
 

 

 

 

 

 

Model-Based Fault Detection of 

Linear Discrete-Time Systems 

 

 

Von der Fakultät für Ingenieurwissenschaften, 

Abteilung Elektrotechnik und Informationstechnik der 

 

Universität 

Duisburg-Essen 

 

zur Erlangung der Lehrbefähigung im Lehrgebiet 

 

Automatisierungstechnik 

 

genehmigte Habilitationsschrift 

von 

 

Dr. Ping Zhang 

 

aus 

Henan, V. R. China 

 



 



Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin im
Fachgebiet Automatisierungstechnik und komplexer Systeme des Fachbereichs Elektrotechnik und
Informationstechnik an der Universität Duisburg-Essen. Die durchgeführten Arbeiten wurden von
der Universität Duisburg-Essen, der Deutschen Forschungsgemeinschaft (DFG) und der Europäis-
chen Union im Rahmen von verschiedenen Projekten gefördert.
An erster Stelle möchte ich mich ganz besonders bei Herrn Prof. Dr.-Ing. Steven Ding, Leiter des

Fachgebiets Automatisierungstechnik und komplexer Systeme, für seine stetige Unterstützung, viele
inspirierende Diskussionen und Anregungen und insbesondere für den Freiraum, den er mir gewährt
hat, bedanken. Seine Begeisterung für Forschung und Wissenschaft hat mich sehr beeindruckt. Ich
danke auch allen Kolleginnen und Kollegen des Fachgebiets Automatisierungstechnik und komplexer
Systeme für die gute Zusammenarbeit während der vergangenen Jahre.
Mein besonderer Dank gilt auch Herrn Prof. Dr.-Ing. habil. Dr. h.c. Bernhard P. Lampe an der

Universität Rostock für seine langjährige Unterstützung und viele wertvolle Ratschläge sowie die
Diskussion über Abtastsysteme und periodische Systeme.
Ebenso möchte ich mich herzlich bei Herrn Prof. Dr.-Ing. Torsten Jeinsch, Frau Dipl.-Ing. Kathrin

Barber, Herrn Dipl.-Ing. Rene Noack und Herrn Dipl.-Ing. Mario Sader, die mir stets mit Rat und
Tat zur Seite gestanden haben, bedanken.
Außerdem bedanke ich mich bei Herrn Prof. Dr.-Ing. Hans Schuler und Herrn Dr.-Ing. Joachim

Birk von der BASF SE, die mir einen tiefen Einblick in die industrielle Praxis ermöglicht haben.
Schließlich, aber nicht zuletzt, danke ich meiner Familie und insbesondere meinen Eltern für die

liebevolle Unterstützung und das stets entgegengebrachte Verständnis.

Ludwigshafen, im Oktober 2011





Contents

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

Part I FD of Discrete Linear Time-Invariant Systems

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Overview of fault detection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Main content of this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Residual generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Parity relation based residual generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Basic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Extended forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Observer based residual generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Full-order observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Functional observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 PI observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Simultaneous output and fault estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Parametrization of linear residual generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 General form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Specific selection of post-filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Interconnections between different residual generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Residual evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Basic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Computation of threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Adaptive threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Risk-dependent threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 FD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 FAR, FDR, robustness and sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Definition of fault sensitivity index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Computation of minimal fault sensitivity index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Singular value plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Inversion based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



4 Contents

4.3.3 Coprime factorization based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.4 LMI based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 FD problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.1 Full decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.2 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.3 Optimal compromise between the FDR and the FAR . . . . . . . . . . . . . . . . . . . . . 37

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Optimization of FD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Optimization of parity relation based residual generators . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Parity vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Parity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 Extended form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.4 Optimizations in terms of FAR and FDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Optimization of post-filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 H∞/H∞,H−/H∞ and Hi/H∞ design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 H2/H2 design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.3 Optimizations in terms of FAR and FDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.4 State space realization of post-filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.5 Optimal residual dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Optimization of observer based residual generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.1 H∞/H∞,H−/H∞ and Hi/H∞ design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Interconnections between optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.1 JPS and JFRE,2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.2 JPS,∞/∞, JPS,−/∞ and JFRE,∞/∞, JFRE,−/∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.3 Kalman filter based FD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.4 Connection with other optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.5 Comparison with LMI based design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Multiobjective design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Probabilistic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1 Construction of residual generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Optimal parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 Formulation of the constraint as LMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.2 Preliminary of probabilistic robustness theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.3 Computation of subgradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2.4 Design procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Part II FD of Discrete-Time Linear Periodic Systems



Contents 5

8 Introduction to periodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.1 Time and frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.2 Stability, observability and reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 LTI reformulation of periodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3.1 Time domain lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3.2 Frequency domain lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.4 Norms and robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.5 Periodic observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.5.1 Pole placement approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.5.2 LMI based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.5.3 Robust design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9 FD schemes based on lifted LTI reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.1 Observer-based FD system design and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.2 Parity relation based system design and implementation . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.3 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10 Periodic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.1 Periodic parity space approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.2 Periodic observer based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.3 Relation between periodic parity space and periodic observer . . . . . . . . . . . . . . . . . . . . . 121
10.4 Disturbance decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.5 Optimization of residual generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.6 Discrete-time periodic Riccati system (DPRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

11 Uncertain periodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2 Design of the optimal periodic post-filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

12 Identification of periodic residual generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.1 Identification of periodic parity relation based residual generator . . . . . . . . . . . . . . . . . 141
12.2 Identification of periodic observer based residual generator . . . . . . . . . . . . . . . . . . . . . . . 143
12.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
12.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Part III FD of Discrete Linear Time-Varying Systems

13 FD of discrete linear time-varying systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
13.1 Extension of the parity space approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
13.2 Extension of the observer based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
13.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Part IV FD of Sampled-Data Systems



6 Contents

14 FD of single-rate sampled-data (SSD) systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
14.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
14.2 Indirect FD approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
14.3 Direct FD approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

14.3.1 Parity relation based FD scheme for SSD systems . . . . . . . . . . . . . . . . . . . . . . . . 162
14.3.2 Post filter based FD scheme for SSD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
14.3.3 Observer based FD scheme for SSD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

14.4 Full decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
14.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

15 FD of general sampled-data systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
15.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
15.2 FD of NSD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

15.2.1 Reformulation of system model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
15.2.2 Parity relation based FD scheme for NSD systems . . . . . . . . . . . . . . . . . . . . . . . . 178
15.2.3 Observer based FD scheme for NSD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

15.3 FD of MSD systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
15.3.1 Design based on reformulated periodic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
15.3.2 Lifting based design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

15.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

16 Influence of sampling period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.1 Optimal FD performance in the parity space approach . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.2 Optimal H2/H2 performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
16.3 Optimal H∞/H∞ performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

16.3.1 An alternative scheme of residual generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
16.3.2 Optimal H∞/H∞ index vs. sampling period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

16.4 Optimal H−/H∞ performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
16.5 Extension to multirate sampled-data systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
16.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Part V FD of Networked Control Systems

17 Modelling of NCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
17.1 Process, sensors and actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
17.2 Network-induced delay and jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
17.3 Packet loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
17.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
17.5 Coding, decoding and packet error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
17.6 Synchronization error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
17.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

18 FD of NCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
18.1 Handling of NCS as LPV systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
18.2 Handling of NCS as uncertain systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
18.3 Handling of NCS as systems with unknown inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
18.4 Handling of NCS as hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
18.5 Residual evaluation in NCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
18.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228



Contents 7

19 Integrated design of communication and FD strategy . . . . . . . . . . . . . . . . . . . . . . . . . 231
19.1 Selection of sampling mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

19.1.1 Sampling period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
19.1.2 Timing of sampling instants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

19.2 Partial information transmission based on communication sequences . . . . . . . . . . . . . . 233
19.2.1 Description of communication sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
19.2.2 Design of FD system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
19.2.3 Influence on full decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
19.2.4 Influence on optimal FD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
19.2.5 Selection of communication sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

19.3 Transmission of multiple data in one packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
19.4 Optimal partition of subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
19.5 Local encoder and transmission of local residual signals . . . . . . . . . . . . . . . . . . . . . . . . . 239
19.6 Distributed realization of observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
19.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251





Notation

∀ for all
∈ belong to
⊂ subset
≡ identically equal
≈ approximately equal
=⇒ implies
⇐⇒ equivalent to
>> (<<) much greater (less) than
max (min) maximum (minimum)
sup (inf) supremum (infimum)
¤ end of proof
l2 set of square summable sequences
l∞ set of bounded sequences
R field of real numbers
R
n space of n-dimensional real vectors

R
n×m space of n by m real matrices

RH∞,RHn×m
∞ space of n by m proper and real rational

stable transfer matrices
RH2,RH

n×m
2 space of n by m strictly proper and real rational

stable transfer matrices
RL∞,RLn×m∞ space of n by m proper and real rational transfer

matrices with no poles on the unit circle
XT transpose of X
X−1 inverse of X
X⊥ orthogonal complement of X
rank(X) rank of X
tr (X) trace of X
det (X) determinant of X
λ (X) eigenvalue of X
λ̄ (X) (λmax) the largest eigenvalue of X
λ (X) (λmin) the smallest eigenvalue of X
σ̄ (X) the largest singular value of X
σ (X) the smallest least singular value of X
σi (X) the i-th singular value of X
Im (X) image space of X
Γ ∗ adjoint of operator Γ
h , i inner product
prob(a < b) probability that a < b



VI Contents

N(a, σ) Gaussian distribution with mean a and variance σ
χ2 chi-square distribution
E (x) mean of x
var (x) variance of x
G(z) transfer matrix of a discrete time system
G∗(ejω) = GT (e−jω) conjugate of G(ejω)
(A,B,C,D) shorthand for D + C (zI −A)

−1
B

rank (G(z)) normal rank of G(z), see [91] for definition



List of Acronyms

CAN controller area network
CCMS central control and monitoring system
CIOF co-inner-outer factorization
CSMA carrier sense multiple access
DPRS discrete-time periodic Riccati system
DTARE discrete-time algebraic Riccati equation
DTARS discrete-time algebraic Riccati system
FAR false alarm rate
FD fault detection
FDD fault detection and diagnosis
FDF fault detection filter
FDR fault detection rate
GLR generalized likelihood ratio
IIR infinite impulse response
LDP linear discrete-time periodic
LMI linear matrix inequality
LPV linear parameter varying
LTI linear time-invariant
LTV linear time-varying
MAC medium access control
MDR miss detection rate
MSD multirate sampled-data
NCS networked control systems
NSD non-uniformly sampled-data
PCS periodic communication sequence
PTF parametric transfer function
QoS quality of service
SD sampled-data
SSD single-rate sampled-data
SVD singular value decomposition
TCP transmission control protocol
TDMA time division multiple access
UDP user datagram protocol
WLAN wireless local area network





Part I

FD of Discrete Linear Time-Invariant Systems





1

Introduction

With the increasing complexity of modern control systems, fault detection and diagnosis (FDD) has
become an important research topic since the seventies [7, 14, 19, 29, 60, 61, 67, 82, 83, 121]. A fault
can be understood as any undesired system behavior, such as a malfunction of sensors or actuators
or some changes in the process itself, as shown in Fig. 1.1.

ProcessActuator SensorController

Reference

Actuator 

fault

Component 

fault

Sensor 

fault

Measured 

output

Control 

input

Fig. 1.1 Actuator, sensor and component fault in a control system

The FDD includes fault detection, fault isolation and fault identification. Timely detection and
diagnosis of the malfunction in system components is essential for the prevention of fault propaga-
tion and the improvement of process safety, reliability and availability. In major industrial sectors,
the FDD has become an important supporting technology and is replacing the traditional hardware
redundancy technique in part or totally. As a standard functional module, FDD systems are increas-
ingly integrated in modern technical systems and provide valuable information for condition-based
predictive maintenance and asset management, higher level fault tolerant control and plant-wide
process optimization.
This chapter will give a brief overview of the FDD technique and then describe the main content

of this book.

1.1 Overview of fault detection and diagnosis

Due to the development of micro-electronics and driven by the pressure of reducing hardware costs,
software redundancy based FDD are increasingly replacing hardware redundancy based FDD [61].
The basic idea of the software redundancy based FDD is to check the consistency of the online data
with the help of the experience. The experience can exist in the form of models or historical data,
typical signal characteristics, typical parameter range, etc. The current FDD approaches are often
classified into [61]:

� signal processing based approaches,
� model based approaches, and
� data driven methods.
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Fig. 1.2 General procedure of model-based FDD

The signal processing based approaches detect the changes in the system by analyzing the char-
acteristics of some important signals and comparing them with the nominal values [69]. This can
be done in the time domain by checking the mean value, the standard deviation, the higher order
statistics, the upper and lower bound of the signals. In the frequency domain it can be done by
analyzing the spectrum of the signals. The projection of the signals onto orthogonal basis functions
and the wavelet technique also attract considerable attention in the research and applications.
The model based methods check the consistency between the input and output signals based

on a mathematical model. In general, the model based FDD consists of two steps [19, 29, 67, 121],
as shown in Fig. 1.2. In the first step, the so-called residual signals will be generated from the
input and output signals with the help of the model. In the second step, the residual signals will be
evaluated and the information about the faults will be extracted. The development of the model-
based FDD is closely related to the development of the control theory and the filtering theory. On
the other side, there are several distinct features of the model-based FDD problems that justify
the efforts made in this field in the last years. The main objective of the filtering is to reduce the
estimation error. In comparison, to achieve a good FDD performance, not only the robustness to
the unknown disturbances and modelling errors but also the sensitivity to the faults is important.
Another major difference between the controller/filter design and the FDD system design is that a
decision procedure is an essential part of the FDD system. The main difference between the signal
processing based FDD and the model-based FDD consists in that the former considers each signal
separately, while the latter takes into account the interconnections among the signals. On the other
side, the signal processing based change detection can be used to detect the changes in the residual
signal of the model based FDD.
The data-driven approaches design the FDD system based on the historical data [127, 133], which

include the PCA (principle component analysis), the PLS (partial least square), the FDA (Fischer
discrimination analysis), the ICA (independent component analysis) and the artificial intelligence
based approaches. The PCA and the PLS have been developed to cope with the highly correlated
measurements and gained wide acceptance in the process industry. The basic idea of the PCA is
to figure out the predominant independent linear relationships in the process variables through the
singular value decomposition (SVD) and then check online whether the monitoring statistics, such
as the SPE index and the T 2 index, are below the allowed level. In comparison, the PLS methods
first divide the measured variables into descriptor variables and response variables and then find out
a low-dimensional mapping between them. The standard PCA and PLS algorithms assume that the
process is linear and in steady state. In order to take into account the process dynamics and the
auto-correlation of process variables, dynamic PCA and dynamic PLS methods have been proposed.
The FDA approach classifies the data into different classes by projecting the data onto a lower
dimensional space based on mean value and covariance [72]. The basic idea of the ICA is to find
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Fig. 1.3 Hierarchical FDD in complex control systems

out a set of latent variables, which are statistically independent and could explain the data. The
process change is reflected in the change of these latent variables [95]. The artificial intelligence based
approaches make use of neural networks, fuzzy logic or qualitative models to represent the system
normal behavior and faulty behavior.
The development of the FDD theory is influenced by the development of many other scientific

areas, such as the embedded electronics, the wired and wireless communication, etc. For complex
systems, the FDD system are increasingly realized in a hierarchical structure, as shown in Fig.
1.3. At the component level, more and more self-diagnosis functions are integrated in the system
components. For instance, the modern valves can realize some local diagnosis function by integrating
a pressure difference sensor and a flow rate sensor. At the higher level, the FDD unit can make use
of the information from different system components.
In practice, the main procedure of applying the model-based FDD is as follows:

� Classification of the signals in the system under consideration into measured outputs, known
inputs (for instance, reference inputs, control inputs, measured disturbances) and unknown inputs
(for instance, unmeasured disturbances)

� Specifications on the faults to be detected, such as the type of faults and the priority of detection
� Specifications on the implementation environment, such as the computational capacity, the data
sampling scheme and the data transmission scheme

� Derivation of the system model, the associated model uncertainty and the fault effect
� Design of the residual generator (generation of indicator signals) and the residual evaluation
scheme

� Off-line test of the FDD system with simulation data and/or real data
� On-line test of the FDD system
� Analysis of the FDD performance, such as the false alarm rate and the miss detection rate, and
modification of the FD system.

1.2 Main content of this book

In this book, we shall concentrate on the model based fault detection (FD) technique for dynamic
linear discrete-time systems. The FD methods discussed in this book can be used for the aim of fault
isolation by designing a bank of residual generators, each of which is decoupled from or robust to a
part of faults and sensitive to the other part of faults.
This book consists of five parts.
Part I considers the FD problems of discrete linear time-invariant systems. The main methods

of residual generation and residual evaluation will be introduced, respectively, in Chapter 2 and
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Chapter 3. Chapter 4 discusses the main criteria for the evaluation of the FD performance with
focus on the evaluation of fault sensitivity. Chapter 5 shows different approaches to optimize the
FD systems and studies the interconnections between different optimization problems. Chapter 6
introduces an approach to the design of the FD systems under multiple design objectives. Chapter
7 presents an approach to handle multiplicative model uncertainties.
Part II is about the FD of discrete linear periodic systems. The general properties of the discrete

linear periodic systems will be introduced in Chapter 8. Due to the correspondence between the
periodic systems and the time-invariant systems, the FD systems can be designed for the periodic
system based on lifting, as introduced in Chapter 9. The direct methods of designing FD systems
for the periodic systems are shown in Chapter 10. In Chapter 11, the model uncertainty problem is
considered. In Chapter 12, it is shown how to directly identify periodic residual generators from the
input and output data of the periodic systems.
Part III includes Chapter 13 and extends the FD approaches to discrete linear time-varying

systems.
Part IV treats the FD problems of sampled-data systems. The single-rate sampled-data systems

are considered in Chapter 14. The multirate sampled-data systems and the non-uniformly sampled-
data systems are discussed in Chapter 15. Chapter 16 investigates the influence of the sampling
period on the FD performance.
Part V discusses the FD of networked control systems. In Chapter 17, the network induced

phenomena, such as time delays, packet loss, quantization error, are modelled from the FD viewpoint.
Chapter 18 introduces the FD approaches for the networked control systems with a given network.
In Chapter 19, several schemes for the integrated design of the FD systems and the communication
scheme are introduced.



2

Residual generation

In this chapter, we consider discrete linear time-invariant (LTI) systems described by

x(k + 1) = Ax(k) +Bu(k) +Edd(k) +Eff(k)

y(k) = Cx(k) +Du(k) + Fdd(k) + Fff(k) (2.1)

where x ∈ Rn denotes the state vector, u ∈ Rnu the control input vector, y ∈ Rm the measured
output vector, d ∈ Rnd the unknown disturbance vector, f ∈ Rnf the fault vector to be detected,
A,B,C,D,Ed, Ef , Fd and Ff are known matrices of appropriate dimensions. Without loss of gener-
ality, we assume that (C,A) is detectable. The system (2.1) can be equivalently described by

y(z) = Gu(z)u(z) +Gd(z)d(z) +Gf (z)f(z) (2.2)

where Gu(z), Gd(z) and Gf (z) denote the transfer function matrices from u, d and f to y, respec-
tively.
The first step of fault detection (FD) is to generate a fault-indicating signal, called often as

residual signal. One of the important tasks of residual generation is to eliminate the influence of the
known control inputs on the residual signal. In the following, we shall introduce some often used
approaches of residual generation [19, 29, 67, 123, 121].

2.1 Parity relation based residual generator

The parity space approach is initially proposed by [27, 28] and has been extensively studied since
then [21, 47, 31, 33, 66, 111, 122, 159]. The essence of the parity space approach is to derive the
so-called parity relation. Let s be an integer denoting the length of a moving time window. The
parity relation of system (2.1) is the input-output relationship over the moving window [k − s, k]
expressed by

ys(k) = Ho,sx(k − s) +Hu,sus(k) +Hd,sds(k) +Hf,sfs(k) (2.3)

where x(k−s) is the initial state vector during the moving window, us(k), ds(k), fs(k) and ys(k) are
vectors obtained by stacking the corresponding input or output signals over the moving window as
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Fig. 2.1 Structure diagram of the parity relation based residual generator

ys(k) =

⎡
⎢⎢⎢⎣

y(k − s)
y(k − s+ 1)

...
y(k)

⎤
⎥⎥⎥⎦ , us(k) =

⎡
⎢⎢⎢⎣

u(k − s)
u(k − s+ 1)

...
u(k)

⎤
⎥⎥⎥⎦ (2.4)

ds(k) =

⎡
⎢⎢⎢⎣

d(k − s)
d(k − s+ 1)

...
d(k)

⎤
⎥⎥⎥⎦ , fs(k) =

⎡
⎢⎢⎢⎣

f(k − s)
f(k − s+ 1)

...
f(k)

⎤
⎥⎥⎥⎦

Ho,s =

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦ , Hu,s =

⎡
⎢⎢⎢⎢⎣

D O · · · O

CB D
. . .

...
...

. . .
. . . O

CAs−1B · · · CB D

⎤
⎥⎥⎥⎥⎦

Hd,s =

⎡
⎢⎢⎢⎢⎣

Fd O · · · O

CEd Fd
. . .

...
...

. . .
. . . O

CAs−1Ed · · · CEd Fd

⎤
⎥⎥⎥⎥⎦
,Hf,s =

⎡
⎢⎢⎢⎢⎣

Ff O · · · O

CEf Ff
. . .

...
...

. . .
. . . O

CAs−1Ef · · · CEf Ff

⎤
⎥⎥⎥⎥⎦

2.1.1 Basic forms

Based on parity relation (2.3), a residual signal can be obtained as

r(k) = vs(ys(k)−Hu,sus(k)) (2.5)

where r ∈ R is the residual signal, vs ∈ R1×m(s+1) is a row vector. By the construction of the
residual generator, the control inputs u have no influence on the residual r. To further eliminate the
influence of the initial state x(k − s) on the residual, the parameter vs is selected to satisfy

vsHo,s = 0 (2.6)

In the FD literature, the vector vs satisfying (2.6) is often called parity vector and the left null space
of the matrix Ho,s is often called parity space, denoted by Ps, i.e.

Ps = {vs | vsHo,s = 0} (2.7)

The dynamics of the residual generator (2.5) is governed by

r(k) = vs(Hd,sds(k) +Hf,sfs(k)) (2.8)
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Note that the residual r obtained by the residual generator (2.5) is a scalar signal. To get more
design freedom and keep the representation space of the residual, a matrix Vs can be used (see Fig.
2.1), i.e.

r(k) = Vs(ys(k)−Hu,sus(k)) (2.9)

= Vs(Hd,sds(k) +Hf,sfs(k)) (2.10)

where Vs ∈ Rnr×m(s+1) is a matrix called in the following as parity matrix which satisfies

VsHo,s = 0 (2.11)

The number of independent rows in Vs is limited to nr ≤ m(s+1)− rankHo,s. As the parity vector
vs can be regarded as a special case of the parity matrix Vs, a part of the subsequent discussion is
based on the expressions (2.9)-(2.10).

2.1.2 Extended forms

In this subsection, we shall look at two extensions of the above parity relation based residual gener-
ators.
Extension I: From open loop to closed loop
The parity relation based residual generator (2.5) is in an open-loop form. By introducing the

feedback terms we can extend it into a closed-loop form as

r(k) = vs(ys(k)−Hu,sus(k)) + gsr(k − 1) + · · ·+ g1r(k − s) (2.12)

where g1, g2, · · · , gs are freely selectable constants. Compared with (2.5), (2.12) has more design
freedom without increasing the order of the residual generator.
The dynamics of the residual generator (2.12) is governed by

r(k) = vs(Hd,sds(k) +Hf,sfs(k)) + gsr(k − 1) + · · ·+ g1r(k − s) (2.13)

As can be seen, the residual dynamics (2.13) is stable, if and only if all the roots of the characteristic
equation zs − gsz

s−1 − · · ·− g1 = 0 are located inside the unit circle.
Extension II: Combination with observer
In principle, the parity space approach is applicable to both stable and unstable systems. However,

it is worth noticing that numerical problem may be met for some systems, especially when A is
unstable. To solve this problem, the parity relation based residual generator can be extended as
follows

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k) +Du(k)

ro(k) = y(k)− ŷ(k)

r(k) = Vse

⎡
⎢⎢⎢⎣

ro(k − s)
ro(k − s+ 1)

...
ro(k)

⎤
⎥⎥⎥⎦ (2.14)

where x̂ ∈ Rn and ŷ ∈ Rm denote, respectively, the state estimation and the output estimation, L
is the observer gain matrix that stabilizes A− LC, Vse is the parity matrix. Let e(k) = x(k)− x̂(k)
be the state estimation error. From (2.1) and (2.14), we get

e(k + 1) = (A− LC)e(k) + (Ed − LFd)d(k) + (Ef − LFf )f(k)

ro(k) = Ce(k) + Fdd(k) + Fff(k)
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As a result, the dynamics of the residual generator (2.14) is governed by [45, 158]

r(k) = Vse(HL,o,se(k − s) +HL,d,sds(k) +HL,f,sfs(k)) (2.15)

where

HL,o,s =

⎡
⎢⎢⎢⎣

C
C(A− LC)

...
C(A− LC)s

⎤
⎥⎥⎥⎦

HL,d,s =

⎡
⎢⎢⎢⎢⎣

Fd O · · · O

C(Ed − LFd) Fd
. . .

...
...

. . .
. . . O

C(A− LC)s−1(Ed − LFd) · · · C(Ed − LFd) Fd

⎤
⎥⎥⎥⎥⎦

HL,f,s =

⎡
⎢⎢⎢⎢⎣

Ff O · · · O

C(Ef − LFf ) Ff
. . .

...
...

. . .
. . . O

C(A− LC)s−1(Ef − LFf ) · · · C(Ef − LFf ) Ff

⎤
⎥⎥⎥⎥⎦

Notice that the matrices HL,o,s,HL,d,s,HL,f,s in (2.15) are related to the matrices Ho,s,Hd,s, Hf,s

in (2.4) as

HL,o,s = QLHo,s

HL,d,s = QLHd,s

HL,f,s = QLHf,s (2.16)

where QL is an invertible matrix

QL =

⎡
⎢⎢⎢⎢⎣

I O · · · O

−CL I
. . .

...
...

. . .
. . . O

−C(A− LC)s−1L · · · −CL I

⎤
⎥⎥⎥⎥⎦

(2.17)

Therefore, the residual dynamics (2.15) can be equivalently re-written as

r(k) = VseQL(Ho,se(k − s) +Hd,sds(k) +Hf,sfs(k)) (2.18)

where e(k− s) is influenced by e(0), {d(0), d(1), · · · , d(k− s−1)} and {f(0), f(1), · · · , f(k− s−1)}.
To get rid of the influence of e(k − s) on r(k), the parity matrix Vse in residual generator (2.14)
should satisfy

VseHL,o,s = 0⇔ VseQLHo,s = 0⇔ VseQL ∈ Ps

Due to the invertibility of the matrix QL, the optimal performance and decouplability from the
unknown disturbances will not be influenced by the observer structure, as will be shown later. Note
that, if A is unstable, the matrices HL,o,s,HL,d,s and HL,f,s have much better numerical property
than the matrices Ho,s,Hd,s and Hf,s. This kind of residual generators can be implemented either
in the form of (2.14) or as

r(k) = Vse (QLys(k)−HL,u,sus(k))

where HL,u,s is given by
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Fig. 2.2 Structure diagram of the full-order observer based residual generator

HL,u,s =

⎡
⎢⎢⎢⎢⎣

D O · · · O

C(B − LD) D
. . .

...
...

. . .
. . . O

C(A− LC)s−1(B − LD) · · · C(B − LD) D

⎤
⎥⎥⎥⎥⎦

and also satisfies HL,u,s = QLHu,s.

2.2 Observer based residual generator

The basic idea of observer-based residual generator is to estimate the measured outputs with an
observer and then compare the estimations with the measurements. For this purpose, in principle
all kinds of observers can be used.

2.2.1 Full-order observer

A full-order observer based residual generator, called often as fault detection filter (FDF), can be
constructed as [19, 29, 67, 123, 121]

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k) +Du(k)

r(k) =W (y(k)− ŷ(k)) (2.19)

where x̂ ∈ Rn and ŷ ∈ Rm denote the state estimation and the output estimation, respectively,
r ∈ Rnr (nr ≤ m) is the residual signal, the observer gain matrix L and the weighting matrix W
are design parameters to be determined (see Fig. 2.2). Such an observer is based on a one-to-one
reconstruction of the system model. While the control society mainly focuses on the selection of the
feedback gain matrix L, the weighting matrix W plays an important role for the FD performance
as well, as shown later in Chapter 5.
Let e(k) = x(k) − x̂(k) be the state estimation error. The dynamics of the residual generator

(2.19) is governed by

e(k + 1) = (A− LC)e(k) + (Ed − LFd)d(k) + (Ef − LFf )f(k)

r(k) = WCe(k) +WFdd(k) +WFff(k) (2.20)

The influence of the initial state estimation error e(0) = x(0)− x̂(0) is asymptotically zero as long
as A− LC is stable.
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2.2.2 Functional observer

To reduce the online computation and the implementation efforts, the following functional observer
can also be used for residual generation [31, 60]

z(k + 1) = Gz(k) +Hu(k) + Lry(k)

r(k) =Wz(k) +Qu(k) + Py(k) (2.21)

where r ∈ R
nr is the residual signal, z ∈ R

nz is the state vector of the functional observer,
G,H,Lr,W,Q and P are constant matrices. If G is stable and there exists a state transformation
matrix T ∈ Rnz×n so that the following Luenberger equations

TA−GT = LrC, WT + PC = 0 (2.22)

H = TB − LrD, Q = −PD (2.23)

hold, then the residual dynamics is governed by

e(k + 1) = Ge(k) + (LrFd − TEd)d(k) + (LrFf − TEf )f(k)

r(k) =We(k) + PFdd(k) + PFff(k) (2.24)

where e(k) = z(k)− Tx(k). As G is stable, the influence of e(0) on r(k) is asymptotically zero.

2.2.3 PI observer

In the recent years there are some discussions on using PI (proportional and integral) observers for
the purpose of fault detection. The residual generator is built as

x̂(k + 1) = Ax̂(k) +Bu(k) +KP (y(k)− ŷ(k)) +KIβ(k)

β(k + 1) = β(k) + (y(k)− ŷ(k))

ŷ(k) = Cx̂(k) +Du(k)

r(k) =W (y(k)− ŷ(k)) (2.25)

where the design parameters are KP and KI , the coefficient matrices of the proportional term and
the integral term. (2.25) can be re-written as

∙
x̂(k + 1)
β(k + 1)

¸
=

∙
A−KPC KI

−C I

¸ ∙
x̂(k)
β(k)

¸
+

∙
B −KPD
−D

¸
u(k) +

∙
KP

I

¸
y(k)

r(k) =
£
−WC O

¤ ∙ x̂(k)
β(k)

¸
−WDu(k) +Wy(k) (2.26)

Let e(k) = x(k)− x̂(k). The residual dynamics is governed by

∙
e(k + 1)
β(k + 1)

¸
=

∙
A−KPC −KI

C I

¸ ∙
e(k)
β(k)

¸

+

∙
Ed −KPFd

Fd

¸
d(k) +

∙
Ef −KPFf

Ff

¸
f(k)

r(k) =
£
WC O

¤ ∙ e(k)
β(k)

¸
+WFdd(k) +WFff(k) (2.27)

The parameters KP and KI should be selected to guarantee the stability of (2.27).
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2.2.4 Simultaneous output and fault estimation

If there is some a priori knowledge of the faults, then such information can be incorporated in
the observer design. Consider a simple example where f(k) is constant, which can be modelled as
f(k + 1) = f(k). Therefore, the system model (2.1) can be extended to

∙
x(k + 1)
f(k + 1)

¸
=

∙
A Ef

O I

¸ ∙
x(k)
f(k)

¸
+

∙
B
O

¸
u(k) +

∙
Ed

O

¸
d(k)

y(k) =
£
C Ff

¤ ∙x(k)
f(k)

¸
+Du(k) + Fdd(k) (2.28)

If

rank

⎡
⎣
zI −A −Ef

O zI − I
C Ff

⎤
⎦ = n+ nf

for any z outside the unit circle, then an observer can be constructed as

∙
x̂(k + 1)

f̂(k + 1)

¸
=

∙
A Ef

O I

¸ ∙
x̂(k)

f̂(k)

¸
+

∙
B
O

¸
u(k) +

∙
L1
L2

¸
(y(k)− ŷ(k))

ŷ(k) =
£
C Ff

¤∙ x̂(k)
f̂(k)

¸
+Du(k)

r(k) = W (y(k)− ŷ(k)) (2.29)

The residual dynamics is governed by

∙
e(k + 1)
ef (k + 1)

¸
=

µ∙
A Ef

O I

¸
−
∙
L1
L2

¸ £
C Ff

¤¶ ∙
e(k + 1)
ef (k + 1)

¸

+

µ∙
Ed

O

¸
−
∙
L1
L2

¸
Fd

¶
d(k)

r(k) = W
£
C Ff

¤∙ e(k + 1)
ef (k + 1)

¸
+WFdd(k) (2.30)

where ∙
e(k)
ef (k)

¸
=

∙
x(k)− x̂(k)

f(k)− f̂(k)

¸

It is worth noticing that the observer (2.29) is rather similar to the PI observer discussed in the last
subsection.

2.3 Parametrization of linear residual generators

2.3.1 General form

It is well-known that, in the robust control theory, the coprime factorization plays an important role
for the parametrization of stabilizing controllers [59, 199]. It is pointed out by Ding et al. that all
linear fault detection residual generators can also be parametrized with the help of the left coprime
factorization [61].
Theorem 2.1 [61] Given a discrete LTI system described by (2.2). Let (Mu(z), Nu(z)) be a left

coprime factorization of Gu(z), Gu(z) = M−1
u (z)Nu(z), Mu(z) ∈ RH∞, Nu(z) ∈ RH∞. Then all

discrete LTI residual generators can be written into the form of

r(z) = R(z)Mu(z) (y(z)−Gu(z)u(z)) (2.31)
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where R(z) ∈ RH∞ is a post-filter that can be selected arbitrarily.
Substituting (2.2) into (2.31), the dynamics of the residual generator (2.31) is described by

r(z) = R(z)Mu(z) (Gd(z)d(z) +Gf (z)f(z)) (2.32)

The unified expression of the residual generator and the residual dynamics enables a unified analysis
and design of the optimal residual generators, as shown later in Chapter 5.
Assume that (A,B,C,D) is a state space realization of Gu(z), i.e. Gu(z) = C(zI −A)−1B +D.

Then the left coprime factorization (Mu(z), Nu(z)) needed in the above parametrization can be
obtained by [200]

Mu(z) = I − C(zI −A+ LC)−1L

Nu(z) = D + C(zI −A+ LC)−1(B − LD) (2.33)

where L is any matrix of compatible dimensions that stabilizes A− LC.

2.3.2 Specific selection of post-filters

In the following, we shall briefly show how the residual generators introduced in Section 2.1 and 2.2
correspond to (2.31).
Lemma 2.1 Let the parity vector vs be partitioned as

vs =
£
vs,0 vs,1 · · · vs,s

¤
, vs,i ∈ R1×m, i = 0, 1, · · · , s (2.34)

Then the residual generator (2.5) can be expressed as (2.31) with

R(z) = vs,sI + (vs,s−1I + vs,sCL)z
−1 + · · ·

+
¡
vs,0I + vs,1CL+ · · ·+ vs,sCA

s−1L
¢
z−s (2.35)

Proof: Let ρs = vsHu,s. The residual generator (2.5) can be re-written as

r(k) = vsys(k)− ρsus(k) (2.36)

Partition the vector ρs also into s+ 1 blocks as follows

ρs =
£
ρs,0 ρs,1 · · · ρs,s

¤
, ρs,i ∈ R1×m, i = 0, 1, · · · , s (2.37)

Then ρs = vsHu,s can be expanded as

ρs,s = vs,sD

ρs,s−1 = vs,s−1D + vs,sCB

...

ρs,0 = vs,0D + vs,1CB + vs,2CAB + · · ·+ vs,sCA
s−1B (2.38)

In the frequency domain the residual generator (2.36) can be expressed as

r(z) = vs(z)y(z)− ρs(z)u(z) (2.39)

where

vs(z) = vs,s + · · ·+ vs,1z
−s+1 + vs,0z

−s (2.40)

ρs(z) = ρs,s + · · ·+ ρs,1z
−s+1 + ρs,0z

−s (2.41)

In the next, we shall show that R(z)Mu(z) = vs(z) and R(z)Mu(z)Gu(z) = ρs(z). As
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M−1
u (z) = I + C(zI −A)−1L = I + CLz−1 + CALz−2 + · · ·

we get

vs(z)M
−1
u (z) = vs,sI + (vs,s−1I + vs,sCL)z

−1 + · · ·

+
¡
vs,0I + vs,1CL+ · · ·+ vs,sCA

s−1L
¢
z−s

+
∞P

j=1
(vs,0C + vs,1CA+ · · ·+ vs,sCA

s)Aj−1Lz−s−j

Recall that the parity vector vs belongs to the parity space Ps, i.e.

vsHo,s = vs,0C + vs,1CA+ · · ·+ vs,sCA
s = 0 (2.42)

Therefore, R(z) given by (2.35) satisfies R(z) = vs(z)M
−1
u (z), i.e.

R(z)Mu(z) = vs(z) (2.43)

The term R(z)Mu(z)Gu(z) can be expanded as

R(z)Mu(z)Gu(z)

= vs(z)Gu(z)

= vs,sD + (vs,s−1D + vs,sCB) z
−1 · · ·

+
¡
vs,0D + vs,1CB + vs,2CAB + · · ·+ vs,sCA

s−1B
¢
z−s

+
∞P

j=1
(vs,0C + vs,1CA+ · · ·+ vs,sCA

s)Aj−1Bz−s−j

Due to (2.38) and (2.42), R(z)Mu(z)Gu(z) reduces to

R(z)Mu(z)Gu(z) = ρs,s + · · ·+ ρs,1z
−s+1 + ρs,0z

−s = ρs(z) (2.44)

Substituting (2.43) and (2.44) into (2.39) yields (2.31). ¤

Lemma 2.1 shows that in the parity space approach the post-filter R(z) is a filter with finite
impulse response. It is interesting to notice the role played by the condition vs ∈ Ps in the derivation.
Lemma 2.2 The residual generator (2.12) can be expressed as (2.31) with

R(z) = β(z)

µ
vs,sI + (vs,s−1I + vs,sCL)z

−1 + · · ·
+
¡
vs,0I + vs,1CL+ · · ·+ vs,sCA

s−1L
¢
z−s

¶
(2.45)

where

β(z) =
1

1− gsz−1 − gs−1z−2 − · · ·− g1z−s
(2.46)

From Lemma 2.2 it can be seen that due to the feedback terms, the post-filter R(z) becomes a
filter with infinite impulse response. The parameters g1, g2, · · · , gs can be designed by considering
the desired frequency behaviour of the residual generator.
Lemma 2.3 Let the parity matrix Vse be partitioned as

Vse =
£
Vse,0 Vse,1 · · · Vse,s

¤
, Vse,i ∈ Rnr×m, i = 0, 1, · · · , s (2.47)

Then the residual generator (2.14) can be expressed as (2.31) with

R(z) = Vse,s + · · ·+ Vse,1z
−s+1 + Vse,0z

−s (2.48)

Proof: The full-order observer in (2.14) can be re-written as

x̂(k + 1) = (A− LC)x̂(k) + (B − LD)u(k) + Ly(k)

ro(k) = y(k)− ŷ(k) = −Cx̂(k)−Du(k) + y(k) (2.49)
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Recalling (2.33), there is

ro(z) =Mu(z)y(z)−Nu(z)u(z) =Mu(z) (y(z)−Gu(z)u(z))

Hence,

r(z) =
sX

i=0

Vse,iro(z)z
−(s−i) =

Ã
sX

i=0

Vse,iz
−(s−i)

!

ro(z)

=

Ã
sX

i=0

Vse,iz
−(s−i)

!

Mu(z) (y(z)−Gu(z)u(z))

The lemma is thus proven. ¤

Lemma 2.4 The fault detection filter (2.19) can be expressed as (2.31) with

R(z) =W (2.50)

Proof: As shown in the proof of Lemma 2.3, there is

y(k)− ŷ(k) =Mu(z)y(z)−Nu(z)u(z) =Mu(z) (y(z)−Gu(z)u(z))

Therefore,
r(z) =W (y(k)− ŷ(k)) =WMu(z) (y(z)−Gu(z)u(z))

It is shown by Lemma 2.4 that the full-order observer based residual generator is a special case
of (2.31), where the dynamic post-filter R(z) reduces to a constant weighting matrix W .
Lemma 2.5 The functional observer based residual generator (2.21) can be expressed into the

general form (2.31) with
R(z) = P +W (zI −G)−1(Lr − TL) (2.51)

Proof: As G is stable, R(z) ∈ RH∞. Recalling (2.33), a state space realization of R(z)Mu(z)
is (ARM , BRM , CRM ,DRM ) with

ARM =

∙
G − (Lr − TL)C
O A− LC

¸
, BRM =

∙
Lr − TL

L

¸

CRM =
£
W − PC

¤
, DRM = P

Do a similarity transformation with a nonsingular matrix

T̄ =

∙
I T
O I

¸

where T satisfies (2.22)-(2.23). Due to (2.22), there is

T̄ARM T̄−1 =

∙
G TA− LrC −GT
O A− LC

¸
=

∙
G O
O A− LC

¸

T̄BRM =

∙
Lr
L

¸

CRM T̄−1 =
£
W −WT − PC

¤
=
£
W O

¤

Therefore,

R(z)Mu(z) = (T̄ARM T̄−1, T̄BRM , CRM T̄−1,DRM )

= W (zI −G)−1Lr + P
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Similarly, by considering (2.23), it can be obtained that

R(z)Nu(z) = (ARN , BRN , CRN ,DRN )

= (T̄−1ARN T̄ , T̄
−1BRN , CRN T̄ ,DRN )

= −W (zI −G)−1H −Q

where

ARN =

∙
G (Lr − TL)C
O A− LC

¸
, BRN =

∙
(Lr − TL)D
B − LD

¸

CRN =
£
W PC

¤
, DRN = PD

Hence, (2.21) can be written into (2.31) with R(z) given by (2.51). ¤

Lemma 2.6 The PI observer based residual generator (2.25) can be expressed as (2.31) with

R(z) = W −WC(zI −A+KPC)
−1KI∆

−1 (2.52)

∆ = zI − I + C(zI −A+KPC)
−1KI

Proof: Note that ∙
zI −A+KPC −KI

C (z − 1)I

¸−1
=

∙
Π11 Π12

∗ ∗

¸

where

Π11 = (zI −A+KPC)
−1 ¡I −KI∆

−1C(zI −A+KPC)
−1¢

Π12 = (zI −A+KPC)
−1KI∆

−1

and ∗ denotes the terms whose value is not of interest for the derivation. According to (2.26), there
is

Gry =W +
£
−WC O

¤∙ zI −A+KPC −KI

C (z − 1)I

¸−1 ∙
KP

I

¸

=W −WCΠ11KP −WCΠ12

=
¡
W −WC(zI −A+KPC)

−1KI∆
−1¢ ¡I − C(zI −A+KPC)

−1KP

¢

= R(z)Mu(z)

Gru = −WD +
£
−WC O

¤ ∙ zI −A+KPC −KI

C (z − 1)I

¸−1 ∙
B −KPD
−D

¸

= −WD −WCΠ11(B −KPD) +WCΠ12D

= −
¡
W −WC(zI −A+KPC)

−1KI∆
−1¢

×
¡
D + C(zI −A+KPC)

−1(B −KPD)
¢

= −R(z)Nu(z)

Therefore, we get

r(z) = Gry(z)y(z) +Gru(z)u(z) = R(z)Mu(z)y(z)−R(z)Nu(z)u(z)

Lemma 2.6 shows that the PI observer corresponds to a higher order post-filter.
In summary, all discrete LTI residual generators (2.31) can be regarded as the cascade connection

of a full order observer and a post-filter, as shown in Fig. 2.3.
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Fig. 2.3 (a) General description of discrete LTI residual generators (b) Equivalent structure

2.4 Interconnections between different residual generators

In the above sections, it has been shown that the residual generators can be implemented in different
forms. As shown below, it is also possible to transform from one form directly to another form.
Assume that vs is a parity vector, vs ∈ Ps and ρs = vsHs. Partition vs and ρs, respectively, as

(2.34) and (2.37). Let a matrix T be given by [31]

T =

⎡
⎢⎢⎢⎣

vs,1 · · · vs,s−1 vs,s
vs,2 · · · vs,s 0
...

...
vs,s 0 · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C
CA
...

CAs−1

⎤
⎥⎥⎥⎦

and

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 g1

1 0
. . .

... g2
...
. . .

. . . 0
...

0 · · · 1 0 gs−1
0 · · · 0 1 gs

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ Rs×s

H =

⎡
⎢⎢⎢⎣

ρs,0
ρs,1
...

ρs,s−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

g1
g2
...
gs

⎤
⎥⎥⎥⎦ ρs,s

Lr = −

⎡
⎢⎢⎢⎣

vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

g1
g2
...
gs

⎤
⎥⎥⎥⎦ vs,s

W =
£
0 0 · · · 0 −1

¤
, Q = −ρs,s, P = vs,s (2.53)

where g1, g2, · · · , gs are freely selectable constants. Then, it can be verified that the matrices
G,H,Lr,W,Q, P and T satisfy the equations (2.22)-(2.23). That means, with the help of (2.53),
a functional observer based residual generator in the form of (2.21) can be readily obtained from a
parity vector vs.
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With the parameters selected as (2.53), the dynamics of the functional observer based residual
generator (2.21) would be

z1(k − s+ 1) = g1zs(k − s) + (ρs,0 + g1ρs,s)u(k − s)− (vs,0 + g1vs,s)y(k − s)

z2(k − s+ 2) = z1(k − s+ 1) + g2zs(k − s+ 1)

+(ρs,1 + g2ρs,s)u(k − s+ 1)− (vs,1 + g2vs,s)y(k − s+ 1)

...

zs(k) = zs−1(k − 1) + gszs(k − 1)
+(ρs,s−1 + gsρs,s)u(k − 1)− (vs,s−1 + gsvs,s)y(k − 1)

r(j) = −zs(j)− ρs,su(j) + vs,sy(j), j = k − s, · · · , k

Substituting z1(k − s+ 1), · · · , zs(k) into r(k), we get

r(k) = vs(ys(k)−Hu,sus(k)) + gsr(k − 1) + · · ·+ g1r(k − s)

It shows that the functional observer based residual generator (2.21) with the parameters (2.53)
leads to exactly the same residual dynamics as the extended parity relation based residual generator
(2.12). If g1 = g2 = · · · = gs = 0, then the residual generator (2.21) with the parameters (2.53) will
yield the same dynamics as the traditional parity relation based residual generator (2.5).

2.5 Conclusion

In this chapter, the main techniques of model-based residual generation are introduced. It is shown
that, based on the left coprime factorization, all these discrete LTI residual generators can be para-
metrized as an observer followed by a post-filter. At last, the interconnections between different
residual generators are briefly commented.
The residual generation approach introduced here estimate the signals based on a (dynamic)

model, and check the consistency between the estimations with the measurements. Another inter-
esting way of residual generation, which is not explored here, is to estimate (identify) the model
according to the measured signals and check the consistency between the estimated (identified)
model with the nominal model. The model invalidation approach and the parameter estimation
approach can be classified into this category [82, 113].





3

Residual evaluation

In the last chapter, we have shown how to generate the residual signal for the purpose of fault
detection. The next step after residual generation is to analyze the changes in the residual signal
and derive the information about the faults, which is often called residual evaluation [60, 29, 67]. In
terms of fault detection, two kinds of conclusions may be made. The first kind is: "There is (not) a
fault in the system". The second kind gives a conclusion with a certain probability of risk, such as
"There is (not) a fault in the system with a probability of x%". In this chapter, we shall introduce
different residual evaluation schemes.

3.1 Basic principle

For the linear systems described by (2.2), the dynamics of the residual signal obtained by the residual
generator (2.31) is

r(z) = Grd(z)d(z) +Grf (z)f(z) (3.1)

where Grd(z) and Grf (z) denote, respectively, the transfer function matrices from the disturbances
d and the faults f to the residual r, Grd(z) = R(z)Mu(z)Gd(z), Grf (z) = R(z)Mu(z)Gf (z).
If the residual r is decoupled from the disturbances d (Grd(z) = 0, Grf (z) 6= 0), then the existence

of a fault is simply indicated by the non-zeroness of the residual signal, i.e.,

½
r = 0 ⇒ fault-free
r 6= 0 ⇒ faulty

(3.2)

However, if a full decoupling from d is impossible (Grd(z) 6= 0), then it is necessary to differentiate
whether the variation in the residual signal is caused by the faults f or by the unknown disturbances
d. For this purpose, an often adopted residual evaluation scheme is to compare some characteristic
value (for instance, amplitude, energy, etc.) of the residual signal with a threshold. In this case,
a residual evaluation scheme is composed of residual evaluation function, threshold and decision
logic, as shown in Fig. 3.1. The residual evaluation function is the function used to calculate the
characteristic value of the residual. The threshold characterizes the scope of variations in the residual
signal caused by the unknown disturbances in the fault-free case. If a fault is large enough, then the
characteristic value of the residual will surpass the threshold and an alarm signal will be triggered.
Let k·kev denote the residual evaluation function and Jth the detection threshold. Then the decision
logic is ½

krkev ≤ Jth ⇒ fault-free
krkev > Jth ⇒ faulty

(3.3)

Some often used residual evaluation functions in the model-based FD are
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Fig. 3.1 Basic principle of residual evaluation

krkev,I =

vuut
kX

j=k−N
rT (k)r(k) (3.4)

krkev,II = kr(k)kE =
q
rT (k)r(k) (3.5)

krkev,III =
1

N + 1

kX

j=k−N
r(k) (3.6)

krkev,IV =

vuut 1

N + 1

kX

j=k−N
rT (k)r(k) (3.7)

krkev,I is the l2-norm of the residual r over a moving horizon of length N , krkev,II is the amplitude
(measured by the Euclidean norm) of the residual signal, krkev,III is the mean value of the residual
signal and often applied to systems with stochastic noise, and krkev,IV is the root mean square of

the residual signal and is closely related to krkev,I by krkev,I =
√
N + 1 krkev,IV . In this chapter,

the focus will be put on the residual evaluation functions (3.4) and (3.5).
To avoid false alarms, the threshold can be set as the maximal variation of krkev in the fault-free

case, i.e.,
Jth = max

f=0
krkev (3.8)

Although it is one of the most popular schemes of threshold selection, it often leads to conservative
threshold, which may result in a high miss detection rate.
To facilitate the detection of the incipient faults, another philosophy is to suitably reduce the

value of the threshold to achieve a suitable compromise between the false alarm rate and the miss
detection rate. In this case, the threshold Jth,α (Jth,α ≤ Jth) can be selected by integrating the
available information about the disturbances and the faults.

3.2 Computation of threshold

In this section, we shall illustrate how to calculate the threshold Jth according to (3.8) with the help
of three examples. For this purpose, the induced norms are a useful tool. Therefore, we call this kind
of residual evaluation schemes norm-based residual evaluation.
Example 3.1 (3.4) is the residual evaluation function and the l2-norm of the unknown distur-

bances over the moving window of length N is bounded by δd,2, i.e. supk supd kdk2,[k−N,k] = δd,2.
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It is known from the robust control theory that [199]

sup
x(k−N)=0,d6=0, d∈l2,[k−N,k]

krk2,[k−N,k]
kdk2,[k−N,k]

≤ sup
x(0)=0,d6=0,d∈l2

krk2
kdk2

= kGrd(z)k∞

where kGrd(z)k∞ is theH∞-norm of Grd(z), which characterizes the maximal change in the residual
energy caused by the unknown disturbances of unit energy. Therefore, the threshold Jth can be
calculated by

Jth = kGrd(z)k∞ sup
k
sup
d
kdk2,[k−N,k] = kGrd(z)k∞ δd,2 (3.9)

That means, if

krk2,[k−N,k] =

vuut
kX

j=k−N
rT (k)r(k) > Jth = kGrd(z)k∞ δd,2

then it can be concluded that there is a fault in the system.
The H∞-norm of discrete LTI systems can be calculated using standard algorithms in the robust

control theory, for instance, singular value plot, Hamiltonian matrix or iteratively solving the linear
matrix inequality (LMI) in the following lemma.
Lemma 3.1 [64] Given G(z) = (A,B,C,D) ∈ RH∞ with zero initial conditions and a scalar

γ > 0. Then G(z) is stable and
kG(z)k∞ < γ

if and only if there exists a symmetric matrix X = XT > 0 such that
∙
ATXA−X + CTC ATXB + CTD
BTXA+DTC BTXB +DTD − γ2I

¸
< 0

Example 3.2 (3.5) is the residual evaluation function and the unknown disturbances are
bounded by supk supd kdk2,[k−N,k] = δd,2.

In this case, the generalized H2 norm defined by [139]

kGrd(z)kg = sup

⎧
⎨
⎩kr(T )kE : x(0) = 0, T ≥ 0,

TX

j=0

dT (j)d(j) ≤ 1

⎫
⎬
⎭

is suitable for the calculation of the threshold. The generalized H2 norm measures the maximal
change in the peak amplitude of the output signal caused by the input of unit energy. Hence,

Jth = kGrd(z)kg sup
k
sup
d
kdk2,[k−N,k] = kGrd(z)kg δd,2 (3.10)

If

kr(k)kE =
q
rT (k)r(k) > Jth = kGrd(z)kg δd,2

then the changes in the peak amplitude of the residual signal can not be explained by the unknown
disturbances and thus a fault is detected. The generalized H2 norm can be obtained from the state
space realization according to Lemma 3.2.
Lemma 3.2 [37] Given G(z) = (A,B,C,D) ∈ RH∞ with zero initial conditions and a scalar

γ > 0. Then G(z) is stable and kG(s)kg < γ if and only if there exists a symmetric matrix X =

XT > 0 such that
∙
ATXA−X ATXB
BTXA BTXB − I

¸
< 0 (3.11)

∙
CTC CTD
DTC DTD

¸
<

∙
P O
O γ2I

¸
(3.12)
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Example 3.3 (3.5) is the residual evaluation function and kd(k)kE =
p
dT (k)d(k) ≤ δd,∞.

In this case, the relation between the peak amplitude of the input and the output is essential for
the determination of the threshold. Recall that the peak to peak norm is defined by [139]

kGrd(z)kp = sup
d6=0,d∈l∞

krkpeak
kdkpeak

Hence, the threshold can be set as

Jth = kGrd(z)kp sup
d
kdk∞ = kGrd(z)kp δd,∞ (3.13)

A fault will be detected, if

kr(k)kE =
q
rT (k)r(k) > Jth = kGrd(z)kp δd,∞

Lemma 3.3 Given G(z) = (A,B,C,D) ∈ RH∞ with zero initial conditions and a scalar β > 0.
Then G(z) is stable and kG(z)kp < β, if there exists a symmetric matrix X = XT > 0 and constants
λ > 0, μ such that

∙
ATXA−X + λX ATXB

BTXA BTXB − μI

¸
< 0 (3.14)

⎡
⎣
λP O CT

O (β − μ)I DT

C D βI

⎤
⎦ > 0 (3.15)

From the above discussion, we can see that the induced norm adopted for the calculation of the
threshold is decided by the selected residual evaluation function and the available information of the
disturbances.

3.3 Adaptive threshold

In (3.9), (3.10) and (3.13), the upper bound of the l2 and l∞-norm of the unknown disturbances is
used in the threshold calculation. If the disturbances are strongly time-varying, then the threshold
can be adapted to the level of the disturbances, if such information is available.
In case that the system model is not precisely known, the residual signal may be influenced by

the control inputs. Let Gru(z) denote the transfer function matrix from the control inputs u to the
residual r. In the fault-free case

krk2,[k−N,k] ≤ kGru(z)k∞ kuk2,[k−N,k] + kGrd(z)k∞ kdk2,[k−N,k]

As the information of kuk2,[k−N,k] is usually online available, the threshold Jth can be set as

Jth(k) = kGru(z)k∞ kuk2,[k−N,k] + kGrd(z)k∞ δd,2 (3.16)

which is adaptive to the changes in the control input signal. We would like to point out that Jth(k)
given by (3.16) is less conservative than

°°£Gru(z) Grd(z)
¤°°
∞

³
kuk2,[k−N,k] + δd,2

´

because °°£Gru(z) Grd(z)
¤°°
∞ ≥ max {kGru(z)k∞ , kGrd(z)k∞}
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3.4 Risk-dependent threshold

As mentioned in Section 3.1, to reduce the conservatism, the threshold can be reduced by allowing
a small percent of false alarms. Assume that the probability distribution of the l2 or l∞-norm of the
unknown disturbances is known. Denote the cumulative distribution function as F (ρ), i.e.,

F (ρ) = Prob {kdk ≤ ρ} , ρ ∈ [0, δd]

where δd = supd kdk , 0 ≤ F (ρ) ≤ 1 and F (ρ) is a non-decreasing function. For a given allowable
false alarm rate (FAR) level α (0 ≤ α ≤ 1), the threshold can be set as

Jth,α = kGrd(z)kF
−1(1− α) (3.17)

Jth,α guarantees that the false alarm rate lies under the allowed level, since in this case the false
alarm rate is

Prob {kGrd(z)d(z)kev > Jth,α}

≤ Prob {kGrd(z)k kdk > Jth,α}

= Prob
©
kGrd(z)k kdk > kGrd(z)kF

−1(1− α)
ª

= Prob
©
kdk > F−1(1− α)

ª

= 1− Prob
©
kdk ≤ F−1(1− α)

ª
= α

We call Jth,α a risk-dependent threshold. If

krkev > Jth,α

then there is a fault in the system with a probability not lower than 1 − α. Specifically, if α = 0,
then the threshold is Jth,α = kGrd(z)kF

−1(1) = kGrd(z)k δd and reduces to the one discussed in
Section 3.2.
A randomized algorithm based approach to select a risk-dependent threshold has been introduced

by [39].

3.5 Conclusion

Residual evaluation is an important integrated part of the FD systems [40, 39]. In this chapter,
the basic principles of norm-based residual evaluation and threshold calculation, including adaptive
threshold and risk-dependent threshold, are introduced.
The residual signal can also be evaluated in some other ways. If the probability distribution of

the unknown disturbances d is completely known, then it is possible to figure out the probability
distribution of the residual signal in the fault-free case. Based on that, hypothesis testing methods
can be used to determine the threshold and evaluate the residual signal [7]. The advanced signal
processing methods, such as the wavelet technique, can also be applied to detect the changes in the
residual signal [194].





4

FD performance

Generally speaking, an FD system should be able to detect incipient faults timely and reliably. In
this chapter, we shall consider how to evaluate the performance of the FD systems and, based on it,
formulate the FD design problems.

4.1 FAR, FDR, robustness and sensitivity

The acceptance of the FD systems in practice is mainly decided by fault detection rate (FDR),
false alarm rate (FAR) and detection delay [35, 184]. The FDR is the probability of the FD system
correctly detecting an occuring fault, i.e. the probability that the evaluated residual signal surpasses
the threshold if the system is faulty. The concept of the miss detection rate (MDR) is complementary
to that of the FDR. The MDR is the probability that a fault goes undetected. The FAR, as briefly
mentioned in Chapter 3, is the probability that an alarm is triggered in the fault-free case. The
detection delay is the time elapsed before a fault is detected. A good FD system should achieve a
high FDR (or equivalently, a low MDR), a low FAR and a short detection delay.
Assume that the residual dynamics is governed by r(z) = Grd(z)d(z) + Grf (z)f(z), Jth is the

threshold, the decision logic is (3.3) and a fault happens at time k0, i.e.

f(k)

½
= 0, k < k0
6= 0, k ≥ k0

Then the FDR is given by

PFD = Prob{krkev > Jth | f 6= 0}

= Prob{kGrd(z)d(z) +Grf (z)f(z)kev > Jth | f 6= 0} (4.1)

and the MDR by

PMD = Prob{krkev ≤ Jth | f 6= 0}

= Prob{kGrd(z)d(z) +Grf (z)f(z)kev ≤ Jth | f 6= 0} (4.2)

= 1− PFD

Different from the FDR and the MDR, the FAR is independent of the faults f . It is defined as

PFA = Prob{krkev > Jth | f = 0}

= Prob{kGrd(z)d(z)kev > Jth } (4.3)

The FAR is mainly decided by the threshold Jth, the distribution of the disturbances d as well as
the residual generator. The detection delay is
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τ = kd − k0

where kd represents the time instant at which the fault is detected,

kd = min
k

{ k | krkev > Jth, f 6= 0}

Comparing (4.1) and (4.3), it is easy to see that, for a given residual generator, a higher threshold
Jth will reduce the FAR but possibly also decrease the FDR. To achieve simultaneously a high FDR
and a low FAR, in the design of the FD systems we shall try to suppress the part Grd(z)d(z) (the
influence of the unknown disturbances) and increase the part Grf (z)f(z) (the influence of the faults)
in the residual signal.
To calculate PFD, PMD and PFA, the statistics of f and d are needed, which are however often

not available. Therefore, for the analysis we introduce several signal sets: ΩFA,d, the set of unknown
disturbances that cause false alarms, ΩFD,f , the set of detectable faults, ΩFD,f,max, the maximal
set of detectable faults, and ΩFD,f,min, the minimal set of detectable faults, i.e.

ΩFA,d = { d | kGrd(z)d(z)kev > Jth}

ΩFD,f =
©

f | kGrd(z)d(z) +Grf (z)f(z)kev > Jth
ª

ΩFD,f,min =
©

f | kGrd(z)d(z) +Grf (z)f(z)kev > Jth, ∀d
ª

ΩFD,f,max =
©

f | kGrd(z)d(z) +Grf (z)f(z)kev > Jth, ∃d
ª

(4.4)

The size ofΩFA,d can be used to represent the FAR, while the size of the setsΩFD,f , ΩFD,f,min, ΩFD,f,max

provides a measure of the FDR.

4.2 Definition of fault sensitivity index

In the framework of the model-based FD, the performance of the FD system is often evaluated by
its robustness to the unknown disturbances and its sensitivity to the faults. The design objective
is interpreted as to have a high sensitivity to the faults and simultaneously a strong robustness
to the unknown disturbances. The robustness of the FD system to the unknown disturbances can
be described by the norms of Grd(z) [19, 60, 48], such as the H∞-norm, the peak-to-peak norm,
etc, which are standard in the robust control theory [64, 139, 199]. For the characterisation of the
influence of faults, at the very beginning the H∞ norm of transfer function matrices was used [61].
Later it has been recognised that the H∞ norm as a measurement for the maximum (possible)
size of a transfer function matrix may fail for a fair evaluation of the sensitivity of the residual
generator for the faults. In the initial work of [46] a kind of so-called minimal sensitivity indices have
been introduced. After that, [76] proposed a linear matrix inequality (LMI) based approach to the
H−/H∞ design of fault detection systems. More recently, a sufficient condition was given for the
minimal sensitivity index by [129] in the form of LMI, which is derived based on Lyapunov function.
[109] derived a necessary and sufficient condition for the minimal sensitivity index. It is shown by
[182] that the so-called H− index can be obtained from the coprime factorization.
In this section, we shall study how to characterize the sensitivity of the FD system to the faults

in the discrete LTI systems.
In the parity space approach, the residual dynamics is described by r(k) = Vs(Hd,sds(k) +

Hf,sfs(k)) and kr(k)kE =
p
rT (k)r(k) is usually used for residual evaluation. As

σ̄ (VsHf,s) = sup
ds(k)=0,fs(k)6=0

kr(k)kE
kfs(k)kE

σ (VsHf,s) = inf
ds(k)=0,fs(k)6=0

kr(k)kE
kfs(k)kE

(4.5)
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σ̄(VsHf,s) indicates the maximal fault sensitivity and σ(VsHf,s) the minimal fault sensitivity. The
singular values of VsHf,s between σ̄ (VsHf,s) and σ (VsHf,s) represent the fault sensitivity at different
levels.
In the following discussion, the fault sensitivity is investigated based on the general description

of the residual dynamics r(z) = Grd(z)d(z) + Grf (z)f(z) and the l2-norm as evaluation function.
For other residual evaluation schemes the fault sensitivity can be analyzed in a similar way.
Note that

kGrf (z)f(z)k2 ≤ kGrf (z)k∞ kf(z)k2

where kGrf (z)k∞ = supω∈[0,2π] σ̄(Grf (e
jω)), which describes the maximal influence of the faults f

on the residual r. Therefore, kGrf (z)k∞ can be regarded as the maximal fault sensitivity index.
In the next, we shall check under which condition

kGrf (z)f(z)k2 > Jth (4.6)

is satisfied for any f(z) 6= 0, kf(z)k2 ≥ α(> 0). Note that ∀f(z) 6= 0

kGrf (z)f(z)k
2
2 =

1

2π

2πZ

0

f∗(ejω)G∗rf (e
jω)Grf (e

jω)f(ejω)dω

≥ inf
ω∈[0,2π]

σ2(Grf (e
jω))

2π

2πZ

0

f∗(ejω)f(ejω)dω

= inf
ω∈[0,2π]

σ2(Grf (e
jω)) kf(z)k

2
2

Let
kGrf (z)k− = inf

ω∈[0,2π]
σ(Grf (e

jω)) (4.7)

In the worst case (4.6) is satisfied if and only if

α ≥ Jth
kGrf (z)k−

:= α2

It can be seen that, by increasing kGrf (z)k−, the size (evaluated by the l2-norm) of the detectable
fault in the worst case can be reduced, i.e. the minimal sensitivity of the FD system to the fault is
improved. Therefore, kGrf (z)k− defined by (4.7) is called the minimal fault sensitivity index.
We would like to point out that

� kGrf (z)k− > 0 only if m ≥ nf , i.e. the number of independent outputs is not less than the
number of the faults.

� Different from theH∞ norm, the minimal sensitivity index kGrf (z)k− is not a norm. Apparently,
kGrf (z)k− can be zero even if Grf (z) 6= 0, for instance, if nf > m or if Grf (z) has zeros on the
unit circle.

� Different from continuous-time systems [109], for discrete LTI systems Drf has full column rank
is not a necessary condition of kGrf (z)k− > 0.

4.3 Computation of minimal fault sensitivity index

In this section, several approaches are given to calculate the minimal fault sensitivity index
kGrf (z)k−.
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4.3.1 Singular value plot

According to the definition (4.7), kGrf (z)k− can be obtained by evaluating σ(Grf (e
jω)) over a

number of fine gridded frequency points 0 ≤ ωi < 2π, i = 1, 2, · · · , N , and then searching for the
minimum, i.e.

kGrf (z)k− = mini
σ(Grf (e

jωi))

This can be realized in Matlab using the singular value plot.

4.3.2 Inversion based approach

Assume that Grf (z) ∈ RL∞ is RL∞-left invertible, i.e., there exists G
−1
rf (z) ∈ RL∞ such that

G−1rf (z)Grf (z) = I. According to the property of singular values [199], we know that for any ω ∈
[0, 2π],

σ(Grf (e
jω)) =

1

σ(G−1rf (e
jω))

It follows

kGrf (z)k− = inf
ω∈[0,2π]

σ(Grf (e
jω)) =

1

supω∈[0,2π] σ(G
−1
rf (e

jω))

Therefore, kGrf (z)k− is the inverse of the L∞ norm of G−1rf (z). Note that G
−1
rf (z) may be unstable.

4.3.3 Coprime factorization based approach

With the help of the coprime factorization, kGrf (z)k− can also be transformed into the inverse of
the H∞ norm of a stable transfer function matrix. To show it, we use the following factorization
from Ionescu et al.
Lemma 4.1 [80] Assume that G(z) ∈ RLm×p∞ , the rank of G(z) is constant on the unit circle,

the realization of G(z) = (A,B,C,D) is stabilizable, has no invariant zeros on the unit circle and
no unreachable null modes. Then there exists a right coprime factorization

G(z) = N(z)M−1(z) (4.8)

so that N(z) ∈ RH∞, M(z) ∈ RH∞, and N(z) is an inner satisfying N∗(ejω)N(ejω) = I for all
ω ∈ [0, 2π],

M(z) = (A+BF,BV, F, V ) ∈ RH∞
N(z) = (A+BF,BV,C +DF,DV ) ∈ RH∞ (4.9)

where Y = Y T ≥ 0, (Y, F ) is the stabilizing solution of the discrete-time algebraic Riccati system
(DTARS) ∙

ATY A− Y + CTC ATY B + CTD
BTY A+DTC BTY B +DTD

¸ ∙
I
F

¸
= 0 (4.10)

and V is the right inverse of a full row rank matrix H (HV = I) which satisfies

HTH = DTD +BTY B. (4.11)

The concept of the DTARS is an extension of the notion of discrete-time algebraic Riccati
equation (DTARE) [80]. A numerically sound algorithm to solve the DTARS is available (see [80]
and the references therein). The existence of the solution is guaranteed if the assumptions of the
lemma are satisfied. If BTY B+DTD is nonsingular, then the DTARS (4.10) reduces to a standard
DTARE as follows

ATY A− Y + CTC − (ATY B + CTD)(BTY B +DTD)−1(BTY A+DTC) = 0 (4.12)

Lemma 4.2 Assume that G(z) ∈ RLm×p∞ satisfies the assumptions in Lemma 4.1, kG(z)k− > 0,
M(z) is obtained by (4.9)-(4.11). Then:
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(1)DTD +BTY B in (4.11) is invertible,
(2)H and V are square and invertible.

Proof : We shall first prove (1) by contradiction. Suppose that the rank ofDTD+BTY B is not of
full rank, rank(DTD+BTY B) = ρ < p. According to (4.11), H ∈ Rρ×p is short and of full row rank
and V ∈ Rp×ρ is tall and of full column rank. It follows thatM(z) =

¡
I + F (zI −A−BF )−1B

¢
V ∈

RH
p×ρ
∞ is a tall matrix and its left inverse M−1(z) ∈ RLρ×p∞ is a short matrix (not of full column

rank). Then, G(z) can not be of full column rank and kG(z)k− will be zero, which is contradictory
to the known condition that kG(z)k− > 0. Therefore, (1) holds. (2) follows directly from (1). ¤

Assume that Grf (z) satisfies the assumptions in Lemma 4.1 and kGrf (z)k− > 0. Then there
exists a particular right coprime factorization of Grf (z) as follows

Grf (z) = Nf (z)M
−1
f (z) (4.13)

where Mf (z) ∈ RH∞, Nf (z) ∈ RH∞ and Nf (z) is an inner. Because kGrf (z)k− > 0, Grf (e
jω)

is of full column rank for any ω ∈ [0, 2π]. Then, M−1
f (ejω) must also be of full column rank and

σ(M−1
f (ejω)) 6= 0, ∀ω ∈ [0, 2π]. Therefore,

σ(Grf (e
jω)) = σ(Nf (e

jω)M−1
f (ejω)) = σ(M−1

f (ejω)) =
1

σ(Mf (ejω))
.

Taking the minimum over the frequency ω on both sides, it yields

kGrf (z)k− = inf
ω∈[0,2π]

σ(Grf (e
jω)) =

1

supω∈[0,2π] σ(Mf (ejω))

We have kGrf (z)k− =
1

kMf (z)k∞
, i.e., kGrf (z)k− is the inverse of the H∞ norm of Mf (z) ∈ RH∞.

As a result, the minimal sensitivity index can be calculated according to the following theorem.
Theorem 4.1 Given a scalar β > 0 and a system Grf (z) ∈ RLm×p∞ with m ≥ p and no zeros on

the unit circle. Assume that Grf (z) = Nf (z)M
−1
f (z) with Mf (z), Nf (z) ∈ RH∞ and Nf (z) inner.

Then
(i) kGrf (z)k− =

1
kMf (z)k∞

.

(ii) kGrf (z)k− > β if and only if kMf (z)k∞ < 1
β .

Theorem 4.1 shows that the minimal sensitivity index of Grf (z) can be computed in two steps:
(i) do the coprime factorization (4.13) of Grf (z) to getMf (z) ∈ RH∞, (ii) calculate theH∞ norm of
Mf (z) using the well-established methods and finally get kGrf (z)k− =

1
kMf (z)k∞

. The factorization

needed in the first step can be carried out based on a minimal state space realization (Arf , Brf ,
Crf ,Drf ) of Grf (z), as shown in Lemma 4.1. This factorization is unique up to a constant unitary
multiple, which will have no influence on the H∞-norm of Mf (z).
Based on this observation, in the following an algorithm is given for the computation of the

minimal sensitivity index.
Algorithm 4.1 Computation of the minimal sensitivity index kGrf (z)k− for a given system

Grf (z) with a minimal state space realization (Arf , Brf , Crf ,Drf ), no invariant zeros on the unit
circle and no unreachable null modes:

� Solve the discrete-time algebraic Riccati equation

∙
AT
rfY Arf − Y + CT

rfCrf AT
rfY Brf + CT

rfDrf

BT
rfY Arf +DT

rfCrf BT
rfY Brf +DT

rfDrf

¸ ∙
I
F

¸
= 0 (4.14)

for Y ≥ 0 and F.
� If DT

rfDrf +BT
rfY Brf is not invertible, then kGrf (z)k− = 0; otherwise, compute V by

HV = I, HTH = DT
rfDrf +BT

rfY Brf (4.15)
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� Compute kMf (z)k∞ with Mf (z) = (Arf +BrfF,BrfV, F, V )
� Compute kGrf (z)k− =

1
kMf (z)k∞

.

