purpose GPU) because otherwise, it will likely be outperformed by an existing net-

work which fits more weights into GPU memory and trains on more data. In this manner, the

algorithm must be specialized for the available hardware. AlexNet once again provides an instruc-

tive example. The network was tailor-built to train on a two-GPU system (a novelty at the time)

and replaced sigmoid activation functions with the simpler rectified linear unit (ReLU) to speed

up GPU training [KSH12]. These GPU-specific features were a large part of AlexNet’s success.

Another important case of algorithm specialization for hardware is parallel stochastic gradient de-

scent [ZWLS10, RRWN11], which enables DNN training to scale across multiple machines.

The emergence of dedicated DNN accelerators means that DNN algorithms are less constrained
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by existing standards and instruction set architectures (ISAs). This has in turn driven research into

novel DNN compression algorithms which can take full advantage of emerging hardware. One

popular technique is quantization, which seeks to reduce the complexity of the numerical format

used in DNN computations. Typically, 32-bit float is used for all values in a DNN. Research

efforts in DNN quantization can be divided into two broad camps: inference-only quantization

(which only needs to quantize the forward pass) and training quantization (which must quan-

tize both forward and backwards passes). For inference-only, a number of works have demon-

strated the use of 8-bit fixed-point [WLCS18, JKC+18, HMD16], with some going to even fewer

bits [ZWN+16]. Early efforts in this space made use of fine-tuning (further training the quantized

model for a few more epochs) to recover some of the lost accuracy. More recent work has estab-

lished the feasibility of data-free quantization: quantizing a pre-trained model without additional

training [Mig17, ZHD+19a, NvBBW19, MFAG19]. Training quantization is significantly more

challenging. Gradient accumulation requires a larger dynamic range, and can furthermore intro-

duce issues of numerical instability. While some models can be trained in fixed-point, this is not a

widely accepted practice. Some number formats for training include float16 [MNA+17, JSH+18],

bfloat16 [KMM+19] (first appeared in Google’s DistBelief framework [DCM+12]), and some nar-

rower non-standard floats [TYW+19,SCC+19]. Even more exotic formats have been proposed for

DNNs such as binary and ternary networks for inference [CHS+16,RORF16,LL16], and the posit

format for training [CLK+19, LLW+19]. Quantization also enjoys broad support among industry

in both DNN frameworks and accelerators (e.g., float16 in newer NVIDIA GPUs [Mig17] and int8

in Google’s TPU [JYP+17]).

There are also major classes of DNN algorithms that were proposed with hardware in mind,

but have yet to gain significant traction among computer architects. One important example is

sparse network pruning. Pruning takes a pre-trained model and removes weights or activations

that are deemed unimportant (e.g., based on magnitude [HPTD15, HPN+17]). The pruned model

can be fined-tuned for a small number of additional epochs to recover some of the accuracy lost

during pruning process [HPN+17]. Use these techniques, VGG-16 [SZ15] has been compressed
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to just 11% of its original size without impacting accuracy [HPTD15]. Although sparse pruning

is heavily researched in the ML community and achieves impressive memory/compute savings, it

is challenging to implement in real hardware. A pruned DNN model requires a sparse matrix rep-

resentation (e.g., compressed sparse row), which stores non-zero values and their locations in the

form of indices. Sparse representations incur additional storage overhead and memory indirection,

which directly translate to performance and area penalties in a hardware accelerator. The accelera-

tor must also implement sparse linear algebra operations which are only efficient when the matrices

are highly sparse (i.e., > 90% zeros); it cannot efficiently target dense models. Sparse DNN accel-

erators have been recieved significant attention in academia [HLM+16, HKM+17, ZDZ+16], but

the prevailing industry trend is for hardware to focus on dense computation.

Methodologies for DNN hardware specialization – The proliferation of specialized DNN

accelerators present serious challenges to the existing hardware design methodology. Currently,

neural networks are typically trained in a pure ML framework such as Caffe [JSD+14], Ten-

sorFlow [ea15], or PyTorch [PGC+17], which enjoys ease of programming, GPU support, and

optimized libraries such as cuDNN [CWV+14]. Meanwhile, hardware design is done in register-

transfer level (RTL) with the help of functional, cycle-accurate, and timing simulators. Two major

problems exist with this approach. First, there is a substantial gap in the level of abstraction be-

tween the high-level ML frameworks and the low-level RTL tools. This greatly complicates the

process of preparing and optimizing an ML model for hardware, and places barriers to any sort

of model-architecture co-design. Second, the pace of innovation in ML space is extremely fast

(the number of ML-related arXiv papers doubles every 2 years [DPY18]). Meanwhile, the design

turn-around time for an accelerator in RTL can be over a year. By the time a DNN accelerator

is taped-out, it may have been sidelined or even superseded by better algorithms. These issues

already manifest themselves as a deep division between ML and architecture research commu-

nities. ML research almost never performs evaluation on a custom-built hardware, and architec-

ture publications often focus on out-of-date benchmarks (e.g., AlexNet and VGG-16). Various

approaches for addressing this productivity gap have been advanced, including high-level syn-
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Figure 1.2: A co-design methodology involves specializing both algorithm and architecture
with each other in mind for mutual benefit.

thesis [ZLS+15, ZSZ+17, SCD+16], domain-specific languages, and specialized design genera-

tors [WXH+16].

1.2 Thesis Overview

At a high level, this thesis explores deep neural network acceleration using algorithm and ar-

chitecture co-design. Figure 1.2 illustrates the co-design approach, in which both algorithm and

hardware are specialized with each other in mind for mutual benefit. We make contributions to

multiple levels along the computer architecture stack and combines these innovations to demon-

strate how cross-stack synergies can help address the computational challenges in DNN inference

and training. We also make contributions to design automation tools to reduce the human effort of

hardware specialization; such tools are key enablers for a tightly-coupled co-design methodology.

More specifically, this thesis examines how quantization and structured matrices can be used to

specialize neural networks for efficient execution on custom hardware architectures. It also studies

how high-level synthesis tools can reduce the effort of designing such hardware on FPGAs and

ASICs. Each chapter of the thesis describes a research project which has been published to a peer

reviewed conference. Figure 1.3 illustrates the contribution of each chapter to different parts of

the architecture stack (machine learning algorithm, electronic design methodology, and hardware

architecture), emphasizing the cross-domain nature of our work.
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Figure 1.3: Thesis chapters organized with respect to the architectural stack — solid circle
indicates significant technical contribution, while half circle indicates light contribution.

A detailed overview of the thesis is as follows:

• Chapter 2 presents an FPGA accelerator for binarized neural networks (BNNs) using a high-

level synthesis (HLS) design methodology. The chapter proposes novel architectural ele-

ments for hardware BNN processing, and demonstrates how BNNs map more efficiently to

FPGAs compared to conventional neural nets. The use of HLS illustrates the potential of

such a methodology in rapidly constructing and testing ML accelerators. This work was

published at FPGA’17 [ZSZ+17].

• Chapter 3 presents a cross-layer, mapping-aware approach to HLS pipeline scheduling which

improves the synthesized hardware for logic operations. This technique has potential ap-

plicability in very low-precision DNN accelerator design. This work was published at

DAC’15 [ZTDZ15].

• Chapter 4 presents unitary group convolutions, a conceptual framework which unifies group

convolutions and structured matrices. Prior to this work, these were two disparate topics

in efficient DNN layer design. Leveraging insights from this framework, the chapter pro-

poses using the Hadamard transform for DNN compression. Hadamard outperforms prior

art in Fourier and shuffle transforms under certain conditions. This work was published at

CVPR’19 [ZHD+19b].

• Chapter 5 presents outlier channel splitting (OCS), a technique which improves the accuracy
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of DNN quantization by removing outliers from the weight distribution. OCS is one of the

few methods that target the problem of data-free quantization (i.e. quantizing a DNN without

additional training epochs). The chapter also presents the an evaluation of various data-free

clipping techniques in literature, showing that OCS outperforms clipping at lower precisions.

This work was published at ICML’19 [ZHD+19a].

• Chapter 6 presents preliminary results on overwrite quantization (OverQ), a technique which

addresses activation outliers efficiently through lightweight architectural changes to a com-

monly used spatial accelerator template. This research is work in progress, with a pre-print

manuscript available on arXiv [ZDSZ19].

1.3 Collaborations, Funding, and Previous Publications

This thesis would not be possible without the contributions of colleagues within the Zhang

Research Group and Batten Research Group in the Computer Systems Lab at Cornell University,

as well as collaborators from Peking University, University of California Los Angeles (UCLA),

and University of California San Diego (UCSD). My advisor and committee chair, Professor Zhiru

Zhang, provided unparalleled guidance and assistance on all five projects presented in this thesis.

The BNN project in Chapter 2 was done in collaboration with Jeng-Hau Lin and Prof. Rajesh Gupta

at UCSD, as well as Tianwei Xing and Prof. Mani Srivasatava at UCLA. For the BNN project,

Weinan Song and Wentao Zhang from Peking University built and collected latency data on the

GPU baselines. The BNN design on FPGA was later ported to an ASIC named Celerity as part of

the DARPA CRAFT program. The ASIC design was done in collaboration with Prof. Christopher

Batten at Cornell. Khalid Al-Hawaj, Christopher Torng, and Dr. Steve Dai did nearly all of the

ASIC HLS implementation, gate-level optimization and testing, and tape-out. The HLS project

in Chapter 3 was an extension of a mapping-aware scheduling paper headlined by Dr. Mingxing

Tan and Dr. Steve Dai [TDGZ15], and features code and benchmarks adapted from their work.

The initial idea for UGConv emerged from discussions with Dr. Charles Jeon. Both the UGConv
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project in Chapter 4 and the OCS project in Chapter 5 was done in collaboration with Prof. Chris

De Sa at Cornell University, and with assistance from Yuwei Hu and Jordan Dotzel. UGConv

also references technical details and code from Prof. Yanzhi Wang at Northeastern University and

Prof. Bo Yuan at Rutgers University. Yuwei Hu wrote the MXNet code for ImageNet experiments,

and Jordan Dotzel ran exploratory studies on different transforms. For OCS, Yuwei Hu built the

first version of the code using PyTorch-Distiller and performed the RNN experiments. Jordan

Dotzel devised and implemented the code for quantization-aware splitting. The OverQ project

features data and insights gathered by Vidya Ramesh.

Many of my projects owe a great deal to discussions with Prof. Christoph Studer at Cornell, as

well as with Daniel Lo and Eric Chung at the Microsoft Azure Advanced Intelligent Architectures

group.

This thesis was supported in part by DARPA Award HR0011-16-C-0037, DARPA Young Fac-

ulty Award D15AP00096, NSF Awards #1337240, #1453378, #1512937, the Semiconductor Re-

search Corporation (SRC), and research gifts from Xilinx, Inc and NVIDIA Corporation. My

complete list of publications during my PhD in reverse chronological order is as follows:
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Batten, Michael B Taylor, Ronald G Dreslinski, “A 1.4 GHz 695 Giga Risc-V Inst/s 496-

Core Manycore Processor With Mesh On-Chip Network and an All-Digital Synthesized PLL

in 16nm CMOS”, Symposium on VLSI Circuits (VLSI), Jun 2019

2. Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, Zhiru Zhang, “Improving Neural
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CHAPTER 2

HARDWARE ACCELERATION FOR BINARIZED NEURAL NETWORKS

2.1 Preliminaries

This chapter presents our work on hardware specialization for binarized neural networks

(BNNs), an extreme form of low-precision neural network where weights and activations are re-

stricted to +1 or−1. As discussed in the thesis introduction, one major challenge to the widespread

deployment of CNNs is their significant demands for computation and storage capacity. The VGG-

19 network, for instance, contains over 140 million floating-point (FP) parameters and performs

over 15 billion FP operations to classify one image [SZ15]. A number of efforts in the academic

community has demonstrated the potential of FPGA-based CNN accelerators [ZLS+15,QWY+16]

as well as tools for generating such accelerators automatically [SCD+16,WXH+16]. Recent work

by Microsoft has explored DNN acceleration on FPGAs at datacenter scale [ORK+15, CFO+18].

One major advantage of FPGAs (and ASICs) as compared to conventional CPUs and GPUs is

the ability to compute using simpler, reduced-precision number representations. Where as DNNs

on CPUs and GPUs use 32 or 16-bit float (with rare cases of int16 or int8), dedicated hardware

such as FPGAs can can compute at arbitrary precisions such as int4, int2, or even lower. Fig-

ure 2.1 shows the throughput of the Brainwave FPGA-based DNN accelerator across different

numerical precisions, over three modern FPGA devices. Note the logarithmic y-axis, and the use

of non-standard numerical representations custom-tailored to DNN workloads. DNN quantization

is critical for extracting DNN performance from specialized hardware. It is an extremely active

area of research [ZWN+16,SFRO17,WLCS18,JKC+18,CWV+18,BNHS18] and sees deployment

in many commercial systems such as Google’s TPU [JYP+17], NVIDIA’s TensorRT [Mig17], and

Microsoft’s Brainwave [CFO+18].

Recently, research in neural network algorithms have demonstrated the potential of binarized

convolutional neural networks, CNNs where every weight and activation is represented as just +1

or −1. While simple to understand, training a BNN is mathematically non-trivial as conventional
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Figure 2.1: Throughput of the Brainwave FPGA-based DNN accelerator – throughput is com-
puted by assuming full saturation of all processing engines realized on the device. N-bit mantissa
float is a specialized numerical representation for DNN workloads. Taken from [CFO+18].

backpropagation stochastic gradient descent (SGD) fails at this level of quantization. Two key

issues emerge: (1) the sign function used to binarize values has a derivative of zero almost every-

where; (2) even if an approximate derivative is used, each individual gradient update is generally

too small to flip the sign of a weight and therefore no training progress can be made. A signifi-

cant breakthrough was made on this front by Corbariaux et al. in 2016. The solution, presented

in [CBD15] and refined in [CHS+16], is to treat binarization as a noise process which is only

applied on the forward pass. The weights being updated in each step remains in floating-point pre-

cision, enabling SGD to run as normal. Courbariaux et al.’s network architecture (which we call

the BinaryNet model) achieved near state-of-the-art results on CIFAR-10 and SVHN datasets at

the time of publication for this work, but could not match the accuracy of high-precision networks

on the larger ImageNet dataset. Since then, there enormous advancement in both BNN (e.g.,

XNOR-net [RORF16], Bi-Real net [LWL+18]) as well as related low-precision networks (e.g.,

binary-weight networks [LZP17], ternary nets [LL16]) have greatly closed this accuracy gap.

BNNs may be one key to efficient deep learning on FPAGs. The dot product between two

binary vectors can be computed using bitwise xors and a popcount, two operations which can be
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implemented very efficiently on the FPGA look-up table (LUT) fabric. A customized BNN ac-

celerator on FPGA can offer significant improvements in energy efficiency and power dissipation

compared to conventional neural nets. These factors may be critical in enabling the increased use of

binary networks in low-power settings such as unmanned drones or embedded computing. Though

Courbariaux et al. made seminal contributions to the construction and training of BNNs, they only

presented back-of-the-envelope estimations of run time and energy savings on CPU/GPU, and did

not consider other platforms. Furthermore, the algorithmic differences between BNN and con-

ventional CNN necessitates substantial differences in accelerator architecture. In this chapter, we

present the design and implementation of a specialized accelerator for BNN inference on embed-

ded FPGAs. In addition, the accelerator was migrated to a 16nm ASIC as part a DARPA CRAFT

tapeout named Celerity [A+18, D+18]. This work was among the first to explore and evaluate

specialized architectures for BNN acceleration and show empirical results at the silicon level.

One drawback to using dedicated hardware as compared to commodity CPUs and GPUs is the

lack of compatibility with deep learning frameworks such as Caffe [JSD+14], Theano [The16], or

TensorFlow [ea15]. These frameworks allow users to make use of the latest models or to train a

custom network with little engineering effort, and as a result, there is a sizable gap in design effort

in creating an ML application for GPU versus FPGA platforms. This gap is especially distressing

given the rate of algorithmic innovation in deep learning. An FPGA-based CNN accelerator (or

CNN design compiler) is unlikely to support the most up-to-date models, putting them at a severe

competitive disadvantage. To partially address this issue, we designed our BNN accelerator using

high-level synthesis (HLS) from C++, and open-sourced our code to the research community.

HLS tools such as Xilinx Vivado HLS [CLN+11], LegUp [CCA+13], and Intel FPGA SDK for

OpenCL [CAD+12] allows users to specify the design at a higher abstraction than conventional

register-transfer level (RTL) design, and some offer further automation features for generating the

hardware-software interface and on-chip memory network. In the context of deep learning, these

tools have the potential to critically reduce time-to-market on new accelerator designs and thus

reduce the aforementioned productivity gap. While it nowhere near closes the gap on a full-fledged
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ML framework, the use of HLS represents one step to making hardware accessible to algorithm

designers and data scientists. The next present improvements to HLS scheduling algorithms which

further reduce human effort and hardware know-how required to create a high-quality design.

2.1.1 Building and Training a Binarized CNN

In this section we describe algorithmic changes necessary to build and train a CNN which

uses binarized weights and activations. A typical CNN consists of a pipeline of connected layers.

Each layer takes as input a set of feature maps (fmaps), performs some computation on them, and

produces a new set of fmaps to be fed into the next layer. The input fmaps of the first layer are

the channels of the input image. Common layer types found in CNNs include convolutional (conv)

layers, dense or fully-connected (FC) layers, and pooling (pool) layers.

Convolution

Add Bias

Non-linearity

Pool

M real 
fmaps ℝℝ

ℝℝ
N real 
fmaps

ℝℝN real 
fmaps

Convolution

Batch Norm

Binarize

M binary 
fmaps

ℝℤ2
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N integer 
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N binary 
fmapsℝℤ2
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CNN BNN

Figure 2.2: Comparison of CNNs and BNNs — Left: the order of operations in a CNN for a
conv and pool layer. Right: the (modified) order of operations in the BinaryNet BNN [CHS+16].
Pooling is performed early and a batch normalization precedes the binarization to minimize infor-
mation loss. Biases have been removed from the BNN.

As stated previously, a BNN is essentially a neural network whose weights and activations are

17



binarized to +1 or −1. Figure 2.2 illustrates the typical stack of layers in (1) a conventional CNN

and (2) a BNN. In the CNN, all weights and calculations use full-precision floating-point. In the

BNN, the intermediate data go from binary to integer after convolution until it is binarized again.

Biases have been removed, and pooling is always performed on the integer intermediates.

The BNN introduces the batch normalization or (batch norm) layer, which perform a linear

transformation (scale and shift) on the input data to keep the input distribution (nominally a Gaus-

sian) close to zero mean and unit variance. Batch norm layers have been shown to improve training

speed and accuracy in CNNs [IS15]. In BNNs however, they gain additional importance as bina-

rizing a centered and properly-scaled distribution leads to lower quantization error compared to an

arbitrary distribution. The batch norm transformation is given below,

y =
x−µ√
σ2 + ε

γ +β (2.1)

where x and y are respectively input and output, µ , σ , γ , and β are parameters fixed during infer-

ence, and ε is to avoid round-off problems.

2.1.2 CIFAR-10 BNN Model

Our work focuses on implementing the BinaryNet BNN architecture introduced by Cour-

bariaux et al. [CHS+16] for the CIFAR-10 dataset [KH09]. This dataset contains sixty thousand

32×32 3-channel images drawn from 10 classes consisting of vehicles and animals (airplane, truck,

cat, etc.) divided into a training set of 50000 and a test set of 10000. While the dataset is small

by ML standards it is sufficient to demonstrate the potential of the BinaryNet BNN for computer

vision tasks. The Courbariaux et al. architecture is heavily inspired by the VGG models [SZ15],

and consists of six conv layers followed by three FC layers. All conv layers use 3×3 filters and

edge padding, and all conv/FC layers apply batch norm before binarization. There is a 2×2 max

pooling layer after the 2nd, 4th, and 6th conv layers. The first conv layer is different from the rest

as its input is the (floating-point) image (its weights are still binary). The architecture is summa-

rized in Table 2.1. The size of the feature maps diminish deeper into the network, and the first two
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Table 2.1: Architecture of the BinaryNet CIFAR-10 BNN — The weight bits exclude batch
norm parameters, whose total size after optimization is less than 1% of the weights.