Dually, kGrf (z)k− can also be calculated by means of a particular left coprime factorization of
Grf (z), which is simultaneously a co-inner-outer factorization of Grf (z).

4.3.4 LMI based approach

In this subsection, we shall show that, after some transformations, the necessary and sufficient
condition for kGrf (z)k− > β (β > 0) can be formulated as an LMI, as stated in Theorem 4.2.

Theorem 4.2 Given a scalar β > 0 and a system Grf (z) = (Arf , Brf , Crf , Drf ) ∈ RLm×nf∞
(m ≥ nf ) satisfying

∀ω ∈ [0, 2π] , G∗rf (ejω)Grf (e
jω) > 0 (4.16)

with no invariant zeros on the unit circle and no unreachable null modes. Then kGrf (z)k− > β if

and only if there exists a symmetric matrix P = PT such that

∙
AT
rfPArf − P + CT

rfCrf AT
rfPBrf + CT

rfDrf

BT
rfPArf +DT

rfCrf BT
rfPBrf +DT

rfDrf − β2I

¸
> 0 (4.17)

Proof: According to Theorem 4.1, given a transfer function matrixGrf (z) ∈ RL∞, kGrf (z)k− >

β (β > 0) is equivalent to kMf (z)k∞ < 1
β , where Mf (z) = (Arf + BrfF,BrfV,F, V ) ∈ RH∞. By

Lemma 3.1, kMf (z)k∞ < 1
β if and only if there exists a matrix X = XT > 0 such that

Φ(X) =

∙
Φ11 Φ12
ΦT12 Φ22

¸
< 0 (4.18)

where

Φ11 = (Arf +BrfF )
TX(Arf +BrfF )−X + FTF

Φ12 = (Arf +BrfF )
TXBrfV + FTV

Φ22 = V TBT
rfXBrfV + V TV − 1

β2
I

Let

W =

∙
I O

−HF H

¸
(4.19)

and define

Φ̄ := −β2WTΦ(X)W =

∙
Φ̄11 Φ̄12
Φ̄T12 Φ̄22

¸
(4.20)

According to Lemma 4.2, H is nonsingular if kGrf (z)k− > 0. As a result, W is non-singular and

Φ < 0 is equivalent to Φ̄ > 0. Taking into account (4.14) and (4.15), there is

Φ̄11 = −β2
¡
Φ11 − FTHTΦT12 − (Φ12 − FTHTΦ22)HF

¢

= AT
rf (Y − β2X)Arf − (Y − β2X) + CT

rfCrf

Φ̄12 = −β2(Φ12 − FTHTΦ22)H = AT
rf (Y − β2X)Brf + CT

rfDrf

Φ̄22 = −β2HTΦ22H = BT
rf (Y − β2X)Brf +DT

rfDrf − β2I

Let
P = Y − β2X (4.21)

We get
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Φ̄ =

∙
AT
rfPArf − P + CT

rfCrf AT
rfPBrf + CT

rfDrf

BT
rfPArf +DT

rfCrf BT
rfPBrf +DT

rfDrf − β2I

¸
(4.22)

Thus, kGrf (z)k− > β (β > 0) if and only if Φ̄ > 0 for some symmetric matrix P . ¤

From the above derivation, it can be seen that, though Y ≥ 0 and X > 0, the definiteness of
P = Y − β2X is uncertain. Therefore, in the necessary and sufficient condition of kGrf (z)k− > β
(β > 0) the matrix P is only required to be symmetric. Moreover, it follows from the above discussion
that

� The condition that
∀ω ∈ [0, 2π] , G∗rf (ejω)Grf (e

jω) > 0 (4.23)

or equivalently in its state space form

∀ω ∈ [0, 2π] ,
∙
Arf − ejωI Brf

Crf Drf

¸
has full column rank (4.24)

is necessary to ensure that kGrf (z)k− > 0.
� The assumption Grf (z) ∈ RH∞ is not necessary for the achieved results.

According to Theorem 4.2, kGrf (z)k− can be obtained as the largest value of β that satisfies
(4.17). This can be realized as follows:

� Set the initial value of β as β = β0.
� Check the feasibility of (4.17). If (4.17) has a symmetric matrix P as solution, then the value of

β can be increased. Otherwise, reduce the value of β.

The iteration can be implemented using the well-known bisection algorithm.

4.3.5 Example

In this subsection, we shall give an example to illustrate the above results.
Example 4.1 Consider a system Grf (z) = (Arf , Brf , Crf ,Drf ) with

Arf =

⎡
⎣
0.5 −0.3 0.2
0 0.4 0.2
0.7 0 0.6

⎤
⎦ , Brf =

⎡
⎣
0.5
−0.5
1

⎤
⎦

Crf =

∙
1 1 0
0 1 1

¸
,Drf =

∙
0.1
0

¸

It is a stable system. We shall first determine the minimal sensitivity index of Grf (z) according
to the definition (4.7). The singular value of Grf (e

jω) is plotted in Fig.4.1. The step size of the
frequency points is chosen as ∆ω = 0.005. As can be seen from the figure, the smallest singular
value is 0.37609. Therefore, kGrf (z)k− = infω∈[0,∞] σ(Grf (e

jω)) = 0.37609.
Using Algorithm 4.1 to calculate kGrf (z)k−, we first solve the Riccati equation (4.14) using the

Matlab function dare. The stabilizing solution to (4.14) is

X =

⎡
⎣
1.1103 1.0218 0.2276
1.0218 2.1127 1.1198
0.2276 1.1198 1.3568

⎤
⎦ > 0

By (4.15), we get

F =
£
−1.1351 −0.3225 −0.9301

¤

H = 0.8772, V = 1.1400
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Then, using the Matlab function norm we obtain that the H∞ norm of the system Mf (z) = (Arf +
BrfF,BrfV, F, V ) is kMf (z)k∞ = 2.6589. Therefore, kGrf (z)k− = 1/ kMf (z)k∞ = 0.37609.
To apply Theorem 4.2 to the computation of kGrf (z)k−, we solve the LMI (4.17) (without re-

quirement on the definiteness of the symmetric matrix P ) iteratively to find the maximal β satisfying
(4.17). It gives also kGrf (z)k− = 0.37608. The corresponding matrix is

P =

⎡
⎣
−0.6118 1.8350 1.1945
1.8350 0.0710 −0.9671
1.1945 −0.9671 −0.9295

⎤
⎦

The eigenvalues of the matrix P are at −3.1843, 0.1178, 1.5963. It is neither positive definite nor
negative definite. In comparison, the LMI (4.17) has a positive definite symmetric matrix P as
feasible solution for β ≤ 0.3751 = β1 and (4.17) has a negative definite symmetric matrix P as
feasible solution only for β ≤ 0.0634 = β2. Both β1 and β2 are smaller than the real value of
kGrf (z)k−.

4.4 FD problem formulation

After introducing the concept of the fault sensitivity, we can formulate the FD system design problem.
The discussion is carried out based on the general description of the residual dynamics r(z) =
Grd(z)d(z) +Grf (z)f(z).

4.4.1 Full decoupling

The residual signal r is said to be fully decoupled from the unknown disturbances d if the parameters
of the residual generator can be selected in such a way that [31]

Grd(z) = 0, Grf (z) 6= 0 (4.25)

i.e. r 6= 0 if and only if f 6= 0.
Recalling (2.31) and (2.32), that means R(z) should satisfy

R(z)Mu(z)Gd(z) = 0, R(z)Mu(z)Gf (z) 6= 0 (4.26)
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According to (2.33), Mu(z) is a square matrix of full rank. Therefore, there exists a post-filter R(z)
satisfying (4.26) if and only if [31]

rank
£
Gd(z) Gf (z)

¤
> rankGd(z) (4.27)

Suppose that (A,Ed, C, Fd) and (A,Ef , C, Ff ) are, respectively, the state space realizations of Gd(z)
and Gf (z). Then the condition of full decoupling (4.27) is equivalent to

rank

∙
zI −A Ed Ef

C Fd Ff

¸
> rank

∙
zI −A Ed

C Fd

¸
(4.28)

Specifically, in case of the parity relation based residual generator (2.5) or (2.9), the condition of full
decoupling is

rank
£
Ho,s Hd,s Hf,s

¤
> rank

£
Ho,s Hd,s

¤
(4.29)

In case of a full decoupling, the residual dynamics is only influenced by the faults, i.e.

r(z) = Grf (z)f(z) = R(z)Mu(z)Gf (z)f(z) (4.30)

Assume that

f =

⎡
⎢⎢⎢⎣

f1
f2
...

fnf

⎤
⎥⎥⎥⎦ , Gf (z) =

£
Gf1(z) Gf2(z) · · · Gfnf (z)

¤

Then

r(z) =

nfX

i=1

R(z)Mu(z)Gfi(z)fi(z) (4.31)

Depending on the fault sensitivity, the faults fi, i = 1, · · · , nf , can be divided into two sets. The set
of faults

z1 = { fi | Gfi(z) * Im (Gd(z))} (4.32)

can be easily detected, as any nonzero fi ∈ z1 will cause a deviation of the residual signal from
zero. However, the sensitivity of the FD system is zero to the set of faults

z2 = { fi | Gfi(z) ⊂ Im (Gd(z))} (4.33)

because the residual is decoupled from the faults in z2 as well. Therefore, in the design of a full
decoupling FD system, the analysis of the fault sensitivity is important. To ensure that each fault
fi is detectable, the full decoupling condition (4.25) is strengthened into

Grd(z) = 0, Grfi(z) 6= 0, ∀i (4.34)

In the parity space approach, the full decoupling problem can be solved very easily. In the observer
based approach, it can be solved by the unknown input observer approach, the geometric approach
or the eigenstructure assignment approach [19, 75, 115].

4.4.2 Optimization problems

If a full decoupling is not achievable, in order to enhance the robustness of the FD system to the
unknown disturbances and simultaneously improve its sensitivity to the faults, it is straightforward
to formulate the optimal design problem as a minmax problem

kGrd(z)k→ min, kGrf (z)k→ max (4.35)
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where k�k denotes some suitably selected norm or index for the evaluation of the robustness and the
sensitivity. The optimization problem (4.35) is a multiobjective optimization problem.
To facilitate the derivation of a solution, (4.35) is often simplified as [19, 76, 111], for a given β

(> 0),
kGrf (z)k > β, kGrd(z)k→ min (4.36)

or, for a given γ (> 0)
kGrd(z)k < γ, kGrf (z)k→ max (4.37)

or,
kGrf (z)k− kGrd(z)k→ max (4.38)

In the FD literature, it is also proposed to transform the fault detection problem into a fault
estimation problem [19, 42], i.e. design R(z), such that

r −Wff = R(z)Mu(z)Gd(z)d(z) + (R(z)Mu(z)Gf (z)−Wf (z)) f(z)→ 0 (4.39)

where Wf is a dynamic weighting matrix that characterizes the frequency band of the faults of
interest. The design problem is thus

°°£R(z)Mu(z)Gd(z) R(z)Mu(z)Gf (z)−Wf (z)
¤°°→ min (4.40)

Aiming at unifying the design objectives min kGrd(z)k and max kGrf (z)k, the following ratio
type performance index has been introduced and received much attention in the FD study [19, 44,
61, 62, 34, 60, 137, 159, 172]

J =
influence of the faults on the residual

influence of the disturbances on the residual
=
kGrf (z)k

kGrd(z)k
(4.41)

The numerator of J represents the fault sensitivity and the denominator the robustness to the
unknown disturbances. The higher the fault sensitivity is and the stronger the robustness to the
unknown disturbances is, the bigger will be the value of J . Therefore, the optimal design problem
can be formulated as

max J = max
kGrf (z)k

kGrd(z)k
(4.42)

To handle the model uncertainty, it is proposed by Ding and co-workers to design the FD system,
so that the residual signal approximates the best residual dynamics in the ideal case of no model
uncertainty [190, 197], i.e.

r − ropt = r − (Wdd+Wff)

= (R(z)Mu(z)Gd(z)−Wd(z))d(z) + (R(z)Mu(z)Gf (z)−Wf (z)) f(z)→ 0 (4.43)

where Wd and Wf represent the best residual dynamics achievable if there is no model uncertainty.
The design problem is formulated as

°°£R(z)Mu(z)Gd(z)−Wd(z) R(z)Mu(z)Gf (z)−Wf (z)
¤°°→ min (4.44)

The optimization problems (4.35)-(4.38), (4.40) and (4.44) can be solved iteratively with the LMI
technique, which is well-established in the robust control theory. In the next chapter, our focus will
be mainly put on the ratio type optimization problems (4.41).
Recall that the optimality is only "optimal" in some sense. In the selection of the norms and

the indexes for the optimization, it is necessary to take into account how the residual signal will
be evaluated later. For instance, if the H∞-norm of Grd(z) is minimized but the residual signal is
evaluated by its amplitude, then the optimality doesn’t contribute much to the improvement of the
overall FD performance. Therefore, for the successful application of the FD systems, it is essential
to design the residual generation and the residual evaluation in an integrated way.
It is well-known that, for a given system, the input signals can be re-constructed from the output

signals, only if certain conditions are satisfied. Therefore, a reasonable solution can be obtained for
the fault estimation problem (4.39) only in some cases. A post-analysis of the FD performance of
the optimal solution to (4.40) is recommendable.
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4.4.3 Optimal compromise between the FDR and the FAR

From the application viewpoint, the optimal design of the FD systems aims to improve the FDR
and simultaneously reduce the FAR [35, 184], i.e.

PFD → max, PFA → min (4.45)

(4.45) is often simplified as:

� Given an allowable FAR, design the FD system so that the FDR is maximized, or the dual
problem

� Given an expected FDR, design the FD system so that the FAR is minimized.

4.5 Conclusion

This chapter gives an introduction to the main criteria for the evaluation of the FD performance
and different formulations of the FD design problem. The key of designing model-based FD systems
is to achieve a high fault detection rate (FDR) and simultaneously a low false alarm rate (FAR).
It is equivalent to enhance the robustness of the FD system to the unknown disturbances and
simultaneously guarantee its sensitivity to the faults. Because the robustness has been extensively
studied in the robust control theory, we have focused our discussion on the fault sensitivity. Several
methods for the calculation of the minimal fault sensitivity index are presented. In the next chapter,
we shall concentrate on the optimal design of the FD systems.





5

Optimization of FD systems

In the last chapter, it has been shown that different kinds of optimization problems can be formulated
to improve the FD performance. The central task is to improve the sensitivity of the FD system to
the faults and simultaneously enhance its robustness to the disturbances. In this chapter, we shall
discuss how to solve these optimization problems.

5.1 Optimization of parity relation based residual generators

5.1.1 Parity vector

Recall that the dynamics of the parity relation based residual generator (2.5) is described by

r(k) = vsHd,sds(k) + vsHf,sfs(k)

where vs ∈ Ps is the so-called parity vector, r is a scalar residual signal. In the framework of the
parity space approach, the amplitude of the residual signal

kr(k)kE =
q
rT (k)r(k) (5.1)

is often used for residual evaluation. Hence, a ratio type performance index can be defined as [159]

JPS =
supds(k)=0,fs(k)6=0

rT (k)r(k)
fTs (k)fs(k)

supfs(k)=0,ds(k)6=0
rT (k)r(k)
dTs (k)ds(k)

=
vsHf,sH

T
f,sv

T
s

vsHd,sHT
d,sv

T
s

(5.2)

The optimization problem is thus formulated as

max
vs∈Ps

JPS = max
vs,vsHo,s=0

vsHf,sH
T
f,sv

T
s

vsHd,sHT
d,sv

T
s

(5.3)

Let Nbasis denote the basis matrix of the parity space Ps. Then, any parity vector vs ∈ Ps can be
expressed by

vs = psNbasis (5.4)

where ps ∈ R1×(m(s+1)−rankHo,s) is a freely selectable vector. By substituting (5.4) into (5.3), the
constrained optimization problem (5.3) is transformed into an unconstrained one

max
ps

JPS = max
ps

psNbasisHf,sH
T
f,sN

T
basisp

T
s

psNbasisHd,sHT
d,sN

T
basisp

T
s

(5.5)
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If NbasisHd,s is not of full row rank, then ps can be selected in the left null space of NbasisHd,s

to achieve a full decoupling and in this case JPS,opt = ∞. If NbasisHd,s is of full row rank, then
according to the Rayleigh-ratio theorem [103], the performance index JPS varies in the range

λmin ≤ JPS ≤ λmax (5.6)

where λmax and λmin are, respectively, the maximal and the minimal generalized eigenvalue of the
following generalized eigenvalue-eigenvector problem

ps(NbasisHf,sH
T
f,sN

T
basis − λNbasisHd,sH

T
d,sN

T
basis) = 0 (5.7)

Denote with ps,max the eigenvector corresponding to the generalized eigenvalue λmax. The maximum
JPS = λmax is achieved when ps = ps,max. Therefore, the optimization problem (5.3) is solved by

vs,opt = ps,maxNbasis (5.8)

and the optimal performance index is
JPS,opt = λmax (5.9)

Theorem 5.1 Given the LTI system (2.1) and the residual generator (2.5). Assume that Nbasis

is the basis matrix of the parity space Ps defined by (2.7) and NbasisHd,s is of full row rank. The
parity vector vs,opt given by (5.7)-(5.8) solves the optimization problem (5.3). The corresponding
optimal performance index is (5.9).
Let

δd = max
k
kds(k)kE = maxk

kdk2,[k−s,k] (5.10)

Following (3.8), the threshold for the residual generator (2.5) can be set as

Jth = sup
f=0,d

kr(k)kE =
¡
vsHd,sH

T
d,sv

T
s

¢ 1
2 δd (5.11)

If

kr(k)kE =
q
rT (k)r(k) > Jth =

¡
vsHd,sH

T
d,sv

T
s

¢ 1
2 δd

then it is deduced that a fault has happened.

5.1.2 Parity matrix

If a parity matrix Vs is used in the residual generation, then the residual signal obtained by residual
generator (2.9) is a vector signal with dynamics governed by [33]

r(k) = VsHd,sds(k) + VsHf,sfs(k)

Denote the singular values of the matrix VsHf,s in descending order as σ1 (VsHf,s) ≥ σ2 (VsHf,s) ≥
· · · ≥ σnr (VsHf,s). As

σ̄ (VsHf,s) = σ1(VsHf,s) = sup
ds(k)=0,fs(k)6=0

kr(k)kE
kfs(k)kE

σ (VsHf,s) = σnr (VsHf,s) = inf
ds(k)=0,fs(k)6=0

kr(k)kE
kfs(k)kE

σ̄ (VsHf,s) and σ (VsHf,s) represent, respectively, the maximal and the minimal influence of the
vector fs(k) on r(k). Those singular values between σ̄ (VsHf,s) and σ (VsHf,s) describe the influence
of fs(k) on r(k) at intermediate levels. Therefore, the ratio type optimization problem (4.42) can be
defined in this case as
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max
Vs,VsHo,s=0

JPS,∞/∞ = max
Vs,VsHo,s=0

supds(k)=0,fs(k)6=0
rT (k)r(k)
fTs (k)fs(k)

supfs(k)=0,ds(k)6=0
rT (k)r(k)
dTs (k)ds(k)

= max
Vs,VsHo,s=0

σ̄2(VsHf,s)

σ̄2(VsHd,s)
(5.12)

max
Vs,VsHo,s=0

JPS,−/∞ = max
Vs,VsHo,s=0

infds(k)=0,fs(k)6=0
rT (k)r(k)
fTs (k)fs(k)

supfs(k)=0,ds(k)6=0
rT (k)r(k)
dTs (k)ds(k)

= max
Vs,VsHo,s=0

σ2(VsHf,s)

σ̄2(VsHd,s)
(5.13)

max
Vs,VsHo,s=0

JPS,i/∞ = max
Vs,VsHo,s=0

σ2i (VsHf,s)

σ̄2(VsHd,s)
(5.14)

The maximal fault sensitivity is considered in (5.12), while the fault sensitivity in the worst case
is considered in (5.13). (5.14) is a generalization of (5.12) and (5.13), which takes into account the
fault sensitivity in different directions.
The constrained optimization problems (5.12)-(5.14) can be first transformed into unconstrained

optimization problems by expressing Vs as Vs = PsNbasis, where Ps ∈ Rnr×(m(s+1)−rankHo,s) can be
arbitrarily selected. Correspondingly, (5.12)-(5.14) are equivalent to

max
Vs,VsHo,s=0

JPS,∞/∞ = max
Ps

σ̄2(PsNbasisHf,s)

σ̄2(PsNbasisHd,s)
(5.15)

max
Vs,VsHo,s=0

JPS,−/∞=max
Ps

σ2(PsNbasisHf,s)

σ̄2(PsNbasisHd,s)
(5.16)

max
Vs,VsHo,s=0

JPS,i/∞=max
Ps

σ2i (PsNbasisHf,s)

σ̄2(PsNbasisHd,s)
(5.17)

Similar to the parity vector case, if NbasisHd,s is not of full row rank, then a full decoupling may
be achieved. In case that NbasisHd,s is of full row rank, its singular value decomposition (SVD) is

NbasisHd,s = U
£
S O

¤
V T , S =

⎡
⎢⎢⎢⎢⎣

σ1 0 · · · 0

0 σ2
. . .

...
...
. . .

. . . 0
0 · · · 0 σγ

⎤
⎥⎥⎥⎥⎦

(5.18)

where σ1, · · · , σγ are nonzero singular values, U and V are unitary matrices. Because S and U are
both invertible, Ps can be re-written as Ps = P̄sS

−1UT . Then we have

σ̄(VsHd,s) = σ̄(PsNbasisHd,s) = σ̄
¡
P̄sS

−1UTU
£
S O

¤
V T
¢
= σ̄(P̄s)

Notice that, for any two matrices X1 andX2 of compatible dimensions, the following relations always
hold

σ̄(X1X2) ≤ σ̄(X1)σ̄(X2) (5.19)

σ(X1X2) ≤ σ̄(X1)σ(X2) (5.20)

σi(X1X2) ≤ σ̄(X1)σi(X2) (5.21)

Moreover, the equality in (5.19)-(5.21) holds if X1 is a unitary matrix, i.e. X
T
1 X1 = X1X

T
1 = I.

Taking into account (5.19)-(5.21), there is
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JPS,∞/∞ =
σ̄2(P̄sS

−1UTNbasisHf,s)

σ̄2(P̄s)
≤ σ̄2(P̄s)σ̄

2
¡
S−1UTNbasisHf,s

¢

σ̄2(P̄s)

= σ̄2
¡
S−1UTNbasisHf,s

¢

JPS,−/∞ =
σ2(P̄sS

−1UTNbasisHf,s)

σ̄2(P̄s)
≤ σ̄2(P̄s)σ

2
¡
S−1UTNbasisHf,s

¢

σ̄2(P̄s)

= σ2
¡
S−1UTNbasisHf,s

¢

JPS,i/∞ =
σ2i (P̄sS

−1UTNbasisHf,s)

σ̄2(P̄s)
≤ σ̄2(P̄s)σ

2
i

¡
S−1UTNbasisHf,s

¢

σ̄2(P̄s)

= σ2i
¡
S−1UTNbasisHf,s

¢

The upper bounds of JPS,∞/∞, JPS,−/∞ and JPS,i/∞ are achieved if P̄s is a unitary matrix. There-
fore, optimization problems (5.15)-(5.17) are simultaneously solved by

Vs,opt = P̄sS
−1UTNbasis (5.22)

where P̄s is any unitary matrix of compatible dimensions.
Theorem 5.2 [33] Given the LTI system (2.1) and the residual generator (2.9). Assume that

Nbasis is the basis matrix of the parity space Ps defined by (2.7) and NbasisHd,s is of full row rank.
The parity matrix given by (5.22) solves the optimization problems (5.12)-(5.14) simultaneously.
The corresponding optimal performance indices are

JPS,∞/∞,opt = σ̄2
¡
S−1UTNbasisHf,s

¢

JPS,−/∞,opt = σ2
¡
S−1UTNbasisHf,s

¢

JPS,i/∞,opt = σ2i
¡
S−1UTNbasisHf,s

¢
(5.23)

It is interesting to notice that the optimal solution to (5.13) (or equivalently to (5.16)) is not

unique. Assume that NbasisHf,s is left invertible and its left inverse is denoted by (NbasisHf,s)
−1,

i.e.
(NbasisHf,s)

−1
NbasisHf,s = I

Let
Vs,−/∞ = Q̄s (NbasisHf,s)

−1Nbasis (5.24)

where Q̄s is a matrix of compatible dimensions. Because

σ̄(Vs,−/∞Hd,s) = σ̄(Q̄s (NbasisHf,s)
−1NbasisHd,s)

≥ σ(Q̄s)σ̄((NbasisHf,s)
−1NbasisHd,s) (5.25)

there is

JPS,−/∞ =
σ2(Vs,−/∞Hf,s)

σ̄2(Vs,−/∞Hd,s)
≤ σ2(Q̄s (NbasisHf,s)

−1NbasisHf,s)

σ2(Q̄s)σ̄2((NbasisHf,s)
−1

NbasisHd,s)

=
1

σ̄2((NbasisHf,s)
−1NbasisHd,s)

(5.26)

If Q̄s is a unitary matrix, then the equality in (5.25) holds and JPS,−/∞ achieves the upper bound
in (5.26). As
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1

σ̄2
³
(NbasisHf,s)

−1
NbasisHd,s

´

=
1

σ̄2
³
(NbasisHf,s)

−1
U
£
S O

¤
V T
´

=
1

σ̄2
³
(NbasisHf,s)

−1 US
´

= σ2
¡
S−1UTNbasisHf,s

¢

the upper bound in (5.26) is exactly the same with JPS,−/∞,opt given in (5.23). Therefore, the
optimization problem (5.16) is also solved by

Vs,−/∞,opt = Q̄s (NbasisHf,s)
−1

Nbasis (5.27)

where Q̄s is an arbitrary unitary matrix.
Theorem 5.3 [172] Given the LTI system (2.1) and the residual generator (2.9). Assume that

Nbasis is the basis matrix of the parity space Ps defined by (2.7), NbasisHf,s is of full column rank

and (NbasisHf,s)
−1 is the left inverse of NbasisHf,s. Then the parity matrix given by (5.27) leads to

JPS,−/∞
¡
Vs,−/∞,opt

¢
= JPS,−/∞,opt

and solves the optimization problem (5.13).
In comparison, Vs,−/∞,opt given in (5.27) solves only the optimization problem (5.16), while the

optimization problems (5.15), (5.16) and (5.17) are simultaneously solved by Vs,opt given in (5.22).
Therefore, in the following discussion Vs,opt is called the unified parity space solution.
Following (3.8), the threshold for the residual generator (2.9) is set as

Jth = sup
f=0,d

kr(k)kE = σ̄ (VsHd,s) δd

=

(
δd, if Vs = Vs,opt

σ̄
³
(NbasisHf,s)

−1NbasisHd,s

´
δd, if Vs = Vs,−/∞,opt

(5.28)

where δd is given by (5.10). The decision logic is

½
kr(k)kE =

p
rT (k)r(k) > Jth ⇒ faulty

kr(k)kE =
p
rT (k)r(k) ≤ Jth ⇒ fault-free

(5.29)

At the end of this subsection, we shall briefly discuss the relation between the optimum of the
optimization problems (5.3) and (5.12).
Lemma 5.1 [33] Given the LTI system (2.1) and the residual generators (2.5) and (2.9). Denote

with JPS,opt and JPS,∞/∞,opt the optimal performance indices of the optimization problems (5.3)
and (5.12), respectively. Then, JPS,opt = JPS,∞/∞,opt.
Proof: According to (5.5),

JPS =
psNbasisHf,sH

T
f,sN

T
basisp

T
s

psNbasisHd,sHT
d,sN

T
basisp

T
s

where ps is an arbitrary vector of compatible dimensions. Because S
−1UT is an invertible matrix,

ps can always be re-written as ps = p̄sS
−1UT . Taking into account (5.18), we get

JPS =
p̄sS

−1UTNbasisHf,sH
T
f,sN

T
basisUS

−1p̄Ts
p̄sp̄Ts



44 5 Optimization of FD systems

Therefore,

JPS,opt = max
p̄s

JPS = λ̄
¡
S−1UTNbasisHf,sH

T
f,sN

T
basisUS

−1¢

= σ̄2
¡
S−1UTNbasisHf,s

¢
= JPS,∞/∞,opt

i.e. the optimization problems (5.3) and (5.12) achieve the same optimal performance index. ¤

5.1.3 Extended form

As shown in (2.14), an observer structure can be introduced in the parity space approach to improve
the numerical properties. Based on the residual dynamics

r(k) = Vse(HL,d,sds(k) +HL,f,sfs(k)) (5.30)

the optimization problems can be formulated as

max
Vse,L

VseHL,o,s=0

JPSE,∞/∞ = max
Vse,L

VseHL,o,s=0

supds(k)=0,fs(k)6=0
rT (k)r(k)
fTs (k)fs(k)

supfs(k)=0,ds(k)6=0
rT (k)r(k)
dTs (k)ds(k)

= max
Vse,L

VseHL,o,s=0

σ̄2(VseHL,f,s)

σ̄2(VseHL,d,s)
(5.31)

max
Vse,L

VseHL,o,s=0

JPSE,−/∞ = max
Vse,L

VseHL,o,s=0

infds(k)=0,fs(k)6=0
rT (k)r(k)
fTs (k)fs(k)

supfs(k)=0,ds(k)6=0
rT (k)r(k)
dTs (k)ds(k)

= max
Vse,L

VseHL,o,s=0

σ2(VseHL,f,s)

σ̄2(VseHL,d,s)
(5.32)

max
Vse,L

VseHL,o,s=0

JPSE,i/∞ = max
Vse,L

VseHL,o,s=0

σ2i (VseHL,f,s)

σ̄2(VseHL,d,s)
(5.33)

At first we shall show that the observer gain L has no influence on the optimal FD performance.
Suppose that, for a given observer gain matrix L̄, the parity matrix V̄se (V̄seHL̄,o,s = 0) solves
(5.31)-(5.33) and generates a residual r̄ with optimal dynamics

r̄(k) = V̄se(HL̄,d,sds(k) +HL̄,f,sfs(k))

Assume now the observer gain is selected as L 6= L̄. Note that there exists always an invertible
matrix Q given by

Q = QL̄Q
−1
L =

⎡
⎢⎢⎢⎢⎣

I O · · · O

C(L− L̄) I
. . .

...
...

. . .
. . . O

C(A− L̄C)s−1(L− L̄) · · · C(L− L̄) I

⎤
⎥⎥⎥⎥⎦

such that

QHL,o,s = HL̄,o,s

QHL,f,s = HL̄,f,s

QHL,d,s = HL̄,d,s
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Let Vse = V̄seQ. Then VseHL,o,s = V̄seQHL,o,s = V̄seHL̄,o,s = 0 and

r(k) = Vse (HL,d,sds(k) +HL,f,sfs(k))

= V̄seQ (HL,d,sds(k) +HL,f,sfs(k)) = r̄(k)

i.e. the residual dynamics will keep to be the same if Vse = V̄seQ. Therefore, as long as the observer
gain matrix L stabilizes A−LC, the optimal residual r̄ can always be obtained by a suitable selection
of Vse. As a result, the optimization problems (5.31)-(5.33) can be solved in two steps:

� set the observer gain matrix L,
� calculate the optimal parity matrix Vse using the approaches introduced in the last subsection.

Moreover, we have the following lemma.
Lemma 5.2 Given the LTI system (2.1), the residual generators (2.9) and (2.14). Then

JPSE,∞/∞,opt = JPS,∞/∞,opt

JPSE,−/∞,opt = JPS,−/∞,opt

JPSE,i/∞,opt = JPS,i/∞,opt

Lemma 5.2 shows that the introduction of the observer structure in the parity space approach
will not change the optimal achievable performance.

5.1.4 Optimizations in terms of FAR and FDR

In this subsection, we shall consider how to solve the FD design problems from the viewpoint of the
FAR and the FDR in the framework of the parity space approach [172].
At first, we shall look at the optimization problem of maximization of the FDR under a given

FAR.
To guarantee that the FAR lies under the allowed level α (PFA ≤ α, 0 < α ≤ 1), the threshold

can be set as
Jth,α = σ̄ (VsHd,s)F

−1(1− α) (5.34)

where F−1(ρ) is the inverse function of F (ρ), and F (ρ) is the cumulative distribution function of
kds(k)kE. According to the decision logic (5.29), a fault f is detected by a residual generator with
parity matrix Vs, if

kVs (Hd,sds(k) +Hf,sfs(k)) kE > Jth,α = σ̄ (VsHd,s)F
−1(1− α) (5.35)

As mentioned before, any parity matrix Vs can always be re-written as Vs = P̄sS
−1UTNbasis, where

P̄s is some matrix of compatible dimensions, S and U are defined by (5.18) and thus both invertible,
Nbasis is the basis matrix of the parity space Ps. Then (5.35) is equivalent to

°°P̄s
£
I O

¤
V Tds(k) + P̄sS

−1UTNbasisHf,sfs(k)
°°
E

> σ̄
¡
P̄s
£
I O

¤
V T
¢
F−1(1− α) = σ̄

¡
P̄s
¢
F−1(1− α) (5.36)

According to the property of the maximal singular value,

kP̄s
£
I O

¤
V Tds(k) + P̄sS

−1UTNbasisHf,sfs(k)kE

≤ σ̄
¡
P̄s
¢ °°£ I O

¤
V Tds(k) + S−1UTNbasisHf,sfs(k)

°°
E

(5.37)

Hence, (5.36) holds, only if

°°£ I O
¤
V Tds(k) + S−1UTNbasisHf,sfs(k)

°°
E
> F−1(1− α) (5.38)



46 5 Optimization of FD systems

Note that, the equality in (5.37) holds and the condition (5.38) becomes both necessary and sufficient,
if P̄s is a unitary matrix. In this case, Vs is exactly Vs,opt given by (5.22). Let the set of detectable
faults be denoted by

ΩFD,f (Vs) = { f | f satisfies (5.35) }

ΩFD,f (Vs,opt) = { f | f satisfies (5.38) }

Because any fault f satisfying (5.35) will also satisfy (5.38), ΩFD,f (Vs) ⊆ ΩFD,f (Vs,opt). Therefore,
the set of detectable faults delivered by (5.22) is the biggest. In other words, the FDR is maximized
by (5.22).
Theorem 5.4 Given the LTI system (2.1) and the residual generator (2.9). The parity matrix

Vs,opt given by (5.22) ensures that

ΩFD,f (Vs,opt) ⊇ ΩFD,f (Vs), ∀Vs (5.39)

and achieves the maximal FDR under a given FAR.
In the next, we shall show that the dual optimization problem of minimization of the FAR under

a given FDR is solved by (5.27).
Suppose that σ (VsHf,s) 6= 0 and d = 0. Because

krkE = kVsHf,sfs(k)kE ≥ σ (VsHf,s) kfs(k)kE (5.40)

Set the threshold as
Jth,α = ασ (VsHf,s) (5.41)

Then the faults that satisfy
kfs(k)kE > α

ensure krkE ≥ Jth,α and can always be detected. Hence, the size of α indicates the percentage of
the faults that can always be detected. Correspondingly, the FDR can be fixed by setting α. A false
alarm will happen if in the fault-free case

krkE = kVsHd,sds(k)kE > Jth,α (5.42)

i.e.
kVsHd,sds(k)kE − ασ (VsHf,s) > 0 (5.43)

Denote the set of all disturbances d which satisfy (5.43) by ΩFA,d(Vs), i.e.

ΩFA,d(Vs) = {d | d satisfies (5.43)}

Since ΩFA,d(Vs) is the set of all disturbances that would cause false alarms, its size is a reasonable
measurement of the FAR. In this context, the size of ΩFA,d(R) is interpreted as the FAR. Let

Vs = Q̄s (NbasisHf,s)
−1

Nbasis. (5.43) can be re-written into
°°°Q̄s (NbasisHf,s)

−1
NbasisHd,sds(k)

°°°
E
− ασ

¡
Q̄s

¢
> 0 (5.44)

Note that
°°°Q̄s (NbasisHf,s)

−1NbasisHd,sds(k)
°°°
E

≥ σ
¡
Q̄s

¢ °°°(NbasisHf,s)
−1

NbasisHd,sds(k)
°°°
E

(5.45)

There is
°°°Q̄s (NbasisHf,s)

−1
NbasisHd,sds(k)

°°°
E
− ασ

¡
Q̄s

¢

≥ σ
¡
Q̄s

¢ ³°°°(NbasisHf,s)
−1NbasisHd,sds(k)

°°°
E
− α

´
(5.46)



5.1 Optimization of parity relation based residual generators 47

As a result, °°°(NbasisHf,s)
−1NbasisHd,sds(k)

°°°
E
− α > 0 (5.47)

is sufficient for (5.43). That means, any d satisfying (5.47) will result in

kVsHd,sds(k)kE − ασ (VsHf,s)

=
°°°Q̄s (NbasisHf,s)

−1NbasisHd,sds(k)
°°°
E
− ασ

¡
Q̄s

¢
> 0

Considering that the equality in (5.45) and (5.46) can be achieved by selecting Q̄s as a unitary
matrix, i.e. if Vs is given by (5.27). Let

ΩFA,d(Vs,−/∞,opt) = {d | d satisfies (5.47)}

Any d ∈ ΩFA,d(Vs,−/∞,opt) will also belong to the set ΩFA,d(Vs). Therefore,

ΩFA,d

¡
Vs,−/∞,opt

¢
⊆ ΩFA,d (Vs)

i.e. Vs,−/∞,opt delivers the smallest set of disturbances that would cause false alarms and therefore
ensures the lowest FAR.
Theorem 5.5 Given the LTI system (2.1) and the residual generator (2.9). The parity matrix

Vs,−/∞,opt given by (5.27) ensures that

ΩFA,d

¡
Vs,−/∞,opt

¢
⊆ ΩFA,d (Vs) , ∀Vs (5.48)

and achieves the minimal FAR under a given FDR.

5.1.5 Example

Example 5.1 Consider the FD problem of a system in the form of (2.1) with matrices

A =

⎡
⎢⎢⎣

1 −0.34 −1 2
−1 0.6 4 −2.3
−0.2 0.2 0.8 0
−1.5 0.1 3.6 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

−0.1
0.8
0.2
1

⎤
⎥⎥⎦

C =

∙
1 0 0 1
0 1 1 0

¸
,D =

∙
0 0
0 0

¸

Ed =

⎡
⎢⎢⎣

0.3 1.2
0 0.2
1 0.4
0.8 0

⎤
⎥⎥⎦ , Ef =

⎡
⎢⎢⎣

0.5 0
−1.5 0.3
−0.6 1
0 0.4

⎤
⎥⎥⎦

Fd =

∙
0.3 0
0.1 0.5

¸
, Ff =

∙
0.4 0
0 0.2

¸
(5.49)

Suppose that s = 2. The basis matrix of the parity space is

Nbasis =

∙
0.6744 −0.1799 −0.5903 −0.3099 0.2580 0.0420
0.0474 −0.3496 0.5450 −0.5552 0.1303 0.5033

¸

The optimization problem (5.3) is solved by the parity vector

vs,opt =
£
0.0224 −0.1597 0.2479 −0.2537 0.0597 0.2297

¤

which leads to the optimal performance index JPS,opt = 1.2689.
If a parity matrix is used, then
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Vs,opt =

∙
0.0850 −0.1702 0.1823 −0.2726 0.0816 0.2243
0.6670 −0.1043 −0.7120 −0.1898 0.2306 −0.0679

¸

solves the optimization problems (5.12)-(5.14) simultaneously, JPS,∞/∞,opt = 1.2689 and JPS,−/∞,opt =
0.0868.
In this example, the eigenvalues of the matrix A are 1.5720+1.7932i, 1.5720− 1.7932i, −0.4532,

0.7091. For large s, for instance, s = 50, there is possibly a numerical problem. As shown in Section
5.1.3, an observer structure can be introduced to improve the numerical property. Let

L =

⎡
⎢⎢⎣

1.4275 0.3019
−1.7337 −0.5996
−0.0688 0.2774
−0.1553 0.7671

⎤
⎥⎥⎦

the eigenvalues of A−LC are located at 0.5, 0.6, 0.65, 0.7. The optimal solution to the optimization
problems (5.31)-(5.33) is

Vs,opt =

∙
−0.0180 0.0728 0.0674 −0.2576 −0.0611 0.2240
0.1020 0.0220 −0.3118 −0.0787 0.2369 0.0690

¸

The optimal performance index are, respectively,

JPSE,∞/∞,opt = 1.2689

JPSE,−/∞,opt = 0.0868

It shows that the observer gain matrix L has indeed no influence on the optimal performance index.

5.2 Optimization of post-filters

It is shown in Chapter 2 that, for the systems described by (2.1) or (2.2), all LTI residual generators
can be unifiedly expressed in the form of (2.31) and the residual dynamics is governed by

r(z) = R(z)Mu(z) (Gd(z)d(z) +Gf (z)f(z))

where Mu(z) = I −C(zI −A+LC)−1L is decided by a matrix L that stabilizes A−LC, which can
be interpreted as an observer gain matrix.
At first, we would like to point out that the parameter L is not important for the optimization

of the residual dynamics [32, 190]. Suppose that L̄, together with R̄(z), generates a residual r̄ with
optimal dynamics

r̄(z) = R̄(z)M̄u(z) (Gd(z)d(z) +Gf (z)f(z))

M̄u(z) = I − C(zI −A+ L̄C)−1L̄

If now a different matrix L is used, then the optimal residual dynamics r̄ can still be achieved if we
just let R(z) = R̄(z)Q(z), where

Q(z) = I + C(sI −A+ L̄C)−1(L− L̄) ∈ RH∞

because Q(z)Mu(z) = M̄u(z). That means, as long as L stabilizes A−LC, the optimal residual r̄(z)
can always be obtained by a suitable selection of the post-filter. Therefore, in this section, we shall
concentrate on the optimal selection of the post-filter R(z) in the sense of (4.42).
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5.2.1 H∞/H∞ ,H−/H∞ and Hi/H∞ design

The H∞/H∞, H−/H∞ and Hi/H∞ optimal design problems are formulated, respectively, as

max
L,R(z)∈RH∞

JFRE,∞/∞ = max
L,R(z)∈RH∞

supd=0,f 6=0
krk2
kfk2

supf=0,d6=0
krk2
kdk2

= max
L,R(z)∈RH∞

kR(z)Mu(z)Gf (z)k∞
kR(z)Mu(z)Gd(z)k∞

(5.50)

max
L,R(z)∈RH∞

JFRE,−/∞ = max
L,R(z)∈RH∞

infd=0,f 6=0
krk2
kfk2

supf=0,d6=0
krk2
kdk2

= max
L,R(z)∈RH∞

kR(z)Mu(z)Gf (z)k−
kR(z)Mu(z)Gd(z)k∞

(5.51)

max
L,R(z)∈RH∞

JFRE,i/∞ = max
L,R(z)∈RH∞

σi(R(e
jω)Mu(e

jω)Gf (e
jω))

kR(z)Mu(z)Gd(z)k∞
(5.52)

In the above optimization problems, the robustness is evaluated by the H∞ norm, while the fault
sensitivity is evaluated differently. In (5.50) the fault sensitivity is evaluated by the H∞ norm, which
can here be interpreted as the best case sensitivity. In (5.51), the minimal fault sensitivity index
introduced in Chapter 4 is adopted. In (5.52), a number of optimization problems are considered.
The numerator of JFRE,i/∞ reflects the sensitivity of Grf (z) at different frequencies and in different
directions. As for a given post filter R(z)

kR(z)Mu(z)Gf (z)k∞
= sup

ω∈[0,2π]
σ̄(R(ejω)Mu(e

jω)Gf (e
jω))

≥ σi(R(e
jω)Mu(e

jω)Gf (e
jω))

≥ inf
ω∈[0,2π]

σ(R(ejω)Mu(e
jω)Gf (e

jω))

= kR(z)Mu(z)Gf (z)k−

there is the following relation between the performance indexes

JFRE,∞/∞ ≥ JFRE,i/∞ ≥ JFRE,−/∞, ∀R(z) ∈ RH∞ (5.53)

Assume that
Mu(z)Gd(z) = Gdo(z)Gdi(z) (5.54)

is a co-inner-outer factorization (CIOF) of Mu(z)Gd(z), where Gdo(z) is the co-outer and RH∞-
left-invertible, and Gdi(z) is the co-inner satisfying

Gdi(e
jω)G∗di(e

jω) = I, ∀ω ∈ [0, 2π]

Let
R(z) = Q(z)G−1do (z) (5.55)

Notice that

kQ(z)G−1do (z)Mu(z)Gf (z)k∞ ≤ kQ(z)k∞kG−1do (z)Mu(z)Gf (z)k∞ (5.56)

kQ(z)G−1do (z)Mu(z)Gf (z)k− ≤ kQ(z)k∞kG−1do (z)Mu(z)Gf (z)k−
σi(Q(e

jω)G−1do (e
jω)Mu(e

jω)Gf (e
jω)) ≤ kQ(z)k∞σi(G

−1
do (e

jω)Mu(e
jω)Gf (e

jω))

We have



50 5 Optimization of FD systems

JFRE,∞/∞ =
kR(z)Mu(z)Gf (z)k∞
kR(z)Gdo(z)Gdi(z)k∞

=

°°Q(z)G−1do (z)Mu(z)Gf (z)
°°
∞

kQ(z)k∞
≤
°°G−1do (z)Mu(z)Gf (z)

°°
∞

JFRE,−/∞ =
kR(z)Mu(z)Gf (z)k−
kR(z)Mu(z)Gd(z)k∞

=

°°Q(z)G−1do (z)Mu(z)Gf (z)
°°
−

kQ(z)k∞
≤
°°G−1do (z)Mu(z)Gf (z)

°°
−

JFRE,i/∞ =
σi(R(e

jω)Mu(e
jω)Gf (e

jω))

kR(z)Mu(z)Gd(z)k∞

=
σi(Q(z)G

−1
do (z)Mu(z)Gf (z))

kQ(z)k∞
≤ σi(G

−1
do (z)Mu(z)Gf (z))

The upper bounds in the above inequalities will be achieved if Q(z) is a unitary matrix. Therefore,
optimization problems (5.50)-(5.52) are solved simultaneously by

Ropt(z) = QdG
−1
do (z) (5.57)

where Qd is a unitary matrix of compatible dimensions.
Theorem 5.6 [34, 180, 176] Given the LTI system (2.1) and the residual generator (2.31).

Assume that
Gd(e

jω)G∗d(e
jω) > 0, ∀ω ∈ [0, 2π]

Then the post-filter Ropt(z) given by (5.57) solves the optimization problems (5.50)-(5.52) simulta-
neously. The corresponding optimal performance indices are

JFRE,∞/∞,opt =
°°G−1do (z)Mu(z)Gf (z)

°°
∞

JFRE,−/∞,opt =
°°G−1do (z)Mu(z)Gf (z)

°°
−

JFRE,i/∞,opt(ω) = σi(G
−1
do (e

jω)Mu(e
jω)Gf (e

jω)) (5.58)

Moreover, for any i and ω, it always holds

JFRE,∞/∞,opt ≥ JFRE,i/∞,opt(ω) ≥ JFRE,−/∞,opt (5.59)

The optimal solution Ropt(z) lead to

Ropt(z)Mu(z)Gd(z) = QdGdi(z)

kRopt(z)Mu(z)Gd(z)k∞ = kQdGdi(z)k∞ = 1

We would like to emphasize that the optimal post-filter Ropt(z) is not unique in the sense that,
depending on different co-inner-outer factorization approaches, different Ropt(z) may be obtained.
The optimal solution to the H−/H∞ problem (5.51) is not unique. Assume that Mu(z)Gf (z)

has no zeros on the unit circle and is of full column rank, i.e. kMu(z)Gf (z)k− > 0. Do the CIOF of
Mu(z)Gf (z) as follows

Mu(z)Gf (z) = Gfo(z)Gfi(z)

where Gfo(z) ∈ RH∞ is co-outer and its left inverse G−1fo (z) ∈ RH∞, Gfi(z) ∈ RH∞ is co-inner.
Let
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R(z) = Q(z)G−1fo (z), Q(z) ∈ RH∞ (5.60)

There is

JFRE,−/∞ =
kR(z)Mu(z)Gf (z)k−
kR(z)Mu(z)Gd(z)k∞

=
kQ(z)Gfi(z)k−

kQ(z)G−1fo (z)Mu(z)Gd(z)k∞

Due to
kQ(z)G−1fo (z)Mu(z)Gd(z)k∞ ≥ kQ(z)k−kG−1fo (z)Mu(z)Gd(z)k∞ (5.61)

it holds

JFRE,−/∞ ≤
1

kG−1fo (z)Mu(z)Gd(z)k∞

Moreover, JFRE,−/∞ achieves the maximum if the equality in (5.61) holds. This is the case if Q(z)
is a unitary matrix. Notice that

1

kG−1fo (z)Mu(z)Gd(z)k∞

=
1

kG−1fo (z)Gdo(z)Gdi(z)k∞
=

1

kG−1fo (z)Gdo(z)k∞

= kG−1do (z)Gfo(z)k− =
°°G−1do (z)Gfo(z)Gfi(z)

°°
−

=
°°G−1do (z)Mu(z)Gf (z)

°°
− = JFRE,−/∞,opt

Hence,
Ropt,−/∞(z) = QfG

−1
fo (z) (5.62)

with unitary matrix Qf of compatible dimensions is another solution to the optimization problem
(5.51).
Theorem 5.7 [172] Given the LTI system (2.1) and the residual generator (2.31). Assume that

G∗f (e
jω)Gf (e

jω) > 0, ∀ω ∈ [0, 2π] (5.63)

Then the post-filter Ropt,−/∞(z) given by (5.62) solves the optimization problem (5.51) and
JFRE,−/∞(Ropt,−/∞(z)) = JFRE,−/∞,opt.
Let δd,2 = max kdk2. Using the l2-norm as evaluation function and applying (3.8), the threshold

is set as

Jth = sup
f=0,d

krk2 = kR(z)Mu(z)Gd(z)k∞ δd,2

=

½
δd,2, if R(z) = Ropt(z)

kG−1fo (z)Mu(z)Gd(z)k∞δd,2, if R(z) = Ropt,−/∞(z)
(5.64)

The decision logic is ½
krk2 > Jth ⇒ faulty
krk2 ≤ Jth ⇒ fault-free

(5.65)

Finally, we are going to remove the assumption (5.63) and extend the solution (5.62) so that
it can be applied for any system described by (2.1). This extension is of practical interest and will
enhance the applicability of the proposed approach considerably.
To achieve the optimal solution Ropt,−/∞(z), it is required that

kMu(z)Gf (z)k− 6= 0

Note that in the case of kMu(z)Gf (z)k− = 0, there exists a class of faults which are, independent
of their size, structurally not detectable. They can be, for nf > m, vectors in the right null sub-
space of Mu(z)Gf (z), or for rank

¡
Mu(e

jω)Gf (e
jω)
¢
< m, those vectors corresponding to the zeros

Mu(e
jω)Gf (e

jω) on the unit circle. The basic idea behind the extension study is to exclude these
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faults and consider only the structurally detectable faults. For this purpose, an extended CIOF of
Mu(z)Gf (z) can be used, which is described by

Mu(z)Gf (z) = Gfo(z)GC(z)Gfi(z) (5.66)

where Gfi(z) is co-inner, Gfo(z) has a left inverse in RH∞, GC(z) has the same zeros on the unit
circle as Mu(z)Gf (z). Considering that kGC(z)Gfi(z)k− = 0, it is reasonable to define

f∗(z) =
GC(z)

kGC(z)k∞
Gfi(z)f(z) (5.67)

=⇒ kf∗k2 ≤ kGfi(z)f(z)k2 ≤ kfk2 (5.68)

and re-formulate the fault detection problem as finding R(z) such that the residual generator

r(z) = R(z)
¡
Mu(z)Gd(z)d(z) + Ḡfo(z)f

∗(z)
¢

with Ḡfo(z) = Gfo(z) kGC(z)k∞ is optimal in the sense of minimizing the FAR under a given
FDR. This problem can then be solved using Theorem 5.7 and the optimal solution is given by
Ropt(z) = Qf Ḡ

−1
fo (z).

5.2.2 H2/H2 design

The H2/H2 optimal design problem is formulated as

sup
R(z)∈RH1×m

∞

JFRE,2/2 (5.69)

= sup
R(z)∈RH1×m

∞

R 2π
0

R(ejω)Mu(e
jω)Gf (e

jω)G∗f (e
jω)M∗

u(e
jω)R∗(ejω)dω

R 2π
0

R(ejω)Mu(ejω)Gd(ejω)G∗d(e
jω)M∗

u(e
jω)R∗(ejω)dω

The optimal solution is presented in the following theorem [43, 178].
Theorem 5.8 Given the LTI system (2.1) and the residual generator (2.31). Assume that

λmax(ω) and vmax(e
jω) are, respectively, the maximal eigenvalue and the corresponding eigenvector

of the generalized eigenvalue-eigenvector problem

vmax(e
jω)(Mu(e

jω)Gf (e
jω)G∗f (e

jω)M∗
u(e

jω)−
λmax(ω)Mu(e

jω)Gd(e
jω)G∗d(e

jω)M∗
u(e

jω)) = 0 (5.70)

ω0 is the frequency at which λmax(ω) achieves the maximum, i.e.

λmax(ω0) = sup
ω

λmax(ω) (5.71)

and fω0(z) is an ideal frequency selector satisfying

∀q(z) ∈ RH1×m
∞ , fω0(e

jω)q(ejω) = 0, ω 6= ω0
Z 2π

0

fω0(e
jω)q(ejω)q∗(ejω)f∗ω0(e

jω)dω = q(ejω0)q∗(ejω0)

Then, the optimization problem (5.69) is solved by

Ropt,2/2(z) = fω0(z)vmax(z) (5.72)

and the optimal H2/H2 performance index is

JFRE,2/2,opt = λmax(ω0)
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Proof: For any given ω, the matricesMu(e
jω)Gd(e

jω)G∗d(e
jω)M∗

u(e
jω) andMu(e

jω)Gf (e
jω)G∗f (e

jω)M∗
u(e

jω)
are positive semi-definite Hermitian matrices. Therefore, the generalized eigenvalue λ(ω) in (5.70) is
always real. It is easy to verify that JFRE,2/2

¡
Ropt,2/2(z)

¢
= λmax(ω0). On the other side, for any

λ > λmax(ω0) and v(z) we have

v(ejω)(Mu(e
jω)Gf (e

jω)G∗f (e
jω)M∗

u(e
jω)−

λMu(e
jω)Gd(e

jω)G∗d(e
jω)M∗

u(e
jω))v∗(ejω) < 0 (5.73)

which shows JFRE,2/2 < λ. This demonstrates that (5.72) is the optimal solution to (5.69). ¤

In practice, a bandpass filter f̃ω0(z) with a very narrow frequency bandwidth is usually used
to approximate the ideal frequency selector fω0(z). Using such a frequency selector may, however,
lead to a high miss detection rate if the frequency spectrum of the fault strongly differs from the
frequency range defined by the frequency selector, as pointed out by [35]. For this reason, a bank of
frequency selectors should be used in practice to ensure a high sensitivity of the FD system to the
possible faults over a wide frequency range.

5.2.3 Optimizations in terms of FAR and FDR

In this subsection, we shall first consider the optimization problem of maximizing FDR under a
given FAR. Let the l2 norm be the residual evaluation function and set the fault detection logic as

½
krk2 ≤ Jth =⇒ fault-free
krk2 > Jth =⇒ faulty

As discussed in Chapter 3, to guarantee that the FAR is lower than the allowed level α, the
threshold can be set as

Jth,α = kR(z)Mu(z)Gd(z)k∞ F−1 (1− α)

where F (ρ) is the cumulative distribution function of kdk2, and F−1(ρ) is the inverse function of
F (ρ). A fault f is detected by the residual generator (2.31), if

kR(z)Mu(z) (Gd(z)d(z) +Gf (z)f(z)) k2

> Jth,α = kR(z)Mu(z)Gd(z)k∞ F−1(1− α) (5.74)

Let the post-filter R(z) be re-written as R(z) = Q(z)G−1do (z), where Q(z) ∈ RH∞ is an arbitrary
filter of compatible dimensions, G−1do (z) is the inverse of the co-outer of Mu(z)Gd(z). Then a fault f
is detected if and only if

°°Q(z)Gdi(z)d(z) +Q(z)G−1do (z)Mu(z)Gf (z)f(z)
°°
2
> kQ(z)k∞ F−1(1− α) (5.75)

Because

°°Q(z)Gdi(z)d(z) +Q(z)G−1do (z)Mu(z)Gf (z)f(z)
°°
2

≤ kQ(z)k∞
°°Gdi(z)d(z) +G−1do (z)Mu(z)Gf (z)f(z)

°°
2

(5.76)

(5.75) holds, only if

°°Gdi(z)d(z) +G−1do (z)Mu(z)Gf (z)f(z)
°°
2
> F−1(1− α) (5.77)

The equality in (5.76) holds and the condition (5.77) becomes both necessary and sufficient, if Q(z)
is a unitary matrix. In this case, R(z) is exactly Ropt(z) given by (5.57). Let

ΩFD,f (R(z)) = { f | f satisfies (5.75) }

ΩFD,f (Ropt(z)) = { f | f satisfies (5.77) }
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Because any fault f satisfying (5.75) will also satisfy (5.77), ΩFD,f (R(z)) ⊆ ΩFD,f (Ropt(z)). There-
fore, (5.57) achieves the biggest set of detectable faults. In other words, the FDR is maximized by
(5.57).
Theorem 5.9 GivenMu(z)Gd(z) ∈ RH∞ andMu(z)Gf (z) ∈ RH∞. Assume that Gd(e

jω) has
no zero on the unit circle, i.e.

∀ω ∈ [0, 2π], Gd(e
jω)G∗d(e

jω) > 0

Then Ropt(z) = QdG
−1
do (z) given by (5.57) ensures that

ΩFD,f (Ropt(z)) ⊇ ΩFD,f (R(z)), ∀R(z) ∈ RH∞ (5.78)

where Gdo(z) is the co-outer of Mu(z)Gd(z), Qd is an arbitrary unitary matrix of compatible di-
mensions.
Now we shall consider the dual optimization problem of minimizing FAR under a given FDR.
Suppose that kR(z)Mu(z)Gf (z)k− 6= 0 and d = 0. It follows from (2.32) that any fault f can be

definitively detected only if

krk2 = kR(z)Mu(z)Gf (z)f(z)k2 ≥ kR(z)Mu(z)Gf (z)k− kfk2 > Jth (5.79)

In practice, it is often required that any fault whose size is larger than a tolerant range should be
detected. The percentage of the faults whose size is beyond the tolerant range represents the FDR.
Therefore, setting the tolerance range is understood as fixing the FDR. Bearing this in mind, to be
sure that all faults whose size is equal to or larger than α are detected, the threshold Jth should be
set as

Jth = α kR(z)Mu(z)Gf (z)k− (5.80)

For a given Jth the size of detachable faults is fixed, i.e. the FDR is fixed.
Recall that a false alarm will be created if in the fault-free case

krk2 = kR(z)Mu(z)Gd(z)d(z)k2 > Jth = α kR(z)Mu(z)Gf (z)k− (5.81)

i.e.
kR(z)Mu(z)Gd(z)d(z)k2 − α kR(z)Mu(z)Gf (z)k− > 0 (5.82)

Let ΩFA,d(R) denote the set of all disturbances that would cause false alarms, i.e.

ΩFA(R(z)) = { d | d satisfies (5.82) } (5.83)

The size of ΩFA,d(R) is a reasonable measurement of the FAR. The optimization problem is re-
formulated as: Given α, find R(z) so that the size of ΩFA(R(z)) is minimized. This problem will be
solved using the factorization technique, as presented in the following theorem.
Theorem 5.10 Given Mu(z)Gf (z) ∈ RH∞ and Mu(z)Gd(z) ∈ RH∞. Assume that

∀ω ∈ [0, 2π],G∗f (ejω)Gf (e
jω) > 0

ThenRopt,−/∞(z) = QfG
−1
fo (z) given by (5.62) ensures that ∀R(z) ∈ RH∞ with kR(z)Mu(z)Gf (z)k− >

0,
ΩFA,d(Ropt,−/∞(z)) ⊆ ΩFA,d(R(z)) (5.84)

where Gfo(z) is the co-outer of Mu(z)Gf (z), Qf is an arbitrary unitary matrix of compatible di-
mensions.
Theorem 5.10 suggests that, if Ropt,−/∞(z) is selected as the post-filter, then the set of distur-

bances that would cause false alarms will be the smallest. Therefore, Ropt,−/∞(z) ensures the lowest
FAR.
Proof : It follows from Lemma 4.1 that there exists a particular left coprime factorization of

Mu(z)Gf (z) = Gfo(z)Gfi(z), where G−1fo (z) ∈ RH∞, Gfi(z) ∈ RH∞ and Gfi(z) is a co-inner.
Assume that
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R(z) = Q(z)G−1fo (z), Q(z) ∈ RH∞
Then, (5.82) can be re-written into

°°°Q(z)G−1fo (z)Mu(z)Gd(z)d(z)
°°°
2
− α kQ(z)Gfi(z)k− > 0 (5.85)

Note that

kQ(z)Gfi(z)k− ≤ kQ(z)k− kGfi(z)k∞ = kQ(z)k−°°°Q(z)G−1fo (z)Mu(z)Gd(z)d(z)
°°°
2
≥ kQk−

°°°G−1fo (z)Mu(z)Gd(z)d(z)
°°°
2

It turns out
°°°Q(z)G−1fo (z)Mu(z)Gd(z)d(z)

°°°
2
− α kQ(z)Gfi(z)k−

≥ kQk−
³°°°G−1fo (z)Mu(z)Gd(z)d(z)

°°°
2
− α

´

As a result,

kQ(z)k− > 0,
°°°G−1fo (z)Ḡd(z)d(z)

°°°
2
− α > 0 (5.86)

lead to (5.85) that is equivalent to (5.82). In other words, (5.86) is a sufficient condition for (5.82).
Hence any d satisfying (5.86) will result in

kR(z)Mu(z)Gd(z)d(z)k2 − α kR(z)Mu(z)Gf (z)k− =°°°Q(z)G−1fo (z)Mu(z)Gd(z)d(z)
°°°
2
− α kQ(z)Gfi(z)k− > 0

Considering that (5.86) can be achieved by setting R(z) = QfG
−1
fo (z), where Qf is an arbitrary

unitary matrix, we finally have ∀Q(z) ∈ RH∞ with kQ(z)k− > 0,

ΩFA,d

³
QfG

−1
fo

´
⊆ ΩFA,d

³
Q(z)G−1fo

´

which is equivalent to (5.84). The theorem is proven. ¤

Theorem 5.10 provides us with an approach, by which we can achieve an optimal trade-off in the
sense of minimizing the FAR under a given FDR in the context of norm based residual evaluation. It
is interesting to notice that the role of the post-filter Ropt,−/∞(z) is in fact to inverse the magnitude
profile of Ḡf (z). As a result, we have

°°Ropt,−/∞(z)Mu(z)Gf (z)
°°
− =

°°Ropt,−/∞(z)Mu(z)Gf (z)
°°
∞ = 1 (5.87)

Moreover, the residual dynamics is governed by

r(z) = QfG
−1
fo (z)Ḡd(z)d(z) +QfGfi(z)f(z)

and the threshold Jth should be set, according to (5.80), as

Jth = α
°°Ropt,−/∞(z)Mu(z)Gf (z)

°°
− = α (5.88)

Note that in case of weak disturbances, Ropt,−/∞(z) also delivers an estimation of the size of the
fault (i.e. the energy of the fault), as

krk2 ≈ kQfGfi(z)f(z)k2 = kfk2 (5.89)

We would like to mention that the application of the well-established factorization technique to the
problem solution is very helpful for getting a deep insight into the optimization problem. Different
from the LMI solutions, the interpretation of (5.62) as the inverse of the magnitude profile of Ḡf (z)
is evident. From the computational viewpoint, solution (5.62) is an analytical one.



56 5 Optimization of FD systems

5.2.4 State space realization of post-filters

For the practical implementation, it is often useful to get a state space representation of Ropt(z) and
Ropt,−/∞(z). For this purpose, the dual version of the inner-outer factorization approach of Ionescu
et al. (1996) is applied [80]. Considering

Mu(z)Gd(z) = Fd + C(zI −A+ LC)−1(Ed − LFd)

it yields
Gdo(z) = Hd − C(zI −A+ LC)−1FTHd

where Hd is of full column rank,

HdH
T
d = CXdC

T + FdF
T
d (5.90)

and (Xd, F ) is the stabilizing solution to a discrete-time algebraic Riccati system (DTARS)
∙
Θ11 Θ12
ΘT
12 Θ22

¸ ∙
I
F

¸
= 0 (5.91)

where

Θ11 = (A− LC)Xd(A− LC)T −Xd + (Ed − LFd)(Ed − LFd)
T

Θ12 = (A− LC)XdC
T + (Ed − LFd)F

T
d

Θ22 = CXdC
T + FdF

T
d

Let
Ld = F − LT (5.92)

and denote the left inverse of Hd by Wd, i.e.

WdHd = I (5.93)

Then, the optimal post filter Ropt(z) = QdG
−1
do (z) is represented by

Ropt(z) = QdWd +QdWdC(zI −A− LTdC)
−1(LTd + L) (5.94)

and the DTARS (5.91) reduces to the following one
∙
AXdA

T −Xd +EdE
T
d AXdC

T +EdF
T
d

CXdA
T + FdE

T
d CXdC

T + FdF
T
d

¸ ∙
I
Ld

¸
= 0 (5.95)

Lemma 5.3 Under the same conditions as in Theorem 5.6, assume that Mu(z) is given by
(2.33). Then the state space realization of the optimal post-filter (5.57) is given by (5.94), where Qd

is an arbitrary unitary matrix, Ld and Wd are determined by (5.95), (5.90) and (5.93).
Therefore, a state space realization of Ropt(z) in the form of (5.94) can be obtained by:

� solving the DTARS (5.95) for the stabilizing solution (Xd, Ld),
� finding the full column rank matrix Hd satisfying HdH

T
d = CXdC

T + FdF
T
d ,

� solving WdHd = I for Wd.

Similarly, a state space realization of Ropt,−/∞(z) can be found, as stated in the following lemma.
Lemma 5.4 Under the same conditions as in Theorem 5.7, assume that m = nf and Mu(z) is

given by (2.33). Then the state space realization of the post-filter (5.62) is given by

Ropt,−/∞(z) = QfWf +QfWfC(zI −A− LTf C)
−1(LTf + L) (5.96)

where Qf is an arbitrary unitary matrix, Wf is the left inverse of a full column rank matrix Hf

satisfying HfH
T
f = CXfC

T + FfF
T
f , and (Xf , Lf ) is the stabilizing solution to the DTARS

∙
AXfA

T −Xf +EfE
T
f AXfC

T +EfF
T
f

CXfA
T + FfE

T
f CXfC

T + FfF
T
f

¸ ∙
I
Lf

¸
= 0 (5.97)

In case that m > nf , the state space realization of Ropt,−/∞(z) should be obtained by other
algorithms of co-inner-outer factorization.
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5.2.5 Optimal residual dynamics

As mentioned before, if R(z) = Ropt(z), then Ropt(z)Mu(z)Gd(z) = QdGdi(z) is a co-inner. Assume
that (Ard, Brd, Crd,Drd) is a state space realization of Ropt(z)Mu(z)Gd(z). As a dual result to [200],
there exist a matrix Xrd ≥ 0 that satisfies

ArdXrdA
T
rd −Xrd +BrdB

T
rd = 0 (5.98)

ArdXrdC
T
rd +BrdD

T
rd = 0 (5.99)

CrdXrdC
T
rd +DrdD

T
rd − I = 0 (5.100)

The optimal residual dynamics is

x̂(k + 1) = (A+ LTdC)x̂(k) + (Ed + LTd Fd)d(k) + (Ef + LTd Ff )f(k)

r(k) = QdWd(Cx̂(k) + Fdd(k) + Fff(k)) (5.101)

5.3 Optimization of observer based residual generators

As shown by Lemma 2.4, the observer-based residual generator (2.19) is a special case of (2.31),
where the post-filter R(z) reduces to a constant weighting matrix W . Therefore, the optimization of
the observer-based residual generator (2.19) can be derived from the results in the last section.
The residual dynamics of (2.19) is governed by

r(z) =W (Gd,L(z)d(z) +Gf,L(z)f(z)) (5.102)

where

Gd,L(z) = Fd + C(zI −A+ LC)−1(Ed − LFd)

Gf,L(z) = Ff + C(zI −A+ LC)−1(Ef − LFf )

5.3.1 H∞/H∞ ,H−/H∞ and Hi/H∞ design

The H∞/H∞, H−/H∞ and Hi/H∞ optimization problems are in this case, respectively, formulated
as [34, 32, 61, 180, 176]

max
L,W

JOBS,∞/∞ = max
L,W

kWGf,L(z)k∞
kWGd,L(z)k∞

(5.103)

max
L,W

JOBS,−/∞ = max
L,W

kWGf,L(z)k−
kWGd,L(z)k∞

(5.104)

max
L,W

JOBS,i/∞ = max
L,W

σi(WGf,L(e
jω))

kWGd,L(z)k∞
(5.105)

A unified solution to the optimization problem (5.103)-(5.105) is given in the following theorem.
Theorem 5.11 [179] Given the LTI system (2.1), assume that (A,Ed, C, Fd) is detectable and

has no invariant zeros on the unit circle and no unobservable modes at the origin. Then

Lopt = −LTd , Wopt = QdWd (5.106)

solves the optimization problem (5.103)-(5.105) simultaneously, where Qd is a unitary matrix of
compatible dimensions, Wd is the left inverse of a full column rank matrix Hd satisfying HdH

T
d =

CXdC
T + FdF

T
d , and (Xd, Ld) is the stabilizing solution to the DTARS (5.95). Moreover,

ΩFD,f (Lopt,Wopt) ⊇ ΩFD,f (L,W ), ∀L,W (5.107)
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Proof: At first assume that L is a fixed stabilizing observer gain matrix. Recall that

Gd,L(z) =Mu(z)Gd(z), Gf,L(z) =Mu(z)Gf (z)

and Ropt(z) given by (5.94) is the unified optimal solution to optimization problems (5.50)-(5.52),
where Qd is an arbitrary unitary matrix of compatible dimensions. Note that, if L is fixed to −LTd ,
then Ropt(z) reduces to the constant matrix QdWd. That means

kQdWdGf,−LT
d
(z)k∞

kQdWdGd,−LT
d
(z)k∞

= max
R(z)∈RH∞

kR(z)Gf,−LT
d
(z)k∞

kR(z)Gd,−LT
d
(z)k∞

(5.108)

kQdWdGf,−LT
d
(z)k−

kQdWdGd,−LT
d
(z)k∞

= max
R(z)∈RH∞

kR(z)Gf,−LT
d
(z)k−

kR(z)Gd,−LT
d
(z)k∞

(5.109)

σi

³
QdWdGf,−LT

d
(ejω)

´

kQdWdGd,−LT
d
(z)k∞

= max
R(z)∈RH∞

σi

³
R(ejω)Gf,−LT

d
(ejω)

´

kR(z)Gd,−LT
d
(z)k∞

(5.110)

Moreover, for any given observer gain matrix L, there exists always an RH∞-invertible matrix

Q(z) = I + C(zI −A− LTdC)
−1(L+ LTd ) (5.111)

such that

Gd,−LT
d
(z) = Q(z)Gd,L(z)

Gf,−LT
d
(z) = Q(z)Gf,L(z) (5.112)

On the other side, note that R(z) is a dynamic system and includes the constant matrix as its special
case. Hence, once the stabilizing observer gain matrix L is fixed (i.e. Gd,L(z) and Gf,L(z) fixed),
there is

max
R(z)∈RH∞

kR(z)Gf,L(z)k∞
kR(z)Gd,L(z)k∞

≥ max
W

kWGf,L(z)k∞
kWGd,L(z)k∞

(5.113)

max
R(z)∈RH∞

kR(z)Gf,L(z)k−
kR(z)Gd,L(z)k∞

≥ max
W

kWGf,L(z)k−
kWGd,L(z)k∞

(5.114)

max
R(z)∈RH∞

σi(R(e
jω)Gf,L(e

jω))

kR(z)Gd,L(z)k∞
≥ max

W

σi(WGf,L(e
jω))

kWGd,L(z)k∞
(5.115)

From (5.108), (5.112) and (5.113) it can be obtained that, ∀L,

kQdWdGf,−LT
d
(z)k∞

kQdWdGd,−LT
d
(z)k∞

= max
R(z)∈RH∞

kR(z)Gf,−LT
d
(z)k∞

kR(z)Gd,−LT
d
(z)k∞

= max
R(z)∈RH∞

kR(z)Q(z)Gf,L(z)k∞
kR(z)Q(z)Gd,L(z)k∞

= max
R̂(z)∈RH∞

kR̂(z)Gf,L(z)k∞
kR̂(z)Gd,L(z)k∞

≥ max
W

kWGf,L(z)k∞
kWGd,L(z)k∞

As a result,
kWGf,L(z)k∞
kWGd,L(z)k∞

¯̄
¯L=−LT

d ,W=QdWd
≥ max

L,W

kWGf,L(z)k∞
kWGd,L(z)k∞
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It shows that L = −LTd ,W = QdWd is the optimal solution to the optimization problem (5.103).
Similarly, it can be proved that L = −LTd and W = QdWd solve (5.104)-(5.105). ¤

From the above derivation, we obtain the following lemma as a byproduct.
Lemma 5.5 Denote the optimal values of the optimization problems (5.103)-(5.105), respec-

tively, by JOBS,∞/∞,opt, JOBS,−/∞,opt, JOBS,i/∞,opt(ω) and those of the the optimization problems
(5.50)-(5.52), respectively, by JFRE,∞/∞,opt, JFRE,−/∞,opt, JFRE,i/∞,opt(ω). Then

JOBS,∞/∞,opt = JFRE,∞/∞,opt

JOBS,−/∞,opt = JFRE,−/∞,opt

JOBS,i/∞,opt(ω) = JFRE,i/∞,opt(ω)

JOBS,∞/∞,opt ≥ JOBS,i/∞,opt(ω) ≥ JOBS,−/∞,opt (5.116)

Moreover, the optimal solution Lopt and Wopt given by (5.106) leads to

Grd(z) = WoptFd +WoptC(zI −A+ LoptC)
−1(Ed − LoptFd)

kGrd(z)k∞ = 1 (5.117)

and Grd(z) is a co-inner.
In Theorem 5.11, the assumption that (A,Ed, C, Fd) has no invariant zeros on the unit circle is

a standard assumption in the robust control theory. The other assumptions are not restrictive and
do not lead to a loss of generality [81]. If CXdC

T + FdF
T
d is nonsingular, then the DTARS (5.95)

reduces to a standard DTARE as follows

AXdA
T −Xd +EdE

T
d − (AXdC

T +EdF
T
d )

× (CXdC
T + FdF

T
d )
−1(CXdA

T + FdE
T
d ) = 0 (5.118)

which can be solved in Matlab with the function dare.
In the same way, we can prove the following theorem.
Theorem 5.12 Given the LTI system (2.1), assume thatm = nf and (A,Ef , C, Ff ) is detectable

and has no invariant zeros on the unit circle, no unreachable modes on the unit circle, and no
unobservable modes at the origin. Then

Lopt,−/∞ = −LTf , Wopt,−/∞ = QfWf (5.119)

solves the optimization problem (5.104), where Qf is a unitary matrix, Wf is the left inverse of a
full column rank matrix Hf satisfying HfH

T
f = CXfC

T + FfF
T
f , and (Xf , Lf ) is the stabilizing

solution to the DTARS (5.97). Moreover,

ΩFA,d(Lopt,−/∞,Wopt,−/∞) ⊆ ΩFA,d(L,W ), ∀L,W (5.120)

Considering that (5.106) solves the optimization problem (5.103)-(5.105) simultaneously, it is
called the unified optimal observer-based residual generator.
The threshold can be set as

Jth = sup
f=0,d

krk2

=

½
δd,2, if L = Lopt,W =Wopt

kQfWfGd,−LT
f
(z)k∞δd,2, if L = Lopt,−/∞,W =Wopt,−/∞

(5.121)

5.3.2 Example

Example 5.2 For the same system as in Example 5.1, design observer based H∞/H∞, H−/H∞
and Hi/H∞ optimal FD systems.
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Fig. 5.1 Performance index J1,ω(Lopt,Wopt) (solid line), J2,ω(Lopt,Wopt) (dashed line),
JOBS,−/∞(Lopt,−/∞,Wopt,−/∞) = J1,ω(Lopt,−/∞,Wopt,−/∞) = J2,ω(Lopt,−/∞,Wopt,−/∞) =
JOBS,∞/∞(Lopt,−/∞,Wopt,−/∞) ≡ 0.2031 (dotted line)

From Theorem 5.11, we get the optimal gain matrix

Lopt =

⎡
⎢⎢⎣

1.6883 −0.1281
−1.6101 0.7840
0.0369 0.3677
0.7917 1.3489

⎤
⎥⎥⎦ ,Wopt =

∙
0.2499 0
0.0194 0.2507

¸
(5.122)

which solves (5.103)-(5.105) simultaneously. According to Theorem 5.12, (5.104) is also solved by

Lopt,−/∞ =

⎡
⎢⎢⎣

1.6261 −0.1786
−1.8671 0.8734
−0.1963 0.4029
0.6697 1.3317

⎤
⎥⎥⎦ ,Wopt,−/∞ =

∙
0.6914 0
−0.5288 0.2955

¸
(5.123)

The optimal performance indexes, as obtained by solving (5.103)-(5.105), are shown in Fig.5.1. It
can be seen that, ∀ω,

1.2156 = JOBS,∞/∞(Lopt,Wopt) = J1,ω=2.160(Lopt,Wopt) ≥ J1,ω(Lopt,Wopt)

≥ J2,ω(Lopt,Wopt) ≥ J2,ω=1.460(Lopt,Wopt) = JOBS,−/∞(Lopt,Wopt)

= JOBS,−/∞(Lopt,−/∞,Wopt,−/∞) = J1,ω(Lopt,−/∞,Wopt,−/∞)

= J2,ω(Lopt,−/∞,Wopt,−/∞) = JOBS,∞/∞(Lopt,−/∞,Wopt,−/∞) = 0.2031

These results verify Lemma 5.5.

5.4 Interconnections between optimization problems

In this section, we shall discuss the relationship between different optimization approaches.

5.4.1 JPS and JFRE,2/2

The relationship between the optimal solutions of the parity space approach and theH2/H2 approach
can be analyzed as follows [195].
Suppose that {gd(0), gd(1), · · · } is the impulse response of system (2.1) to the unknown distur-

bances. Apparently,



5.4 Interconnections between optimization problems 61

gd(0) = Fd, gd(1) = CEd, · · · , gd(s) = CAs−1Ed, · · · (5.124)

The matrix Hd,s can then be expressed in terms of the impulse response as follows

Hd,s =

⎡
⎢⎢⎢⎢⎣

gd(0) O · · · O

gd(1) gd(0)
. . .

...
...

. . .
. . . O

gd(s) · · · gd(1) gd(0)

⎤
⎥⎥⎥⎥⎦

Partition the parity vector vs as
vs =

£
vs,0 vs,1 · · · vs,s

¤

where the row vector vs,i ∈ R1×m, i = 0, 1, · · · s.
Then, we have

vsHd,s =
£
ϕ(s) ϕ(s− 1) · · · ϕ(0)

¤

where

ϕ(i) =
iX

l=0

ρi−lgd(l), ρi = vs,s−i, i = 0, 1, · · · s

Let s go to infinity. It leads to

lim
s→∞

vsHd,s =
£
ϕ(∞) · · · ϕ(0)

¤
(5.125)

and in this case

ϕ(i) =
iX

l=0

ρi−lgd(l) = ρ(i)⊗ gd(i) = Z
−1(P (z)Gd(z)) (5.126)

P (z) = Z[ρ(i)], ρ(i) = {ρ0, ρ1, · · · } (5.127)

where ⊗ denotes the convolution. Equation (5.127) means that P (z) is the z-transform of the se-
quence {ρ0, ρ1, · · · }.
According to the Parseval Theorem, we have

lim
s→∞

vsHd,sH
T
d,sv

T
s =

∞X

i=0

ϕ(i)ϕT (i)

=
1

2π

Z 2π

0

P (ejω)Gd(e
jω)G∗d(e

jω)P ∗(ejω)dω (5.128)

Similarly, it can be proven that

lim
s→∞

vsHf,sH
T
f,sv

T
s =

1

2π

Z 2π

0

P (ejω)Gf (e
jω)G∗f (e

jω)P ∗(ejω)dω (5.129)

On the other side, if given a residual generator (2.31), we can always construct a parity vector,
as stated in Lemma 5.6.
Lemma 5.6 Given system (2.1) and a residual generator (2.31) with R(z) ∈ RH1×m

∞ . Then the
row vector defined by

v =
£
· · · C̄ĀB̄ C̄B̄ D̄

¤
(5.130)

where (Ā, B̄, C̄, D̄) is the state space realization of R(z)Mu(z), belongs to the parity space Ps
(s→∞).
Proof: Assume that (Ar, Br, Cr,Dr) is a state space realization of R(z). Recalling (2.33), we

know that
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Ā =

∙
A− LC O
−BrC Ar

¸
, B̄ =

∙
L
Br

¸
, C̄ =

£
−DrC Cr

¤
, D̄ = Dr

It can be easily obtained that

lim
s→∞

vHo,s = lim
s→∞

£
· · · C̄ĀB̄ C̄B̄ D̄

¤

⎡
⎢⎢⎢⎣

C
CA
CA2

...

⎤
⎥⎥⎥⎦

= lim
s→∞

£
· · · CrArBr CrBr Dr

¤

⎡
⎢⎢⎢⎣

C
C(A− LC)
C(A− LC)2

...

⎤
⎥⎥⎥⎦ (5.131)

For a linear discrete-time system

λ(k + 1) = (A− LC)λ(k)

δ(k) = Cλ(k) (5.132)

with any initial state vector λ(0) = λ0 ∈ Rn, apparently

δ(0) = Cλ0

δ(1) = C(A− LC)λ0

δ(2) = C(A− LC)2λ0, · · ·

Since R(z) ∈ RH1×m
∞ and L is selected to ensure the stability of A−LC, the cascade connection of

system (5.132) and R(z) is stable. So

lim
k→∞

Z−1{R(z)δ(z)} = 0

Note that

lim
k→∞

Z−1{R(z)δ(z)} = lim
s→∞

£
· · · CrArBr CrBr Dr

¤

⎡
⎢⎢⎢⎣

Cλ0
C(A− LC)λ0
C(A− LC)2λ0

...

⎤
⎥⎥⎥⎦

we get

lim
s→∞

£
· · · CrArBr CrBr Dr

¤

⎡
⎢⎢⎢⎣

C
C(A− LC)
C(A− LC)2

...

⎤
⎥⎥⎥⎦λ0 = 0

for any initial state vector λ0 ∈ Rn. Thus it can be concluded that

lim
s→∞

£
· · · CrArBr CrBr Dr

¤

⎡
⎢⎢⎢⎣

C
C(A− LC)
C(A− LC)2

...

⎤
⎥⎥⎥⎦ = 0

At last, from (5.131) we obtain
lim
s→∞

vHo,s = 0
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i.e. the vector v defined by (5.130) belongs to the parity space Ps (s → ∞). The lemma is thus
proven. ¤

It is of interest to note that the vector v is indeed composed of the impulse response of the
residual generator R(z)Mu(z) = D̄+ C̄(zI − Ā)−1B̄, which is given by

©
D̄, C̄B̄, C̄ĀB̄, C̄Ā2B̄, · · ·

ª
.

Based on the above analysis, the following theorem can be obtained.
Theorem 5.13 [195] Given system (2.1) and assume that vs,opt, JPS,opt and Ropt(z), JFRE,2/2,opt

are, respectively, the optimal solutions of optimization problems (5.3) and (5.69). Then

lim
s→∞

JPS,opt = JFRE,2/2,opt (5.133)

P (z) = Ropt(z)Mu(z) (5.134)

where
P (z) = Z[ρ(i)], ρ(i) = {vs→∞,opt,s, vs→∞,opt,s−1, · · · , vs→∞,opt,0} (5.135)

Proof: Let vs→∞,opt denote the optimal solution of optimization problem (5.3) as s→∞, then
it follows from (5.127)-(5.129) that for any left coprime factorization of Gu(z) =M−1

u (z)Nu(z), the
post-filter Ro(z) given by

Ro(z) = P (z)M−1
u (z)

where P (z) is defined by (5.135), leads to

JFRE,2/2 | R(z)=Ro(z) = lim
s→∞

JPS,opt = lim
s→∞

max
vs∈Ps

JPS (5.136)

= max
s

max
vs∈Ps

JPS ≤ max
R(z)∈RH1×m

∞
JFRE,2/2 (5.137)

We now demonstrate that

JFRE,2/2 |R(z)=Ro(z)= JFRE,2/2,opt = max
R(z)∈RH1×m

∞
JFRE,2/2 (5.138)

Suppose that (5.138) does not hold. Then, the optimal solution of optimization problem (5.69),
denoted by Rc(z) ∈ RH1×m

∞ and different from Ro(z), should lead to

JFRE,2/2 |R(z)=Rc(z)= max
R(z)∈RH1×m

∞
JFRE,2/2 > JFRE,2/2 |R(z)=Ro(z) (5.139)

According to Lemma 5.6, we can find a parity vector v ∈ Ps whose components are just a re-
arrangement of the impulse response of Rc(z)Mu(z). Moreover, because of (5.127)-(5.129), we have

JPS |vs=v= JFRE,2/2 |R(z)=Rc(z) (5.140)

As a result, it follows from (5.136), (5.139) and (5.140) that

JPS |vs=v> maxs
max
vs∈Ps

JPS,2/2

which is an obvious contradiction. Thus we can conclude that

JFRE,2/2,opt = max
R(z)∈RH1×m

∞
JFRE,2/2 = JFRE,2/2 |R(z)=Ro(z)= lim

s→∞
JPS,opt

and
Ro(z) = P (z)M−1

u (z) := Ropt(z)

solve optimization problem (5.69). The theorem is thus proven. ¤

Theorem 5.13 gives a deeper insight into the relationship between the parity space approach and
the H2/H2 approach and reveals some very interesting facts when the order of the parity relation s
increases:
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� The optimal performance index JPS,opt of the parity space approach converges to a limit which
is just the optimal performance index JFRE,2/2,opt of the H2/H2 approach.

� There is a one-to-one relationship between the optimal solutions of optimization problems (5.3)
and (5.69) when the order of the parity relation s → ∞. Since Ropt(z) is a band-limited filter,
the frequency response of vs→∞,opt is also band-limited.

The above result can be applied in several ways, for instance:

� For multi-dimensional systems, the optimal solution of theH2/H2 approach can be approximately
computed by at first calculating the optimal solution of the parity space approach with a high
order s and then doing the z-transform of the optimal parity vector.

� In the parity space approach, a high order s will improve the performance index JPS,opt but,
on the other side, increase the online computational effort. To determine a suitable trade-off
between performance and implementation effort, the optimal performance index JFRE,2/2,opt of
the H2/H2 approach can be used as a reference value.

� Based on the property that the frequency response of vs→∞,opt is band-limited, advanced parity
space approaches can be developed to achieve both a good performance and a low order parity
vector. For instance, the parameters g1, · · · , gs in the extended parity relation based residual
generator (2.12) can be selected in such a way that

β(z) =
1

1− gsz−1 − gs−1z−2 − · · ·− g1z−s

is a band-pass filter centering around ω0 given by (5.71). In the references [161]-[163] wavelet
transform have been introduced to design optimized parity vectors of low order and good per-
formance.

Example 5.2 Given a discrete-time system modelled by (2.1), where

A =

∙
1 −1.30
0.25 −0.25

¸
, B =

∙
2
1

¸
, C =

£
0 1
¤

Ed =

∙
0.4
0.5

¸
, Ef =

∙
0.6
0.1

¸
,D = Fd = Ff = 0. (5.141)

As system (5.141) is stable, matrix L in (2.33) can be selected to be zero matrix and thus Mu(z)
is an identity matrix. To solve the generalized eigenvalue-eigenvector problem (5.70) to get ω0 that
achieves σmax(ω0) = supω σmax(ω), note that

σmax(ω) =
0.0125 + 0.01 cosω

0.41− 0.4 cosω
Therefore, the optimal performance index of the H2/H2 approach is JFRE,2/2,opt = 2.2502 and the
selective frequency is ω0 = 0.
Fig.5.2 demonstrates the change of the optimal performance index JPS,opt with respect to the

order of the parity relation s. From the figure it can be seen that JPS,opt decreases with the increase
of s and, moreover, JPS,opt converges to JFRE,2/2,opt when s → ∞ . Fig. 5.3 shows the frequency
responses of the optimal parity vector vs,opt when s is chosen as 20, 50, 100 and 200 respectively. We
see that the bandwidth of the frequency response of vs,opt becomes narrower and narrower with the
increase of s.

5.4.2 JPS,∞/∞ , JPS,−/∞ and JFRE,∞/∞ , JFRE,−/∞

Let JPS,∞/∞,opt, JPS,−/∞,opt, JFRE,∞/∞,opt, JFRE,−/∞,opt denote, respectively, the optimal per-
formance indices of (5.15), (5.16), (5.50) and (5.51). To study the relationship between the perfor-
mance indices JFRE,∞/∞, JFRE,−/∞ and JPS,∞/∞, JPS,−/∞, recall the time domain interpretation
of JFRE,∞/∞ and JFRE,−/∞.
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Assume that (Ā, B̄, C̄, D̄) is the state space realization of R̄(z) = R(z)Mu(z). The impulse re-
sponse ofR(z)Mu(z) andGd(z) are, respectively, {gR̄(0), gR̄(1), gR̄(2), · · · } and {gd(0), gd(1), gd(2), · · · }.
Then,

gd(0) = Fd, gd(1) = CEd, · · · , gd(s) = CAs−1Ed, · · ·

gR̄(0) = D̄, gR̄(1) = C̄B̄, · · · , gR̄(s) = C̄Ās−1B̄, · · · (5.142)

The impulse response of R(z)Mu(z)Gd(z) is

{gR̄(0)gd(0), gR̄(0)gd(1) + gR̄(1)gd(0), · · · ,
sX

j=0

gR̄(j)gd(s− j), · · · }

Under the assumption of x(0) = 0, the residual dynamics (2.32) can be re-written as

r∞ = HR̄ (Hdd∞ +Hff∞) (5.143)

where

r∞ =

⎡
⎢⎢⎢⎣

r(0)
r(1)
r(2)
...

⎤
⎥⎥⎥⎦ , d∞ =

⎡
⎢⎢⎢⎣

d(0)
d(1)
d(2)
...

⎤
⎥⎥⎥⎦ , f∞ =

⎡
⎢⎢⎢⎣

f(0)
f(1)
f(2)
...

⎤
⎥⎥⎥⎦

Hd =

⎡
⎢⎢⎢⎢⎢⎣

gd(0) O O · · ·

gd(1) gd(0) O
...

gd(2) gd(1) gd(0)
. . .

... · · ·
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎦
, Hf =

⎡
⎢⎢⎢⎢⎢⎣

gf (0) O O · · ·

gf (1) gf (0) O
...

gf (2) gf (1) gf (0)
. . .

... · · ·
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎦

HR̄ =

⎡
⎢⎢⎢⎢⎢⎣

gR̄(0) O O · · ·

gR̄(1) gR̄(0) O
...

gR̄(2) gR̄(1) gR̄(0)
. . .

... · · ·
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎦

(5.144)

Therefore, there is

sup
d∞=0,f∞ 6=0

rT∞r∞
fT∞f∞

= sup
d∞=0,f∞ 6=0

fT∞HT
f H

T
R̄
HR̄Hff∞

fT∞f∞
= σ̄2(HR̄Hf )

inf
d∞=0,f∞ 6=0

rT∞r∞
fT∞f∞

= inf
d∞=0,f∞ 6=0

fT∞HT
f H

T
R̄
HR̄Hff∞

fT∞f∞
= σ2(HR̄Hf )

As δT∞δ∞ =
∞X

k=0

δT (k)δ(k) = kδk
2
2 (δ = r, d, f), it follows

σ̄2(HR̄Hf ) = sup
x(0)=0,d=0,f 6=0

krk2
kfk2

= kR(z)Mu(z)Gf (z)k
2
∞

σ2(HR̄Hf ) = inf
x(0)=0,d=0,f 6=0

krk2
kfk2

= kR(z)Mu(z)Gf (z)k
2
−

Comparing (5.144) with (2.4), we see that

Hd = lim
s→∞

Hd,s, Hf = lim
s→∞

Hf,s
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Hence,

J2FRE,∞/∞,opt = max
R(z)∈RH∞

kR(z)Mu(z)Gf (z)k
2
∞

kR(z)Mu(z)Gd(z)k
2
∞
= max

R(z)∈RH∞

σ̄2(HR̄Hf )

σ̄2(HR̄Hd)

= lim
s→∞

max
R(z)∈RH∞

σ̄2(HR̄Hf,s)

σ̄2(HR̄Hd,s)
≥ lim

s→∞
max
Vs

σ̄2(VsHf,s)

σ̄2(VsHf,s)

J2FRE,−/∞,opt = max
R(z)∈RH∞

kR(z)Mu(z)Gf (z)k
2
−

kR(z)Mu(z)Gd(z)k
2
∞
= max

R(z)∈RH∞

σ2(HR̄Hf )

σ̄2(HR̄Hd)

= lim
s→∞

max
R(z)∈RH∞

σ2(HR̄Hf,s)

σ̄2(HR̄Hd,s)
≥ lim

s→∞
max
Vs

σ2(VsHf,s)

σ̄2(VsHd,s)
(5.145)

Finally, we have

J2FRE,∞/∞,opt ≥ lim
s→∞

JPS,∞/∞,opt

J2FRE,−/∞,opt ≥ lim
s→∞

JPS,−/∞,opt (5.146)

Recall Theorem 5.13, we get further

J2FRE,∞/∞,opt ≥ JFRE,2/2,opt (5.147)

As the influence of the initial condition can often be neglected if s→∞, especially for stable systems,
there is often

J2FRE,∞/∞,opt = lim
s→∞

JPS,∞/∞,opt

J2FRE,−/∞,opt = lim
s→∞

JPS,−/∞,opt

J2FRE,∞/∞,opt = JFRE,2/2,opt (5.148)

5.4.3 Kalman filter based FD

Assume that an LTI system with stochastic noises is described by

x(k + 1) = Ax(k) +Bu(k) + w(k) +Eff(k),

y(k) = Cx(k) +Du(k) + v(k) + Fff(k), (5.149)

where w ∈ Rn, v ∈ Rm are white Gaussian distributed noises with covariances

E

½∙
w(k)
v(k)

¸ £
wT (j) vT (j)

¤¾

=

∙
EwE

T
w EwF

T
v

FvE
T
w FvF

T
v

¸
δkj

and independent of u(k). It is well-known that Kalman filter in the form of [88, 92]

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k) +Du(k), (5.150)

with L = (AXCT +EwF
T
v )(CXCT + FvF

T
v )
−1 and X solving the Riccati equation

AXAT −X +EwE
T
w − (AXCT +EwF

T
v )

× (CXCT + FvF
T
v )
−1(CXAT + FvE

T
w) = 0 (5.151)
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will give a state estimate with the minimum error covariance matrix Pe = E{e(k)eT (k)}, where
e(k) = x(k)− x̂(k), and e(k) is white and Gaussian distributed.
Comparing the above Kalman filter with the optimal parameters of the observer-based residual

generator given in Theorem 5.11, we find out that they are strikingly similar. In the following, we
shall study the physical meaning behind it.
Let ro(k) = y(k)− ŷ(k). In the fault free case, we have

e(k + 1) = Ae(k) + w(k)− Lro(k)

ro(k) = Ce(k) + v(k)

As a result,
E{ro(k)r

T
o (j)} = (CPC

T + FvF
T
v )δkj = Proδkj

i.e, ro(k) is also white, Gaussian distributed and of minimum covariance among all output estimation
errors. Let r̄o(k) be the stacked residual vector as follows

r̄o(k) =

⎡
⎢⎣

ro(k)
...

ro(k −N)

⎤
⎥⎦

Note that
E
©
r̄o(k)r̄

T
o (k)

ª
= diag{Pro , · · · , Pro} = Pr̄o

The problem of fault detection is transformed into a hypothesis testing problem of detecting the
mean value change in the output estimation error ro(k). For this purpose, consider the generalized
likelihood ratio (GLR) method,

SN =
ln pr̄o,f 6=0(r̄o,f 6=0)

ln pr̄o,f=0(r̄o,f=0)

=
ln 1√

(2π)m(N+1) det(Pr̄o )
e−

1
2 (r̄o−r̄fo)TP

−1
r̄o
(r̄o−r̄fo)

ln 1√
(2π)m(N+1) det(Pr̄o )

e−
1
2 r̄

T
o P

−1
r̄o

r̄o

=
1

2
r̄To P

−1
r̄o r̄o −

1

2
(r̄o − r̄fo)

TP−1r̄o (r̄o − r̄fo)

If r̄fo = r̄o, SN achieves the maximum SN = 1
2 r̄

T
o P

−1
r̄o r̄o =

1
2(P

− 1
2

r̄o r̄o)
T (P

− 1
2

r̄o r̄o). The fault decision
follows from

SN =

½
< Jth, H0 (fault-free) is accepted
> Jth, H1 (faulty) is accepted

Suppose that the allowed FAR is α. Because

rN = P
− 1
2

r̄o r̄o = diag{P
− 1
2

ro , · · · , P
− 1
2

ro }

⎡
⎢⎣

ro(k)
...

ro(k −N)

⎤
⎥⎦

=

⎡
⎢⎢⎣

P
− 1
2

ro ro(k)
...

P
− 1
2

ro ro(k −N)

⎤
⎥⎥⎦ ∼ N(0, I),

Let
r(k) = P

− 1
2

ro ro(k) = (CPC
T + FvF

T
v )
− 1
2 (y(k)− ŷ(k))

Then
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SN =
1

2
rTNrN =

1

2

kX

j=k−N
rT (j)r(j) ∼ 1

2
χ2(m(N + 1))

and the threshold Jth can be set according to the requirement on the FAR. It is well-known the
GLR method achieves the minimum MDR under given FAR.
The above discussion shows that the unified solution and the Kalman filter use not only the

same way to calculate the optimal parameters, but also are equivalent in the sense of minimizing
the MDR under a given FAR.

5.4.4 Connection with other optimization problems

It has been pointed out in Chapter 4 (Section 4.4) that the FD problem can be formulated as a
number of optimization problems from different viewpoints. In this chapter, our main attention is
put on the ratio type optimization problems in the form of (4.41). In this subsection, we shall show
that the optimal solution to the ratio-type optimization problems (4.41) can also be used to solve
the optimization problems (4.35)-(4.38).
We take the minmax problem (4.35) as an example. Suppose that the observer based residual

generator (2.19) is used and the maximal fault sensitivity is under consideration. The design objective
is concretized to

kWGd,L(z)k∞ < γ → min, kWGf,L(z)k∞ > β → max (5.152)

Assume that the optimal solution to (5.152) is Lc and Wc, which make

kWcGd,Lc(z)k∞ = γc(< γ)

kWcGf,Lc(z)k∞ = βc(> β)

Let
Lg = Lopt, Wg = γcWopt (5.153)

with Lopt,Wopt given by (5.106). Because Lopt,Wopt maximize the H∞/H∞ index JOBS,∞/∞, there
is

kWoptGf,Lopt(z)k∞
kWoptGd,Lopt(z)k∞

≥ kWcGf,Lc(z)k∞
kWcGd,Lc(z)k∞

Then

kWgGd,Lg(z)k∞ = γckWoptGd,Lopt(z)k∞ = γc

kWgGf,Lg(z)k∞ = kWgGd,Lg(z)k∞
kWgGf,Lg(z)k∞
kWgGd,Lg(z)k∞

= γc
kWoptGf,Lopt(z)k∞
kWoptGd,Lopt(z)k∞

≥ γc
kWcGf,Lc(z)k∞
kWcGd,Lc(z)k∞

= γc
βc
γc
= βc

i.e.

kWgGd,Lg(z)k∞ = kWcGd,Lc(z)k∞
kWgGf,Lg

(z)k∞ ≥ kWcGf,Lc
(z)k∞

It demonstrates that Lg,Wg given by (5.153) will also be optimal in the sense of (5.152).
The optimal solution to (4.36)-(4.38) can be obtained in a similar way based on the optimal

solution to (4.41).
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5.4.5 Comparison with LMI based design

The LMI technique has been much studied in the framework of robust control theory due to its
numerical advantage. As the constraints

kGrd(z)k < γ

kGrf (z)k < β or kGrf (z)k > β
°°£R(z)Mu(z)Gd(z) R(z)Mu(z)Gf (z)−Wf (z)

¤°° < α
°°£R(z)Mu(z)Gd(z)−Wd(z) R(z)Mu(z)Gf (z)−Wf (z)

¤°° < α

can be re-formulated as LMI, the optimization problems (4.35)-(4.38), (4.40) and (4.44) can be
solved with the help of LMI technique. In this section, we shall take the LMI based solution of the
H∞/H∞ and H−/H∞ problem as examples to illustrate the basic idea of the LMI based design. We
shall also compare the LMI based solution with the direct solution to the ratio type optimization
problems.
Suppose that the H∞ norm is used to evaluate both the robustness of the FD system to the

unknown disturbances and the sensitivity to the faults. The constraints in the optimization problems
(4.35)-(4.38) come down to

kGrd(z)k∞ < γ (5.154)

kGrf (z)k∞ < β (5.155)

which can be re-formulated as follows.
Theorem 5.14 Given the system (2.1), the observer based residual generator (2.19) with dy-

namics (5.102). Then the residual dynamics is stable and satisfies (5.154)-(5.155), if and only if there
exists symmetric matrices Pd = PT

d > 0, Pf = PT
f > 0 and matrices L and W such that

∙
(A− LC)TPd(A− LC)− Pd + CTWTWC
(Ed − LFd)

TPd(A− LC) + FT
d W

TWC

(A− LC)TPd(Ed − LFd) + CTWTWFd
(Ed − LFd)

TPd(Ed − LFd) + FT
d W

TWFd − γ2I

¸
< 0 (5.156)

∙
(A− LC)TPf (A− LC)− Pf + CTWTWC
(Ef − LFf )

TPf (A− LC) + FT
f W

TWC

(A− LC)TPf (Ef − LFf ) + CTWTWFf
(Ef − LFf )

TPf (Ef − LFf ) + FT
f W

TWFf − β2I

¸
< 0 (5.157)

The proof follows directly from Lemma 3.1 and thus omitted here.
Using Schur Lemma, (5.156)-(5.157) are, respectively equivalent to

⎡
⎣

−Pd Pd(A− LC) Pd(Ed − LFd)
(A− LC)TPd −Pd + CTWTWC CTWTWFd
(Ed − LFd)

TPd FT
d W

TWC FT
d W

TWFd − γ2I

⎤
⎦ < 0

⎡
⎣

−Pf Pf (A− LC) Pf (Ef − LFf )
(A− LC)TPf −Pf + CTWTWC CTWTWFf
(Ef − LFf )

TPf FT
f W

TWC FT
f W

TWFf − β2I

⎤
⎦ < 0 (5.158)

Suppose that the H∞ norm is used to evaluate the robustness of the FD system to the unknown
disturbances and the H− index is used to characterize the minimal sensitivity to the faults. Then
the constraints in the optimization problems (4.35)-(4.38) are

kGrd(z)k∞ < γ (5.159)

kGrf (z)k− > β (5.160)
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which can also be re-formulated as matrix inequalities.
Theorem 5.15 Given the system (2.1), the observer based residual generator (2.19) with dy-

namics (5.102). Then the residual dynamics is stable and satisfies (5.159)-(5.160), if and only if there
exists symmetric matrices Pd = PT

d > 0, Pf = PT
f and matrices L and W such that

∙
(A− LC)TPd(A− LC)− Pd + CTWTWC
(Ed − LFd)

TPd(A− LC) + FT
d W

TWC

(A− LC)TPd(Ed − LFd) + CTWTWFd
(Ed − LFd)

TPd(Ed − LFd) + FT
d W

TWFd − γ2I

¸
< 0 (5.161)

∙
(A− LC)TPf (A− LC)− Pf + CTWTWC
(Ef − LFf )

TPf (A− LC) + FT
f W

TWC

(A− LC)TPf (Ef − LFf ) + CTWTWFf
(Ef − LFf )

TPf (Ef − LFf ) + FT
f W

TWFf − β2I

¸
> 0 (5.162)

Proof: According to Lemma 3.1, A − LC is stable and kGrd(z)k∞ < γ holds if and only if
(5.161) holds for Pd = PT

d > 0. As stated by Theorem 4.2, (5.162) is the necessary and sufficient
condition for kGrf (z)k− > β. ¤

Notice that, as Pf is not definite, Schur Complement can not be applied to (5.162).
In comparison, the optimal solutions given in Section 5.3 are obtained by solving a DTARS,

while the LMI solution needs to be solved in an iterative procedure. On the other side, the LMI
based solution could provide advantage in integrating other design objectives and in handling model
uncertainties.

5.5 Conclusion

This chapter focuses on the optimal design of model-based FD systems under different performance
indices. It is very interesting to notice the close relationship among the different optimization prob-
lems. The similarity between the Kalman filter and the optimal solution (5.106) can be interpreted
from the viewpoint of the MDR and the FAR.
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Multiobjective design

A complete decoupling of the residual from the unknown disturbances can be achieved by the
unknown input observer based approach or the unknown input decoupling parity space approach.
However, it is only possible if the number of independent measurements is larger than the number
of the unknown disturbances. It is also worth noticing that, after a full decoupling, the residual is
also decoupled from the faults lying in the space spanned by the unknown disturbances and can
not detect these faults. To keep the sensitivity of the FD system to the faults, it is advisable that
only the unknown disturbances of strong influence are decoupled, while the effect of other unknown
disturbances is minimized in consideration of the sensitivity of the residual generator to the faults.
In this chapter, the multi-objective design problem of FD systems will be considered. The process

under consideration is described by

x(k + 1) = Ax(k) +Bu(k) +Ed1d1(k) +Ed2d2(k) +Eff(k)

y(k) = Cx(k) +Du(k) + Fd1d1(k) + Fd2d2(k) + Fff(k) (6.1)

where d1 ∈ Rnd1 denotes the unknown disturbances to be decoupled, d2 ∈ Rnd2 the unknown distur-
bances whose influence need to be suppressed but not necessarily decoupled. The main objective of
this chapter is to design an FD system, whose residual is decoupled from the unknown disturbances
d1 and simultaneously achieves a suitable trade-off between the robustness against the unknown
disturbances d2 and the sensitivity to the faults f .

6.1 Basic idea

Recall the discussion in Section 2.1 and 2.4, the approach that we shall discuss here consists of two
steps. In the first step, a full decoupling from d1 is realized in the framework of the parity space
approach. In the second step, the rest freedom is used to meet other specifications on the robustness
and the sensitivity. Depending on the residual evaluation schemes, different optimization problems
can be formulated. Due to the close relationship between the parity space approach and the observer
based approach, the order of the residual generator can be kept at a low and flexible level.

6.2 Design procedure

The parity relation of the system (6.1) is

ys(k) = Ho,sx(k − s) +Hu,sus(k) +Hd1,sd1s(k) +Hd2,sd2s(k) +Hf,sfs(k) (6.2)

where x(k − s), us(k), fs(k), ys(k),Ho,s,Hu,s,Hf,s are defined by (2.4),
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d1s(k) =

⎡
⎢⎢⎢⎣

d1(k − s)
d1(k − s+ 1)

...
d1(k)

⎤
⎥⎥⎥⎦ , d2s(k) =

⎡
⎢⎢⎢⎣

d2(k − s)
d2(k − s+ 1)

...
d2(k)

⎤
⎥⎥⎥⎦

Hd1,s =

⎡
⎢⎢⎢⎢⎣

Fd1 O · · · O

CEd1 Fd1
. . .

...
...

. . .
. . . O

CAs−1Ed1 · · · CEd1 Fd1

⎤
⎥⎥⎥⎥⎦

Hd2,s =

⎡
⎢⎢⎢⎢⎣

Fd2 O · · · O

CEd2 Fd2
. . .

...
...

. . .
. . . O

CAs−1Ed2 · · · CEd2 Fd2

⎤
⎥⎥⎥⎥⎦

Based on (6.2), a temporary residual signal r̄(k) is generated as

r̄(k) = vs(ys(k)−Hu,sus(k)) (6.3)

If the rank condition
rank

£
Ho,s Hd1,s Hf,s

¤
> rank

£
Ho,s Hd1,s

¤

is satisfied, then r̄(k) can be decoupled from the unknown disturbances d1. The parity vector vs is
chosen as

vs ∈ Psd1 = {vs | vs
£
Ho,s Hd1,s

¤
= 0, vsHf,s 6= 0} (6.4)

With such a selection of vs, there is

r̄(k) = vs(Hd2,sd2s(k)) +Hf,sfs(k)) (6.5)

i.e. r̄(k) is decoupled from the initial state x(k − s) and the unknown disturbances d1.
The design freedom after the decoupling is represented by the free selectability of vs ∈ Psd1.

The question now is how to achieve the compromise between the sensitivity to the faults f and
the robustness to the unknown disturbances d2. In Section 4.4, it has been pointed out that the
formulation of the optimization problem should take into account the residual evaluation scheme.
Here we shall discuss the subsequent design under two different evaluation schemes.
In the first case, assume that r(k) = r̄(k) and the amplitude of the residual signal is used as

residual evaluation function, i.e.
re1(k) = kr(k)kE (6.6)

Aiming at the optimal compromise between the robustness against d2 and the sensitivity to f , the
optimization problem can be formulated as

max
vs∈Psd1

J1 = max
vs∈Psd1

supd2s(k)=0,fs(k)6=0
rT (k)r(k)
fTs (k)fs(k)

supfs(k)=0,d2s(k)6=0
rT (k)r(k)

dT2s(k)d2s(k)

= max
vs∈Psd1

vsHf,sH
T
f,sv

T
s

vsHd2,sHT
d2,sv

T
s

(6.7)

Denote the basis matrix of the decoupling space Psd1 by Nsd1. The optimization problem (6.7) is
equivalent to

max
vs∈Psd1

J1 = max
ps

psNsd1Hf,sH
T
f,sN

T
sd1p

T
s

psNsd1Hd2,sHT
d2,sN

T
sd1p

T
s

(6.8)

where ps can be arbitrarily selected to maximize J1. Thus, the optimal solution to the optimization
problem (6.7) is given by

vs,opt = ps,maxNsd1 (6.9)
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where ps,max is the eigenvector corresponding to the maximal eigenvalue of the generalized eigenvalue-
eigenvector problem

ps,max(Nsd1Hf,sH
T
f,sN

T
sd1 − λmaxNsd1Hd2,sH

T
d2,sN

T
sd1) = 0 (6.10)

Correspondingly, the threshold can be determined as

Jth,1 = sup
f=0,d2

re1(k) = sup
f=0,d2

kvsHd2,sd2s(k)kE

= (vsHd2,sH
T
d2,sv

T
s )
1/2max

k
max
d2
kd2s(k)kE (6.11)

Algorithm 6.1 Given the system (6.1) and the residual evaluation function (6.6), design an
FD system so that the residual signal is decoupled from d1 and simultaneously achieves a trade-off
between the robustness to d2 and the sensitivity to f in the sense of (6.7).

� Determine the basis matrix Nsd1 of the decoupling space Psd1 defined by (6.4).
� Solve the generalized eigenvalue-eigenvector problem (6.10) for ps,max.
� Compute the vector vs,opt by (6.9) and generate the residual signal by

r(k) = vs,opt(ys(k)−Hu,sus(k)) (6.12)

� Determine the threshold Jth,1 by (6.11).

In the second case, assume that d2 is energy bounded, kd2k2 ≤ δd2, and the l2-norm of the
residual signal is used for residual evaluation, i.e.

re2(k) = kr(k)k2 (6.13)

In this case, it is difficult to continue the design in the framework of the parity space approach.
Therefore, we first transform the parity relation based residual generator (6.3) into an observer
based residual generator. Recalling the analysis in Section 2.4, we partition the vector vs obtained
in (6.4) and ρs = vsHu,s into

vs =
£
vs,0 vs,1 · · · vs,s

¤
, vs,i ∈ R1×m

ρs =
£
ρs,0 ρs,1 · · · ρs,s

¤
, ρs,i ∈ R1×nu (6.14)

An observer based residual generator can be readily constructed as follows

z(k + 1) = Gz(k) + Ju(k) + Ly(k)

r(k) = wz(k) + pu(k) + vy(k) (6.15)

where

G =

⎡
⎢⎢⎢⎣

0 · · · 0 g1
1 · · · 0 g2
...

...
0 · · · 1 gs

⎤
⎥⎥⎥⎦ , J =

⎡
⎢⎢⎢⎣

ρs,0
ρs,1
...

ρs,s−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

g1
g2
...
gs

⎤
⎥⎥⎥⎦ ρs,s

L = −

⎡
⎢⎢⎢⎣

vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

g1
g2
...
gs

⎤
⎥⎥⎥⎦ vs,s

w =
£
0 · · · 0 −1

¤
, v = vs,s, p = −ρs,s (6.16)

and g1, · · · , gs are free parameters that represent the design freedom and should guarantee the
stability of matrix G. The dynamics of the residual r got by (6.15) is governed by
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e(k + 1) = Ge(k) + (LFf − TEf )f(k) + (LFd2 − TEd2)d2(k)

r(k) = we(k) + vFff(k) + vFd2d2(k) (6.17)

where

T =

⎡
⎢⎢⎢⎣

vs,1 · · · vs,s−1 vs,s
vs,2 · · · vs,s 0
...

...
vs,s 0 · · · 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C
CA
...

CAs−1

⎤
⎥⎥⎥⎦

It shows that, no matter what g1, · · · , gs are, r(k) is decoupled from the unknown disturbances d1.
By substituting (6.16), (6.17) can be re-written as

r(k) = vs(Hd2,sd2s(k) +Hf,sfs(k))

+gsr(k − 1) + gs−1r(k − 2) + · · ·+ g1r(k − s) (6.18)

If g1, · · · , gs are all zero, then the residual generator (6.15) has exactly the same dynamics as (6.3),
r = r̄. However, if g1, · · · , gs are set to be nonzero values, then (6.15) is indeed a generalization of
the IIR (infinite impulse response) filter based residual generator proposed by [164]. The remaining
problem is how to make advantage of the freedom provided by g1, · · · , gs, so that a suitable trade-off
between the robustness to the unknown disturbances d2 and the sensitivity to the faults f can be
achieved. To this aim, the residual dynamics (6.17) is re-written into

e(k + 1) = Goe(k) + (LoFd2 − TEd2)d2(k) + (LoFf − TEf )f(k)− gr(k)

r(k) = we(k) + vFd2d2(k) + vFff(k) (6.19)

where

Go =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0

1
. . .

... 0
...
. . . 0

...
0 · · · 1 0

⎤
⎥⎥⎥⎥⎦
, Lo = −

⎡
⎢⎢⎢⎣

vs,0
vs,1
...

vs,s−1

⎤
⎥⎥⎥⎦ , g =

⎡
⎢⎢⎢⎣

g1
g2
...
gs

⎤
⎥⎥⎥⎦ (6.20)

Note that Go, Lo are independent of the vector g, and (Go, w) is observable, as

rank

⎡
⎢⎢⎢⎣

w
wGo

...
wGs−1

o

⎤
⎥⎥⎥⎦ = s.

Thus, (6.19) shows a typical structure of observer dynamics with the vector g as feedback gain.
Realizing this, we formulate the robustness and sensitivity problem as

max
g∈Rs×1

J2 = max
g∈Rs×1

σi(Grf (e
jω))

kGrd2(z)k∞
(6.21)

where σi(Grf (e
jω)) denotes the singular value of Grf (z) at z = ejω, Grd2(z) and Grf (z) are, re-

spectively, the transfer function matrices from the unknown disturbances d2 and the faults f to the
residual r,

Grd2(z) = vFd2 + w(zI −Go + gw)−1(LoFd2 − TEd2 − gvFd2)

Grf (z) = vFf + w(zI −Go + gw)−1(LoFf − TEf − gvFf ) (6.22)

Applying the results in Chapter 5, the optimal solution to optimization problem (6.21) is

g = −qT (6.23)
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where (X, q) is the stabilizing solution of the discrete-time algebraic Riccati system (DTARS)

∙
Φ11 Φ12
ΦT12 Φ22

¸ ∙
I
q

¸
= 0. (6.24)

with

Φ11 = GoXGT
o −X + (LoFd2 − TEd2)(LoFd2 − TEd2)

T

Φ12 = GoXwT + (LoFd2 − TEd2)F
T
d2v

T

Φ22 = wXwT + vFd2F
T
d2v

T

If g is selected as (6.23), the threshold can be set as

Jth,2 = sup
f=0,d2

re2(k) = sup
f=0,d2

krk2 = kGrd2(z)k∞ δd2 = δd2 (6.25)

Algorithm 6.2 Given the system (6.1) and the residual evaluation function (6.13), design an
FD system so that the residual signal is decoupled from d1 and simultaneously achieves a trade-off
between the robustness to d2 and the sensitivity to f in the sense of (6.21).

� Solve (6.4) for a decoupling parity vector vs.
� Compute ρs = vsHu,s and partition vs, ρs as (6.14).
� Build the matrices Go, Lo by (6.20) and w, v, p, T by (6.16).
� Solve the DTARS (6.24) for the stabilizing solution (X, q).
� Let g = −qT . Compute the matrices G,L, J according to (6.16) and generate the residual signal
by (6.15).

� Determine the threshold Jth,2 by (6.25).

6.3 Example

Example 6.1 Consider an LTI system described by (6.1) with

A =

⎡
⎢⎢⎣

0 0.5 1 0
−1 −1 0.25 1
1 0.2 −2 1
0.25 1 −0.3 0.4

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦

Ed1 =

⎡
⎢⎢⎣

1
1
0
0.2

⎤
⎥⎥⎦ , Ed2 =

⎡
⎢⎢⎣

1 0
0 1
1 0.5
0.3 0.4

⎤
⎥⎥⎦ , Ef =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 0.5

⎤
⎥⎥⎦

C =

⎡
⎣
1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎦ , D =

⎡
⎣
1
0
0

⎤
⎦

Fd1 =

⎡
⎣
0.3
0.4
0

⎤
⎦ , Fd2 =

⎡
⎣
0.1 0.2
0.1 0
0.5 0.1

⎤
⎦ , Ff = O (6.26)

The basis matrix of the decoupling space Psd1 is

Nsd1 =

∙
0.5197 −0.6324 0.1930 −0.0114 −0.3247 −0.3664 0.0443 −0.0332 0.2235
0.1548 0.2494 −0.1709 −0.5678 0.2617 −0.0986 −0.0366 0.0274 0.6942

¸

If the amplitude of the residual signal is used as the residual evaluation function, then the optimal
parity vector is obtained by solving the generalized eigenvalue-eigenvector problem (6.10) as
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vs,opt =
£
1.7245 −3.1413 1.1845 1.3068 −1.9313 −1.2406 0.2656 −0.1992 −0.7535

¤

vs,opt ∈ Psd1 and maximizes J1, i.e. J1,opt = maxvs∈Psd1

vsHf,sH
T
f,sv

T
s

vsHd2,sHT
d2,sv

T
s
= 0.9018. The residual signal

is generated by (6.12).
If the l2-norm of the residual signal is used as the residual evaluation function, choose a parity

vector vs in the decoupling space Psd1 as

vs =
£
0.5197 −0.6324 0.1930 −0.0114 −0.3247 −0.3664 0.0443 −0.0332 0.2235

¤

Correspondingly,
ρs = vsHu,s =

£
0.4331 −0.0004 0.0443

¤

Partition vs, ρs as (6.14). Then we get

Go =

∙
0 0
1 0

¸
, Jo =

∙
0.4331
−0.0004

¸
, Lo =

∙
−0.5197 0.6324 −0.1930
0.0114 0.3247 0.3664

¸

w =
£
0 −1

¤
, p = −0.0443, v =

£
0.0443 −0.0332 0.2235

¤
(6.27)

Substitute Go, Lo, w, v into the DTARS (6.24). The stabilizing solution to (6.24) is

X =

∙
0.0824 0.0625
0.0625 0.0825

¸
, q =

£
−0.3279 0.5125

¤

It follows that

g =

∙
0.3279
−0.5125

¸

As a result, we get

G =

∙
0 0.3279
1 −0.5125

¸
, J =

∙
0.4476
−0.0231

¸

L =

∙
−0.5342 0.6432 −0.2663
0.0342 0.3077 0.4809

¸

The residual signal is generated by (6.15). The residual is decoupled from d1 and maximizes J2 =
σi(Grf (e

jω))
kGrd2(z)k∞

for any i and ω, for instance, J2,opt =
kGrf (z)k∞
kGrd2(z)k∞

= 5.6838.

6.4 Conclusion

In this chapter, we have considered the multiobjective design of robust FD systems. In the literature,
several authors have discussed the design of residual generators that are decoupled from deterministic
unknown disturbances on the one side and make the estimation error variance minimal in the presence
of noise on the other side [18, 77]. The method suggested by [18] divides the observer feedback gain
into two parts, one concerning the full decoupling and the other concerning the minimal variance.
The approach in [77] is developed based on an equivalent disturbance free model of the original
system. More recently, [97] has given an approach to design observer-based residual generators
with mixed H2/H∞ robustness against different kinds of unknown disturbances. We have here
concentrated on deterministic unknown disturbances, which are classified into two parts: the part
of unknown disturbances that should be decoupled and the part of unknown disturbances that
needs not to be decoupled. Unlike [18, 77, 97], in the design the sensitivity of the FD system to
the faults is also taken into account. In the first step, a decoupling is achieved between the residual
and a part of the unknown disturbances within the framework of the parity space approach. Then,
different optimizations can be carried out to improve the robustness of residual generator to the
rest part of the unknown disturbances and the sensitivity to the faults, depending on the residual
evaluation schemes adopted. The algorithms introduced in this chapter are characterized by an easy
implementation and a flexible determination of the order of residual generators.
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Probabilistic design

In this chapter, we shall discuss the fault detection problem of uncertain discrete LTI systems
described by

x(k + 1) = A(∆)x(k) +B(∆)u(k) +Eff(k)

y(k) = C(∆)x(k) +D(∆)u(k) + Fff(k) (7.1)

where x ∈ Rn denotes the state vector, u ∈ Rnu the control input vector, y ∈ Rm the measured
output vector, and f ∈ Rnf the vector of faults to be detected, Ef , Ff are known constant matrices,
A(∆), B(∆), C(∆),D(∆) are system matrices dependent on unknown but bounded parameter vector

∆ =
£
δ1 δ2 · · · δl

¤T ∈ Rl

It is assumed that the probability distribution of ∆ is known a priori and denoted by f∆(∆). But
there is no restriction on how ∆ enters into the matrices A,B,C,D.

7.1 Construction of residual generator

Let ∙
A(∆) B(∆)
C(∆) D(∆)

¸
=

∙
Ao Bo

Co Do

¸
+

∙
Fa(∆) Fb(∆)
Fc(∆) Fd(∆)

¸

where Fa, Fb, Fc, Fd are ∆-dependent unknown matrices, Ao, Bo, Co,Do are constant matrices rep-
resenting the nominal behavior of the system. For instance, Ao, Bo, Co,Do can be defined by

∙
Ao Bo

Co Do

¸
=

∙
A(∆̄) B(∆̄)
C(∆̄) D(∆̄)

¸
(7.2)

where ∆̄ denotes the mean value of ∆ that can be computed according to the probability distribution
f∆(∆).
An observer-based residual generator can be constructed as

x̂(k + 1) = Aox̂(k) +Bou(k) + L(y(k)− ŷ(k))

ŷ(k) = Cox̂(k) +Dou(k)

r(k) = W (y(k)− ŷ(k)) (7.3)

where r ∈ Rnr is the residual signal, L and W are, respectively, the observer gain matrix and the
weighting matrix to be designed. The residual will be evaluated by the following logic

½
krk2 ≤ Jth ⇒ fault-free
krk2 > Jth ⇒ alarm

(7.4)
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where the threshold Jth is set as
Jth = sup

f=0, ∆
krk2 (7.5)

The dynamics of the residual generator (7.3) is governed by
∙
x(k + 1)
e(k + 1)

¸
=

∙
A O

Fa − LFc Ao − LCo

¸ ∙
x(k)
e(k)

¸

+

∙
B

Fb − LFd

¸
u(k) +

∙
Ef

Ef − LFf

¸
f(k)

r(k) =W
£
Fc Co

¤∙x(k)
e(k)

¸
+WFdu(k) +WFff(k) (7.6)

where e(k) = x(k)− x̂(k). It can be seen from (7.6) that the residual dynamics is internally stable,
only if A(∆) is stable for any ∆. Therefore, in the following, we assume that (Ao, Co) is observable
and that A(∆) is stable for any ∆. Due to the existence of the model uncertainty, the residual signal
r is influenced not only by the faults f but also by the control inputs u. The design parameters L
and W should be selected in such a way that the influence of u on r is suppressed and the influence
of f on r is strengthened. Hence, the FD problem is formulated as:
Problem 7.1 Given α > 0, find the parameter L and W of the residual generator (7.3), so that

kGru(z)k∞ < α (7.7)

Problem 7.2 Given α > 0 and β > 0, find the parameter L and W of the residual generator
(7.3), so that

kGru(z)k∞ < α

kGrf (z)k− > β (7.8)

The physical meaning behind Problem 1 is to attenuate influence of the non-fault factors. Problem
2 is a multi-objective design, which considers not only the robustness of the FD system to non-fault
factors but also the sensitivity of the FD system to faults. Note that the transfer function matrices
Gru(z) and Grf (z) are dependent on the uncertainty ∆.
In the following, we shall consider Problem 7.1. The basic idea of its solution can be extended to

solve Problem 7.2.

7.2 Optimal parameter selection

In this section, we shall present an approach to find a solution to Problem 7.1 for the system (7.1)
with arbitrary uncertainty structure by exploring the sequential subgradient approach.

7.2.1 Formulation of the constraint as LMI

As the first step, the constraint (7.7) is formulated as an LMI.
Lemma 7.1 Given the system (7.1), the residual generator (7.3) and α > 0. Let W = I.

The residual dynamics (7.6) is stable and kGru(z)k∞ < α, if there exist matrices X1 = XT
1 > 0,

X2 = XT
2 > 0, P and a scalar > 0, such that

V (X1,X2, P,∆)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−X1 + I O X1A(∆) O X1B(∆) O
O −X2 + I V23 V24 V25 O

AT (∆)X1 V T
23 −X1 O O FT

c (∆)
O V T

24 O −X2 O CT
o

BT (∆)X1 V T
25 O O −α2I FT

d (∆)
O O Fc(∆) Co Fd(∆) −I

⎤
⎥⎥⎥⎥⎥⎥⎦
≤ O (7.9)
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where

V23 = X2Fa(∆)− PFc(∆)

V24 = X2Ao − PCo

V25 = X2Fb(∆)− PFd(∆)

Proof: According to Lemma 3.1, kGru(z)k∞ < α, if and only if there exists a symmetric
positive-definite matrix X = XT > 0 such that

⎡
⎢⎢⎣

−X XAru XBru O
AT
ruX −X O CT

ru

BT
ruX O −α2I DT

ru

O Cru Dru −I

⎤
⎥⎥⎦ < 0 (7.10)

where

Aru =

∙
A O

Fa − LFc Ao − LCo

¸
, Bru =

∙
B

Fb − LFd

¸

Cru =
£
Fc Co

¤
, Dru = Fd

Assume

X =

∙
X1 O
O X2

¸
(7.11)

and let P = X2L. Then, (7.9) is obtained. ¤

Remark 7.1 The assumption (7.11) will introduce some conservatism in the design. If a post
filter R(z) is used in the residual generator (7.3) [190], then a less conservative result can be achieved.
Note that the matrix inequality (7.9) is linear with respect to the unknowns X1,X2, P and .

The problem now is to find a solution X so that the LMI (7.9) is satisfied for any ∆. For certain
kinds of structured uncertainty this is a well-studied problem and can be easily solved. However,
for general uncertainty structure (for instance, nonlinear dependency of the matrices on ∆), the
solution can be obtained by (i) overbounding the uncertainty by a structured one and then solving
it, or (ii) looking for solutions satisfying the LMIs at a large number of samples of uncertainty. The
former may introduce conservatism by overbounding. The latter needs to solve a large amount of
LMIs simultaneously. However, due to lack of knowledge of the model uncertainty structure, it is
not easy to solve (7.9). In the next, we shall apply the probabilistic robustness technique to solve
this problem.

7.2.2 Preliminary of probabilistic robustness theory

The probabilistic robustness theory provides a new philosophy of control system analysis and syn-
thesis. The idea of probabilistic robustness originated at the beginning of the eighties [144]. The
important concepts like “probability of instability” has been introduced by [130, 145]. In the past
several years the probabilistic robustness theory has been intensively investigated and developed
[17, 63, 94, 100, 119, 125, 147, 152]. In this framework, based on random samples of uncertainty
generated according to its distribution, the probability of performance can be estimated. The accu-
racy of the estimate can be guaranteed with a specified confidence level by taking enough amount
of samples. Approaches have also been developed to solve controller synthesis problem, i.e. to find a
controller which meets specification on robustness performance in a probabilistic sense.
The approaches to controller synthesis can be divided into two major classes:

� learning theory based approach, and
� sequential stochastic approach.
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The basic idea of the learning theory based approach is to take random samples both in the
uncertainty space and in the controller parameter space. By estimating the performance achieved by
each trial (sample) of controller parameter, the best one will be selected. The learning theory based
approach is conceptually straightforward. Its performance strongly depends on efficient generation
of samples in the controller parameter space.
In the sequential stochastic approach, the basic idea is to use the subgradient method to itera-

tively update the controller parameter based on random samples of the uncertainty. The sequential
subgradient approach has been proved to be efficient in finding solutions to LMI, BMI (bilinear
matrix inequality) with unknown or varying parameters and employed in robust H2, H∞ con-
troller design. It can overcome the difficulty of sampling design parameters and will be applied here.
Therefore, we shall at first briefly describe the mechanism of this kind of solution algorithm (see
[17, 63, 94, 100, 119, 125] and the references therein).
The sequential subgradient approach finds the solution to V (X,∆) ≤ O, ∀∆, in the following

way [17, 125]:

� setting an initial value X0 of the unknown matrix X,
� generating a random sample ∆k of the uncertainty ∆ according to the probability distribution
of ∆,

� updating Xk based on subgradient of the convex objective function with respect to the unknown
X.

It is proven that the algorithm converges in finite steps with probability 1, i.e.

Prob{∃k0 <∞, s.t. V (Xk,∆) ≤ O,∀∆ and ∀k ≥ k0} = 1

if the following two conditions holds: (i) The solution set is nonempty, and (ii) the probability that
the LMI is not satisfied for some ∆ is nonzero, as long as X is not a feasible solution. In case that a
feasible solution is not found, a good approximately feasible candidate can be obtained through the
above algorithm [17, 63].

7.2.3 Computation of subgradient

In this subsection, we apply the above introduced sequential subgradient approach to find the ob-
server gain matrix L that satisfies (7.9) for arbitrary uncertainty structure.
Let the objective function be defined as

v(X1,X2, P,∆) =
°°V +(X1,X2, P,∆)

°°
F

(7.12)

where V + denotes the projection of the symmetric matrix V onto the space of positive semi-definite
matrices, and kV +kF denotes the Frobenius norm of the matrix V +. If V ≤ 0, then V + = O and
v = 0. Otherwise, V + ≥ O and v > 0. The function v(X1,X2, P,∆) is a convex scalar function
of the unknowns X1,X2, P . If a set of matrices X1,X2, P can be found such that v = 0, then a
feasible solution of (7.9) is found. Given a symmetric matrix V , the projection V + can be computed
via solving an eigenvalue-eigenvector problem. Partition the matrix V + as [V +

ij ], i, j = 1, · · · , 6,
corresponding to the dimensions of the blocks in (7.9).
Theorem 7.1 The subgradients of v(X1,X2, P,∆) defined by (7.12) and (7.9) with respect to

X1,X2, P are as follows. If v(X1,X2, P,∆) > 0, then

∂X1v(X1,X2, P,∆)

= −V +
11 − V +

33 +A(∆)V +
31 + V +T

31 AT (∆) +B(∆)V +
51 + V +T

51 BT (∆)

∂X2v(X1,X2, P,∆)

= −V +
22 − V +

44 + Fa(∆)V
+
32 +AoV

+
42 + Fb(∆)V

+
52 + V +T

32 F
T

a (∆)

+ V +T

42 A
T

o + V +T

52 F
T

b (∆)

∂P v(X1,X2, P,∆) = −2V +
T

32 F
T

c (∆)− 2V +T

42 C
T

o − 2V +T

52 F
T

d (∆) (7.13)
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If v(X1,X2, P,∆) = 0, then

∂X1v(X1,X2, P,∆) = 0, ∂X2v(X1,X2, P,∆) = 0

∂P v(X1,X2, P,∆) = 0 (7.14)

Proof: Let the parameters X1,X2, P subject to small changes δX1, δX2 and δP , respectively.
Then

V (X1 + δX1,X2 + δX2, P + δP,∆) = V (X1,X2, P ) + δV

where

δV = Λ1H1 +H
T

1 Λ1 + Λ2H2 +H
T

2 Λ2 +H3 +H
T

3

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

− I
2 O A O B O

O O O O O O
O O − I

2 O O O
O O O O O O
O O O O O O
O O O O O O

⎤
⎥⎥⎥⎥⎥⎥⎦

H2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

O O O O O O
O − I

2 Fa(∆) Ao Fb(∆) O
O O O O O O
O O O − I

2 O O
O O O O O O
O O O O O O

⎤
⎥⎥⎥⎥⎥⎥⎦

H3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

O O O O O O
O O −δPFc −δPCo −δPFd O
O O O O O O
O O O O O O
O O O O O O
O O O O O O

⎤
⎥⎥⎥⎥⎥⎥⎦

Λ1 = diag{δX1, O, δX1, O,O,O}

Λ2 = diag{O, δX2, O, δX2, O,O}

Due to the differentiability of v, there is [63, 94]

v(X1 + δX1,X2 + δX2, P + δP,∆)

=
°°[V (X1,X2, P ) + δV ]+

°°
F

= v(X1,X2, P ) +

V +(X1,X2, P ), δV

®
+ o(kδV kF )

where hP1, P2i = tr(P1P2) denotes the inner product of the matrices P1 and P2. It can be derived
that


V +(X1,X2, P ), δV

®

=

V +(X1,X2, P ), Λ1H1

®
+
D
V +(X1,X2, P ),H

T

1 Λ1

E

+

V +(X1,X2, P ), Λ2H2

®
+
D
V +(X1,X2, P ),H

T

2 Λ2

E

+

V +(X1,X2, P ),H3

®
+
D
V +(X1,X2, P ),H

T

3

E

=

H1V

+(X1,X2, P ), Λ1
®
+
D
V +(X1,X2, P )H

T

1 , Λ1

E

+

H2V

+(X1,X2, P ), Λ2
®
+
D
V +(X1,X2, P )H

T

2 , Λ2

E

+

V +(X1,X2, P ),H3

®
+
D
V +(X1,X2, P ),H

T

3

E
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Therefore

∂X1

°°V +(X1,X2, P )
°°
F
= U11 + U

T

11 + U33 + U
T

33

∂X2

°°V +(X1,X2, P )
°°
F
= Q22 +Q

T

22 +Q44 +Q
T

44

∂P
°°V +(X1,X2, P )

°°
F
=W22

where

U11 = −
1

2
V +
11 +A(∆)V +

31 +B(∆)V +
51

Q22 = −
1

2
V +
22 + Fa(∆)V

+
32 +AoV

+
42 + Fb(∆)V

+
52

U33 = −
1

2
V +
33 , Q44 = −

1

2
V +
44

W22 = −2V +
T

32 F
T

c (∆)− 2V +T

42 C
T

o − 2V +T

52 F
T

d (∆)

The theorem is thus proven. ¤

7.2.4 Design procedure

Based on Theorem 7.1, the sequential subgradient approach can be applied to find out the solution
of Problem 1.
Algorithm 7.1 Given the system (7.1) with the uncertainty ∆ described by the probability

distribution f∆(∆) and α > 0, an observer-based residual generator (7.3) can be designed as follows:
Step 1 Set the value of and select an initial value of X0

1 ,X
0
2 , P

0.
Step 2 Generate a sample of model uncertainty ∆k according to the probability distribution

f∆(∆).
Step 3 Compute the projection V +(Xk

1 ,X
k
2 , P

k,∆k) and the value of the objective function

v(Xk
1 ,X

k
2 , P

k,∆k) =
°°V +(Xk

1 ,X
k
2 , P

k,∆k)
°°
F

Step 4 Compute the subgradients

∂X1v(X
k
1 ,X

k
2 , P

k,∆k)

∂X2
v(Xk

1 ,X
k
2 , P

k,∆k)

∂P v(X
k
1 ,X

k
2 , P

k,∆k)

according to Theorem 7.1.
Step 5 Calculate

βk =
³°°∂X1v(X

k
1 ,X

k
2 , P

k,∆k)
°°2
F
+
°°∂X2v(X

k
1 ,X

k
2 , P

k,∆k)
°°2
F

+
°°∂P v(Xk

1 ,X
k
2 , P

k,∆k)
°°2
F

´1/2

αk =
v(Xk

1 ,X
k
2 , P

k,∆k)

βk
+ rp

where rp > 0 is the radius of a ball inside the feasible solution set.
Step 6 If v(Xk

1 ,X
k
2 , P

k,∆k) = 0, let

Xk+1
1 = Xk

1 , X
k+1
2 = Xk

2 , P
k+1 = P k

Otherwise, update the variables Xk
1 ,X

k
2 , P

k by
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Xk+1
1 = Xk

1 −
αk

βk
∂X1v(X

k
1 ,X

k
2 , P

k,∆k)

Xk+1
2 = Xk

2 −
αk

βk
∂X2v(X

k
1 ,X

k
2 , P

k,∆k)

P k+1 = P k − αk

βk
∂P v(X

k
1 ,X

k
2 , P

k,∆k)

Step 7 If the above algorithm converges, then the observer gain matrix is obtained as

L = (Xk
2 )
−1P k

Otherwise, set k = k + 1 and return to step 2.
Remark 7.2 The necessary iterations may be reduced by using the approach proposed by [119].
Remark 7.3 If a feasible solution is not found for the given α after a sufficiently large number

of iterations, the approximately feasible candidate obtained through the algorithm can be used as
initial value for starting the next iteration with a larger α.
Remark 7.4 In case that the probability distribution f∆(∆) of the bounded uncertainty ∆ is

unavailable, a uniform distribution can be assumed [6].
To evaluate the residual based on (3.3), an adaptive threshold Jth can be determined. If a gain

matrix L that satisfies (7.7) is found, then Jth can be set as

Jth = α kuk2,[k−N,k]

which guarantees the false alarm rate FAR defined by

PFA = Prob{krk2,[k−N,k] > Jth | f = 0}

to be zero with probability 1, because krk2,[k−N,k] ≤ kGru(z)k∞ kuk2,[k−N,k]. Alternatively, the
threshold Jth can be selected to guarantee the false alarm rate be under a user defined level using
the approach developed by [39].

7.3 Example

In this section, two examples will be given to illustrate the proposed design procedure.
Example 7.1 Consider the FD problem of a system in the form of (7.1) with

A =

⎡
⎢⎢⎣

0.7 + θ1 0 θ9 θ6
0 0.8 + θ2θ3 0 θ7
0 0 0.6 + θ4 θ8
0 0 0 0.5 + θ5

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0 0
0 −3.91

0.035 0
−2.53 0.31

⎤
⎥⎥⎦ , Ef =

⎡
⎢⎢⎣

0 0
0 0
0 0
1 0

⎤
⎥⎥⎦

C =

⎡
⎣
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎦ , D = O, Ff =

⎡
⎣
0 1
0 0
0 0

⎤
⎦

The nominal value of the parameter vector is θ1 = −0.5, θ2 = −0.55, θ3 = 0.28, θ4 = 0.086,
θ5 = −0.11, θ6 = 0.1, θ7 = −0.042, θ8 = 0.601, θ9 = −0.29. The parameter change is smaller than
10% of the nominal value and is of uniform distribution. Given α = 2.5.
Select Ao according to (7.2) and set M = 5000, = 0.01, rp = 0.001. The proposed design

procedure yields
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X1 =

⎡
⎢⎢⎣

1.0075 −0.0049 0.1860 −0.0242
−0.0049 0.1928 0.0099 0.0179
0.1860 0.0099 0.2604 0.0018
−0.0242 0.0179 0.0018 0.4236

⎤
⎥⎥⎦

X2 =

⎡
⎢⎢⎣

1.3000 0.1582 0.0512 −0.1764
0.1582 0.8767 −0.1318 −0.0777
0.0512 −0.1318 1.5097 0.3835
−0.1764 −0.0777 0.3835 1.9179

⎤
⎥⎥⎦

P =

⎡
⎢⎢⎣

0.4219 −0.2738 0.1000
−0.1262 −0.1045 −0.2821
−0.0717 0.7187 0.8349
0.0523 0.1242 0.5551

⎤
⎥⎥⎦

Finally, an observer-based residual generator that satisfies (7.7) is obtained as

x̂(k + 1) = Aox̂(k) +Bu(k) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k)

r(k) = y(k)− ŷ(k)

with

Ao =

⎡
⎢⎢⎣

0.2 0 −0.29 0.1
0 0.646 0 −0.042
0 0 0.686 0.601
0 0 0 0.39

⎤
⎥⎥⎦

L =

⎡
⎢⎢⎣

0.3646 −0.2372 0.1153
−0.2180 −0.0066 −0.2536
−0.0970 0.4980 0.4776
0.0714 −0.0569 0.1943

⎤
⎥⎥⎦

The next example shows that a residual generator which minimizes α can be found by iteratively
using the proposed design procedure.
Example 7.2 The system under consideration is the vehicle lateral dynamics which is described

by the so-called bicycle model [36]:

∙
β̇
γ̇

¸
=

" −CαV+CαH

mvref
lHCαH−lV CαV

mv2ref
− 1

lHCαH−lV CαV

Iz
− l2V CαV+l

2
HCαH

Izvref

# ∙
β
γ

¸

+

"
CαV

mvref
lV CαV

Iz

#

δ∗L (7.15)

where β denotes the vehicle side slip angle, γ the yaw rate and δ∗L the steering angle. The original
vehicle parameters of a car have been adopted. It is assumed that only a yaw rate sensor is available.
It is well-known that among the parameters in the model (7.15) the front cornering stiffness CαV

and the rear cornering stiffness CαH may vary over a large range, depending on the road condition
and the driving maneuvers [36]. This causes a strong model uncertainty in the bicycle model (7.15).
It is assumed that CαH = kCαV , k = 1.7278 and CαV = Co

αV + ∆CαV , C
o

αV = 103600N/rad,
∆CαV ∈ [−b1, 0] is a random number with uniform distribution with b1 representing the maximal
size of parameter change.
Model (7.15) can be re-written into the form

ẋ = (A+∆A)x+ (B +∆B)u, (7.16)

y =
£
0 1
¤
x
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with x =
£
β γ

¤T
, u = δ∗L, y = γ and

A =

⎡
⎣ −

(1+k)Co
αV

mvref

(klH−lV )Co
αV

mv2ref
− 1

(klH−lV )Co
αV

Iz
− (l2V+kl

2
H)C

o
αV

Izvref

⎤
⎦ , ∆A =

"− 1+k
mvref

klH−lV
mv2ref

klH−lV
Iz

− l2V+kl
2
H

Izvref

#

∆CαV

B =

"
Co
αV

mvref
lV C

o
αV

Iz

#

, ∆B =

"
1

mvref
lV
Iz

#

∆CαV

Because the sampling period of the system is T = 0.01 second, the discretized model is

x(k + 1) = (Ad + Fa(∆CαV ))x(k) + (Bd + Fb(∆CαV ))u(k),

y(k) =
£
0 1
¤
x(k) (7.17)

where

Ad = eAT , Bd =

Z T

0

eAtBdt

Fa(∆CαV ) = e(A+∆A)T − eAT

Fb(∆CαV ) =

Z T

0

e(A+∆A)t(B +∆B)dt−
Z T

0

eAtBdt

Although ∆A,∆B in the continuous-time model (7.16) depend linearly on the uncertain parameter
∆CαV , the model uncertainties Fa, Fb in the discretized model (7.17) depend on ∆CαV nonlinearly.
For the purpose of residual generation, the following observer is used

β̂(k + 1)
γ̂(k + 1)

= Ad
β̂(k)
γ̂(k)

+Bdδ
∗
L(k) + L(γ − γ̂)

r = γ − γ̂

where L is the design parameter.
Assume that = 0.01, rp = 0.001, M = 1000. For b1 = 30000, the minimal achievable α is 0.22

and the resulting observer gain matrix is

L =

∙
0.3241
0.8874

¸

To verify the result, we have generated 30000 random samples of ∆CαV uniformly distributed in
[−30000, 0]. The design procedure is also carried out under other values of b1. It should be emphasized
that the selection of ε, rp,M will influence the convergence rate [63]. Therefore, the achieved minimal
α is only sub-optimal.