Layer Input Output Output Output Weight
Fmaps Fmaps Dim Bits Bits

Conv1 3 128 32 128K 3456
Conv2 128 128 32 128K 144K
Pool 128 128 16 32K
Conv3 128 256 16 64K 288K
Conv4 256 256 16 64K 576K
Pool 256 256 8 16K
Conv5 256 512 8 32K 1.1M
Conv6 512 512 8 32K 2.3M
Pool 512 512 4 8192

FC1 8192 1024 1 1024 8.0M
FC2 1024 1024 1 1024 1.0M
FC3 1024 10 1 10 10K

Total 13.4M
Conv 4.36M
FC 9.01M

dense layers contain most of the weights. We trained this network using open-source Python code

provided by the authors 1, and reached 11.58% test error out-of-the-box, in line with their results.

2.1.3 Algorithmic Modifications for Hardware

A number of optimizations were made to the BNN algorithm to make it more efficient for

FPGA inference. As with conventional CNNs, one key optimization is data quantization. While

the weights are already binarized, the biases and batch norm parameters in the BinaryNet model

are real numbers. For biases, we noticed that nearly all biases were much smaller than 1 (recall

that activations have magnitude 1). We removed biases entirely and retrained the network reaching

a test error of 11.32%. We take this number as the baseline error rate.

A second optimization involved noting that batch norm (Equation (2.1)), being a linear trans-

1https://github.com/MatthieuCourbariaux/BinaryNet
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Table 2.2: BinaryNet BNN accuracy with various optimization — no-bias refers to retraining
after removing biases from all layers and fixed-point refers to quantization of the inputs and
batch norm parameters.

Source Model Padding Test Error

From [CHS+16] - 0 11.40%
Python Default 0 11.58%
Python no-bias 0 11.32%
Python no-bias +1 11.82%

C++ no-bias, fixed-point 0 11.46%
C++ no-bias, fixed-point +1 12.27%

formation, can be formulated as y = kx+h, where:

k =
γ√

σ2 + ε
and h = β − µγ√

σ2 + ε
(2.2)

This reduces the number of operations and cuts the stored parameters to two. Furthermore, the Bi-

naryNet always binarizes immediately after each batch norm. Thus we do not need the magnitude

of y, only the sign. This allows us to scale both k and h into the range of our fixed-point implemen-

tation. Empirical testing showed that k and h can be quantized to 16 bits with negligible accuracy

loss while being a good fit for power-of-2 word sizes. We also quantized the floating point input

images to 20-bit fixed point. Table 2.2 summarizes the impact of each algorithmic modification on

test error. C++ refers to the HLS code and the synthesized accelerator, both of which achieve the

same test accuracy.

One complication in the BinaryNet model is the interaction between binarization and edge

padding. The model binarizes each activation to -1 or +1, but each input fmap is edge padded with

zeros, meaning that a convolution can see up to 3 values: -1, 0, or +1. Thus the BinaryNet model

actually requires some 2-bit operators (though the fmap data can still be stored in binary form).

We managed to modify and retrain the BinaryNet model to pad with +1, eliminating the zeros and

creating a truly binarized CNN. This +1 padded BNN achieves a test error of 11.82% in Python

and 12.27% in C++/FPGA, only slightly worse than the original. For our FPGA implementation

we used the 0 padded BNN as the resource savings of the +1 padded version was not particularly

relevant for the target device.
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Figure 2.3: Architectural diagram of the BNN accelerator — (a) system-level block diagram showing the three compute units,
buffers, and how the accelerator is connected to the CPU and off-chip memory hierarchy; (b) architecture of the Bin-Conv unit with
input and output parallelization factors fin = 2 and fout = 3. The unit can stream in two words per cycle and produce three output fmaps
per invocation.
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2.2 BNN Hardware Architecture

2.2.1 System Architecture

Figure 2.3(a) illustrates our overall system architecture, which consists of three compute units,

data and weight buffers, a direct memory access (DMA) system for off-chip memory transfer, and

an FSM controller. The three compute units work on different types of layers: the FP-Conv unit

for the (non-binary) first conv layer, the Bin-Conv unit for the five binary conv layers, and the

Bin-FC unit for the three binary FC layers. Of the three, the Bin-Conv and Bin-FC units must be

configurable to handle different numbers of input and output feature maps (fmaps), and in the case

of Bin-Conv different fmap sizes.

The storage of intermediate data in our accelerator differs from most existing designs. In

full-precision CNN accelerators, the output fmaps of any single layer typically exceed the size of

on-chip storage. This necessitates the transfer of fmaps to and from off-chip RAM. However, as

Table 2.1 shows, the size of the largest set of fmaps in our BNN is only 128K bits, which easily

fits in on-chip SRAM. Our design uses two in-out data buffers A and B of equal size. One layer

reads from A and write its outputs to B. Then, without any external data transfers, the next layer

can read from B and write to A. Off-chip memory transfers are only needed for the input image,

output prediction, and loading each layer’s weights.

Unlike the fmaps, there is only enough memory on-chip to store a portion of a layer’s weights.

Multiple accelerator invocations may be needed for a layer. In each invocation we load in a new

set of weights and produce a new set of fmaps. We keep invoking the accelerator until all output

fmaps have been generated and stored in the on-chip buffers.

2.2.2 Compute Unit Architecture

In our accelerator, each compute unit must store binarized data to the on-chip RAMs at the

end of its execution. As Figure 2.2 reveals, the first operation of a conv or FC layer transforms the
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binary inputs to integers. We make sure each unit will also perform the subsequent batch-norm,

pooling, and binarization before writing data out to the buffers. One of our design goals is to limit

the amount of integer-valued intermediate data buffered inside each compute unit.

FP-Conv – The fixed-point conv unit utilizes the well-known line buffer architecture for 2D

convolutions. Because this unit only targets a single layer, we hard-wire it to handle a 3-channel

32×32 input. While the input pixels are 20-bit fixed-point, the weights are binarized, so we can

replace the multiplies in the conv operation with sign inversions. We fully parallelize across the

three input channels: in each cycle we stream in three input pixels, add them to three line buffers,

and compute a 3×3×3 convolution. The result is put through batch norm and binarization to

produce one output bit per cycle. Greater parallelism in this unit is achievable, but the first conv

layer takes up a very small portion of the overall run time, and we focused design efforts into the

other units.

Bin-Conv – The binary conv unit is the most critical component of the accelerator, as it is re-

sponsible for the five binary conv layers which take up the vast majority of run time on CPU/GPU.

The unit must maintain high throughput and resource efficiency while handling different input

widths at run time. Our design targets input widths of 8, 16, or 32, and can support larger power-

of-two widths with minor changes. To efficiently compute a convolution, multiple rows of input

pixels need to be buffered for simultaneous access. However, a standard line buffer (e.g., from

video processing applications) is unsuitable as (1) it must be sized for the largest input width and

will underutilized for smaller widths; (2) a standard line buffer shifts in one pixel per cycle, but

with binarized data we can expect to stream in 32 or more bits per cycle. Tiling can help resolve

the input width problem, but fmaps in a BNN can be as small as 4 bits, rendering tiling ineffective.

To address the above issues, we propose a variable-width line buffer (VWLB). For brevity we

do not fully describe the VWLB’s operation, but importantly it allows us to process an entire data

word’s worth of pixels each cycle regardless of input width. This essentially exploits the crucial

sub-word parallelism in a BNN’s binary feature data.

Figure 2.3(b) shows the complete Bin-Conv unit. fin is the input parallelization factor (the
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unit takes in fin parallel input words each cycle) and fout is the output parallelization factor (the

unit produces fout parallel partial sums for different fmaps each cycle). Each input word stream

connects to a Convolver, which contains a VWLB and circuits to perform fout conv filters per cycle

on the data buffered in the VWLB. The resulting partial sums are stored in fout integer buffers.

When an output fmap is finished, it is put through max-pooling, batch norm, and binarization (the

latter two operations are non-linear and cannot be applied to partially accumulated fmaps).
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Figure 2.4: Example usage of the variable-width line buffer — a 32-bit input word is divided
up by BitSel and inserted into the VWLB. The line buffer has height 3 and width 32. Sliding a
3×3 conv filter across the VWLB produces 32 output pixels, ignoring edge effects. (a) for a 32-
wide input fmap, each row of the VWLB stores one line and applying the conv filter produces one
32-wide output line; (b) for an 8-wide input fmap, each row of the VWLB stores four lines and
applying the conv filter produces four consecutive 8-wide output lines given the mapping of input
lines to banks shown.

Figure 2.4 explains the operation of the BitSel and VWLB in greater detail. The diagram

assumes we have a word size of 32 bits and a 3×3 conv filter, which requires a VWLB with three

rows and 32 elements per row. We demonstrate how the VWLB works for input fmap widths 32

and 8 and ignore edge padding for the sake of simplicity.

1. For a 32-wide input, each word contains exactly one line. Each cycle, the VWLB shifts up

and the new 32-bit line is written to the bottom row. We can then slide the 3×3 conv window

across the VWLB to generate one 32-bit line of conv outputs.

2. For an 8-wide input, each word contains four lines. We split each VWLB row into four

banks, and map each input line to one or more VWLB banks. The mapping is done in such a
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way that sliding the conv window across the VWLB produces four consecutive 8-bit output

lines. Each cycle the VWLB shifts both up and to the left.

The BitSel is responsible for slicing the input word and mapping the slices to the row banks.

Because the smallest input width is 8, each slice and VWLB bank is sized at 8 bits. For a 32-

wide input, BitSel maps four contiguous 8-bit slices to the bottom row. For an 8-wide input, the

mapping is more complex, but still highly regular and can be computed in hardware with just adds

and shifts. Each pixel in the output lines in Figure 2.4 is an integer conv sum, and each sum is

accumulated at a different location in the integer buffer.

The BitSel and VWLB provides three primary advantages: (1) the VWLB achieves full hard-

ware utilization regardless of input width, (2) a new input word can be buffered every cycle, and

(3) the BitSel deals with various input widths by itself, allowing the actual buffer and convolution

logic to be fixed. Note that the VWLB used in our design differs from Figure 2.4 in a few details.

First, we have neglected edge padding. The actual VWLB contains two additional elements per

bank to hold horizontal pad bits. Vertical padding is handled by inserting lines of zeros. Second,

because the pad bits are 0 rather than +1 or -1, we must make each element in the VWLB two bits

instead of one. The conv operation is performed between the 2-bit data and 1-bit weights, and can

be implemented as sign inversion and accumulate.

Our Bin-Conv design exploits all forms of parallelism in a BNN conv layer: parallelism within

the 3x3 convolution, parallelism across pixels (via the VWLB), and parallelism across both input

and output feature maps (via fin and fout).

Bin-FC – The binary FC unit is comparatively simple. Each cycle we read in fin data words

and an equal number of weight words. Here fin is the input parallelization factor in Bin-Conv. We

perform a dot product between the data and weight words by applying a bitwise XOR operation

and then summing the resulting bits with a popcount. Similar to the Bin-Conv unit, we accumulate

the sum in an integer buffer and apply binarization after all inputs have been processed. Note that

the FC layers are typically bound by memory bandwidth of the off-chip connection, rather than the

throughput of the accelerator.
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Data Buffers – To accommodate multiple reads per cycle, the data buffers are partitioned

into fin banks, and feature maps are interleaved across the different banks. Figure 2.5 shows an

example with fin = 2 and four words per fmap. The data words are read sequentially by address,

so a compute unit always accesses fin consecutive fmaps in parallel.

0 1 2 3

Bank 0

… 0 1 2 3 …

Bank 1

fmap 0 fmap 2 fmap 1 fmap 3

Convolver 0 Convolver 1

Figure 2.5: Memory banking in the BNN data buffer — The compute unit and memory system
have fin = 2. Each fmap contains four words which are laid out sequentially. The fmaps are
interleaved across banks, and both Bin-Conv and Bin-FC benefit from this banking.

2.2.3 Implementation Using High-Level Synthesis

Figure 2.6 shows the HLS pseudocode for the front half of the Bin-Con unit, and demonstrates

a key difference between BNN and CNN hardware design. For a CNN the code typically loops

over an fmap processing one pixel at a time, and key design decisions include loop ordering and

unroll factors [ZLS+15]. In our BNN accelerator, the basic atom of processing is not a pixel but

a word. The example code is designed to sustain one word per cycle throughput over the entire

input feature map set. Each fmap consists of words_per_fmap words, a number which differs

between layers. As it processes the input set, the code updates the weights on each new fmap and

accumulates the conv results in outbuf. We call BitSel and conv inside the loop to instantiate

the BitSel units and conv logic as shown in Figure 2.3(b). To increase the number of input streams

we can tile the loop and unroll the inner loop body.

A key design decision here is the input word size, which controls the level of parallelism across

the pixels of an fmap. To guarantee correctness, words_per_fmap must be an integer greater than
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zero. This constrains the word size to at most the size of the smallest input fmap (8×8 = 64 bits

in our case). The word size restriction is not a significant limiting factor in our design, as 64 is

already a very large parallelization factor (it means we perform 64 convolutions per cycle), and

there are other sources of parallelism to exploit in the BNN. We chose a word size of 64 bits for

the data buffers and sized each data buffer A and B at 2048 words, which is just enough to store

the largest set of fmaps in the BNN.

We also explored different values for fin and fout in Bin-Conv. It was observed that both have

roughly similar effects on execution time, but increasing fout has a more severe effect on total area.

fin controls the number of BitSels and VWLBs while fout controls the number of pooling/batch

norm units and integer buffers. In terms of logic a BitSel and a pooling/batch norm unit is similar,

but each VWLB contains 32× 3 2-bit registers while each integer buffer contains 32× 32 12-bit

registers. Thus all else being equal it is better to increase fin. This result shows the importance of

minimizing the storage of intermediate values and only committing binarized data to memory.

We target our hardware implementation for a low-power embedded SoC with FPGA co-

processor. We use Xilinx SDSoC as the primary design tool for our BNN application. SDSoC

takes as input a software program with certain functions marked as “hardware”. It invokes Vivado

HLS under the hood to synthesize the “hardware” portion into RTL. In addition, it automatically

generates the data motion network and DMA necessary for memory transfer between CPU and

FPGA based on the specified software-hardware partitioning. We selected a DMA engine built for

contiguous memory since it has the highest throughput, and a neural network’s data and weights

can be laid out contiguously. We used directives to ensure that data is only transferred on the first

and last accelerator invocation. Weights are transferred on every invocation.
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1 VariableLineBuffer linebuf;
2 ConvWeights wts;
3 IntegerBuffer outbuf;
4
5 for (i = 0; i < n_input_words; i++) {
6 #pragma HLS pipeline
7
8 // read input word, update linebuffer
9 WordType word = input_data[i];

10 BitSel(linebuf, word, input_width);
11
12 // update the weights each time we
13 // begin to process a new fmap
14 if (i % words_per_fmap == 0)
15 wts = weights[i / words_per_fmap];
16
17 // perform conv across linebuffer
18 for (c = 0; c < LINE_BUF_COLS; c++) {
19 #pragma HLS unroll
20 outbuf[i % words_per_fmap][c] +=
21 conv(c, linebuf, wts);
22 }
23 }

Figure 2.6: HLS pseudocode for part of the Bin-Conv unit — the pseudocode implements a
pipeline which reads and performs convolution on one input word each cycle. Many details are left
out; the goal is to illustrate how our design can be expressed in high-level code.

2.3 Experimental Evaluation

2.3.1 Experiment Setup

We evaluate our design on a ZedBoard, which uses a low-cost Xilinx Zynq-7000 SoC con-

taining an XC7Z020 FPGA alongside an ARM Cortex-A9 embedded processor. We make use

of Xilinx SDSoC 2016.1 as the primary design tool, which leverages Vivado HLS and Vivado to

perform the actual HLS compilation and FPGA implementation. We compared our design against

two server-class computing platforms: an Intel Xeon E5-2640 multi-core processor (CPU) and an

NVIDIA Tesla K40 GPU (GPU). We also compared against an NVIDIA Jetson TK1 embedded

GPU board (mGPU). As BNNs are a recent development, our baseline applications will not be as

well optimized compared to CNN baselines. The CPU and GPU baselines are adapted from code

provided in [CHS+16], which uses Theano with OpenBLAS. The code does not perform bitwise
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Table 2.3: Comparison of different BNN configurations — Last row shows the resources avail-
able on the device; Run time is in milliseconds. * indicates our chosen configuration.

fin LUT FF BRAM DSP Runtime

1 25289 28197 86 3 17.5
2 35291 37125 87 3 10.8
4 38906 36771 87 3 7.98

8* 46900 46134 94 3 5.94
Device 53200 106400 140 220 -

optimizations since they are not natively supported in Theano, and instead uses floating-point val-

ues binarized to -1 and +1. For the baselines we used the BNN model with no biases and k and h,

and on GPU we used the largest possible batch size. Power measurement is obtained via a power

monitor. We measured 4.5W idle and 4.7W max power on the Zedboard supply line when running

our BNN, so the dynamic power consumption of the accelerator is very low. Our CPU baseline was

written from scratch and uses bitwise logic for the FC layers. But due to the edge-padding issue, it

uses 8-bit arithmetic instead for the conv layers (similar to how our FPGA uses 2-bit arithmetic).

2.3.2 Design Parameter Study and Tuning

Table 2.3 shows the performance and resource utilization of our accelerator using different

values of fin for the Bin-Conv and Bin-FC units. All numbers are post place and route. In our

experiments fout is set to 1. Performance scaling is below unity as fout only improves parallelism

in the binary conv layers. We use fin = 8 in the rest of the experiments.

We compare the performance of our accelerator to the baselines in Table 2.4. As raw throughput

depends heavily on device size, we also show the power consumption and the throughput per Watt.

The FPGA design obtains 15.1x better performance and 11.6x better throughput per Watt over

mGPU, which has a similar power envelope. Against the x86 processor, it achieves a 2.5x speedup.

While the binary conv layers were faster, the FC layers were slower, which is unsurprising as the

FC layers are bound by external memory bandwidth. Versus GPU, the FPGA is 8.1x worse in

performance. But as expected, it has much lower power consumption and better throughput per
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Table 2.4: BNN performance comparison — Conv1 is the first FP conv layer, Conv2-5 are the
binary conv layers, FC1-3 are the FC layers. A – indicates a value we could not measure. Numbers
with * are sourced from datasheets. The last row shows power efficiency in throughput per Watt.

Execution time per image (ms)
mGPU CPU GPU FPGA

Conv1 – 0.68 0.01 1.13
Conv2-5 – 13.2 0.68 2.68
FC1-3 – 0.92 0.04 2.13
Total 90 14.8 0.73 5.94
Speedup 1.0x 6.1x 123x 15.1x
Power (Watt) 3.6 95* 235* 4.7
imgs/sec/Watt 3.09 0.71 5.83 35.8

Watt.

To show that the FC layers are indeed limited by memory bandwidth, we tested a design where

the FC computations are removed but the memory transfers are retained. The new FC execution

time was within 5% that of the original, demonstrating that further compute parallelization would

result in very little gain.

2.3.3 Comparison Against CNN Accelerators

Table 2.5 compares our implementation against state-of-the-art FPGA accelerators found in

literature. All numbers are retrieved from the respective papers. Note that two of the compar-

isons are against larger FPGAs while one is against the same device. Throughput is shown in

giga-operations-per-second (GOPS), and we count adds and multiplies following [ZLS+15]: each

binary xor, negation, or addition counts as one operation. Our BNN accelerator beats the best

known FPGA accelerators in pure throughput, and is also much more resource and power efficient.