7.4 Conclusion

This chapter studies the fault detection problem of uncertain linear systems with arbitrary uncer-
tainty structure. With the aid of probabilistic robustness technique, an algorithm is developed to
determine the parameter of observer-based residual generators. The results can be extended to han-
dle systems with both multiplicative uncertainty and unknown disturbances. Future study will be
focused on the multi-objective design of observer-based fault detection systems directly guaranteeing
specified false alarm rate and miss detection rate.
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FD of Discrete-Time Linear Periodic Systems
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Introduction to periodic systems

Linear periodic systems are the simplest class of linear systems next to LTI systems and exist widely
in different areas, for instance, aeronautics and aerospace, telecommunication and signal processing
[9]. Recently, the interest in the periodic systems has been renewed both in theory and application
[89, 25, 68, 96, 132, 134, 154]. For instance, the parametric transfer function (PTF) theory [132],
the H2, H∞ theory [24, 143, 102] and the polynomial approach [11] have been developed for the
periodic systems. Typical applications are helicopter vibration control [4], satellite attitude control
[112], wind turbine [146] as well as in networked control systems [131, 166].
In this chapter, we shall introduce some basic properties of linear discrete-time periodic systems

described by

Σ :

½
x(k + 1) = A(k)x(k) +B(k)u(k), x(0) = x0
y(k) = C(k)x(k) +D(k)u(k)

(8.1)

where x ∈ Rn denotes the state vector, u ∈ Rnu the control input vector and y ∈ Rm the measured
output vector, A(k), B(k), C(k),D(k) are known bounded and real periodic matrices of period T ,
i.e. ∀k,

A(k + T ) = A(k), B(k + T ) = B(k)

C(k + T ) = C(k), D(k + T ) = D(k) (8.2)

8.1 Time and frequency response

Assume that τ1 ≥ τ0. It is easy to derive that the solution to the state equation (8.1) is

x(τ1) = Ψ(τ1, τ0)x(τ0) +

τ1X

j=τ0+1

Ψ(τ1, j)B(j − 1)u(j − 1) (8.3)

where Ψ(τ1, τ0) is the state transition matrix defined by

Ψ(τ1, τ0) =

½
I, if τ1 = τ0
A(τ1 − 1)A(τ1 − 2) · · ·A(τ0), if τ1 > τ0

(8.4)

Hence, the system response in the time domain is

x(k) = Ψ(k, 0)x(0) +
kX

j=1

Ψ(k, j)B(j − 1)u(j − 1) (8.5)

y(k) = C(k)Ψ(k, 0)x(0) +
kX

j=1

C(k)Ψ(k, j)B(j − 1)u(j − 1) +D(k)u(k)
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Let the initial condition be x(0) = 0. Then

y(0) = D(0)u(0)

y(1) = C(1)B(0)u(0) +D(1)u(1)

y(2) = C(2)A(1)B(0)u(0) + C(2)B(1)u(1) +D(2)u(2), · · ·

Doing the z-transform of the output sequence gives

y(z) = y(0) + y(1)z + y(2)z2 + y(3)z3 · · ·+ y(k)zk + · · ·

= D(0)u(0) + (C(1)B(0)u(0) +D(1)u(1)) z

+(C(2)A(1)B(0)u(0) + C(2)B(1)u(1) +D(2)u(2)) z2

+

µ
C(3)A(2)A(1)B(0)u(0) + C(3)A(2)B(1)u(1)

+C(3)B(2)u(2) +D(3)u(3)

¶
z3 + · · ·

= (D(0) + C(1)B(0)z + C(2)A(1)B(0)z2 + · · · )

×(u(0) + u(T )zT + u(2T )z2T + · · · )

+(D(1) + C(2)B(1)z + C(3)A(2)B(1)z2 + · · · )

×
¡
u(1)z + u(T + 1)zT+1 + u(2T + 1)z2T+1 + · · ·

¢
+ · · ·

+(D(T − 1) + C(T )B(T − 1)z + C(T + 1)A(T )B(T − 1)z2 + · · · )
×
¡
u(T − 1)zT−1 + u(2T − 1)z2T−1 + u(3T − 1)z3T−1 + · · ·

¢

Define

Gτ (z) = D(τ) + C(τ + 1)B(τ)z + C(τ + 2)A(τ + 1)B(τ)z2 + · · ·

uτ (z) = u(τ)zτ + u(τ + T )zτ+T + u(τ + 2T )zτ+2T + · · ·

where τ = 0, 1, · · · , T − 1. Therefore, in the frequency domain the input and output are related by

y(z) =
T−1X

τ=0

Gτ (z)uτ (z) (8.6)

8.2 Stability, observability and reachability

For any integer τ , the state transition matrix over one period Ψ(τ + T, τ) is called monodromy
matrix. It is known from linear algebra that, for any given real matrices A and B of dimensions
n × n, matrices AB and BA have the same eigenvalues. Therefore, the eigenvalues of Ψ(τ + T, τ)
are independent of τ and referred to as characteristic multipliers in the literature.
The system (8.1) is asymptotically stable, if limk→∞ x(k) = 0, if u ≡ 0 and ∀x0. Note that

Ψ(k, 0) = Ψ(k, nT )Ψn(T, 0), if k = nT + j, 0 ≤ j ≤ T − 1. Because 0 ≤ k − nT ≤ T − 1 and A(k) is
bounded for any k, Ψ(k, nT ) is always bounded. Hence, system (8.1) is asymptotically stable, if and
only if all the eigenvalues of Ψ(T, 0) are inside the unit circle, i.e., all characteristic multipliers are
located inside the unit circle.
The stability of the system (8.1) can also be checked with the aid of the Lyapunov theorem. Let

u(k) ≡ 0 and define a Lyapunov function

V (k) = xT (k)P (k)x(k)

where P (k) is a periodic positive-definite matrix, P (k) = P (k + T ) > 0, ∀k. Note that

V (k + 1)− V (k) = xT (k)
¡
AT (k)P (k + 1)A(k)− P (k)

¢
x(k)

Therefore, system (8.1) is asymptotically stable, if and only if there exists a periodic positive-definite
matrix P (k) = P (k + T ) > 0 such that [9, 143]
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AT (k)P (k + 1)A(k)− P (k) < 0, k = 0, 1, · · · , T − 1 (8.7)

A characteristic multiplier λ is said to be (A(k), C(k)) unobservable at time τ , if there exists a
column vector ζ 6= 0 such that

⎡
⎢⎢⎢⎢⎢⎣

λI − Ψ(τ + T, τ)
C(τ)Ψ(τ , τ)

C(τ + 1)Ψ(τ + 1, τ)
...

C(τ + T − 1)Ψ(τ + T − 1, τ)

⎤
⎥⎥⎥⎥⎥⎦
ζ = 0 (8.8)

The system (8.1) is observable at time τ , if all characteristic multipliers are observable at time τ .
Dually, λ is said to be (A(k), B(k)) unreachable at time τ , if there exists a column vector η 6= 0

such that ⎡
⎢⎢⎢⎢⎢⎣

λI − ΨT (τ + T, τ)
BT (τ)ΨT (τ + T, τ + 1)

BT (τ + 1)ΨT (τ + T, τ + 2)
...

BT (τ + T − 1)ΨT (τ + T, τ + T )

⎤
⎥⎥⎥⎥⎥⎦
η = 0

System (8.1) is reachable at time τ , if all characteristic multipliers are reachable at time τ .
The observability and reachability of nonzero characteristic multipliers are time independent. To

illustrate it, we take the observability as an example. Assume that λ 6= 0 is a nonzero characteristic
multiplier of system (8.1) and, together with vector ζτ 6= 0, it satisfies (8.8) at time τ . Let 1 ≤ j ≤
T − 1 and

ζτ+j = Ψ(τ + j, τ)ζτ

As
Ψ(τ + T, τ)ζτ = Ψ(τ + T, τ + j)ζτ+j = λζτ 6= 0

it can be seen that ζτ+j 6= 0. At time τ + j, there is

Ψ(τ + j + T, τ + j)ζτ+j
= Ψ(τ + j + T, τ)ζτ = Ψ(τ + j + T, τ + T )Ψ(τ + T, τ)ζτ
= λΨ(τ + j + T, τ + T )ζτ = λζτ+j

For any 0 ≤ l ≤ T − 1− j, it is easy to get

C(τ + j + l)Ψ(τ + j + l, τ + j)ζτ+j = C(τ + j + l)Ψ(τ + j + l, τ)ζτ = 0

For T − j ≤ l ≤ T − 1, there is

C(τ + j + l)Ψ(τ + j + l, τ + j)ζτ+j

= C(τ + j + l)Ψ(τ + j + l, τ)ζτ

= C(τ + j + l − T )Ψ(τ + j + l, τ + T )Ψ(τ + T, τ)ζτ

= C(τ + j + l − T )Ψ(τ + j + l, τ + T )λζτ

= λC(τ + j + l − T )Ψ(τ + j + l − T, τ)ζτ = 0

Hence, λ 6= 0 and ζτ+j 6= 0 satisfies (8.8) at time τ + j, i.e. the characteristic multiplier λ 6= 0 is also
unobservable at time τ + j, for any 1 ≤ j ≤ T − 1. However, such a property doesn’t exist if λ = 0.
The observability and reachability of zero characteristic multipliers are time dependent.
Detectability and stabilizability are defined by focusing on the unstable characteristic multipliers.

The system (8.1) is detectable (stabilizable), if all characteristic multipliers lying on or outside the
unit circle are observable (reachable) at each time. The time independence of the observability and
reachability of nonzero characteristic multipliers shows that the detectability and stabilizability of
periodic systems are time independent.
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8.3 LTI reformulation of periodic systems

The correspondence between the periodic system (8.1) and discrete LTI systems is well-recognized.
In this section, we shall introduce several LTI reformulations of periodic systems in the time domain
and in the frequency domain [8, 10].

8.3.1 Time domain lifting

Let τ denote the initial time and, for a given signal δ, an augmented signal δ̄τ is defined as

δ̄τ (k) =

⎡
⎢⎣
δτ1(k)
...

δτT (k)

⎤
⎥⎦ (8.9)

δτi(k) =

½
δ(k), if k−τ−i+1

T is integer
0, otherwise

, i = 1, · · · , T

The cyclic reformulation of the periodic system (8.1) is

x̄τ (k + 1) = Āτ x̄τ (k) + B̄τ ūτ (k)

ȳτ (k) = C̄τ x̄τ (k) + D̄τ ūτ (k) (8.10)

where

Āτ =

⎡
⎢⎢⎢⎣

O · · · O A(τ + T − 1)
A(τ) · · · O O
...

. . .
...

...
O · · · A(τ + T − 2) O

⎤
⎥⎥⎥⎦

B̄τ =

⎡
⎢⎢⎢⎣

O · · · O B(τ + T − 1)
B(τ) · · · O O
...

. . .
...

...
O · · · B(τ + T − 2) O

⎤
⎥⎥⎥⎦

C̄τ =

⎡
⎢⎢⎢⎢⎣

C(τ) O · · · O

O
. . .

. . .
...

...
. . . C(τ + T − 2) O

O · · · O C(τ + T − 1)

⎤
⎥⎥⎥⎥⎦

D̄τ =

⎡
⎢⎢⎢⎢⎣

D(τ) O · · · O

O
. . .

. . .
...

...
. . . D(τ + T − 2) O

O · · · O D(τ + T − 1)

⎤
⎥⎥⎥⎥⎦

(8.11)

The lifted reformulation of the periodic system (8.1) is

x̃τ (k + 1) = Ãτ x̃τ (k) + B̃τ ũτ (k)

ỹτ (k) = C̃τ x̃τ (k) + D̃τ ũτ (k) (8.12)

where x̃τ (k) = x(kT + τ), the input and output signals are lifted to

ỹτ (k) =

⎡
⎢⎢⎢⎣

y(kT + τ)
y(kT + τ + 1)

...
y(kT + τ + T − 1)

⎤
⎥⎥⎥⎦ , ũτ (k) =

⎡
⎢⎢⎢⎣

u(kT + τ)
u(kT + τ + 1)

...
u(kT + τ + T − 1)

⎤
⎥⎥⎥⎦ (8.13)
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and the matrices are defined by

Ãτ = Ψ(τ + T, τ)

B̃τ =
£
Ψ(τ + T, τ + 1)B(τ) Ψ(τ + T, τ + 2)B(τ + 1) · · · B(τ + T − 1)

¤

C̃τ =

⎡
⎢⎢⎢⎣

C(τ)
C(τ + 1)Ψ(τ + 1, τ)

...
C(τ + T − 1)Ψ(τ + T − 1, τ)

⎤
⎥⎥⎥⎦

D̃τ =

⎡
⎢⎢⎢⎢⎣

D̃τ,1,1 O · · · O

D̃τ,2,1 D̃τ,2,2
. . .

...
...

. . .
. . . O

D̃τ,T,1 · · · D̃τ,T,T−1 D̃τ,T,T

⎤
⎥⎥⎥⎥⎦

D̃τ,i,j =

½
D(τ + i− 1), if i = j
C(τ + i− 1)Ψ(τ + i− 1, τ + j)B(τ + j − 1), if i > j

(8.14)

Note that the dimension of the state vector keeps to be n in the lifted reformulation, while it is lifted
to nT in the cyclic reformulation.
It is easy to get the correspondence between the structural properties of the original periodic

system and its LTI reformulations.

� The poles of the lifted reformulation (8.12) are exactly the same with the characteristic multipliers
of the periodic system (8.1). As the characteristic polynomial of the cyclic reformulation (8.10)
is ¯̄

λI − Āτ

¯̄
= (λT )n − Ψ(τ + T, τ)

If λi is a characteristic multipliers of the periodic system (8.1), then (λi)
1/T

is a pole of cyclic
reformulation (8.10).

� The periodic system (8.1) is stable if and only if the cyclic reformulation (8.10) (the lifted
reformulation (8.12)) is stable.

� The periodic system (8.1) is observable (reachable) at time τ if and only if the lifted reformulation
(8.12) is observable (reachable) at time τ , because

∙
λI − Ãτ

C̃τ

¸
=

⎡
⎢⎢⎢⎢⎢⎣

λI − Ψ(τ + T, τ)
C(τ)Ψ(τ , τ)

C(τ + 1)Ψ(τ + 1, τ)
...

C(τ + T − 1)Ψ(τ + T − 1, τ)

⎤
⎥⎥⎥⎥⎥⎦

Hence, if λ is an unobservable characteristic multiplier of periodic system (8.1) at time τ , it will
be an unobservable pole of the lifted system (8.12) with initial time τ , and vice versa.

� The periodic system (8.1) is observable (reachable) at each time if and only if the cyclic refor-
mulation (8.10) is observable (reachable). The observability matrix of the cyclically reformulated
LTI system (Āτ , B̄τ , C̄τ , D̄τ ) is

Γcyc =

⎡
⎢⎢⎢⎣

C̄τ

C̄τ Āτ

...
C̄τ Ā

nT−1
τ

⎤
⎥⎥⎥⎦

After interchanging the rows, it can be brought into the following form
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QΓcyc =

⎡
⎢⎢⎢⎢⎣

Γlift,τ O · · · O

O Γlift,τ+1
. . .

...
...

. . .
. . . O

O · · · O Γlift,τ+T−1

⎤
⎥⎥⎥⎥⎦

Γlift,j =

⎡
⎢⎢⎢⎣

Ãj

C̃jÃj

...

C̃jÃ
n−1
j

⎤
⎥⎥⎥⎦ , j = τ , τ + 1, · · · , τ + T − 1

where Q represents the primary transformation, which doesn’t change the rank of the observabil-
ity matrix Γcyc, and Γlift,τ is indeed the observability matrix of the lifted reformulation (8.12) at
time τ . Therefore, Γcyc is of full column rank means that there is no unobservable characteristic
multiplier at any time τ .

� The periodic system (8.1) is detectable (stabilizable) if and only if the cyclic reformulation (8.10)
(the lifted reformulation (8.12)) is detectable (stabilizable).

The notation of transmission zeros of the periodic system (8.1) can be defined based on either
the cyclic reformulation (8.10) or the lifted reformulation (8.12), called respectively cyclic zeros or
lifted zeros. Using similar arguments as those in the analysis of observability and reachability, we
see that the cyclic zeros are time independent, while the lifted zeros are time dependent. However,
regarding the nonzero transmission zeros, these two definitions are equivalent.

8.3.2 Frequency domain lifting

Assume that the z-transform of u and y is, respectively, u(z) and y(z). Let

û(ejω) =

⎡
⎢⎢⎢⎣

u(ejω)
u(ej(ω−ωT ))

...
u(ej(ω−(T−1)ωT ))

⎤
⎥⎥⎥⎦ , ŷ(ejω) =

⎡
⎢⎢⎢⎣

y(ejω)
y(ej(ω−ωT ))

...
y(ej(ω−(T−1)ωT ))

⎤
⎥⎥⎥⎦ (8.15)

where ωT =
2π
T .

Recalling (8.6), the following relation holds

ŷ(ejω) = Ĝ(ejω)û(ejω) (8.16)

where

Ĝ(ejω) =

⎡
⎢⎢⎢⎣

G0(e
jω) G1(e

jω) · · · GT−1(ejω)
GT−1(ej(ω−ωT )) G0(e

j(ω−ωT )) · · · GT−2(ej(ω−ωT ))
...

...
...

G1(e
j(ω−(T−1)ωT )) G2(ej(ω−(T−1)ωT )) · · · G0(ej(ω−(T−1)ωT ))

⎤
⎥⎥⎥⎦

The matrix Ĝ(ejω) is called the frequency domain lifting of the system (8.1). The (i+1, l+1) block
of Ĝ(ejω) describes the output at frequency ω − iωT , i = 0, 1, · · · , T − 1, in response to an input at
frequency ω − lωT , l = 0, 1, · · · , T − 1.
There is a one to one correspondence between the frequency domain lifted system, called also

as modulated transfer function, and the frequency response of the time domain lifted system (lifted
LTI reformulation and cyclic LTI reformulation), i.e.

Ĝ(ejω) =W−1
s (ejω)Gcyc(e

jωT )Ws(e
jω) (8.17)

where
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Gcyc(e
jωT ) = D̄τ + C̄τ

¡
ejωT I − Āτ

¢−1
B̄τ

Ws(e
jω) =

⎡
⎢⎢⎢⎣

I I · · · I
ejωI ej(ω−ωT )I · · · ej(ω−(T−1)ωT )I
...

...
...

ej(T−1)ωI ej(T−1)(ω−ωT )I · · · ej(T−1)(ω−(T−1)ωT )I

⎤
⎥⎥⎥⎦

8.4 Norms and robustness

To analyze the influence of unknown disturbances on periodic system behaviour, the model (8.1) is
extended to

Σd :

½
x(k + 1) = A(k)x(k) +B(k)u(k) +Ed(k)d(k), x(0) = x0

y(k) = C(k)x(k) +D(k)u(k) + Fd(k)d(k)
(8.18)

where d ∈ Rnd denotes the disturbance vector. In the literature different norms have been proposed
to characterize the robustness.
One of the most often discussed norms is the H∞-norm defined by

kΣdk∞ = sup
d∈l∞,d6=0

kyk2
kdk2

(8.19)

where kξk2 =

vuut
∞X

k=0

ξT (k)ξ(k) denotes the l2-norm of ξ (ξ = y, d). The H∞-norm can be defined

equivalently in the frequency domain as [165]

kΣdk∞ =
°°°Ĝ(z)

°°°
∞
= sup
0≤ω≤2π

σmax(Ĝ(e
jω)) (8.20)

The peak to peak norm of the periodic system (8.1) is an induced norm with both the output
signal and the input signal measured by the maximal amplitude, i.e.,

kΣdkpeak = sup
d∈l∞,d6=0

kyk∞
kdk∞

(8.21)

where kξk∞ = supk

q
ξT (k)ξ(k) denotes the l∞-norm of ξ (ξ = y, d).

The generalized H2 norm of the periodic system (8.1) is the induced norm with the input signal
measured by the energy and the output signal measured by the maximal amplitude, i.e.,

kΣdkg = sup
d∈l2,d6=0

kyk∞
kdk2

(8.22)

The above norms can be characterized as follows.
Theorem 8.1 [13] Given the periodic system (8.18) with zero initial conditions and a real number

α > 0, then the system (8.18) is stable and kΣdk∞ < α, if and only if there exist a T -periodic matrix
P (k) = P (k + T ) > 0, such that

⎡
⎢⎢⎣

−P (k) O AT (k)P (k + 1) CT (k)
O −α2I ET

d (k)P (k + 1) Fd
T (k)

P (k + 1)A(k) P (k + 1)Ed(k) −P (k + 1) O
C(k) Fd(k) O −I

⎤
⎥⎥⎦ < 0 (8.23)

The proof of Theorem 8.1 can be found in [13].
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Theorem 8.2 Given the periodic system (8.18) with zero initial conditions and a real number
β > 0, then the system (8.18) is stable and kΣdkpeak < β, if there exist a T -periodic matrix
P (k) = P (k + T ) > 0 and T -periodic real numbers λ(k) = λ(k + T ) > 0 and μ(k) = μ(k + T ), such
that

⎡
⎣
−P (k) + λ(k)P (k) O AT (k)P (k + 1)

O −μ(k)I ET
d (k)P (k + 1)

P (k + 1)A(k) P (k + 1)Ed(k) −P (k + 1)

⎤
⎦ < 0 (8.24)

⎡
⎣
λ(k)P (k) O CT (k)

O (β − μ(k))I FT
d (k)

C(k) Fd(k) βI

⎤
⎦ > 0 (8.25)

Proof : Define a periodic Lyapunov function for the periodic system (8.1) as

V (x(k)) = xT (k)P (k)x(k) (8.26)

where P (k + T ) = P (k) > 0. According to the Schur lemma, (8.24) is equivalent to

Ψ(k) =

∙
AT (k)P (k + 1)A(k)− P (k) + λ(k)P (k) AT (k)P (k + 1)Ed(k)

ET
d (k)P (k + 1)A(k) ET

d (k)P (k + 1)Ed(k)− μ(k)I

¸

< 0

From P (k) > 0 and AT (k)P (k + 1)A(k)− P (k) < 0, it is clear that Σd is stable. Moreover,

V (x(k + 1))− V (x(k)) + λ(k)V (x(k))− μ(k)dT (k)d(k)

=
£
xT (k) dT (k)

¤
Ψ(k)

∙
x(k)
d(k)

¸
< 0, ∀x, d

which means that
λ(k)V (x(k))− μ(k)dT (k)d(k) < 0, ∀x, d

As (8.25) is equivalent to

∙
λ(k)P (k) 0

0 (β − μ(k))I

¸
> β−1

∙
CT (k)
FT
d (k)

¸ £
C(k) Fd(k)

¤

there is

yT (k)y(k)

< β
£
xT (k) dT (k)

¤ ∙λ(k)P (k) 0
0 (β − μ(k))I

¸ ∙
x(k)
d(k)

¸

= β2dT (k)d(k) + β
¡
λ(k)V (x(k))− μ(k)dT (k)d(k)

¢

< β2dT (k)d(k)

Thus, kΣdkpeak < β. ¤

Theorem 8.3 Given the periodic system (8.18) with zero initial conditions and a real number
γ > 0, then the system (8.18) is stable and kΣdkg < γ, if and only if there exists a T -periodic matrix
P (k) = P (k + T ) > 0 such that

⎡
⎣

−P (k) O AT (k)P (k + 1)
O −I ET

d (k)P (k + 1)
P (k + 1)A(k) P (k + 1)Ed(k) −P (k + 1)

⎤
⎦ < 0 (8.27)

⎡
⎣
P (k) O CT (k)
O I FT

d (k)
C(k) Fd(k) γ2I

⎤
⎦ > 0 (8.28)
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Proof : Assume that (8.26) is a periodic Lyapunov function of the periodic system (8.18). Note
that (8.27) is equivalent to

Ψ(k) =

∙
AT (k)P (k + 1)A(k)− P (k) AT (k)P (k + 1)Ed(k)

ET
d (k)P (k + 1)A(k) ET

d (k)P (k + 1)Ed(k)− I

¸
< 0

P (k) > 0 and AT (k)P (k + 1)A(k) − P (k) < 0 imply the stability of Σd. Moreover, (8.27) holds if
and only if

V (x(k + 1))− V (x(k))− dT (k)d(k)

=
£
xT (k) dT (k)

¤
Ψ(k)

∙
x(k)
d(k)

¸
< 0, ∀x, d

which means that

V (x(k)) <
k−1X

j=0

dT (j)d(j), ∀x, d

Taking (8.28) into account, we have

yT (k)y(k) =
£
xT (k) dT (k)

¤ ∙CT (k)
FT
d (k)

¸ £
C(k) Fd(k)

¤ ∙x(k)
d(k)

¸

< γ2
¡
V (x(k)) + dT (k)d(k)

¢
< γ2

kX

j=0

dT (j)d(j)

i.e., kΣdkg < γ. ¤

With the so-called relaxation variables [26], the Lyapunov variable can be decoupled from the
system matrices, as shown below.
Theorem 8.4 Given periodic system (8.18) with zero initial conditions and a real number

β > 0, then the system (8.18) is stable and kΣdkpeak < β, if there exist T -periodic matrices P (k) =
P (k+T ) > 0, G(k) = G(k+T ), and T -periodic real numbers λ(k) = λ(k+T ) > 0, μ(k) = μ(k+T ),
so that (8.25) and the following matrix inequality hold

⎡
⎣
−P (k) + λ(k)P (k) O AT (k)GT (k)

O − μ(k)I ET
d (k)G

T (k)
G(k)A(k) G(k)Ed(k) P (k + 1)−G(k)−GT (k)

⎤
⎦< 0 (8.29)

Proof : Assume that (8.25) and (8.29) hold for some P (k) > 0, G(k), λ(k) > 0, μ(k). Pre- and
postmultiplying (8.29) by Γ (k) and ΓT (k), respectively, where

Γ (k) =

∙
I O AT (k)
O I ET

d (k)

¸

As Γ (k) is a matrix of full row rank, we get (8.24), i.e., the same matrices P (k) > 0, λ(k) > 0, μ(k)
satisfy (8.24)-(8.25). Recalling Theorem 8.2, the periodic system (8.18) is stable and its peak to peak
norm is smaller than β. On the other side, if (8.24)-(8.25) hold for some P (k) > 0, λ(k) > 0 and
μ(k), then (8.29) and (8.25) are satisfied by the same P (k) > 0, λ(k) > 0, μ(k) and G(k) = P (k+1).
That means, the conditions (8.29) and (8.25) are equivalent with (8.24)-(8.25). ¤

Theorem 8.5 Given the periodic system (8.18) with zero initial conditions and a real number
α > 0, then the system (8.18) is stable and kΣdk∞ < α, if and only if there exist a T -periodic matrix
P (k) = P (k + T ) > 0 and G(k) = G(k + T ), such that

⎡
⎢⎢⎣

−P (k) O AT (k)GT (k) CT (k)
O − α2I ET

d (k)G
T (k) FT

d (k)
G(k)A(k) G(k)Ed(k) P (k + 1)−G(k)−GT (k) O
C(k) Fd(k) O −I

⎤
⎥⎥⎦ < 0
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Theorem 8.6 Given periodic system (8.18) with zero initial conditions and a real number
γ > 0, then the system (8.18) is stable and kΣdkg < γ, if and only if there exist T -periodic matrices
P (k) = P (k + T ) > 0 and G(k), so that (8.28) and the following LMI hold

⎡
⎣
−P (k) O AT (k)GT (k)
O −I ET

d (k)G
T (k)

G(k)A(k) G(k)Ed(k) P (k + 1)−G(k)−GT (k)

⎤
⎦ < 0 (8.30)

The proof of Theorem 8.5 and 8.6 is similar to that of Theorem 8.4 and thus omitted here.
A natural question that may arise is whether the norms of the periodic system (8.1) can be

obtained from its LTI reformulations. Note that the H∞-norm, the peak to peak norm and the
generalized H2 norm are induced norms defined based on the l2 or l∞ norm of the input and output
signals. For a signal δ, let δ̄ and δ̃ be defined, respectively, by (8.9) and (8.13). Then

(°°δ̄τ
°°
2
=
°°°δ̃τ

°°°
2
= kδk2 , if δ ∈ l2°°δ̄τ

°°
∞ = kδk∞ , if δ ∈ l∞

(8.31)

However,
°°°δ̃τ

°°°
∞
may be different from kδk∞. Therefore, there is

⎧
⎪⎨
⎪⎩

kΣdk∞ =
°°Ḡyd(z)

°°
∞ =

°°°G̃yd(z)
°°°
∞

kΣdkpeak =
°°Ḡyd(z)

°°
peak

kΣdkg =
°°Ḡyd(z)

°°
g

(8.32)

where

Ḡyd(z) = F̄d,τ + C̄τ (zI − Āτ )
−1Ēd,τ

G̃yd(z) = F̃d,τ + C̃τ (zI − Ãτ )
−1Ẽd,τ

and Ēd,τ , F̄d,τ , Ẽd,τ , F̃d,τ are defined, respectively, similar to B̄τ , D̄τ , B̃τ , D̃τ .

8.5 Periodic observer

If the state vector x(k) of the periodic system (8.1) is not measurable, then a periodic observer of
the form

x̂(k + 1) = A(k)x̂(k) +B(k)u(k) + L(k)(y(k)− ŷ(k))

ŷ(k) = C(k)x̂(k) +D(k)u(k) (8.33)

can be used to estimate x(k), where the observer gain matrix L(k) is a periodic matrix. As always, we
design the observer based on an analysis of the dynamics of the estimation error e(k) = x(k)− x̂(k),
which is given by

e(k + 1) = (A(k)− L(k)C(k))e(k) (8.34)

The error dynamics is stable, i.e. limk→∞ e(k) = 0 for any initial estimation error e(0), if and only if
the characteristic multipliers of A(k)−L(k)C(k) are located inside the unit circle. In the following,
we shall introduce approaches for the design of the periodic gain matrix L(k).
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8.5.1 Pole placement approach

Assume that λ1, λ2, · · · , λn are the desired locations of the characteristic multipliers, |λi| < 1,
i = 1, · · · , n. Note that the monodromy matrix of the error dynamics is

Ψerr(T, 0) = (A(T − 1)− L(T − 1)C(T − 1))(A(T − 2)− L(T − 2)C(T − 2))
· · · (A(1)− L(1)C(1))(A(0)− L(0)C(0)) (8.35)

which can be re-written as

Ψerr(T, 0) = A(T − 1)A(T − 2)A(T − 3) · · ·A(1)A(0)
−L(T − 1)C(T − 1)A(T − 2)A(T − 3) · · ·A(1)A(0)
−(A(T − 1)− L(T − 1)C(T − 1))L(T − 2)C(T − 2)A(T − 3) · · ·A(1)A(0)
−(A(T − 1)− L(T − 1)C(T − 1)) · · · (A(2)− L(2)C(2))L(1)C(1)A(0)

−(A(T − 1)− L(T − 1)C(T − 1)) · · · (A(1)− L(1)C(1))L(0)C(0)

Recall that, if τ = 0, then the coefficient matrices of the lifted reformulation (9.2) are

Ã0 = A(T − 1)A(T − 2) · · ·A(1)A(0)

C̃0 =

⎡
⎢⎢⎢⎣

C(0)
C(1)A(0)

...
C(T − 1)A(T − 2) · · ·A(1)A(0)

⎤
⎥⎥⎥⎦

Therefore, Ψerr(T, 0) can be further expressed as

Ψerr(T, 0) = Ã0 − L̃0C̃0

where

L̃0 =
£
L̃τ,0 · · · L̃τ,T−2 L̃τ,T−1

¤

L̃τ,0 = (A(T − 1)− L(T − 1)C(T − 1)) · · · (A(1)− L(1)C(1))L(0), · · ·

L̃τ,T−2 = (A(T − 1)− L(T − 1)C(T − 1))L(T − 2)
L̃τ,T−1 = L(T − 1)

Motivated by the above observation, the periodic observer gain L(k) can be designed by the following
algorithm.
Algorithm 8.1 Given the periodic system (8.1), the periodic observer (8.33) and desired char-

acteristic multipliers λ1, λ2, · · · , λn. Design of the periodic observer gain matrix L(k):

� For τ = 0 calculate matrices Ã0 and C̃0.
� Calculate the matrix L̃0 to assign the eigenvalues of Ã0 − L̃0C̃0 at λ1, λ2, · · · , λn using the
standard pole placement algorithms for LTI systems.

� Partition L̃0 into
L̃0 =

£
L̃τ,0 L̃τ,1 · · · L̃τ,T−1

¤
, L̃τ,i ∈ Rn×m

� Get the periodic gain matrix L(k) by

L(T − 1) = L̃τ,T−1

L(T − 2) = (A(T − 1)− L(T − 1)C(T − 1))−1 L̃τ,T−2
...

L(0) = ((A(T − 1)− L(T − 1)C(T − 1)) · · · (A(1)− L(1)C(1)))−1 L̃τ,0

Note that in the above algorithm to calculate L(j − 1), j = 1, · · · , T − 1, it is required that
A(j)− L(j)C(j) is invertible.
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8.5.2 LMI based approach

According to (8.7), A(k) − L(k)C(k) is stable and the estimation error e(k) governed by (8.34)
converges to zero, if and only if a periodic matrix P (k) = P (k + T ) > 0 can be found so that

(A(k)− L(k)C(k))
T
P (k + 1) (A(k)− L(k)C(k))− P (k) < 0 (8.36)

holds for k = 0, 1, · · · , T − 1. Using Schur Lemma, (8.36) is equivalent to
∙

P (k + 1) P (k + 1) (A(k)− L(k)C(k))

(A(k)− L(k)C(k))
T
P (k + 1) P (k)

¸
> 0 (8.37)

k = 0, 1, · · · , T − 1

In (8.37), the unknown variables P (k + 1) and L(k) are coupled together. In order to transform
(8.37) into LMI, let

Y (k) = P (k + 1)L(k)

Therefore, the periodic observer gain matrix L(k) stabilizes A(k) − L(k)C(k), if and only if there
exists periodic matrices P (k) = P (k + T ) > 0 and Y (k) = Y (k + T ) so that the following LMIs are
satisfied

∙
P (k + 1) P (k + 1)A(k)− Y (k)C(k)

AT (k)P (k + 1)− CT (k)Y T (k) P (k)

¸
> 0 (8.38)

k = 0, 1, · · · , T − 1

Based on it, L(k) can be designed using the algorithm below.
Algorithm 8.2 Given the periodic system (8.1), the periodic observer (8.33). Design of the

periodic observer gain matrix L(k) that stabilizes the error dynamics (8.34):

� Solve the set of LMIs (8.38) for periodic matrices P (k) = P (k + T ) > 0 and Y (k) = Y (k + T ).
� Let

L(k) = P−1(k + 1)Y (k), k = 0, 1, · · · , T − 1

8.5.3 Robust design

Assume that the periodic system is described by (8.18). Due to the disturbances d, the error dynamics
of observer (8.33) is governed by

e(k + 1) = (A(k)− L(k)C(k))e(k) + (Ed(k)− L(k)Fd(k))d(k) (8.39)

To suppress the influence of the disturbances on the error dynamics, the norms introduced in the
last section can be applied. The robust design problem can be, for instance, formulated as looking
for the gain matrix L(k) such that

kΣedk∞ < α (8.40)

The smaller the constant α is, the weaker is the worst case influence of the unknown disturbances d
on the state estimation error e.
According to Theorem 8.1, the error dynamics (8.39) is stable and (8.40) holds if and only if

there exist a T -periodic matrix P (k) = P (k + T ) > 0, such that

⎡
⎢⎢⎣

−P (k) O ΦT31 I
O −α2I ΦT32 O
Φ31 Φ32 −P (k + 1) O
I O O −I

⎤
⎥⎥⎦ < 0 (8.41)

k = 0, 1, · · · , T − 1



8.5 Periodic observer 103

where

Φ31 = P (k + 1)(A(k)− L(k)C(k))

Φ32 = P (k + 1)(Ed(k)− L(k)Fd(k))

To decouple P (k+1) and L(k), let Y (k) = P (k+1)L(k). Applying Schur Lemma, (8.41) is equivalent
to

⎡
⎣
−P (k) + I O Φ̄T31

O −α2I Φ̄T32
Φ̄31 Φ̄32 −P (k + 1)

⎤
⎦ < 0 (8.42)

Φ̄31 = P (k + 1)A(k)− Y (k)C(k)

Φ̄32 = P (k + 1)Ed(k)− Y (k)Fd(k)

k = 0, 1, · · · , T − 1

Algorithm 8.3 Given the periodic system (8.18), the periodic observer (8.33) and a constant
α > 0. Design of the periodic observer gain matrix L(k) so that the error dynamics (8.39) is stable
and (8.40) holds:

� Solve the set of LMIs (8.42) for periodic matrices P (k) = P (k + T ) > 0 and Y (k) = Y (k + T ).
� If there is no feasible solutions, then the value of α is too small. Otherwise, let L(k) = P−1(k +
1)Y (k), k = 0, 1, · · · , T − 1.

Due to the property of linear matrix inequalities, the above design procedure can be easily
extended to take into account multiple design objectives.
The design problem (8.40) can also be solved by first getting the cyclic reformulation of the

residual dynamics (8.39) and then applying the robust theory for discrete LTI systems. However, it
is difficult to solve (8.40) by lifting (8.39), because the system matrices after the lifting involve the
multiplication of L(i) and L(j).
It is a misunderstanding that designing an observer for the periodic system (8.18) is equivalent

to designing an observer for its lifted LTI reformulation. The lifted LTI reformulation of (8.18) is

x̃τ (k + 1) = Ãτ x̃τ (k) + B̃τ ũτ (k) + Ẽd,τ d̃τ (k)

ỹτ (k) = C̃τ x̃τ (k) + D̃τ ũτ (k) + F̃d,τ d̃τ (k) (8.43)

Recall that x̃τ (k) = x(kT + τ). To get the estimation of x(k) at each time instant, considering that

⎡
⎢⎢⎢⎣

x(kT + τ)
x(kT + τ + 1)

...
x(kT + τ + T − 1)

⎤
⎥⎥⎥⎦ = C̃x,τ x̃τ (k) + F̃x,τ d̃τ (k) (8.44)

C̃x,τ =

⎡
⎢⎢⎢⎣

I
Ψ(τ + 1, τ)

...
Ψ(τ + T − 1, τ)

⎤
⎥⎥⎥⎦

F̃x,τ =

⎡
⎢⎢⎢⎢⎣

O O · · · O

Ed(τ) O
. . .

...
...

. . .
. . . O

Ψ(τ + T − 1, τ + 1)Ed(τ) · · · Ed(τ) O

⎤
⎥⎥⎥⎥⎦

an observer can be built as
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ˆ̃xτ (k + 1) = Ãτ
ˆ̃xτ (k) + B̃τ ũτ (k) + L̃τ

³
ỹτ (k)− ˆ̃yτ (k)

´

ˆ̃yτ (k) = C̃τ
ˆ̃xτ (k) + D̃τ ũτ (k)⎡

⎢⎢⎢⎣

x̂(kT + τ)
x̂(kT + τ + 1)

...
x̂(kT + τ + T − 1)

⎤
⎥⎥⎥⎦ = C̃x,τ

ˆ̃xτ (k) (8.45)

Let

ητ (k) = x̃τ (k)− ˆ̃xτ (k)

ηx,τ (k) =

⎡
⎢⎢⎢⎣

x(kT + τ)
x(kT + τ + 1)

...
x(kT + τ + T − 1)

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

x̂(kT + τ)
x̂(kT + τ + 1)

...
x̂(kT + τ + T − 1)

⎤
⎥⎥⎥⎦

The dynamics of the observer (8.45) is governed by

ητ (k + 1) =
³
Ãτ − L̃τ C̃τ

´
ητ (k) +

³
Ẽd,τ − L̃τ F̃d,τ

´
d̃τ (k)

ηx,τ (k) = C̃x,τητ (k) + F̃x,τ d̃τ (k) (8.46)

In comparison, the lifting of the dynamics of the periodic observer (8.39) is

ẽτ (k + 1) = Ψerr(τ + T, τ)ẽτ (k) + Ẽe,τ d̃τ (k)⎡
⎢⎢⎢⎣

e(kT + τ)
e(kT + τ + 1)

...
e(kT + τ + T − 1)

⎤
⎥⎥⎥⎦ = C̃e,τ ẽτ (k) + F̃e,τ d̃τ (k) (8.47)

where

ẽτ (k) = e(kT + τ)

Ẽe,τ =
£
Ψerr(τ + T, τ + 1)Ed,L(τ) Ψerr(τ + T, τ + 2)Ed,L(τ + 1)

· · · Ed,L(τ + T − 1)
¤

C̃e,τ =

⎡
⎢⎢⎢⎣

I
Ψerr(τ + 1, τ)

...
Ψerr(τ + T − 1, τ)

⎤
⎥⎥⎥⎦

F̃e,τ =

⎡
⎢⎢⎢⎢⎣

O O · · · O

Ed,L(τ) O
. . .

...
...

. . .
. . . O

Ψ(τ + T − 1, τ + 1)Ed,L(τ) · · · Ed,L(τ + T − 1) O

⎤
⎥⎥⎥⎥⎦

Ed,L(τ) = Ed(τ)− L(τ)Fd(τ)

Let

L̃τ =
£
L̃τ,0 · · · L̃τ,T−2 L̃τ,T−1

¤
(8.48)

L̃τ,0 = Ψerr(τ + T, τ + 1)L(τ), · · ·

L̃τ,T−2 = Ψerr(τ + T, τ + T − 1)L(τ + T − 2)
L̃τ,T−1 = L(τ + T − 1)
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then

Ψerr(τ + T, τ) = Ãτ − L̃τ C̃τ

Ẽe,τ = Ẽd,τ − L̃τ F̃d,τ

C̃e,τ = C̃x,τ + L4C̃τ

F̃e,τ = F̃x,τ + L4F̃d,τ

where

L4 =

⎡
⎢⎢⎢⎢⎣

O O · · · O

−L(τ) O
. . .

...
...

. . .
. . . O

−Ψ(τ + T − 1, τ + 1)L(τ) · · · −L(τ + T − 1) O

⎤
⎥⎥⎥⎥⎦

If
ẽτ (0) = ητ (0)

then ẽτ (k) ≡ ητ (k) and

⎡
⎢⎢⎢⎣

e(kT + τ)
e(kT + τ + 1)

...
e(kT + τ + T − 1)

⎤
⎥⎥⎥⎦ = ηx,τ (k) + L4

³
ỹτ (k)− ˆ̃yτ (k)

´

It shows clearly that the difference in the estimation error dynamics is caused by the feedback terms,
i.e. the different way how the measurement information is used to modify the state estimation. In
(8.33) the measurement information is taken into account at each time instant, while in (8.45) the
measurement information is taken into account with an interval of T .
In the following, we shall give two examples to illustrate the observer design.
Example 8.1 Consider the periodic system (8.1) with period T = 2 and

A(0) =

∙
1 1
0 0.5

¸
, A(1) =

∙
0.5 0.5
0 1

¸
, B(0) =

∙
1
0

¸
, B(1) =

∙
0.5
0

¸

C(0) = C(1) =
£
1 0
¤
, D(0) = D(1) = 0

Design the observer (8.33) with stable estimation error dynamics.
We shall first apply the pole placement approach. Let τ = 0. Lift A(k) and C(k) into

Ã0 =

∙
0.5 0.75
0 0.5

¸
, C̃0 =

∙
1 0
1 1

¸
(8.49)

Assume that the desired characteristic multipliers of the error dynamics are 0.2 and 0.3. This can
be achieved by

L̃0 =

∙
−0.55 0.75
−0.3 0.3

¸
=
£
L̃0,0 L̃0,1

¤

Then,

L(0) =

∙
4.0
0.9

¸
, L(1) =

∙
0.75
0.3

¸
(8.50)

It can be verified that the eigenvalues of the matrix

(A(1)− L(1)C(1)) (A(0)− L(0)C(0))

are located at 0.2, 0.3.
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If the LMI based approach is applied to stabilize the estimation error dynamics (8.34), we solve
at first (8.38) and get a feasible solution

P (0) =

∙
1.4259 −0.3709
−0.3709 1.3302

¸
, Y (1) =

∙
0.8027
0.0793

¸

P (1) =

∙
0.9286 −0.4237
−0.4237 1.8654

¸
, Y (0) =

∙
1.1455
−0.2767

¸

The observer gain matrix is obtained as

L(0) =

∙
1.3008
0.1472

¸
, L(1) =

∙
0.6237
0.2335

¸
(8.51)

The eigenvalues of the matrix (A(1)− L(1)C(1)) (A(0)− L(0)C(0)) are 0.0001 and 0.2300 and (8.34)
is stable.
Example 8.2 Consider the periodic system in Example 8.1. Assume that the disturbances are

described by

Ed(0) =

∙
1
0

¸
, Ed(1) =

∙
0
1

¸
, Fd(0) = 1, Fd(1) = 0

Design the observer (8.33) so that the error dynamics is stable and the H∞-norm from the distur-
bances to the state estimation error is minimized.
Solving (8.42) iteratively, we get the minimal feasible constant α = 1.5001 and, correspondingly,

P (0) =

∙
2368362.747 1.233
1.233 2.250

¸
, Y (1) =

∙
1776271.438
0.200

¸

P (1) =

∙
405955.534 − 811909.069
−811909.069 1623819.142

¸
, Y (0) =

∙
405955.516
−811909.034

¸

Finally, the robust observer gain matrix is given by

L(0) =

∙
1
0

¸
, L(1) =

∙
0.75
0.50

¸
(8.52)

The characteristic multipliers of (A(1)− L(1)C(1)) (A(0)− L(0)C(0)) are 0, 0 and the H∞-norm
from the disturbances to the state estimation error is 1.5001. In comparison, for the gain matrix
given by (8.50) and (8.51), the H∞-norm is, respectively, 4.7151 and 2.0229.

8.6 Conclusion

This chapter has introduced some basic properties of the linear discrete-time periodic (LDP) systems.
The isomorphism between the LDP systems and the discrete LTI systems is very helpful for the
analysis and design of the LDP systems. Good tutorials on periodic systems can be found in [8, 9, 10],
which give an extensive overview of the development in this field before 2000. [13, 143] are the first
papers that use LMI to solve the H∞ control and filtering problems in the LDP systems. The pole
placement problem of the LDP systems is considered in [23, 74, 149].
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FD schemes based on lifted LTI reformulation

In this and the next chapter, we shall study the fault detection problem of linear discrete-time
periodic systems described by

x(k + 1) = A(k)x(k) +B(k)u(k) +Ed(k)d(k) +Ef (k)f(k),

y(k) = C(k)x(k) +D(k)u(k) + Fd(k)d(k) + Ff (k)f(k) (9.1)

where x ∈ Rn denotes the state vector, u ∈ Rnu the control input vector, y ∈ Rm the measured
output vector, d ∈ R

nd the unknown disturbance vector, and f ∈ R
nf the vector of faults to

be detected, A(k), B(k), C(k),D(k), Ed(k), Ef (k), Fd(k), Ff (k) are known real bounded periodic
matrices of period T and with appropriate dimensions, i.e., for all integers k ≥ 0, they satisfy

∙
A(k + T ) B(k + T ) Ed(k + T ) Ef (k + T )
C(k + T ) D(k + T ) Fd(k + T ) Ff (k + T )

¸

=

∙
A(k) B(k) Ed(k) Ef (k)
C(k) D(k) Fd(k) Ff (k)

¸

Recalling the strong correspondence between discrete-time periodic systems and discrete LTI sys-
tems, the FD system design for periodic system (9.1) can be carried out as follows:

� lift periodic system (9.1) into a discrete LTI system,
� design residual generator(s) based on the lifted LTI reformulation,
� use a bank of residual generators, or select the parameters of the residual generator to satisfy
the causality condition (that means, to generate the residual signal based on the available inputs
and outputs) to facilitate a periodic implementation.

Using the technique introduced in the last chapter, periodic system (9.1) can be lifted into a
discrete LTI system described by

x̃τ (k + 1) = Ãτ x̃τ (k) + B̃τ ũτ (k) + Ẽd,τ d̃τ (k) + Ẽf,τ f̃τ (k),

ỹτ (k) = C̃τ x̃τ (k) + D̃τ ũτ (k) + F̃d,τ d̃τ (k) + F̃f,τ f̃τ (k) (9.2)

where τ is an integer between 0 and T − 1 denoting the initial time, the state vector of the lifted
system is x̃τ (k) = x(kT + τ), η̃τ with η standing for u, y, d, f is the augmented signal defined by

η̃τ (k) =

⎡
⎢⎢⎢⎣

η(kT + τ)
η(kT + τ + 1)

...
η(kT + τ + T − 1)

⎤
⎥⎥⎥⎦

The matrices Ãτ , B̃τ , C̃τ , D̃τ are defined in (8.14), Ẽd,τ , Ẽf,τ are defined in a way similar to B̃τ , and

F̃d,τ , F̃f,τ similar to D̃τ .
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9.1 Observer-based FD system design and implementation

Assume that (A(k), C(k)) is detectable. Then (Ãτ , C̃τ ) is detectable and an observer based LTI
residual generator can be designed based on lifted reformulation (9.2) as

ˆ̃xτ (k + 1) = Ãτ
ˆ̃xτ (k) + B̃τ ũτ (k) + Lτ (ỹτ (k)− ˆ̃yτ (k)),

ˆ̃yτ (k) = C̃τ
ˆ̃xτ (k) + D̃τ ũτ (k)

rτ (k) =Wτ (ỹτ (k)− ˆ̃yτ (k)) (9.3)

where Lτ and Wτ are constant matrices and can be designed with the FD approaches for the
discrete LTI systems introduced in Part I to realize full decoupling or optimal FD. Observer (9.3)
estimates the state vector x(kT + τ) and, based on it, reconstructs the outputs over one period
y(kT + τ), y(kT + τ + 1), · · · , y(kT + τ + T − 1). Both the state vector ˆ̃xτ (k) of observer (9.3) and
the residual signal rτ (k) are updated every T time instants.
In fault detection, the detection delay should be as small as possible. Therefore, it is advantageous

if a residual signal can be obtained at each time instant. To this aim, a bank of LTI residual generators
(9.3) can be used, each of which is designed for τ = 0, 1, · · · , T − 1, respectively [51]. This scheme is
characterized by a simple design but needs much online computational efforts.
In the next, we shall introduce two alternative ways to realize a simpler periodic implementation.
The first way is to transform the weighting matrix Wτ into a lower block triangular matrix in

the form of

Wτ =

⎡
⎢⎢⎢⎢⎣

Wτ,1,1 O · · · O

Wτ,2,1 Wτ,2,2
. . .

...
...

. . .
. . . O

Wτ,T,1 · · · Wτ,T,T−1 Wτ,T,T

⎤
⎥⎥⎥⎥⎦

(9.4)

so that the causality constraint is satisfied. If this is achieved, then for a given integer τ , the residual
generator (9.3) can be implemented as

ˆ̃xτ (k + 1) = Ãτ
ˆ̃xτ (k) + B̃τ ũτ (k)

+ Lτ

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

y(kT + τ)
y(kT + τ + 1)

...
y(kT + τ + T − 1)

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

ŷ(kT + τ)
ŷ(kT + τ + 1)

...
ŷ(kT + τ + T − 1)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

r(kT + τ + j) =
£
Wτ,j+1,1 · · · Wτ,j+1,j+1

¤

×

⎛
⎜⎝

⎡
⎢⎣

y(kT + τ)
...

y(kT + τ + j)

⎤
⎥⎦−

⎡
⎢⎣

ŷ(kT + τ)
...

ŷ(kT + τ + j)

⎤
⎥⎦

⎞
⎟⎠

ŷ(kT + τ + j) = C(τ + j)Ψ(τ + j, τ)ˆ̃xτ (k)

+
£
D̃τ,j+1,1 · · · D̃τ,j+1,j+1

¤
⎡
⎢⎣

u(kT + τ)
...

u(kT + τ + j)

⎤
⎥⎦

j = 0, 1, · · · , T − 1 (9.5)

In this case, the state estimation is still updated at every T time instants, but at each time instant
kT + τ + j, j = 0, 1, · · · , T − 1, a residual signal r(kT + τ + j) is calculated from the control inputs
and the measured outputs available up to the time instant kT + τ + j.
The second way aims to explore the possibility of realizing (9.3) in the form of
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x̂(k + 1) = A(k)x̂(k) +B(k)u(k) + L(k)(y(k)− ŷ(k))

ŷ(k) = C(k)x̂(k) +D(k)u(k)

r(k) =W (k)(y(k)− ŷ(k)) (9.6)

where L(k) andW (k) are T -periodically time-varying matrices. Compared with (9.5), both the state
estimation and the residual signal in (9.6) will be updated at each time instant.
For this purpose, we give the following theorem.
Theorem 9.1 Given the periodic system (9.1), the residual generators (9.3) and (9.6), let rτ (k)

denote the residual signal in (9.3) and rlift(k) denote the lifting of the residual signal r(k) in (9.6),
i.e.

rlift(k) =

⎡
⎢⎢⎢⎣

r(kT + τ)
r(kT + τ + 1)

...
r((k + 1)T + τ − 1)

⎤
⎥⎥⎥⎦

Then rlift(k) = rτ (k), if x̂(τ) = ˆ̃xτ (0) and

Lτ =
£
Lτ,0 · · · Lτ,T−2 Lτ,T−1

¤
(9.7)

Wτ =

⎡
⎢⎢⎢⎢⎣

W (τ) O · · · O

Wτ,2,1 W (τ + 1)
. . .

...
...

. . .
. . . O

Wτ,T,1 · · · Wτ,T,T−1 W (τ + T − 1)

⎤
⎥⎥⎥⎥⎦

(9.8)

where

Lτ,0 = Ψerr(τ + T, τ + 1)L(τ), · · ·

Lτ,T−2 = Ψerr(τ + T, τ + T − 1)L(τ + T − 2)
Lτ,T−1 = L(τ + T − 1)
Wτ,i,j = −W (τ + i− 1)C(τ + i− 1)Ψerr(τ + i− 1, τ + j)L(τ + j − 1), i > j

Ψerr(j, i) =

½
I, if j = i
(A(j − 1)− L(j − 1)C(j − 1)) · · · (A(i)− L(i)C(i)), if j > i

Proof: Over the time interval [kT + τ , (k+1)T + τ), x̂ and r got by the residual generator (9.6)
evolve like

x̂((k + 1)T + τ) = Ãτ x̂(kT + τ) + B̃τ ũτ (k) + Llift (ỹτ (k)− ŷlift(k))

ŷlift(k) = C̃τ x̂(kT + τ) + D̃τ ũτ (k) +Q (ỹτ (k)− ŷlift(k))

rlift(k) =Wlift (ỹτ (k)− ŷlift(k)) (9.9)

where
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ŷlift(k) =

⎡
⎢⎢⎢⎣

ŷ(kT + τ)
ŷ(kT + τ + 1)

...
ŷ((k + 1)T + τ − 1)

⎤
⎥⎥⎥⎦

Llift =
£
Ψ(τ + T, τ + 1)L(τ) Ψ(τ + T, τ + 2)L(τ + 1) · · · L(τ + T − 1)

¤

Wlift =

⎡
⎢⎢⎢⎢⎣

W O · · · O

O W
. . .

...
...
. . .

. . . O
O · · · O W

⎤
⎥⎥⎥⎥⎦

Q =

⎡
⎢⎢⎢⎢⎣

O O · · · O

C(τ + 1)L(τ) O
. . .

...
...

. . .
. . . O

QT,1 · · · C(τ + T − 1)L(τ + T − 2) O

⎤
⎥⎥⎥⎥⎦

QT,1 = C(τ + T − 1)Ψ(τ + T − 1, τ + 1)L(τ)

It can be verified that
Lτ (Q+ I) = Llift, Wτ (Q+ I) =Wlift (9.10)

If x̂(τ) = ˆ̃xτ (0), then according to (9.9) there is

ˆ̃yτ (0) = ŷlift(0)−Q (ỹτ (0)− ŷlift(0))

It follows

rτ (0) = Wτ (ỹτ (0)− ˆ̃yτ (0))
= Wτ (I +Q) (ỹτ (0)− ŷlift(0))

= Wlift (ỹτ (0)− ŷlift(0))

= rlift(0)

ˆ̃xτ (1) = Ãτ
ˆ̃xτ (0) + B̃τ ũτ (0) + Lτ (ỹτ (0)− ˆ̃yτ (0))

= Ãτ x̂(τ) + B̃τ ũτ (0) + Lτ (I +Q) (ỹτ (0)− ŷlift(0))

= Ãτ x̂(τ) + B̃τ ũτ (0) + Llift (ỹτ (0)− ŷlift(0))

= x̂(T + τ)

In this way, it can be shown that ˆ̃yτ (k) = ŷlift(k) − Q (ỹτ (k)− ŷlift(k)), ˆ̃xτ (k) = x̂(kT + τ) and
rlift(k) = rτ (k), ∀k. ¤

Theorem 9.1 provides another possibility of transforming the LTI residual generator (9.3) into
the periodic observer based residual generator (9.6). The periodic observer matrix L(k) and the
periodic weighting matrix W (k) in (9.6) can be recovered from the constant matrices Lτ and Wτ in
(9.3) according to (9.7) and (9.8) as follows.
Algorithm 9.1 Transformation of the LTI residual generator (9.3) into the periodic observer

based residual generator (9.6):

� Transform the matrix Wτ into a lower triangular matrix.
� Partition the matrix Lτ into T blocks and the matrix Wτ into T × T blocks with compatible
dimensions, as shown in (9.7) and (9.8)

� Let L(τ + T − 1) = Lτ,T−1 and W (τ + i) =Wτ,i+1,i+1 for i = 0, · · · , T − 1.
� Solve the following equation to get L(τ + j)



9.2 Parity relation based system design and implementation 111

⎡
⎢⎢⎢⎣

Ψerr(τ + T, τ + T − 1)
−W (τ + j + 1)C(τ + j + 1)

...
−W (τ + T − 1)C(τ + T − 1)Ψerr(τ + T − 1, τ + j + 1)

⎤
⎥⎥⎥⎦L(τ + j)

=

⎡
⎢⎢⎢⎣

Lτ,j
Wτ,j+2,j+1

...
Wτ,T,j+1

⎤
⎥⎥⎥⎦

in sequence for j = T −2, T −1, · · · , 0. If there is no solution, then (9.3) can not be implemented
as (9.6).

In this section, we have shown how to design an observer based LTI residual generator (9.3) for
the lifted system (9.2) and then implement the residual generator as a periodic residual generator
(9.5) or (9.6). No matter which periodic implementation is used, it is always necessary to first
transform the matrix Wτ into a lower triangular matrix. How to do such a transformation, will be
discussed later in Section 9.3.

9.2 Parity relation based system design and implementation

Similarly, a parity relation based LTI residual generator can be built as follows

rτ (k) = Vτ,s

³
ỹτ,k,s − H̃u,sũτ,k,s

´
(9.11)

ỹτ,k,s =

⎡
⎢⎢⎢⎣

ỹτ (k − s)
ỹτ (k − s+ 1)

...
ỹτ (k)

⎤
⎥⎥⎥⎦ , ũτ,k,s =

⎡
⎢⎢⎢⎣

ũτ (k − s)
ũτ (k − s+ 1)

...
ũτ (k)

⎤
⎥⎥⎥⎦

H̃u,s =

⎡
⎢⎢⎢⎢⎣

D̃τ O · · · O

C̃τ B̃τ D̃τ
. . .

...
...

. . .
. . . O

C̃τ Ã
s−1
τ B̃τ · · · C̃τ B̃τ D̃τ

⎤
⎥⎥⎥⎥⎦

where Vτ,s =
£
Vτ,s,0 Vτ,s,1 · · · Vτ,s,s−1 Vτ,s,s

¤
, Vτ,s,l ∈ Rnr×mT , l = 0, 1, · · · , s, is a constant parity

matrix and satisfies

Vτ,s

⎡
⎢⎢⎢⎣

C̃τ

C̃τ Ãτ

...

C̃τ Ã
s
τ

⎤
⎥⎥⎥⎦ = 0

It can be designed for the lifted system (9.2) using the methods introduced in Part I.
To get a residual signal at each time instant, we can use a bank of parity relation based resid-

ual generators, each one for τ = 0, 1, · · · , T − 1, respectively. Alternatively, we can also impose a
structural constraint on parity matrix Vτ,s as
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Vτ,s,s =

⎡
⎢⎢⎢⎢⎣

(Vτ,s,s)1,1 O · · · O

(Vτ,s,s)2,1 (Vτ,s,s)2,2
. . .

...
...

. . .
. . . O

(Vτ,s,s)T,1 · · · (Vτ,s,s)T,T−1 (Vτ,s,s)T,T

⎤
⎥⎥⎥⎥⎦

(9.12)

(Vτ,s,s)i,j ∈ Rρi×m,
TX

i=1

ρi = nr

i = 1, · · · , T, j = 1, · · · , T

i.e., the last block in Vτ,s is a lower triangular matrix. Then, for a fixed τ , the residual generator (9.11)
can be implemented in such a way that only the control inputs and the measured outputs available
up to the time instant kT + τ + j is needed for the calculation of r(kT + τ + j), j = 0, 1, · · · , T − 1.
Partition Vτ,s,l, l = 0, 1, · · · , s− 1, as follows

Vτ,s,l =

⎡
⎢⎢⎢⎣

(Vτ,s,l)1
(Vτ,s,l)2

...
(Vτ,s,l)T

⎤
⎥⎥⎥⎦ , (Vτ,s,l)i ∈ Rρi×mT , i = 0, 1, · · · , s− 1

The periodic implementation of the residual generator (9.11) is

r(kT + τ + j)

=
£
(Vτ,s,0)j+1 · · · (Vτ,s,s−1)j+1

¤

×

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

ỹτ (k − s)
ỹτ (k − s+ 1)

...
ỹτ (k − 1)

⎤
⎥⎥⎥⎦− H̃u,s,I

⎡
⎢⎢⎢⎣

ũτ (k − s)
ũτ (k − s+ 1)

...
ũτ (k − 1)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

+
£
(Vτ,s,s)j+1,1 · · · (Vτ,s,s)j+1,j+1

¤

×

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

y(kT + τ)
y(kT + τ + 1)

...
y(kT + τ + j)

⎤
⎥⎥⎥⎦− D̃τ,j

⎡
⎢⎢⎢⎣

u(kT + τ)
u(kT + τ + 1)

...
u(kT + τ + j)

⎤
⎥⎥⎥⎦

−
£
C̃τ,jÃ

s−1
τ B̃τ · · · · · · C̃τ,jB̃τ

¤

⎡
⎢⎢⎢⎣

ũτ (k − s)
ũτ (k − s+ 1)

...
ũτ (k − 1)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ (9.13)

where
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H̃u,s,I =

⎡
⎢⎢⎢⎢⎣

D̃τ O · · · O

C̃τ B̃τ D̃τ
. . .

...
... · · ·

. . . O

C̃τ Ã
s−2
τ B̃τ · · · C̃τ B̃τ D̃τ

⎤
⎥⎥⎥⎥⎦

D̃τ,j =

⎡
⎢⎢⎢⎢⎣

D̃τ,1,1 O · · · O

D̃τ,2,1 D̃τ,2,2
. . .

...
...

. . .
. . . O

D̃τ,j+1,1 · · · D̃τ,j+1,j D̃τ,j+1,j+1

⎤
⎥⎥⎥⎥⎦

C̃τ,j =

⎡
⎢⎢⎢⎣

C(τ)
C(τ + 1)Ψ(τ + 1, τ)

...
C(τ + j)Ψ(τ + j, τ)

⎤
⎥⎥⎥⎦

9.3 Computational aspects

In this section, we shall show how to transform Wτ and Vτ,s, respectively, into the form of (9.4) and
(9.12) to realize a periodic implementation.
Recall from Chapter 5 that in observer based residual generators, optimization problems (5.103)-

(5.105) are solved by (5.106), the optimal weighting matrix isWopt = QdWd, where Qd is an arbitrary
unitary matrix of compatible dimensions, Wd is the left inverse of a full column rank matrix Hd

satisfying
HdH

T
d = CXdC

T + FdF
T
d (9.14)

and Xd is obtained by solving a DTARS. That means, left multiplying the optimal weighting matrix
with a unitary matrix will not change the optimality. Notice that HdH

T
d is a real symmetric matrix.

If HdH
T
d is positive definite, then the Cholesky factorization (Matlab function chol) can be used

to calculate the matrix Hd. Hd is obtained as a lower block triangular matrix. Correspondingly,
its left inverse Wd is also a lower block triangular matrix and satisfies (9.4). In case that HdH

T
d is

only positive semidefinite and rankHdH
T
d = nH (nH < m), then the matrices Hd and Wd can be

calculated as follows:

� Do the SVD

CXdC
T + FdF

T
d = UH

∙
ΣH O
O O

¸
UT
H (9.15)

where UH ∈ Rm×m is a unitary matrix and ΣH ∈ RnH×nH a diagonal matrix.
� Partition UH as

UH =
£
UH1 UH2

¤
, UH1 ∈ Rm×nH , UH2 ∈ Rm×(m−nH) (9.16)

� Calculate
Hd = UH1Σ

1
2

H ∈ Rm×nH , Wd = Σ
− 1
2

H UT
H1 ∈ RnH×m (9.17)

In general cases, to transform the matrix Wd into the form of (9.4), the QR decomposition can
be applied. The standard function qr in Matlab decomposes a given matrix into the product of
a unitary matrix and an upper triangular matrix. Therefore, to apply this Matlab function, some
elementary column and row transformations are necessary. Such a procedure is provided below.
Algorithm 9.2 Transformation of the matrix Wd into a lower block triangular matrix into the

form of (9.4):
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� Calculate
W̄d =WdV1 ∈ RnH×m (9.18)

where V1 ∈ Rm×m has on its anti-diagonal only elements 1, i.e.

V1 =

⎡
⎢⎢⎣

0 0 0 1
0 0 Á 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦

� Do an QR decomposition using the Matlab function qr

W̄d = QWRW , QW ∈ RnH×nH , RW ∈ RnH×m (9.19)

where QW is a unitary matrix, RW is an upper triangular matrix,
� Let

Qd = V2Q
T
W ∈ RnH×nH (9.20)

where V2 ∈ RnH×nH has a structure similar to V1 and has on its anti-diagonal only elements 1,

V2 =

⎡
⎢⎢⎣

0 0 0 1
0 0 Á 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦

The matrix Qd obtained above is a unitary matrix and leads to

QdWd = V2Q
T
W W̄dV

−1
1 = V2Q

T
WQWRWV −11 = V2RWV −11

Due to the special structure of V1, V2, RW and the relation V −11 = V1, it can be seen that QdWd has
a lower triangular structure and satisfies (9.4).
In case that the optimal solution is given by (5.119), a similar procedure can be applied.
In the case of optimal parity relation based residual generators, it is shown by (5.22) and (5.27)

that left multiplying the optimal solution Vτ,s by a unitary matrix will also not change the optimality.
It is also easy to see that, if Vτ,s realizes a full decoupling, i.e.

Vτ,s
£
H̃u,s H̃d,s

¤
= 0

then multiplying Vτ,s from the left side with a unitary matrix will keep the property of full decoupling.
Hence, no matter it is a full decoupling or optimal design, the resulting parity matrix Vτ,s can be
brought into a form satisfying (9.12) using the above procedure described in Algorithm 9.2 as well.
In the next, we shall give two examples.
Example 9.1 Consider the periodic system (9.1) with period T = 2 and

A(0) =

∙
1 1
0 0.5

¸
, A(1) =

∙
0.5 0.5
0 1

¸
, B(0) =

∙
1
0

¸
, B(1) =

∙
0.5
0

¸

Ed(0) =

∙
1
0

¸
, Ed(1) =

∙
0
1

¸
, Ef (0) =

∙
1
1

¸
, Ef (1) =

∙
0
1

¸

C(0) = C(1) =
£
1 0
¤
, D(0) = D(1) = 0

Fd(0) = 1, Fd(1) = 0, Ff (0) = Ff (1) = 1

Design a periodic residual generator using the observer based approach.
Let τ = 0. The lifted reformulation of (9.1) is

Ã0 =

∙
0.5 0.75
0 0.5

¸
, B̃0 =

∙
0.5 0.5
0 0

¸
, Ẽd,0 =

∙
0.5 0
0 1

¸
, Ẽf,0 =

∙
1 0
1 1

¸
,

C̃0 =

∙
1 0
1 1

¸
, D̃0 =

∙
0 0
1 0

¸
, F̃d,0 =

∙
1 0
1 0

¸
, F̃f,0 =

∙
1 0
1 1

¸
(9.21)
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According to Theorem 5.10, for the lifted system an observer based residual generator that is optimal
in the sense of (5.103)-(5.105) is given by (9.3) with

L0 =

∙
−0.25 0.75
−0.5 0.5

¸
,W0 =

∙
1 0
−1 1

¸

As W0 satisfies (9.4), the residual generator can be implemented as a periodic system in the form of
(9.5) as

ˆ̃x0(2(k + 1)) =

∙
0.5 0.75
0 0.5

¸
ˆ̃x0(2k) +

∙
0.5 0.5
0 0

¸ ∙
u(2k)

u(2k + 1)

¸

+

∙
−0.25 0.75
−0.5 0.5

¸µ∙
y(2k)

y(2k + 1)

¸
−
∙

ŷ(2k)
ŷ(2k + 1)

¸¶

ŷ(2k) =
£
1 0

¤
ˆ̃x0(2k)

r(2k) = y(2k)− ŷ(2k)

ŷ(2k + 1) =
£
1 1

¤
ˆ̃x0(2k) +

£
1 0

¤ ∙ u(2k)
u(2k + 1)

¸

r(2k + 1) =
£
−1 1

¤µ∙ y(2k)
y(2k + 1)

¸
−
∙

ŷ(2k)
ŷ(2k + 1)

¸¶
(9.22)

In this example, the residual generator can also be implemented in the form of (9.6). In the first
step, let

L(1) =

∙
0.75
0.5

¸
, W (0) = 1, W (1) = 1

Solving the equation

∙
Ψerr(2, 1)
−W (1)C(1)

¸
L(0) =

∙
A(1)− L(1)C(1)
−W (1)C(1)

¸
L(0)

=

⎡
⎣
−0.25 0.5
−0.5 1
−1 0

⎤
⎦L(0) =

⎡
⎣
−0.25
−0.5
−1

⎤
⎦

we get

L(0) =

∙
1
0

¸

Therefore, the periodic residual generator can be implemented as

x̂(2k + 1) =

∙
1 1
0 0.5

¸
x̂(2k) +

∙
1
0

¸
u(2k) +

∙
1
0

¸
(y(2k)− ŷ(2k))

x̂(2(k + 1)) =

∙
0.5 0.5
0 1

¸
x̂(2k + 1) +

∙
0.5
0

¸
u(2k + 1)

+

∙
0.75
0.5

¸
(y(2k + 1)− ŷ(2k + 1))

ŷ(2k) =
£
1 0

¤
x̂(2k)

r(2k) = y(2k)− ŷ(2k)

ŷ(2k + 1) =
£
1 0

¤
x̂(2k + 1)

r(2k + 1) = y(2k + 1)− ŷ(2k + 1) (9.23)

Example 9.2 Consider the same periodic system (9.1) as defined in Example 9.1. Design a
periodic residual generator using the parity space approach.
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Let s = 1. According to Theorem 5.2, a parity relation based residual generator (9.11) that is
optimal in the sense of (5.15)-(5.17) can be obtained as

V0,s =

∙
−0.4343 0.8896 −0.4974 −0.4132
0.3520 −0.1454 −1.3238 0.9106

¸

The last block of V0,s is

V0,s,s =

∙
−0.4974 −0.4132
−1.3238 0.9106

¸

Let

V1 =

∙
0 1
1 0

¸
, V2 =

∙
0 1
1 0

¸

The QR decomposition of V0,s,sV1 is

V0,s,sV1 = QWRW =

∙
−0.4132 −0.4974
0.9106 −1.3238

¸

QW =

∙
−0.4132 0.9106
0.9106 0.4132

¸
, RW =

∙
1 −1
0 −1

¸

Finally, V0,s,s can be transformed through the transformation matrix

Qd = V2Q
T
W =

∙
0.9106 0.4132
−0.4132 0.9106

¸

into a matrix satisfying (9.12) as follows

QdV0,s,s =

∙
−0.25 0.75 − 1 0
0.5 − 0.5 − 1 1

¸

The optimal parity relation based residual generator can be implemented as a periodic system as

r(2k) =
£
−0.25 0.75

¤µ∙y(2k − 2)
y(2k − 1)

¸
−
∙
0 0
1 0

¸ ∙
u(2k − 2)
u(2k − 1)

¸¶

−
µ
y(2k)−

£
0.5 0.5

¤ ∙u(2k − 2)
u(2k − 1)

¸¶

r(2k + 1) =
£
0.5 − 0.5

¤µ∙y(2k − 2)
y(2k − 1)

¸
−
∙
0 0
1 0

¸ ∙
u(2k − 2)
u(2k − 1)

¸¶

+
£
−1 1

¤
×

µ∙
y(2k)

y(2k + 1)

¸
−
∙
0 0
1 0

¸ ∙
u(2k)

u(2k + 1)

¸

−
∙
0.5 0.5
0.5 0.5

¸ ∙
u(2k − 2)
u(2k − 1)

¸¶
(9.24)

Example 9.3 In this example, we shall design the optimal observer based residual generator
for the following periodic system with period T = 3 [89], [179]

A(k) =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
a1k a2k a3k a4k a5k

⎤
⎥⎥⎥⎥⎦
, B(k) =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎦
, Ed(k) =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 b2k
b1k 0

⎤
⎥⎥⎥⎥⎦

Ef (k) =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
g1k

⎤
⎥⎥⎥⎥⎦
, C(k) =

∙
0 0 0 c1k c2k
0.5 0 0 0 0

¸
(9.25)
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where a1k = sin(2π(k+ T )/T + 0.9), a2k = sin(2π(k+ T )/T + 0.7), a3k = 2 sin(2π(k+ T )/T − 0.5),
a4k = sin(2π(k + T )/T − 0.1), a5k = sin(2π(k + T )/T + 0.3), b1k = cos(2π(k + T )/T ), b2k =
2 cos(2π(k + T )/T + 0.5), c1k = 2 cos(2π(k + T )/T + 0.2), c2k = cos(2π(k + T )/T + 0.1), g1k =
0.5 sin(2π(k + T )/T + 0.4).
For the lifted reformulation of (9.1) (τ = 0), an observer based residual generator that maximizes

simultaneously the H∞/H∞, H−/H∞ and Hi/H∞ indices is given by (9.3) with [29], [172]

L0 =

⎡
⎢⎢⎢⎢⎣

0.0186 0.0336 0.0014 0.0353 −0.0007 −3.0039
−0.0395 −0.4447 −0.7738 −0.3423 0.1775 −0.1816
−0.0356 −0.1817 0.4220 −0.3347 −1.4615 3.2661
0.0551 0.2811 −0.6530 0.5179 −0.1717 −5.0532
−0.0021 0.3031 1.0980 0.0881 1.1698 3.5624

⎤
⎥⎥⎥⎥⎦

W0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.9081 0.0000 0.0000 0.0000 0.0000 0.0000
−0.0565 43.2694 0.0000 0.0000 0.0000 0.0000
0.1529 −2.0414 0.3988 0.0000 0.0000 0.0000
0.6328 −3.5730 −0.0224 6.8563 0.0000 0.0000
0.3867 2.1100 −0.2466 1.1677 0.7443 0.0000
1.6966 7.1507 0.1630 2.0807 −0.1299 11.8429

⎤
⎥⎥⎥⎥⎥⎥⎦

W0 already satisfies (9.8). According to Theorem 1, we get

L(2) =

⎡
⎢⎢⎢⎢⎣

−0.0007 −3.0039
0.1775 −0.1816
−1.4615 3.2661
−0.1717 −5.0532
1.1698 3.5624

⎤
⎥⎥⎥⎥⎦
, W (0) =

∙
0.9081 0.0000
−0.0565 43.2694

¸

W (1) =

∙
0.3988 0.0000
−0.0224 6.8563

¸
, W (2) =

∙
0.7443 0.0000
−0.1299 11.8429

¸

Solving the equation

∙
Ψerr(3, 2)
−W (2)C(2)

¸
L(1) =

∙
A(2)− L(2)C(2)
−W (2)C(2)

¸
L(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0014 0.0353
−0.7738 −0.3423
0.4220 −0.3347
−0.6530 0.5179
1.0980 0.0881
−0.2466 1.1677
0.1630 2.0807

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

we get

L(1) =

⎡
⎢⎢⎢⎢⎣

−0.0203 −0.3858
0.0316 0.6158
−0.7132 −0.5857
−0.0953 1.3282
−0.6587 1.7620

⎤
⎥⎥⎥⎥⎦

Solving the equation
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⎡
⎣

Ψerr(3, 1)
−W (1)C(1)

−W (2)C(2)Ψerr(2, 1)

⎤
⎦L(0)

=

⎡
⎣
(A(2)− L(2)C(2))(A(1)− L(1)C(1))

−W (1)C(1)
−W (2)C(2)(A(1)− L(1)C(1))

⎤
⎦L(0)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0186 0.0336
−0.0395 −0.4447
−0.0356 −0.1817
0.0551 0.2811
−0.0021 0.3031
0.1529 −2.0414
0.6328 −3.5730
0.3867 2.1100
1.6966 7.1507

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

yields

L(0) =

⎡
⎢⎢⎢⎢⎣

−0.1871 1.0757
−0.2541 −1.5810
0.3967 2.4354
0.2236 −4.7977
0.1495 2.1146

⎤
⎥⎥⎥⎥⎦

9.4 Conclusion

This chapter discusses lifting based FD approaches for the linear discrete-time periodic (LDP) sys-
tems. The design procedure includes three steps. At first, the periodic system is lifted into a discrete
LTI system. Then, a discrete LTI residual generator is designed based on the lifted LTI reformu-
lation, using the parity space approach or the observer based approach. At last, the discrete LTI
residual generator is transformed into a periodic residual generator to reduce detection delay. The
key is to recover the parameters of the periodic residual generators from the parameters of the LTI
residual generators [188]. An QR based algorithm is provided for such a transformation. In the case of
observer based approaches, an analytic transformation is derived to directly recover the parameters
of the periodic observer based residual generators from the parameters of the LTI observer based
residual generators. With the approaches introduced in this chapter, many existing optimization and
decoupling methods for the FD of the discrete LTI systems can be transferred easily to the LDP
systems.
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Periodic design

In the last chapter, it is shown that residual generators can be designed for periodic system (9.1)
by first lifting the periodic system into an LTI system. In this chapter, we shall extend the parity
space approach and the observer based approach directly to periodic systems.