BNNs save especially on the number of DSPs since multiplication/division is only needed for batch

norm and not for the compute-intensive conv or FC calculations. The metrics of throughput per

kLUT and throughput per Watt are especially important — due to the relative novelty of the BNN,

we were only able to obtain a suitable network for CIFAR-10 while previous work shows results
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Table 2.5: BNN resource comparison against state-of-the-art FPGA accelerators — GOPS
counts multiplies and adds per second. * indicates values approximated from charts.

[SCD+16] [QWY+16] [VB16] Ours

Platform
Stratix-V Zynq Zynq Zynq

GSD8 7Z045 7Z020 7Z020
Capacity (kLUTs) 695 218.6 53.2 53.2
Clock(MHz) 120 150 100 143
Power(W) 19.1 9.6 - 4.7
Precision 8-16b 16b - 1-2b
GOPS (conv) 136.5 187.8 - 318.9
GOPS (all) 117.8 137.0 12.73 207.8
kLUTs 120* 182.6 43.2 46.9
DSPs 760* 780 208 3
GOPS / kLUT 0.98 0.75 0.29 4.43
GOPS / Watt 6.17 14.3 7.27 44.2

for larger ImageNet networks. However, our data provides evidence that BNN is a better algorithm

for FPGA than CNN, enabling far more efficient usage of resource and power.

While it may not be completely fair to compare GOPS between a binarized and conventional

network, it is standard practice for hardware accelerator studies to compare reduced and full-

precision implementations that use different data types. Indeed, previous work we cite all use

different data types so a fair comparison is impossible.

2.4 Conclusions and Future Work

In this chapter, we demonstrate an HLS-based FPGA accelerator for binarized neural networks

on FPGA. BNNs feature potentially reduced storage requirements and binary arithmetic opera-

tions, making them well suited to the FPGA fabric. However, these characteristics also render

CNN design constructs such as input tiles and line buffers ineffective. We introduce new design

constructs such as a variable-width line buffer to address these challenges, creating an acceler-

ator radically different from existing work. We leverage modern HLS tools to write our design
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in productive, high-level code, and our accelerator outperforms existing work in raw throughput,

throughput per area, and throughput per Watt.

Future work should focus both on algorithmic and architectural improvements. On the algo-

rithmic side we would like to explore techniques to reduce model size. From the architectural side

one action item is to implement a low-precision network for ImageNet, which would involve a

much larger and more complicated accelerator design.
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CHAPTER 3

MAPPING-AWARE PIPELINE SCHEDULING FOR HIGH-LEVEL SYNTHESIS

3.1 Preliminaries

High-level synthesis (HLS) has established itself as a powerful alternative to the conventional

register-transfer level (RTL) design. HLS allows designers to automatically synthesize hardware

from high-level specifications written in a software programming language and making microarchi-

tectural optimizations (such as pipelining or memory banking) accessible in the form of pragmas.

By raising the design abstraction to that of a software language, HLS tools for FPGAs such as

LegUp [CCA+11], Vivado HLS [CLN+11], and Intel FPGA SDK for OpenCL [CAD+12] is able

to greatly reduce engineering effort and turn-around time of an FPGA design.

HLS already has a proven track record in hardware design for signal processing and crypto-

graphic applications. As Chapter 2 demonstrates, HLS can also be effective for building neu-

ral network accelerators, as shown by a number of recent publications utilizing HLS tools for

DNN specialization [ZLS+15, SCD+16, DSSMS16, NSW18, MP18]. As DNNs are dominated by

highly-regular loop nests, such accelerators frequently make use of an HLS optimization called

loop pipelining. Pipelining produces a circuit which partially overlaps successive iterations of a

loop, thus exploiting inter-iteration parallelism without duplicating the entire loop body. In this

chapter of the thesis, we propose a technique to enhance HLS pipelining for logic operations,

which is highly relevant to the HLS implementation of extremely low-precision neural networks

where multiplies and adds can often be mapped to simple logic operations. The practicality of this

technique is demonstrated by applying it as a proof-of-concept to a module from the binary CNN

accelerator from Chapter 2.
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3.1.1 Pipelining in High-Level Synthesis

HLS synthesizes a pipeline in multiple distinct steps. First, it schedules the operations in the

loop body, creating the hardware register boundaries. Then, it allocates hardware resources for the

operations and binds each operation to a resource instance. For pipelining to succeed, the loop

body must be scheduled such that it can be repeated at some initiation interval (II) which is less

than the loop body’s latency. HLS typically uses a software compiler technique known as modulo

scheduling [Rau94] to schedule pipelines, which assumes each operation incurs a fixed delay based

on operation type (add, mul, etc). Critically, while this assumption mostly holds when targeting

general-purpose processors, it fails in the case of simple logic operations for LUT-based FPGAs.

Below we illustrate how static modulo scheduling can generate an overly conservative schedule:

shift

and

>= 0

select

xor

shift

and

>= 0

select

xor

(a) Suboptimal schedule (b) Mapping-aware schedule

cycle 0

cycle 1

cycle 2

cycle 3 cycle 1

cycle 0

4-LUT

4-LUT

Figure 3.1: Pipeline schedule for Reed-Solomon encoder – target clock period is 5ns; each logic
operation or LUT incurs a 2ns delay. (a) Suboptimal schedule requires 3 LUTs and 3 pipeline
stages; (b) Optimal schedule requires 2 LUTs and 1 pipeline stage.

Figure 3.1 shows the data-flow graph (DFG) of a kernel in Reed-Solomon encoding [ANA10],

a prominent error-correction algorithm. We assume the target FPGA uses 4-input LUTs and the

target II is one cycle. Using pre-characterized delays, modulo scheduling generates a three-stage

pipeline (left). In practice, however, it is possible to map the entire kernel to only two LUTs, which
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can be chained combinationally in one cycle (right). The key issue is that the delay in a complex

logic network is not simply additive: a complex chain of logic operations might be implemented

in just a few LUTs. The mapping-agnostic scheduler is conservative and inserts extra registers. At

the same time, the downstream technology mapping cannot shorten the pipeline as it must respect

register boundaries. To bridge this QoR gap, the scheduling algorithm must be made aware of the

underlying LUT-based hardware and potential mapping optimizations.

In this chapter, we present a mixed integer linear programming (MILP) formulation of modulo

scheduling to perform mapping-aware pipeline synthesis. Our method allows the MILP to select

the optimal mapping for each operation to minimize LUT and register utilization. While an ILP is

inherently unscalable to large designs, we successfully demonstrate the benefits of a cross-layered

pipelining approach compared to a state-of-the-art commercial HLS tool. This research is inspired

by the work of fellow student Mingxing Tan [TDGZ15], though Tan does not address pipelined

designs. We published this work in DAC’15 [ZTDZ15].

3.1.2 Background and Related Works

Modulo scheduling is a well-known compiler optimization technique to realize software

pipelining [Rau94]. It is also extensively used in the HLS context for enabling loop and func-

tion pipelining. For example, state-of-the-art HLS tools such as LegUp [CCA+11] and Vi-

vado HLS [CLN+11] make use of a mathematical programming formulation known as system

of difference constraints (SDC) to support modulo scheduling for hardware pipelining synthe-

sis [ZL13, CCA+13]. Other developments to incorporate memory port reduction [BAMR10],

pipeline flushing [DTHZ14], polyhedral analysis [MDQ13], and multithreading [TLDZ14] con-

tinue to advance the pipelining capabilities of HLS.

For an FPGA, technology mapping is the process of covering a network of logic gates

with LUTs [CCP06]. While some prominent mapping techniques include FlowMap [CD94],

CutMap [CH95], and DaoMap [CC04], there exists numerous mapping techniques that optimize

for LUT depth [CD94] or area [CWD99,CC04]. Meanwhile, Pan et al. proposed a retiming-based
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technology mapping technique that considers mapping for register repositioning to achieve the

minimum clock period [PL98, PKL98]. Area-efficient mapping is an important step in achieving

good QoR in the physical implementation flow. Unfortunately, while latency-optimal technology

mapping can be achieved in polynomial time [CD94], area-optimal mapping is NP-hard [FS94].

An ILP-based algorithm for minimum-area LUT mapping is proposed in [CH05]. Unlike our ap-

proach, however, it eschews the usage of cuts. Recent research has focused on integrating mapping

with the upstream tool flow to explore additional optimizations in high-level analysis. In particular,

Zheng et al. propose a flow that iterates between upstream scheduling and downstream mapping

and place-and-route and uses post-physical implementation timing for re-scheduling [ZGRC14].

3.2 A Mapping-Aware Pipeline Scheduler

The key idea behind our approach is to perform pipeline scheduling while taking LUT mapping

into consideration. To accomplish this, we extend cutenumeration from conventional technology

mapping algorithms into the HLS domain. A brief description of traditional cut enumerations is as

follows.

Let v be a node on a graph representing a bit-level logic network. Then we define Ov, a cone

of v, as a sub-graph of v and its predecessors such that there exists a path from any node in Ov to

v that is entirely contained within Ov. The cut of Ov, denoted as Cv, is then defined to be the set

of nodes not in Ov with an edge pointing to a node in Ov. A cone and its associated cut is defined

to be K-feasible if the cut contains K or fewer nodes. Because a K-input LUT can implement any

K-bounded logic network, a K-feasible cone can be mapped to a single K-input LUT.

Cut enumeration is the process of identifying the set of all K-feasible cuts for every node in the

graph. After this is done, the technology mapping problem becomes one of selecting a set of cuts

whose cones cover each node in the graph, while minimizing some objective such as total latency

or LUT area.

Typically, cut enumeration is done on a bit-level directed acyclic graph (DAG). However, the
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pipeline scheduling problem operates on a word-level control data flow graph (CDFG). Our ap-

proach is to use a modified cut enumeration algorithm to find the cut set of each operation, and con-

struct an MILP using the cut information which simultaneously schedules each operation while se-

lecting an optimal set of cuts which covers the CDFG. More formally, here is our area-minimizing

modulo scheduling problem formulation:

Given: (1) A CDFG for a function or loop whose edges capture inter-iteration and intra-

iteration data dependences between operations; (2) A target clock period Tcp; (3) A target initiation

interval II; (4) A set of constraints C including latency constraints, cycle time constraints, and re-

source constraints; (5) Characterized delays for operations on a target FPGA device using K-input

LUTs.

Goal: Find a minimum area modulo schedule for the operations so that no constraints in C are

violated, and within each cycle, there exists a feasible K-input LUT mapping that meets Tcp.

3.2.1 Word-Level Cut Enumeration

An intuitive approach to word-level cut enumeration is to break down the word-level DFG

into a bit-level graph [ZZZ+10] and use a traditional method. Tan et al. [TDGZ15] proposed a

word-level cut enumeration algorithm, but only for simplicity since the scheduling approach in

their paper can handle both bit-level and word-level graphs. In this work, bit-level decomposition

would generate an enormous number of cuts and make an MILP approach intractable. A word-

level cut enumeration algorithm is therefore necessary.

Bitwise operations such as AND/OR/XOR are straightforward because the operations on differ-

ent bits are completely independent. The key challenge arises for non-bitwise operations, such as

shifting or arithmetic, where a single bit of the output might depend on multiple bits of each input

operand. For instance, given an addition operation out[1 : 0] = in1[1 : 0]+ in2[1 : 0], the most sig-

nificant output bit out[1] would depend on four input bits: in1[0], in1[1], in2[0], and in2[1], coming

from two nodes in1, in2 on the DFG. To address this problem, we use a bit-level dependence track-

ing technique on the word-level DFG. Instead of just identifying dependent values, our algorithm
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also tracks all dependent bits of each value. To limit our analysis to those operations which are

mapped to LUTs, we define a black box (BB) operation as one which does not map to LUTs, (i.e.,

memory access operations). The following applies then to all non-BB nodes in the DFG.

Let v[ j] denote the a bit j of the operand v. We then classify all operations into three classes,

and define the DEP function for each class of operations as follows:

• Bit-wise operations (AND/OR/XOR): each output bit only depends on a single bit of each input

operand. For example, the DEP for operation out = in1 & in2 is defined as: DEP(out[ j]) =

{in1[ j], in2[ j])}.

• Shifting operations (LSFHIT/RSHIFT): each output bit depends on a shifted single bit of

each input operand. For example, the DEP for operation out = in1 >> s is defined as:

DEP(out[ j]) = {in1[ j+ s]}.

• Arithmetic operations (ADD/SUB/CMP): each output bit can depend on multiple bits of each

input operand. For example, the DEP for operation out = in1 + in2 is defined as follows:

DEP(out[ j]) = {in1[ j], in1[ j−1], ..., in1[0], in2[ j], in2[ j−1]..., in2[0]}.

The DEP function over a word-level value DEP(v) is further defined as the union set of

DEP(v[ j]) for each bit v[ j]. Based on the DEP function, we compute the K-feasible cut set for

each node in the DFG by merging the K-feasible cuts for all of its inputs. Suppose v’s inputs are

u1, u2, ..., up, with associated cut sets CUTu1 , CUTu2 , ..., CUTup , where CUTu is a collection of cuts

and each cut Ci ∈CUTu is K-feasible. The K-feasible cut set for v can be computed as follows:

CUTv = mergeCuts(u1, ...,up) =

{C′ =
⋃

Ci∈CUTui

{DEPS(Ci)}, if |C′|< K}

where DEPS(Ci) =
⋃

t∈Ci

{DEP(t)}

(3.1)

Our cut enumeration procedure (Algorithm 1) iteratively applies Equation (3.1) to each node

until all K-feasible cuts are obtained. We maintain a work list for nodes that need to be updated.

Initially, the work list contains all operations, and the cut set for each node v is the trivial cut {{v}}.
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For each node in the work list, we apply Equation (3.1) to compute the new cut set. If a new cut is

added for a node, we update its cut set and add all its successors to the work list. We remove a node

from the work list each time it is visited. The algorithm terminates when the work list becomes

empty. For each black-box operation, we simply force its cut set to be its trivial cut. Previous

studies have shown that cut enumeration is an exponential algorithm with respect to K [CWD99].

Fortunately, cut enumeration is typically very fast as the value of K is small in practice (K ≤ 6).

Algorithm 1: CutGen(CDFG)

input : CDFG – control data flow graph
output: CUT – cut set for all CDFG nodes
// Initialize the trivial cut for each node.

1 foreach node v in CDFG do
2 CUTv = {{v}}
3 L← list of CDFG nodes in topological order
// Iteratively update cut set

4 while L 6= Φ do
5 get the head node v from L
6 if v is not a primary input or black box operation then
7 newCutSet = mergeCuts(v)
8 if newCutSet 6=CUTv then
9 CUTv← newCutSet

10 append v’s successors to L

Figure 3.2 demonstrates the cut enumeration for the example listed in Figure 3.1. The original

Reed-Solomon application uses 32-bit operations, but for simplicity, we use 2-bit operations in this

figure. Cut enumeration for A and B are relatively simple. Each bit of A depends on a single shifted

bit of input s, while each bit of B depends on a single bit of each input operand t and A. In general,

operation C would be treated as an arithmetic operation, but in this example, the comparison “B

>= 0" is actually testing whether the most significant bit is zero or one. In this case, our algorithm

will identify that the output of C only depends on the highest bit of each input based on bit-level

dependence tracking. Our algorithm can also handle the cycle which arises from a loop-carried

dependence when processing nodes D and E.
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CUTS[ A[i] ] = { {s[i-1]} }
CUTS[ B[i] ] = { {A[i], t[i]}, 
                          {s[i-1], t[i]}
CUTS[ C[0] ] = { {B[1]}, 
                          {t[1], A[1]},
                          {t[1], s[0]} }
CUTS[ D[i] ] = { {C[0], v[i], E[i]},
                          {B[1], v[i], E[i]},
                          {t[1], A[1], v[i], E[i]},
                          {t[1], s[1], v[i], E[i]},
                          {C[0], v[i], w[i], D[i]},
                          {B[1], v[i], w[i], D[i]},}
CUTS[ E[i] ] = { {W[i], D[i]}, 
                         {W[i], v[i], C[0], E[i]},
                         {W[i], v[i], B[1], E[i]},
                         {W[i], v[i], C[0], D[i]},
                         {W[i], v[i], B[1], D[i]} }

shift

and

>= 0

select

xor
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Figure 3.2: Cut enumeration for the Reed-Solomon decoder.

3.2.2 MILP Formulation of Modulo Scheduling

We formulate the modulo scheduling problem as a mixed integer linear program (MILP). Given

a word-level dependence graph G and the cut set CUTv of each graph node v computed via Algo-

rithm 1, our formulation aims to compute an area-efficient pipelined schedule while respecting the

following constraints:

LUT cover constraints – For each cut of v, we create a binary variable cv,i, denoting whether

cut i is selected for node v. We also define the binary variable rootv as the sum of cv,i for all i.

Conceptually, if rootv = 1 then v is the root of a cone that will be mapped to a LUT. Otherwise v

will be mapped inside the cones of other nodes. Note that by the definition of rootv, the MILP can

only select one cut for each node. Equation (3.3) ensures that each primary output (PO) is a root

node, while Equation (3.4) ensures that the inputs of a selected cut are themselves root nodes.

rootv ∈ {0,1}

rootv = ∑
i

cv,i ∀v (3.2)

∑
i

cv,i = 1 ∀v ∈ {POs} (3.3)

cv,i ≤ rootu ∀u ∈CUTv[i] (3.4)

Dependence constraints – The MILP uses a set of binary scheduling variables sv,t , 0≤ t ≤M

where M is the bound on pipeline latency, to denote whether operation v is assigned to cycle t.
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Equation (3.5) below constrains each operation to a single clock cycle, and Equation (3.6) defines

Sv, an integer variable whose value is the actual cycle assigned to v.

∑
t

sv,t = 1 (3.5)

Sv = ∑
t

t ∗ sv,t (3.6)

Given a dependence between operations u and v with a distance distu,v1 , we need to guarantee

that operation u in iteration k is finished before we start the operation v in iteration k+distu,v. This

can be captured by Equation (3.7):

Su−Sv− II ·distu,v ≤ 0 (3.7)

Cycle time constraints – To consider the possibility of combinationally chaining multiple

operations in a clock cycle, the MILP also assigns to each variable a start time Lv within the cycle,

Note that Lv is a real number with bounds 0 ≤ Lv ≤ TCP, where TCP is the target clock period.

Suppose dv is the delay of operation v in nanoseconds, Equation (3.8) ensures a combinational

circuit will not across clock boundaries:

Lv +dv ≤ TCP (3.8)

Conceptually, if cut i is chosen for node v then there must be dependence constraints ensuring

that each node u in CUTv[i] finishes before v begins. This is captured by adding the constraint in

(3.9) for each u in CUTv[i]:

(TCP ∗Sv +Lv)− (TCP ∗Su +Lu)≥

cv,i ∗ (du−TCP ∗ II ∗distuv)

−(1− cv,i)∗TCP ∗CyclesMax

(3.9)

Here distuv is the dependence distance from u to v in number of iterations.

1A distance of 0 indicates an intra-iteration dependence, while a non-zero distance indicates an inter-iteration
dependence.
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For each dependence between nodes u and v, we must make sure u will not start later than v if

they are scheduled in the same cycle. Equation (3.10) ensures this constraint:

(Su−Sv− II ·distu,v)∗TCP +(Lu−Lv + cv,i ·du)≤ 0

where u is in CUTv[i].
(3.10)

Essentially, Equation (3.10) enforces a difference between Lu and Lv if and only if u and v are

scheduled in the same cycle (i.e., when Sv−Su− II ·distu,v = 0). If the selected cut of v does not

contain u (cv,i = 0) then u and v will be constrained to have the same start time in the same cycle

(i.e., Lu = Lv and Su = Sv), and will thus be mapped into the same LUT.