10.1 Periodic parity space approach

The extension of the parity space approach to periodic systems is straightforward. Recall that the
essence of the parity space approach is to derive the so-called parity relations. At time instant k,
consider the input-output relation of the periodic system (9.1) during the moving horizon [k− s, k],
where s is an integer and represents the length of the horizon. A parity relation is obtained as

ys(k) = Ho,s(k)x(k − s) +Hu,s(k)us(k) +Hd,s(k)ds(k) +Hf,s(k)fs(k) (10.1)

where the vectors us(k), ds(k), fs(k) and ys(k) contain the input and output sequences of the periodic
system (9.1) over the moving horizon and are defined in the same way as (2.4), and the matrices
Ho,s(k),Hu,s(k),Hd,s(k),Hf,s(k) are as follows,

Ho,s(k) =

⎡
⎢⎢⎢⎣

C(k − s)
C(k − s+ 1)A(k − s)

...
C(k)Ψ(k, k − s+ 1)A(k − s)

⎤
⎥⎥⎥⎦ (10.2)

Hu,s(k) =

⎡
⎢⎢⎢⎢⎣

D(k − s) O · · · O

C(k − s+ 1)B(k − s) D(k − s+ 1)
. . .

...
...

. . .
. . . O

C(k)Ψ(k, k − s+ 1)B(k − s) · · · C(k)B(k − 1) D(k)

⎤
⎥⎥⎥⎥⎦

Hd,s(k) =

⎡
⎢⎢⎢⎢⎣

Fd(k − s) O · · · O

C(k − s+ 1)Ed(k − s) Ff (k − s+ 1)
. . .

...
...

. . .
. . . O

C(k)Ψ(k, k − s+ 1)Ed(k − s) · · · C(k)Ed(k − 1) Fd(k)

⎤
⎥⎥⎥⎥⎦

Hf,s(k) =

⎡
⎢⎢⎢⎢⎣

Ff (k − s) O · · · O

C(k − s+ 1)Ef (k − s) Fd(k − s+ 1)
. . .

...
...

. . .
. . . O

C(k)Ψ(k, k − s+ 1)Ef (k − s) · · · C(k)Ef (k − 1) Ff (k)

⎤
⎥⎥⎥⎥⎦
.
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Due to the periodicity of systemmatrices, in parity relation (10.1) the matricesHo,s(k),Hu,s(k),Hd,s(k)
and Hf,s(k) are periodic functions with respect to k.
Based on the parity relation (10.1), a residual generator can be constructed as

r(k) = vs(k)(ys(k)−Hu,s(k)us(k)) (10.3)

where r ∈ R is the so-called residual signal, and the design parameter vs(k) is a T -periodic vector
called parity vector that satisfies vs(k)Ho,s(k) = 0. If a periodic parity matrix is used in the residual
generation, then the residual generator is written as

r(k) = Vs(k)(ys(k)−Hu,s(k)us(k)) (10.4)

where Vs(k) denotes the periodic parity matrix, Vs(k)Ho,s(k) = 0.

10.2 Periodic observer based approach

To the aim of fault detection, a linear discrete-time periodic residual generator can be constructed
as

x̂(k + 1) = A(k)x̂(k) +B(k)u(k) + L(k)(y(k)− ŷ(k))

ŷ(k) = C(k)x̂(k) +D(k)u(k)

r(k) =W (k)(y(k)− ŷ(k)) (10.5)

where r ∈ R
nr is the residual signal, L(k) and W (k) are periodic matrices of period T to be

determined, L(k) denotes the periodic observer gain matrix, W (k) denotes the periodic weighting
matrix. The dynamics of the periodic observer based residual generator (10.5) is governed by

e(k + 1) = (A(k)− L(k)C(k))e(k) + (Ed(k)− L(k)Fd(k))d(k) (10.6)

+ (Ef (k)− L(k)Ff (k))f(k)

r(k) =W (k)(C(k)e(k) + Fd(k)d(k) + Ff (k)f(k)) (10.7)

where e(k) = x(k)− x̂(k).
Similar as in LTI systems, the residual generators can also be built based on a periodic functional

observer as

z(k + 1) = G(k)z(k) +H(k)u(k) + L(k)y(k)

r(k) = w(k)z(k) + q(k)u(k) + p(k)y(k) (10.8)

with z ∈ Rs. The design parameters are the T -periodic matrices G(k),H(k), L(k), w(k), q(k) and
p(k). Let e(k) = z(k)− T (k)x(k). If G(k) is stable and the following equations

T (k + 1)A(k)−G(k)T (k) = L(k)C(k) (10.9)

w(k)T (k) + p(k)C(k) = 0 (10.10)

H(k) = T (k + 1)B(k)− L(k)D(k) (10.11)

q(k) = −p(k)D(k) (10.12)

hold for any k, then the dynamics of residual generator (10.8) is governed by

e(k + 1) = G(k)e(k) + (L(k)Fd(k)− T (k + 1)Ed(k))d(k)

+ (L(k)Ff (k)− T (k + 1)Ef (k))f(k),

r(k) = w(k)e(k) + p(k)Fd(k)d(k) + p(k)Ff (k)f(k) (10.13)

and meets the basic requirement that ∀u, limk→∞ r(k) = 0, if d = 0, f = 0. The equations (10.9)-
(10.12) are an extension of the well-known Luenberger condition in discrete-time periodic systems.
A numerically stable algorithm based on the use of the periodic Schur form is proposed by [149] to
solve the periodic Sylvester equations of the form T̂ (k + 1)Â(k)− B̂(k)T̂ (k) = Ĉ(k), in which T̂ (k)
is unknown and Â(k), B̂(k), Ĉ(k) are given. However, in general it is not an easy task to solve the
equations (10.9)-(10.10).
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10.3 Relation between periodic parity space and periodic observer

Inspired by the fact that in the LTI case there is a one to one relationship between observer based
and parity relation based residual generators [30], Theorem 10.1 below shows the construction of a
periodic observer from a periodic parity vector [183].
Theorem 10.1 Assume that a periodic vector

vs(k) =
£
vs,0(k) vs,1(k) · · · vs,s(k)

¤

satisfies vs(k)Ho,s(k) = 0. Then the equations (10.9)-(10.10) are solved by

T (k) =

⎡
⎢⎢⎢⎣

vs,1(k + s− 1) · · · vs,s−1(k + s− 1) vs,s(k + s− 1)
vs,2(k + s− 2) · · · vs,s(k + s− 2) 0

...
...

vs,s(k) 0 · · · 0

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

C(k)
C(k + 1)A(k)

...
C(k + s− 1)A(k + s− 2) · · ·A(k)

⎤
⎥⎥⎥⎦

G(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 g1(k)

1 0
. . .

... g2(k)
...
. . .

. . . 0
...

0 · · · 1 0 gs−1(k)
0 · · · 0 1 gs(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

L(k) = −

⎡
⎢⎢⎢⎣

vs,0(k + s)
vs,1(k + s− 1)

...
vs,s−1(k + 1)

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

g1(k)
g2(k)
...

gs(k)

⎤
⎥⎥⎥⎦ vs,s(k)

w(k) =
£
0 0 · · · 0 −1

¤

p(k) = vs,s(k) (10.14)

where the periodic scalars g1(k), · · · , gs(k) appearing in the matrices G(k), L(k) are free parameters
and should be selected in such a way that all characteristic multipliers, i.e., the eigenvalues of
G(T − 1) · · ·G(1)G(0), are inside the open unit disk of the complex plane.
Proof: Note that vs(k)Ho,s(k) = 0 can be expanded as

£
vs,0(k) vs,1(k) · · · vs,s(k)

¤

⎡
⎢⎢⎢⎣

C(k − s)
C(k − s+ 1)A(k − s)

...
C(k)A(k − 1) · · ·A(k − s+ 1)A(k − s)

⎤
⎥⎥⎥⎦ = 0

Hence, the first row of T (k+1)A(k)−G(k)T (k) equals the first row of L(k)C(k). It is straightforward
to show that the other rows of T (k + 1)A(k) − G(k)T (k) are identical with those of L(k)C(k),
respectively, if G(k), T (k) and L(k) are selected as (10.14). Therefore, equation (10.9) holds. Since
w(k)T (k) = −vs,s(k)C(k) and p(k) = vs,s(k), equation (10.10) holds. ¤

Remark 10.1 We would like to point out that an alternative way to derive solution (10.14) is
to exploit the isomorphism between periodic systems and LTI systems with the help of the cyclic
time-invariant representation.
Theorem 10.1 reveals that, given a periodically time-varying vector belonging to the parity space,

a periodic observer based residual generator satisfying (10.9)-(10.10) can be readily constructed
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according to (10.14). To ensure the stability of the residual dynamics (10.13), a simple choice of
gj(k) is gj(k) ≡ 0, j = 1, · · · , s. In this case, all characteristic multipliers will be placed at the origin
and the residual signals obtained by residual generators (10.3) and (10.8) are identical. In general,
no matter what gj(k) is, residual generator (10.8) can always be rewritten as

z(k + 1) = Ḡ(k)z(k) + H̄(k)u(k) + L̄(k)y(k)− g(k)r(k)

r(k) = w(k)z(k) + q(k)u(k) + p(k)y(k) (10.15)

and residual dynamics (10.13) can be expressed by

e(k + 1) = Ḡ(k)e(k) + (L̄(k)Fd(k)− T (k + 1)Ed(k))d(k)

+(L̄(k)Ff (k)− T (k + 1)Ef (k))f(k)− g(k)r(k)

r(k) = w(k)e(k) + p(k)Fd(k)d(k) + p(k)Ff (k)f(k) (10.16)

where

Ḡ(k) =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0

1
. . .

... 0
...
. . . 0

...
0 · · · 1 0

⎤
⎥⎥⎥⎥⎦
, L̄(k) = −

⎡
⎢⎢⎢⎣

vs,0(k + s)
vs,1(k + s− 1)

...
vs,s−1(k + 1)

⎤
⎥⎥⎥⎦ , g(k) =

⎡
⎢⎢⎢⎣

g1(k)
g2(k)
...

gs(k)

⎤
⎥⎥⎥⎦

H̄(k) = T (k + 1)B(k)− L̄(k)D(k)

Note that Ḡ(k), L̄(k) and H̄(k) are independent of column vector g(k). Hence, g(k) can be interpreted
as the gain of the implicit feedback in observer based residual generator (10.8). Moreover, it can be
shown that (10.15) and (10.16) are, respectively, equivalent to

r(k) = vs(k) (ys(k)−Hu,s(k)us(k)) + gs(k − 1)r(k − 1)
+gs−1(k − 2)r(k − 2) + · · ·+ g1(k − s)r(k − s) (10.17)

= vs(k)(Hd,s(k)ds(k) +Hf,s(k)fs(k)) + gs(k − 1)r(k − 1)
+gs−1(k − 2)r(k − 2) + · · ·+ g1(k − s)r(k − s) (10.18)

It means that g(k) 6= 0 will lead to a closed-loop structured implementation. The freedom provided
by g(k) could be used to meet additional specifications on the residual dynamics, for instance, to
modulate the frequency domain behaviour of the residual generator [164].
Based on Theorem 10.1, the equations (10.9)-(10.12) can be solved by first solving algebraic

equations vs(k)Ho,s(k) = 0 for vs(k) over one period, then making use of (10.14) to get a solution
to equations (10.9)-(10.10), and finally computing H(k) and q(k) by (10.11)-(10.12).
On the other side, a periodic observer based residual generator can also be related to a periodic

parity vector.
Theorem 10.2 Assume that a periodic observer-based residual generator (10.8) satisfying the

equations (10.9)-(10.12) with G(k), L(k), w(k) of the form

G(k) =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 g1(k)

1
. . .

... g2(k)
...
. . . 0

...
0 · · · 1 gs(k)

⎤
⎥⎥⎥⎥⎦
, L(k) =

⎡
⎢⎢⎢⎣

l1(k)
l2(k)
...

ls(k)

⎤
⎥⎥⎥⎦ , w(k) =

£
0 · · · 0 −1

¤
(10.19)

is given. Then the row vector
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vs(k) =
£
vs,0(k) vs,1(k) · · · vs,s−1(k) vs,s(k)

¤
(10.20)

vs,0(k) = l1(k − s) + g1(k − s)p(k − s)

vs,1(k) = l2(k − s+ 1) + g2(k − s+ 1)p(k − s+ 1)

...

vs,s−1(k) = ls(k − 1) + gs(k − 1)p(k − 1)
vs,s(k) = −p(k)

is a periodic parity vector satisfying vs(k)Ho,s(k) = 0.
Proof: Let

αs,0(k) = (l1(k − s) + g1(k − s)p(k − s))C(k − s), · · ·

αs,s−1(k) = (ls(k − 1) + gs(k − 1)p(k − 1))C(k − 1)Ψ(k − 1, k − s)

αs,s(k) = −p(k)C(k)Ψ(k, k − s)

wi(k) = w(k)Ḡ(k − 1) · · · Ḡ(k − i), i = 1, · · · , s− 1

Considering (10.9)-(10.10), we have

αs,s(k) = w(k) (G(k − 1)T (k − 1) + L(k − 1)C(k − 1))Ψ(k − 1, k − s)

Note that

w(k)L(k − 1) = −ls(k − 1)
w(k)(k − 1) = w(k)Ḡ(k − 1) + gs(k − 1)w(k − 1)

p(k − 1)C(k − 1) = −w(k − 1)T (k − 1)

There is
αs,s−1(k) + αs,s(k) = w1(k)T (k − 1)Ψ(k − 1, k − s)

Repeating the above derivation, we get

sX

j=s−i
αs,j(k) = wi(k)T (k − i)Ψ(k − i− 1, k − s)

Since ws−1(k) = [−1 0 · · · 0 ], there is

vs(k)Ho,s(k) =
sX

j=0

αs,j(k) = αs,0(k) + ws−1(k)T (k − s+ 1)A(k − s)

= αs,0(k) + ws−1(k) (G(k − s)T (k − s) + L(k − s)C(k − s))

= 0

The theorem is thus proven. ¤

10.4 Disturbance decoupling

In this section, we shall consider the full decoupling problem [183]. The aim is to design a residual
generator, so that the residual r satisfies
(i) limk→∞ r(k) = 0, if f = 0 and no matter what the control inputs and the disturbances are;
(ii) r(k) 6= 0 if fi(k) 6= 0, i = 1, · · · , nf .
As the parity space approach treats each time instant independently, the full decoupling problem

can be easily solved. If vs(k) can be selected in such a way that
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vs(k)
£
Ho,s(k) Hd,s(k)

¤
= 0, vs(k)Hf,s(k) 6= 0 (10.21)

holds for any k, then
r(k) = vs(k)Hf,s(k)fs(k).

The residual will be influenced neither by the initial state x(k − s) nor by the disturbance vector d
or the control input vector u. As a result, a full decoupling is realized and each individual fault can
be detected.
Note that (10.21) is a set of independent linear equations and can be easily solved. This means a

periodic parity relation based full decoupling residual generator can be simply designed by solving
(10.21) for vs(k). Moreover, as Ho,s(k),Hd,s(k) and Hf,s(k) are periodic, (10.21) only needs to be
solved over one period.
Theorem 10.3 For the periodic system (9.1), a full decoupling residual generator (10.3) exists

if and only if the following rank condition is satisfied

rank
£
Ho,s(k) Hd,s(k) Hf,s(k)

¤
> rank

£
Ho,s(k) Hd,s(k)

¤
(10.22)

for k = 0, 1, · · · , T − 1.
In the sequel, we shall discuss how to realize the full decoupling with the periodic observer based

residual generator (10.8). If, besides (10.9)-(10.12), the following conditions

p(k)Fd(k) = 0, (10.23)

T (k + 1)Ed(k)− L(k)Fd(k) = 0, (10.24)
£
T (k + 1)Ef (k)− L(k)Ff (k) p(k)Ff (k)

¤
6= 0, i = 1, · · · , nf (10.25)

are also fulfilled by L(k), T (k) and p(k), then the dynamics of residual generator (10.13) satisfies the
conditions (i)-(ii) and a full decoupling can be achieved. To solve (10.9)-(10.12) and (10.23)-(10.25)
simultaneously, the following theorem is given.
Theorem 10.4 Assume that the periodic vector

vs(k) =
£
vs,0(k) vs,1(k) · · · vs,s(k)

¤

satisfies (10.21). Then G(k), L(k), T (k), w(k) and p(k) given by (10.14) satisfy (10.9)-(10.10) and
(10.23)-(10.25) simultaneously.
Proof: In view of vs(k)Hd,s(k) = 0, multiplying vs(k) with each column of Hd,s(k) yields

vs,s(k)Fd(k) = 0, (10.26)
sX

l=j+1

vs,l(k)C(k − s+ l)Ψ(k − s+ l, k − s+ j + 1)Ed(k − s+ j)

+vs,j(k)Fd(k − s+ j) = 0, j = 0, 1, · · · , s− 1 (10.27)

where the state transition matrix Ψ is given by (8.4). As p(k) = vs,s(k), the equation (10.23) follows
immediately from (10.26). The equation (10.27) can be rewritten as

sX

l=j+1

vs,l(k + s− j)C(k + l − j)Ψ(k + l − j, k + 1)Ed(k)

+vs,j(k + s− j)Fd(k) = 0

by substituting k with k + s − j. Thus, (10.24) holds. In a similar manner it can be proven that
vs(k)Hf,s(k) 6= 0 ensures (10.25). ¤

Theorem 10.4 states that if the periodic parity vector vs(k) realizes a full decoupling, so does the
periodic observer based residual generator (10.8) with coefficients (10.14). Thus a periodic observer
based full decoupling residual generator can be obtained from a periodic full decoupling parity vector.
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The order of the periodic observer is equal to the order of the parity relation s. It is also interesting
to notice that the matrices L(k) and T (k) of the periodic observer-based residual generator (7.3) at
each time are related to the periodic parity vector over one period.
In summary, the proposed procedure of designing a periodic observer based full decoupling resid-

ual generator in the form of (10.8) is as follows:

� Set the value of s and construct the matrices Ho,s(k),Hd,s(k), Hf,s(k) by (10.2).
� Solve (10.21) for the periodic row vector vs(k) over a period.
� Partition vs(k) as vs(k) = [ vs,0(k) vs,1(k) · · · vs,s(k) ] with vs,j(k) ∈ R1×m, j = 0, 1, · · · , s.
� get G(k), L(k), T (k), w(k), p(k) by (10.14) with g1(k), · · · , gs(k) ensuring the stability of the
residual dynamics.

� Compute H(k) and q(k) from (10.11)-(10.12).

Similarly, a full decoupling parity vector can be obtained from a full decoupling observer based
residual generator.
Theorem 10.5 Given the periodic system (9.1) and the full decoupling observer based residual

generator (10.8). If G(k), L(k), w(k) can be brought into the form of (10.19), then the vector given
by (10.20) satisfies (10.21) and also realizes a full decoupling.
To illustrate the proposed design procedures, we shall look at the following example.
Example 10.1 Consider a periodic system of period T = 2 described by (9.1) with [51]

A(0) =

⎡
⎢⎢⎣

0.25 0.25 0.1 −0.1
0.5 0.1 0.1 0.5
0.5 −0.2 0.2 0.25
0.1 0 0.25 0.1

⎤
⎥⎥⎦ , A(1) =

⎡
⎢⎢⎣

0.1 0.2 0.1 −0.1
−0.1 0.5 0 0.5
0.5 0.5 0.1 0.25
0 0.1 0.1 0.25

⎤
⎥⎥⎦

C(0) =

⎡
⎣
0.25 0.1 0.2 0.1
−0.1 0.5 0.2 0.5
0.25 0.5 −0.1 0.1

⎤
⎦ , C(1) =

⎡
⎣
0.1 0.25 0.1 −0.1
0.25 0.1 0.2 0.1
0.1 0.25 −0.2 0.5

⎤
⎦

B(0) =

⎡
⎢⎢⎣

0.5
0.1
0.1
0.25

⎤
⎥⎥⎦ , B(1) =

⎡
⎢⎢⎣

0.1
0.5
0.1
0.5

⎤
⎥⎥⎦

Ed(0) =

⎡
⎢⎢⎣

1.3
1.8
1.6
0.32

⎤
⎥⎥⎦ , Ed(1) =

⎡
⎢⎢⎣

3.2
2
−1
−2

⎤
⎥⎥⎦

Ef (0) =

⎡
⎢⎢⎣

0.1
−1
0.2
0.1

⎤
⎥⎥⎦ , Ef (1) =

⎡
⎢⎢⎣

0.1
−1
0.2
0.1

⎤
⎥⎥⎦

D(0) = O, D(1) = O

Fd(0) = O, Fd(1) = O, Ff (0) = O, Ff (1) = O (10.28)

Let s = 1. We obtain the matrices Ho,s(k),Hu,s(k),Hd,s(k),Hf,s(k) by (10.2). As for any k,

rank
£
Ho,s(k) Hd,s(k) Hf,s(k)

¤
= 6

rank
£
Ho,s(k) Hd,s(k)

¤
= 5

the condition (10.22) is satisfied. To decouple the residual from the unknown disturbances, we then
solve (10.21) for vs(k), k = 0, 1, respectively. As a result, the periodic parity relation based full
decoupling residual generator is

r(k) = vs(k)

µ∙
y(k − 1)
y(k)

¸
−Hu,s(k)

∙
u(k − 1)
u(k)

¸¶
(10.29)
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where

vs(0) = [ 0.3535 0.2589 0.1962 −0.8290 −0.1421 0.2491 ]
vs(1) = [−0.0631 −0.1348 0.0314 0.2316 −0.5703 0.7733 ]
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Fig. 10.2 Residual signal generated by periodic parity relation based residual generator (10.29)

In the simulation, it is assumed that the control input is a step signal (step time at 0) of amplitude
1, the disturbance d(k) = sin(0.01πk), and the fault appears at the 40th discrete time as illustrated
in Fig. 10.1. The residual signal obtained by the residual generator (10.29) is shown in Fig. 10.2. It
can be seen that the residual signal r is not influenced by u, d and changes only if f 6= 0. This means
the residual generator (10.29) has achieved a full decoupling.
Now let g(0) = −0.2, g(1) = −0.3. From the periodic full decoupling parity vector got above, a

periodic observer based full decoupling residual generator can be readily obtained as

z(k + 1) = G(k)z(k) +H(k)u(k) + L(k)y(k)

r(k) = w(k)z(k) + q(k)u(k) + p(k)y(k) (10.30)

with
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Fig. 10.3 Residual signal generated by periodic observer based residual generator (10.30)

G(0) = −0.2, G(1) = −0.3
H(0) = 0.0504, H(1) = −0.1142
L(0) =

£
−0.1027 0.1064 0.0184

¤

L(1) =
£
−0.2840 −0.4300 0.0358

¤

p(0) =
£
−0.8290 −0.1421 0.2491

¤

p(1) =
£
0.2316 −0.5703 0.7733

¤

w(0) = −1, w(1) = −1
q(0) = 0, q(1) = 0 (10.31)

It is worth noticing that the periodic observer (10.30) is only of first order. By changing the value
of s, the order of the periodic observer could be adjusted. Under the same simulation conditions
as before, the residual signal obtained by the periodic observer based residual generator (10.30)
is presented in Fig. 10.3. As can be seen, the influence of initial estimation error disappears after
several time points and the residual signal is not influenced by u, d. Hence, the residual generator
(10.30) also allows a full decoupling and a reliable detection of the fault.

10.5 Optimization of residual generators

In this section, we shall discuss, if a full decoupling is not achievable, how to design the optimal
residual generators for the periodic system (9.1). The main objective of the optimal design is to
enhance the robustness of the FD system to the unknown disturbances without loss of the sensitivity
to the faults.
In case that the full decoupling condition (10.22) is not satisfied, optimization problems similar

to (5.15)-(5.17) are formulated as

max
Vs(k)

Vs(k)Ho,s(k)=0

JLTP,PS,∞/∞ = max
Vs(k)

Vs(k)Ho,s(k)=0

σ̄2(Vs(k)Hf,s(k))

σ̄2(Vs(k)Hd,s(k))
(10.32)

max
Vs(k)

Vs(k)Ho,s(k)=0

JLTP,PS,−/∞ = max
Vs(k)

Vs(k)Ho,s(k)=0

σ2(Vs(k)Hf,s(k))

σ̄2(Vs(k)Hd,s(k))
(10.33)

max
Vs(k)

Vs(k)Ho,s(k)=0

JLTP,PS,i/∞ = max
Vs(k)

Vs(k)Ho,s(k)=0

σ2i (Vs(k)Hf,s(k))

σ̄2(Vs(k)Hd,s(k))
(10.34)
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which are solved over one period to get the optimal periodic parity matrix Vs(k). Because the
parity space approach handles each time instant independently and there is no stability problem,
the solutions of problems (10.32)-(10.34) at each time instant are independent of each other and can
be obtained following the procedures introduced in Section 5.1.
If the order s of the parity relation (10.1) is an integer multiple of the period T , then the periodic

parity space approach is equivalent with a bank of residual generators (9.11). In comparison, the
periodic parity space approach provides more flexibility. The order of the parity relation s doesn’t
need to be related to the period T . Moreover, s may take different values at different time instants.
In this case, the threshold for the residual evaluation may need to be chosen differently at different
time.
In the following, an approach is proposed to design the optimal periodic observer based residual

generators (10.5) for the periodic system (9.1). The optimal design problem is formulated as [179]

max
L(k),W (k)

JLTP,OBS,∞/∞ = max
L(k),W (k)

supd=0, f∈l2−{0}
krk2
kfk2

supf=0, d∈l2−{0}
krk2
kdk2

(10.35)

max
L(k),W (k)

JLTP,OBS,−/∞ = max
L(k),W (k)

infd=0, f∈l2−{0}
krk2
kfk2

supf=0, d∈l2−{0}
krk2
kdk2

(10.36)

The solutions of optimization problems (10.35)-(10.36) are derived by solving an equivalent opti-
mization problem for the cyclically lifted LTI systems first and then recover the periodic matrices
L(k) and W (k).
Theorem 10.6 Given the periodic system (9.1), assume that the associated sub-system

(A(k), Ed(k), C(k), Fd(k)) is detectable and has no transmission zeros on the unit circle, no un-
reachable characteristic multipliers on the unit circle and no unobservable zero characteristic multi-
pliers at any time. With Qd(k) an arbitrary periodic unitary matrix, (Xd(k), Ld(k)) the T -periodic
stabilizing solution of the discrete-time periodic Riccati system (DPRS)

∙
A(k)Xd(k)A

T (k)−Xd(k + 1) +Ed(k)E
T
d (k) A(k)Xd(k)C

T (k) +Ed(k)F
T
d (k)

C(k)Xd(k)A
T (k) + Fd(k)E

T
d (k) C(k)Xd(k)C

T (k) + Fd(k)F
T
d (k)

¸

×

∙
I

Ld(k)

¸
= 0, (10.37)

Hd(k) a T -periodic full column rank matrix satisfying

Hd(k)H
T
d (k) = C(k)Xd(k)C

T (k) + Fd(k)F
T
d (k), (10.38)

and Wd(k) a T -periodic matrix satisfying

Wd(k)Hd(k) = I, (10.39)

the optimization problems (10.35) and (10.36) are simultaneously solved by

Lopt(k) = −LTd (k), Wopt(k) = Qd(k)Wd(k). (10.40)

Proof : The cyclic reformulation of the periodic system (10.7) is [8]

ēτ (k + 1) = (Āτ − L̄τ C̄τ )ēτ (k) + (Ēdτ − L̄τ F̄dτ )d̄τ (k) + (Ēfτ − L̄τ F̄fτ )f̄τ (k)

r̄τ (k) = W̄τ (C̄τ ēτ (k) + F̄dτ d̄τ (k) + F̄fτ f̄τ (k)) (10.41)

where the signals ēτ , d̄τ , f̄τ , r̄τ are defined as (8.9), the matrices Āτ , Ēdτ , Ēfτ , L̄τ , C̄τ , W̄τ , F̄dτ , F̄fτ
defined as (8.11). According to [8], ∀τ ,
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sup
f=0,d∈l2−{0}

krk2
kdk2

=
°°W̄τ Ḡdτ (z)

°°
∞

sup
d=0, f∈l2−{0}

krk2
kfk2

=
°°W̄τ Ḡfτ (z)

°°
∞ (10.42)

where

Ḡdτ (z) = F̄dτ + C̄τ (zI − Āτ + L̄τ C̄τ )
−1 (Ēdτ − L̄dτ F̄dτ )

Ḡfτ (z) = F̄fτ + C̄τ (zI − Āτ + L̄τ C̄τ )
−1(Ēfτ − L̄dτ F̄fτ ) (10.43)

Thus, the optimization problems (10.35) and (10.36) are, respectively, equivalent to

max
L(k),W (k)

JLTP,OBS,∞/∞ = max
L̄τ ,W̄τ

°°W̄τ Ḡdτ (z)
°°
∞°°W̄τ Ḡfτ (z)
°°
∞

(10.44)

max
L(k),W (k)

JLTP,OBS,−/∞ = max
L̄τ ,W̄τ

°°W̄τ Ḡdτ (z)
°°
−°°W̄τ Ḡfτ (z)
°°
∞

(10.45)

Because the cyclic reformulation preserves the structural properties of periodic systems, (Āτ , Ēdτ ,
C̄τ , F̄dτ ) has no transmission zeros on the unit circle [25], (Āτ , C̄τ ) is detectable and has no unob-
servable modes at the origin, (Āτ , Ēdτ ) has no unreachable modes on the unit circle [8]. In view of
Theorem 5.11, the unified optimal solution to the optimization problems (10.44)-(10.45) is

L̄τ,opt = −L̄Tdτ , W̄τ,opt = QdτW̄dτ (10.46)

where Qdτ can be any constant unitary matrix. The matrix W̄dτ is determined by

W̄dτ H̄dτ = I, H̄dτ H̄
T
dτ = C̄τ X̄dτ C̄

T
τ + F̄dτ F̄

T
dτ (10.47)

and (X̄dτ , L̄dτ ) is the stabilizing solution to the DTARS

∙
ĀτX̄dτ Ā

T
τ − X̄dτ + Ēdτ Ē

T
dτ Āτ X̄dτ C̄

T
τ + Ēdτ F̄

T
dτ

C̄τ X̄dτ Ā
T
τ + F̄dτ Ē

T
dτ C̄τ X̄dτ C̄

T
τ + F̄dτ F̄

T
dτ

¸ ∙
I
L̄dτ

¸
= 0 (10.48)

Due to the special structure of matrices Āτ , C̄τ , Ēdτ , F̄dτ , it is clear that matrices X̄dτ and L̄dτ in
the equation (10.48) should have the following structure

X̄dτ = diag{Xd(τ), · · · ,Xd(τ + T − 2),Xd(τ + T − 1)} (10.49)

L̄dτ =

⎡
⎢⎢⎢⎣

O Ld(τ) · · · O
...

...
. . .

...
O O · · · Ld(τ + T − 2)

Ld(τ + T − 1) O · · · O

⎤
⎥⎥⎥⎦ (10.50)

By selecting Qdτ to have a block diagonal structure and substituting (8.11), (10.49), (10.50) into
(10.46)-(10.48), it turns out that the optimal periodic matrices Lopt(k),Wopt(k) are given by (10.40)-
(10.37). ¤

It should be emphasized that besides the observer gain matrices L(k), the theorem provides also
an analytic way to the optimal selection of the weighting matricesW (k), which also play an important
role in improving the performance index JLTP,OBS(L(k),W (k)). The assumptions of the theorem
can be verified by checking the corresponding structural properties of the cyclic reformulation or the
lifted reformulation of (A(k), Ed(k), C(k), Fd(k)), due to the correspondence between the structural
properties of periodic systems and cyclic/lifted reformulations.
Based on the theorem, the optimal design of the periodic residual generator (10.5) for the periodic

system (9.1) can be carried out as follows:
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� solve the DPRS (10.37) for the T -periodic stabilizing solution (Xd(k), Ld(k)),
� find the periodic full column rank matrices Hd(k) satisfying (10.38),
� determine Wd(k) according to (10.39),
� get the optimal observer gain matrices Lopt(k) and weighting matrices Wopt(k) by (10.40),
� construct the periodic residual generator according to (10.5).

The main computation of the optimal design consists in finding the T -periodic stabilizing solution
(Xd(k), Ld(k)) of the DPRS (10.37). As will be shown in the next section, it is finally reduced to
solving one DTARS.
The dynamics of the residual delivered by (10.5) with the parameters (10.40) is governed by

eopt(k + 1) = ALopt(k)eopt(k) +Ed,Lopt(k)d(k) +Ef,Lopt(k)f(k)

ropt(k) =Wopt(k)(C(k)eopt(k) + Fd,Lopt(k)d(k) + Ff,Lopt(k)f(k))

ALopt(k) = A(k)− Lopt(k)C(k)

Ed,Lopt(k) = Ed(k)− Lopt(k)Fd(k)

Ef,Lopt(k) = Ef (k)− Lopt(k)Ff (k) (10.51)

It represents the best compromise between the sensitivity to the faults and the robustness to the
disturbances in the sense of (10.35) and (10.36).
The optimal residual generator can also be realized in the form of an observer followed by a

periodic post filter as

x̂(k + 1) = A(k)x̂(k) +B(k)u(k) + L(k)(y(k)− ŷ(k))

ŷ(k) = C(k)x̂(k) +D(k)u(k)

xR(k + 1) = AR(k)xR(k) +BR(k)(y(k)− ŷ(k))

r(k) = CR(k)xR(k) +DR(k)(y(k)− ŷ(k)) (10.52)

where L(k) is any periodic gain matrix that stabilizes A(k) − L(k)C(k), the parameters of the
periodic post filter are given by

AR(k) = A(k) + LTd (k)C(k)

BR(k) = LTd (k) + L(k)

CR(k) = Qd(k)Wd(k)C(k)

DR(k) = Qd(k)Wd(k) (10.53)

Though the order of the residual generator (10.52) is increased, its dynamics is the same with (10.51).

10.6 Discrete-time periodic Riccati system (DPRS)

As shown in Theorem 10.6, the discrete-time periodic Riccati system (10.37) plays an important
role for the optimal design. This section will give two approaches to solve the DPRS.
As can be seen from the proof of Theorem 10.6, one approach is to compute the stabilizing

solution (X̄dτ , L̄dτ ) of the DTARS and then partition X̄dτ , L̄dτ according to (10.49)-(10.50).

� Build the cyclic reformulation (Āτ , Ēdτ , C̄τ , F̄dτ ) of the periodic system (A(k), Ed(k), C(k), Fd(k))
for some initial time τ [8].

� Find the stabilizing solution (X̄dτ , L̄dτ ) to the DTARS (10.48). To this aim, a numerically sound
algorithm is available (see [80] and the references therein). The existence of the solution is guar-
anteed if the assumptions of Theorem 10.6 are satisfied. In many cases, (10.48) reduces to the
well-known DTARE which can be solved by the Matlab function dare.

� Partition X̄dτ , L̄dτ according to (10.49)-(10.50) to get Xd(k), Ld(k) for k = τ , τ+1, · · · , τ+T−1.
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Let (Xd(k), Ld(k)) be the stabilizing solution of (10.37). Assume that (Ã , Ẽd , C̃ , F̃d ) is the
lifted reformulation of the periodic system (A(k), Ed(k), C(k), Fd(k)) for some initial time . Let

X̃d = Xd( ), L̃d =

⎡
⎢⎢⎢⎣

L̃d,0
L̃d,1
...

L̃d,T−1

⎤
⎥⎥⎥⎦ (10.54)

where

L̃d,T−1 = L( + T − 1)
L̃d,T−2 = L( + T − 2)(AT ( + T − 1) + CT ( + T − 1)L̃d,T−1)

...

L̃d,i = L( + i)
¡
ΦT ( + T, k + i+ 1)+

⎡
⎢⎢⎢⎣

C( + i+ 1)
C( + i+ 2)ΦT ( + i+ 2, + i+ 1)

...
C( + T − 1)ΦT ( + T − 1, + i+ 1)

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

L̃d,i+1(k)

L̃d,i+2(k)
...

L̃d,T−1(k)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

i = 0, 1, · · · , T − 2

Then it can be proven that (X̃d, L̃d) given by (10.54) is the stabilizing solution to the DTARS

∙
Ã X̃dÃ

T − X̃d + Ẽd ẼT
d Ã X̃dC̃

T + Ẽd F̃T
d

C̃ X̃dÃ
T + F̃d ẼT

d C̃ X̃dC̃
T + F̃d F̃T

d

¸ ∙
I

L̃d

¸
= 0 (10.55)

Therefore, (10.37) can also be solved as follows.

� Build the lifted reformulation (Ã , Ẽd , C̃ , F̃d ) of the periodic system (A(k), Ed(k), C(k), Fd(k))
for some initial time [8, 12].

� Find the stabilizing solution (X̃d, L̃d) to the DTARS

∙
Ã X̃dÃ

T − X̃d + Ẽd ẼT
d Ã X̃dC̃

T + Ẽd F̃T
d

C̃ X̃dÃ
T + F̃d ẼT

d C̃ X̃dC̃
T + F̃d F̃T

d

¸ ∙
I

L̃d

¸
= 0 (10.56)

� SetXd( ) = X̃d and substituteXd( ) into (10.37) to computeXd(k), Ld(k) for k = , +1, · · · , +
T − 1.

In our experience, the lifted reformulation based solution procedure shows better numerical
property than the cyclic reformulation based solution procedure.
To illustrate the proposed optimal observer based design approach, we consider the following

example.
Example 10.2 Design the optimal residual generator for the periodic system (9.1) with period

T = 3 and
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A(k) =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
a1k a2k a3k a4k a5k

⎤
⎥⎥⎥⎥⎦
, B(k) =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎦

Ed(k) =

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 b2k
b1k 0

⎤
⎥⎥⎥⎥⎦
, Ef (k) =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
g1k

⎤
⎥⎥⎥⎥⎦

C(k) =

∙
0 0 0 c1k c2k
0.5 0 0 0 0

¸
(10.57)

where

a1k = sin(2π(k + T )/T + 0.9), a2k = sin(2π(k + T )/T + 0.7)

a3k = 2 sin(2π(k + T )/T − 0.5), a4k = sin(2π(k + T )/T − 0.1)
a5k = sin(2π(k + T )/T + 0.3), b1k = cos(2π(k + T )/T )

b2k = 2 cos(2π(k + T )/T + 0.5) , c1k = 2 cos(2π(k + T )/T + 0.2)

c2k = cos(2π(k + T )/T + 0.1), g1k = 0.5 sin(2π(k + T )/T + 0.4)

The system (10.57) is an extension of the model used in [89] and satisfies the assumptions of
Theorem 10.6. Applying the optimal design procedure yields

Lopt(0) =

⎡
⎢⎢⎢⎢⎣

−0.19 1.08
−0.25 −1.58
0.40 2.44
0.22 −4.80
0.15 2.11

⎤
⎥⎥⎥⎥⎦
, Wopt(0) =

∙
0.91 0
−0.06 43.27

¸

Lopt(1) =

⎡
⎢⎢⎢⎢⎣

−0.02 −0.39
0.03 0.62
−0.71 −0.59
−0.10 1.33
−0.66 1.76

⎤
⎥⎥⎥⎥⎦
, Wopt(1) =

∙
0.40 0
−0.02 6.86

¸

Lopt(2) =

⎡
⎢⎢⎢⎢⎣

−0.00 −3.00
0.18 −0.18
−1.46 3.27
−0.17 −5.05
1.17 3.56

⎤
⎥⎥⎥⎥⎦
, Wopt(2) =

∙
0.74 0
−0.13 11.84

¸

To get a better understanding of the optimal solution, the above residual generator is compared
with

� a residual generator which solves the optimization problem

min
L(k)

sup
f=0,d∈l2−{0}

ky − ŷk2
kdk2

and is optimally robust against the unknown disturbances. The observer gain matrices are ob-
tained by iteratively solving a set of linear matrix inequalities [13], which finally yields



10.7 Conclusion 133

Linf(0) =

⎡
⎢⎢⎢⎢⎣

−0.21 1.14
−0.25 −1.59
0.39 2.44
0.23 −4.81
0.14 2.16

⎤
⎥⎥⎥⎥⎦
, Linf(1) =

⎡
⎢⎢⎢⎢⎣

−0.02 −0.35
0.03 0.56
−0.71 −0.58
−0.10 1.32
−0.66 1.66

⎤
⎥⎥⎥⎥⎦

Linf(2) =

⎡
⎢⎢⎢⎢⎣

−0.00 −2.99
0.19 −0.21
−1.46 3.24
−0.18 −5.01
1.16 3.56

⎤
⎥⎥⎥⎥⎦

� and a residual generator which assigns the characteristic multipliers of the residual dynamics at
0.35, 0.45, 0.6, 0.7, 0.8. It is designed by using the algorithm introduced in Section 8.5 and the
observer gain matrices are

Lplace(0) =

⎡
⎢⎢⎢⎢⎣

−0.04 1.04
−0.09 −1.13
0.39 2.51
−0.16 −5.69
0.89 −2.18

⎤
⎥⎥⎥⎥⎦
, Lplace(1) =

⎡
⎢⎢⎢⎢⎣

−0.15 0.17
0.41 −0.04
0.11 −5.87
−1.54 8.55
−0.85 4.35

⎤
⎥⎥⎥⎥⎦

Lplace(2) =

⎡
⎢⎢⎢⎢⎣

0.04 −0.43
0.65 −0.10
−1.25 −1.67
−0.55 0.30
0.59 −1.47

⎤
⎥⎥⎥⎥⎦

As the selection of weighting matrices W (k) can not be incorporated in the latter two designs,
the weighting matrices are simply chosen as W (k) =WI(k) = I.

The performance indices JLTP,OBS,∞/∞(L(k),W (k)) achieved by each approach are, respectively,

JLTP,OBS,∞/∞(Lopt(k),Wopt(k)) = 0.9924

JLTP,OBS,∞/∞(Linf(k),WI(k)) = 0.3124

JLTP,OBS,∞/∞(Lplace(k),WI(k)) = 0.1589

It can be seen that the performance index JLTP,OBS,∞/∞(Lopt(k),Wopt(k)) got by the optimal design
is much bigger than the others.
During the simulation, assume that the control inputs are step signals (step time at 0) of am-

plitude 1 and 0.5 respectively, the unknown disturbances are discrete-time signals taking value
randomly from a normal distribution with mean 0 and standard deviation 0.01, the fault appears at
the 601th discrete time as a step function of amplitude 0.06. The residual r = [ r1 r2 ]

T is evaluated

by krkev =

⎛
⎝

kX

i=k−ρ+1
rT (i)r(i)

⎞
⎠

1
2

with ρ = 100 being the length of the evaluation window. A fault

is detected if krkev surpasses threshold Jth = supf=0 krkev. Fig. 10.4 shows both the residual signals
and the evaluation results. The fault was detected by the optimal residual generator at the 608th
discrete time, while it was detected by the other two residual generators at the 613th and the 623th
discrete time, respectively. It demonstrates that the proposed optimal design achieves a quicker fault
detection and thus a better FD performance.

10.7 Conclusion

Direct approaches to design the FD systems for the linear discrete periodic (LDP) systems are ad-
dressed in this chapter. Because the parity space approach handles each time instant independently,
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Fig. 10.4 The residual signal (r1: left column, r2: middle column) and the evaluated residual signal (right
column, krkev: solid line, Jth: dashed line) got by residual generator with parameters (a) Lopt(k),Wopt(k),
(b) Linf(k),WI(k), (c) Lplace(k) ,WI(k).

both the full decoupling problem and the optimal design problem can be rather easily solved by the
periodic parity space approach. It needs only to solve a set of independent linear algebraic equations
or optimization problems. Due to the close relationship between the periodic parity vectors and the
periodic observer based residual generators, a periodic observer based full decoupling residual gener-
ator can be readily obtained. The optimal design of the periodic observer based residual generators
is formulated as ratio-type optimization problems, whose solution is shown to be closely related
to a difference periodic Riccati system. Readers are referred to [150, 110] for other full decoupling
approaches and [54] for a fault estimation algorithm.
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Uncertain periodic systems

In this chapter, we consider the FD problem of uncertain periodic systems described by [191]

x(k + 1) = A4(k)x(k) +B∆(k)u(k) +Ed∆(k)d(k) +Ef∆(k)f(k)

y(k) = C(k)x(k) +D(k)u(k) + Fd(k)d(k) + Ff (k)f(k) (11.1)

with

[A4(k) B∆(k) Ed∆(k) Ef∆(k) ]

= [A(k) B(k) Ed(k) Ef (k) ] + [∆A(k) ∆B(k) ∆Ed(k) ∆Ef (k) ] (11.2)

where A(k), B(k), C(k),D(k), Ed(k), Ef (k), Fd(k), Ff (k) are known T -periodic real matrices of ap-
propriate dimensions, ∆A(k),∆B(k),∆Ed(k), ∆Ef (k) are unknown real matrices representing poly-
topic uncertainties described by

£
∆A(k) ∆B(k) ∆Ed(k) ∆Ef (k)

¤

=

pX

i=1

λi(k)
£
Ai(k) Bi(k) Edi(k) Efi(k)

¤
(11.3)

where Ai(k), Bi(k), Edi(k), Efi(k), i = 1, 2, · · · , p, are known T -periodic real matrices, λi(k), i =
1, 2, · · · , p are unknown quantities but satisfy

λi(k) > 0,

pX

i=1

λi(k) = 1

In the subsequent discussion, it is assumed that A4(k) is stable, (A(k), C(k)) is detectable. For
the sake of brevity, it is assumed that system (11.1) has no uncertainties in the output equation.
This assumption can be easily removed by a straightforward extension.
The main purpose is to design an optimal residual generator for uncertain periodic systems

(11.1), which is sensitive to the faults and robust to the unknown disturbances as well as the model
uncertainties.

11.1 Problem formulation

To the aim of FD, a periodic post filter based residual generator is constructed as

x̂(k + 1) = A(k)x̂(k) +B(k)u(k) + L(k)rb(k)

ŷ(k) = C(k)x̂(k) +D(k)u(k)

rb(k) = y(k)− ŷ(k)

xR(k + 1) = AR(k)xR(k) +BR(k)rb(k)

r(k) = CR(k)xR(k) +DR(k)rb(k) (11.4)
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where rb represents the output estimation error, r ∈ R
nr is the residual signal, xR ∈ R

nR is
the state vector of the periodic post-filter, L(k) is the T -periodic observer gain matrix, AR(k),
BR(k), CR(k),DR(k) are T -periodic real matrices.
Recall that in the nominal case the residual dynamics (10.51) represents the best compromise

between the sensitivity to the faults and the robustness to the disturbances in the sense of (10.35)
and (10.36). To keep the optimality in the presence of the uncertainties (11.3), the design parameters
of the residual generator (11.4) can be selected in such a way that the residual r obtained by the
periodic residual generator (11.4) is in the near of ropt(k). Let

ξ(k) = r(k)− ropt(k)

which represents the difference between the residual r generated by (11.4) and the optimal residual
dynamics ropt. Because the dynamics of L(k) can always be compensated by the post filter, L(k) can
be arbitrarily selected, as long as A(k)−L(k)C(k) is stable. Thus, the FD problem of the uncertain
periodic systems (11.1) is formulated as to determine L(k) and AR(k), BR(k), CR(k),DR(k), such
that [191]

r(k)→ ropt(k), i.e. ξ(k)→ 0

11.2 Design of the optimal periodic post-filter

In this section, we shall show how to formulate the FD problem as an H∞ problem and, based on
it, derive the optimal periodic post filter.
Define

Xp(k) =

⎡
⎣

x(k)
e(k)

eopt(k)

⎤
⎦ , e(k) = x(k)− x̂(k)

δ(k) =

⎡
⎣
f(k)
d(k)
u(k)

⎤
⎦

where e(k) is the state estimation error, Xp(k) the extended state vector and δ(k) the extended
disturbance vector. Then, from (11.1), (11.4), and (10.51) we get

Xp(k + 1) = Ap(k)Xp(k) +Bp(k)δ(k)

ξ(k) = C1p(k)Xp(k) +D1p(k)δ(k) + r(k)

rb(k) = C2p(k)Xp(k) +D2p(k)δ(k) (11.5)

where
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Ap(k) = Apo(k) +∆Ap(k), Bp(k) = Bpo(k) +∆Bp(k)

Apo(k) =

⎡
⎣
A(k) O O
O AL(k) O
O O ALopt(k)

⎤
⎦ ,∆Ap(k) =

⎡
⎣
∆A(k) O O
∆A(k) O O
O O O

⎤
⎦

Bpo(k) =

⎡
⎣

Ef (k) Ed(k) B(k)
Ef,L(k) Ed,L(k) O
Ef,Lopt(k) Ed,Lopt(k) O

⎤
⎦

∆Bp(k) =

⎡
⎣
∆Ef (k) ∆Ed(k) ∆B(k)
∆Ef (k) ∆Ed(k) ∆B(k)

O O O

⎤
⎦

C1p(k) =
£
O O −Wopt(k)C(k)

¤

D1p(k) =
£
−Wopt(k)Ff (k) −Wopt(k)Fd(k) O

¤

C2p(k) =
£
O C(k) O

¤

D2p(k) =
£
Ff (k) Fd(k) O

¤

AL(k) = A(k)− L(k)C(k)

Ed,L(k) = Ed(k)− L(k)Fd(k), Ef,L(k) = Ef (k)− L(k)Ff (k)

It can be seen that the error dynamics is internally stable, as long as system (11.1) is stable and
L(k) is so selected that the characteristic multipliers of A(k) − L(k)C(k) belong to the open unit
disk.
Denote

Xe(k) =

∙
Xp(k)
xR(k)

¸
, ΘR(k) =

∙
AR(k) BR(k)
CR(k) DR(k)

¸

The dynamics of the whole system is governed by

Xe(k + 1) = Ae(k)Xe(k) +Be(k)δ(k)

ξ(k) = Ce(k)Xe(k) +De(k)δ(k) (11.6)

where

Ae(k) = Aeo(k) +∆Ae(k) + B̃ΘR(k)C̃(k)

Be(k) = Beo(k) +∆Be(k) + B̃ΘR(k)D̃21(k)

Ce(k) = Ceo(k) + D̃12ΘR(k)C̃(k)

De(k) = D1p(k) + D̃12ΘR(k)D̃21(k)

Aeo(k) =

∙
Apo(k) O
O O

¸
, ∆Ae(k) =

∙
∆Ap(k) O

O O

¸

Beo(k) =

∙
Bpo(k)
O

¸
, ∆Be(k) =

∙
∆Bp(k)

O

¸

Ceo(k) =
£
C1p(k) O

¤

B̃ =

∙
O O
I O

¸
, C̃(k) =

∙
O I

C2p(k) O

¸

D̃21(k) =

∙
O

D2p(k)

¸
, D̃12 =

£
O I

¤
(11.7)

The optimal design problem can thus be reformulated as

min
ΘR(k)

α (11.8)

sup
δ∈l2,δ 6=o

kξk2
kδk2

< α (11.9)
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According to Theorem 8.1, (11.9) holds if and only if there exists a T -periodic symmetric positive-
definite matrix Pe(k) (i.e. ∀k, Pe(k) = PT

e (k) > 0, Pe(k) = Pe(k+T )) such that for k = 0, 1, · · · , T−
1, ⎡

⎢⎢⎣

−P−1e (k + 1) O Ae(k) Be(k)
O −I Ce(k) De(k)

AT
e (k) CT

e (k) −Pe(k) O
BT
e (k) DT

e (k) O −α2I

⎤
⎥⎥⎦ < 0 (11.10)

The uncertainty ∆Ae(k) and ∆Be(k) can be expressed as

∆Ae(k) =

pX

i=1

λi(k)Aei(k), ∆Be(k) =

pX

i=1

λi(k)Bei(k)

Aei(k) =

⎡
⎢⎢⎣

Ai(k) O O O
Ai(k) O O O
O O O O
O O O O

⎤
⎥⎥⎦

Bei(k) =

⎡
⎢⎢⎣

Efi(k) Edi(k) Bi(k)
Efi(k) Edi(k) Bi(k)
O O O
O O O

⎤
⎥⎥⎦

i = 1, 2, · · · , p

By taking (11.7) into account, (11.10) holds if and only if there exists a T -periodic matrix Pe(k) =
PT
e (k) > 0, such that for i = 1, 2, · · · , p and k = 0, 1, · · · , T − 1, the

⎡
⎢⎢⎣

−P−1e (k + 1) O Ψ13(k) Ψ14(k)
O −I Ce(k) De(k)

ΨT
13(k) CT

e (k) −Pe(k) O
ΨT
14(k) DT

e (k) O −α2I

⎤
⎥⎥⎦ < 0

Ψ13(k) = Aeo(k) +Aei(k) + B̃ΘR(k)C̃(k)

Ψ14(k) = Beo(k) +Bei(k) + B̃ΘR(k)D̃21(k) (11.11)

Applying the Schur Lemma, (11.11) can be re-written into

(Πi(k) + Γ (k)ΘR(k)Λ(k))
T Ω(k + 1) (Πi(k) + Γ (k)ΘR(k)Λ(k)) < Θ(k)

i = 1, 2, · · · , p; k = 0, 1, · · · , T − 1 (11.12)

where

Πi(k) =

∙
Aeo(k) +Aei(k) Beo(k) +Bei(k)

Ceo(k) D1p(k)

¸

Γ (k) =

∙
B̃

D̃12

¸
, Λ(k) =

£
C̃(k) D̃21(k)

¤

Ω(k + 1) =

∙
Pe(k + 1) O

O I

¸
, Θ(k) =

∙
Pe(k) O
O α2I

¸

There exists a matrix ΘR(k) so that (11.12) holds, if and only if [142]

¡
ΛT (k)

¢⊥
(Θ(k)−ΠT

i (k)Ω(k + 1)Πi(k))
³¡
ΛT (k)

¢⊥´T
> 0

Γ⊥(k)(Ω−1(k + 1)−Πi(k)Θ
−1(k)ΠT

i (k))
¡
Γ⊥(k)

¢T
> 0

i = 1, 2, · · · , p, k = 0, 1, · · · , T − 1 (11.13)
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where the superscript ⊥ denotes the base of the left null space of the matrix.
Assume

Pe(k) =

∙
S(k) Y (k)

Y T (k) Ŝ(k)

¸
, P−1e (k) =

∙
Q(k) Z(k)

ZT (k) Q̂(k)

¸
(11.14)

By substituting (11.7), (11.13) turns out to be

Q(k + 1)− Ãi(k)Q(k)Ã
T
i (k)− α−2B̃i(k)B̃

T
i (k) > 0 (11.15)

∙
CT
2p(k)

DT
2p(k)

¸⊥ ∙
z11(k) z12(k)
zT
12(k) z22(k)

¸ ∙
CT
2p(k)

DT
2p(k)

¸⊥T
< 0 (11.16)

where

z11(k) = ÃT
i (k)S(k + 1)Ãi(k)− S(k) + CT

1p(k)C1p(k)

z12(k) = ÃT
i (k)S(k + 1) B̃i(k) + CT

1p(k)D1p(k)

z22(k) = B̃T
i (k)S(k + 1)B̃i(k)− α2I +DT

1p(k)D1p(k)

Ãi(k) = Apo(k) +Api(k), B̃i(k) = Bpo(k) +Bpi(k) (11.17)

It is known that (11.14) holds, if and only if [200]

S(k) > Q−1(k), rank(Q−1(k)− S(k)) 6 nR (11.18)

As a result, we get the following theorem.
Theorem 11.1 Given system (11.6) and γ > 0. There exists a post-filter (11.4) of order nR so

that the characteristic multipliers of Ae(k) belong to the open unit disk and (11.9) holds, if there
exist T -periodic symmetric positive-definite matrices S(k) and Q(k) so that (11.15)-(11.18) hold for
i = 1, 2, · · · , p, k = 0, 1, · · · , T − 1.
The optimal solution to the optimization problem (11.8) can thus be obtained as follows. Itera-

tively solve (11.15)-(11.18) till the minimal α is found. Using the resulting S(k) and Q(k), calculate
full column rank matrices Z(k), Y (k), k = 0, 1, · · · , T − 1, satisfying

S(k)Q(k) + Y (k)ZT (k) = I

Then solve ∙
S(k) I
Y T (k) O

¸
= Pe(k)

∙
I Q(k)
O ZT (k)

¸
(11.19)

for Pe(k). Finally we get the optimal post-filter parameter set ΘR(k), k = 0, 1, · · · , T −1, by solving
(11.11).

11.3 Conclusion

This chapter addresses the FD problem of the uncertain linear discrete-time periodic systems with
polytopic uncertainties. The periodic post filter is designed in such a way that the residual dynamics
of the uncertain system can approximate the best residual dynamics of the nominal system [191]. The
approach proposed involves periodic linear matrix inequality (LMI) technique, whose computational
aspect is explored by [13].
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Identification of periodic residual generator

In the last three chapters, it has been shown how to design the FD systems, provided that the model
of the periodic system is available. In case that the model of the periodic system is unknown, usually
the FD system design is carried out in two steps:

� at first identify the parameters of the system, and then
� design a residual generator using the available approaches.

The subspace identification technique has been developed since the nineties, which delivers a
state space model from the process input and output data [57, 120, 151]. This kind of identifica-
tion technique don’t need to parameterize the model set a priori or to solve nonlinear parametric
optimization problems.
In this chapter, an approach will be presented for the design of residual generators for unknown

periodic systems with dynamics

x(k + 1) = A(k)x(k) +B(k)u(k) +Ef (k)f(k)

y(k) = C(k)x(k) +D(k)u(k) + Ff (k)f(k) (12.1)

where x ∈ Rn denotes the state vector, u ∈ Rnu the control input vector, y ∈ Rm the measured
output vector, and f ∈ Rnf the vector of faults to be detected, A(k), B(k), C(k),D(k), Ef (k), Ff (k)
are unknown real bounded periodic matrices of period T and with appropriate dimensions. The
proposed approach condenses the two steps in the conventional design into one step. The parameters
of the residual generator will be identified directly from data without identifying the model of the
periodic system.
This work follows the line of [41, 55, 56, 114]. In [55], some analog between subspace based system

identification and model predictive controller is discovered. Based on it, the identification and the
controller design are combined. It is shown in [56] that LQG controller design can also be integrated
with the identification step. Ding et al. [41, 167] point out that an integrated identification and fault
detection system design is possible for linear time-invariant systems. More recently, identification
and model reduction are combined to get a balanced reduced order model directly from data [114].
Here we shall extend the result in [41, 167] to unknown periodic system (12.1).
The problem to be solved in this chapter is formulated as: Given a set of data of the outputs

y(k) and the inputs u(k) of unknown periodic system (12.1), find a periodic parity relation based
residual generator in the form of (10.3) or a periodic observer based residual generator (10.8).

12.1 Identification of periodic parity relation based residual generator

From discrete time k1 to discrete time k2, the input-output relation of periodic system (12.1) can
be expressed as

YN,i(k) = Ho,iXN,i(k) +Hu,iUN,i(k) (12.2)
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where

YN,i(k) =
£
ys(k) ys(k + T ) · · · ys(k +NT )

¤

UN,i(k) =
£
us(k) us(k + T ) · · · us(k +NT )

¤

XN,i(k) =
£
x(k − s) · · · x(k +NT − s)

¤

ys(k) =

⎡
⎢⎢⎢⎣

y(k − s)
y(k − s+ 1)

...
y(k)

⎤
⎥⎥⎥⎦ , us(k) =

⎡
⎢⎢⎢⎣

u(k − s)
u(k − s+ 1)

...
u(k)

⎤
⎥⎥⎥⎦

Ho,i =

⎡
⎢⎢⎢⎣

Ci

Ci+1Ai

...
Ci+sAi+s−1 · · ·Ai+1Ai

⎤
⎥⎥⎥⎦

Hu,i =

⎡
⎢⎢⎢⎢⎣

Di O · · · O

Ci+1Bi Di+1
. . .

...
...

. . .
. . . O

Ci+sAi+s−1 · · ·Ai+1Bi · · · Ci+sBi+s−1 Di+s

⎤
⎥⎥⎥⎥⎦

(12.3)

where k = jT + i+ s, k > k1 + s and N is so selected that k1 + s+ (N + 1)T 6 k2.
Equation (12.2) can be re-written into

∙
YN,i(k)
UN,i(k)

¸
=

∙
Ho,i Hu,i

O I

¸ ∙
XN,i(k)
UN,i(k)

¸

Under the assumption that the matrix

∙
XN,i(k)
UN,i(k)

¸
is of full row rank, the left null space of matrix

∙
YN,i(k)
UN,i(k)

¸
will be identical with that of

∙
Ho,i Hu,i

O I

¸
. The left null space of

∙
YN,i(k)
UN,i(k)

¸
can be figured

out through a singular value decomposition (SVD). Assume that the SVD of

∙
YN,i(k)
UN,i(k)

¸
is

∙
YN,i(k)
UN,i(k)

¸
= Ui

∙
Si O
O O

¸
WT

i (12.4)

where Ui,Wi are orthogonal matrices, Si is a diagonal matrix containing the nonzero singular values,
Si ∈ Rl×l. Partition Ui as

Ui =
£
Ui1 Ui2

¤
, Ui1 ∈ R(m+nu)(s+1)×l, Ui2 ∈ R(m+nu)(s+1)×((m+nu)(s+1)−l)

then UT
i2 is a basis of the left null space of

∙
YN,i(k)
UN,i(k)

¸
.

As a result,

UT
i2

∙
Ho,i Hu,i

O I

¸
= 0 (12.5)

Further partition UT
i2 into

UT
i2 =

£
UiΣ1 UiΣ2

¤
(12.6)

Substituting (12.6) into (12.5) yields

£
UiΣ1 UiΣ2

¤ ∙Ho,i Hu,i

O I

¸
= 0
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i.e.

UiΣ1Ho,i = 0

UiΣ1Hu,i = −UiΣ2 (12.7)

Let αi be a nonzero row vector of compatible dimensions. Then

vi = αiUiΣ1

ρi = −αiUiΣ2 (12.8)

give a vector vi satisfying viHo,i = 0 and the corresponding vector ρi = viHu,i.
The value of vectors vi and ρi over one period can be obtained by repeating the above process

for i = 0, 1, · · · , T − 1.
Algorithm 12.1 Design of a periodic parity relation based residual generator in the form of

r(k) = viys(k)− ρius(k) (12.9)

for the unknown periodic system (12.1) from the input and output data y(k1), u(k1), y(k1+1), u(k1+
1), · · · , y(k2), u(k2):

Step 1 : Set the value of s, sÀ n.
Step 2 : Build matrices YN,i(k), UN,i(k) with k = k1 + s.

Step 3 : Do the SVD of

∙
YN,i(k)
UN,i(k)

¸
as (12.4) to get matrix Ui2.

Step 4 : Partition UT
i2 as

£
UiΣ1 UiΣ2

¤
.

Step 5 : Compute vectors vi and ρi by (12.8) with an arbitrarily selected nonzero vector αi.
Step 6 : Let k = k + 1 and go back to step 2, till k = k1 + s+ T .

There is some freedom in selecting parameter α. It can be used, for instance, to reduce the order
of parity relation (12.9), as shown later by the example.
When the system is affected by noise, the lower diagonal block in the SVD (12.4) may not be

exactly zero block. In this case, the number of dominant singular values determines the dimension
of matrix Ui2.

12.2 Identification of periodic observer based residual generator

According to Chapter 10, the matrices G(k), L(k), w(k), p(k) of a periodic observer based residual
generator in the form of (10.8) can be determined from the periodic parity vector v(k). However,
the matrices H(k), q(k) can not be computed by (10.11)-(10.12), because the model of the periodic
system (12.1) is unknown. Therefore, the key problem in identifying a periodic observer based
residual generator is to find out a way to get the matrices H(k) and q(k).
Theorem 12.1 Assume that v(k)Ho,s(k) = 0, v(k) =

£
v0(k) v1(k) · · · vs(k)

¤
, and

ρ(k) = v(k)Hu,s(k) =
£
ρ0(k) ρ1(k) · · · ρs(k)

¤
(12.10)

where ρ0(k) ∈ R1×nu . Then
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T (k) =

⎡
⎢⎢⎢⎣

v1(k − 1) · · · vs−1(k − 1) vs(k − 1)
v2(k − 2) · · · vs(k − 2) 0

...
...

...
vs(k − s) · · · 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C(k)
C(k + 1)A(k)

...
C(k + s− 1)A(k + s− 2) · · ·A(k)

⎤
⎥⎥⎥⎦ (12.11)

G(k) =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 g1(k)

1
. . .

... g2(k)
...
. . . 0

...
0 · · · 1 gs(k)

⎤
⎥⎥⎥⎥⎦

(12.12)

L(k) = −

⎡
⎢⎢⎢⎣

v0(k)
v1(k − 1)

...
vs−1(k − s+ 1)

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

g1(k)
g2(k)
...

gs(k)

⎤
⎥⎥⎥⎦ vs(k − s) (12.13)

w(k) =
£
0 0 · · · 0 −1

¤
(12.14)

p(k) = vs(k − s) (12.15)

q(k) = −ρs(k − s) (12.16)

H(k) =

⎡
⎢⎢⎢⎣

ρ0(k)
ρ1(k − 1)

...
ρs−1(k − s+ 1)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

g1(k)
g2(k)
...

gs(k)

⎤
⎥⎥⎥⎦ ρs(k − s) (12.17)

Proof: Similar to the derivation of Theorem 10.1, (12.11)-(12.15) can be obtained from

£
v0(k) v1(k) · · · vs(k)

¤

⎡
⎢⎢⎢⎣

C(k)
C(k + 1)A(k)

...
C(k + s)A(k + s− 1) · · ·A(k + 1)A(k)

⎤
⎥⎥⎥⎦ = 0

According to (10.11)-(10.12),

q(k) = −p(k)D(k) = −vs(k − s)D(k)

and

H(k) = T (k + 1)B(k)− L(k)D(k)

=

⎡
⎢⎣

v1(k) · · · vs(k)
...

...
vs(k − s+ 1) · · · 0

⎤
⎥⎦

⎡
⎢⎣

C(k + 1)
...

C(k + s)A(k + s− 1) · · ·A(k + 1)

⎤
⎥⎦B(k)

+

⎡
⎢⎣

v0(k)
...

vs−1(k − s+ 1)

⎤
⎥⎦D(k) +

⎡
⎢⎣
g1(k)
...

gs(k)

⎤
⎥⎦ vs(k − s)D(k)

Notice that
£
ρ0(k) ρ1(k) · · · ρs(k)

¤

=
£
v0(k) v1(k) · · · vs(k)

¤

⎡
⎢⎢⎢⎢⎣

D(k) O · · · O

C(k + 1)B(k) D(k + 1)
. . .

...
...

. . . O
C(k + s) · · ·A(k + 1)B(k) · · · D(k + s)

⎤
⎥⎥⎥⎥⎦
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which means

ρ0(k) =
£
v1(k) · · · vs(k)

¤
⎡
⎢⎣

C(k + 1)B(k)
...

C(k + s) · · ·A(k + 1)B(k)

⎤
⎥⎦+ v0(k)D(k)

ρ1(k) =
£
v2(k) · · · vs(k)

¤
⎡
⎢⎣

C(k + 2)B(k + 1)
...

C(k + s) · · ·A(k + 2)B(k + 1)

⎤
⎥⎦+ v1(k)D(k + 1)

...

ρs(k) = vs(k)D(k + s)

Therefore, (12.16) and (12.17) can be obtained. ¤

Theorem 12.1 shows that a periodic observer based residual generator in the form of (10.8) can be
directly calculated based on vectors v(k) and ρ(k). Based on it, the following algorithm is obtained.
Algorithm 12.2 Design of a periodic observer based residual generator in the form of

z(k + 1) = G(k)z(k) +H(k)u(k) + L(k)y(k)

r(k) = w(k)z(k) + q(k)u(k) + p(k)y(k) (12.18)

for the unknown periodic system (12.1) from the input and output data y(k1), u(k1), y(k1+1), u(k1+
1), · · · , y(k2), u(k2):

� Compute the T -periodic vectors v(k) and ρ(k) according to Algorithm 12.1.
� Determine g1(k), · · · , gs(k), k = 0, 1, · · · , T − 1, so that all the eigenvalues of G(T − 1)G(T −
2) · · ·G(0) are inside the unit circle.

� Compute G(k), L(k),H(k), w(k), p(k), q(k) according to (12.12)-(12.17).

The free selectability of parameters g1(k), · · · , gs(k), k = 0, 1, · · · , T−1, which influence matrices
G(k), L(k),H(k), represents the increased design freedom provided by the periodic observer based
residual generator.
We would like to emphasize that both in Algorithm 12.1 and in Algorithm 12.2 it is not necessary

to identify the model of the periodic system. Instead of that, the parameters of the residual generators
are directly obtained from the results of the identification.

12.3 Example

In this section, an example is given to illustrate the proposed design procedures.
Example 12.1 Given the data of inputs and outputs of a periodic system of period T = 2 from

discrete time 100 to discrete time 800. Indeed the data are generated by a system in the form of
(12.1) with d = 0 and parameters given by (10.28).
Because instead of the parameters (10.28) only the input and output data of the periodic system

are available, we apply Algorithm 12.1 to design a periodic parity relation based residual generator.
Let s = 5. The value of N is chosen as N = 346. First the matrices YN,0 ∈ R18×347, YN,1 ∈

R
18×347, UN,0 ∈ R6×347 and UN,1 ∈ R6×347 are built as (12.3). Do the SVD of

∙
YN,0
UN,0

¸
and

∙
YN,1
UN,1

¸
,

respectively, to get matrix U02 ∈ R24×14, U12 ∈ R24×14. Partition UT
02 and UT

12, respectively, into
U0Σ1 ∈ R14×18, U0Σ2 ∈ R14×6, U1Σ1 ∈ R14×18, U1Σ2 ∈ R14×6. To reduce the order of the residual
generator, we select
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α0 =
£
−0.3777 0.0987 −0.0006 −0.0143 −0.0016 0.0941

0.2319 0.0371 −0.1127 0.0827 −0.2224 0.4108 0.1706 0.7187
¤

α1 =
£
0.5280 0.0672 0.3390 0.0579 −0.0396 0.0378

0.3086 −0.0762 0.4591 −0.4185 −0.1874 −0.1229 −0.1720 0.1692
¤

with the help of QR decomposition U0Σ1 = U0QU0R, U1Σ1 = U1QU1R, which yields

v̄0 = α0U0Σ1 =
£
−0.3896 0.0476 0.0025 −0.4158 0.8114 0.0000 O1×12

¤

v̄1 = α1U1Σ1 =
£
0.3981 0.1720 0.1526 −0.8802 0.0789 −0.0000 O1×12

¤

ρ̄0 = −α0U0Σ2 =
£
0.1211 0.0000 O1×4

¤

ρ̄1 = −α1U1Σ2 =
£
−0.0874 −0.0000 O1×4

¤

The order of the periodic relation based residual generator can thus be reduced to sr = 1 and

v0 =
£
−0.3896 0.0476 0.0025 −0.4158 0.8114 0.0000

¤

v1 =
£
0.3981 0.1720 0.1526 −0.8802 0.0789 −0.0000

¤

ρ0 =
£
0.1211 0.0000

¤

ρ1 =
£
−0.0874 −0.0000

¤

As a result, the periodic parity relation based residual generator is

r(k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v0

∙
y(k − 1)
y(k)

¸
− ρ0

∙
u(k − 1)
u(k)

¸
, if k = 2j + 1

v1

∙
y(k − 1)
y(k)

¸
− ρ1

∙
u(k − 1)
u(k)

¸
, if k = 2j + 2

(12.19)
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Fig. 12.1 The fault signal
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Fig. 12.2 The residual signal generated by the periodic parity relation based residual generator
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Fig. 12.3 The residual signal generated by the periodic observer based residual generator

To design a periodic observer based residual generator, set the values of g1(0), g1(1) as g1(0) =
−0.2, g1(1) = −0.3. Based on Algorithm 12.2, the resulting residual generator is in the form of
(12.18) with parameters

G(0) = −0.2, G(1) = −0.3, H(0) = 0.1211, H(1) = −0.0874
L(0) =

£
0.2136 −0.0318 −0.0025

¤

L(1) =
£
−0.5228 0.0714 −0.1526

¤

w(0) = −1, w(1) = −1, q(0) = 0, q(1) = 0
p(0) =

£
−0.8802 0.0789 −0.0000

¤

p(1) =
£
−0.4158 0.8114 0.0000

¤
(12.20)
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In the simulation, it is assumed that the control input u is a step signal with step time at 0 and
amplitude 1, the fault appears at the 1650th discrete time as shown in Fig. 12.1. The residual
signal got by the periodic parity relation based residual generator (12.19) is shown in Fig. 12.2. It
is seen that the residual signal r deviates from zero only if f 6= 0 and thus ensures a successful
fault detection. Fig. 12.3 demonstrates the residual signal obtained by the periodic observer based
residual generator (12.20). Similarly, the fault is quickly detected.

12.4 Conclusion

In this chapter, a fault detection approach has been proposed for linear discrete-time periodic sys-
tems, whose models are not available. The basic idea is to identify the parameters of residual gener-
ators directly from input and output data. Both periodic parity relation based residual generators
and periodic observer based residual generators can be designed in this way [168]. An example is
given to illustrate the design procedures.
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FD of discrete linear time-varying systems

Strictly speaking, many practical systems are time-varying, i.e. the system matrices changes with
the time. In this chapter, we shall consider the FD problem of discrete linear time-varying (LTV)
systems described by [193]

x(k + 1) = A(k)x(k) +B(k)u(k) +Ed(k)d(k) +Ef (k)f(k)

y(k) = C(k)x(k) +D(k)u(k) + Fd(k)d(k) + Ff (k)f(k) (13.1)

where A(k), B(k), C(k),D(k), Ed(k), Ef (k), Fd(k) and Ff (k) are known, real bounded but time de-
pendent matrix functions of compatible dimensions. We assume that (A(k), C(k)) is detectable.
From the viewpoint of fault detection, the extension of the parity space approach to the LTV

systems is rather straightforward, because, as mentioned before, the parity space approach treats
each time instant independently. To extend the observer based FD technique to the LTV systems,
the concept of operators need to be introduced so that the robustness and the sensitivity can be
defined accordingly.

13.1 Extension of the parity space approach

The parity relation of the LTV system can be expressed as

ys(k) = Ho,s(k)x(k − s) +Hu,s(k)us(k) +Hd,s(k)ds(k) +Hf,s(k)fs(k) (13.2)

where the vectors us(k), ds(k), fs(k), ys(k) and the matrices Ho,s(k),Hu,s(k), Hd,s(k),Hf,s(k) have
the same definitions as those in (10.1). However, compared with (10.1), the main difference is that
in (13.2) the matrices Ho,s(k),Hu,s(k), Hd,s(k) and Hf,s(k) are time-varying functions, but not
necessarily periodic with respect to k.
Based on the parity relation (13.2), a residual generator can be constructed as

r(k) = Vs(k)(ys(k)−Hu,s(k)us(k)) (13.3)

where Vs(k) denotes the periodic parity matrix, Vs(k)Ho,s(k) = 0. The residual dynamics is governed
by

r(k) = Vs(k)(Hd,s(k)ds(k) +Hf,s(k)fs(k)) (13.4)

The most distinguished feature of the parity space approach is that each time instant can be treated
independently. If at time k, the rank condition

rank
£
Ho,s(k) Hd,s(k) Hf,s(k)

¤
> rank

£
Ho,s(k) Hd,s(k)

¤
(13.5)

is satisfied, then a parity matrix Vs(k) that achieves a full decoupling at time k can be obtained by
solving
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Vs(k)
£
Ho,s(k) Hd,s(k)

¤
= 0, Vs(k)Hf,s(k) 6= 0 (13.6)

If at time k the condition (13.5) is not satisfied, then optimization problems similar to (10.32)-(10.34)
can be formulated and solved to get the optimal parity matrix Vs(k). Therefore, in summary, in the
LTV system the decoupling problem or the optimization problem need to be solved at each time
instant.

13.2 Extension of the observer based approach

For the LTV system (13.1) an observer based residual generator can be constructed as

x̂(k + 1) = A(k)x̂(k) +B(k)u(k) + L(k)(y(k)− ŷ(k))

ŷ(k) = C(k)x̂(k) +D(k)u(k)

r(k) =W (k)(y(k)− ŷ(k)) (13.7)

where L(k) is the observer gain matrix function, W (k) the weighting matrix function. Define e(k) =
x(k)− x̂(k). The residual dynamics is governed by

e(k + 1) = A(k)e(k) + (Ed(k)− L(k)Fd(k)) d(k) + (Ef (k)− L(k)Ff (k)) f(k)

r(k) =W (k) (C(k)e(k) + Fd(k)d(k) + Ff (k)f(k)) (13.8)

The time-varying matrices L(k) andW (k) should be selected so that the residual dynamics is stable,
robust against the unknown disturbances and sensitive to the faults.
At first we introduce two operators Πrd and Πrf to describe the mapping from the unknown

disturbances and the faults to the residual, respectively. According to the functional analysis, the
norms of the operators defined by

kΠrdk = sup
f=0,d6=0

krk2
kdk2

kΠrfk = sup
d=0,f 6=0

krk2
kfk2

(13.9)

describe the maximal influence of the unknown disturbances and the faults on the residual signal.
The problem of finding the optimal trade-off between the robustness of the residual generator to
the unknown disturbances and the sensitivity of the residual generator to the faults can thus be
formulated as the following optimization problem

max
L(k),W (k)

J = max
L(k),W (k)

kΠrfk

kΠrdk
(13.10)

To solve the optimization problem (13.10) we shall first introduce several concepts of discrete
LTV systems. For the definition of stability, stabilizability and detectability of discrete LTV systems,
please refer to the book [71].
Definition 13.1 A stable discrete LTV system

Π : u→ y, x(k + 1) = A(k)x(k) +B(k)u(k) (13.11)

y(k) = C(k)x(k) +D(k)u(k)

is said to be co-inner, if ΠΠ∗ = I holds, where Π∗ is the adjoint operator of Π associated with the
following discrete LTV system

Π∗ : w→ v, z(k + 1) = −AT (k)z(k)− CT (k)w(k) (13.12)

v(k) = BT (k)z(k) +DT (k)w(k)
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To simplify the notation, we write system (13.11) in some places also as Π = (A(k), B(k), C(k),
D(k)). If the system (13.11) has no dynamics, then it is denoted simply by Π = (D(k)).
Definition 13.2 A stable discrete LTV system (13.11) is co-outer, if its left inverse system is

also stable.
Lemma 13.1 [71] A stable discrete LTV system Π = (A(k), B(k), C(k), D(k)) is co-inner, if

there is a symmetric positive-semidefinite (SPS) matrix function Q(k), i.e. ∀k, Q(k) = QT (k) ≥ 0,
so that

A(k)X(k)CT (k) +B(k)DT (k) = 0 (13.13)

C(k)X(k)CT (k) +D(k)DT (k) = I (13.14)

A(k)X(k)AT (k) +B(k)BT (k) = X(k + 1) (13.15)

Lemma 13.2 [71] Given a stable discrete LTV system Π = (A(k), B(k), C(k),D(k)), there is
the following co-inner-outer factorization

Π = ΠoΠi (13.16)

Πo = (A(k),−L̄(k)W̄−1(k),−C(k), W̄−1(k)) (13.17)

Πi = (A(k)− L̄(k)C(k), B(k)− L̄(k)D(k), W̄ (k)C(k), W̄ (k)D(k)) (13.18)

where Πo is co-outer and Πi is co-inner,

L̄(k) = (A(k)X(k)CT (k) +B(k)DT (k))(C(k)X(k)CT (k) +D(k)DT (k))−1

W̄ (k) = (C(k)X(k)CT (k) +D(k)DT (k))−1/2 (13.19)

and X(k) is the stabilizing SPS solution of the following Riccati difference equation

A(k)X(k)AT (k)−X(k + 1) +B(k)BT (k)− (A(k)X(k)CT (k) +B(k)DT (k))

×(C(k)X(k)CT (k) +D(k)DT (k))−1(C(k)X(k)AT (k) +D(k)BT (k)) = 0 (13.20)

The Riccati difference equation (13.20) has a stabilizing SPS solution, if (A(k), C(k)) is detectable
and (A(k), B(k)) is stabilizable [118, 71, 79]. The stabilizability of (A(k), B(k)) is a sufficient, but
not a necessary condition.
The operators Πrd and Πrf can be re-written as the series connection of several subsystems

Πrd = ΠWΠLΠyd, Πrf = ΠWΠLΠyf (13.21)

where

ΠW = (W (k)), ΠL = (A(k)− L(k)C(k), L(k),−C(k), I) (13.22)

Πyd = (A(k), Ed(k), C(k), Fd(k)), Πyf = (A(k), Ef (k), C(k), Ff (k))

Correspondingly, the optimization problem (13.10) can be re-written as

max
L(k),W (k)

J = max
L(k),W (k)

kΠWΠLΠyfk

kΠWΠLΠydk
(13.23)

To solve the optimization problem (13.23), in the first step we assume that the observer gain ma-
trix function L(k) is fixed and A(k)−L(k)C(k) is stable and consider the following sub-optimization
problem

max
ΠR

Jo = max
ΠR

kΠRΠLΠyfk

kΠRΠLΠydk
(13.24)

where ΠR is a stable discrete LTV system.
Theorem 13.1 Given a discrete LTV system (13.1) and a stabilizing observer gain matrix

function L(k), where (A(k), C(k)) is detectable and (A(k), Ed(k)) is stabilizable. Then (13.24) is
solved by
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ΠR = (A(k)− Lo(k)C(k), L(k)− Lo(k), QWo(k)C(k),QWo(k)) (13.25)

where Q is a unitary matrix,

Lo(k) =
¡
A(k)X(k)CT (k) +Ed(k)F

T
d (k)

¢ ¡
C(k)X(k)CT (k) + Fd(k)F

T
d (k)

¢−1

Wo(k) =
¡
C(k)X(k)CT (k) + Fd(k)F

T
d (k)

¢−1/2
(13.26)

and X(k) is the stabilizing SPS solution of the following Riccati difference equation

X(k + 1) = A(k)X(k)AT (k) +Ed(k)E
T
d (k)−

¡
A(k)X(k)CT (k) + Ed(k)F

T
d (k)

¢

×
¡
C(k)X(k)CT (k) + Fd(k)F

T
d (k)

¢−1 ¡
C(k)X(k)AT (k) + Fd(k)E

T
d (k)

¢
(13.27)

Proof: According to Lemma 13.2, ΠLΠyd = (A(k)−L(k)C(k), Ed(k)−L(k)Fd(k), C(k), Fd(k))
can be factorized as

ΠLΠyd = ΠdoΠdi

where Πdi is co-inner and satisfies ΠdiΠ
∗
di = I, Πdo is co-outer and its stable left inverse is

Π−1do = (A(k)− L(k)C(k)− L̄(k)C(k),−L̄(k), W̄ (k)C(k), W̄ (k))

with

L̄(k) = ((A(k)− L(k)C(k))X(k)CT (k) + (Ed(k)− L(k)Fd(k))F
T
d (k))

×(C(k)X(k)CT (k) + Fd(k)F
T
d (k))

−1

= (A(k)X(k)CT (k) +Ed(k)F
T
d (k))(C(k)X(k)C

T (k) + Fd(k)F
T
d (k))

−1 − L(k)

W̄ (k) = (C(k)X(k)CT (k) + Fd(k)F
T
d (k))

−1/2 (13.28)

and X(k) is the stabilizing SPS solution of the Riccati difference equation

(A(k)− L(k)C(k))X(k)(A(k)− L(k)C(k))T −X(k + 1)

+(Ed(k)− L(k)Fd(k))(Ed(k)− L(k)Fd(k))
T

−((A(k)− L(k)C(k))X(k)CT (k) + (Ed(k)− L(k)Fd(k))F
T
d (k))

×(C(k)X(k)CT (k) + Fd(k)F
T
d (k))

−1

×
¡
C(k)X(k)(A(k)− L(k)C(k))T + Fd(k)(Ed(k)− L(k)Fd(k))

T
¢

= 0 (13.29)

As ΠRΠLΠyd is a bounded operator in the Hilbert space, there is

kΠRΠLΠydk = kΠRΠdoΠdik = kΠRΠdoΠdiΠ
∗
diΠ

∗
doΠ

∗
Rk

1
2 = kΠRΠdok .

Substituting ΠR by ΠR = Π̄RΠ
−1
do yields

Jo =
kΠRΠLΠyfk

kΠRΠdok
=

°°Π̄RΠ
−1
do ΠLΠyf

°°
°°Π̄RΠ

−1
do Πdo

°° =

°°Π̄RΠ
−1
do ΠLΠyf

°°
°°Π̄R

°° (13.30)

Because
°°Π̄RΠ

−1
do ΠLΠyf

°° ≤
°°Π̄R

°°°°Π−1do ΠLΠyf

°°, it gives

Jo ≤
°°Π−1do ΠLΠyf

°° (13.31)

Similarly as in the LTI case, selecting Π̄R as a unitary matrix will make the equation in (13.31) hold.
Hence, ΠR = QΠ−1do is the optimal solution to the optimization problem (13.24). By the definitions
in (13.26), L̄(k) and W̄ (k) can be re-written as L̄(k) = Lo(k) − L(k), W̄ (k) = Wo(k), the Riccati
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difference equation (13.29) reduces to (13.27) and the optimal solutionΠR = QΠ−1do can be expressed
as (13.25). ¤

Theorem 13.2 Given a discrete linear LTV system (13.1), where (A(k), C(k)) is detectable,
(A(k), Ed(k)) is stabilizable. Then the optimization problem (13.23) is solved by

Lopt(k) = Lo(k), Wopt(k) = QWo(k) (13.32)

where Q is a unitary matrix, Lo(k) and Wo(k) are given by (13.26)-(13.27).
Proof: It can be seen from Theorem 13.1 that the optimal solution to (13.24) ΠR given in

(13.25) comes down to a matrix function QWo(k), if we select L(k) = Lo(k), i.e.

kΠRΠLoΠyfk

kΠRΠLo
Πydk

|ΠR=(QWo(k))= max
ΠR

kΠRΠLoΠyfk

kΠRΠLo
Πydk

For any arbitrarily stabilizing observer gain matrix L(k), there exists always a stable and invertible
LTV system Πtrans = (A(k)− Lo(k)C(k), L(k)− Lo(k), C(k), I) such that

ΠLo = ΠtransΠL

Hence, there is

kΠRΠLoΠyfk

kΠRΠLoΠydk
|ΠR=QWo(k)= max

ΠR

kΠRΠtransΠLΠyfk

kΠRΠtransΠLΠydk
= max

Π̂R

°°°Π̂RΠLΠyf

°°°
°°°Π̂RΠLΠyd

°°°

where Π̂R = ΠRΠtrans. As the weighting matrix is only a special case of a dynamic system Π̂R,

max
Π̂R

°°°Π̂RΠLΠyf

°°°
°°°Π̂RΠLΠyd

°°°
≥ max

W (k)

kΠWΠLΠyfk

kΠWΠLΠydk
(13.33)

Because
kΠRΠLo

Πyfk

kΠRΠLoΠydk
|ΠR=QWo(k)≥ max

W (k)

kΠWΠLΠyfk

kΠWΠLΠydk

holds for any stabilizing observer gain matrix L(k), we come to the conclusion that

kΠRΠLoΠyfk

kΠRΠLoΠydk
|ΠR=QWo(k)≥ max

L(k),W (k)

kΠWΠLΠyfk

kΠWΠLΠydk

i.e. Lopt(k) = Lo(k) and Wopt(k) = QWo(k) solve the optimization problem (13.23). ¤

The design of the observer based residual generator (13.7) for the LTV system (13.1) can be
summarized as follows.

� Solve the Riccati difference equation (13.27).
� Determine the matrix function Lo(k),Wo(k) according to (13.26).
� Select a unitary matrix Q and get Lopt(k),Wopt(k) by (13.32).
� Build the optimal residual generator in the form of (13.7).

The main computation in the design is the solution of the Riccati difference equation (13.27).

13.3 Conclusion

In this chapter, the extension of the parity space approach and the observer based approach to the
linear time-varying (LTV) systems is briefly presented.
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The derivation of the parity space approach is, though straightforward, included for the sake of
completeness. In applications the parity space approach can be easily implemented. At each time
instant either a decoupling or an optimization problem needs to be solved.
In the observer based approach, the operators are introduced to analyze the residual dynamics

and formulate the optimization problem [193]. The co-inner-outer factorization of the LTV system
plays an important role for the solution of the optimization problem. It is shown that the optimal
observer based residual generator is obtained by solving a Riccati difference equation.
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FD of single-rate sampled-data (SSD) systems

The study on FD problems of sampled-data (SD) systems has been motivated by the digital im-
plementation of controllers and monitoring systems [174, 176, 178, 180, 187]. Figure 14.1 sketches
a typical application of an FD system in a control system. The process under consideration is a
continuous-time process. Both the controller and the FD system are discrete-time systems which are
implemented on a computer system or on an embedded microprocessor. The sensor output signals
are discretized by the A/D converters and then fed to the controller as well as to the FD system.
The D/A converters convert the discrete-time control input signals into continuous-time signals.
Since both continuous-time and discrete-time signals exist in the system, the system design should
be indeed considered from the viewpoint of an SD system [20, 132]. The intersample behavior is the
main factor that should be considered in developing discrete-time FD systems for SD systems. In
this chapter, we shall focus on single-rate sampled-data (SSD) systems.

Continuous-time
process

Computer

Control unit

FDI unit

D/A A/D

u(t)

f(t)d(t)

y(t)

)k(�)k(�

Information

about fault

Fig. 14.1 Schematic description of the application of an FDI system in a process control system

14.1 System description

Assume that in the SD systems the plant is a continuous LTI process represented by

ẋ(t) = Acx(t) +Bcu(t) +Edcd(t) +Efcf(t)

y(t) = Cx(t) (14.1)
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where x ∈ Rn denotes the state vector, u ∈ Rnu the vector of control signals, y ∈ Rm the vector
of process outputs, d ∈ R

nd the vector of unknown disturbances, f ∈ R
nf the vector of faults

to be detected, Ac, Bc, Edc, Efc and C are known constant matrices of appropriate dimensions. In
single-rate sampled-data (SSD) systems, the A/D converter and the D/A converter are, respectively,
described by

ψ(k) = y(kh) (14.2)

u(t) = υ(k), kh 6 t < (k + 1)h (14.3)

where h is the sampling period, ψ ∈ Rm is the sampled process output signal, υ ∈ Rp is the discrete-
time control input sequence delivered by the controller program. If there is no model uncertainty in
(14.1), then the influence of the control input signal on the measured output signal can be easily
figured out and compensated in residual generation, no matter which kind of D/A converter is
adopted. Therefore, for the sake of simplicity, it is assumed in (14.3) that the D/A converter is a
zero-order hold. To reduce the effect of measurement noise, a low-pass filter is usually added to the
plant output y(t) before it is discretized. On the assumption that model (14.1)-(14.3) describes the
whole system dynamics, including the dynamics of the low-pass filter, we suppose, without loss of
generality, that the plant model under consideration is strictly proper.
At the sampling instants, the dynamics of the SSD system described by (14.1)-(14.3) can be

described by

x(k + 1) = Ax(k) +Bυ(k) + d̄(k) + f̄(k)

ψ(k) = Cx(k) (14.4)

where

x(k) = x(kh), A = eAch, B =

hZ

0

eActBcdt (14.5)

d̄(k) =

hZ

0

eAc(h−τ)Edcd(kh+ τ)dτ , f̄(k) =

hZ

0

eAc(h−τ)Efcf(kh+ τ)dτ

It is worth noticing that in SD systems there is significant difference between u(t) and d(t), f(t).
Due to the D/A converter (14.3), u(t) is a piecewise constant signal. The influence of u(t) on y(t)
is exactly known from the information of υ(k) and can thus be completely compensated in residual
generation. In comparison, d(t) and f(t) are unknown signals and can take an arbitrary form between
two sampling instants. Hence, the key is to study the influence of continuous-time signals d(t) and
f(t) on the discrete-time sampled output signals ψ(k) and residual signals r(k).

14.2 Indirect FD approaches

Conventionally, an FD system can be designed for the SSD system by indirect approaches, i.e.

� analog design and SD implementation, or
� discrete-time design based on the discretization of the process model.

In the first kind of indirect design approaches, a continuous-time decoupling or optimal residual
generator will be designed for the continuous-time process (14.1) at first. Then, the resulting residual
generator is discretized, as the measurement information of the output y(t) is only available at
discrete sampling instants. However, as y(t) is usually not constant during the sampling interval,
the discretization of the residual generator will subject to approximation error. Hence, though the
performance index is optimal in terms of the continuous-time residual generators, little can be said
about the optimality of the discrete-time residual generator obtained after the discretization.
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In the second kind of indirect design approaches, the continuous-time process model (14.1) will
be discretized at first into

x(k + 1) = Ax(k) +Bυ(k) +Eddd(k) +Efdf(k)

ψ(k) = Cx(k) (14.6)

where d̄(k) and f̄(k) in (14.4) are approximated by

d̄(k) ≈ Eddd(k), Edd =

hZ

0

eActEdcdt

f̄(k) ≈ Efdf(k), Efd =

hZ

0

eActEfcdt (14.7)

Then, based on the discrete-time model (14.6), a discrete-time residual generator is designed using
the approaches introduced in Part I. The approximation error in the model (14.6) would be negligible,
if d(t) and f(t) are piecewise constant or vary slowly with the time. However, if there is not any prior
knowledge of d(t) and f(t), the approximation error may strongly influence the FD performance.
Example 14.1 Given an SD system described by (14.1)-(14.3) with sampling period h = 1s

and

Ac =

∙
−1 5
0 −2

¸
, Bc =

∙
0
1

¸
, Edc =

∙
0.1
1

¸

Efc =

∙
0
1

¸
, C =

∙
1 0
0 1

¸
(14.8)

Indirect design "analog design and SD implementation"
Based on the continuous-time process model (14.1), a continuous-time residual generator can be

designed as

ż(t) =

∙
0 −1
1 −1

¸
z(t) +

∙
−0.02
0.001

¸
u(t) +

∙
−0.20 0.97
−0.19 −0.03

¸
y(t)

r(t) =
£
0 −1

¤
z(t) +

£
−0.01 0.001

¤
y(t) (14.9)

It can be verified
Grd(s) = 0, Grf (s) 6= 0

where Grd(s) and Grf (s) denote, respectively, the transfer function matrices from d(t) and f(t)
to the residual r(t). That means (14.9) realizes a full decoupling for (14.1). In the next step, we
discretize (14.9) with h = 1s and obtain

z(k + 1) =

∙
0.66 −0.53
0.53 0.13

¸
z(k) +

∙
−0.02
−0.006

¸
u(k) +

∙
−0.11 0.86
−0.17 0.31

¸
y(k)

r(k) =
£
0 −1

¤
z(k) +

£
−0.01 0.001

¤
y(k) (14.10)

Indirect design "discrete-time design based on the discretized process model"
Discretizing the process model (14.1) with h = 1s yields a discrete-time model in the form of

(14.6) with

A =

∙
0.37 1.16
0 0.14

¸
, B =

∙
1.00
0.43

¸
, Ed =

∙
1.06
0.43

¸
, Ef =

∙
1.00
0.43

¸
(14.11)

Based on (14.6), a discrete-time residual generator can be designed as

z(k + 1) =

∙
0 −0.24
1 1

¸
z(k) +

∙
0.0049
0.0210

¸
u(k) +

∙
−0.1080 0.1321
0.2869 −1.2812

¸
y(k)

r(k) =
£
0 −1

¤
z(k) +

£
−0.3323 0.8165

¤
y(k) (14.12)
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14.3 Direct FD approaches

Motivated by the development of sampled-data control, in the last years the FD problems of the SSD
systems have been studied from the viewpoint of direct design to take into account the intersample
behavior and eliminate the approximation made during the design. The basic idea is to introduce
operators to describe the influence of the continuous-time disturbance and fault signals on the
discrete-time residual signals [174, 176, 178, 180]. Based on it, optimization problems will be defined
and solved.

14.3.1 Parity relation based FD scheme for SSD systems

The output of the SSD system over the moving horizon [k − s, k] can be expressed as

ψs(k) = Ho,sx(k − s) +Hυ,sυs(k) +Hs

¡
d̄s(k) + f̄s(k)

¢
(14.13)

where Ho,s is the same as in (2.4),

ψs(k) =

⎡
⎢⎢⎢⎣

ψ(k − s)
ψ(k − s+ 1)

...
ψ(k)

⎤
⎥⎥⎥⎦ , υs(k) =

⎡
⎢⎢⎢⎣

υ(k − s)
υ(k − s+ 1)

...
υ(k)

⎤
⎥⎥⎥⎦

d̄s(k) =

⎡
⎢⎢⎢⎣

d̄(k − s)
d̄(k − s+ 1)

...
d̄(k)

⎤
⎥⎥⎥⎦ , f̄s(k) =

⎡
⎢⎢⎢⎣

f̄(k − s)
f̄(k − s+ 1)

...
f̄(k)

⎤
⎥⎥⎥⎦

Hυ,s =

⎡
⎢⎢⎢⎢⎣

O O · · · O

CB O
. . .

...
...

. . .
. . . O

CAs−1B · · · CB O

⎤
⎥⎥⎥⎥⎦
, Hs =

⎡
⎢⎢⎢⎢⎣

O O · · · O

C O
. . .

...
...

. . .
. . . O

CAs−1 · · · C O

⎤
⎥⎥⎥⎥⎦

(14.14)

Hence, a parity relation based residual generator

r(k) = Vs(ψs(k)−Hυ,sυs(k)) (14.15)

can be used for residual generation, where VsHo,s = 0. The residual dynamics is governed by

r(k) = VsHs

¡
d̄s(k) + f̄s(k)

¢
(14.16)

To describe the intersample behavior, for a continuous-time signal δ(t) with δ standing for d and
f , an operator is defined as follows

Ψδδk,s(t) =

⎡
⎢⎢⎢⎣

δ̄(k − s)
δ̄(k − s+ 1)

...
δ̄(k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

R h
0
eAc(h−τ)Eδcδ((k − s)h+ τ)dτR h

0
eAc(h−τ)Eδcδ((k − s+ 1)h+ τ)dτ

...R h
0
eAc(h−τ)Eδcδ(kh+ τ)dτ

⎤
⎥⎥⎥⎥⎦

(14.17)

The inner products on the input signal space and the output signal space are defined, respectively,
by


δk,s(t), γk,s(t)

®
=

sX

i=0

Z h

0

δT ((k − s+ i)h+ τ)γ((k − s+ i)h+ τ)dτ

hβs(k), ηs(k)i = βTs (k)ηs(k) (14.18)
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With the help of the above operators, residual dynamics (14.16) can be re-written as

r(k) = VsHs(Ψ
ddk,s(t) + Ψffk,s(t)) (14.19)

The influence of the continuous-time signal δ(t) over the time interval [(k − s)h, (k + 1)h) on the
discrete-time residual signal r(k) is measured by

sup
δ∈L2,[(k−s)h,(k+1)h)

rT (k)r(k)

kδk
2
2,[(k−s)h,(k+1)h)

= λ̄(VsHsΨ
δ
¡
Ψδ
¢∗
HT
s V

T
s )

inf
δ∈L2,[(k−s)h,(k+1)h)

rT (k)r(k)

kδk22,[(k−s)h,(k+1)h)
= λ(VsHsΨ

δ
¡
Ψδ
¢∗
HT
s V

T
s )

where
¡
Ψδ
¢∗
denotes the adjoint of the operator Ψδ. The optimization problems are thus formulated

as

max
Vs,V sHo,s=0

JSSD,PS,∞/∞(Vs) = max
Vs,VsHo,s=0

λ̄(VsHsΨ
f
¡
Ψf
¢∗
HT
s V

T
s )

λ̄(VsHsΨd (Ψd)
∗
HT
s V

T
s )

(14.20)

max
Vs,VsHo,s=0

JSSD,PS,−/∞(Vs) = max
Vs,VsHo,s=0

λ(VsHsΨ
f
¡
Ψf
¢∗
HT
s V

T
s )

λ̄(VsHsΨd (Ψd)
∗
HT
s V

T
s )

(14.21)

max
Vs,VsHo,s=0

JSSD,PS,i/∞(Vs) = max
Vs,VsHo,s=0

λi(VsHsΨ
f
¡
Ψf
¢∗
HT
s V

T
s )

λ̄(VsHsΨd (Ψd)
∗
HT
s V

T
s )

(14.22)

To solve optimization problems (14.20)-(14.22), it is necessary to get an analytical expression of
Ψδ
¡
Ψδ
¢∗
. For this purpose, consider the following equation [138]


Ψδδk,s(t), βs(k)

®
=
D
δk,s(t),

¡
Ψδ
¢∗
βs(k)

E

from which
¡
Ψδ
¢∗
can be determined uniquely, where

βs(k) =

⎡
⎢⎢⎢⎣

βs,0(k)
βs,1(k)
...

βs,s(k)

⎤
⎥⎥⎥⎦

is a vector of compatible dimensions. From


Ψδδk,s(t), βs(k)

®

=
¡
Ψδδk,s(t)

¢T
βs(k)

=
sX

j=0

ÃZ h

0

eAc(h−τ)Eδcδ((k − j)h+ τ)dτ

!T

βs,s−j(k)

=
sX

j=0

Z (k−j+1)h

(k−j)h
δT (t)ET

δce
AT
c ((k−j+1)h−τ)βs,s−j(k)dτ

we obtain that

¡
Ψδ
¢∗
βs(k) =

⎡
⎢⎢⎢⎢⎣

ET
δce

AT
c ((k−s+1)h−τ)βs,0(k), if (k − s)h ≤ t < (k − s+ 1)h

ET
δce

AT
c ((k−s+2)h−τ)βs,1(k), if (k − s+ 1)h ≤ t < (k − s+ 2)h

...

ET
δce

AT
c ((k+1)h−τ)βs,s(k), if kh ≤ t < (k + 1)h

⎤
⎥⎥⎥⎥⎦
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Therefore, Ψδ
¡
Ψδ
¢∗
is obtained as

Ψδ
¡
Ψδ
¢∗
=

⎡
⎢⎢⎢⎢⎣

ĒδĒ
T
δ O · · · O

O ĒδĒ
T
δ

. . .
...

...
. . .

. . . O
O · · · O ĒδĒ

T
δ

⎤
⎥⎥⎥⎥⎦

(14.23)

ĒδĒ
T
δ =

hZ

0

eAcτEδcE
T
δce

AT
c τdτ (14.24)

Due to (14.24), optimization problems (14.20)-(14.22) can be transformed into some equivalent
optimization problems

max
Vs, VsHo,s=0

JSSD,PS,∞/∞(Vs) = max
Vs, VsHo,s=0

σ̄2(VsH̄f,s)

σ̄2(VsH̄d,s)
(14.25)

max
Vs, VsHo,s=0

JSSD,PS,−/∞(Vs) = max
Vs, VsHo,s=0

σ2(VsH̄f,s)

σ̄2(VsH̄d,s)
(14.26)

max
Vs, VsHo,s=0

JSSD,PS,i/∞(Vs) = max
Vs, VsHo,s=0

σ2i (VsH̄f,s)

σ̄2(VsH̄d,s)
(14.27)

where H̄f,s and H̄d,s are built based on (A, Ēf , C,O) and (A, Ēd, C,O) in a way similar to Hυ,s in
(14.14) as

H̄d,s =

⎡
⎢⎢⎢⎢⎣

O O · · · O

CĒd O
. . .

...
...

. . .
. . . O

CAs−1Ēd · · · CĒd O

⎤
⎥⎥⎥⎥⎦

H̄f,s =

⎡
⎢⎢⎢⎢⎣

O O · · · O

CĒf O
. . .

...
...

. . .
. . . O

CAs−1Ēf · · · CĒf O

⎤
⎥⎥⎥⎥⎦

(14.28)

The equivalent optimization problems (14.25)-(14.27) are of the standard form and can be solved
with the approaches introduced in Chapter 5.
Theorem 14.1 Given an SD system described by (14.1)-(14.3) with sampling time h and a

residual generator (14.15). Let A,B, Ēd, Ēf ,Ho,s, H̄d,s and H̄f,s be given by (14.5), (14.24), (2.4)
and (14.28), respectively, and Nbasis be the basis matrix of the left null space of Ho,s. Assume that
the singular value decomposition of NbasisH̄d,s is

NbasisH̄d,s = U
£
S O

¤
V T (14.29)

where U and V are unitary matrices. Then the optimization problems (14.20)-(14.22) are solved
simultaneously by

Vs,opt = P̄sS
−1UTNbasis (14.30)

where P̄s is any unitary matrix of compatible dimensions.
Theorem 14.2 Under the same assumptions as stated in Theorem 14.1, assume that NbasisH̄f,s

is of full column rank. Then the optimization problem (14.21) is also solved by

Vs,−/∞,opt = Q̄s

¡
NbasisH̄f,s

¢−1
Nbasis (14.31)
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where Q̄s is any unitary matrix of compatible dimensions,
¡
NbasisH̄f,s

¢−1
is the left inverse of

NbasisH̄f,s.
Example 14.2 For the SD system given in Example 14.1, design an optimal discrete-time

residual generator using the direct parity space approach.
According to (14.24),

Ēd =

∙
1.1076 0
0.3505 0.3501

¸
, Ēf =

∙
1.0521 0
0.3389 0.3613

¸

Let s = 2. The optimal parity matrix Vs,opt solving (14.20)-(14.22) can be obtained by

Vs,opt =

⎡
⎢⎢⎣

0.0646 0.3282 0.0642 −0.1306 −0.6521 −0.1980
−0.2688 −0.8576 0.8568 0.5172 −0.3427 −0.4441
0.2652 0.6043 −0.9600 1.2698 0.6501 −2.2022
0.2723 0.5788 −0.4397 2.7940 −0.8167 1.7532

⎤
⎥⎥⎦

The optimal performance indices are

JSSD,PS,∞/∞,opt = 1.0672

JSSD,PS,−/∞,opt = 0.9007

According to (14.31), the optimization problem (14.21) is also solved by

Vs,−/∞,opt =

⎡
⎢⎢⎣

0.0659 0.3384 −0.1473 0.0692 −0.6751 −0.2079
−0.2780 −0.8898 0.8840 0.5556 −0.3487 −0.5034
0.2712 0.6356 −0.9760 1.1728 0.6491 −2.1426
0.2732 0.5911 −0.4349 2.7592 −0.8363 1.6650

⎤
⎥⎥⎦ (14.32)

As Vs,−/∞,optH̄f,sH̄
T
f,sV

T
s,−/∞,opt = I,

JSSD,PS,∞/∞(Vs,−/∞,opt)

= JSSD,PS,−/∞(Vs,−/∞,opt)

= JSSD,PS,i/∞(Vs,−/∞,opt) = 0.9007

14.3.2 Post filter based FD scheme for SSD systems

In the frequency domain, the SSD system (14.1)-(14.3) can be equivalently described by

y(s) = Guc(s)u(s) +Gdc(s)d(s) +Gfc(s)f(s) (14.33)

ψ(ejωh) =
1

h

+∞X

k=−∞
y(jω + jkωs) (14.34)

u(jω) = hφ(jω)υ(ejωh), φ(jω) = e−jω
h
2
sinω h

2

ω h
2

(14.35)

where ωs =
2π
h is the sampling frequency, Guc(s), Gdc(s) andGfc(s) denote, respectively, the transfer

function matrix from u(t), d(t) and f(t) to the output y(t) in the process model,

Guc(s) = C(sI −Ac)
−1Bc

Gdc(s) = C(sI −Ac)
−1Edc

Guc(s) = C(sI −Ac)
−1Efc

Let ωk = ω + kωs. Substituting (14.33), (14.35) into (14.34) yields
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ψ(ejωh) =
+∞X

k=−∞
Guc(jωk)φ(jωk)υ(e

jωh)

+
1

h

+∞X

k=−∞
(Gdc(jωk)d(jωk) +Gfc(jωk)f(jωk)) (14.36)

It is well-known that [20]
+∞X

k=−∞
Guc(jωk)φ(jωk) = Gud(e

jωh)

where Gud(e
jωh) is the frequency response of the step-invariant transformation of Guc(s). So (14.36)

can be re-written into

ψ(ejωh)−Gud(e
jωh)υ(ejωh)

=
1

h

+∞X

k=−∞
(Gdc(jωk)d(jωk) +Gfc(jωk)f(jωk)) (14.37)

The left side of (14.37) is determined by the available information of the sampled outputs and the
discrete-time control inputs, while its right side describes the influence of the unknown disturbances
and faults. Thus, based on (14.37), a residual generator can be constructed as

r(z) = Q(z)(ψ(z)−Gud(z)υ(z)) (14.38)

where Q(z) ∈ RH∞ and will be determined as follows. LetMu(z) and Nu(z) be left coprime RH∞-
matrices and Gud(z) =M−1

u (z)Nu(z). In order to ensure the stability of the residual generator, we
select

Q(z) = R(z)Mu(z) (14.39)

where the so-called post-filter R(z) ∈ RH∞ is arbitrarily selectable. As a result, we have a stable
residual generator

r(z) = R(z)(Mu(z)ψ(z)−Nu(z)v(z)) (14.40)

It follows from (14.37) that the dynamics of the residual generator is governed by

r(ejωh) = R(ejωh)Mu(e
jωh)(ψd(e

jωh) + ψf (e
jωh)) (14.41)

ψd(e
jωh) =

1

h

+∞X

k=−∞
Gdc(jωk)d(jωk), ψf (e

jωh) =
+∞X

k=−∞
Gfc(jωk)f(jωk)

For our purpose, an operator Γ δ is now introduced, which maps a vector δ(jω) ∈ L2(jR,Cnδ), the
continuous-time Fourier transform of a continuous-time signal δ(t) to β(ejωh) ∈ L2(Ω,Cm), which
is equivalent to the discrete-time Fourier transform of a certain discrete-time signal with Ωdenoting
the unit circle in the complex plane, i.e.

Γ δδ(jω) =
1

h

+∞X

k=−∞
Gδc(jωk)δ(jωk)

Further, define the inner products on L2(jR,C
nδ) and on L2(Ω,C

m), respectively, by

< δ(jω), γ(jω) >=
1

2π

Z +∞

−∞
δ∗(jω)γ(jω)dω

< β(ejωh), χ(ejωh) >=
h

2π

Z ωs

0

β∗(ejωh)χ(ejωh)dω
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Using operator Γ δ, (14.41) can be expressed as

r(ejωh) = R(ejωh)Mu(e
jωh)(Γ dd(jω) + Γ ff(jω)) (14.42)

Aiming at a trade-off between the sensitivity of r to f and simultaneously its robustness to d, the
optimal design problem of the post-filter R(z) can be formulated in a way similar to the performance
indices (5.50)-(5.52) and (5.69) as

max
R(z)

JSSD,FRE,∞/∞(R(z)) (14.43)

= max
R(z)

supd=0, f∈L2−{0}
krk2
kfk2

supf=0, d∈L2−{0}
krk2
kdk2

= max
R(z)

supω∈[0,ωs] λ̄
1/2
(R(ejωh)Mu(e

jωh)Γ f
¡
Γ f
¢∗
M∗

u(e
jωh)R∗(ejωh))

supω∈[0,ωs] λ̄
1/2
(R(ejωh)Mu(ejωh)Γ d (Γ d)

∗
M∗

u(e
jωh)R∗(ejωh))

max
R(z)

JSSD,FRE,−/∞(R(z)) (14.44)

= max
R(z)

infd=0, f∈L2−{0}
krk2
kfk2

supf=0, d∈L2−{0}
krk2
kdk2

= max
R(z)

infω∈[0,ωs] λ
1/2(R(ejωh)Mu(e

jωh)Γ f
¡
Γ f
¢∗
M∗

u(e
jωh)R∗(ejωh))

supω∈[0,ωs] λ̄
1/2
(R(ejωh)Mu(ejωh)Γ d (Γ d)

∗
M∗

u(e
jωh)R∗(ejωh))

max
R(z)

JSSD,FRE,i/∞(R(z)) (14.45)

= max
R(z)

λ
1/2
i (R(ejωh)Mu(e

jωh)Γ f
¡
Γ f
¢∗
M∗

u(e
jωh)R∗(ejωh))

supω∈[0,ωs] λ̄
1/2
(R(ejωh)Mu(ejωh)Γ d (Γ d)

∗
M∗

u(e
jωh)R∗(ejωh))

max
R(z)∈RH1×m

∞
JSSD,FRE,2/2(R(z)) (14.46)

= max
R(z)∈RH1×m

∞

R ωs
0

R(ejωh)Mu(e
jωh)Γ f

¡
Γ f
¢∗
M∗

u(e
jωh)R∗(ejωh)dω

R ωs
0

R(ejωh)Mu(ejωh)Γ d (Γ d)
∗
M∗

u(e
jωh)R∗(ejωh)dω

where
¡
Γ f
¢∗
,
¡
Γ d
¢∗
denote the adjoint of Γ f and Γ d, respectively, λi(·) denotes any eigenvalue of

the matrix.
It is evident that, in order to solve the optimization problems (14.43)-(14.46), we have to first

study Γ d
¡
Γ d
¢∗
and Γ f

¡
Γ f
¢∗

. To this end, consider again the following equation [138]


Γ δδ(jω), β(ejωh)

®
=
D
δ(jω),

¡
Γ δ
¢∗

β(ejωh)
E

Since

< Γ δδ(jω), β(ejωh) >

=
h

2π

Z ωs

0

Ã
1

h

∞X

k=−∞
Gδc(jω + jkωs)δ(jω + jkωs)

!∗
β(ejωh)dω

=
1

2π

+∞X

k=−∞

Z ωs

0

δ∗(jω + jkωs)G
∗
δc(jω + jkωs)β(e

jωh)dω

=
1

2π

Z +∞

−∞
δ∗(jω)G∗δc(jω)β(e

jωh)dω

= < δ(jω),
¡
Γ δ
¢∗
β(ejωh) >
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it turns out

¡
Γ δ
¢∗
β(ejωh) = G∗δc(jω)β(e

jωh)

Γ δ
¡
Γ δ
¢∗
=
1

h

+∞X

k=−∞
Gδc(jω + jkωs)G

∗
δc(jω + jkωs)

Lemma 14.2 [178] Assume that Gδc(jω)G
∗
δc(jω) can be expressed as

Gδc(jω)G
∗
δc(jω) =

lX

i=1

νiX

q=1

P̃iq(ω) (14.47)

P̃iq(ω) =
Piq

(jω − λi)q
+
(−1)qPT

iq

(jω + λi)q
(14.48)

λi =

½
σi, if Re(σi) < 0
−σi, if Re(σi) ≥ 0 (14.49)

where σ1, · · · , σl are the poles of Gδc(s) with multiplicity ν1, · · · , νl respectively and the coefficient
matrices Piq ∈ Cm×m can be calculated by known techniques. Then Γ δ

¡
Γ δ
¢∗
is derived to be

Γ δ
¡
Γ δ
¢∗
=
1

h

+∞X

k=−∞
Gδc(jω + jkωs)G

∗
δc(jω + jkωs)

=
lX

i=1

νiX

q=1

jq−1

(q − 1)! (Piq
∂q−1

∂ωq−1
(

1

1− e(λi−jω)h
)

+ (−1)q−1PT
iq

∂q−1

∂ωq−1
(

e(λi+jω)h

1− e(λi+jω)h
)) (14.50)

Lemma 14.2 provides a closed expression of Γ δ
¡
Γ δ
¢∗
derived using the partial fractional expres-

sion approach [178]. It also helps the understanding of the optimization problems (14.43)-(14.46).
Lemma 14.3 [70, 192] Assume that (Ac, Eδc, C,O) is a state space realization of Gδc(s). Then

Γ δ
¡
Γ δ
¢∗
can be factorized as

Γ δ
¡
Γ δ
¢∗
= Ḡδ(e

jωh)Ḡ∗δ(e
jωh) (14.51)

where
Ḡδ(z) = C(zI −A)−1Ēδ (14.52)

with A given by (14.5) and Ēδ by (14.24).
Thus, the optimization problems (14.43)-(14.46) are equivalent to

max
R(z)

JSSD,FRE,∞/∞(R(z)) = max
R(z)

kR(z)Mu(z)Ḡf (z)k∞
kR(z)Mu(z)Ḡd(z)k∞

(14.53)

max
R(z)

JSSD,FRE,−/∞(R(z)) = max
R(z)

kR(z)Mu(z)Ḡf (z)k−
kR(z)Mu(z)Ḡd(z)k∞

(14.54)

max
R(z)

JSSD,FRE,i/∞(R(z)) = max
R(z)

σi(R(e
jωh)Mu(e

jωh)Ḡf (e
jωh))

kR(z)Mu(z)Ḡd(z)k∞
(14.55)

max
R(z)

JSSD,FRE,2/2(R(z)) (14.56)

= max
R(z)

R ωs
0

R(ejωh)Mu(e
jωh)Ḡf (e

jωh)Ḡ∗f (e
jωh)M∗

u(e
jωh)R∗(ejωh)dω

R ωs
0

R(ejωh)Mu(ejωh)Ḡd(ejωh)Ḡ∗d(e
jωh)M∗

u(e
jωh)R∗(ejωh)dω
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Theorem 14.3 Given an SD system described by (14.1)-(14.3) with sampling time h and a
residual generator (14.40). Assume that (Mu(z), Nu(z)) is a left coprime factorization of Gud(z) and

Mu(z)Ḡd(z) = Ḡdo(z)Ḡdi(z) (14.57)

is a co-inner-outer factorization of Mu(z)Ḡd(z), where

Gud(z) = C(zI −A)−1B, Ḡd(z) = C(zI −A)−1Ēd

A = eAch, B =

hZ

0

eActBcdt, ĒdĒ
T
d =

hZ

0

eAcτEdcE
T
dce

AT
c τdτ

Ḡdo(z) is the co-outer and RH∞-left-invertible, and Ḡdi(z) is the co-inner satisfying

Ḡdi(e
jωh)Ḡ∗di(e

jωh) = I, ∀ω ∈ [0, ωs]

Let Qd be an arbitrary unitary matrix. Then residual generator (14.40) with

Ropt(z) = QdḠ
−1
do (z) (14.58)

solves simultaneously the H∞/H∞,H−/H∞ and Hi/H∞ optimization problems defined by (14.43)-
(14.45).
Theorem 14.4 Given an SD system described by (14.1)-(14.3) with sampling time h and a

residual generator (14.40). Assume that

Mu(z)Ḡf (z) = Ḡfo(z)Ḡfi(z) (14.59)

is a co-inner-outer factorization of Mu(z)Ḡf (z), where

Ḡf (z) = C(zI −A)−1Ēf , Ēf Ē
T
f =

hZ

0

eAcτEfcE
T
fce

AT
c τdτ

Ḡfo(z) is the co-outer and RH∞-left-invertible, and Ḡfi(z) is the co-inner satisfying

Ḡfi(e
jωh)Ḡ∗fi(e

jωh) = I, ∀ω ∈ [0, ωs]

Let Qf be an arbitrary unitary matrix. Then residual generator (14.40) with

Ropt,−/∞(z) = Qf Ḡ
−1
fo (z) (14.60)

solves the H−/H∞ optimization problems defined by (14.44).
Theorem 14.5 For the SD system given in Theorem 14.3, the optimal solution to the opti-

mization problem (14.46) is

Ropt,2/2(z) = fω0(z)vmax(z)

JSSD,FRE,2/2,opt = sup
ω

λmax(ω) = λmax(ω0) (14.61)

where vmax(z) is obtained by solving the generalized eigenvalue-eigenvector problem

vmax(e
jωh)(Mu(e

jωh)Γ f
¡
Γ f
¢∗
M∗

u(e
jωh)− λmax(ω)Mu(e

jωh)Γ d
¡
Γ d
¢∗

M∗
u(e

jωh)) = 0 (14.62)

Γ f
¡
Γ f
¢∗
and Γ d

¡
Γ d
¢∗
can be calculated by (14.50) or (14.51), and fω0(z) is an ideal discrete-time

frequency-selective filter with selective frequency at ω0.
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14.3.3 Observer based FD scheme for SSD systems

Considering the dynamics of the SSD system described by (14.4), it is easy to construct an observer
based residual generator as

x̂(k + 1) = Ax̂(k) +Bυ(k) + L(ψ(k)− ψ̂(k))

ψ̂(k) = Cx̂(k)

r(k) = W (ψ(k)− ψ̂(k)) (14.63)

where L stabilizes A − LC. Using operator Γ δ introduced in the last subsection, the dynamics of
residual generator (14.63) can be expressed in the frequency domain as

r(ejωh) =WMu(e
jωh)(Γ dd(jω) + Γ ff(jω)) (14.64)

where
Mu(e

jωh) = I − C(ejωhI −A+ LC)−1L

As a result, the optimal design problems of the observer based residual generators are formulated as

max
L,W

JSSD,OBS,∞/∞(L,W ) = max
L,W

supd=0, f∈L2−{0}
krk2
kfk2

supf=0, d∈L2−{0}
krk2
kdk2

= max
L,W

supω∈[0,ωs] λ̄
1/2
(WMu(e

jωh)Γ f
¡
Γ f
¢∗
M∗

u(e
jωh)WT )

supω∈[0,ωs] λ̄
1/2
(WMu(ejωh)Γ d (Γ d)

∗
M∗

u(e
jωh)WT )

(14.65)

max
L,W

JSSD,OBS,−/∞(L,W ) = max
L,W

infd=0, f∈L2−{0}
krk2
kfk2

supf=0, d∈L2−{0}
krk2
kdk2

= max
L,W

infω∈[0,ωs] λ
1/2(WMu(e

jωh)Γ f
¡
Γ f
¢∗
M∗

u(e
jωh)WT )

supω∈[0,ωs] λ̄
1/2
(WMu(ejωh)Γ d (Γ d)

∗
M∗

u(e
jωh)WT )

(14.66)

max
L,W

JSSD,OBS,i/∞(L,W )

= max
L,W

λ
1/2
i (WMu(e

jωh)Γ f
¡
Γ f
¢∗
M∗

u(e
jωh)WT )

supω∈[0,ωs] λ̄
1/2
(WMu(ejωh)Γ d (Γ d)

∗
M∗

u(e
jωh)WT )

(14.67)

Due to (14.51), the H∞/H∞,H−/H∞ and Hi/H∞ design problems of the SSD system are
equivalent, respectively, to that of a discrete LTI system and can be obtained by solving equivalent
optimization problems [180, 176]

max
L,W

JSSD,OBS,∞/∞(L,W ) = max
L,W

kḠrf (z)k∞
kḠrd(z)k∞

(14.68)

max
L,W

JSSD,OBS,−/∞(L,W ) = max
L,W

kḠrf (z)k−
kḠrd(z)k∞

(14.69)

max
L,W

JSSD,OBS,i/∞(L,W ) = max
L,W

σi(Ḡrf (z))

kḠrd(z)k∞
(14.70)

where

Ḡrf (z) = WMu(z)Ḡf (z) = C(zI −A+ LC)−1Ēf

Ḡrd(z) = WMu(z)Ḡd(z) = C(zI −A+ LC)−1Ēd

By applying the techniques in Chapter 5 to solve the equivalent optimization problems (14.68)-
(14.70), the following theorems are obtained.
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Theorem 14.6 Given an SD system described by (14.1)-(14.3) with sampling time h and
an observer-based residual generator (14.63). Let A, Ēd and Ēf be given by (14.5) and (14.24),
respectively. Then the optimal observer parameters L and W that solves (14.65)-(14.67) are given
by

Lopt = −LTd , Wopt = QdWd (14.71)

where Qd is an arbitrary unitary matrix, Wd is the left inverse of a full column rank matrix Hd

satisfying HdH
T
d = CXdC

T , (Xd, Ld) is the stabilizing solution to the DTARS

∙
AXdA

T −Xd + ĒdĒ
T
d AXdC

T

CXdA
T CXdC

T

¸ ∙
I
Ld

¸
= 0 (14.72)

Theorem 14.7 Given an SD system described by (14.1)-(14.3) with sampling time h and
an observer-based residual generator (14.63). Let A, Ēd and Ēf be given by (14.5) and (14.24),
respectively. Then L and W given by

Lopt,−/∞ = −LTf , Wopt,−/∞ = QfWf (14.73)

solves also optimization problem (14.66), where Qf is an arbitrary unitary matrix, Wf is the left
inverse of a full column rank matrix Hf satisfying HfH

T
f = CXfC

T , (Xf , Lf ) is the stabilizing
solution to the DTARS

∙
AXfA

T −Xf + Ēf Ē
T
f AXfC

T

CXfA
T CXfC

T

¸ ∙
I
Lf

¸
= 0 (14.74)

Example 14.3 To illustrate the proposed design procedures, in this section, we consider a
sampled-data system (14.1)-(14.3) with the continuous-time plant described by

Ac =

⎡
⎣
−5.5 −6.5 −2
1 0 0
0 1 0

⎤
⎦ , Bc =

⎡
⎣
0
1
1

⎤
⎦ , Edc =

⎡
⎣
1
0
0

⎤
⎦

Efc =

⎡
⎣
0 0
1 0
1 1

⎤
⎦ , C =

∙
2 0 − 2
1 4.5 2

¸
(14.75)

and the sampling period h = 0.3s. The sampling frequency is ωs =
2π
h = 20.9440.

According to (14.5) and (14.24), it can be easily computed that

A =

⎡
⎣
0.0880 −0.9192 −0.2664
0.1332 0.8208 −0.0533
0.0266 0.2797 0.9939

⎤
⎦ , B =

⎡
⎣
−0.2325
0.2737
0.3429

⎤
⎦

Ēd =

⎡
⎣
0.2819 0 0
0.0315 0.0425 0
0.0027 0.0064 0.0018

⎤
⎦ , Ēf =

⎡
⎣
0.4571 0 0
−0.4295 0.2586 0
−0.6878 0.0372 0.4672

⎤
⎦

Solving the DTARS (14.72), we get

Xd =

⎡
⎣
0.0794 0.0089 0.0008
0.0089 0.0028 0.0004
0.0008 0.0004 0.0001

⎤
⎦ , Ld =

∙
−0.1381 0.0159 0.0333
0.1911 −0.1682 −0.0875

¸

As a result, the optimal residual generator is obtained to be

x̂(k + 1) = Ax̂(k) +Bυ(k) + Lopt(ψ(k)− ψ̂(k)), ψ̂(k) = Cx̂(k)

r(k) =Wopt(ψ(k)− ψ̂(k)) (14.76)
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where

Lopt =

⎡
⎣
0.1381 −0.1911
−0.0159 0.1682
−0.0333 0.0875

⎤
⎦ ,Wopt =

∙
3.2767 −2.2489
−2.2489 4.0970

¸

Recall that (14.76) is optimal in the sense of the H∞/H∞,H−/H∞ and Hi/H∞ for all i and
ω ∈ [0, ωs]. In our example, i = 1, 2. As

°°WoptC(zI −A+ LoptC)
−1Ēd

°°
∞ = 1

The optimal performance indices are

JSSD,OBS,∞/∞,opt = JSSD,OBS,∞/∞(Lopt,Wopt)

= max
ω

σ̄(WoptC(e
jωhI −A+ LoptC)

−1Ēf )

=
°°WoptC(zI −A+ LoptC)

−1Ēf

°°
∞

= 35.374

JSSD,OBS,−/∞,opt = JSSD,OBS,−/∞(Lopt,Wopt)

= min
ω

σ(WoptC(e
jωhI −A+ LoptC)

−1Ēf )

= min
ω

σ2(WoptC(e
jωhI −A+ LoptC)

−1Ēf )

= 0.9193

JSSD,OBS,i/∞,opt = JSSD,OBS,i/∞(Lopt,Wopt)

= σi(WoptC(e
jωhI −A+ LoptC)

−1Ēf ), i = 1, 2

According to Theorem 14.7, an alternative solution to the H−/H∞ optimal design problem can
be obtained by solving the DTARS (14.75), which yields

Xf =

⎡
⎣
0.2343 −0.2132 −0.3105
−0.2132 0.2612 0.2875
−0.3105 0.2875 0.7241

⎤
⎦ , Lf =

∙
0.0122 −0.1457 0.3218
0.2177 −0.1968 −0.0364

¸

The corresponding H−/H∞ optimal residual generator is obtained as

x̂(k + 1) = Ax̂(k) +Bυ(k) + Lopt,−/∞(ψ(k)− ψ̂(k)), ψ̂(k) = Cx̂(k)

r(k) =Wopt,−/∞(ψ(k)− ψ̂(k)) (14.77)

where

Lopt,−/∞ =

⎡
⎣
−0.0122 −0.2177
0.1457 0.1968
−0.3218 0.0364

⎤
⎦ ,Wopt,−/∞ =

∙
0.9468 0.5336
0.5336 0.6561

¸

As
σi(Wopt,−/∞C(ejωhI −A+ Lopt,−/∞C)−1Ēf ) ≡ 1, i = 1, 2, ∀ω

the performance indices are, respectively,

JSSD,OBS,∞/∞(Lopt,−/∞,Wopt,−/∞)

= JSSD,OBS,−/∞(Lopt,−/∞,Wopt,−/∞)

= JSSD,OBS,i/∞(Lopt,−/∞,Wopt,−/∞)

=
1°°Wopt,−/∞C(zI −A+ Lopt,−/∞C)−1Ēd

°°
∞

= 0.9193 = JSSD,OBS,−/∞,opt
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Fig. 14.2 Performance indices JSSD,OBS,i/∞(Lopt,Wopt) (solid line), JSSD,OBS,i/∞(Lopt,−/∞,Wopt,−/∞)
(dash-dotted line) and JSSD,OBS,i/∞(Lcomp,Wcomp) (dashed line) for i = 1

To get a better understanding of the optimal solution, we compare the performance indices
achieved by (14.76) and (14.77) with the performance indices

JSSD,OBS,∞/∞(Lcomp,Wcomp)

=
maxω σ̄(WcompC(e

jωhI −A+ LcompC)
−1Ēf )°°WcompC(zI −A+ LcompC)−1Ēd

°°
∞

JSSD,OBS,−/∞(Lcomp,Wcomp)

=
minω σ(WcompC(e

jωhI −A+ LcompC)
−1Ēf )°°WcompC(zI −A+ LcompC)−1Ēd

°°
∞

JSSD,OBS,i/∞(Lcomp,Wcomp)

=
σi(WcompC(e

jωhI −A+ LcompC)
−1Ēf )°°WcompC(zI −A+ LcompC)−1Ēd

°°
∞

, i = 1, 2

achieved by another residual generator

x̂(k + 1) = Ax̂(k) +Bυ(k) + Lcomp(ψ(k)− ψ̂(k)), ψ̂(k) = Cx̂(k)

r(k) = Wcomp(ψ(k)− ψ̂(k))

Lcomp =

⎡
⎣
−0.2971 −0.1469
0.6835 0.0899
−1.1007 0.3690

⎤
⎦ ,Wcomp =

∙
1 2
3 1

¸

whereWcomp is selected randomly and Lcomp is obtained by placing the poles of the residual generator
at −0.5 + 0.5j, −0.5− 0.5j, 0.3.
Fig. 14.2 and Fig. 14.3 show, respectively, the values of JSSD,OBS,i/∞(Lopt, Wopt) (solid line),

JSSD,OBS,i/∞(Lopt,−/∞,Wopt,−/∞) (dash-dotted line) and JSSD,OBS,i/∞(Lcomp,Wcomp) (dashed
line) for i = 1 and i = 2 as ω changes from 0 to ωs.
For i = 1,

maxω∈[0,ωs)JSSD,OBS,i/∞(Lopt,Wopt) = 35.374

Therefore, the optimal H∞/H∞ performance index is
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Fig. 14.3 Performance indices JSSD,OBS,i/∞(Lopt,Wopt) (solid line), JSSD,OBS,i/∞(Lopt,−/∞,Wopt,−/∞)
(dash-dotted line) and JSSD,OBS,i/∞(Lcomp,Wcomp) (dashed line) for i = 2

JSSD,OBS,∞/∞,opt = max
L,W

supω∈[0,ωs) σmax(WMu(e
jωh)Ḡf (e

jωh))

supf=0,d6=0
krk2
kdk2

= max
L,W

supd=0,f 6=0
krk2
kfk2

supf=0,d6=0
krk2
kdk2

= 35.374

and

max
ω∈[0,ωs)

JSSD,OBS,i/∞(Lopt,−/∞,Wopt,−/∞) = 0.9193 < JSSD,OBS,∞/∞,opt

max
ω∈[0,ωs)

JSSD,OBS,i/∞(Lcomp,Wcomp) = 5.6775 < JSSD,OBS,∞/∞,opt

For i = 2,

min
ω∈[0,ωs)

JSSD,OBS,i/∞(Lopt,Wopt) = 0.9193

JSSD,OBS,i/∞(Lopt,−/∞,Wopt,−/∞) ≡ 0.9193,∀ω ∈ [0, ωs)
The optimal H−/H∞ performance index is

JSSD,OBS,−/∞,opt = max
L,W

infω∈[0,ωs) σmin(WMu(e
jωh)Ḡf (e

jωh))

supf=0,d6=0
krk2
kdk2

= max
L,W

infd=0,f 6=0
krk2
kfk2

supf=0,d6=0
krk2
kdk2

= 0.9193

and
max

ω∈[0,ωs)
JSSD,OBS,−/∞(Lcomp,Wcomp) = 0.0991 < JSSD,OBS,−/∞,opt

For both i = 1 and i = 2

JSSD,OBS,i/∞(Lopt,−/∞,Wopt,−/∞) ≤ JSSD,OBS,i/∞(Lopt,Wopt)

JSSD,OBS,i/∞(Lcomp,Wcomp) < JSSD,OBS,i/∞(Lopt,Wopt)

at each frequency ω ∈ [0, ωs), which agree with the theoretical results.
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14.4 Full decoupling

In the framework of the parity space approach, recall that a full decoupling of the residual signal
r(k) from unknown inputs d(t) is achievable if and only if there exists Vs such that [174]

½
VsHsΨ

ddk,s(t) = 0, ∀d(t)
VsHsΨ

ffk,s(t) 6= 0, if f(t) 6= 0
(14.78)

which is equivalent to
VsH̄d,s = 0, VsH̄f,s 6= 0 (14.79)

There is a nonzero solution to (14.79) if and only if

rank
£
Ho,s H̄d,s H̄f,s

¤
> rank

£
Ho,s H̄d,s

¤
(14.80)

Then we get the following theorem on the condition of full decoupling.
Theorem 14.8 Given an SD system described by (14.1), (14.2)-(14.3), there exists a linear

discrete-time residual generator (14.15) fully decoupled from d(t) if and only if (14.80) holds, where
Ho,s, H̄d,s and H̄f,s are given, respectively, by (2.4) and (14.28).
Lemma 14.4 Given an SD system described by (14.1), (14.2)-(14.3). If (Ac, Edc) is controllable,

then there doesn’t exist a linear discrete-time residual generator (14.15) fully decoupled from d(t).
Proof: If (Ac, Edc) is controllable, then

rank

hZ

0

eAcτEdcE
T
dce

AT
c τdτ = n

It leads to rankĒd = rankĒdĒ
T
d = n. Therefore, in this case a full decoupling from the unknown

disturbances would be impossible. ¤

In the frequency domain [178], a residual signal r(z) is said to be fully decoupled from the
unknown disturbances d(s), if there exists a post-filter R(z) such that

r(ejωh) ≡ R(ejωh)Mu(e
jωh)Γ ff(jω) (14.81)

i.e. ½
R(z)Mu(z)Γ

dd = 0, ∀d
R(z)Mu(z)Γ

ff 6= 0, if f 6= 0
(14.82)

From the definition of the norm we know that this is the case iff

°°R(z)Mu(z)Γ
d
°° =

°°°R(z)Mu(z)Γ
d
¡
Γ d
¢∗
M∗

u(z)R
∗(z)

°°°
1/2

= 0

°°R(z)Mu(z)Γ
f
°° =

°°°R(z)Mu(z)Γ
f
¡
Γ f
¢∗
M∗

u(z)R
∗(z)

°°°
1/2

6= 0 (14.83)

(14.83) is again equivalent to

R(z)Mu(z)Γ
d
¡
Γ d
¢∗
M∗

u(z)R
∗(z) = 0

R(z)Mu(z)Γ
f
¡
Γ f
¢∗
M∗

u(z)R
∗(z) 6= 0 (14.84)

Since Mu(z) is a full rank square matrix, (14.84) holds iff

rank
£
Γ d
¡
Γ d
¢∗

Γ f
¡
Γ f
¢∗ ¤

> rank Γ d
¡
Γ d
¢∗

(14.85)

A necessary condition for (14.85) to hold is

rankΓ d
¡
Γ d
¢∗

< m, ∀ω (14.86)
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i.e. Γ d
¡
Γ d
¢∗
is not of full rank.

Theorem 14.9 Given an SD system described by (14.1), (14.2)-(14.3), there exists a linear
discrete-time residual generator (14.40) fully decoupled from d(t) if and only if (14.85) holds, where
Γ d
¡
Γ d
¢∗
and Γ f

¡
Γ f
¢∗
can be obtained by (14.50) or (14.51).

However, if the H2/H2 optimal design (see (14.46)) is considered and for some ωQ,

detΓ d
¡
Γ d
¢∗
= 0, detΓ f

¡
Γ f
¢∗
6= 0 (14.87)

This means λ =∞ is a singular value of (14.62) for ω = ωQ. Therefore, selecting the post-filter as
R(z) = fωQ(z)v(z) with an ideal frequency selector fωQ(z) gives

JSSD,FRE,2/2,opt = sup
ω

λmax(ω) = λmax(ω0) =∞

It is evident that condition (14.87) is much weaker than (14.85), thus such kind of decoupling is
easier to achieve than the one described by (14.85). We call a full decoupling satisfying (14.87) a
weak full decoupling. However, since in practice we can only approximate an ideal frequency selector,
R(z)Mu(z)ΓGd

will not be exactly zero and thus we have

r(ejωh) ≈ R(ejωh)Mu(e
jωh)Γ ff(jω)

Sampling introduces structural change into the original continuous-time systems. The following
theorem describes the influence of sampling on full decoupling.
Theorem 14.10 Compared with the original continuous-time system described by (14.1), the

full decoupling becomes more difficult in the SD system described by (14.1), (14.2)-(14.3).
Proof: Notice that

rank Γ d
¡
Γ d
¢∗ ≥ rankGdc(s)

rankĒd = rankĒdĒ
T
d = rank

hZ

0

eAcτEdcE
T
dce

AT
c τdτ ≥ rankEdc (14.88)

It shows that after sampling the dimension of the influence space of the unknown disturbances may
increase. Compare the full decoupling conditions (14.80) and (14.85), respectively, with (4.29) and
(4.27). We can see that it is more difficult to satisfy (14.80) and (14.85). Hence, the existence of the
sampling effect will make a full decoupling from the unknown disturbances more difficult than in the
original continuous-time systems, no matter which residual generation approach is adopted. ¤

14.5 Conclusion

In this paper, problems related to fault detection in the single-rate sampled-data (SSD) systems
have been studied. To take into account the intersample behaviour, operators are introduced for the
analysis of the SSD systems from the viewpoint of FD. With the help of the introduced operators,
the influence of continuous-time disturbances and faults on the discrete-time residual can be quanti-
tatively analyzed without any approximation. Based on it, direct design approaches of optimal fault
detection systems are developed. It is shown that the optimization problems of the SSD system are
equivalent to that of a discrete LTI system [84, 174, 176, 178, 180]. Through the analysis of the
full decoupling conditions, it is shown that the full decoupling becomes more difficult in the SSD
systems than in the original continuous-time systems.
It is worth pointing out that the FD problem of the SSD systems can also be solved using the

parametric transfer function (PTF) theory developed by Rosenwasser and Lampe [132], as shown in
[187].



15

FD of general sampled-data systems

In practice, it happens often that the A/D and D/A converters are working at different sampling
rates (see [3, 93, 98, 101, 116, 128] and the references therein), as shown in Fig. 15.1. In this
chapter, we shall consider the FD problem of the SD systems with various sampling mechanisms
[177, 175, 170, 172].

15.1 System description

Assume that the continuous-time process is still described by (14.1). In multirate sampled-data
(MSD) systems, the A/D converters and the D/A converters working at different sampling rates are
modelled, respectively, by

ψl(k
l) = yl(k

lTy,l), l = 1, 2, · · · ,m; k
l = 0, 1, 2, · · · (15.1)

uj(t) = υj(k
j), kjTu,j ≤ t < (kj + 1)Tu,j (15.2)

j = 1, 2, · · · , nu; k
j = 0, 1, 2, · · ·

where Ty,l and Tu,j denote, respectively, the sampling periods of the A/D converter in the l-th output
channel and the D/A converter in the j-th input channel.
A more general class of sampled-data systems are non-uniformly sampled-data (NSD) systems,

where the sampling instants may be multirate, asynchronous and non-equidistantly distributed, i.e.,
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Fig. 15.1 Structure diagram of MSD and NSD systems
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ψl(k
l) = yl(ty,kl), l = 1, 2, · · · ,m; k

l = 0, 1, 2, · · · (15.3)

uj(t) = υj(k
j), tu,kj ≤ t < tu,kj+1, j = 1, 2, · · · , nu; k

j = 0, 1, 2, · · · (15.4)

where ty,kl represents the sampling instants in the l-th output channel and tu,kj the time instants
at which the j-th control input is updated. It is worth mentioning that a special kind of NSD
systems, where the sampling instants are non-equidistant spaced but periodic, has been studied in
the literature rather intensively [105, 104, 99, 141].
In the following, we shall first consider the FD problem of the NSD systems and then that of the

MSD systems.

15.2 FD of NSD systems

15.2.1 Reformulation of system model

From the FD viewpoint, in NSD systems only those time instants with sampled outputs are of
interest [170, 172]. Denote with {tk} the sequence of time instants at which one or more sampled
outputs are available, t0 < t1 < · · · < tk < tk+1 < · · · . Let ψ̄(k) represent the vector of sampled
output signals at time instant tk. The dimension of ψ̄(k) is time-varying and upper bounded by m.
Let x(k) = x(tk). For the purpose of FD, the NSD system described by (14.1), (15.3) and (15.4) can
be equivalently re-modelled as

x(k + 1) = A(k)x(k) + ū(k) + d̄(k) + f̄(k)

ψ̄(k) = C(k)x(k) (15.5)

where

A(k) = eAc(tk+1−tk), ū(k) =
Z tk+1

tk

eAc(tk+1−t)Bcu(t)dt, (15.6)

d̄(k) =

Z tk+1

tk

eAc(tk+1−t)Edcd(t)dt, f̄(k) =

Z tk+1

tk

eAc(tk+1−t)Efcf(t)dt.

The new description considers the transition of system dynamics only at the time instants with
sampled outputs. The terms d̄(k) and f̄(k) characterize, respectively, the influence of the disturbances
and the faults on the sampled outputs. Recalling (15.4), the input term ū(k) related to the control
inputs υ1, · · · , υnu can be written into the form of

ū(k) = B(k)ῡ(k) (15.7)

where ῡ(k) is the control input vector that works during the time interval [tk, tk+1), and B(k) is a
time-varying matrix. The calculation of B(k) is straightforward, though it can be computationally
complicated, and will be shown later in an example. The influence of the control input vector on the
sampled outputs is exactly known and can be easily compensated. The matrices A(k) and C(k) are
time-varying matrices, as tk+1 − tk is time-varying with respect to time k. FD systems for the NSD
system can be designed based on the reformulated time-varying system model (15.5).