Register constraints – Register usage is captured by considering the liveness of each opera-

tion. We define binary variables livev,t to denote whether the result of operation v is live on cycle

t. We shall show that livev,t can be calculated using binary variables de fv,t and killu,t and adding

the constraint in Equation (3.13) for each u in CUTv[i]:

de fv,t =
t−bdv/TCPc

∑
z=0

sv,z (3.11)

killv,t =
t

∑
z=0

sv,z (3.12)

de fu,t− killv,t− (1− cv,i)≤ liveu,t (3.13)

Here de fv,t = 1 if the results of v is available on or before cycle t, and killv,t = 1 if the inputs of v

are killed on or before cycle t. Thus Equation (3.13) ensures liveu,t = 1 on each cycle t where the

results of u is defined and at least one fanout of u has not yet executed. The term (1− cv,i) ensures

that if CUTv[i] is not selected, the liveness constraint between u and v is inactivated.

Using live we can define the maximum number of registers needed on each cycle m, taking

into account that operations separated by exactly II cycles will execute concurrently in a pipeline:

Reg(m) = ∑
t∈T ′

∑
v∈V

Bits(v)∗ livev,t

where T ′ = {t | t mod II = m}
(3.14)

Here Bits(v) is the number of bits in the value produced by v.
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Resource constraints – In this work we consider resource constraints only for black-box op-

erations. Because the cut set for such operations will always contain only the trivial cut, we do not

need to consider mapping for them. The resource constraints in our MILP are therefore identical

to those in a canonical modulo pipelining formulation [Rau94]. Let r denote a resource type, Xr

the number of that resource used for the design, Nr the number of that resource available, and R(v)

the resource type for a black-box operation v. Then for each r:

∑
t∈T ′

∑
v∈V ′(r)

sv,t−Xr ≤ 0,∀m : 0≤ m < II

Xr ≤ Nr

where T ′ = {t | t mod II = m}

and V ′(r) = {v | R(v) = r}

(3.15)

Objectives – The objective of the MILP is to minimize the weighted sum of the number of root

nodes and the number of registers:

minimize α ·∑
v∈V

Bits(v)∗ rootv +β ·
II−1

∑
m=0

Reg(m) (3.16)

Here α and β are user-defined parameters to trade-off the optimizations on LUT and register usage.

Note that our MILP formulation can be easily extended to consider other type of resources such as

embedded DSP blocks.

3.3 Experimental Evaluation

To implement our proposed idea, we leverage Vivado HLS, a popular commercial C-based

HLS tool targeting Xilinx FPGAs. The tool uses LLVM as its front-end compiler, and we inject

our technique as an additional LLVM pass applied before scheduling. By reordering instructions

and inserting wait statements, we are able to enforce a custom schedule. We used Vivado HLS

2013.3 as the HLS tool, IBM ILOG CPLEX as the MILP solver, and Xilinx Vivado as the tool to

implement the generated RTL. All timing and area numbers below were obtained post place and

route.
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To model the delays of each operation, we back annotated delay values parsed from the sched-

ule report of the HLS tool for black-box operations. We restricted the MILP solver to run for at

most 60 minutes. For all benchmarks, a feasible (but not necessarily optimal) solution was found

in this amount of time. The values of α and β were set to 0.5 in all experiments.

To fairly evaluation of our mapping-aware approach, we include three sets of results for each

benchmark: the commercial HLS tool, the MILP without mapping consideration (MILP-base),

and the full MILP (MILP-map). MILP-base is implemented by skipping the cut enumeration step,

and assigning to each node only the trivial cut. We show results for two MILPs to understand how

much of the improvement is due to mapping consideration and not the differences between ILP

and the heuristics employed by the HLS tool.
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Table 3.1: Resource usage comparison — target clock period is 10ns. CP = achieved clock period; LUT = # of look-up tables; FF = #
of flip-flops. The percentages next to each column is calculated relative to the HLS tool.

Design Domain Description Method CP(ns) LUT % FF %
Count the number of HLS Tool 5.43 171 221

CLZ Kernel leading zeros in a MILP-base 4.29 152 (-11.1%) 226 (+2.3%)
64-bit value MILP-map 5.55 99 (-42.1%) 43 (-80.5%)

XOR reduction for an HLS Tool 5.55 3394 257
XORR Kernel array of elements MILP-base 5.55 3394 (+0.0%) 257 (+0.0%)

MILP-map 4.59 3264 (-3.8%) 0 (-100.0%)

Efficient Galois field HLS Tool 1.64 41 27
GFMUL Kernel multiplication MILP-base 1.69 44 (+7.3%) 28 (+3.7%)

MILP-map 3.36 39 (-4.9%) 0 (-100.0%)

Scientific Coordinate Rotation HLS Tool 8.24 1313 631
CORDIC Computing Digital Computer MILP-base 5.19 1663 (+26.7%) 646 (+2.4%)

MILP-map 7.58 1220 (-7.1%) 298 (-52.8%)

Scientific Mersenne Twister HLS Tool 5.70 681 843
MT Computing pseudorandom number MILP-base 6.03 623 (-8.5%) 842 (-0.1%)

generation MILP-map 7.17 640 (-6.0%) 526 (-37.6%)

Advanced Encryption HLS Tool 5.27 4860 4720
AES Cryptography Standard MILP-base 5.33 4564 (-6.1%) 5316 (+12.6%)

MILP-map 5.55 4475 (-7.9%) 2441 (-48.3%)

Reed-Solomon decoder HLS Tool 8.71 6493 8206
RS Communication MILP-base 6.45 7308 (+12.6%) 7114 (-13.3%)

MILP-map 9.26 6656 (+2.5%) 3856 (-53.0%)

Machine Digit recognition using HLS Tool 5.29 1264 1365
DR Learning k-nearest neighbours MILP-base 5.55 1070 (-15.3%) 1088 (-20.3%)

algorithm MILP-map 5.15 963 (-23.8%) 999 (-26.8%)

Global system for HLS Tool 7.76 1706 1231
GSM Communication mobile MILP-base 8.53 1543 (-9.6%) 1074 (-12.8%)

communications MILP-map 9.83 1766 (+3.5%) 493 (-60.0%)
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3.3.1 Kernel and Small Application Results

Table 3.1 shows each of our benchmarks, what are divided into kernels (small loop bodies)

and applications (complete real-life programs). Every benchmark (or its main loop) is pipelined

to an II of 1.

Kernel results — The kernels saw essentially no improvement from HLS tool to MILP-base,

but significant reductions in resource from the HLS tool to MILP-map. In CLZ MILP-map cut

down the pipeline latency from 7 to 1, reducing the number of FFs required by 81% compared to

MILP-base. In GFMUL and XORR, MILP-map was able to recognize that the entire pipeline can be

implemented in a single combinational stage, eliminating registers altogether. MILP-map was also

able to decrease the number of LUTs used by 19% over the three kernels.

To see how MILP-map obtained such enormous FF savings, we examine XORR in detail. XORR

specifies an xor reduction over an array, which was synthesized into a depth 9 reduction tree. From

scheduling reports we found that the HLS tool assigns a delay of 1.37ns to each xor operation

and generated a 2-stage pipeline. MILP-base generated an identical schedule. By considering

mapping, MILP-map was able to map multiple xors to a single LUT and fit the critical path into

one cycle. This eliminates all pipeline registers and results in the observed FF savings.

Application results — The most convincing results appear in CORDIC, MT, and AES, where

MILP-map was able to reduce FFs by an average of 46% over the HLS tool. In contrast, MILP-

base was unable to achieve any register savings on these designs, and in fact incurred an average

penalty of 4.8%. MILP-base was able to show some FF improvement in RS, DR, and GSM compared

to baseline, but even on these designs, MILP-map achieved a reduction of 39% over MILP-base.

Some variation in MILP-base can be attributed to imprecise delay estimates, as we could not back

annotate a delay for every operation.
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1 #pragma HLS array_partition variable=sum_m complete dim=0
2 #pragma HLS array_partition variable=dt_mem complete dim=1
3 #pragma HLS array_partition variable=wt_mem complete dim=1
4
5 AccumType sum_m[CONVOLVERS];
6 AccumType sum = 0;
7
8 for (int i = 0; i < n_inputs; i+=CONVOLVERS*WORD_SIZE) {
9 #pragma HLS pipeline

10
11 // Each convolver performs a binary dot product
12 for (int j = 0; j < CONVOLVERS; ++j) {
13 const Word in_wrd = dt_mem[j][...]
14 const Word wt_wrd = wt_mem[j][...];
15
16 Word x = wt_wrd ^ in_wrd;
17
18 // count_set bit for 64 bits
19 AccumType sum_b = 0;
20 for (int b = 0; b < WORD_SIZE; ++b) {
21 sum_b += (x[b]==0) ? 1 : -1;
22 }
23
24 sum_m[j] = sum_b;
25 }
26
27 // Sum products from across convolvers
28 for (int j = 0; j < CONVOLVERS; ++j)
29 sum += sum_m[j];
30 }
31
32 return sum;

Figure 3.3: HLS code for binary dot product engines in the Bin-FC unit — the code computes
N = CONVOLVERS number of binary dot products per cycle in a pipelined fashion.

3.3.2 MILP Practicality

Table 3.2 shows the size of each benchmark as well as the runtime of the MILP for each

benchmark using both MILP-base and MILP-map. We noted that the runtime scaled primarily

with the number of unique constraints, which is based on the total number of cuts enumerated in

the DFG. Thus MILP-map is much slower than MILP-base.

Resource-constrained scheduling is known to be NP-hard, and all commercial algorithms are

heuristic in nature. Our data supports the idea that exact formulations are difficult to scale. Nev-

ertheless, it seems reasonable use our mapping-aware MILP to improve design quality for small,
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Table 3.2: CPLEX MILP solve time for each benchmark – runtime does not include cut enu-
meration or ILP construction. Zeros indicate runtime too short to be measured.

MILP Solver Runtime (s)
Design LLVM Instrs MILP-base MILP-map

CLZ 387 9.0 28
XORR 2047 0.0 1622

GFMULT 86 0.0 0.0
CORDIC 304 3.7 42

MT 236 5.3 3602
AES 1809 314 3600

RS 2503 0.2 1.8
DR 282 3600 3603

GSM 324 108 3603
Mean 886 449 1789

performance critical kernels which are isolated from the rest of the design.

3.4 Conclusions and Future Work

We present an area-efficient pipeline synthesis approach for HLS which uses a word-level

cut enumeration technique and an MILP formulation to perform mapping-aware modulo schedul-

ing. We test our algorithm on a variety of kernel benchmarks and practical applications, obtain-

ing improved LUT and FF usage compared to both a state-of-the-art commercial HLS tool and a

mapping-agnostic MILP approach. While an MILP formulation is unscalable in general, we have

limited the runtime of the solver to 60 minutes, which is tolerable given the non-trivial improve-

ments in QoR. Future work includes incorporating mapping awareness into a scalable heuristic

pipeline scheduling algorithm as well as investigating other logic synthesis optimizations such as

exploring different logic decompositions of the circuit during mapping.
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CHAPTER 4

EXPLORING STRUCTURED MATRICES FOR DNN COMPRESSION

4.1 Preliminaries

Chapter 2 discussed how low-precision fixed-point quantization can be used to make neural

networks less resource-intensive, especially as applied to specialized hardware. In this chapter,

the focus is DNN pruning via the removal of redundant weight connection from a neural network.

Unlike quantization which reduces the precision of each weight, pruning instead reduces the total

number of weights and operations. The two approaches are not completely orthogonal, as they both

exploit the fact that DNNs are typically overparameterized containing many redundant features.

However, DNN pruning is very different in implementation from DNN quantization. To introduce

the reader to this topic we give an overview of three popular approaches to DNN pruning below.

4.1.1 Sparse Pruning

Sparse weight pruning is one of the most popular techniques for model compression. Prun-

ing typically takes a pre-trained model and removing weights based on a metric such as magnitude

[HPTD15,HPN+17], energy consumption [YCS16], or importance to the loss function [YLC+18].

Usually, the pruned model is fined-tuned for a small number of additional epochs to recover some

of the accuracy lost during the pruning process [HPN+17]. Use such techniques, models such as

AlexNet and VGG-16 have been compressed to just 9% and 11% of their original size, respec-

tively, with little impact on accuracy [HPTD15]. To complement these developments, hardware

accelerators targeting pruned networks have also been proposed [HLM+16, HKM+17, ZDZ+16].

While sparse compression techniques have achieved impressive parameter savings, a major draw-

back is that they introduce sparsity in an unstructured manner. This necessitates a sparse matrix

representations which stores both the values of non-zeros as well as their locations in the form of

indices. Unstructured sparse matrices incur additional storage and memory indirection overhead,
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which directly translate to performance and area penalties in a hardware accelerator. In addition,

they require their own set of sparse linear algebra packages/modules and are generally incompati-

ble with dense implementations.

4.1.2 Depthwise Separable and Group Convolutions

One alternative approach to DNN pruning is to remove weight connections in a structured and

principled manner. Early networks such as AlexNet [KSH12] and VGG [SZ15] exclusively utilize

dense mappings such as convolutional (conv) or fully-connected (FC) layers that form a weight

connection between every input and every output feature. A depthwise separable convolution de-

couples this into two steps: a depthwise convolution which only performs 2D spatial filtering on

each channel, and a pointwise convolution which only learns to combine different channels using

a 1×1 conv. cross-channel mappings. The decoupled layers together contain far fewer parameters

than a traditional conv layer. In addition, depthwise separable convs divide the burden of spa-

tial and cross-channel learning into two distinc steps to more efficiently make use of parameters

and multiplies. The idea originated in a thesis by Laurent Sifre in 2014 [Sif14], and was subse-

quently popularized by network architectures like Xception [Cho16] and MobileNets [HZC+17].

Currently, depthwise separable convs are widely used in mobile-targeted DNN models.

Within a depthwise separable, over 90% of parameters exist in the pointwise step [ZZLS17].

This is because the pointwise conv is still a dense mapping with a single 1×1 weight connecting

each pair of input and output feature maps. Additional work has focused on eliminating redundant

weights in this layer, with one proposal being the group convolution. Group convs divide input

and output feature maps into equally-sized, mutually independent groups and performs a dense

convolution in each group. Depthwise convs are specific cases of group convs with group size 1.

Group convolutions were part of the original AlexNet, but only to facilitate training on multiple

GPUs [KSH12]; their first as a building block of efficient CNNs was in ResNeXt [XGD+17].

A group convolution reduces the parameter count of a pointwise conv, but the independent

groups prevent the learning of certain cross-channel correlations resuling in reduced network ac-
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curacy. This is an especially serious problem when a network stacks multiple group conv layers,

as a channel in the first layer will never be connected to other groups in any of the subsequent

layers. ShuffleNet [ZZLS17] proposes to remedy this by adding a channel shuffle to mix channels

amongst groups, thereby improving cross-group connectivity in the network. Shuffling increases

accuracy over vanilla group convs. Furthermore, it is extremely lightweight as it requires no pa-

rameters or arithmetic operations and can be implemented as a tensor transpose. Further works on

channel shuffling include Interleaved Group Convolutions [ZQXW17,XWZ+18,SLLW18], which

showed that when group convs are interleaved with shuffling, a specific combination of layer width

and number of groups can maximize accuracy. Another work, Deep Roots [IRCC17], uses group

convolutions with increasing group size deeper into the network to improve numerous existing

models.

4.1.3 Structured Matrix Compression

A second alternative to DNN pruning is a line of research on neural networks with circulant or

block-circulant 1 weights [CYF+15, SSK15, DLW+17, WLD+18]. An unstructured n× n matrix

contains n2 parameters, while an n×n circulant matrix contains only n unique parameters. More-

over, a circulant matrix C can be diagonalized by the normalized discrete Fourier matrix F via the

circulant convolution theorem [Pan01]:

C = F∗DF (4.1)

This result enables matrix-vector multiplies with C to be computed using two fast Fourier trans-

forms (FFTs) and an element-wise product, which amounts to just 2n logn + n multiplies. A

circulant-weight DNN can thus achieve principled, asymptotic reductions in both storage size and

computational complexity.

The circulant convolution theorem also provides a link between structure and sparsity. Equa-

tion 4.1 is essentially an eigendecomposition which shows us us that a circulant matrix (dense) is
1In this section, block-circulant, block-diagonal, etc. refers to matrices consisting of square sub-matrices which

are circulant, diagonal, etc. This is different from the canonical definition of a block-diagonal matrix.
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guaranteed to be diagonal (sparse) in the Fourier basis. The key advantage of exploiting sparsity in

this manner is that the structure of the sparse matrix is known beforehand. There is no overhead to

track non-zero locations, and computation can be performed with conventional dense linear algebra

operations.

The circulant convolution theorem also provides a link between structure and sparsity. Equa-

tion 4.1 is essentially an eigendecomposition which shows us us that a circulant matrix (dense) is

guaranteed to be diagonal (sparse) in the Fourier basis. The key advantage of exploiting sparsity in

this manner is that the structure of the sparse matrix is known beforehand. There is no overhead to

track non-zero locations, and computation can be performed with conventional dense linear algebra

operations.

Publication Dataset Comp. Accuracy Model
Ratio Loss

Cheng ICCV’15 [CYF+15]
CIFAR-10 3.75x 1.1% 3-layer CNN

ImageNet 18.3x
0.7% Top-1/

AlexNet
0.4% Top-5

Moczulski ICLR’16 [MDAdF16] ImageNet 6.0x 0.76% Top-1 Caffe AlexNet

CirCNN MICRO’17 [DLW+17]
CIFAR-10 128x <2% “Medium-size DNN”
ImageNet 90x <2% Top-1 AlexNet

C-LSTM FPGA’18 [WLD+18]
TIMIT 7.9x 0.32% PER Google LSTM
TIMIT 15.9x 1.23% PER Google LSTM

Table 4.1: Previous work on circulant DNNs – the first two publications applied circulant ma-
trices to just the FC layers, while CirCNN applied block-circulant matrices to both conv and FC
layers.

Imposing a circulant structure on DNN weights clearly restricts the space of learnable models,

potentially degrading classification performance. However, previous work shows that circulant

DNNs can in many cases reach comparable accuracy to baseline, or at least provide a compelling

compression-accuracy tradeoff. We first summarize previous work on convolutional networks (Ta-

ble 4.1). The earliest works to empirically test circulant CNNs were Cheng et al. [CYF+15]

and Moczulski et al. [MDAdF16]; both showed that circulant weights were extremely effective

at compressing the FC layers of AlexNet, with little accuracy loss. More recently, Ding et al.’s
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CirCNN [DLW+17] proposed to us block-circulant matrices – matrices whose square sub-blocks

are circulant. By applying block-circulant matrices to both conv and FC layers, they were able

to increase the level of compression (but seemingly at an accuracy loss). CirCNN also provided

the first hardware implementation of circulant CNNs, demonstrating improved energy efficiency

over previous state-of-the-art of 16x for FPGAs and 6x for ASICs. A follow-up paper applied

the same principles to LSTM compression and demonstrated results on FPGA which surpassed a

state-of-the-art sparse LSTM accelerator [WLD+18].

4.1.4 Unitary Group Convolutions and HadaNet

In this chapter of the thesis, we propose the concept of unitary group convolution (UGConv),

defined as a building block for neural networks that combines a weight layer (most commonly

a group convolution) with unitary transforms in feature space. We show that group convs with

channel shuffle (ShuffleNet) and block-circulant networks (CirCNN) are specific instances of UG-

Convs. By unifying two different lines of work in CNN literature, we gain a deeper understanding

into the basic underlying idea, that group convolutions exhibit improved learning ability when

performed in a transformed feature basis. Through a series of experiments, we then investigate

how different transforms and UGConv structures affect the learning performance. Specifically, the

contributions of this chapter are as follows:

1. We propose the concept of unitary group convolutions. We show that ShuffleNets and circu-

lant networks, techniques from two disparate lines of research, are in fact both instances of

UGConv networks. This lets us unify the conceptual insights of both works.

2. We evaluate how different unitary transforms affect learning performance. Our experiments

show that when the weight layer is highly sparse (i.e., the number of groups is large), dense

transforms outperform simple permutations.

3. We propose HadaNets, UGConv networks using the easy-to-compute Hadamard transform.

HadaNets obtain similar accuracy as circulant networks at a lower computation complexity,
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Figure 4.1: Relationship between group convs and circulant weights — each square represents
a 2D feature/filter, which can be 1×1 for an FC layer. (a) regular conv layer; (b) group conv with
2 groups; (c) same group conv reordered to show the block-diagonal weight structure; (d) block-
circulant conv layer; (e) same block-circulant conv decomposed into block-DFTs and a block-
diagonal conv layer.

and outperform ShuffleNets with identical parameter and fpmul counts.

4.2 Unitary Group Convolutions

The basic idea of a UGConv is a group convolution sandwiched between two unitary transforms

in feature space. Let X be an M-channel input tensor to a conv/FC layer. Each channel is a 2D

feature map (for a dense layer the dimensions are 1× 1). Let x(i) denote the i’th channel in X.

Similarly, let Y be the N-channel output tensor, and let W be the weight tensor consisting of
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M×N filters. We can now define an ordinary conv layer below:

y( j) =
M

∑
i=1

x(i) ∗W(i j), 1≤ j ≤ N

Figure 4.1(a) illustrates such a conv or dense layer. Note that although the figure looks like matrix

multiplication, each square represents a 2D weight filter or feature map.

A group convolution is simply a collection of G disjoint convolutions (G is the number of

groups). Each conv takes M/G input channels and produces N/G output channels.

ỹ(g, j) =
M/G

∑
i=1

x̃(g,i) ∗W̃(g,i j), 1≤ j ≤ N/G (4.2)

Here g denotes the group (1≤ g≤G), and we re-index x and y with two indices (group, channel in

group). Figure 4.1(b) illustrates how non-zero weights in a group conv form M
G ×

N
G blocks along

the main diagonal. A group conv reduces parameter size and fpmuls by a factor of G relative to an

ordinary conv. However, this is achieved by removing all weight connections between groups and

negatively impacts learning behavior.

A UGConv recovers this lost learning ability by sandwiching the group conv between two

cross-channel unitary transforms P and Q (Figure 4.2(a)). More formally, we can define a UGConv

is:
X̃k = PXk ∀k

ỹ(g, j) =
M/G

∑
i=1

x̃(g,i) ∗W̃(g,i j), 1≤ j ≤ N/G

Yl = QỸl ∀l

(4.3)

For a tensor X containing M channels, Xk is defined as the M-length vector formed by taking the

k’th element/pixel from each channel. P ∈ CM×M and Q ∈ CN×N are unitary matrix transforms

applied element-wise over the input and output channels. We use tilde (x̃, ỹ,W̃) to indicate tensors

in the transformed feature space. Note that: (1) P and Q can be identity transforms, and thus

UGConv includes group convolutions; (2) unitary transforms preserve inner products, thus they

should not diminish gradient magnitudes in the network; (3) UGConv can also be applied to FC

layers (using 1×1 feature maps and a 1×1 group conv).
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Figure 4.2: UGConv, ShuffleNet, and HadaNet block architectures — (a) a general block for
unitary group convolutions; (b) a ShuffleNet block reproduced from the original paper [ZZLS17];
(c) our proposed HadaNet variation. Note that both ShuffleNet and HadaNet blocks contain the
UGConv pattern.

One key point to make is the equivalence between a group conv and a convolution with block-

diagonal weights (weights that consist of sub-blocks of square diagonal matrices). Figure 4.1(c)

shows a block-diagonal conv, which visually already looks identical to the group conv in Fig-

ure 4.1(b). More formally, divide X and Y into size D× 1 sub-blocks, and W into D×D sub-

blocks which are diagonal. Let i index the input sub-blocks (0≤ i≤M/D−1), j index the output

sub-blocks (0 ≤ j ≤ N/D−1), and d index the channels within each sub-block (1 ≤ d ≤ D). We

can express the block-diagonal conv as follows:

y( j∗D+d) =
M/D−1

∑
i=0

x(i∗D+d) ∗W(i∗D+d j∗D+d)

Only D convs need to be performed for each D×D sub-block because they are diagonal. Similar

to Equation 4.2, we can simplify notation by re-labeling using a tuple (sub-block, channel in sub-

block). This removes the multiplies by D and allows i and j to start from 1. Then:

y( j,d) =
M/D

∑
i=1

x(i,d) ∗W(i j,d), 1≤ j ≤ N/D (4.4)

It is easy to see that Equation 4.4 matches Equation 4.2.
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4.2.1 UGConv and ShuffleNet

ShuffleNet is a variant of the MobileNets architecture in which the pointwise convolutions

(which take up 93.4% of the multiply-accumulate operations [ZZLS17]) are converted into group

convolutions. However, when multiple group convs are stacked together, the lack of connections

between groups over many layers prevents the learning of cross-group correlations. To address

this, ShuffleNet shuffles the output channels groups in a fixed, round-robin manner. For each

group, the first channel is shuffled into group 1, the second channel into group 2, etc. This shuffle

can be expressed as a permutation in feature space, and ShuffleNets are thus an example of of

UGConvNets where P is identity and Q is a fixed permutation matrix.

ShuffleNet shows experimentally that it is beneficial to shuffle information across groups when

stacking group convs. However, shuffling channels is not the only way to accomplish such infor-

mation mixing.

4.2.2 UGConv and Circulant Networks

Circulant and block-circulant neural networks [DLW+17, WDL+18] utilize layers that impose

a block-circulant structure on their weight tensors. For an FC layer, the 2D weight matrix is made

to be circulant. For a conv layer, the circulant structure is applied over the input and output chan-

nels axes. That is to say, given a 4D convolutional weight tensor with shape (height, width,

in_channels, out_channels), each 2D slice of this tensor [i,j,:,:] becomes circulant.

Figure 4.1(d) shows a block-circulant layer where each 2× 2 sub-block of the weight tensor

is circulant. By Equation (4.1), each D×D circulant matrix can be decomposed into a D-length

DFT, a diagonal matrix, and a corresponding IDFT. In Figure 4.1(e), each D×D sub-block is

diagonalized in this fashion. We use tilde to indicate weight values in the DFT-transformed space.

The resulting weight structure is block-diagonal, and the weight layer sits between two block-

DFT transforms. We know from the previous section that block-diagonal weights correspond to

group convolutions. Therefore, a block-circulant layer is just a group convolution in a transformed
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feature space. This of course falls within the definition of a UGConv, with P and Q being block-

DFT/IDFT transforms. Note that these DFTs are applied along the channels, and so circulant

networks are not examining the spatial frequency components of the image.

We make a few additional notes about block-circulant layers. First, the size of the circulant

blocks D is equal to the number of groups in the equivalent group conv (not the group size). Thus

each D-length DFT touches a single channel in every group, fully mixing information between

groups. Second, though our example uses a "square" weight tensor (where M = N), non-square

block-circulant tensors can be diagonalized as well. As long as both M and N are divisible by

D, the ’rectangular’ weight tensor can be divided into D×D blocks. In this case, P ∈ CM×M is

not the inverse of Q ∈ CN×N, but each sub-block along the diagonal of P is the inverse of the

corresponding sub-block in Q. We say that P is the block-inverse of Q.

Because P and Q are block-inverses, if we directly stack multiple such blocks many of the

transforms will cancel out. However, practical DNNs include batch norm and/or nonlinearities

between linear layers. The block-DFTs (and orthogonal transforms in general) do not commute

with channel-wise or pointwise operations, which prevents trivial cancellation. However, note that

channel shuffles do commute and cancel out in this manner.

4.2.3 Discussion of UGConvs

We have provided two specific examples from literature (ShuffleNet [ZZLS17] and Cir-

CNN [DLW+17]) which combine a structured sparse weight layer (group convolution) with unitary

transforms. The transforms help to improve cross-channel representation learning without adding

additional parameters. However, the two techniques have important differences. ShuffleNet’s per-

mutations are very lightweight as they require no arithmetic operations. However, permutations do

not affect the sparsity of weight layer. On the other hand, CirCNN composes block-DFTs with a

group conv to create an effective weight structure (i.e., circulant weights) which is dense. More-

over, it does so with lower asymptotic computational complexity than unstructured dense weights.

We hypothesize that the representation learning capability of a UGConv layer is a function of
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Table 4.2: Hadamard vs. Discrete Fourier transforms — The entries of the DFT matrix are the
complex roots of unity. The entries of the Hadamard matrix are +1 or −1. The last column shows
the structure of P∗DP where D is a diagonal matrix and P is the transform; differences are bolded.

Fourier Hadamard

Transform
P


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Structure
of P∗DP


a b c d
d a b c
c d a b
b c d a




a b c d
b a d c
c d a b
d c b a


FP Muls n logn 0
FP Adds n logn n logn

both the sparsity of the weights as well as that of the transform. An unstructured dense weight

layer offers the best learning capability; grouping introduces sparsity and degrades cross-channel

learning performance, some of which can be recovered via transforms. Because dense transforms

create dense weight structures, we believe they enable learning a richer set of representations

compared to sparse transforms (i.e., channel shuffling). When the weight sparsity is low, the

difference between the two may be negligible in terms of network accuracy. However, we expect

dense transforms to outperform shuffling when the number of groups is large.

Another difference is that ShuffleNet applies channel shuffle on only one side of the weight

layer, while CirCNN effectively applies transformations on both sides. We use the terms 1-sided

and 2-sided UGConvs to refer to these two cases, and test both in our experiments.

4.2.4 The Hadamard Transform

One drawback of dense transforms such as DFT is that they require more computational over-

head as compared to shuffling. Even using the ’fast’ algorithm, each n×n DFT requires O(n logn)

floating-point multiplies and adds. Furthermore, the fact that the DFT uses complex numbers may

further complicate software/hardware implementations. Finally, the DFT is taken over the channels
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Table 4.3: UGConv test error on a toy MNIST network — a ’G’ in the layer width columns
indicates a group layer. In the transform columns, P and Q denote 1-sided pre-conv and post-conv
transforms, respectively; PQ denotes a 2-sided transform. All values are averaged over 5 runs and
90% confidence bounds for each value are at most ±5%.

Layer Width Transform
L2 L3 L4 None Rand Ortho Rand Perm
Conv3x3 FC FC P Q PQ P Q PQ

20 20,G 10 6% 4% 4% 4% 5% 6% 5%
20 20,G 10,G 27% 10% 8% 4% 27% 26% 25%
20,G 20,G 10 25% 10% 10% 10% 27% 20% 21%
20,G 20,G 10,G 60% 23% 17% 20% 57% 55% 57%

where there is no spatial structure; the transform exists purely to mix information across channels.

Given this, we would like to find a more efficient alternative.

The Hadamard transform [PKA69] is defined as a matrix containing only +1/−1 elements and

whose rows and columns are mutually orthogonal. Table 4.2 shows a 4× 4 Hadamard matrix.

Because all coefficients have magnitude 1, the transform can be computed without multiplies,

using adds/subtracts only. This is extremely important as floating-point multiplies are typically

the computational bottleneck for DNN computation on both GPUs and specialized hardware. By

replacing multiplies with adds, the FHT will be much faster than the FFT in specialized hardware

such as ASICs and FPGAs. In addition, the Hadamard transform can be generated recursively like

the Fourier transform, meaning that a fast Hadamard transform (FHT) exists similar to the FFT

to compute a n-length Hadamard transform in O(n logn) adds/subtracts [PKA69]. The recursive

nature of FHT also enables Hadamard kernels to be implemented without explicitly storing the

matrix itself; instead the matrix can be generated on the fly (similar to existing implementations of

FFT kernels). This means neither FHT nor FFT requires storing additional parameters.

Hadamard is more efficient that DFT, but does it achieve the same learning performance? There

is some high-level intuition that this would be the case: Table 4.2 compares the weight structure

imposed by P∗DP when P is DFT and Hadamard. DFT results in a circulant matrix; Hadamard

results in a nearly identical weight matrix with only a few different elements. We hypothesize
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that there will be no accuracy impact in replacing circulant weights with Hadamard-diagonalizable

weights in neural nets.

We further speculate that dense unitary transforms in general, including DFT and Hadamard,

achieve comparable learning performance. This is again because the ordering of channels in DNNs

is essentially random (i.e., the channel order encodes no useful information), meaning there are

no patterns that can be exploited by one particular cross-channel transform and not others. The

transforms in UGConv exist solely to connect different channel groups, and any dense transform

will work as well as another. To test this hypothesis, we experiment with randomly generated

orthogonal transforms in addition to DFT and Hadamard.

One drawback of Hadamard transforms is that they have only been proven to exist for some

specific power-of-two lengths [Wal76, Ðok08, Hor12], while the DFT exists for all even lengths.

This restricts the group size in a Hadamard UGConv. However, we believe this is not a serious issue

in practice as power-of-two widths and group sizes are extremely common [HZRS15, XGD+17,

HZC+17, Cho16, SZ15].

4.3 Experimental Validation

We first present ablation studies on a toy MNIST network followed by deeper CIFAR-10 mod-

els. These experiments build up insights on UGConv. We then demonstrate the utility of Hadamard

using grouped ResNets and a ShuffleNet model from literature trained on ImageNet.

4.3.1 Dense Transforms vs. Shuffle

Our first experiment uses a toy MNIST network. This allows us to isolate the UGConv block

and to compare dense orthogonal transforms versus permutations in a simple setting. We stress that

the goal here is not to build a realistic classifier. The layer architecture is denoted below, where

each layer is described as (number of channels)(layer type):

10Conv3x3−20Conv3x3−20FC−10FC
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We perform 2×2 max pooling before each 3×3 conv layer, and a global average pool before the

first FC layer. Each layer is followed by batch normalization and ReLU.

We convert the first FC layer of the network (20FC1, shown in bold) into a UGConv block (it

becomes a grouped FC with transforms). The group number is equal to the number of channels to

maximize sparsity. From this base architecture we derive three variations: (1) convert the preceding

Conv3x3 layer into group conv; (2) convert the following FC layer into group FC; (3) convert both

surrounding layers into group layers. These test the performance of transforms in the context of

stacked group layers. Two types of transform are evaluated: randomly generated dense orthogonal

and random permutation transforms. We test with both 1-sided (using one of P or Q and setting

the other to identity) and 2-sided UGConvs (P = Q−1). All results are averaged over five runs, and

we regenerate the random transformation matrices between runs.

Table 4.3 shows our results. Due to the small size of the network, the 90% confidence bound

for these values can be as large as ±5%. Nevertheless, differences between transforms are clearly

demonstrated. When L3 is the only grouped layer in the network (row 1), transforms have little

to no effect. However, when two or more group layers are stacked together, the dense orthogonal

transforms achieve improved accuracy. Permutations did not improve accuracy in any experiment.

This is a clear (albeit artificial) demonstration that when the number of groups is very large, dense

transforms outperform permutations in learning ability.

Another interesting observation is that there is little difference between 1-sided and 2-sided

transforms, regardless of whether the UGConv block is stacked before or after another group layer.

For example, in Table 4.3 row 3, a dense orthogonal transform improves accuracy even when it

is placed after both group layers. It may be surprising that a transform affects layers preceding

it. But keep in mind that the transform also affects gradients on the backwards pass, allowing the

same weights to ’see’ more downstream activations during backpropagation. Alternatively, we can

view the UGConv layer as a learnable structured weight layer. From this perspective, the weight

structure is a function of transforms both before or after.
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Table 4.4: UGConv test error on CIFAR-10 — The first three columns show the number of groups used in the three stages (S1-S3).
The Base column shows the test error with no transforms, and the other columns show improvement in test error over this baseline. Some
entries are blank due to insufficient time to complete the experiments.

# of Groups Base 1-sided Transforms 2-sided Transforms Params
S1 S2 S3 Shuffle Hada Ortho Shuffle* Fourier Hada Ortho

ResNet-20 4 8 16 19.5% 3.3% 4.0% 4.0% 3.1% 4.1% 4.2% 3.8% 25K
8 16 32 23.8% 2.9% 4.3% 3.9% 4.1% 5.4% 5.4% 5.3% 14K

ResNet-56 4 8 16 16.0% 4.0% 4.4% 4.2% 4.0% 4.7% 4.5% 4.6% 76K
8 16 32 20.6% 5.4% 6.1% 6.4% 5.8% 7.1% 7.2% 6.8% 41K

ShuffleNet-29 4 8 16 18.3% 2.7% 2.4% 3.1% 3.8% 4.9% 4.5% 4.2% 23K
8 16 32 22.1% 0.6% 3.4% 3.6% 3.8% 5.1% 5.0% 5.3% 17K

ShuffleNet-56 4 8 16 16.2% 3.6% 3.5% 3.4% 3.9% 4.6% 4.5% 4.7% 41K
8 16 32 19.7% 4.3% 4.4% 4.9% 5.2% 6.0% 6.0% 6.0% 29K

Mean 4 8 16 17.5% 3.4% 3.6% 3.7% 3.7% 4.6% 4.4% 4.3%
8 16 32 21.5% 3.3% 4.6% 4.7% 4.7% 5.9% 5.9% 5.9%
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4.3.2 Evaluation of Different Transforms

We have shown that dense orthogonal transforms can improve over shuffles in small DNNs

with large group sizes. To validate our results on more realistic architectures, we perform experi-

ments on CIFAR-10 [KH09] using ResNet [HZRS15]. We use UGConvs to replace the two 3×3

convolutions in each ResNet block, and to replace the 1×1 projection layers. ResNets are divided

into three stages (S1, S2, S3), with later stages having more channels. We use more groups in

later stages, keeping the ratio of channels to groups constant. Two models are tested: ResNet-

20 (3 block per stage) and ResNet-56 (9 blocks per stage). We also experiment with the same

high-level architecture but using the building block from ShuffleNet [ZZLS17]. This block which

contains two 1×1 convs and a 3×3 depthwise conv (see Figure 4.2(b)). Following ShuffleNet we

apply transformations around the first 1× 1 group conv only and make no changes to the second

group conv. Again, two models are tested: ShuffleNet-29 (3 block per stage) and ShuffleNet-56

(6 blocks per stage).

We use layer widths and training hyperparameters from [HZRS15] and make use of standard

data augmentations: padding 8 pixels on each side and randomly cropping back to original size,

combined with a random horizontal flip [HZRS15, HSL+16, LCY13]. Each network is trained for

200 epochs, and we report the mean test error over the last 5 epochs.

We test the following transforms: identity (None), ShuffleNet permutation (Shuffle), block-

Hadamard (Hada), block-DFT (Fourier), and block-random-orthogonal (Ortho). The block trans-

forms follow the same structure described in Section 4.2.2. For each transform, both 1-sided

(letting Q be the transform and P identity) and 2-sided (P and Q are block-inverses) versions are

tested where reasonable. The 1-sided DFT is left out because it introduced complex numbers into

the network. For the 2-sided channel shuffle (Shuffle*), we set P = Q to essentially perform ad-

ditional shuffling; this is done since using block-inverse shuffles will lead to trivial cancellation.

All results are displayed in Table 4.4. The error rate with no transforms is given first followed by

the accuracy improvement achieved with each UGConv setup. Our base error rates are high for

CIFAR-10 because group convolutions significantly compress the network
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Table 4.5: ShuffleNet and HadaNet classification error on ImageNet — we include data on
both the original ShuffleNet (with our own code) and our pre-activation variation. Our baseline
ShuffleNet implementation is close to the literature results (52.7%). For each model we show
the number of parameters and fpmuls, as well as the overhead in additions from the Hadamard
transform.