15.2.2 Parity relation based FD scheme for NSD systems

The input-output relationship of (15.5) over the moving horizon [tk−s, tk] is

ψ̃(k) = Ho,s(k)x(k − s) +Hs(k)(ũ(k) + d̃(k) + f̃(k)) (15.8)

where s is an integer denoting the length of the moving horizon, ψ̃(k), ũ(k), d̃(k) and f̃(k) are stacked
vectors based on ψ̄(j), ū(j), d̄(j) and f̄(j), j = k − s, · · · , k, respectively,
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ψ̃(k) =

⎡
⎢⎢⎢⎣

ψ̄(k − s)
ψ̄(k − s+ 1)

...
ψ̄(k)

⎤
⎥⎥⎥⎦ , ũ(k) =

⎡
⎢⎢⎢⎣

ū(k − s)
ū(k − s+ 1)

...
ū(k)

⎤
⎥⎥⎥⎦

d̃(k) =

⎡
⎢⎢⎢⎣

d̄(k − s)
d̄(k − s+ 1)

...
d̄(k)

⎤
⎥⎥⎥⎦ , f̃(k) =

⎡
⎢⎢⎢⎣

f̄(k − s)
f̄(k − s+ 1)

...
f̄(k)

⎤
⎥⎥⎥⎦

Ho,s(k) =

⎡
⎢⎢⎢⎣

C(k − s)
C(k − s+ 1)A(k − s)

...
C(k)A(k − 1)A(k − 2) · · ·A(k − s)

⎤
⎥⎥⎥⎦ (15.9)

Hs(k) =

⎡
⎢⎢⎢⎢⎣

O · · · O

C(k − s+ 1)
. . .

...
...

. . . O
C(k)A(k − 1) · · ·A(k − s+ 1) · · · C(k)

⎤
⎥⎥⎥⎥⎦

Build a parity relation based residual generator as

r(k) = V (k)(ψ̃(k)−Hs(k)ũ(k)), V (k)Ho,s(k) = 0 (15.10)

where V (k) is a time-varying parity matrix (or vector). The dynamics of residual generator (15.10)
is governed by

r(k) = V (k)Hs(k)(d̃(k) + f̃(k)) (15.11)

= V (k)Hs(k)(Ψ
d
kdk(t) + Ψf

k fk(t)) (15.12)

where Ψδ
k (δ standing for d or f) is a linear time-varying operator defined by

Ψδ
k : L2,[tk−s,tk)(R,R

nδ)→ l2(Z,R
sn),

δ̃(k) = Ψδ
kδk(t) =

⎡
⎢⎢⎢⎢⎣

R tk−s+1

tk−s
eAc(tk−s+1−t)Eδcδ(t)dtR tk−s+2

tk−s+1
eAc(tk−s+2−t)Eδcδ(t)dt

...R tk
tk−1

eAc(tk−t)Eδcδ(t)dt

⎤
⎥⎥⎥⎥⎦
.

In order to improve the performance of residual generator (15.10) using the freedom provided by
V (k), the optimization problem is defined as



180 15 FD of general sampled-data systems

max
V (k), V (k)Ho,s(k)=0

JNSD,PS,∞/∞(V (k))

= max
V (k), V (k)Ho,s(k)=0

supd=0,f 6=0
kr(k)k2E

kfk22,[tk−s,tk]

supf=0,d6=0
kr(k)k2E

kdk22,[tk−s,tk]

= max
V (k), V (k)Ho,s(k)=0

λ̄
³
V (k)Hs(k)Ψ

f
k (Ψ

f
k )
∗HT

s (k)V
T (k)

´

λ̄
¡
V (k)Hs(k)Ψd

k (Ψ
d
k )
∗HT

s (k)V
T (k)

¢ (15.13)

max
V (k), V (k)Ho,s(k)=0

JNSD,PS,−/∞(V (k))

= max
V (k), V (k)Ho,s(k)=0

infd=0,f 6=0
kr(k)k2E

kfk22,[tk−s,tk]

supf=0,d6=0
kr(k)k2E

kdk22,[tk−s,tk]

= max
V (k), V (k)Ho,s(k)=0

λ
³
V (k)Hs(k)Ψ

f
k (Ψ

f
k )
∗HT

s (k)V
T (k)

´

λ̄
¡
V (k)Hs(k)Ψd

k (Ψ
d
k )
∗HT

s (k)V
T (k)

¢ (15.14)

max
V (k), V (k)Ho,s(k)=0

JNSD,PS,i/∞(V (k))

= max
V (k), V (k)Ho,s(k)=0

λi

³
V (k)Hs(k)Ψ

f
k (Ψ

f
k )
∗HT

s (k)V
T (k)

´

λ̄
¡
V (k)Hs(k)Ψd

k (Ψ
d
k )
∗HT

s (k)V
T (k)

¢ (15.15)

Consider the equation


Ψδ
kδk(t), β(k)

®
=
D
δk(t),

¡
Ψδ
k

¢∗
β(k)

E
, ∀β(k) ∈ Rsn

where δk(t) = δ(t), tk−s ≤ t < tk, δk(t) ∈ L2,[tk−s,tk), β(k) is partitioned as

β(k) =

⎡
⎢⎢⎢⎣

β1(k)
β2(k)
...

βs(k)

⎤
⎥⎥⎥⎦ , βj(k) ∈ Rn, j = 1, 2, · · · , s.

As


Ψδ
kδk(t), β(k)

®
= (Ψδ

kδk(t))
Tβ(k)

=

⎡
⎢⎢⎢⎢⎣

R tk−s+1

tk−s
eAc(tk−s+1−t)Eδcδk(t)dtR tk−s+2

tk−s+1
eAc(tk−s+2−t)Eδcδk(t)dt

...R tk
tk−1

eAc(tk−t)Eδcδk(t)dt

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

β1(k)
β2(k)
...

βs(k)

⎤
⎥⎥⎥⎦

=
sX

j=1

Z tk−j+1

tk−j

δTk (t)E
T
δce

AT
c (tk−j+1−t)βs−j+1(k)dt,

it yields

¡
Ψδ
k

¢∗
β(k) =

⎧
⎪⎨
⎪⎩

ET
δce

AT
c (tk−s+1−t)β1(k), if tk−s ≤ t < tk−s+1

...

ET
δce

AT
c (tk−t)βs(k), if tk−1 ≤ t < tk

Finally, we have
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Ψδ
k

¡
Ψδ
k

¢∗
β(k) = Ψ̄δ

kβ(k), ∀β(k) ∈ Rsn

where

Ψ̄δ
k = diag

(Z tk−s+1

tk−s

eAc(tk−s+1−t)EδcE
T
δce

AT
c (tk−s+1−t)dt,

· · · ,

Z tk

tk−1

eAc(tk−t)EδcE
T
δce

AT
c (tk−t)dt

)

= diag

½Z tk−s+1−tk−s

0

eActEδcE
T
δce

AT
c tdt,

· · · ,

Z tk−tk−1

0

eActEδcE
T
δce

AT
c tdt

¾

Therefore,

Ψδ
k

¡
Ψδ
k

¢∗
= Ψ̄δ

k =

⎡
⎢⎢⎢⎢⎣

Ψk,s O · · · O

O Ψk,s−1
. . .

...
...

. . .
. . . O

O · · · O Ψk,1

⎤
⎥⎥⎥⎥⎦

(15.16)

Ψk,j =

Z tk−j+1−tk−j

0

eActEδcE
T
δce

AT
c tdt, j = 1, · · · , s

Optimization problems (15.13)-(15.15) are equivalent, respectively, to

max
V (k), V (k)Ho,s(k)=0

JNSD,PS,∞/∞(V (k))

= max
V (k), V (k)Ho,s(k)=0

λ̄
³
V (k)Hs(k)Ψ̄

f
kH

T
s (k)V

T (k)
´

λ̄
¡
V (k)Hs(k)Ψ̄d

kH
T
s (k)V

T (k)
¢ (15.17)

max
V (k), V (k)Ho,s(k)=0

JNSD,PS,−/∞(V (k))

= max
V (k), V (k)Ho,s(k)=0

λ
³
V (k)Hs(k)Ψ̄

f
kH

T
s (k)V

T (k)
´

λ̄
¡
V (k)Hs(k)Ψ̄d

kH
T
s (k)V

T (k)
¢ (15.18)

max
V (k), V (k)Ho,s(k)=0

JNSD,PS,i/∞(V (k))

= max
V (k), V (k)Ho,s(k)=0

λi

³
V (k)Hs(k)Ψ̄

f
kH

T
s (k)V

T (k)
´

λ̄
¡
V (k)Hs(k)Ψ̄d

kH
T
s (k)V

T (k)
¢ (15.19)

Then, for any given k, optimization problem (15.17)-(15.19) can be solved by the approaches intro-
duced in Chapter 5.1.
In summary, a parity relation based fast rate residual generator in the form of (15.10) can be

designed for NSD systems described by (14.1), (15.3)-(15.4) as below:

� Determine the sequence of time instants tk and the matrix C(k).
� Calculate the matrix A(k) by (15.6).

� Calculate the matrices Ho,s(k),Hs(k) as (15.9) and the matrices Ψ̄
d
k , Ψ̄

f
k according to (15.16).

� Solve the optimization problems (15.17)-(15.19) for V (k).
� Calculate ũ(k) and build residual generator as (15.10).
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15.2.3 Observer based FD scheme for NSD systems

For the aim of fault detection, a fast rate time-varying observer-based residual generator can be
constructed as

x̂(k + 1) = A(k)x̂(k) + ū(k) + L(k)(ψ̄(k)− ψ̂(k))

r(k) =W (k)(ψ̄(k)− ψ̂(k)), ψ̂(k) = C(k)x̂(k) (15.20)

where the gain matrix L(k) and the weighting matrix W (k) are time-varying matrices to be deter-
mined. The dimensions of L(k) and W (k) may change with the number of the available sampled
output signals. Define the state estimation error as e(k) = x(k) − x̂(k). The dynamics of residual
generator (15.20) is governed by

e(k + 1) = (A(k)− L(k)C(k))e(k) + d̄(k) + f̄(k)

r(k) =W (k)C(k)e(k) (15.21)

Introduce linear time-varying operators Γ δ
k (δ standing for d or f)

Γ δ
k : L2,[tk,tk+1)(R,R

nδ)→ l2(Z,R
n) (15.22)

Γ δ
k δk(t) =

Z tk+1

tk

eAc(tk+1−t)Eδcδ(t)dt.

The residual dynamics (15.21) can be re-written as

e(k + 1) = (A(k)− L(k)C(k))e(k) + Γ d
k dk(t) + Γ f

k fk(t)

r(k) =W (k)C(k)e(k) (15.23)

To enhance the robustness of the FD system to the unknown disturbances without loss of the
sensitivity to the faults, the design problem is formulated as

max
L(k),W (k)

JNSD,OBS,∞/∞(L(k),W (k))

= max
L(k),W (k)

supd=0, f∈L2−{0}
krk2
kfk2

supf=0, d∈L2−{0}
krk2
kdk2

(15.24)

= max
L(k),W (k)

supd=0, fk∈l2−{0}
krk2
kfkk2

supf=0, dk∈l2−{0}
krk2
kdkk2

max
L(k),W (k)

JNSD,OBS,−/∞(L(k),W (k))

= max
L(k),W (k)

infd=0, f∈L2−{0}
krk2
kfk2

supf=0, d∈L2−{0}
krk2
kdk2

(15.25)

= max
L(k),W (k)

infd=0, fk∈l2−{0}
krk2
kfkk2

supf=0, dk∈l2−{0}
krk2
kdkk2

Using the technique as introduced in Chapter 14, it can be found out that for the operator Γ δ
k and

its adjoint
¡
Γ δ
k

¢∗
there is

Γ δ
k

¡
Γ δ
k

¢∗
= Γ̄ δ

k =

Z tk+1−tk

0

eActEδcE
T
δce

AT
c tdt. (15.26)

Hence, in the sense of the optimization problems (15.24)-(15.25), the residual dynamics is equivalent
to a linear discrete time-varying system
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e(k + 1) = (A(k)− L(k)C(k))e(k) + Ēd(k)deq(k) + Ēf (k)feq(k)

r(k) =W (k)C(k)e(k) (15.27)

where the l2-norms of deq(k) and feq(k) in (15.27) have the same upper bounds, respectively, with
the L2-norms of d(t) and f(t) in (14.1), the matrices Ēd(k) and Ēf (k) are time-varying matrices
reflecting the sampling effect and satisfy

Ēδ(k)Ē
T
δ (k) = Γ̄ δ

k =

Z tk+1−tk

0

eActEδcE
T
δce

AT
c tdt (15.28)

as

sup
f=0, dk∈l2−{0}

krk2
kdkk2

= sup
f=0, deq∈l2−{0}

krk2
kdeqk2

,

sup
d=0, fk∈l2−{0}

krk2
kfkk2

= sup
d=0, feq∈l2−{0}

krk2
kfeqk2

Then, the optimization problems (15.24)-(15.25) can be solved with the FD approaches introduced
in Chapter 13 for the linear time-varying systems. The opimal solution is

L(k) = −LTd (k), W (k) =M+(k) (15.29)

where M+(k) denotes the left inverse of the matrix M(k), M(k) is a full column rank matrix
satisfying M(k)MT (k) = C(k)Xd(k)C

T (k), and (Xd(k), Ld(k)) is the stabilizing solution of the
Riccati difference system (DRS)

∙
A(k)Xd(k)A

T (k)−Xd(k + 1) + Γ̄ d
k A(k)Xd(k)C

T (k)
C(k)Xd(k)A

T (k) C(k)Xd(k)C
T (k)

¸ ∙
I

Ld(k)

¸
= 0. (15.30)

In summary, an observer based fast rate residual generator in the form of (15.20) can be designed
for the NSD systems described by (14.1), (15.3)-(15.4) as below:

� Determine the sequence of time instants with sampled outputs tk and the matrix C(k).
� Calculate the matrix A(k) by (15.6), determine the matrix B(k).

� Calculate the matrix Γ̄ d
k and Γ̄ f

k according to (15.28).
� Solve the DRS (15.30) for the stabilizing solution (Xd(k), Ld(k)).
� Compute the optimal observer gain matrix L(k) and the weighting matrix W (k) by (15.29).

In general NSD systems, the key point of this design is to guarantee the stability of A(k) −
L(k)C(k), which is not a trivial task. However, in a special kind of NSD systems, where the sampling
instants are non-equidistant spaced but periodic, as well as in the MSD systems that will be discussed
in the coming section, the DRS (15.30) will reduce to a DPRS and its solution can be easily obtained.

15.3 FD of MSD systems

The MSD system described by (14.1), (15.1)-(15.2) is a special case of NSD systems. It is in nature
a periodic system. The system period , denoted by T , is the least common multiple of the sampling
periods Ty,l, l = 1, 2, · · · ,m and Tu,j , j = 1, 2, · · · , nu. The maximal common multiplier of the
sampling periods is often called base period , denoted by h. The FD problem of the MSD systems
can be handled along different lines.
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Fig. 15.2 Sampling strategy in Example 15.1 (Ty,1 = 1s, Ty,2 = 1.5s, Tu = 0.3s, system period T = 3s,
sequence period θ = 4)

15.3.1 Design based on reformulated periodic model

The idea of re-ordering the sampling instants and the design procedures proposed in the last section
can be directly applied to the FD of the MSD systems. For the MSD systems, tk+1 − tk in the
reformulated model (15.5) is periodically time-varying with respect to time k. The period of the
sequence {tk+1 − tk} is called the sequence period , denoted later by θ. The sequence period θ and
the system period T are related by T = t(j+1)θ+i − tjθ+i, ∀i, j. Therefore, in the MSD systems,
A(k), C(k), Ēd(k), Ēf (k) reduce to periodically time-varying matrices and the designs are consider-
ably simplified. In consequence, for the MSD systems

� if the parity space approach is used, then the time-varying parity matrix V (k) needs only to be
calculated over one period,

� if the observer based approach is adopted, then the observer gain matrix L(k) needs to guarantee
that the characteristic multipliers of A(k)− L(k)C(k) are located inside the unit circle.

In principle, after the MSD system is reformulated as a periodic system, all the FD methods
introduced in Chapter 9 and 10 can be applied to it as well.
In the following, we shall illustrate it with an example [170].
Example 15.1 Consider an MSD system with a continuous-time plant described by (14.1) with

Ac =

∙
−1 5
0 −2

¸
, Bc =

∙
0
1

¸
, Edc =

∙
0.1
1

¸
,

Efc =

∙
0
1

¸
, C =

∙
1 0
0 1

¸
.

The sampling periods of the A/D and D/A converters are, respectively, Ty,1 = 1s, Ty,2 = 1.5s, Tu =
0.3s.
The system period is T = 3s. Over each system period [jT, (j + 1)T ), one or more outputs are

sampled at time instants jT , jT +1, jT +1.5, jT +2, as shown in Fig. 15.2. The sequence period is
θ = 4, i.e. A(j+1)θ = Ajθ, C(j+1)θ = Cjθ, etc. The sampled output vectors are

ψ̄(jθ) =

∙
y1(tjθ)
y2(tjθ)

¸
, ψ̄(jθ + 1) = y1(tjθ+1)

ψ̄(jθ + 2) = y2(tjθ+2), ψ̄(jθ + 3) = y1(tjθ+3)

The control input vector are, respectively,
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ῡ(jθ) =

⎡
⎢⎢⎣

u(t0jθ)

u(t1jθ)

u(t2jθ)

u(t3jθ)

⎤
⎥⎥⎦ , ῡ(jθ + 1) =

∙
u(t0jθ+1)

u(t1jθ+1)

¸

ῡ(jθ + 2) =

∙
u(t0jθ+2)

u(t1jθ+2)

¸
, ῡ(jθ + 3) =

⎡
⎢⎢⎣

u(t0jθ+3)

u(t1jθ+3)

u(t2jθ+3)

u(t3jθ+3)

⎤
⎥⎥⎦

which can be determined from the control input sequences υ1, · · · , υnu . The matrices A(k) and C(k)
in the reformulated model (15.5) are, respectively,

A(jθ) = eAc(tjθ+1−tjθ) = eAc =

∙
0.3679 1.1627
0 0.1353

¸
,

A(jθ + 1) = e0.5Ac =

∙
0.6065 1.1933
0 0.3679

¸
,

A(jθ + 2) = e0.5Ac =

∙
0.6065 1.1933
0 0.3679

¸
,

A(jθ + 3) = eAc =

∙
0.3679 1.1627
0 0.1353

¸
,

C(jθ) =

∙
1 0
0 1

¸
, C(jθ + 2) =

£
0 1
¤
,

C(jθ + 1) = C(jθ + 3) =
£
1 0
¤
.

Denote with pk the number of control input updates happening between [tk, tk+1). As

ū(k) =

Z tk+1

tk

eAc(tk+1−t)Bcu(t)dt =

pk−1X

l=0

Z tk+1−tlk

tk+1−tl+1k

eActBcdtu(t
l
k)

the matrix B(k) is determined by

B(jθ) =
h R tjθ+1−t0jθ

tjθ+1−t1jθ
eAcσBcdσ

R tjθ+1−t1jθ
tjθ+1−t2jθ

eAcσBcdσ
R tjθ+1−t2jθ
tjθ+1−t3jθ

eAcσBcdσ
R tjθ+1−t3jθ
0

eAcσBcdσ
i

=

∙
0.3654 0.3618 0.2491 0.0226
0.0556 0.1014 0.1847 0.0906

¸

B(jθ + 1) =

∙
0.2191 0.1679
0.0905 0.2256

¸

B(jθ + 2) =

∙
0.3049 0.0821
0.1512 0.1648

¸

B(jθ + 3) =

∙
0.1185 0.3715 0.3410 0.1679
0.0150 0.0679 0.1238 0.2256

¸

Parity relation based residual generator

Let s = 3. Calculate the matrices Ho,s(k),Hu,s(k) and Hs(k) by (15.9) and Ψ̄d
k , Ψ̄

f
k are, respec-

tively,
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Ψ̄δ
jθ = diag {ρδ(0.5), ρδ(0.5), ρδ(1)}

Ψ̄δ
jθ+1 = diag {ρδ(0.5), ρδ(1), ρδ(1)}

Ψ̄δ
jθ+2 = diag {ρδ(1), ρδ(1), ρδ(0.5)}

Ψ̄δ
jθ+3 = diag {ρδ(1), ρδ(0.5), ρδ(0.5)}

ρδ(∆T ) =

Z ∆T

0

eActEδcE
T
δce

AT
c tdt, δ = d, f

The optimal parity relation based residual generator is

r(k) = v(k)

⎛
⎜⎜⎝

⎡
⎢⎢⎣

ψ̄(k − 3)
ψ̄(k − 2)
ψ̄(k − 1)
ψ̄(k)

⎤
⎥⎥⎦−Hu,s(k)

⎡
⎢⎢⎣

ῡ(k − 3)
ῡ(k − 2)
ῡ(k − 1)
ῡ(k)

⎤
⎥⎥⎦

⎞
⎟⎟⎠ (15.31)

with

v(jθ) =
£
−0.0375 − 0.2524 0.2004 − 0.2678 0.9072

¤

v(jθ + 1) =
£
−0.0631 v − 0.0954 0.2592 − 0.9590 0

¤

v(jθ + 2) =
£
−0.0425 0.1155 − 0.9924 0 0

¤

v(jθ + 3) =
£
0.0188 0.0341 0.0043 0.9878 − 0.1508

¤

J0 = 0.9348, J1 = 0.9405, J2 = 0.9676, J3 = 0.9821.

Observer-based residual generator
Calculate Γ̄ d

k as

Γ̄ d
jθ = Γ̄ d

jθ+3 =

Z 1

0

eActEdcE
T
dce

AT
c tdt =

∙
−1.1023 −0.1091
−0.3833 0.3138

¸

Γ̄ d
jθ+1 = Γ̄ d

jθ+2 =

Z 0.5

0

eActEdcE
T
dce

AT
c tdt =

∙
−0.6330 −0.1320
−0.4203 0.1987

¸

Solving the DPRS (15.30) yields the periodic stabilizing solution

Xd(jθ) =

∙
1.3635 0.4042
0.4042 0.2473

¸

Xd(jθ + 1) =

∙
1.2269 0.3883
0.3883 0.2454

¸

Xd(jθ + 2) =

∙
0.5926 0.2936
0.2936 0.2328

¸

Xd(jθ + 3) =

∙
0.4998 0.2398
0.2398 0.2162

¸

Finally, by calculating (15.29), we get a periodic observer based residual generator described by

x̂(k + 1) = A(k)x̂(k) +B(k)ῡ(k) + L(k)(ψ̄(k)− ψ̂(k))

r(k) =W (k)(ψ̄(k)− ψ̂(k)), ψ̂(k) = C(k)x̂(k) (15.32)

with the optimal observer gain matrix L(k) and the weighting matrix W (k) as below
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L(jθ) =

∙
0.3679 1.1627
0 0.1353

¸
, L(jθ + 1) =

∙
0.9841
0.1164

¸

L(jθ + 2) =

∙
1.9585
0.3679

¸
, L(jθ + 3) =

∙
0.9258
0.0649

¸

W (jθ) =

∙
0.8564 0
−0.8302 2.8008

¸
, W (jθ + 1) = 0.9028

W (jθ + 2) = 2.0728, W (jθ + 3) = 1.4145

15.3.2 Lifting based design

In this subsection, we would also like to introduce another approach to the FD of the MSD systems
[177]. The basic idea of this approach is to get the input-output relations of the MSD systems at
the base periods at first and then downsample them according to different sampling periods to get
the parity relation of the MSD systems.
Let

ϑ = T/h, αj = Tu,j/h, ᾱj = T/Tu,j , (15.33)

β
l
= Ty,l/h, β̄l = T/Ty,l, β =

mX

l=1

β̄l

for j = 1, 2, · · · , nu, l = 1, 2, · · · ,m. β̄l represents the number of sampling points of the l-th output
over a system period and β the total number of the sampling points of all output signals over a
system period.
At each base period, the dynamics of the continuous-time process (14.1) is described by

x((k + 1)h) = Ax(kh) +Bu(kh) + d̄(k) + f̄(k), y(kh) = Cx(kh) (15.34)

where A,B, d̄(k) and f̄(k) are the same as given by (14.5). During the moving horizon [kT −sh, kT ],
a group of input-output equations can be obtained as

ys(kϑh) = Ho,sx((kϑ− s)h) +Hu,sus(kϑh) +Hs

¡
d̄s(kϑ) + f̄s(kϑ)

¢
(15.35)

where

ys(kϑh) =

⎡
⎢⎢⎢⎣

y((kϑ− s)h)
y((kϑ− s+ 1)h)

...
y(kϑh)

⎤
⎥⎥⎥⎦ , us(kϑh) =

⎡
⎢⎢⎢⎣

u((kϑ− s)h)
u((kϑ− s+ 1)h)

...
u(kϑh)

⎤
⎥⎥⎥⎦

d̄s(kϑ) =

⎡
⎢⎢⎢⎣

d̄(kϑ− s)
d̄(kϑ− s+ 1)

...
d̄(kϑ)

⎤
⎥⎥⎥⎦ , f̄s(kϑ) =

⎡
⎢⎢⎢⎣

f̄(kϑ− s)
f̄(kϑ− s+ 1)

...
f̄(kϑ)

⎤
⎥⎥⎥⎦

Ho,s =

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦ , Hu,s =

⎡
⎢⎢⎢⎢⎣

O O · · · O

CB O
. . .

...
...

. . .
. . . O

CAs−1B · · · CB O

⎤
⎥⎥⎥⎥⎦

Hs =

⎡
⎢⎢⎢⎢⎣

O O · · · O

C O
. . .

...
...

. . .
. . . O

CAs−1 · · · C O

⎤
⎥⎥⎥⎥⎦

(15.36)
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Using operators Ψd and Ψf introduced in (14.17), (15.35) can be re-written as

ys(kϑh) = Ho,sx((kϑ− s)h) +Hu,sus(kϑh)

+Hs

¡
Ψddkϑ,s(t) + Ψffkϑ,s(t)

¢
(15.37)

However, due to the different sampling rates, not all the components in the vector ys(kϑh) are
available. To pick out the components in the vector ys(kϑh) with available sampled values, define
some subscript sets as

Ωi = { l | 1 6 l 6 m, l ∈N, (s− i)/β
l
∈ Z} (15.38)

for i = 0, 1, · · · , s. The set Ωi indicates which process outputs have been sampled at the time
instant (kϑ − s + i)h. Apparently, Ωi is independent of the value of k. If Ωi is empty, then in
(15.37) those equations relating to y((kϑ− s+ i)h) should be left out completely. Assume that set
Ωi has a total of μi components which are denoted as ρi,1, ρi,2, · · · , ρi,μi in ascending order, i.e.

1 6 ρi,1 < ρi,2 < · · · < ρi,μi 6 m. Corresponding to it, define a matrix NS ∈ Rμ×(s+1)m with

μ =
Ps

i=0 μi as follows to describe the sampling mechanism. The components in the matrix NS are
either 1 or 0. Only one component can be 1 in each row of NS .
Based on the sets Ωi, define

yΩi((kϑ− s+ i)h) =

⎡
⎢⎢⎢⎣

yρi,1((kϑ− s+ i)h)

yρi,2((kϑ− s+ i)h)
...

yρi,μi ((kϑ− s+ i)h)

⎤
⎥⎥⎥⎦ (15.39)

where i = 0, 1, · · · , s, and yl denotes the l-th process output.
Thus those equations in (15.37) with available sampled values can be picked out and form a new

group of equations as

ŷs(kϑh) = NS

¡
Ho,sx((kϑ− s)h) +Hu,sus(kϑh) +Hs

¡
d̄s(kϑ) + f̄s(kϑ)

¢¢
(15.40)

where

ŷs(kϑh) =

⎡
⎢⎢⎢⎣

yΩ0((kϑ− s)h)
yΩ1((kϑ− s+ 1)h)

...
yΩs(kϑh)

⎤
⎥⎥⎥⎦ , Ĥo,s = NSHo,s (15.41)

Ĥu,s = NSHu,s, Ĥs = NSHs

In the next, the vectors ŷs(kϑh) and us(kϑh) in (15.40) will be expressed with the available infor-
mation ψl (l = 1, · · · ,m) and υj (j = 1, · · · , nu).
According to (15.1), there is

yρi,j ((kϑ− s+ i)h) = ψρi,j ((kϑ− s+ i)/β
ρi,j
), j = 1, 2, · · · , μi (15.42)

Therefore, yΩi((kϑ− s+ i)h) can be expressed in terms of the available sampled values ψl(k
l) as

yΩi((kϑ− s+ i)h) =

⎡
⎢⎢⎢⎢⎢⎣

ψρi,1((kϑ− s+ i)/β
ρi,1
)

ψρi,2((kϑ− s+ i)/β
ρi,2
)

...
ψρi,μi

((kϑ− s+ i)/β
ρi,μi

)

⎤
⎥⎥⎥⎥⎥⎦

(15.43)

Denote the vector on the right side of (15.43) as ψΩi
and define
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ψ̂s(k) =

⎡
⎢⎢⎢⎣

ψΩ0

ψΩ1

...
ψΩs

⎤
⎥⎥⎥⎦ (15.44)

From (15.41) and (15.43), it can be concluded that

ŷs(kϑh) = ψ̂s(k) (15.45)

According to (15.2) there is

u((kϑ− s+ i)h) =

⎡
⎢⎢⎢⎣

u1((kϑ− s+ i)h)
u2((kϑ− s+ i)h)

...
unu((kϑ− s+ i)h)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

υ1(k
1
i )

υ2(k
2
i )
...

υnu(k
nu
i )

⎤
⎥⎥⎥⎦ (15.46)

kji ∈ ((kϑ− s+ i)/αj − 1, (kϑ− s+ i)/αj ], k
j
i ∈ Z, j = 1, 2, · · · , nu

Denote the vector on the right side of (15.46) as υ̂i and define

υ̂s(k) =

⎡
⎢⎢⎢⎣

υ̂0
υ̂1
...
υ̂s

⎤
⎥⎥⎥⎦ (15.47)

there is
us(kϑh) = υ̂s(k) (15.48)

Based on (15.45) and (15.48), (15.40) reduces to

ψ̂s(k) = NSHo,sx((kϑ− s)h) +NSHu,sυ̂s(k) +NSHs

¡
Ψddkϑ,s(t) + Ψffkϑ,s(t)

¢
(15.49)

A parity relation based residual generator can thus be constructed from (15.49) as

r̂(k) = V̂s(ψ̂s(k)−NSHu,sυ̂s(k)) (15.50)

where r̂(k) ∈ Rnr , V̂s ∈ Rnr×μ is the parity vector which satisfies

V̂sNSHo,s = 0 (15.51)

The dynamics of residual generator (15.50) is governed by

r̂(k) = V̂sNSHs

¡
Ψddkϑ,s(t) + Ψffkϑ,s(t)

¢
(15.52)

Similar to the discussion in the last chapter, the optimal design of the parity space based residual
generator for the MSD system can be formulated as the following optimization problem
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max
V̂s,V̂sNSHo,s=0

JMSD,PS,∞/∞

= max
V̂s,V̂sNSHo,s=0

λ̄
³
V̂sNSHsΨ

f
¡
Ψf
¢∗
HT
s N

T
s V̂

T
s

´

λ̄
³
V̂sNSHsΨd (Ψd)

∗
HT
s N

T
s V̂

T
s

´ (15.53)

max
V̂s,V̂sNSHo,s=0

JMSD,PS,−/∞

= max
V̂s,V̂sNSHo,s=0

λ
³
V̂sNSHsΨ

f
¡
Ψf
¢∗
HT
s N

T
s V̂

T
s

´

λ̄
³
V̂sNSHsΨd (Ψd)

∗
HT
s N

T
s V̂

T
s

´ (15.54)

max
V̂s,V̂sNSHo,s=0

JMSD,PS,i/∞

= max
V̂s,V̂sNSHo,s=0

λi

³
V̂sNSHsΨ

f
¡
Ψf
¢∗
HT
s N

T
s V̂

T
s

´

λ̄
³
V̂sNSHsΨd (Ψd)

∗
HT
s N

T
s V̂

T
s

´ (15.55)

The optimal solution to the optimization problem (15.53)-(15.55) can then be obtained by solving
its equivalent problem

max
V̂s,V̂sĤo,s=0

JMSD,PS,∞/∞ = max
V̂s,V̂sĤo,s=0

λ̄
³
V̂sĤf,sĤ

T
f,sV̂

T
s

´

λ̄
³
V̂sĤd,sĤT

d,sV̂
T
s

´ (15.56)

max
V̂s,V̂sĤo,s=0

JMSD,PS,−/∞ = max
V̂s,V̂sĤo,s=0

λ
³
V̂sĤf,sĤ

T
f,sV̂

T
s

´

λ̄
³
V̂sĤd,sĤT

d,sV̂
T
s

´ (15.57)

max
V̂s,V̂sĤo,s=0

JMSD,PS,i/∞ = max
V̂s,V̂sĤo,s=0

λi

³
V̂sĤf,sĤ

T
f,sV̂

T
s

´

λ̄
³
V̂sĤd,sĤT

d,sV̂
T
s

´ (15.58)

where

Ĥo,s = NS

⎡
⎢⎢⎢⎣

C
CA
...

CAs

⎤
⎥⎥⎥⎦

Ĥd,s = NS

⎡
⎢⎢⎢⎢⎣

O O · · · O

CĒd O
. . .

...
...

. . .
. . . O

CAs−1Ēd · · · CĒd O

⎤
⎥⎥⎥⎥⎦

Ĥf,s = NS

⎡
⎢⎢⎢⎢⎣

O O · · · O

CĒf O
. . .

...
...

. . .
. . . O

CAs−1Ēf · · · CĒf O

⎤
⎥⎥⎥⎥⎦

(15.59)

Algorithm 15.3 Optimal design of residual generator for MSD systems described by (14.1),
(15.1) and (15.2):

� Set the value of s.
� Compute T and h.
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� Determine ϑ, αj , ᾱj , βl, β̄l according to (15.33).

� Compute A,B, Ēd and Ēf according to (14.5) and (14.24).
� Determine the sets Ωi according to (15.38) for i = 0, 1, · · · , s and then the matrices NS .
� Determine the matrices Ĥo,s, Ĥd,s, Ĥf,s by (15.59).
� Solve the optimization problems (15.56)-(15.58) using Theorem 5.1-5.3.

Example 15.2 Given an MSD system where the continuous LTI process (14.1) is given by

ẋ(t) =

∙
−1 5
0 −2

¸
x(t) +

∙
0
1

¸
u(t) +

∙
0.1
1

¸
d(t) +

∙
0
1

¸
f(t)

∙
y1(t)
y2(t)

¸
=

∙
1 0
0 1

¸
x(t) (15.60)

and the periods of the A/D and D/A converters are respectively Ty,1 = 0.5s, Ty,2 = 1s, Tu = 0.5s.
Assume that there is no time delays, i.e. τy,1 = 0, τy,2 = 0, τu = 0. Then, T = 1s and h = 0.5s.

According to (15.33), there is ϑ = 2, α1 = 1, ᾱ1 = 2, β1 = 1, β̄1 = 2, β2 = 2, β̄2 = 1. The matrices

A,B, Ēd and Ēf are obtained as

A =

∙
0.61 1.19
0 0.37

¸
, B =

∙
0.39
0.32

¸
, Ēd =

∙
0.65 0
0.37 0.28

¸
, Ēf =

∙
0.60 0
0.36 0.30

¸
(15.61)

Set s = 3. Then the subscript sets are

Ω0 = {1}, Ω1 = {1, 2}, Ω2 = {1}, Ω3 = {1, 2}

Correspondingly, NS is a 6× 8 matrix as follows

NS =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Based on it, we get

Ĥ0,s = NS

⎡
⎢⎢⎣

C
CA
CA2

CA3

⎤
⎥⎥⎦ , Ĥu,s = NS

⎡
⎢⎢⎣

O2×1 O2×1 O2×1 O2×1
CB O2×1 O2×1 O2×1
CAB CB O2×1 O2×1
CA2B CAB CB O2×1

⎤
⎥⎥⎦

Ĥd,s = NS

⎡
⎢⎢⎣

O2×2 O2×2 O2×2 O2×2
CĒd O2×2 O2×2 O2×2
CAĒd CĒd O2×2 O2×2
CA2Ēd CAĒd CĒd O2×2

⎤
⎥⎥⎦

Ĥf,s = NS

⎡
⎢⎢⎣

O2×2 O2×2 O2×2 O2×2
CĒf O2×2 O2×2 O2×2
CAĒf CĒf O2×2 O2×2
CA2Ēf CAĒf CĒf O2×2

⎤
⎥⎥⎦

� According to Theorem 5.1, solve the eigenvalue-eigenvector problem and get the optimal parity
vector

v̂s,opt =
£
0 0.24 0.18 − 1.43 1.71 − 3.43

¤

which is optimal in the sense of (15.53).
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� Construct the residual generator by (15.50) as

r̂(k) = v̂s,opt(ψ̂s(k)− Ĥu,sυ̂s(k)) (15.62)

where

ψ̂s(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ψ1(2k − 3)
ψ1(2k − 2)
ψ2(k − 1)
ψ1(2k − 1)
ψ1(2k)
ψ2(k)

⎤
⎥⎥⎥⎥⎥⎥⎦
, υ̂s(k) =

⎡
⎢⎢⎣

υ(2k − 3)
υ(2k − 2)
υ(2k − 1)
υ(2k)

⎤
⎥⎥⎦

The approach presented in this section can be extended to handle the MSD systems with time
delays. To describe the time delays, the multirate A/D and D/A converters (15.1) and (15.2) are
extended, respectively, to

ψl(k
l) = yl(k

lTy,l − τy,l), l = 1, 2, · · · ,m; k
l = 0, 1, 2, · · · (15.63)

uj(t) = υj(k
j), kjTu,j + τu,j ≤ t < (kj + 1)Tu,j + τu,j (15.64)

j = 1, 2, · · · , nu; kj = 0, 1, 2, · · ·

where τy,l and τu,j denote the corresponding time delays in each input and output channels respec-
tively. Define

σj = τu,j/h, εl = τy,l/h, j = 1, 2, · · · , nu; l = 1, 2, · · · ,m (15.65)

where h is the base period. Furthermore, define

εmax = max{ε1, ε2 · · · , εm}, kst = kϑ− s− εmax

εmin = min{ε1, ε2 · · · , εm}, kend = kϑ− εmin

δs = kend − kst (15.66)

and extend the subscript sets (15.38) to

Ωi =
n
l | 1 6 l 6 m, l ∈ N, (s+ εmax − i− εl)/βl ∈ Z

and εmax − i 6 εl 6 s+ εmax − i} (15.67)

for i = 0, 1, · · · , δs. The set Ωi indicates which process outputs have been sampled at the time instant
(kst+i)h and can also be received by the computer during the period from (kϑ−s)h to kϑh although
the presence of the time delays. The equations (15.42) and (15.46) are extended, respectively, to

yρi,j ((kst + i)h) = ψρi,j ((kst + i+ ερi,j )/βρi,j
), j = 1, 2, · · · , μi (15.68)

u((kst + i)h) =

⎡
⎢⎢⎢⎣

u1((kst + i)h)
u2((kst + i)h)

...
unu((kst + i)h)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

υ1(k
1
i )

υ2(k
2
i )
...

υnu(k
nu
i )

⎤
⎥⎥⎥⎦ (15.69)

kji ∈ ((kst + i− σj)/αj − 1, (kst + i− σj)/αj ], k
j
i ∈ Z, j = 1, 2, · · · , nu

The other steps of the design procedure are the same as the delay-free case. In the following, we
shall use an example to show it briefly.
Example 15.3 Consider an MSD system with the same continuous LTI process (15.60). The

periods of the A/D and D/A converters are respectively Ty,1 = 0.5s, Ty,2 = 1s, Tu = 0.5s. Assume
that the time delays in the inputs and the outputs are, respectively, τy,1 = 0.5s, τy,2 = 2s, τu = 1s.
Design a discrete-time residual generator for such a system.
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� Still, T = 1s, h = 0.5s, ϑ = 2, α1 = 1, ᾱ1 = 2, β
1
= 1, β̄1 = 2, β

2
= 2, β̄2 = 1. According to

(15.65), there is σ1 = 2, ε1 = 1, ε2 = 4.
� The matrices A,B, Ēd, Ēf are the same as in (15.61).
� Set s = 4. Then kst = 2k − 8, kend = 2k − 1, δs = 7. The subscript sets are got from (15.67) as

Ω0 = Ω2 = {2}, Ω1 = {}, Ω3 = Ω5 = Ω6 = Ω7 = {1}, Ω4 = {1, 2}

� Correspondingly, the matrix NS that represents the sampling mechanism is a 8 × 16 matrix as
follows

NS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Compute Ĥo,δs , Ĥu,δs , Ĥd,δs and Ĥf,δs

Ĥ0,δs = NS

⎡
⎢⎢⎢⎣

C
CA
...

CA7

⎤
⎥⎥⎥⎦ , Ĥu,δs = NS

⎡
⎢⎢⎢⎢⎣

O O · · · O

CB O
. . .

...
...

. . .
. . . O

CA6B · · · CB O

⎤
⎥⎥⎥⎥⎦

Ĥd,δs = NS

⎡
⎢⎢⎢⎢⎣

O O · · · O

CĒd O
. . .

...
...

. . .
. . . O

CA6Ēd · · · CĒd O

⎤
⎥⎥⎥⎥⎦
, Ĥf,δs = NS

⎡
⎢⎢⎢⎢⎣

O O · · · O

CĒf O
. . .

...
...

. . .
. . . O

CA6Ēf · · · CĒf O

⎤
⎥⎥⎥⎥⎦

� According to Theorem 5.1, solve the eigenvalue-eigenvector problem and get the optimal parity
vector

v̂δs,opt =
£
0 −0.20 −0.90 1.49 −3.31 0 0 0

¤

which achieves the optimal trade-off between the robustness and the sensitivity.
� Construct the residual generator according to (15.50) as

r̂(k) = v̂δs,opt(ψ̂δs(k)− Ĥu,δs υ̂δs(k)) (15.70)

where

ψ̂δs(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ2(k − 2)
ψ2(k − 1)
ψ1(2k − 4)
ψ1(2k − 3)

ψ2(k)
ψ1(2k − 2)
ψ1(2k − 1)
ψ1(2k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, υ̂δs(k) =

⎡
⎢⎢⎢⎣

υ(2k − 10)
υ(2k − 9)

...
υ(2k − 3)

⎤
⎥⎥⎥⎦

15.4 Concluding remarks

In this chapter, the FD problems of the NSD and the MSD systems are considered. The basic idea
of the FD approach to the NSD systems introduced in Section 15.2 is to re-model the NSD systems
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as time-varying systems and then apply the time-varying system theory to design the FD systems.
It is motivated by the fact that, for the purpose of fault detection, only at the time instants with at
least one sampled plant output available it is possible to generate a residual signal that can reflect
the system operating state. This viewpoint is especially helpful for the FD of the MSD systems [170].
Following it, the MSD systems can be re-formulated as periodically time-varying systems. The FD
problems can then be solved with the approaches introduced in Chapter 9-10, as shown in Section
15.3.1. The intersample behavior is taken into account by introducing operators.
Concerning the FD of the NSD systems, there is few work in the literature. For the development

of the FD approaches for the MSD systems during the last years, the readers are referred to [52, 53,
50, 86, 87, 153, 175, 177, 170, 198]. Viswanadham and Minto (1990) have made the first efforts to
the FDI of a special kind of MSD systems, in which all the control inputs are updated at a single
slow rate while the process outputs are sampled at different fast rates [153]. In the derivation, it
is assumed that the supervised process has neither model uncertainties nor unknown disturbances
acting on it. Going a step further, Fadali et al. have extended the observer based FDI scheme and the
parity-space approach to another kind of MSD systems with a single fast control input updating rate
and different slow process output sampling rates for the special case that the unknown inputs can be
perfectly decoupled from the residuals [52, 53, 50]. In these studies, the intersample behaviour and its
influence on the FDI performance have not been taken into consideration. To take into account both
the intersample behaviour and the multirate nature, a direct design approach for the MSD systems
is proposed in [177]. Aiming at a fast fault detection, a periodically time-varying observer-based
residual generator has been presented in [175], whose basic idea is to look at the system dynamics
at each base period instead of over a system period. The problem of fast rate residual generation is
further pursued by [86, 87, 198], which design a bank of residual generators with appropriate post-
filtering to cope with the causality constraints. However, the calculation needed for designing such
post-filtering terms is rather complicated. Compared with [175], the method proposed in [170, 172]
considerably reduces the frequency of updating the observer parameters during one system period
and gives a unified solution to the MSD systems and the NSD systems.
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Influence of sampling period

Sampling period is a key parameter in sampled-data systems. The smaller it is, the more online
information we have about the system to be supervised. On the other hand, it also leads to increased
transmission and computational loads. In this chapter, we shall study the influence of sampling period
on the FD performance [173, 171, 185].

16.1 Optimal FD performance in the parity space approach

Assume that the sampling period is increased from h to h = ρh, where ρ is a natural number. It
is well-known that the performance index of the parity space approach depends on the size of the
moving horizon s [47]. With the increase of s, the optimal performance index JSSD,PS,∞/∞,opt will
be non-decreasing [47]. To discuss quantitatively the influence of the sampling period on the FD
performance JSSD,PS,∞/∞,opt, we assume that, the size of the moving horizon in the continuous
domain is constant, i.e. sh = sh. In this section, we shall use bold letters to indicate the matrices
related with the sampling period h.
At each time instant t = kh, k = 0, 1, · · · , the residual signal is generated by

r(k) = Vs

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

y(k− s)
...

y(k− 1)
y(k)

⎤
⎥⎥⎥⎦−Hu,s

⎡
⎢⎢⎢⎣

u(k− s)
...

u(k− 1)
u(k)

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ (16.1)

Following the same principle, the parity vector Vs is optimized by

Vs,opt = arg max
Vs,VsHo,s=0

JSSD,PS,∞/∞,h(Vs) (16.2)

JSSD,PS,∞/∞,h(Vs) =
σ̄2(VsH̄f,s)

σ̄2(VsH̄d,s)
(16.3)

where in the subscript of the performance index an additional term is added to indicate the sampling
period,
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Ho,s =

⎡
⎢⎢⎢⎢⎢⎣

C
C(eAch)
C(eAch)2

...
C(eAch)s

⎤
⎥⎥⎥⎥⎥⎦
, B =

hZ

0

eActBcdt

Hu,s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

O O O · · · O

CB O
. . .

. . .
...

CeAchB CB O
. . .

...
...

...
. . .

. . . O
C(eAch)s−1B C(eAch)s−2B · · · CB O

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

H̄d,s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

O O O · · · O

CĒd O
. . .

. . .
...

CeAchĒd CĒd O
. . .

...
...

...
. . .

. . . O
C(eAch)s−1Ēd C(e

Ach)s−2Ēd · · · CĒd O

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

ĒdĒ
T
d =

hZ

0

eAcτEdcE
T
dce

AT
c τdτ , H̄f,s similar to H̄d,s

Notice that

Ho,s =

⎡
⎢⎢⎢⎢⎢⎣

C
C(eAch)ρ

C(eAch)2ρ

...
C(eAch)sρ

⎤
⎥⎥⎥⎥⎥⎦

As matrix Ho,s is indeed composed of some equidistant rows of matrix Ho,s, it can be re-written
into

Ho,s = NρHo,s (16.4)

where Nρ is a full row rank matrix constructed as

Nρ =

⎡
⎢⎢⎣

I O · · · O O · · · O
O · · · O I O · · · O

· · ·
O · · · O O · · · O I

⎤
⎥⎥⎦

Denote the basis matrix of the left null space of Ho,s by Nbasis,s and that of Ho,s by Nbasis,s. From

Nbasis,sHo,s =Nbasis,sNρHo,s = 0 (16.5)

It can be seen that Nbasis,sNρ lies in the left null space of matrix Ho,s and is a linear combination
of the basis matrix Nbasis,s. Therefore, a full row rank matrix P can be found, such that

Nbasis,sNρ = PNbasis,s (16.6)

As
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ĒdĒ
T
d =

ρX

l=1

lhZ

(l−1)h

eAcτEdcE
T
dce

AT
c τdτ

=

ρX

l=1

hZ

0

eAc((l−1)h+ξ)EdcE
T
dce

AT
c ((l−1)h+ξ)dξ

=

ρX

l=1

e(l−1)Ach

⎛
⎝

hZ

0

eAcξEdcE
T
dce

AT
c ξdξ

⎞
⎠ e(l−1)A

T
c h

=

ρX

l=1

e(l−1)AchĒdĒ
T
d e

(l−1)AT
c h (16.7)

The (i, j)-block of the matrix H̄d,sH̄
T
d,s, where i = 2, · · · , s+ 1, j = 2, · · · , s+ 1, i ≥ j, is

(H̄d,sH̄
T
d,s)ij =

j−2X

q=0

C(eAch)i−2−qĒdĒ
T
d (e

AT
c h)j−2−qCT (16.8)

Substituting h = ρh and (16.7) into (16.8) yields

(H̄d,sH̄
T
d,s)ij

=

j−2X

q=0

ρX

l=1

C(eAch)ρ(i−2)−qρ+l−1ĒdĒ
T
d (e

AT
c h)ρ(j−2)−qρ+l−1CT

=

ρ(j−1)−1X

p=0

C(eAch)ρ(i−j)+pĒdĒ
T
d (e

AT
c h)pCT = βγT

where

β =
£
C(eAch)ρ(i−1)−1Ēd · · · C(e

Ach)ρ(i−j)Ēd

¤

γ =
£
C(eAch)ρ(j−1)−1Ēd · · · CĒd

¤

It can then be verified that
H̄d,sH̄

T
d,s = NρH̄d,sH̄

T
d,sN

T
ρ (16.9)

Based on (16.6) and (16.9), the following Theorem can be obtained.
Theorem 16.1 Given the SD system described by (14.1)-(14.3) and an arbitrary positive integer

ρ ≥ 2. Let JSSD,PS,∞/∞,h,opt and JSSD,PS,∞/∞,ρh,opt denote, respectively, the optimal performance
index defined by (14.20) achievable under sampling period h (size of moving horizon is s) and ρh (size
of moving horizon is s/ρ) in the framework of the parity space approach. Then, JSSD,PS,∞/∞,h,opt ≥
JSSD,PS,∞/∞,ρh,opt.
Proof: As Nbasis,s is the basis matrix of the left null space of Ho,s, the parity vector Vs can be

substituted by Vs = PsNbasis,s, where Ps is a vector of compatible dimensions. The optimization
problem (16.3) can be equivalently re-written as

JSSD,PS,∞/∞,h,opt = max
Ps

λ̄
³
PsNbasis,sH̄f,sH̄

T
f,sN

T
basis,sP

T
s

´

λ̄
³
PsNbasis,sH̄d,sH̄

T
d,sN

T
basis,sP

T
s

´

Based on (16.6) and (16.9), we have
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JSSD,PS,∞/∞,h,opt = max
Ps

λ̄(PsNbasis,sNρH̄f,sH̄
T
f,sN

T
ρ N

T
basis,sP

T
s )

λ̄(PsNbasis,sNρH̄d,sH̄T
d,sN

T
ρ N

T
basis,sP

T
s )

= max
Ps

λ̄(PsPNbasis,sH̄f,sH̄
T
f,sN

T
basis,sP

T
P
T
s )

λ̄(PsPNbasis,sH̄d,sH̄T
d,sN

T
basis,sP

TPT
s )

Since the matrix P is of full row rank, the following inequality holds

JSSD,PS,∞/∞,h,opt ≤ max
Ps

λ̄
³
PsNbasis,sH̄f,sH̄

T
f,sN

T
basis,sP

T
s

´

λ̄
³
PsNbasis,sH̄d,sH̄T

d,sN
T
basis,sP

T
s

´

= JSSD,PS,∞/∞,h,opt

The conclusion in Theorem 16.1 is thus proven. ¤

Theorem 16.1 shows that with the increase of the sampling period the FD performance
JSSD,PS,∞/∞,opt will decrease.

Example 16.1 Consider the SD system described by (14.1)-(14.3) with

Gu(s) = (Ac, Bc, C,O) = 0

Gd(s) = (Ac, Edc, C,O) =
8

s2 + 19s+ 9

Gf (s) = (Ac, Efc, C,O) =
1

s2 + 4s+ 6
(16.10)

The optimal performance index JSSD,PS,∞/∞,h,opt with respect to different sampling period h is
shown in Table 16.1. It can be seen that

JSSD,PS,∞/∞,hi,opt ≥ JSSD,PS,∞/∞,ρihi,opt
, i = 1, 2, 3

for h1 = 0.1s, ρ1 = 2, 3, 5, 6, h2 = 0.2s, ρ2 = 3, h3 = 0.3s, ρ3 = 2. It is consistent with the conclusion
of Theorem 16.1.

h 0.1 0.2 0.3 0.5 0.6
s 30 15 10 6 5
JSSD,PS,∞/∞,h,opt 0.2921 0.2871 0.2764 0.2360 0.2189

Table 16.1 The optimal index JSSD,PS,∞/∞,h,opt with respect to different sampling periods h in

Example 16.1

16.2 Optimal H2/H2 performance

In this section, we continue to discuss the influence of sampling period on the optimal H2/H2

performance. Due to the close relationship between the optimal H2/H2 index JSSD,FRE,2/2,opt and
the optimal index JSSD,PS,opt in the parity space approach [195], the following theorem is readily
obtained.
Theorem 16.2 Given the SD system described by (14.1)-(14.3) and an arbitrary positive integer

ρ ≥ 2. Let JSSD,FRE,2/2,h,opt and JSSD,FRE,2/2,ρh,opt denote, respectively, the optimal performance
index defined by (14.46) achievable under sampling period h and ρh in the framework of the post-
filter based approach. Then, JSSD,FRE,2/2,h,opt ≥ JSSD,FRE,2/2,ρh,opt.
Proof: Recall the limiting property of JSSD,PS,h,opt in case of s→∞, i.e. JSSD,FRE,2/2,opt and

JSSD,PS,opt are related by
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JSSD,FRE,2/2,h,opt = lim
s→∞

JSSD,PS,h,opt

JSSD,FRE,2/2,ρh,opt = lim
s→∞

JSSD,PS,ρh,opt (16.11)

According to Theorem 16.1, there is

lim
s→∞

JSSD,PS,h,opt ≥ lim
s→∞

JSSD,PS,ρh,opt

It follows that
JSSD,FRE,2/2,h,opt ≥ JSSD,FRE,2/2,ρh,opt

Example 16.2 For the SD system given in Example 16.1, compare the optimal H2/H2 index.
The optimal H2/H2 index JSSD,FRE,2/2,h,opt is obtained by solving (14.62) and (14.61). Table

16.2 shows the value of JSSD,FRE,2/2,h,opt under different sampling periods.

h 0.1 0.2 0.3 0.4 0.5
JSSD,FRE,2/2,h,opt 0.3540 0.3529 0.3494 0.3431 0.3346
h 0.6 0.7 0.8 0.9 1.0
JSSD,FRE,2/2,h,opt 0.3250 0.31562 0.3078 0.3029 0.3021
h 1.1 1.2 1.3 1.4 1.5
JSSD,FRE,2/2,h,opt 0.3069 0.3151 0.3177 0.31561 0.3099
h 1.6 1.7 1.8 1.9 2.0
JSSD,FRE,2/2,h,opt 0.3017 0.2920 0.2814 0.2699 0.2839

Table 16.2 The optimal H2/H2 index JSSD,FRE,2/2,h,opt with respect to different sampling periods h
in Example 16.2

As can be seen, JSSD,FRE,2/2,hi,opt ≥ JSSD,FRE,2/2,ρihi,opt
, i = 1, · · · , 10, ρi is a positive integer,

for h1 = 0.1s, 2 ≤ ρ1 ≤ 20, h2 = 0.2s, 2 ≤ ρ2 ≤ 10, h3 = 0.3s, 2 ≤ ρ3 ≤ 6, etc.

16.3 Optimal H∞/H∞ performance

The problem to be addressed in this section is: How will the optimalH∞/H∞ index JSSD,OBS,∞/∞,opt

change with respect to the sampling period h? Compared with the parity space approach, the dis-
cussion in the observer based case is much more complex [185].
To answer the above question, the key of the analysis is to find a way to connect systems

with different sampling periods. For this purpose, we shall first consider an alternative scheme of
generating a residual signal for SD system (14.1)-(14.3). In this section, bold letters will be used to
indicate the matrices related with the lifting operation.

16.3.1 An alternative scheme of residual generation

Let ρ ∈ N . Note that the dynamics of SD system (14.1)-(14.3) during [kρh, (k + 1)ρh) can be
described by

xρ(k + 1) = Aρxρ(k) +Bρυρ(k) +

Z (k+1)ρh

kρh

eAcτ (Edcd(τ) +Efcf(τ)) dτ

ψρ(k) = Cρxρ(k) +Dρυρ(k) (16.12)

where xρ(k) = x(kρh), υρ(k) and ψρ(k) are the lifting of υ(k) and ψ(k), i.e.
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υρ(k) =

⎡
⎢⎢⎢⎣

υ(kρ)
υ(kρ+ 1)

...
υ(kρ+ ρ− 1)

⎤
⎥⎥⎥⎦ ,ψρ(k) =

⎡
⎢⎢⎢⎣

ψ(kρ)
ψ(kρ+ 1)

...
ψ(kρ+ ρ− 1)

⎤
⎥⎥⎥⎦

(Aρ,Bρ,Cρ,Dρ) is the ρ-step lifting of (A,B,C,O),

Aρ = Aρ, Bρ =
£
Aρ−1B Aρ−2B · · · B

¤
(16.13)

Cρ =

⎡
⎢⎢⎢⎣

C
CA
...

CAρ−1

⎤
⎥⎥⎥⎦ ,Dρ =

⎡
⎢⎢⎢⎢⎣

O O · · · O

CB O
. . .

...
...

. . .
. . . O

CAρ−2B · · · CB O

⎤
⎥⎥⎥⎥⎦

Note that Bρ,Cρ and Dρ can be re-written as

Bρ =
£
ABρ−1 B

¤
=
£
Aρ−1B Bρ−1

¤

Cρ =

∙
Cρ−1
CAρ−1

¸
=

∙
C

Cρ−1A

¸

Dρ =

∙
Dρ−1 O
CBρ−1 O

¸
=

∙
O O

Cρ−1B Dρ−1

¸
(16.14)

One of the main properties of the lifting is that it preserves the l2-norm of the signal and thus the
H∞-norm of the system [8, 20]. The lifting technique is used here to bridge systems with different
sampling periods.
Thus, a residual signal ro can be generated by the following residual generator with constant free

parameters Lρ andWρ

x̃ρ(k + 1) = Aρx̃ρ(k) +Bρυρ(k) + Lρ(ψρ(k)− ψ̃ρ(k))

ψ̃ρ(k) = Cρx̃ρ(k) +Dρυρ(k)

ro(k) =Wρ(ψρ(k)− ψ̃ρ(k)) (16.15)

Different from r generated by (14.63), the residual signal ro is calculated at t = kρh, k = 1, 2, · · · ,
based on the output samples y(((k − 1)ρ+ j)h), j = 0, · · · , ρ− 1. The norms of the operators from
f and d to ro are, respectively, equivalent to

kΓrofk =
°°Ḡrof

°°
∞

kΓrodk =
°°Ḡrod

°°
∞

Ḡrof = (Aρ − LρCρ, Ēf,ρ − LρF̄f,ρ,WρCρ,WρF̄f,ρ)

Ḡrod = (Aρ − LρCρ, Ēd,ρ − LρF̄d,ρ,WρCρ,WρF̄d,ρ) (16.16)

where

F̄f,ρ =

⎡
⎢⎢⎢⎢⎣

O O · · · O

CĒf O
. . .

...
...

. . .
. . . O

CAρ−2Ēf · · · CĒf O

⎤
⎥⎥⎥⎥⎦
, F̄d,ρ =

⎡
⎢⎢⎢⎢⎣

O O · · · O

CĒd O
. . .

...
...

. . .
. . . O

CAρ−2Ēd · · · CĒd O

⎤
⎥⎥⎥⎥⎦

Lemma 16.1 Given SD system described by (14.1)-(14.3) and an arbitrary positive integer
ρ ≥ 2. Then the residual signal ro generated by (16.15) is identical with the ρ-step lifting of the
residual signal r generated by (14.63), if x̃ρ(0) = x̂(0) and
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Lρ =
£
(A− LC)ρ−1L · · · (A− LC)L L

¤

Wρ =

⎡
⎢⎢⎢⎢⎣

W O · · · O

−WCL W
. . .

...
...

. . .
. . . O

−WC(A− LC)ρ−2L · · · −WCL W

⎤
⎥⎥⎥⎥⎦

(16.17)

Proof: Over time interval [kρh, (k+1)ρh), ψ̂ and r got by residual generator (14.63) evolve like

x̂((k + 1)ρ) = Aρx̂(kρ) +Bρυρ(k) + L̂ρ

³
ψρ(k)− ψ̂ρ(k)

´
(16.18)

ψ̂ρ(k) = Cρx̂(kρ) +Dρυρ(k) +Q
³
ψρ(k)− ψ̂ρ(k)

´

rρ(k) = Ŵρ

³
ψρ(k)− ψ̂ρ(k)

´

where

ψ̂ρ(k) =

⎡
⎢⎢⎢⎣

ψ̂(kρ)

ψ̂(kρ+ 1)
...

ψ̂(kρ+ ρ− 1)

⎤
⎥⎥⎥⎦ , rρ(k) =

⎡
⎢⎢⎢⎣

r(kρ)
r(kρ+ 1)

...
r(kρ+ ρ− 1)

⎤
⎥⎥⎥⎦

Q =

⎡
⎢⎢⎢⎢⎣

O O · · · O

CL O
. . .

...
...

. . .
. . . O

CAρ−2L · · · CL O

⎤
⎥⎥⎥⎥⎦

L̂ρ =
£
Aρ−1L Aρ−2L · · · L

¤
, Ŵρ =

⎡
⎢⎢⎢⎢⎣

W O · · · O

O W
. . .

...
...
. . .

. . . O
O · · · O W

⎤
⎥⎥⎥⎥⎦

It can be easily verified that Lρ,Wρ given by (16.17) are related to L̂ρ,Ŵρ in (16.18) by

Lρ(Q+ I) = L̂ρ,Wρ(Q+ I) = Ŵρ

If x̃ρ(0) = x̂(0), then

ψ̂ρ(0) = ψ̃ρ(0) +Q
³
ψρ(0)− ψ̂ρ(0)

´

It leads to

ψρ(0)− ψ̃ρ(0) = (I +Q)
³
ψρ(0)− ψ̂ρ(0)

´

⇒ ro(0) = rρ(0), x̃ρ(1) = x̂(ρ)

Repeating the above derivation yields ro(k) = rρ(k), ∀k. ¤

Lemma 16.1 shows that any residual signal that can be obtained by residual generator (14.63)
with constant parameters L,W can also be achieved, though with a time lag, by residual generator
(16.15). Therefore, using residual generator (16.15) will cause no loss in the H∞/H∞ optimal FD
performance.
Lemma 16.2 In a more general case, suppose that residual generator (14.63) has ρ-periodically

time-varying gain matrix L(k) and weighting matrixW (k), i.e., L(kρ+j) = L(j),W (kρ+j) =W (j),
∀j = 0, 1, · · · , ρ− 1, k = 0, 1, 2, · · · . Let
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Ψ(j, i) =

½
I, if j = i
(A− L(j)C)(A− L(j − 1)C) · · · (A− L(i+ 1)C), if j > i

Then ro(k) = rρ(k), if x̃ρ(0) = x̂(0) and

Lρ =
£
Ψ(ρ− 1, 0)L(0) · · · Ψ(ρ− 1, ρ− 2)L(ρ− 2) L(ρ− 1)

¤

Wρ =

⎡
⎢⎢⎢⎢⎣

W (0) O · · · O

−W (1)CL(0) W (1)
. . .

...
...

. . .
. . . O

−W (ρ− 1)CΨ(ρ− 2, 0)L(0) · · · −W (ρ− 1)CL(ρ− 2) W (ρ− 1)

⎤
⎥⎥⎥⎥⎦

Proof: The proof of Lemma 16.2 is similar to that of Lemma 16.1 and thus omitted. ¤

From Lemma 16.2 we see that residual generator (16.15) can indeed represent a more general
class of residual generators, namely, those in the form of (14.63) but with periodic gain matrix and
weighting matrix. The question now is, compared with (14.63), whether (16.15) can achieve a better
H∞/H∞ index due to such additional freedom.
Lemma 16.3 Given SD system (14.1)-(14.3), an arbitrary positive integer ρ ≥ 2, residual

generators (14.63) and (16.15). Assume that A, Ēd, Ēf ,Xd,Hd, Lopt,Wopt are given by (14.5), (14.24)
and (14.71)-(14.72). Let

Lρ,opt =
£
(A− LoptC)

ρ−1Lopt · · · (A− LoptC)Lopt Lopt
¤

(16.19)

Wρ,opt =

⎡
⎢⎢⎢⎢⎣

Wopt O · · · O

−WoptCLopt Wopt
. . .

...
...

. . .
. . . O

−WoptC(A− LoptC)
ρ−2Lopt · · · −WoptCLopt Wopt

⎤
⎥⎥⎥⎥⎦

Hd,ρ =

⎡
⎢⎢⎢⎢⎣

Hd O · · · O

CLoptHd Hd
. . .

...
...

. . .
. . . O

CAρ−2LoptHd · · · CLoptHd Hd

⎤
⎥⎥⎥⎥⎦

Then:

(i) Aρ − Lρ,optCρ = (A− LoptC)
ρ
and Xd,ρ = Xd, Ld,ρ = −(Lρ,opt)T is the stabilizing solution to

DTARS ∙
AρXd,ρA

T
ρ −Xd,ρ + Ēd,ρĒ

T
d,ρ AρXd,ρC

T
ρ + Ēd,ρF̄

T
d,ρ

CρXd,ρA
T
ρ + F̄d,ρĒ

T
d,ρ CρXd,ρC

T
ρ + F̄d,ρF̄

T
d,ρ

¸ ∙
I
Ld,ρ

¸
= 0 (16.20)

(ii)Wρ,optHd,ρ = I, Hd,ρH
T
d,ρ = CρXd,ρC

T
ρ + F̄d,ρF̄

T
d,ρ.

(iii)Ḡrof,opt = (Aρ − Lρ,optCρ, Ēf,ρ − Lρ,optF̄f,ρ,Wρ,optCρ,Wρ,optF̄f,ρ) is the ρ-step lifting of
Ḡrf,opt = (A− LoptC, Ēf ,WoptC,O).

Moreover,

(Lρ,opt,Wρ,opt) = arg

Ã

max
Lρ,Wρ

°°Ḡrof

°°
∞°°Ḡrod

°°
∞

!

= arg

µ
max
Lρ,Wρ

kΓrofk

kΓrodk

¶
= arg

µ
max
Lρ,Wρ

JSSD,OBS,∞/∞,ρ

¶

and the optimal performance indexes achieved by residual generators (14.63) and (16.15) are the
same, i.e.

JSSD,OBS,∞/∞,ρ,opt = JSSD,OBS,∞/∞,h,opt
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Proof: Let ρ = 2. (i)-(iii) can be easily verified by substituting

Xd,ρ = Xd, Lo,ρ = −(Lρ,opt)T , Lρ,opt = [ (A− LoptC)Lopt Lopt ]

Aρ = A2, Ēd,ρ = [AĒd Ēd ]

Wρ,opt =

∙
Wopt O

−WoptCLopt Wopt

¸
,Hd,ρ =

∙
Hd O

CLoptHd Hd

¸

Cρ =

∙
C
CA

¸
, F̄d,ρ =

∙
O O

CĒd O

¸

into (i)-(iii) and taking into account (14.71)-(14.72). Assume that (i)-(iii) holds for ρ = n. Then, for
ρ = n+ 1 and L∗n+1 given by (16.19), as

Ln+1,opt =
£
(A− LoptC)Ln,opt Lopt

¤
(16.21)

An+1 = AAn, Cn+1 =

∙
Cn

CAT,n

¸

we get
An+1 − Ln+1,optCn+1 = (A− LoptC) (An − Ln,optCn) = (A− LoptC)

n+1

Substituting

Xd,n+1 = Xd, Ld,n+1 = − (Ln+1,opt)T ,

Ēd,n+1 =
£
AĒd,n Ēd

¤
, F̄d,n+1 =

∙
F̄d,n O
CĒd,n O

¸

and (16.21) into the left side of DTARS (16.20) yields

An+1Xd,n+1A
T
n+1 −Xd,n+1 + Ēd,n+1Ē

T
d,n+1

+
¡
An+1Xd,n+1C

T
n+1 + Ēd,n+1F̄

T
d,n+1

¢
Ld,n+1

= A
¡
AnXdA

T
n + Ēd,nĒ

T
d,n − (AnXdC

T
n + Ēd,nF̄

T
d,n)L

T
n,opt

¢

× (AT − CTLTopt)−Xd + ĒdĒ
T
d

= AXdA
T −AXdC

TL∗T −Xd + ĒdĒ
T
d = 0

Cn+1Xd,n+1A
T
n+1 + F̄d,n+1Ē

T
d,n+1 +

¡
Cn+1Xd,n+1C

T
n+1 + F̄d,n+1F̄

T
d,n+1

¢
Ld,n+1

=

⎡
⎣
³
CnXdA

T
n + F̄d,nĒ

T
d,n −

³
CnXdC

T
n + F̄d,nF̄

T
d,n

´
L
T
n,opt

´
(AT − CTLTopt)

C
³
AnXdA

T
n + Ēd,nĒ

T
d,n −

³
AnXdC

T
n + Ēd,nF̄

T
d,n

´
L
T
n,opt

´
(AT − CTLTopt)

⎤
⎦

=

∙
0

CXAT − CXCTLTopt

¸
= 0

Moreover, An+1 − Ln+1,optCn+1 = (A− LoptC)
n+1

is stable because A − LoptC is stable. Thus,
Xd,n+1 = Xd,Ld,n+1 = −LTn+1,opt with Ln+1,opt given by (16.19) are the stabilizing solution of
(16.20) when ρ = n+ 1. By induction, (i) holds for any ρ ≥ 2.
Note that Ln+1,opt,Wn+1,opt,Hn+1, Ēf,n+1, F̄f,n+1 can also be re-written as

Ln+1,opt =
£
(A− LoptC)

nLopt Ln,opt
¤
, Ēf,n+1 = [AnĒf Ēf,n ] (16.22)

Wn+1,opt =

∙
Wn,opt O

−WoptCLn,opt Wopt

¸
,Hd,n+1 =

∙
Hd,n O

CLn,optHd,n Hd

¸

F̄f,n+1 =

∙
O O

CnĒf F̄f,n

¸

It is easy to obtainWn+1,optHd,n+1 = I. From Hd,nH
T
d,n = CnXdC

T
n + F̄d,nF̄

T
d,n, there is



204 16 Influence of sampling period

Hd,nH
T
d,nL

T
n,opt =

¡
CnXdC

T
n + F̄d,nF̄

T
d,n

¢
L
T
n,opt = CnXdA

T
n + F̄d,nĒ

T
d,n

Ln,optHd,nH
T
d,nL

T
n,opt = Ln,opt

¡
CnXdA

T
n + F̄d,nĒ

T
d,n

¢

= AnXdA
T
n + Ēd,nĒ

T
d,n −Xd

Hd,n+1H
T
d,n+1 =

∙
Hd,nH

T
d,n Hd,nH

T
d,nL

T
n,optC

T

CLn,optHd,nH
T
d,n CLn,optHd,nH

T
d,nL

T
n,optC

T +HdH
T
d

¸

=

∙
Cn

CAn

¸
Xd

∙
Cn

CAn

¸T
+

∙
F̄d,n O
CĒd,n O

¸ ∙
F̄d,n O
CĒd,n O

¸T

= Cn+1Xd,ρC
T
n+1 + F̄d,n+1F̄

T
d,n+1

As shown before, An+1 −Ln+1,optCn+1 = (A− LoptC)
n+1. Taking into account (16.21)-(16.22), we

have

Ēf,n+1 − Ln+1,optF̄f,n+1 =
£
(An − Ln,optCn) Ēf Ēf,n − Ln,optF̄f,n

¤

=
£
(A− LoptC)

n Ēf (A− LoptC)
n−1 Ēf · · · Ēf

¤

Wn+1,optCn+1 =

∙
Wn,optCn

WoptC (An − Ln,optCn)

¸

=

⎡
⎢⎢⎢⎣

WoptC
...

WoptC (A− LoptC)
n−1

WoptC (A− LoptC)
n

⎤
⎥⎥⎥⎦

Wn+1,optF̄f,n+1 =

∙
Wn,optF̄f,n O

WoptC
¡
Ēf,n − Ln,optF̄f,n

¢
O

¸

=

⎡
⎢⎣

O · · · O
...

. . .
...

WoptC (A− LoptC)
n−1

Ēf · · · O

⎤
⎥⎦

Therefore,

Ḡrof,opt =
¡
An+1 − Ln+1,optCn+1, Ēf,n+1 − Ln+1,optF̄f,n+1,
Wn+1,optCn+1,Wn+1,optF̄f,n+1

¢

is the n+ 1-step lifting of Ḡrf,opt = (A− LoptC, Ēf ,WoptC,O). By induction, (ii)-(iii) hold for any
ρ ≥ 2.
Finally, according to Theorem 14.6 and (i)-(ii), Lρ,opt andWρ,opt solves the optimization problem

max
Lρ,Wρ

kḠrofk∞
kḠrodk∞

and
°°Ḡrod,opt

°°
∞ = 1. As the lifting preserves the H∞ norm, it follows from (iii)

that °°Ḡrof,opt

°°
∞ =

°°Ḡrf,opt

°°
∞

Therefore, JSSD,OBS,∞/∞,ρ,opt = JSSD,OBS,∞/∞,h,opt. ¤

According to Lemma 16.3, for SD system (14.1)-(14.3) with sampling period h, we can generate
the residual signal either by (14.63) or by (16.15). Both schemes achieve the same optimal H∞/H∞
index and there is a one-to-one relationship between the optimal parameters of these two schemes.
That means also using time-varying parameters L(k),W (k) in residual generator (14.63) will not
improve the optimal H∞/H∞ index.