Shuffle Hada Delta Params FPmuls Hada Adds
ResNet-18 g8 46.4% 44.6% (-1.8%) 1.9M 330M 7.8M

ResNet-18 g16 55.8% 52.3% (-3.5%) 1.2M 226M 10.4M

ShuffleNet-x0.25 g8 53.6% 52.6% (-1.0%) 0.46M 17M 0.95M

A key result here is that dense orthogonal transforms perform similarly in accuracy. Fourier,

Hada, and Ortho obtain results which are within a spread of 0.4% in both 1-sided and 2-sided

settings. On the other hand, the shuffle transforms (1 and 2-sided) clearly perform worse for

the larger group sizes. This confirms our hypothesis that Hadamard is comparable to DFT in

learning performance while being much easier to compute. It also provides evidence that all dense

UGConvs achieve comparable learning performance.

Another observation is that 2-sided transforms significantly outperform their 1-sided variants,

which is different from the MNIST data. We currently do not have an explanation for this effect.

One speculation was that 2-sided transforms perform better when the number of input and output

channels did not match. However, further testing with the small MNIST network showed that this

was not the case.

Finally, note that the accuracy trends remained the same whether the transforms were applied

to 3× 3 group convs in ResNet or 1× 1 group convs in ShuffleNet. This is evidence that spatial

and cross-channel dependencies are effectively decoupled in convolutional layers, and that the size

of the filter does not significantly affect channel-space transforms.

4.3.3 HadaNet Evaluation on ImageNet

The data from previous sections point to two regimes: at low weight sparsity (i.e., small group

numbers) a simple shuffle is sufficient to maximize accuracy. At large group numbers, however,
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dense transforms outperform shuffles. This section evaluates the 2-sided block-Hadamard trans-

form against shuffle on ImageNet. Hadamard was chosen as it is far more efficient than other

dense unitary transforms, and ShuffleNet was used for comparison as it is highly related work

and a strong baseline. We refer to networks using Hadamard UGConvs as HadaNets. Figure 4.2

compares the residual blocks of ShuffleNet and HadaNet.

Due to hardware constraints, we chose small models with fairly large group size. This is the

setting where dense transforms should perform the best compared to shuffle. We evaluate ResNet-

18 following the ImageNet architecture from [HZRS15] and using group sizes 8 and 16 throughout

the network. We also test with the ShuffleNet-x0.25 g8, which is the smallest ShuffleNet variant

from [ZZLS17]. This network has 50 layers and also uses 8 groups. Each network was trained with

the hyperparameters and learning rate schedule described in their respective papers. We compare

1-sided shuffle to 2-sided block-Hadamard (note that ShuffleNet from literature already contains

the 1-sided shuffle). All results are displayed in Table 4.5. Our reproduction of ShuffleNet-x0.25-

g8 achieved a Top-1 error of 53.6%, which is close to the 52.7% reported in Table 2 of [ZZLS17].

The results demonstrate that the Hadamard transform can indeed outperform shuffling in terms

of accuracy on large scale datasets. ResNet-18 with group convs is a non-standard model, but it

serves to show that the trends observed in CIFAR-10 ResNets carry over to ImageNet. On the other

hand, ShuffleNet is a well-optimized baseline which obtains good accuracy performance on a very

tight parameter and fpmul budget. In addition, despite very little hyperparameter tuning, HadaNet

was able to improve slightly over ShuffleNet.

4.3.4 Practicality of HadaNet

HadaNet slightly outperforms ShuffleNet on accuracy, but requires extra floating-point adds.

An N-channel group conv with B groups requires N2/B fpmuls for the weight layer and 2N logB

adds for the two block-Hadamard transforms. Compared to multiplies, additions are already much

cheaper in hardware. The last column of Table 4.5 shows the number of additions needed for each

network if the fast Hadamard transform is used. The relative overhead of HadaNet is fairly small:

66



the extra adds amount to only 2-5% of existing multiply-accumulates in those networks.

However, the overhead of the Hadamard transform depends on a well-optimized implemen-

tation. The reason we did not show runtime on GPU is that an O(n logn) fast Hadamard kernel

operating along the channels is not currently available. As a result our own HadaNet implementa-

tion is fairly slow.

On the other hand, we believe the Hadamard transform might be useful for specialized DNN

accelerators implemented with FPGAs [CFO+18] or ASICs [JYP+17]. Top computer hardware

conferences already contain works demonstrating the use of circulant matrices for DNN compres-

sion in dedicated hardware [DLW+17, WLD+18, DLX+19]. These works show that DFTs can

be very efficiently implemented in a dedicated module due to its recursive nature. We choose

Hadamard because it also has the same recursive properties, meaning it should be even simpler

in hardware due to lower computational complexity. All-in-all, this chapter reveals that in high

weight sparsity regimes, dense transforms outperform simple shuffling. HadaNet is more efficient

than the existing state-of-the-art dense transform (the DFT transform) while achieving similar ac-

curacy performance in DNNs.

4.4 Conclusions and Future Work

We introduce the concept of unitary group convolutions, a composition of group convolutions

with unitary transforms in feature space. We use the UGConv framework to unify two disparate

ideas in CNN literature, ShuffleNets and block-circulant networks, and provide valuable insights

into both techniques. UGConvs with dense unitary transforms demonstrate superior ability to

learn cross-channel mappings versus ordinary and shuffled group convolutions. Based on these

these observations we propose HadaNet, a variant of ShuffleNet that improves accuracy on the

ImageNet dataset without incurring additional parameters or floating-point multiplies.

One direction for future work would be investigating higher-order Hadamard-diagonalizable

matrices in deep neural networks. There are already a few studies which describe low-displacement
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rank matrices (a generalized form of circulant matrices which admit fast algorithms using the DFT)

and their potential for DNN compression [SSK15]. We believe it would be possible to similarly

derive a more general class of matrices which utilize the fast Hadamard transform. Such matrices

would have the same advantages of vanilla Hadamard networks over vanilla circulant networks

shown in this chapter.

A different future direction is to replace the Hadamard transform with a trained 0,+1,−1

transform; training may allow the transform to adapt to the weights, and introducing zeros could

enable sparse compute reduction.
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CHAPTER 5

OUTLIER CHANNEL SPLITTING FOR DATA-FREE DNN QUANTIZATION

5.1 Preliminaries

Fixed-point quantization is critical to the design of high performance specialized neural

network accelerators. The majority of literature on DNN quantization involves training. A

DNN model is either trained from scratch with quantized values [CBD15, WLCS18, JKC+18]

or a pre-trained floating-point model is fine-tuned with quantized values for a small number of

epochs [HMD16, ZYG+17]. Training is important because it essentially lets the each layer’s

weights adapt to the newly-quantized inputs. With fine-tuning, a variety of CNNs for ImageNet

classification can run inference with 8-bit integers [Mig17]. Although training-based techniques

are versatile and valuable, there are important real-world scenarios in which (re)training is not ap-

plicable. Consider an ML service provider (e.g., Amazon, Microsoft, Google) which wants to run

a black-box client model on a specialized accelerator utilizing low-precision fixed-point. Machine

learning research works almost exclusively with floating-point models trained on GPUs (save for

a tiny fraction of hardware-oriented research), so one of the parties must quantize the model first.

It would be natural for the service provider to perform quantization for its custom machines, but

the client often does not want to share its proprietary training data. On the other hand, the client

(possibly a small organization or an individual) may lack the the expertise or manpower for quan-

tization training. Finally, the DNN may be an off-the-shelf model (for which data is not available)

or part of a legacy data pipeline (for which the model is extremely difficult to modify). The above

is just a small list of reasons why industry would prefer data-free (DF) quantization, i.e., quanti-

zation methods that do not require (re)training. The importance of DF quantization can be seen

from NVIDIA’s TensorRT, a product which specifically performs 8-bit integer quantization using

just a small collection of sample inputs. The chapter of the thesis presents a technique which can

generically improve data-free DNN quantization at the cost of slight model size overhead.
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(a) (b)

(c)

Figure 5.1: Weight histograms for linear, clipping, and OCS quantization — light color is
for the floating-point histogram and dark color indicates is in the light color while the quantized
weight histogram is in dark color. Both clipping and OCS reduces mean squared quantization error
(MSE) by reducing the dynamic range of the distribution. Clipping reduces the overall MSE but
greatly distorts the outliers. OCS avoids this distortion by splitting the outliers instead, moving
them towards the center of the distribution at the cost of some model size overhead.

5.1.1 Data-Free Quantization

DNN weights and activations follow a bell-shaped distribution after training. However, com-

modity hardware uses a linear number representation with evenly-spaced grid points. The naïve

approach is to linearly map the entire range of the distribution to the range of the quantization grid
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(Figure 5.1(a)). Here the grid points extend to the maximum value in the distribution [HCS+17].

Clearly, this method over-provisions grid points for the rarely-occurring outliers. A better approach

is to make the grid narrower than the distribution. This is known as clipping, as it is equivalent to

thresholding the outliers before applying linear quantization (Figure 5.1(b)). Empirically, clipping

can improve the accuracy of quantized DNNs, and many techniques exist to choose the optimal clip

threshold [SSH15, ZST+18, Mig17]. Unfortunately, clipping can only reduce overall quantization

error by increasing the distortion on the outliers — it is constrained by this tradeoff.

Another approach to handling outliers is to quantize them separately from the central values.

Such outlier-aware quantization [PKY18,PYV18] is highly effective, but involves the use of dedi-

cated non-commodity hardware.

5.1.2 Outlier Channel Splitting

In this chapter of the thesis, we propose outlier channel splitting (OCS). OCS identifies a small

number of channels containing outliers, duplicates them, then halves the values in those channels.

This creates a functionally identical network, but moves the affected outliers towards the center

of the distribution (Figure 5.1 (c)). OCS takes inspiration from previous work on equivalence-

preserving network transformations [CGS16]; it does not require retraining and can be used on

commodity CPUs and GPUs. Complementary to clipping, OCS introduces a new tradeoff: it re-

duces quantization error at the expense of making the neural network larger. Experimental evalua-

tion shows that for practical CNN and RNN models, OCS can significantly improve post-training

quantization accuracy over state-of-the-art clipping methods with just a few percent overhead.

To present a comprehensive study of post-training quantization, this chapter also evaluates

different techniques for optimizing the clip threshold on both weights and activations. To our best

knowledge, we are the first to perform a detailed literature comparison of these techniques. The

specific contributions of this chapter are as follows:

1. We propose outlier channel splitting, a technique to improve DNN model quantization that
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does not require retraining and works with commodity hardware.

2. We present a comprehensive evaluation of post-training clipping techniques found in litera-

ture. To our best knowledge this is the first such study.

3. We demonstrate that OCS can outperform state-of-the-art clipping techniques on weight

quantization, while incurring negligible overheads.

Code for both OCS and clipping is available in open source 1.

5.2 Prior Work on Data-Free Quantization

5.2.1 Linear Quantization

The simplest form of linear quantization maps the inputs to a set of discrete, evenly-spaced

grid points which span the entire dynamic range of the inputs. The maximum quantization error

for any single value is one-half of the increment. For symmetric k-bit quantization, we have 2k−1

grid points:

LinearQuant(x) = round
(

x(2k−1−1)
max(|x|)

)
max(|x|)
2k−1−1

(5.1)

Because each value is scaled by max(x), LinearQuant is sensitive to the largest inputs, the out-

liers. Many existing works first clip the range of x prior to linear quantization. Clipping repre-

sents the state-of-the-art in post-training quantization, and in the paragraphs below we give a brief

overview of different methods for optimizing the clip threshold in literature. We also present an

evaluation of these methods in our experiments.

5.2.2 Mean Squared Error Clipping

This method chooses a clip threshold which minimizes the mean squared error (MSE) or L2-

norm between the floating-point and quantized values [SSH15, SHS16]. It first constructs a his-

1https://github.com/cornell-zhang/dnn-quant-ocs
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togram of the floating-point values. Let xi and h(xi) be the bin values and frequencies, and i= 1 . . .n

denote the n bins. The MSE is defined as:

MSE =
1
n

n

∑
i=1

h(xi)∗ (xi−Q(xi))
2 (5.2)

where Q(x) is the quantization function. In our experiments, we generate a large number of candi-

date clip thresholds evenly spaced between 0 and the max absolute value, and choose the one with

minimal MSE.

5.2.3 ACIQ Clipping

Proposed by Banner et al. [BNHS18], ACIQ first determines whether distribution is closer to

a Gaussian or a Laplacian. Using statistics from the appropriate distribution, it uses an (approx-

imate) closed-form solution for the clip threshold which minimizes MSE. Compared to the MSE

method above, ACIQ avoids sweeping candidate thresholds and is much faster. This allows the

clip threshold to be adjusted between input batches for activation quantization.

We used open-source code from the authors 2. Banner et al. assumed that an m-bit fixed-point

format contains 2m grid points; this representation lacks a grid point at zero for signed values.

We use 2m− 1 grid points (a sign-magnitude representation) instead as it is the default in our

framework, and slightly adjusted the formulas from the paper to suit.

5.2.4 KL Divergence Clipping

This method chooses a clip threshold which (approximately) minimizes the KL divergence

between the floating-point and quantized. Similar to the MMSE method, it works on the histogram

of values and selects the optimal clip threshold from a set of candidates. The method was first

proposed in a set of slides on NVIDIA’s TensorRT [Mig17], which unfortunately does not contain

enough technical detail for replication. Instead, we adapted an open-source implementation from

Apache MXNet [CLL+15].
2https://github.com/submission2019/AnalyticalScaleForInteger Quantization
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(a) (b)
Figure 5.2: OCS network transformation — after duplicating a neuron, we can divide either the
neuron’s output value or its outgoing weights in half to preserve functional equivalence. (a) figure
taken from Net2Net [CGS16] where the weight v2 is halved by duplicating y2; (b) an example with
multiple inputs and multiple outputs, showing how x2 or w3 can be halved while maintaining the
same outputs. Here, an entire row must be added to the weight matrix to split a single value.

In general, floating-point and quantized distributions do not have the same support and the

KL divergence is thus undefined. To get around this, the MXNet implementation smooths the

quantized histogram slightly by moving some of the probability mass into zero-frequency bins.

5.3 Outlier Channel Splitting

5.3.1 Improving Quantization with Net2WiderNet

The core idea of OCS is to reduce the magnitude of outlier weights and/or activations in a

DNN layer by duplicating a neuron, then either (1) halving its output; (2) halving the outgoing

weight connections. This leaves the layer functionally equivalent but makes the weight/activation

distribution narrower and thus more suitable for linear quantization. Such layer transformations

were originally proposed as Net2WiderNet in Net2Net [CGS16]; we leverage them to improve

quantization.

More formally, consider a linear layer in a DNN which takes as input the m-channel activation

vector x= {xi}m
i=0, where each xi can be a single value (FC layer) or a 2D feature map (conv layer).
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Let y = {y j}n
j=0 be the n-channel output. We can define a linear layer as follows:

y j =
m

∑
i=1

xi ∗Wi j (5.3)

where Wi j represents the weight(s) connecting xi and y j and ∗ represents multiplication or 2D

convolution over a single channel. Without loss of generality, consider using OCS to split the last

channel xm. This equates to rewriting Equation 5.3 as follows:

y j =
m−1

∑
i=1

xi ∗Wi j +(xm ∗
Wm j

2
)+(xm ∗

Wm j

2
) (5.4)

y j =
m−1

∑
i=1

xi ∗Wi j +(
xm

2
∗Wm j)+(

xm

2
∗Wm j) (5.5)

In both cases, we split channel m into 2 channels. To preserve equivalence, we can halve the

weights (Equation 5.4) or halve the input activations (Equation 5.5). Figure 5.2(a) taken from the

Net2Net paper illustrates weight OCS visually: by duplicating y2 we can cut its outgoing weight

v2 in half.

OCS is an alternative to clipping for reducing the dynamic range of DNN values without re-

training. Compared to clipping, OCS preserves the outliers but incurs additional network overhead.

The outlier values are the largest values in a layer and contribute the most to the outputs. We ex-

pect OCS to outperform clipping in neural network accuracy — the question is whether it can do

so with low overhead.

Figure 5.2(b) shows some additional caveats of OCS in a layer with 2 inputs and 2 outputs.

The top equation describes the original layer; the next two equations illustrate OCS to split the

activations and the weights, respectively. One caveat is that to split any weight value, an entire

row must be added to the weight matrix. For a conv layer, OCS requires duplicating an entire 2D

activation channel and all 2D weight filters connected to that channel. A second caveat is that not

all values need to be split. At the bottom of Figure 5.2(b), w4 is split in half while w3 is not split.
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5.3.2 Quantization-Aware Splitting

In this section, we show that duplicating and dividing a value by two following Net2WiderNet

increases the total quantization error. We then propose an alternative split ratio which preserves

quantization error. Without loss of generality, consider the deterministic rounding function Q(x) =⌊
x+ 1

2

⌋
, which maps each real number to its closest integer, rounding halves toward −∞. The

maximum error introduced by Q(x) is 0.5. Next define OCS as a function f (w) : R→ R2 which

maps a single value to two values. The naïve split used in Net2WiderNet is:

OCSnaïve(w) =

w/2

w/2

 (5.6)

It is clear that Q(w) 6= Q(w
2 )+Q(w

2 ), i.e. naïve OCS does not preserve the quantized value. The

maximum total quantization error is doubled as both halves may be rounded in the same direction

(e.g., w = 3 and each half is 1.5).

To address this, we propose the following quantization-aware (QA) splitting function:

OCSQA(w) =

(w−0.5)/2

(w+0.5)/2

 (5.7)

Intuitively, this forces Q(x) to round in different directions when w is close to the midpoint between

grid points. More formally, we can prove the following:

Q(
w−0.5

2
)+Q(

w+0.5
2

)

=

⌊
w−0.5

2
+

1
2

⌋
+

⌊
w+0.5

2
+

1
2

⌋
=

⌊
w+0.5

2

⌋
+

⌊
w+0.5

2
+

1
2

⌋
=bw+0.5c

(5.8)

The last line is simply Q(w), showing that QA OCS preserves the original quantization result. To

derive the last line, we apply Hermite’s Identity [SA03] with n = 2:

n−1

∑
k=0

⌊
x+

k
n

⌋
= bnxc (5.9)
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We can further show that QA splitting is optimal; there exists no way to split w which results

in lower quantization error. This proof is omitted due to length.

5.3.3 Channel Selection

As stated earlier, OCS cannot target individual weights or activations and must duplicate entire

channels. OCS performs splits one at a time, and always splits the channel containing the largest

absolute value in the layer. By prioritizing channels containing the largest values, OCS seeks to

minimize distortion caused by any subsequent clipping. We use a simple method to determine

how many splits to perform in each layer (i.e., how many extra channels are created). For a layer

containing C channels, OCS splits ceil(r ∗C) channels, where r is the expansion ratio, a hyperpa-

rameter that determines approximately the level of tolerable overhead in the network. This method

allocates extra channels without considering each layer’s weight or activation distributions. We

also tried a more intelligent approach which formulates extra channel allocation as a knapsack

problem. The reward function is the percentage reduction in the dynamic range of the distribution,

and the cost is the increase in memory size. We optimize the number of extra channels for all

layers simultaneously subject to a constraint on the memory overhead. Unfortunately, the knap-

sack approach is experimentally not better than the simple method described above, and for space

reasons we do not show results with knapsack.

Channel selection on DNN weights is straightforward to implement as the weights are known

and fixed post-training. For the activations, we take an approach similar to TensorRT [Mig17]:

we use a small number of training images to sample the activations in each layer. The sampled

distributions in each layer are then used for OCS.

5.3.4 Implementation on Commodity Hardware

A key strength of OCS is simplicity, allowing it to be used in practical scenarios with either

commodity hardware or emerging deep learning accelerators. Figure 5.2(b) shows the network
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Table 5.1: Quantization-aware (QA) splitting in OCS — each table entry shows (QA / non-QA)
where non-QA means simply dividing by two. The model is ResNet-20 for CIFAR-10.

Wt.
Bits

OCS Expand Ratio
0.01 0.05 0.1 0.2

6 92.0 / 91.9 91.9 / 92.0 92.1 / 91.9 92.0 / 92.0
5 91.6 / 91.4 91.7 / 91.6 92.0 / 91.8 91.7 / 91.8
4 88.0 / 88.3 88.2 / 88.3 88.7 / 86.8 89.1 / 86.8
3 49.9 / 44.5 58.3 / 44.8 62.7 / 44.6 76.5 / 52.8

modifications needed to implement OCS, which involves duplicating and scaling certain channels

in the weights and activations. The weight modifications can be done off-line prior to serving the

model. For the activations, a custom layer can be inserted which simply copies and scales the

appropriate channels.

5.4 Experimental Evaluation on CNNs

This section reports experiments on CNN models for ImageNet classification [DDS+09] con-

ducted using PyTorch [PGC+17] and Intel’s open-source Distiller 3 quantization library. Post-

training quantization was performed using Distiller’s symmetric linear quantizer, which scales the

quantization grid based on the maximum absolute value following Equation 5.1. For activation

quantization, we first sampled the activation distributions using 512 training images (i.e., images

not part of the test set) to determine the quantization grid points, then use this grid during testing.

This profiling took between 40 and 200 seconds on our machine using an NVIDIA GTX 1080 Ti.

Weight clipping and OCS does not require profiling and was performed without any data.

The chosen CNN benchmarks are four popular ImageNet models: VGG16 [SZ15] with

batch normalization added, ResNet-50 [HZRS15], DenseNet-121 [HLWvdM17], and Inception-

V3 [SLJ+15]. Pre-trained weights were obtained from the PyTorch model zoo and we ran infer-

ence only. The first layer was not quantized as it generally requires more bits than the others, and

contains only 3 input channels meaning OCS would incur a large overhead.

3https://github.com/NervanaSystems/distiller
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Table 5.2: [ImageNet Top-1 accuracy with OCS weight quantization] — the float accuracy is displayed under the model name.
Results include different Clip methods, OCS with different expand ratios, and OCS + the Best Clip method at each bitwidth. For
clipping, the best result is bolded and copied to the Clip - Best column. For OCS, the smallest expand ratio that outperforms all clipping
methods is bolded, and the smallest expand ratio that achieves +1% accuracy over clipping is highlighted in blue. Best viewed in color.

Network
Wt Clip Clip OCS OCS + Best Clip
Bits None MSE ACIQ KL Best 0.01 0.02 0.05 0.01 0.02 0.05

VGG-16 BN
(73.4)

8 73.0 72.6 72.8 68.4 73.0 72.6 72.9 72.8 72.7 72.8 72.5
7 72.8 72.5 72.5 60.7 72.8 72.1 72.8 72.5 72.4 72.1 72.6
6 70.8 71.3 71.2 63.2 71.3 72.3 72.2 72.3 71.8 71.8 72.1
5 63.1 66.9 61.2 62.7 66.9 69.3 70.2 71.0 68.8 69.5 70.0
4 0.2 53.5 34.2 59.4 59.4 10.4 26.3 37.9 63.8 63.8 65.9

ResNet-50
(76.1)

8 75.4 75.5 75.4 73.5 75.5 75.7 75.7 75.7 75.7 75.7 75.4
7 75.0 75.2 75.0 72.8 75.2 75.5 75.5 75.6 75.5 75.5 75.5
6 72.9 73.5 74.3 71.6 74.3 74.9 74.7 75.0 74.8 74.8 75.2
5 14.5 69.1 69.9 69.4 69.9 69.4 71.9 72.6 71.0 71.9 73.4
4 0.1 45.0 33.2 62.9 62.9 12.1 36.1 55.2 66.2 67.1 69.3

DenseNet-121
(74.4)

8 74.1 73.8 73.7 71.0 74.1 74.2 74.2 74.2 74.2 74.2 74.2
7 73.8 73.3 73.1 62.3 73.8 73.9 74.0 74.0 74.1 74.2 74.1
6 71.0 71.4 71.1 60.7 71.4 72.9 73.0 73.2 73.2 73.1 73.1
5 46.9 65.4 61.4 54.6 65.4 65.5 69.7 71.3 70.0 70.7 71.6
4 0.4 33.3 25.2 42.6 42.6 13.1 37.5 53.0 52.7 56.5 63.0

Inception-V3
75.9)

8 74.8 74.6 74.0 72.6 74.8 75.2 75.4 75.3 74.8 75.0 74.9
7 73.2 71.2 69.1 69.4 73.2 74.8 74.7 74.7 71.8 73.8 74.2
6 58.3 66.2 62.3 63.0 66.2 71.3 71.8 72.1 70.5 71.7 72.5
5 0.5 30.4 29.6 40.5 40.5 45.2 54.0 60.2 57.0 60.0 62.9
4 0.1 0.2 0.1 1.6 1.6 0.1 0.2 0.6 2.1 2.3 4.8
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5.4.1 Effect of Quantization-Aware Splitting

The first experiment compares our proposed quantization-aware (QA) splitting against simply

dividing by two as per Net2Net. Table 5.1 displays results from ResNet-20 for CIFAR-10 [KH09].

Although the difference is negligible until 4 bits (at which point there is significant accuracy degra-

dation), QA splitting is clearly better than the naïve method. This validates our mathematical ideas

about QA splitting, and we use the technique in all ensuing experiments.

5.4.2 Weight Quantization

Table 5.2 compares different clipping methods and OCS on weight quantization. The weights

were quantized to 8-4 bits, while the activations were quantized to 8 bits. Floating-point accuracy

is displayed under the model name. Linear quantization without clipping or OCS is shown in the

Clip - None column. For ease of comparison we copy the best clipping result to the Clip - Best

column. A range of small expand ratios r was chosen for OCS.

Our results indicate that for large bitwidths, there is no advantage to doing weight clipping.

This is in line with NVIDIA’s report on TensorRT [Mig17], which reported the same at 8 bits.

Clipping becomes beneficial at 6 bits or fewer, improving accuracy by up to 55% for Resnet-

50 and 40% for Inception-V3. Interestingly, the best-performing clipping technique depends on

bitwidth and follows a consistent pattern across network architectures. As we go from high to low

bitwidth, the winning technique goes from no clipping, to MSE/ACIQ, to KL at 4 bits.

Weight OCS with an expansion ratio of only r = 0.01 outperforms our benchmarked clipping

methods at 8-5 bits. At 8 and 7 bits the difference between OCS and clipping is small and there

isn’t a clear trend of improvement for higher expand ratios; in this regime OCS is not especially

effective and the accuracy differences between expand ratios are mostly noise. At 6 and 5 bits,

OCS with r = 0.02 outperforms clipping by 1% for all models except ResNet-50, and up to 13%

for Inception-V3. This demonstrates that the basic idea of OCS works. By splitting the outliers

to preserve their values instead of clipping them, OCS can improve the accuracy of post-training
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quantization. Another trend is that OCS gets most of its gains from small expansion ratios. The

gain from r = 0 (no OCS) to r = 0.01 is always larger than the gain from moving to higher r values.

Note that our benchmark networks have channel widths in the tens to hundreds so r = 0.01 equates

to a single channel split in many layers. This again makes intuitive sense: the first channel split

will target the unique largest outlier, guaranteeing a narrower weight distribution. Further splits

target smaller values which occur with higher frequency, making OCS less effective at reducing

the distribution width.

Given this intuition, we expect that a combination of OCS (to remove the largest outliers)

followed by clipping (to further shrink the quantization grid) might surpass either method alone.

The rightmost columns of Table 5.2 show results for OCS + Best Clip (i.e., applying OCS followed

by the best performing clip method at each bitwidth). At 5 and 4 bits, OCS plus clipping cleanly

outperforms OCS alone. OCS and clipping both seek to shrink the dynamic range of the quantized

values, and thus there is some level of overlap between them. At high precision, OCS with our

chosen expand ratios eliminates enough outliers such that additional clipping is unnecessary. At

low precision, we believe that OCS would require huge expand ratios to fully address the outlier

problem. In this regime OCS can combine with clipping to produce the best quantization results.

5.4.3 Activation Quantization

The same benchmarks and setup were used for activation quantization, except weights were

kept at 8 bits while the bitwidth was varied for activations. To select the channels to split, we

sampled activation distributions and counted the number of extreme values (we used values greater

than the 99’th percentile) in each channel. Channels with the highest counts were split.

Table 5.3 shows activation quantization results. Unlike the weights, clipping is effective at

all bitwidths tested. This is again in agreement with TensorRT [Mig17], which applied clipping

to 8-bit activations. MSE clipping outperforms the other clip threshold techniques in nearly all

cases. The gap between MSE and KL divergence is very small for large bitwidths, but at fewer

bits MSE is clearly better. ACIQ performs worse than the other two methods with the exception of
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Table 5.3: ImageNet Top-1 accuracy with OCS activation quantization — formatting is iden-
tical to Table 5.2 except weight bits is kept at 8 while the activation bitwidth is changed. We did
not combine OCS with clipping due to ineffectiveness of OCS on activations.

Network
Act. Clip Clip OCS
Bits None MSE ACIQ KL Best 0.01 0.02 0.05

VGG16-BN
(73.4)

8 72.5 73.2 73.1 73.2 73.2 72.7 72.8 72.5
7 70.8 72.8 72.8 72.7 72.8 70.5 70.7 70.2
6 49.0 71.3 71.4 70.6 71.4 49.2 46.0 45.9
5 0.7 62.0 58.1 51.6 62.0 1.6 1.0 1.4
4 0.1 11.5 5.0 2.4 11.5 0.1 0.2 0.1

ResNet-50
(76.1)

8 75.5 75.9 75.8 75.8 75.9 75.6 75.5 75.7
7 75.4 75.3 75.2 75.3 75.4 74.1 74.5 74.1
6 62.6 73.5 73.5 72.8 73.5 63.3 63.3 63.6
5 5.7 63.7 65.4 56.7 65.4 10.0 12.6 6.0
4 0.1 9.0 20.6 7.2 20.6 0.1 0.1 0.1

DenseNet-121
(74.4)

8 74.0 74.1 73.8 74.1 74.1 74.1 74.2 74.1
7 73.0 73.7 72.9 73.7 73.6 73.2 73.2 73.0
6 67.2 72.6 70.9 72.1 72.6 67.9 65.8 66.6
5 19.9 66.9 64.6 64.5 66.9 16.0 18.7 13.2
4 0.2 26.9 20.1 16.5 26.9 0.1 0.1 0.1

Inception-V3
(75.9)

8 74.8 75.1 73.4 75.0 75.1 74.8 74.9 74.8
7 72.6 74.2 71.3 73.8 74.2 72.6 72.4 72.6
6 51.6 69.6 60.7 67.9 69.6 54.1 51.5 48.5
5 1.3 34.2 5.8 25.3 34.2 1.0 0.9 1.0
4 0.1 0.3 0.1 0.2 0.3 0.1 0.1 0.2

ResNet-50, where it showed good performance.

Activation OCS provides some improvement over simple linear quantization, but performs

worse than clipping. This is likely because OCS relies on being able to identify the exact channel

containing the largest outlier. With activations, profiling can only indicate which channels are likely

to contain outliers, the best channel to split varies from input to input. To test our explanation,

we experiment with Oracle OCS, which is simply OCS with exact knowledge of the activations

generated by the network during testin. Oracle OCS chooses different channels to split in each

input batch. Table 5.4 displays the results for Oracle OCS with different batch size on two models

with 6 bit activations. Even at batch size 32, the oracle can already match or surpass the best
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Table 5.4: ImageNet Top-1 accuracy with Oracle OCS on activations — Oracle OCS splits a
different set of channels for each input batch. Results use 6 activation bits and r = 0.02.

Batch ResNet Inception
Size 50 V3

1 74.6 71.7
2 74.5 71.7
4 74.0 71.6
8 74.1 70.9
32 73.5 70.7

128 73.3 70.3

No OCS 62.6 51.6

Clip Best 73.5 69.6

clipping result. Further reducing the batch size (allowing channel selection at a finer granularity)

leads to even better accuracy. These results show that OCS and our channel selection strategy

can be effective for activations. However, channel selection must be done dynamically, requiring

additional run-time analysis which is difficult to implement and likely inefficient in commodity

systems.

5.4.4 OCS Memory Overhead

Because OCS increases the input channels by a factor of r, rounded up, the expand ratio r is a

lower bound for the model size overhead. Table 5.5 shows both weight and activation overhead for

ResNet-50 with different values of r, show that the true overhead matches r very closely. To mea-

sure run time, we build a different implementation of OCS which splits the weights and duplicates

the channels ahead of time. This is different from the (simpler but slower) implementation from

the previous section which uses torch.index_select to duplication activation during execution.

Table 5.6 shows run time overhead for ResNet-50 inference, and while the run time tracks above

the expand ratio it is still within a reasonable range. While these numbers were collected on GPU,

they should also hold true for dedicated accelerators.
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Table 5.5: OCS parameter size overhead
(ResNet-50) — memory overhead is very close
to the expand ratio.

ResNet-50
Expand Ratio

0.01 0.02 0.05 0.1
Rel. Wt Size 1.01 1.02 1.05 1.1
Rel. Act Size 1.02 1.03 1.06 1.11

Table 5.6: OCS run time overhead (ResNet-
50) – run time is measured for inference on a
single RTX 2080TI.

Base
Expand Ratio

0.01 0.02 0.05
Time (s) 39.8 42.9 43.4 44.2
Ratio 1.00 1.08 1.09 1.11

5.5 Experimental Evaluation on RNNs

This section reports experiments on an RNN model with two stacked LSTM layers for language

modeling [ZSV14]. The corpus used is the WikiText-2 dataset [MXBS16] with a vocabulary of

33,278 words. Each LSTM layer has a hidden size of 650, and the dimension of the word embed-

ding in the input layer is 650. As the CNN results have shown that activation OCS is not effective,

we focused on experimenting with OCS and clipping on the weights. Activations and the hidden

state were kept in floating-point for this experiment.

Table 5.7 compares the effects of OCS combined with different clipping methods on weight

quantization. Lower perplexity is better, and the baseline floating-point model achieves a perplexity

of 95.1. The best result on each row (i.e., the best clipping method at each OCS expand ratio) is

bolded. Clipping is not effective on this model. None of the clipping techniques achieve any

perplexity improvement. OCS achieves a much better result. At 6 bits, OCS begins to outperform

the baseline with r = 0.05. At 5 bits, OCS sees steady perplexity decrease with successively larger

expand ratios, clearly outperforming the best clipping result past r = 0.02. This is strong evidence

that OCS can effectively improve data-free quantization beyond clipping.

5.6 Conclusions and Future Work

We propose outlier channel splitting, a method to improve DNN quantization without retrain-

ing which can be applied on commodity hardware. OCS splits channels in a layer to reduce the

magnitude of outliers. Unlike the existing clip-based methods, OCS introduces a new tradeoff by
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Table 5.7: WikiText-2 perplexity with OCS weight quantization — lower is better. The
floating-point baseline achieves a perplexity of 95.1. The best performing clip method along each
row is bolded.

Wt. Expand Clip Method
Bits Ratio None MSE ACIQ KL

6

0.00 94.5 98.1 99.0 97.7
0.01 95.0 97.9 99.0 97.7
0.02 94.6 97.8 96.1 96.3
0.05 93.9 96.6 96.1 95.9

5

0.00 98.2 99.4 100.8 98.8
0.01 97.3 99.7 99.9 97.7
0.02 95.7 98.9 99.2 97.0
0.05 95.1 98.2 98.5 96.3

reducing quantization error at the cost of network size overhead. Experimental results demonstrate

that OCS on weights outperforms state-of-the-art clipping techniques with minimal overhead on

deep CNN and RNN benchmarks. At very low precision, OCS in conjunction with clipping out-

performs either method alone. Because clipping is used in NVIDIA TensorRT, a commercial DF

quantization flow, we believe that OCS has potential applicability in real-life systems.

Future work includes a more in-depth study into different channel selection methods, as well

as applying OCS quantization during training. Specifically, we believe that OCS can help shape

weight distributions during training to obtain better results than training for quantization alone.
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CHAPTER 6

OVERWRITE QUANTIZATION FOR DNN ACTIVATION QUANTIZATION

6.1 Preliminaries

Chapter 5 introduces the concept of data-free (DF) quantization and the challenge posed by

outliers. It then proposes outlier channel splitting (OCS) to improve DF quantization for DNN

weights. However, OCS is a static DNN graph transformation (akin to a compiler pass) that needs

to identify the channel which contains the largest outlier(s) in a layer. This is fine for the weights

which are statically known, but not for activations which are only determined at run time. Unfor-

tunately, activation outliers may be even more detrimental to neural network accuracy than weight

outliers. A presentation from NVIDIA’s TensorRT team showed that for popular ImageNet CNNs,

the weights can be quantized to 8-bit integer directly while activations must first be clipped to

limit their dynamic range [Mig17]. As data in Table 5.3 of Chapter 5 shows, clipping can improve

activation quantization; however accuracy degradation is still severe at lower precisions such as 5

or 4 bits.

6.1.1 Hardware Specialization for Activation Outliers

One promising line of work is using specially co-designed hardware to handle outliers at run

time. Park et al. [PYV18, PKY18] proposed an outlier-aware DNN accelerator (OLAccel) which

uses a conventional dense processing engine (PE) for central values, and a second sparse PE for

outliers. The conventional PE uses one bitwidth (4 or 8 bits in their experiments) while the outlier

PE uses double that bitwidth to gain more dynamic range necessary to represent the outliers. The

execution flow of OLAccel is shown in Figure 6.1. An input vector is separated into a dense vector

containing most values, and a sparse format for outliers. Similar to other sparse vector formats,

each outlier is accompanied by indices (width, height, channels) to track its location in the original

vector. The dense (outlier-free) vector and the outliers are then processed in two separate hardware
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units. Note that the figure does not show some additional complexities, such as how to fetch the

corresponding value to multiply with the outlier, and how to combine the outputs of the two units

into a single dense vector.

x1 x3x2

Outlier

x4

Outlier Value Indices

8’b

10’b

10’bh
w

c 12’b

x2

4’b
x1 x30 x4
4’b

Sparse 

Outlier PE

Dense PE

Figure 6.1: Execution flow of outlier-aware accelerator (OLAccel) [PKY18] — the input
vector is separated into a dense vector containing most values, and sparse outliers. The vector is
processed by a dense PE while the outliers are processed by a different sparse PE. Here w, h, and
c are width, height, and channel indices needed to track the outlier.

Outlier-aware computation in OLAccel can greatly improve DNN accuracy. For AlexNet with

4-bit weights and 16-bit outliers, accuracy within 1% of the floating-point baseline can be achieved

even when the outlier PE processes only 0.01 of all values. OLAccel exploits the fact that outliers

are rare to perform the vast majority of computation in very low-precision, with a small fraction of

computation done using higher bitwidth. It is also important to note that OLAccel does not require

any form of training; it is a DF quantization technique.

The weakness of OLAccel is that the hardware resource overhead of the outlier processing

engine is non-trivial. Park et al. performed an iso-area comparison with Eyeriss [CES16] and

ZeNA [KAY17] but did not specify the exact area taken up by the outlier PE. However, we

can make the following observations: (1) the outlier PE requires additional multiply-accumulate

(MAC) units since it operates at a different bitwidth; (2) the sparse representation of outliers incurs

extra storage and adds complexity to the PE. The storage overhead can be quantified by looking at

Figure 6.1: each outlier contains 8 or 16 bits for data, and 32 additional bits for indices.

In this chapter of the thesis, we present overwrite quantization (OverQ), a hardware-efficient
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technique which improves activation quantization by addressing outliers. OverQ’s primary goal

is to reduce the area overhead of OLAccel while still achieving significant accuracy gains over

a naïve baseline. To achieve this, OverQ is non-deterministic. Instead of instead of handling

all outliers like OLAccel, it only handles a fraction of outliers depending on the exact activation

values. However, an exploratory study on ImageNet ResNet-18 shows that OverQ handles 80-95%

of outliers and achieves 1.0-2.5% Top-1 accuracy improvement in realistic scenarios. An FPGA

prototype built using HLS shows that OverQ requires no additional MACs, and its logic overhead

is negligible compared to the MAC array size. Although the scope of the evaluation is currently

limited, it serves as a proof of concept to demonstrate the potential of overwrite quantization in

larger systems.

6.2 Overwrite Quantization

Consider the problem of quantizing an N-element activation vector {x}N
i=1. Let outliers in

the vector be defined as values larger than some fixed threshold. The basic idea of overwrite

quantization is illustrated in Figure 6.2. An outlier xi can overwrite its adjacent value xi+1 when

xi+1 is smaller than a fixed threshold 1. When this overwrite occurs, xi is represented using twice

the normal bitwidth while xi+1 is dropped. OverQ essentially dynamically re-allocates bitwidth

from an insignificant value to a critically important outlier. OverQ exploits two properties of DNN

activations: (1) outliers are rare, but contribute disproportionately to a layer’s output; (2) activation

distributions peak near zero, and contain many ReLU-induced zeros. The first property guarantees

that overwrite occurs infrequently, so not too many values are dropped out. The second property

means that an outlier will lie beside a small value with significant probability, enabling overwrite.

From a hardware standpoint, OverQ is resource efficient. Instead of using a separate, larger MAC

unit for an outlier as in OLAccel, OverQ reuses the MAC unit from an adjacent value and performs

two low-precision MACs to compute the outlier result. Furthermore, OverQ uses a single flag bit

1The boundary value xN has no adjacent value and cannot benefit from OverQ.
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for each value to indicate the presence of overwrite, which should be much smaller than building

a dedicated sparse PE.

x1 x3x2

Outlier

x4
Baseline

Quantization

Overwrite 

Quantization

x1

Outlier

x4x2

Figure 6.2: Basic idea of Overwrite Quantization — an outlier xi is allowed to overwrite its
adjacent value xi+1 when xi+1. When this happens, twice the normal bitwidth can be used to
represent xi and xi+1 is dropped.

In DNNs, OverQ would be applied along a single dimension of the activation tensor (width,

height, or channels for convolutional networks). The chosen dimension affects the hardware ar-

chitecture as it determines which dimensions must be spatially unrolled. Some brief experiments

showed that performing OverQ along the channels is much more effective than along either spatial

dimension. The reason is that spatially adjacent activations are highly correlated in CNNs, while

different channels exhibit less correlation. Discussion from this point onward assumes OverQ

along the channels of a CNN.

Figure 6.3 illustrates how overwrite quantization works in greater detail and describes its two

variants. Figure 6.3(a) shows a dot product computation between activations xi and weights wi.

Each activation is associated with a flag bit indicating whether that value is being overwritten.

Figure 6.3(b) shows OverQ-Half, where half the outlier value (xi/2) is stored in each of the two

hardware vector slots. During computation, the hardware module detects the flag bit at index i+1

and uses wi instead of wi+1. This enables the two products at indices i and i+1 thus sum to xi×wi.

As long as the weight vector is unrolled properly, the weights wi and wi+1 will be spatially adjacent

and accessing the adjacent weight is relatively cheap in hardware (see Section 6.2.2). We can also

analyze OverQ-Half’s effect on dynamic range. Let x = ∑
N−1
0 xi2i be an N-bit binary value with xi
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Figure 6.3: Dot product computation with OverQ — the two variants, OverQ-Half and OverQ-
Shift, differ in how they use the additional bits to represent outliers. For both variants the weight
wi is copied to the adjacent MAC. Superscripts in the rightmost figure indicate bit slices.

being the i’th bit, and let xa:b indicate the sequence of bits xa, . . . ,xb. We have the following:

2× (
x
2
)(N−1):0 = 2× (x >> 1)(N−1):0 = 2× (xN:1 >> 1) = xN:1 (6.1)

which shows that OverQ-Half increases the dynamic range of representation by one bit, from

x(N−1):0 to xN:1. This means it doubles the original dynamic range.

Figure 6.3(b) shows OverQ-Shift, a variant of OverQ which further increases the dynamic

range at the cost of greater hardware complexity. OverQ-Shift uses the adjacent slot’s lower bits

to hold out-of-range bits of the outlier xi (either additional MSBs or additional LSBs). The first bit

of the adjacent slot is used to hold a shift direction (right for MSB or left for LSB). In the figure,

slot i stores bits x3:0 and slot i+ 1 stores MSBs x6:4. The shift direction bit indicates whether the

product at index i+1 needs to be shifted left or right before being added to the accumulator. MSBs

must be shifted right and LSBs must be shifted left. If the baseline quantization uses N bits, then

OverQ-Shift increases the effective bitwidth by N−1.

Figure 6.4 gives a numerical example for overwrite quantization and how the two variants affect
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precision (the total number of bits of representation) and dynamic range (the most significant bit

that can be represented). With the same bits of storage, OverQ-Shift has a much greater effect

on quantization than OverQ-Half. Critically, OverQ-Half does not increase the precision: this

means that it only provides a benefit when the value is an outlier (i.e., the value exceeds the max

quantization threshold and would normally be clipped). However, OverQ-Half has the advantage

of simplicity: it can be implemented in hardware with only basic muxing logic. OverQ-Shift, on

the other hand, can use its MSB mode for outliers, or use its LSB mode to improve the quantization

precision for non-outlier values. The drawback of OverQ-Shift is that it is more hardware intensive

and requires two constant shifters as well as more complex muxing logic.

Given the above, it is useful to separate the two ways in which OverQ can benefit a DNN

accelerator. First is outlier handling (OL), where an outlier overwrites its much-smaller neighbor.

Second is zero-reuse (ZR), where any non-zero value can overwrite an adjacent ReLU-induced

zero. Put differently, OL refers to the ability to represent outliers beyond the quantization threshold,

while ZR refers to the increase in precision for some non-outlier values. Critically, OverQ-Half can

only support OL, while OverQ-Shift can support both OL and ZR. Our experiments specifically

investigate the importance of both effects.

Figure 6.4: Numerical example of overwrite quantization — each slot stores three bits. OverQ-
Half increases dynamic range by one bit, but does not affect precision. OverQ-Shift right simul-
taneously increases dynamic range and precision by two bits, while OverQ-Left increases only
increases precision by two bits. The green bit in the adjacent slot is the shift direction bit.

Represented Value
(Underlined)

Bits in 
Own Slot

Bits in 
Adj. Slot

Baseline 10110.11 110 -

OverQ-Half 10110.11 011 011

OverQ-Shift (shift right) 10110.11 110 110

OverQ-Shift (shift left) 10110.11 110 011

Outlier value = 10110.11, baseline uses 3 bits from the decimal point 
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6.2.1 Channel Reordering

Although OverQ is intended to be a dynamic hardware-centric technique, its effectiveness can

potentially be improved by ahead-of-time static transformations. As described above, OverQ is

predicated on the fact that outliers will be adjacent to a small value with high probability. We can

increase this probability by reordering the channels in a layer such that channels likely to contain

outliers are adjacent to channels likely to contain zeros. Our proposed channel reordering proce-

dure is as follows. First, activation distributions are sampled using a small profiling dataset (this is

already fairly standard practice for data-free activation quantization [Mig17]). Then, the number

of outliers in each channel are counted (outliers can be defined as the largest 1% of activations).

Finally, the channels are reordered by outlier count following a high, low, high, low, high, etc

sequence. Figure 6.5 shows the outlier count in each channel of a CNN layer before and after re-

ordering. Reordering can be implemented as an ahead-of-time graph transformation which swaps

weight filters in a layer such that the output channels follow the desired order. Importantly, this

means there is no overhead at run time.

Figure 6.5: Channel reordering for OverQ — reordering places channels with high outlier
count next to channels with low outlier count. Network use is ImageNet ResNet-18.
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6.2.2 Mapping Overwrite Quantization to a Spatial Architecture

OverQ is intended from the ground up to be a lightweight, hardware-centric quantization tech-

nique. Specifically, OverQ can be implemented efficiently and with minimal hardware changes

in a weight-stationary spatial array (a common architecture for DNN accelerators). Here, weight-

stationary (WS) is a type of DNN dataflow [CES16] in which weights are held stationary in PEs

while inputs and partial sums move through the accelerator. A recent study on dataflow choice

in DNN hardware literature [YGP+18] showed that WS dataflow was the most popular. Experi-

ments in the study also demonstrated that WS to be the most hardware efficient (albeit only by a

small margin). Figure 6.6(a) shows the organization of a 2D WS spatial accelerator for matrix-

vector computation; the left side shows the movement of input activations and output partial sums

(psums) while the right side depicts the architecture of a PE.

A weight-stationary spatial architecture is well-suited for OverQ for two reasons. First, the

array spatially unrolls the input channels; in Figure 6.6(a) the input channels are mapped to rows

along the vertical axis. Adjacent channels are therefore mapped to spatially adjacent PEs during

processing. Second, the weights are held stationary in each PE. These two factors make it relatively

easy for a PE to access its adjacent weight. Figure 6.6(b) illustrates the implementation of OverQ-

Half. A 1-bit wire is added to each PE to propagate the OverQ flag bit, which is used to multiplex

between the PE’s own weight and its adjacent weight.

Figure 6.6(c) shows the modifications needed for OverQ-Shift, which is more complex. In

addition to the hardware for OverQ-Half, a second mux is needed after the multiplier to implement

a possible shift on its output. For simplicity the figure only depicts selecting between no shift and

a right shift, which is sufficient for outlier overwrite. To support zero-reuse, a larger mux is needed

to choose between no shift, right shift, or left shift. A second select bit would be routed from input

activation register.

To decide which activations to overwrite, we take advantage of the fact that output accumula-

tion typically occurs at a larger bitwidth than the input weights or activations (e.g., this is done in

Google’s TPU [JYP+17]). When outputs exit the WS array at the bottom, they must be rescaled
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Figure 6.6: OverQ hardware architecture sketch — OverQ can be supported with lightweight
changes in a weight-stationary 2D spatial array, a common DNN accelerator design. (a) Baseline
systolic array and PE showing weight, activation, and partial sum (PSum) along with MAC unit;
(b) OverQ-Half PE requires only a flag bit and a mux between own and adjacent weights; (c)
OverQ-Shift PE requires additional muxing and shifters.

and re-quantized down to activation bitwdith for the next layer. The rescaling unit can be modified

to make decisions on where to perform OverQ. The size of the rescaling unit scales with the width

of the array only, whereas the PEs scale with both width and height of the array. As a result we

believe that the dominant resource overhead of OverQ will be from the modifications to each PE.
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6.3 Experimental Proof of Concept

To demonstrate the potential of overwrite quantization, two sets of experimental results are

provided below. The first is an evaluation of the impact of OverQ on the accuracy of ResNet-

18 [HZRS15] for ImageNet classification [DDS+09]. ResNet-18 was the most modern network

used in the experimental section of OLAccel (the others being AlexNet and VGG-16). The second

is measurements of resource usage on a small-scale prototype FPGA accelerator for CNN infer-

ence. Many accuracy experiments define the threshold for what constitutes an outlier using MMSE

clipping [SSH15, SHS16], which was shown to be the best performing method from literature in

Chapter 5. For the accuracy experiment, baseline and OverQ quantization was implemented in

TensorFlow [ea15] and applied to ResNet-18 for ImageNet classification. The basic flow of quan-

tization is to scale and clip values into a range [−2B−1,2B−1], rounding to integer, and scaling

back to the original range. B here is the unsigned bitwidth in a sign-magnitude representation.

OverQ was implemented on top of this leveraging tf.select, TensorFlow’s ternary if-else opera-

tor. For the FPGA area experiments, we take the weights and activations generated by Tensorflow

and use it to validate the correctness of the hardware.

6.3.1 Effectiveness of Channel Reordering

Reordering was implemented as a TensorFlow graph edit pass which visits each layer and

performs static weight shuffling to generate the desired output channel order. This pass can be

applied to a TensorFlow model checkpoint to generate an alternative checkpoint with reordered

channels. To evaluate channel reordering, let us first define outlier coverage as the fraction of

outliers which can benefit from overwrite. Ideally, coverage would be 100% such as in OLAccel,

but the stochastic nature of OverQ prevents this. Nevertheless it is preferred that coverage be as

high as possible. Print statements (tf.print) were used to log outlier coverage in ResNet-18

during inference for a single batch of 250 images. The outlier threshold for this experiment was

determined using MMSE clipping. Table 6.1 compares the coverage original and reordered models
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Table 6.1: Outlier fraction and coverage on ResNet-18 — data for the first six layers are shown.
Channel reordering non-trivially improves coverage in most layers.

Layer Name Outlier Fraction Coverage
Baseline Reorder Delta

block_layer1/block_1/conv1 0.22% 76.5% 85.3% 8.8%
block_layer1/block_1/conv2 0.32% 99.5% 95.6% -3.8%
block_layer1/block_2/conv1 0.15% 82.4% 85.6% 3.2%
block_layer1/block_2/conv2 0.09% 83.0% 85.4% 2.4%
block_layer2/block_1/conv1 0.15% 73.0% 80.1% 7.1%
block_layer2/block_1/conv2 0.09% 88.7% 90.3% 1.6%

in the first eight layers. The data shows that reordering non-trivially improves outlier coverage, up

to 8.8% in some layers. Reordering is most effective in early layers where the number of channels

is relatively small. The remaining experiments in this section use the reordered ResNet-18 model.

6.3.2 Accuracy Impact on ImageNet Classification

As Chapter 5 showed, the accuracy of a quantized CNN depends greatly on the clipping thresh-

old (i.e., the scaling value mentioned above). A data-free quantization flow following NVIDIA

TensorRT [Mig17] and OCS [ZHD+19a] was used. A profiling dataset of 500 training images

was used to sample the activation distribution, and from this the clip threshold S for each layer

was determined. S is the maximum value that can be represented by the fixed-point format. The

threshold below which values may be overwritten in OverQ is set at S/4; comparing a fixed-point

value against S/4 can be done efficiently using bitwise logic. Two experiments were conducted:

(1) sweeping the clip threshold from 0.2− 0.9× of the maximum sampled value; (2) using the

MMSE clip threshold in each layer. Weights were quantized to eight bits in all experiments. The

floating-point baseline accuracy for ResNet-18 is 69.7%. We also investigate the relative impor-

tance of outlier handling (OL) and zero-reuse (ZR) by experimenting with each effect in isolation,

then together.

Figure 6.7 shows the sweep of the clip threshold S with five and four bit activation quantization.

The plots show Baseline, OL, ZR, and simultaneous OL+ZR. In both plots we see the same pattern:
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Figure 6.7: OverQ Top-1 accuracy vs. clip threshold on ResNet-18 — the plot shows Base-
line, outlier handling (OL), zero-reuse (ZR), and simultaneous OL+ZR. The floating-point network
achieves 67.9%.

at small clip thresholds OL performs above baseline and ZR near baseline, while at large clip

thresholds OL performs near baseline and ZR above. Conceptually, a small clip threshold produces

more outliers (cases where the activation exceeds S) and so OL occurs more often, achieve greater

accuracy gains. Meanwhile, ZR alone performs poorly since it cannot address clipped outliers

which bring down the accuracy. In the large S regime there are very few outliers for OL, meaning

ZR is more effective. Fortunately, it is not necessary to choose. Simultaneous OL+ZR strictly

outperforms either technique alone and the curve behaves as the sum of the accuracy gains from

OL and ZR. At the accuracy peak, OL+ZR improves Top-1 by 0.7% at 5 bits and 2.5% at four bits.

Table 6.2 shows the accuracy under MMSE clipping. OverQ obtains 0.3% accuracy improve-

ment at five bits and 1.7% at four bits. With 5-bit activations, MMSE clipping with OverQ achieves

accuracy equal to the floating-point baseline. With 4-bit activations, OverQ achieves a 0.9% ac-

curacy loss from baseline. With 3-bit activations, OverQ achieves a significant 8.4% accuracy

improvement compared to just clipping. OLAccel [PKY18] reports that for deep models (ResNet-

101 and DenseNet-121), OLAccel with 4-bit quantization and 3% outlier threshold results in < 1%

accuracy loss. While OLAccel’s benchmarks are larger and deeper, we believe the accuracy results

of OverQ are comparable.
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Table 6.2: OverQ ResNet-18 Top-1 accuracy — the table comparse no clip, MMSE clip, and
OverQ with MMSE clip thresholds. The floating-point network achieves 67.9%.

Weight Act. No Clip MMSE Clip MMSE Clip
Bits Bits + OverQ

8 5 69.1 69.4 69.7
8 4 64.3 67.1 68.8
8 3 36.8 56.3 64.7

6.3.3 Hardware Resource Impact on FPGA Prototype

For our hardware evaluation, we implement OverQ on a small matrix-matrix multiply accel-

erator, and validate the design using data extracted from the previous experiments in TensorFlow.

The accelerator was built using C++ source and synthesized to Verilog using Xilinx Vivado HLS

version 2016.3, then implemented to bitstream for a Xilinx xc7z020 FPGA device. The baseline

design is an M×N array pipelined in HLS, where M and N are the unroll factors for the input and

output channels. Evaluation was done on inputs, weights, and outputs taken from a single layer

in ResNet-18; OverQ has no impact on latency. Table 6.3 shows resource usage of the baseline,

OverQ-Half (OL only) and OverQ-Shift (OL+ZR) designs. The key observation is that although

the percentage increase in LUTs and FFs are considerable (LUT usage grow by over 3× from base-

line to OverQ-Shift), the LUT and FF utilization on the device remains very low in comparison to

DSPs (which are used to implement MAC units). Based on our data, scaling up the design will

result in DSPs running out well before the logic overhead of OverQ becomes an issue. Commer-

cial FPGAs have an abundance of LUTs and FFs available, but DSPs are at a premium because

the latter is much larger in area. DNN accelerators are almost always bottlenecked by DSP and/or

BRAM usage [ZLS+15, QWY+16, ZL17]. Fortunately, OverQ was specifically designed to avoid

MAC and DSP overhead, and this is reflected in the results. Another important finding is that the

addition of OverQ does not hurt timing.

It is important to note that the accelerator is only for matrix-matrix products, and lacks other

components typically found in a DNN accelerator such as memory system, rescaling unit, bias unit,

etc. The hardware which decides which activations to overwrite was not prototyped. Section 6.2.2
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Table 6.3: OverQ resource usage in an FPGA prototype — OverQ incurs non-trivial LUT and
FF overhead, but total utilization of these resources remains very low. OverQ has no impact on
DSP, BRAM, and timing.

4x4 8x8 Device
Design Base OverQ OverQ Base OverQ OverQ Total

Half Shift Half Shift
CP 4.79 4.56 4.81 5.01 4.91 4.98
Slice 215 208 230 677 828 965
LUT 116 220 414 671 923 1660 53,200
FF 752 752 860 2290 2619 2781 106,400
DSP 16 16 16 64 64 64 220
BRAM 0 0 0 0 0 0 140

describes how the rescaling unit can be modified to make the OverQ decisions and how its resource

overhead is expected to be small compared to the overhead in the PE array.

6.4 Conclusions and Future Work

Our preliminary data demonstrates that OverQ has potential as a lightweight hardware-centric

technique for improving activation quantization. However, we have only performed tests on a sin-

gle, relatively simple network (ResNet-18) and our hardware prototype consisted of just the core

MAC array, leaving out other important components required for a full-fledged DNN accelerator

(e.g., memory system, batch normalization, and bias add). Nevertheless, the data gives us confi-

dence that OverQ is indeed feasible in real hardware at fairly low hardware overhead. The most

pertinent future work is expanding the scope of the evaluation to an accelerator which can execute

an entire DNN on its own, and to collect data on larger networks.
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