16.3.2 Optimal H∞/H∞ index vs. sampling period

With the help of the above analysis, in this subsection we shall show that increasing sampling
period h by an integer multiple will lead to a worse H∞/H∞ index JSSD,OBS,∞/∞,h,opt, as stated
in Theorem 16.3.
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Theorem 16.3 Given SD system described by (14.1)-(14.3) and an arbitrary positive integer ρ ≥
2. Let JSSD,OBS,∞/∞,h,opt and JSSD,OBS,∞/∞,ρh,opt denote, respectively, the optimalH∞/H∞ index
achievable under sampling period h and ρh. Then, JSSD,OBS,∞/∞,h,opt ≥ JSSD,OBS,∞/∞,ρh,opt.
Proof: If the continuous-time process (14.1) is sampled with sampling period ρh, then the

output samples of y are related to the control inputs u and the continuous-time signals f, d by

x(k + 1) = Aρhx(k) +Bρhυ(k) +

Z (k+1)ρh

kρh

eAcτ (Edcd(τ) +Efcf(τ)) dτ

ψ(k) = Cx(k)

with x(k) = x(kρh), Aρh = Aρ = eρAch and

Bρh =

Z ρh

0

eAcτBcdτ =

ρ−1X

j=0

AjB, Bρhυ(k) = Bρ

⎡
⎢⎣
υ(k)
...

υ(k)

⎤
⎥⎦ (16.23)

The residual signal rρh is obtained by a residual generator with constant free parameters Lρh and
Wρh

x̌(k + 1) = Aρhx̌(k) +Bρhυ(k) + Lρh(ψ(k)− ψ̆(k))

ψ̆(k) = Cx̌(k)

rρh = Wρh(ψ(k)− ψ̆(k)) (16.24)

Considering (16.23), we can bring (16.24) into the form of (16.15) with an additional structural
constraint imposed on parameters Lρ andWρ as follows

Lρ =
£
Lρh O

¤
, Wρ =

∙
Wρh O
O O

¸
(16.25)

If Lρ andWρ satisfies (16.25), then

JSSD,OBS,∞/∞,ρh(Lρh,Wρh) = JSSD,OBS,∞/∞,ρ(Lρ,Wρ)

Hence,

max
Lρh,Wρh

JSSD,OBS,∞/∞,ρh

= max
Lρ,Wρ satisfying (16.25)

JSSD,OBS,∞/∞,ρ

≤ max
Lρ,Wρ

JSSD,OBS,∞/∞,ρ

i.e.,
JSSD,OBS,∞/∞,ρh,opt ≤ JSSD,OBS,∞/∞,ρ,opt

Recall that, according to Lemma 16.3,

JSSD,OBS,∞/∞,ρ,opt = JSSD,OBS,∞/∞,h,opt,∀ρ ≥ 2

Thus, JSSD,OBS,∞/∞,ρh,opt ≤ JSSD,OBS,∞/∞,h,opt. ¤

Remark 16.1 We would like to point out that

JSSD,OBS,∞/∞,h,opt ≥ JSSD,OBS,∞/∞,ρh,opt

for any positive integer ρ ≥ 2 doesn’t mean

JSSD,OBS,∞/∞,h1 ≥ JSSD,OBS,∞/∞,h2
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for any h1 < h2, as shown later in Example 16.3. That means, the optimal H∞/H∞ index
JSSD,OBS,∞/∞,h,opt is not necessarily a monotonically decreasing function of sampling period h.
Remark 16.2 In [85], based on an example which is also studied here, it has been concluded

that decreasing the sampling period may impair the optimal H∞/H∞ index and thus the H∞/H∞
index is not appropriate for comparison of different design techniques. As shown in Theorem 16.3
and the results achieved in our study on the same example (see the following example), it is indeed
in general not the case.
Example 16.3 For the SD system given in Example 16.1, compare the optimal H∞/H∞ index.
To calculate JSSD,OBS,∞/∞,h,opt, the optimization problem (14.65) is solved under different sam-

pling periods h. The matrices Ēf,h and Ēd,h in (14.24) are calculated by the algorithm given in [20].
The H∞-norm is calculated with the help of the Matlab command sigma evaluated over a fine grid of
frequency points (∆ω = 0.00001). Table 16.3 shows the optimal H∞/H∞ index JSSD,OBS,∞/∞,h,opt

with respect to different sampling period h.

h 0.1 0.2 0.3 0.4 0.5
JSSD,OBS,∞/∞,h,opt 0.5950 0.5940 0.5911 0.5857 0.5784
h 0.6 0.7 0.8 0.9 1.0
JSSD,OBS,∞/∞,h,opt 0.5701 0.56180 0.5548 0.5504 0.5497
h 1.1 1.2 1.3 1.4 1.5
JSSD,OBS,∞/∞,h,opt 0.5540 0.5613 0.5637 0.56179 0.5567
h 1.6 1.7 1.8 1.9 2.0
JSSD,OBS,∞/∞,h,opt 0.5493 0.5404 0.5305 0.5195 0.5328

Table 16.3 The optimal H∞/H∞ index JSSD,OBS,∞/∞,h,opt with respect to different sampling periods
h in Example 16.3

It can be seen that JSSD,OBS,∞/∞,hi,opt ≥ JSSD,OBS,∞/∞,ρihi,opt
, i = 1, · · · , 10, ρi is a positive

integer, for h1 = 0.1s, 2 ≤ ρ1 ≤ 20, h2 = 0.2s, 2 ≤ ρ2 ≤ 10, h3 = 0.3s, 2 ≤ ρ3 ≤ 6, etc. Theorem
16.3 is thus verified. It is also shown by Table 16.3 that in this example JSSD,OBS,∞/∞,h1,opt ≥
JSSD,OBS,∞/∞,ρih2,opt

doesn’t hold for some h1 < h2. For instance,

JSSD,OBS,∞/∞,h1=1.1,opt < JSSD,OBS,∞/∞,h2=1.2,opt

though h1 = 1.1 < h2 = 1.2. JSSD,OBS,∞/∞,h,opt here is related to J∗∞/∞(h) calculated in

[85] by JSSD,OBS,∞/∞,h,opt =
1

J∗∞/∞(h)
. It is worth noticing that, when h = 2.0, the value of

JSSD,OBS,∞/∞,h,opt is 0.5328 in Table 16.3, which is different from
1

J∗∞/∞(T )
= 1

1.0926 = 0.9152

obtained in [85].

Example 16.4 Consider an SD system described by (14.1)-(14.3) with

Ac =

∙
−10 −5
1 0

¸
, Bc =

∙
1
1

¸
, C =

£
0 1
¤

Edc =

∙
1
0.2

¸
, Efc =

∙
0
1

¸
(16.26)

The optimal H∞/H∞ index JSSD,OBS,∞/∞,h,opt is shown in Table 16.4.
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h 0.1 0.2 0.3 0.4 0.5
JSSD,OBS,∞/∞,h,opt 4.7785 4.3864 4.0836 3.8892 3.7655
h 0.6 0.7 0.8 0.9 1.0
JSSD,OBS,∞/∞,h,opt 3.6837 3.6271 3.5860 3.5550 3.5310
h 1.1 1.2 1.3 1.4 1.5
JSSD,OBS,∞/∞,h,opt 3.5119 3.4962 3.4833 3.4724 3.4632
h 1.6 1.7 1.8 1.9 2.0
JSSD,OBS,∞/∞,h,opt 3.4552 3.4482 3.4422 3.4368 3.4321

Table 16.4 The optimalH∞/H∞ index JSSD,OBS,∞/∞,h,opt with respect to different sampling periods
h in Example 16.4
It can be seen that

JSSD,OBS,∞/∞,hi,opt ≥ JSSD,OBS,∞/∞,ρihi,opt
, i = 1, · · · , 10

for h1 = 0.1s, 2 ≤ ρ1 ≤ 20, h2 = 0.2s, 2 ≤ ρ2 ≤ 10, h3 = 0.3s, 2 ≤ ρ3 ≤ 6, etc. It verifies Theorem
16.3.

16.4 Optimal H−/H∞ performance

The influence of sampling period on the optimal H−/H∞ index is rather different from that of the
other performance indices.
According to (i)-(iii) of Lemma 16.3, Lρ,opt andWρ,opt given by (16.19) also solves the optimiza-

tion problem max
Lρ,Wρ

kḠrofk−
kḠrodk∞

, i.e.

(Lρ,opt,Wρ,opt) = arg

Ã

max
Lρ,Wρ

°°Ḡrof

°°
−°°Ḡrod

°°
∞

!

= arg

Ã

max
Lρ,Wρ

λ1/2(Γrof (Γrof )
∗)

kΓrodk

!

= arg

µ
max
Lρ,Wρ

JSSD,OBS,−/∞,ρ

¶
(16.27)

Because the lifting preserves the l2-norm of the signals, it also preserves the H− index of the corre-
sponding system. Therefore,

°°Ḡrof,opt

°°
− =

°°Ḡrf,opt

°°
−. Taking into account

°°Ḡrod,opt

°°
∞ = 1, there

is
JSSD,OBS,−/∞,ρ,opt = JSSD,OBS,−/∞,h,opt (16.28)

However, it is worth noticing that Wρ satisfying (16.25) is not of full column rank. Given the
matrices Lρ and Wρ satisfying (16.25),

JSSD,OBS,−/∞,ρh(Lρh,Wρh) = JSSD,OBS,−/∞,ρ(Lρ,Wρ) (16.29)

doesn’t hold. Therefore, the reasoning in Theorem 16.3 can not be applied to study the optimal
H−/H∞ index any more.
The following example documents the change of the optimal H−/H∞ index JSSD,OBS,−/∞,h,opt

with respect to the sampling period h.
Example 16.5 For the SD system given in Example 16.1, compare the optimal H−/H∞ index.
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h 0.1 0.2 0.3 0.4 0.5
JSSD,OBS,−/∞,h,opt 0.1445 0.187495 0.187488 0.187498 0.1876
h 0.6 0.7 0.8 0.9 1.0
JSSD,OBS,−/∞,h,opt 0.1877 0.1880 0.1885 0.1893 0.1903
h 1.1 1.2 1.3 1.4 1.5
JSSD,OBS,−/∞,h,opt 0.1917 0.1935 0.1957 0.1983 0.2012
h 1.6 1.7 1.8 1.9 2.0
JSSD,OBS,−/∞,h,opt 0.2045 0.2082 0.2120 0.2163 0.2370

Table 16.5 The optimal H−/H∞ index JSSD,OBS,−/∞,h,opt with respect to different sampling periods
h in Example 16.5

It is interesting to observe that in this example,

JSSD,OBS,∞/∞,hi,opt ≤ JSSD,OBS,∞/∞,ρihi,opt
, i = 1, · · · , 10

for h1 = 0.1s, 2 ≤ ρ1 ≤ 20, h2 = 0.2s, 2 ≤ ρ2 ≤ 10, h3 = 0.3s, 2 ≤ ρ3 ≤ 6,etc. That means, increasing
sampling period h by an integer multiple will even lead to a betterH−/H∞ index JSSD,OBS,−/∞,h,opt.
To find out the reason, recall that it is stated in Theorem 14.6 and 14.7 that

JSSD,OBS,−/∞,h,opt =
°°Ḡrf,opt

°°
− =

°°WoptC(zI −A+ LoptC)
−1Ēf

°°
−

=
1

kWopt,−/∞C(zI −A+ Lopt,−/∞C)−1Ēdk∞

from which we obtain the following theorem.
Theorem 16.4 Given SD system described by (14.1)-(14.3) and an arbitrary positive integer

ρ ≥ 2. Let JSSD,OBS,−/∞,h,opt and JSSD,OBS,−/∞,ρh,opt denote, respectively, the optimal H−/H∞
index achievable under sampling period h and ρh. Then, JSSD,OBS,−/∞,h,opt ≤ JSSD,OBS,−/∞,ρh,opt.

Proof: Similar to Theorem 16.3, it can be proven that 1
JSSD,OBS,−/∞,h,opt

= kWopt,−/∞C(zI −
A + Lopt,−/∞C)−1Ēdk∞ decreases if the sampling period h increases by a multiple. Therefore,
JSSD,OBS,−/∞,h,opt increases with the increase of h. ¤

16.5 Extension to multirate sampled-data systems

In MSD systems, we make the simplifying assumption that

ψl(k
l) = yl(k

lσlh), σl ∈ N, l = 1, · · · ,m (16.30)

u(t) = υ(k), kh ≤ t < (k + 1)h

Theorem 16.5 Let JSSD,PS,∞/∞,h,opt and JSSD,PS,∞/∞,ρh,opt denote, respectively, the op-
timal achievable ∞/∞ index of SD system (14.1)-(14.3) under sampling period h and ρh, and
JMSD,PS,∞/∞,(σ1h,··· ,σmh),opt that of MSD system described by (14.1) and (16.30). Assume that ρ
is a common multiple of σ1, · · · , σm. Then,

JSSD,PS,∞/∞,h,opt ≥ JMSD,PS,∞/∞,(σ1h,··· ,σmh),opt

≥ JSSD,PS,∞/∞,ρh,opt (16.31)

Proof: The proof is similar to that of Theorem 16.1. The sampling period will change the
pattern of Nρ. ¤

Theorem 16.6 Let JSSD,FRE,2/2,h,opt and JSSD,FRE,2/2,ρh,opt denote, respectively, the op-
timal achievable H2/H2 index of SD system (14.1)-(14.3) under sampling period h and ρh, and
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JMSD,FRE,2/2,(σ1h,··· ,σmh),opt that of MSD system described by (14.1) and (16.30). Assume that ρ
is a common multiple of σ1, · · · , σm. Then,

JSSD,FRE,2/2,h,opt ≥ JMSD,FRE,2/2,(σ1h,··· ,σmh),opt

≥ JSSD,FRE,2/2,ρh,opt (16.32)

Proof: The proof follows from (16.11),

JMSD,FRE,2/2,(σ1h,··· ,σmh),opt = lim
s→∞

JMSD,PS,∞/∞,(σ1h,··· ,σmh),opt

and Theorem 16.2. ¤

Theorem 16.7 Let JSSD,OBS,∞/∞,h,opt and JSSD,OBS,∞/∞,ρh,opt denote, respectively, the op-
timal achievable H∞/H∞ index of SD system (14.1)-(14.3) under sampling period h and ρh, and
JMSD,OBS,∞/∞,(σ1h,··· ,σmh),opt that of MSD system described by (14.1) and (16.30). Assume that ρ
is a common multiple of σ1, · · · , σm. Then,

JSSD,OBS,∞/∞,h,opt ≥ JMSD,OBS,∞/∞,(σ1h,··· ,σmh),opt

≥ JSSD,OBS,∞/∞,ρh,opt (16.33)

Proof: The proof follows the same line as that of Theorem 16.3. The residual generator for the

MSD system can be brought into the form of (16.15) with Lρ having nz = ρm−
mP

j=1

ρ
σj
columns of

zeros andWρ having nz rows and nz columns of zeros. ¤

16.6 Concluding remarks

This chapter has studied the influence of sampling period on some widely accepted classes of optimal
fault detection performance. The background of this study is the important role played by the
sampling period in embedded networked control systems. The result achieved in this chapter can be
applied to the optimal selection of the sampling period in embedded networked control systems by
taking into account the communication and real-time computational aspect [173, 171, 185].
In the analysis, both the parity space approach and the observer based approach have been

considered. It is shown that the optimal H2/H2, H∞/H∞ fault detection performance index will
become worse, if the sampling period is increased by an integer multiple. However, the optimal
H−/H∞ performance index shows different property. As a by-product, it is also shown (see Lemma
16.3) that in the single-rate SD systems a linear discrete-time observer-based residual generator with
time-varying gain matrix and weighting matrix will not improve the optimalH∞/H∞ or theH−/H∞
fault detection performance index, compared with constant gain matrix and weighting matrix. The
above results have also been extended to the multirate SD systems.
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FD of Networked Control Systems
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Modelling of NCS

Recently, networked control systems (NCS) receive more and more attention in the field of automatic
control (see, for instance, [1, 2, 117, 140, 148] and the references therein). In NCS the information is
exchanged among sensors, actuators, controllers and supervision stations through a digital network
shared among multiple users. As an example, Fig. 17.1 shows a typical structure of the NCS, where
the controller is located at a remote site, up represents the control inputs that activate the actua-
tors, yp the sensor readings, u and y the information obtained by the fault detection (FD) system
about control inputs and sensor outputs. The NCS provides advantages such as less wiring, flexible
structure and easy maintenance. Many different types of network have been promoted for different
application situations, for instance, CAN, Ethernet, Profibus, WLAN, etc. Different from classical
control systems, the dynamic behavior of the NCS is closely related to the characteristics of the
network.
From the network side, the access of different nodes to a network of limited bandwidth is mainly

coordinated through medium access control (MAC) protocol [108]. In general, the MAC protocols can
be classified into schedule-based schemes, contention-based schemes and mixed schemes. In schedule-
based MAC (e.g. TDMA, Time Division Multiple Access), a static or dynamic time schedule is used
to allocate time slots among the nodes. It guarantees a deterministic network behavior but requires
a synchronization mechanism and a careful design of the time schedule to reduce conservatism and
make a full use of the network resource. Token based or polling based schemes can be regarded
as quasi schedule-based schemes. In contention-based MAC (e.g. CSMA in Ethernet, CAN and
WLAN), each node tries to access the network as soon as it wants to send a message. Therefore,
the avoidance and resolution of collisions is the key part of the protocol, which can be realized, for
instance, by setting priorities to the message (e.g. in CAN) or by specifying a random waiting time
before re-transmission (e.g. in Ethernet). The mixed schemes (e.g. Flexray) divide each cycle time
into schedule-based part and contention-based part.
The performance of the network in real-time applications is evaluated by the QoS (quality of

service) parameters, such as network-induced delay, jitter, packet loss rate, packet error rate, syn-
chronization and quantization error, etc. The QoS parameters depend not only on the network
bandwidth, network type, MAC protocol, but also on the number of nodes, the amount of data flow,
the distribution of data flow over the network as well as environmental disturbances.
The main purpose of NCS design is to achieve the best utilization of the network under limited

resource (i.e. improved cost/efficiency) without sacrifice of system control and monitoring perfor-
mance. To this aim, interdisciplinary study with integrated efforts from the communication and
control society makes the NCS an exciting research area.
From the viewpoint of monitoring, there are different system setups that are of practical impor-

tance. In Fig. 17.2, the controller is a local controller and the information about the process (yp or
up, yp) are sent over the network for the purpose of remote monitoring. The distributed NCS struc-
ture shown in Fig. 17.3 is often encountered in industrial automation systems. There is distributed
intelligence, e.g. local PID controllers, in each subsystem. The local systems exchange information
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Fig. 17.1 A typical structure of NCS

through the network. A higher level control and monitoring unit can be implemented for the global
supervision and coordination. The various system setups, network configurations (topology, proto-
col, coding and decoding algorithm) and different working modes of system components (sensors,
actuators and controllers) further complicate the analysis and design of the NCS.
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Fig. 17.2 Local control and remote monitoring

In case that multiple systems share one common network, the NCS can be classified into closed
network and open network. Here the words closed or open don’t mean closed-loop or open-loop.
Instead, here closed network means that the scale of the network is modest, the number of nodes
(users) is fixed and designable. Thus it is possible to optimize the network utilization and have a
more active influence on the QoS of the network by designing system structure, data structure and
information exchange strategy. In comparison, open network means that a lot of users have access to
the network (for instance, in Internet) or there are strong unpredictable disturbances (for instance,
in wireless network), in which the QoS of the network can be influenced to some extent but can not
be completely determined by a small part of nodes (users).
The fault detection (FD) problem of the NCS has attracted much attention in the recent years,

which aims at improving the safety and reliability [19, 60, 67, 121, 124] of the NCS. The development
can be divided into three phases. In the first phase, the main problem under consideration is, for an
NCS with given network configurations, how to design the FD system to reduce the impact of the
QoS parameters on the fault detection performance. In the second phase, it is investigated how to
reduce and optimize the network load at the application level, so that the nondeterminism in the
network QoS is reduced and the FD system design can be simplified. Most recently, the co-design of
the FD system, the controller and the network is discussed.
In this chapter, we shall give a description of the NCS and point out different network-induced

factors that need consideration in the FD of NCS.
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Fig. 17.3 Two-level control and monitoring

17.1 Process, sensors and actuators

To illustrate the basic ideas, we assume in the following that the process is linear. It is described
either as a sampled-data (SD) system

ẋ(t) = Acx(t) +Bcup(t) +Edcd(t) +Efcf(t) (17.1)

yp(t) = Cx(t) (17.2)

yp(k) = S(yp(t)) = yp(ty,k) (17.3)

up(t) = H(up(k)), tu,k ≤ t < tu,k+1 (17.4)

or as a discrete-time system

x(k + 1) = Ax(k) +Bup(k) +Edd(k) + Eff(k)

yp(k) = Cx(k) +Dup(k) + Fdd(k) + Fff(k) (17.5)

where x ∈ R
n denote the state vector, up ∈ R

nu the control input vector, yp ∈ R
m the mea-

sured output vector, d ∈ R
nd the unknown disturbance vector and f ∈ R

nf the fault vector,
A,B,Ed, Ef , Ac, Bc, Edc, Efc, C,D, Fd, Ff are known matrices of appropriate dimensions. In the SD
system description, (17.3) and (17.4) represent the A/D converter and the D/A converter, respec-
tively, ty,k denotes the time instants at which the outputs are sampled and tu,k the time instants at
which the control inputs are updated.
If the process has a distributed structure and can be divided into p subsystems, then the vectors

x, up, yp are composed of the local vectors xi, up,i, yp,i, i = 1, · · · , p, of the subsystems. For instance,
(17.5) can be decomposed and re-written as

xi(k + 1) = Aiixi(k) +

pX

j=1,j 6=i

Aijxj(k) +Biup,i(k) +Ed,id(k) +Ef,if(k)

yp,i(k) = Cixi(k) +Diup,i(k) + Fd,id(k) + Ff,if(k) (17.6)

where Aij (i 6= j) represents the coupling between the subsystems and
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A =

⎡
⎢⎣
A11 · · · A1p
...
. . .

...
Ap1 · · · App

⎤
⎥⎦ , B =

⎡
⎢⎣
B1 · · · O
...
. . .

...
O · · · Bp

⎤
⎥⎦ , C =

⎡
⎢⎣
C1 · · · O
...
. . .

...
O · · · Cp

⎤
⎥⎦

D =

⎡
⎢⎣
D1 · · · O
...
. . .

...
O · · · Dp

⎤
⎥⎦ , Ed =

⎡
⎢⎣
Ed,1

...
Ed,p

⎤
⎥⎦ , Ef =

⎡
⎢⎣
Ef,1

...
Ef,p

⎤
⎥⎦

Fd =

⎡
⎢⎣
Fd,1
...

Fd,p

⎤
⎥⎦ , Ff =

⎡
⎢⎣
Ff,1
...

Ff,p

⎤
⎥⎦

The sensors and the actuators work in either clock-driven mode or event-driven mode. In the
clock-driven mode, ty,k, tu,k are pre-defined. In the event-driven mode, ty,k and tu,k are related to
the status of an event.

17.2 Network-induced delay and jitter

From the FD viewpoint, the delays in the NCS can be classified into two different kinds of delays.
One is the time taken by a sensor output packet to arrive the FD system, denoted by τy. The
other is the time difference between u and up, denoted by τu. In Fig. 1, up(t) = u(t − τu). In
Fig. 2, u(t) = up(t − τu). The delay is composed of transmission delays, processing delay (packet
encapsulation, coding and decoding, queuing) and sometimes re-transmission delay (e.g. if TCP is
used at the transport level). As mentioned before, the delay in NCS depends on many factors, such
as the network type, MAC protocol, network load, etc. They can be constant (e.g. TDMA with
static scheduling), time-varying, or stochastic (e.g. CSMA) [108, 148].
The variation of the network-induced delays is called jitter. It is the main reason why the delays

caused by the network are sometimes difficult to be handled.
For the design of FD systems, it is important to

� check whether τy and τu can be measured (estimated) online,
� determine when the sensor outputs received by the FD system are sampled, and
� analyze how the inputs influence the sensor outputs received by the FD system.

Bearing these questions in mind, we shall analyze the network-induced delay and jitter in the
NCS in this subsection.
The delays can be measured online, if the following two conditions are satisfied:

� the local clocks at sensors, actuators and controllers are well synchronized,
� a time-stamping mechanism is available.

The synchronization can be achieved, for instance, by using the IEEE 1588 protocol. In general,
the smaller the synchronization error is, the higher will be the additional network load caused by
the synchronization. A description of the synchronization error will be discussed later.
If it is possible to add a sequence number in the packets from clock-driven sensors or a time-stamp

in the packets from event-driven sensors, then the sampling instants of the arriving sensor output
packets can be easily determined. If the timing information is not available and the FD system read
the sensor values from the buffer periodically, then the sampling instants of these sensor outputs
can not be precisely determined.
If a time-stamp is attached to the packet of control input, the working mode of the actuator

is known, and this timing information is transmitted by the actuator to the FD system, then the
control input working on the process can be figured out. Otherwise, it is in general more difficult
to determine the precise time instant when the control inputs from the controller have effect on the
process.
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Different from classical time delay systems, in NCS with the aid of network technique it is often
possible to obtain some information about the delay, such as

� probability distribution f(τ),
� mean value Eτ and variance Var(τ),
� upper and lower bound τ ≤ τ ≤ τ̄ .

Integration of such information into the analysis and design of fault detection systems will improve
the FD performance.

17.3 Packet loss

A packet loss can be caused by collisions, buffer overrunning, or channel impairments (detected
but unrepairable channel errors). From the viewpoint of real-time control and monitoring, a packet
which arrives after a long time delay is sometimes also handled as a packet loss. To describe packet
loss, a variable α is usually introduced to denote the status of packet arrival, α = 0 if the packet is
lost, α = 1 if the packet arrives. For the design of FD schemes, at first it is important to have the
following information:

� the availability of information on the state of α to the FD system
� the candidate signal used to replace the lost packet.

For the FD performance not only the probability or the frequency of the packet loss but also
the distribution of the packet loss plays an important role. Typical assumptions on the available
information about the packet loss in NCS are:

� The transition of α between 0 (packet loss) and 1 (packet arrival) obeys a Markov chain, which
includes Bernoulli process as a special case [140]. The distribution of packet loss is described by
the transition probability matrix

P =

∙
p00 p01
p10 p11

¸
(17.7)

with

pij = Prob {α(k + 1) = i | α(k) = j}

= Prob {α(k + 1) = i | α(k) = j,∀α(k − 1), · · · , α(0)}
i, j ∈ {0, 1},

X

i

pij = 1

If the sensor outputs are sent by different packets, for instance, the outputs from each subsystem
are sent separately and the arrival of different output packets at the same time instant happens
independently, then the number of the states in the Markov chain will increase to 2p.

� {α(0), α(1), α(2), · · · } is a switching sequence with part information of the switching sequence
such as maximal number of consecutive packet losses, minimal (or maximal) interval between
neighboring packet losses, average frequency of packet losses over a time window of fixed length,
etc.

If a packet loss happens, different schemes may be used to replace the lost information. Assume
that a q-dimensional signal ξ =

£
ξ1 · · · ξq

¤T
is under consideration. If at time instant k the packet

of ξj is lost and a zero-padding scheme is adopted, then ξsub,j(k) = 0 and the substitution signal

ξsub =
£
ξsub,1 · · · ξsub,q

¤T
can be described by
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ξsub(k) = Λ(k)ξ(k) (17.8)

Λ(k) =

⎡
⎢⎢⎢⎢⎣

α1(k) 0 · · · 0

0 α2(k)
. . .

...
...

. . .
. . . 0

0 · · · 0 αq(k)

⎤
⎥⎥⎥⎥⎦
, αi(k) ∈ {0, 1}, i = 1, · · · , q

Other schemes, such as “keep-the-old-value”, “keep-a-constant-value” or “use-the-estimation”, can
be, respectively, expressed as

ξsub(k) = Λ(k)ξ(k) + (I − Λ(k))ξsub(k − 1)
ξsub(k) = Λ(k)ξ(k) + (I − Λ(k))ξconst

ξsub(k) = Λ(k)ξ(k) + (I − Λ(k))ξ̂(k) (17.9)

where ξconst is a constant (e.g. default value), ξ̂ is an estimation obtained from a model or an
observer. Which compensation (interpolation) scheme is the most advantageous for the control and
monitoring of the NCS, is still a topic of current research.

17.4 Quantization

In the NCS, quantizers are used to transform a continuous-valued signal to a finite number of bits.
The approximation error caused by the quantization depends strongly on the type of the quantizer
(uniform quantizer, non-uniform quantizer, adaptive quantizer, etc). Denote the signal before and
after quantization, respectively, by ξ and ξquan. If a uniform quantizer is used, then the quantization
error δ(k) = ξ(k) − ξquan(k) can be regarded as a bounded variable δ(k) ∈ [−buni, buni], where
2buni is the step size of the quantization. The basic idea of non-uniform quantizers is to choose
non-equidistant step size by taking into account the distribution of the source signal ξ. A kind of
widely accepted non-uniform quantizers is logarithmic quantizers [49]. In this case, the quantization
is fine near zero and becomes coarse for large values. In general, for non-uniform quantizers the
quantization error δ depends on the value of ξ and can be described by δ(k) = bnon−uniξ(k), where
bnon−uni is related to the “zoom” factor of the non-uniform quantizer. Adaptive quantizers adjust
the step size and the range of the quantization online according to the system forward or backward
information.

17.5 Coding, decoding and packet error

The above mentioned quantization is indeed part of source coding aiming at a compression of the
original source signal. Due to channel disturbance, the packet arriving the receiver may be different
from the original packet send by the sender. To detect and correct such packet errors, redundancy
will be further added in the packet before it is sent over the network, which is called channel
coding [15, 126]. After decoding the received codeword, some of the packet errors can be detected
and corrected. The part of undetectable packet errors is what needs to be considered in the FD
algorithms. On the one side, sophisticated channel coding and decoding algorithms (e.g. turbo codes
and low-density parity check codes) have been developed and could guarantee a very low packet
error rate. On the other side, too much redundant information will increase network load and reduce
useful data rate. The performance of the coding and decoding algorithm is evaluated by

� the code rate, which is decisive for the increased data amount and has influence on the delay,
and

� the packet error rate (PER) and distribution, which can be calculated or estimated based on bit
error rate (BER) and bit error distribution.
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In the structure of the NCS as shown in Fig. 17.1 with distributed sensors and actuators, the
coding and decoding problem is in the nature of

� distributed coding and central decoding problem at the side of sensors-FD system, and
� central coding and distributed decoding at the side of FD system-actuators.

17.6 Synchronization error

Clock synchronization is a well-known problem in distributed systems [90]. As mentioned in Section
17.2, the IEEE 1588 PTP (precise time protocol) can be applied to reduce the synchronization error
to a certain level, whose performance also depends also on the network status. To study the influence
of the synchronization error on the FD, let us have a look at distributed clock-driven sensors with
a uniform sampling period T . Denote the time at the central (master) station as t, which is used
as reference time for the synchronization, and the local time at each sensor as ti, i = 1, · · · ,m.
The synchronization error can be described by ti = t+∆syn,i, where ∆syn,i is time-varying (slowly
increasing during each synchronization cycle) but bounded. Therefore, the sensor output vector used
for the FD is indeed

y(k) =

⎡
⎢⎣
S1(yp,1(t1))

...
Sm(yp,m(tm))

⎤
⎥⎦ =

⎡
⎢⎣

yp,1(kT +∆syn,1))
...

yp,m(kT +∆syn,m))

⎤
⎥⎦ (17.10)

17.7 Concluding remarks

In this chapter, we have given a brief description of network-induced delay, jitter, packet loss, quan-
tization error, packet error and synchronization error. It is worthy of emphasis that, for a given
network of finite bandwidth, the QoS parameters are closely related to each other, for instance:

� TCP and UDP are two often adopted protocols at the transport level. Compared with UDP,
TCP will reduce the packet loss rate but at the price of retransmission, increased network load
and delay.

� Synchronization error can be reduced by performing synchronization more frequently. However,
this may also increase the data flow and the transmission delay.

To the authors’ knowledge, due to the variety of the networks, an analytical expression of the
relation among the QoS parameters that can be used to guide the global optimization of the NCS
in terms of resource utilization and system performance is not yet available.
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FD of NCS

The FD problem of the NCS consists in an early and reliable detection of the faults in the process
components, sensors or actuators (f 6= 0) based on the information contained in the control input
packets (u) and the sensor output packets (y). As the network is imperfect and will modify the system
dynamics, the FD system should be robust to not only the disturbances but also the uncertainty
caused by the network, while keeping to be sensitive to the faults. In this chapter, we shall focus
on the problem of the FD over the network and outline the basic ideas and solution procedures
of solving the FD problem in NCS with a given network of limited bandwidth. For the FD of the
network the readers are referred to [5, 16].
The first step towards the FD system design is to derive the relation between the available

information in the packets of sensor outputs and control inputs by taking into account the influence of
the QoS parameters. It should be noticed that in the modelling of the NCS, it is important to consider
different system setups. For the sake of clarity, in most investigations only one or two dominant
factors will be considered and the interconnections between the QoS parameters are neglected.
Then, based on the derived NCS model, residual generator and residual evaluator can be designed.

In some cases, the problem can be transformed into some standard FD problem formulations and
solved with the help of the existing technique. In other cases, new residual generator and evaluation
schemes need to be developed, especially due to the often stochastic nature of the QoS parameters.
If not specified, the discussion in this section will be carried out in the framework of the system
setup illustrated in Fig. 17.1.
To illustrate the basic ideas behind different handlings, we define a benchmark scenario, where the

NCS components are described by (17.1)-(17.4), the sensors are clock-driven, the controller and the
actuators are event-driven, τy,k + τproc,k + τu,k = τk, τk ≤ T , τy,k denotes the sensor-to-controller
delay, τproc,k the processing time needed by the controller, τu,k the controller-to-actuator delay, τk
is indeed the timing difference between the sensors and the actuators.

18.1 Handling of NCS as LPV systems

We consider the benchmark scenario. By discretizing the process model in (17.1)-(17.2) equidistantly
at t = kT , the NCS can be modelled as

x(k + 1) = Adx(k) +Edd(k) +Eff(k) +Bd0(τk)u(k) +Bd1(τk)u(k − 1)
y(k) = Cx(k) (18.1)

where

Ad = eAcT , Bd0(τk) =

Z T−τk

0

eAcζBcdζ, Bd1(τk) =

Z T

T−τk
eAcζBcdζ

Edd(k) =

Z (k+1)T

kT

eAcζEdcdζ, Eff(k) =

Z (k+1)T

kT

eAcζEfcdζ
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Suppose that a good synchronization is available, both the control input packets and the sensor
output packets are time-stamped, and the time-stamps of the control input packets are transmitted
by the actuator back to the FD system with negligible delay. In this situation, τk is available
information and the above model has the form of a linear parameter varying (LPV) system [181].
Therefore, an LPV residual generator can be constructed as

x̂(k + 1) = Adx̂(k) +Bd0(τk)u(k) +Bd1(τk)u(k − 1) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k)

r(k) = W (y(k)− ŷ(k)) (18.2)

As the influence of the control inputs is completely compensated, the observer gain matrix L and the
weighting matrix W as well as threshold selection can be determined using the standard technique.
The effect of sampling or multirate sampling can be taken into account by using the approaches
summarized in [172].
We take the modeling of packet loss as another example.
Assume that the NCS components are modeled by (17.5), the sensors and the actuators are dis-

tributed, the information of packet loss at the sensors’ side, i.e. state of αy(k) =
£
αy,1(k) · · · αy,m(k)

¤

is known. We shall consider two cases.
In the first case, assume that the information of packet loss at the actuators’ side (state of αu(k) =£

αu,1(k) · · · αu,nu(k)
¤
) is delivered by the actuators to the FD system. Under this assumption, the

control input up(k) that works on the process can be precisely reconstructed from u(k), αu(k), no
matter which interpolation scheme is adopted by the actuator in the case of packet loss. Therefore,
in this case we treat up(k) as known and put the focus on the handling of αy(k). Let N̄y(k) be a
matrix formed by the information of αy(k),

N̄y(k) =

⎡
⎢⎢⎢⎢⎣

αy,1(k) O · · · O

O αy,2(k)
. . .

...
...

. . .
. . . O

O · · · O αy,m(k)

⎤
⎥⎥⎥⎥⎦

and denote with Ny(k) the matrix consisting only of the non-zero rows of N̄y(k). Then, y(k) =
Ny(k)yp(k), where y(k) is the output packets received by the FD system at time k. As a result, the
NCS can be modelled by

x(k + 1) = Ax(k) +Bup(k) +Edd(k) +Eff(k)

y(k) = Ny(k) (Cx(k) +Dup(k) + Fdd(k) + Fff(k)) (18.3)

Applying the basic idea of the parity space approach, a residual generator can be constructed as

r(k) = Vs(k)

⎛
⎜⎝

⎡
⎢⎣
y(k − s)

...
y(k)

⎤
⎥⎦−Hu,s(k)

⎡
⎢⎣
up(k − s)

...
up(k)

⎤
⎥⎦

⎞
⎟⎠ (18.4)

where Vs(k) is the time-varying parity matrix satisfying Vs(k)Ho,s(k) = 0, Ho,s(k) and Hu,s(k) are
time-varying matrices depending on Ny(k) as

Ho,s(k) =

⎡
⎢⎢⎢⎣

Ny(k − s)C
Ny(k − s+ 1)CA

...
Ny(k)CA

s

⎤
⎥⎥⎥⎦

Hu,s(k) =

⎡
⎢⎢⎢⎢⎣

Ny(k − s)D O · · · O

Ny(k − s+ 1)CB Ny(k − s+ 1)D
. . .

...
...

. . . O
Ny(k)CA

s−1B · · · Ny(k)D

⎤
⎥⎥⎥⎥⎦

(18.5)
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The residual dynamics is

r(k) = Vs(k)

⎛
⎜⎝Hd,s(k)

⎡
⎢⎣
d(k − s)

...
d(k)

⎤
⎥⎦+Hf,s(k)

⎡
⎢⎣
f(k − s)

...
f(k)

⎤
⎥⎦

⎞
⎟⎠

Hd,s(k) =

⎡
⎢⎢⎢⎢⎣

Ny(k − s)Fd O · · · O

Ny(k − s+ 1)CEd Ny(k − s+ 1)Fd
. . .

...
...

. . . O
Ny(k)CA

s−1Ed · · · Ny(k)Fd

⎤
⎥⎥⎥⎥⎦

Hf,s(k) =

⎡
⎢⎢⎢⎢⎣

Ny(k − s)Ff O · · · O

Ny(k − s+ 1)CEf Ny(k − s+ 1)Ff
. . .

...
...

. . . O
Ny(k)CA

s−1Ef · · · Ny(k)Ff

⎤
⎥⎥⎥⎥⎦

As Ny(k) is a time-varying matrix, the optimal time-varying parity matrix Vs(k) is determined at
each time instant by solving one of the following optimization problems

max
Vs(k),Vs(k)Ho,s(k)=0

J∞/∞ = max
Vs(k),Vs(k)Ho,s(k)=0

σ̄
³
Vs(k)Hf,s(k)H

T
f,s(k)V

T
s (k)

´

σ̄
³
Vs(k)Hd,s(k)HT

d,s(k)V
T
s (k)

´ (18.6)

max
Vs(k),Vs(k)Ho,s(k)=0

J−/∞ = max
Vs(k),Vs(k)Ho,s(k)=0

σ
³
Vs(k)Hf,s(k)H

T
f,s(k)V

T
s (k)

´

σ̄
³
Vs(k)Hd,s(k)HT

d,s(k)V
T
s (k)

´ (18.7)

max
Vs(k),Vs(k)Ho,s(k)=0

Ji/∞ = max
Vs(k),Vs(k)Ho,s(k)=0

σi

³
Vs(k)Hf,s(k)H

T
f,s(k)V

T
s (k)

´

σ̄
³
Vs(k)Hd,s(k)HT

d,s(k)V
T
s (k)

´ (18.8)

In the second case, assume that the information of packet loss at the actuators’ side (state of
αu(k) =

£
αu,1(k) · · · αu,nu(k)

¤
) is not available to the FD system. Under this assumption, the

control input up(k) that works on the process is only partly known. Introduce a matrix Nu(k) to
represent the information of αu(k),

Nu(k) =

⎡
⎢⎢⎢⎢⎣

αu,1(k) O · · · O

O αu,2(k)
. . .

...
...

. . .
. . . O

O · · · O αu,nu(k)

⎤
⎥⎥⎥⎥⎦

Because up(k) = Nu(k)u(k), the NCS is now modelled by

x(k + 1) = Ax(k) +BNu(k)u(k) +Edd(k) +Eff(k)

y(k) = Ny(k) (Cx(k) +DNu(k)u(k) + Fdd(k) + Fff(k)) (18.9)

where u(k) is the control input packets delivered by the controller (co-located with the FD system)
to the actuator. A parity relation based residual generator can be constructed as

r(k) = Vs(k)

⎛
⎜⎝

⎡
⎢⎣
y(k − s)

...
y(k)

⎤
⎥⎦−Hu,s(k)

⎡
⎢⎣
u(k − s)

...
u(k)

⎤
⎥⎦

⎞
⎟⎠

Vs(k)Ho,s(k) = 0
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The residual dynamics is

r(k) = Vs(k)

⎛
⎜⎝Hf,s(k)

⎡
⎢⎣
f(k − s)

...
f(k)

⎤
⎥⎦+Hd,s(k)

⎡
⎢⎣
d(k − s)

...
d(k)

⎤
⎥⎦+Hu,s(k)

⎡
⎢⎣
∆u(k − s)

...
∆u(k)

⎤
⎥⎦

⎞
⎟⎠

where ∆u(k− s) = up(k− s)−u(k− s). Due to the lack of information on Nu(k), the control inputs
will influence the residual r(k). This effect can be taken into account in the selection of Vs(k) by
decoupling, optimization or adaptive threshold.

18.2 Handling of NCS as uncertain systems

In this subsection, we shall consider three different example cases, where the network induced factors
can be modeled as model uncertainty.
For the benchmark scenario, assume that the delays are not online measurable. The NCS model

(18.1) can be re-written as

x(k + 1) = Adx(k) +Bdu(k − 1) + g(τk, u(k), u(k − 1)) +Edd(k) +Eff(k)

y(k) = Cx(k) (18.10)

where

Bd =

Z T

0

eAcζBcdζ, g(τk, u(k), u(k − 1)) = Bd0(τk)(u(k)− u(k − 1))

As the delay is unknown, the influence of the control inputs on the residual signal can not be
precisely described. This effect is captured by the additional term g(τk, u(k), u(k − 1)). To extract
more information, Bd0(τk) can be re-written as [41]

Bd0(τk) = Bd0(τo) +∆B

The nominal part Bd0(τo) =
R T−τo
0

eAcζBcdζ can be determined based on the available deterministic

or statistical information of the delays, for instance, τo =
τ+τ̄
2 (median) or τo = Eτ (expectation).

The model uncertainty ∆B is caused by the deviation of τk from the nominal value τo and structured
as ∆B = eAc(T−τo) R τo−τk

0
eAcζBcdζ. Finally, based on the model

x(k + 1) = Adx(k) +Bdu(k − 1) +Edd(k) +Eff(k)

+Bd0(τo)(u(k)− u(k − 1)) +∆B(u(k)− u(k − 1))
y(k) = Cx(k) (18.11)

an observer based residual generator can be designed to suppress the influence of ∆B and the distur-
bances on the residual signal. The threshold for the decision can be adapted to the control update.
If there is further information about the delay distribution, it can be integrated in the threshold
selection using, for instance, probabilistic robustness technique [39]. From the above discussion it is
not difficult to see that the (unknown) jitter is what makes the FD in the NCS more difficult.
The second typical example that can be well modeled as uncertainty is the synchronization error.

Consider the benchmark scenario with a synchronization mechanism. Due to the synchronization
error (see the discussion in Section 17.6), the model (18.1) is extended to

x(k + 1) = Adx(k) +Edd(k) +Eff(k)

+(Bd0(τk) +∆Bd0)u(k) + (Bd1(τk) +∆Bd1)u(k − 1))
y(k) = (C +∆C)x(k) +∆Du(k) +∆Edd(k) +∆Eff(k) (18.12)

with ∆Bd0,∆Bd1,∆C,∆D,∆Ed,∆Ef are related to the synchronization error ∆syn,i, i = 1, · · · ,m.
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In the third example, we shall look at the influence of quantization errors caused by non-uniform
quantizers. Assume that the process is described by (17.1)-(17.4) and the NCS is configured as shown
in Fig. 17.1. Let

∆y,q =

⎡
⎢⎢⎢⎢⎣

∆y1,q O · · · O

O ∆y2,q
. . .

...
...

. . .
. . . O

O · · · O ∆ym,q

⎤
⎥⎥⎥⎥⎦
, ∆u,q =

⎡
⎢⎢⎢⎢⎣

∆u1,q O · · · O

O ∆u2,q
. . .

...
...

. . .
. . . O

O · · · O ∆unu ,q

⎤
⎥⎥⎥⎥⎦

where ∆yj ,q, j = 1, · · · ,m, and ∆ui,q, i = 1, · · · , nu, denote the step size of the quantizers in the
j-th output and the i-th input, respectively. Substituting

yq(k) = yp(k) + δy(k), δy(k) = ∆y,qyp(k)

up(k) = u(k) + δu(k), δu(k) = ∆u,qu(k)

into process model (17.5), the outputs received by the FD system are indeed

x(k + 1) = Ax(k) +B(I +∆u,q)u(k) +Edd(k) +Eff(k)

yq(k) = (I +∆y,q) (Cx(k) +D(I +∆u,q)u(k) + Fdd(k) + Fff(k))

18.3 Handling of NCS as systems with unknown inputs

For the benchmark scenario, Ye et al. propose to approximate the additional term g(τk, u(k), u(k−1))
in (18.10) caused by the network-induced delay by [160, 162]

g(τk, u(k), u(k − 1)) ≈ Eτ (k)dτ (k) (18.13)

where dτ (k) is an unknown term composed by the unknown time-varying delay, and Eτ (k) is a time-
varying matrix depending on the control input. This can be done, for instance, by Taylor expansion
or Pade approximation [157]. Based on the NCS model,

x(k + 1) = Adx(k) +Bdu(k − 1) +Edd(k) +Eτ (k)dτ (k) +Eff(k)

y(k) = Cx(k)

a time-varying parity relation based residual generator and residual evaluation scheme can be de-
signed. Compared with the modeling in Subsection 18.2, the influence of the delay is handled as
an unknown input, whose influence, together with the unknown disturbances d, should be decou-
pled or optimally suppressed. To reduce the dimension of the unknown inputs caused by the delay
dτ (k), a PCA (principle component analysis) based method is proposed by [162]. Furthermore, the
assumption on smaller than one sampling period delays can be relaxed [156].
Now we take another example from [196]. For the sake of consistency, we describe the scenario

considered there in a slightly different way. Different from the benchmark scenario, assume that
both the sensors and the actuators are clock driven. The sensor output packets are time-stamped.
However, the actuator doesn’t feed back the arrival time of the control input packets to the FD
system. The delay of control input packets is stochastic, can be longer than one sampling period but
bounded. If the actuator doesn’t receive any new control input signal during [kT, (k + 1)T ), then it
will keep the old value. In this case, the NCS can be modelled as

x(k + 1) = Adx(k) +Bdu(k − i) +Edd(k) +Eff(k)

y(k) = Cx(k) (18.14)

where i ∈ {1, 2, · · · , ρ̄}, ρ̄ ∈ N, represents the uncertainty caused by the network. The control inputs
that work on the process during [kT, (k + 1)T ) are indeed the i-th step delay of the control inputs
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delivered by the controller. However, as u(k− i) is unknown, its expectation is used for the purpose
of residual generation as follows [196]

x̂(k + 1) = Adx̂(k) +BdE(u(k − i)) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k)

r = Q(z)(y − ŷ)

As a result, the residual dynamics is governed by

e(k + 1) = (Ad − LC)e(k) +Bd (u(k − i)−E(u(k − i))) +Edd(k) +Eff(k)

r = Q(z)Ce(z)

Note that the control input u may influence the residual signal and needs to be taken into account
in the design of L and Q(z). The residual generator is designed to be robust to d, u and sensitive to
f .
The influence of quantization errors caused by uniform quantizers can be modeled as bounded

unknown inputs as well [106]. If both u(k) and yp(k) are sent over the network, as shown in Fig.
17.1, then

x(k + 1) = Ax(k) +B(u(k) + δu(k)) +Edd(k) +Eff(k)

yq(k) = Cx(k) +D(u(k) + δu(k)) + Fdd(k) + Fff(k)− δy(k)

with δu(k) and δy(k) being unknown but bounded signals.

18.4 Handling of NCS as hybrid systems

The NCS with packet loss can be conveniently modelled as hybrid systems. Consider the packet loss
scenario described in Section 18.1. Assume that the state of both αy(k) and αu(k) are known.
By extending the results in [186], a residual generator is constructed as

x̂(k + 1) = Ax̂(k) +Bup(k) + L(αy(k))(ysub(k)− ŷ(k))

ŷ(k) = Cx̂(k) +Dup(k)

r = W (αy(k))(ysub(k)− ŷ(k))

As αy(k) is available information, the observer parameters L and W can be adapted according
to the state of αy(k). Since no new information is available for generating residual signals if no
packet arrives, the “use-the-estimation” scheme is suitable for the purpose of FD. As mentioned in
Subsection 17.3, the candidate signal ysub(k) can be written as

ysub(k) = Λy(k)yp(k) + (I − Λy(k))ŷ(k)

where Λy(k) is a diagonal matrix formed by the information of αy(k).

Λy(k) =

⎡
⎢⎢⎢⎢⎣

αy,1(k) O · · · O

O αy,2(k)
. . .

...
...

. . .
. . . O

O · · · O αy,m(k)

⎤
⎥⎥⎥⎥⎦
= Λy(αy(k))

Note that
ysub(k)− ŷ(k) = Λy(k)(yp(k)− ŷ(k))

The resulting residual dynamics is described by a hybrid system
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e(k + 1) = Ar,ie(k) +Edr,id(k) + Efr,if(k)

r(k) = Wi(Cr,ie(k) + Fdr,id(k) + Ffr,if(k))

where

Ar,i = A− LiΛy,iC, Edr,i = Ed − LiΛy,iFd, Efr,i = Ef − LiΛy,iFf

Cr,i = Λy,iC, Fdr,i = Λy,iFd, Ffr,i = Λy,iFf

Λy,i = Λy(αy(k) = i)

Li = L(αy(k) = i), Wi =W (αy(k) = i), i = 0, 1, · · · , 2m − 1

Depending on the assumptions about packet losses, design parameters Li andWi can be synthesized
with the help of the theory of Markov jump systems or switched systems. In the case of sensor output
packet loss the state of the Markov chain or the switching sequence is known.
If, however, the FD system doesn’t have the information of packet loss at the actuators’ side,

then αu(k) is unknown and the influence of the control inputs on the residual can not be totally
eliminated. Let usub(k) represent the real control inputs working on the process. The dynamics of
the NCS is governed by

x(k + 1) = Ax(k) +Busub(k) +Edd(k) +Eff(k)

yp(k) = Cx(k) +Dusub(k) + Fdd(k) + Fff(k)

Implement the residual generator as

x̂(k + 1) = Ax̂(k) +Bu(k) + L(αy(k))(ysub(k)− ŷ(k))

ŷ(k) = Cx̂(k) +Du(k)

r(k) = W (αy(k))(ysub(k)− ŷ(k))

The residual dynamics is in this case governed by

e(k + 1) = Ar,ie(k) +Edr,id(k) +Efr,if(k) +Br,i∆u(k)

r(k) = Wi(Cr,ie(k) + Fdr,id(k) + Ffr,if(k) +Dr,i∆u(k))

where ∆u(k) = usub(k) − u(k) represents the influence of missed control input packets, Br,i =
B − LiΛy,iD, Dr,i = Λy,iD.
Recently, the influence of packet errors on the FD system has been studied by [107]. That means,

the FD system receives a sensor output packet, whose data field is composed of a number of bits.
If the channel is rather noisy, the value of the output obtained by decoding the received codeword
could be different from the real value of the output. By applying decoding algorithms, a part of bit
errors can be detected and corrected. The focus is thus to handle the part of bit errors that can not
be detected or can not be corrected by the decoding algorithms. Therefore, the residual dynamics
can be modeled as hybrid systems with the state of the Markov chain or the switching sequence
unknown or only partly known.
In the recent years, increasingly the packet loss and the delays are formulated unifiedly by one

Markov chain [135, 73].

18.5 Residual evaluation in NCS

In the last sections, it is shown that the FD problem of the NCS can be transformed into that of
LPV systems, uncertain systems with additive or multiplicative unknown inputs, Markov systems,
switched systems, etc, depending on the nature and the available information of the network-induced
factors (see Fig. 18.1).
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Fig. 18.1 Modelling of NCS with a given network

In this section, we shall consider how to evaluate the residual signal in the NCS. In principle, the
residual can be evaluated as discussed in Chapter 3. For instance, we can use adaptive threshold to
take into account the influence of the control inputs on the residual. Besides of these basic principles,
we would like to call attention that the residual evaluation should be handled carefully if the NCS
is formulated as stochastic systems. For instance, the H∞-norm of a Markov system is defined by

kGk∞ =
E (krk2)

kdk2
⇔ E (krk2) ≤ kGk∞ kdk2

Denote with βd the upper bound of kdk2. Different from deterministic systems, setting the threshold
as Jth = kGk∞ βd could result in a high false alarm rate, because kGk∞ βd is the upper bound of
E (krk2) but may be much lower than that of krk2.
In some cases, it is possible to figure out the probability distribution of the residual signal in the

fault-free case, which can be used to calculate the false alarm rate for a given threshold or to set a
risk-dependent threshold [155].
In more complex situations, the recently proposed residual evaluation scheme in [38] can be

applied to estimate the bounds of both the expectation E
³
krk2,η

´
and the variance σ

³
krk2,η

´
of

krk2,η =

vuut
ηX

j=0

rT (k − j)r(k − j)

where η denotes the length of time window used for the residual evaluation. Based on it, the threshold
can be set using the ”n-σ” principle.
To make full use of the stochastic information, advanced residual generation and evaluation

schemes are worthy of further investigation [39, 189].

18.6 Concluding remarks

In this chapter, the residual generation and evaluation approaches in the NCS are introduced. As
mentioned in Section 17.7, different QoS parameters are closely correlated. Therefore, the questions
such as "tolerate longer delay or drop out more packets" are of practical interest. However, as it is
difficult to describe the interconnections analytically, it is not an easy task to consider this aspect
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in the design. A combined modeling of the delay and the packet loss by a common Markov chain
adopted by [73, 135] is one step towards this direction. In open NCS with frequent QoS parameter
changes, adaptive FD schemes or fuzzy T-S model based design can be developed.
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Integrated design of communication and FD strategy

From the last chapter we can see that it is sometimes difficult to handle stochastic variations in the
QoS parameters, which becomes a serious problem if the network is overloaded [22]. To reduce such
variations, the ideal way is to improve the network capacity. Alternatively, reducing the flow rate
over the network would also decrease the uncertainty and simplify the handling.
At the network level, the traffic over the network can be reduced and smoothed in different ways,

for instance, by [65]:

� applying the classical mechanisms to optimize a network, for instance, to control the priority
levels of the messages, to control the scheduling policies in the communication buffers, to change
the parameters of protocols or to smooth the traffic,

� finding a good distribution of network components on the network, e.g. connect the system
components with intensive information exchange in a sub-network, which can be carried out
based on the graph theory, splitting algorithms, spectral algorithms or genetic algorithms.

At the application level, the flow rate over the network mainly depends on quantization density,
sampling rate and the number of signals to be transmitted, as the amount of useful data exchanged
over the network can be schematically described by

N =
mX

i=1

fiqi

where m is the number of signals to be transmitted over the network, fi the sampling rate of the
i-th signal, and qi the number of bits used to represent the i-th signal, i = 1, 2, · · · ,m. A reduction
of the flow rate can thus be achieved, as shown in Fig. 19.1, by

� a coarser quantization,
� a lower sampling rate,
� partial access of the sensors and the actuators to the network at each time instant,
� reduction of information exchange between the subsystems, or
� transmission of multiple data in one packet to reduce header overhead.

The distribution of data flows over the network plays an important role as well. As mentioned
before, the most part of the delay, especially the large variance of delays in closed NCS with con-
tention based MAC protocol is caused by the waiting time resulting from the collision. For instance,
in Ethernet based NCS, the collision happens when two nodes try to access the network at the
same time. After a collision is detected, both sending nodes will wait and try to send the messages
again after a back-off time. Each node selects the back-off time independently and randomly among
a given set of numbers. Therefore, the distribution of network flows should also be regarded as a
design parameter and taken into account in network dimensioning and FD system design.
Aiming at achieving an integrated design of communication and FD strategy, in this chapter

we shall discuss several possibilities of reducing network load, analyze the influence on the FD
performance and give the corresponding FD scheme.
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Fig. 19.1 Network flow reduction and optimization at the application level

19.1 Selection of sampling mechanism

Sampling mechanism, including sampling period and timing of sampling instants, is an important
parameter in the NCS. It has direct influence on the rate and distribution of the data flows, the FD
performance as well as the real-time computational efforts.

19.1.1 Sampling period

Based on the sampled-data system description (17.1)-(17.4) with clock-driven and synchronized
sensors and actuators, it has been shown in Chapter 16 that increasing sampling period will reduce
the flow rate but also decrease the FD performance JSSD,PS,∞/∞,opt, the optimal FD performance
achievable in the parity space approach, and JSSD,OBS,∞/∞,opt, the optimal H∞/H∞ performance
achievable with the observer-based design. The sampling period should thus be selected to get a
suitable compromise between the flow rate and the FD performance.

19.1.2 Timing of sampling instants

For closed and synchronized NCS of modest scale, a cooperative asynchronous sampling and trans-
mission scheme is suggested in [173]. The basic idea is to regulate the distribution of the communi-
cation over the network so that collisions can be considerably reduced. Depending on the available
computing power, a time-varying or time-invariant FD system can be designed.
To illustrate the basic idea, we consider an NCS with a number of m distributed sensors that

sample the corresponding outputs with a uniform sampling period h. The conventional sampling
mechanism is to sample all m outputs simultaneously at t = kh, k = 0, 1, 2, · · · . If these sampled
values are sent through the network to the central unit, i.e. following the simultaneous sampling and
simultaneous sending scheme, then collisions may happen and cause unnecessary delays. In order to
avoid bursty traffic and collisions, each sensor will access the network one after the other. One way to
achieve this is to sample the outputs still simultaneously at t = kh, but, after the i-th (i = 1, · · · ,m)
output is sampled, the sampled value will be held up in a local buffer and sent after a time gap of δi,
0 < δ1 < δ2 < · · · < δm ≤ h. We call this scheme as simultaneous sampling and sequential sending.
In this case, the standard parity space approach or observer-based approach can be directly applied
to generate the residual signal at time kh.
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Alternatively, we could also sample the i-th plant output at time instants tk̃ = kh + δi, k =

0, 1, 2, · · · , k̃ = km + i, i = 1, · · · ,m, and sent over the network to the central unit immediately.
This scheme is named as asynchronous sampling and sequential sending. The time interval between
two successive sending instants δi+1− δi can be equidistant or selected according to the transmitted
packet length and the processing speed of the central unit. Let Ci denote the i-th row of the matrix
C. Depending on the computing power of the central unit, the central FD system may be designed
in two different ways.
In the case of sufficient computing power, a periodic residual generator as follows can be imple-

mented to calculate the residual signal immediately after the arrival of each sensor value

x̂(k̃ + 1) = Ak̃x̂(k̃) +Bk̃u(k̃) + Lk̃

³
yi(k̃)− ŷi(k̃)

´

ŷi(k̃) = Cix̂(k̃)

r(k̃) = Wk̃

³
yi(k̃)− ŷi(k̃)

´
(19.1)

where Lk̃ and Wk̃ are periodic matrices,

Ak̃ = eAc(tk̃+1−tk̃), Bk̃ =

Z tk̃+1−tk̃

0

eAcτBcdτ

In the case of limited computing power, the residual signal can be calculated with an interval of
h. In this case, the system dynamics can be described by a lifted LTI model [179] and, as a result,
the residual generator can be designed as

x̂(k + 1) = Āx̂(k) + B̄u(k) + L (ȳ(k)− ỹ(k))

ỹ(k) = C̄x̂(k) + D̄u(k)

r(k) = W (ȳ(k)− ỹ(k)) (19.2)

where

x̂(k) = x(kh), u(k) = u(kh), ȳ(k) =

⎡
⎢⎣

y1(kh+ δ1)
...

ym(kh+ δm)

⎤
⎥⎦

Ā = eAch, B̄ =

Z h

0

eAcτBcdτ

C̄ =

⎡
⎢⎣

C1e
Acδ1

...
Cme

Acδm

⎤
⎥⎦ , D̄ =

⎡
⎢⎢⎣

C1
R δ1
0

eAcτBcdτ
...

Cm

R δm
0

eAcτBcdτ

⎤
⎥⎥⎦

Though the above scheme is originally proposed for the implementation at the application level
[173], it can be used in combination with the TDMA protocol at the network level. We call such a
scheme as cooperative and adaptive sampling.

19.2 Partial information transmission based on communication sequences

In order to reduce the network load and thus avoid the uncertainty caused by transmission delays
and packet losses, a so-called periodic communication sequence (PCS) introduced by [78, 166] can
be employed for the allocation of network resource. Instead of transmitting each control input and
measured output signal at each sampling time, only a part of sensors and actuators have access to
the network.
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19.2.1 Description of communication sequence

Assume that at any time only maximal ωy sensors and ωu actuators will be allowed to access the
network, 1 ≤ ωy ≤ m, 1 ≤ ωu ≤ nu. To describe such a scheme, time varying matrices M(k) and
N(k) are introduced. The output vector used for FD is

y(k) = N(k)yp(k)

where N(k) ∈ Rωy×m is a time-varying matrix formed by selecting ωy rows of the identity matrix.
The control input vector up working on the process depends on the interpolation scheme at the ac-
tuators’ side (see the discussion in Subsection 17.3), which is represented by a time-varying diagonal
matrix M(k) ∈ Rnu×nu with ωu ones and nu − ωu zeros on the diagonal. Often periodic transmis-
sions are preferred from the viewpoint of simplified design and implementation efforts, which lead
to periodically time-varying matrices M(k), N(k).
By substituting the relation between y and yp into (17.5), it is seen that the NCS with periodic

partial transmission can be described as a periodic system [169]

x(k + 1) = Ax(k) +Bup(k) +Edd(k) +Eff(k)

y(k) = N(k)(Cx(k) +Dup(k) + Fdd(k) + Fff(k))

19.2.2 Design of FD system

It is reasonable to assume that the transmission schemes M(k), N(k) are known to the FD system.
Thus, up can be calculated from M(k), u(k). In the framework of the parity space approach, a
periodic parity relation based residual generator can be built as

r(k) = Vs(k)

⎛
⎜⎝

⎡
⎢⎣
y(k − s)

...
y(k)

⎤
⎥⎦−Hu,s(k)

⎡
⎢⎣
up(k − s)

...
up(k)

⎤
⎥⎦

⎞
⎟⎠

where Vs(k) is the periodic parity matrix satisfying Vs(k)Ho,s(k) = 0, Ho,s(k) and Hu,s(k) are
periodic matrices depending on N(k) as

Ho,s(k) =

⎡
⎢⎢⎢⎣

N(k − s)C
N(k − s+ 1)CA

...
N(k)CAs

⎤
⎥⎥⎥⎦

Hu,s(k) =

⎡
⎢⎢⎢⎢⎣

N(k − s)D O · · · O

N(k − s+ 1)CBM(k − s) N(k − s+ 1)D
. . .

...
...

. . . O
N(k)CAs−1BM(k − s) · · · N(k)D

⎤
⎥⎥⎥⎥⎦

Based on the residual dynamics
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r(k) = Vs(k)

⎛
⎜⎝Hd,s(k)

⎡
⎢⎣
d(k − s)

...
d(k)

⎤
⎥⎦+Hf,s(k)

⎡
⎢⎣
f(k − s)

...
f(k)

⎤
⎥⎦

⎞
⎟⎠

Hd,k =

⎡
⎢⎢⎢⎢⎣

N(k − s)Fd O · · · O

N(k − s+ 1)CEd N(k − s+ 1)Fd
. . .

...
...

. . . O
N(k)CAs−1Ed · · · N(k)Fd

⎤
⎥⎥⎥⎥⎦

Hf,k =

⎡
⎢⎢⎢⎢⎣

N(k − s)Ff O · · · O

N(k − s+ 1)CEf N(k − s+ 1)Ff
. . .

...
...

. . . O
N(k)CAs−1Ef · · · N(k)Ff

⎤
⎥⎥⎥⎥⎦

The FD system can be designed by applying the FD approaches for periodic systems introduced in
Chapter 10. Therefore, in the following we shall concentrate on analyzing the influence of partial
transmission on the FD performance.

19.2.3 Influence on full decoupling

For this purpose, notice that

Ho,s(k) = N̄(k)Ho,s, Hd,s(k) = N̄(k)Hd,s, Hf,s(k) = N̄(k)Hf,s (19.3)

where Ho,s,Hd,s,Hf,s are the coefficient matrices in the parity relation of the original system (17.5)
(see (2.4)), N̄(k) is a periodic matrix of full row rank and is uniquely decided by the communication
sequence,

N̄(k) =

⎡
⎢⎣
N(k − s) O

. . .

O N(k)

⎤
⎥⎦

The subsequent discussion will be carried out in the framework of the parity space approach.
At first suppose that a full decoupling of the residual signal r from the unknown disturbances d is

achievable in the original system (17.5). Denote the basis matrix of the left null space of
£
Ho,s Hd,s

¤

by Ndecoup, i.e.
Ndecoup

£
Ho,s Hd,s

¤
= 0

If the NCS under the given periodic communication sequence is still decouplable, then there should
be a nonzero matrix Ndecoup(k) such that

Ndecoup(k)
£
Ho,s(k) Hd,s(k)

¤
= 0, ∀k (19.4)

Substituting (19.3) into (19.4) yields

Ndecoup(k)N̄(k)
£
Ho,s Hd,s

¤
= 0 (19.5)

It shows that Ndecoup(k)N̄(k) must also lie in the left null space of
£
Ho,s Hd,s

¤
. Since

dimNdecoup = (s+ 1)m− rank
¡£
Ho,s Hd,s

¤¢

and

dimNdecoup(k)

= (s+ 1)ωm − rank
¡
N̄(k)

£
Ho,s Hd,s

¤¢

≤ (s+ 1)ωm −
¡
(s+ 1)ωm + rank

¡£
Ho,s Hd,s

¤¢
−m(s+ 1)

¢

= (s+ 1)m− rank
¡£
Ho,s Hd,s

¤¢
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it can be seen that
dimNdecoup(k) ≤ dimNdecoup

Due to PCS, the dimension of the decoupling space will possibly decrease. Even if the original system
is decouplable, the realizability of full decoupling may be lost due to reduced information in an NCS
with periodic communication sequence.

19.2.4 Influence on optimal FD performance

In the next, we shall consider the optimal FD performance. Aiming at improving the robustness
and sensitivity of the FD system, in the case of perfect communication the following optimization
problem

max
vs

JPS = max
vs

vsHf,sH
T
f,sv

T
s

vsHd,sHT
d,sv

T
s

(19.6)

subject to vsHo,s = 0

is solved to get the optimal parity vector. Now we compare it with the optimization problem (19.7)
of the NCS

max
vs(k)

JPS,k = max
vs(k)

vs(k)Hf,s(k)H
T
f,s(k)v

T
s (k)

vs(k)Hd,s(k)HT
d,s(k)v

T
s (k)

(19.7)

subject to vs(k)Ho,s(k) = 0

Denote the basis matrix of the left null space of Ho,s and Ho,s(k), respectively, by Nparity and
Nparity(k). Optimization problems (19.7) and (19.6) are, respectively, equivalent to the unconstrained
optimization problems

max
vs(k)

vs(k)Ho,s(k)=0

JPS,k = max
ps(k)

ps(k)Nparity(k)Hf,s(k)H
T
f,s(k)N

T
parity(k)p

T
s (k)

ps(k)Nparity(k)Hd,s(k)HT
d,s(k)N

T
parity(k)p

T
s (k)

(19.8)

max
vs

vsHo,s=0

JPS = max
ps

psNparityHfH
T
f N

T
parityp

T
s

psNparityHdHT
d N

T
parityp

T
s

(19.9)

where ps and ps(k) are freely selectable vectors of compatible dimensions. From

Nparity(k)Ho,s(k) = Nparity(k)N̄(k)Ho,s = 0 (19.10)

it can be seen that Nparity(k)N̄(k) is a linear combination of the basis matrix Nparity and there
exists a matrix Q, such that

Nparity(k)N̄(k) = QNparity (19.11)

Because N̄(k), Nparity(k) and Nparity are of full row rank, it can be seen

rank(Nparity(k)N̄(k)) = rank(Nparity(k)) = rank(QNparity) = rank(Q) (19.12)

i.e., matrix Q is also of full row rank and it transforms the parity space spanned by Nparity onto a
lower dimensional subspace Nparity(k)N̄(k). It follows from (19.3) and (19.11) that

JPS,k =
ps(k)Nparity(k)N̄(k)Hf,sH

T
f,sN̄

T (k)NT
parity(k)p

T
s (k)

ps(k)Nparity(k)N̄(k)Hd,sHT
d,sN̄

T (k)NT
parity(k)p

T
s (k)

=
ps(k)QNparityHf,sH

T
f,sN

T
parityQ

T pTs (k)

ps(k)QNparityHd,sHT
d,sN

T
parityQ

TpTs (k)
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As a result, optimization problem (19.8) is equivalent to

max
vs(k)

vs(k)Ho,s(k)=0

JPS,k = max
p̄s(k)

p̄s(k)NparityHfH
T
f N

T
parityp̄

T
s (k)

p̄s(k)NparityHdHT
d N

T
parityp̄

T
s (k)

where p̄s(k) = ps(k)Q. That means the space of feasible solutions p̄s(k) is dependent on Q. Compared
with optimization problem (19.9), where ps can be freely selected, we see that

JPS,k,opt ≤ JPS,opt

The optimal performance index JPS,k,opt of optimization problem (19.8) could reach JPS,opt if and
only vs,opt lies in the space spanned by Nparity(k)N̄(k). From the above analysis we see that, com-
pared with perfect communication, the optimal performance achievable in the NCS with a given
PCS may decrease [169]. This is the price paid for the reduced network load.

19.2.5 Selection of communication sequence

If the communication capacity of the network is given, the optimal selection of the PCS aiming at
the best achievable FD performance can be formulated as: Given ωy and ωu, find the value of period
θ and a periodic matrix N(k) = N(k + θ) with a structure specified in Section 19.2.1 to maximize
the value of JPS,k,opt, i.e.,

min
θ, N(k)

½
max
1≤k≤θ

JPS,k,opt

¾
(19.13)

Optimization problem (19.13) can be solved through an exhaustive search by evaluating JPS,k,opt
for all possible N(k), if θ,m and nu are small. A generalized eigenvalue-eigenvector problem needs
to be solved to get the optimal performance index JPS,k,opt of (19.8) for each possibility of N(k).

19.3 Transmission of multiple data in one packet

It is well-known that a standard Ethernet packet contains a data field with length varying between
46 Bytes and 1500 Byte, which is much longer than a single sensor data obtained by a 8 bit or 12
bit A/D converters. Therefore, it is possible to reduce the bandwidth used for header transmission
by encapsulating multiple sensor data in one packet.
To analyze the influence of such a scheme on FD system design, we assume that the control

input packets and the sensor output packets arrive the FD system without delay or packet loss. Let
h denote the sampling period and ρ ∈ N denote the number of data encapsulated in one packet.
Note that the dynamics of SD system (17.1)-(17.4) during [kρh, (k + 1)ρh) can be described by

x̄(k + 1) = Āx̄(k) + B̄ū(k) +

Z (k+1)ρh

kρh

eAcτ (Edcd(τ) +Efcf(τ)) dτ

ȳ(k) = C̄x̄(k) + D̄ū(k) (19.14)

where x̄(k) = x(kρh), ū(k) and ȳ(k) are the lifting of u(k) and y(k) defined by
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ū(k) =

⎡
⎢⎢⎢⎣

u(kρ)
u(kρ+ 1)

...
u(kρ+ ρ− 1)

⎤
⎥⎥⎥⎦ , ȳ(k) =

⎡
⎢⎢⎢⎣

y(kρ)
y(kρ+ 1)

...
y(kρ+ ρ− 1)

⎤
⎥⎥⎥⎦

Ā = Aρ, B̄ =
£
Aρ−1B Aρ−2B · · · B

¤

C̄ =

⎡
⎢⎢⎢⎣

C
CA
...

CAρ−1

⎤
⎥⎥⎥⎦ , D̄ =

⎡
⎢⎢⎢⎢⎣

O O · · · O

CB O
. . .

...
...

. . .
. . . O

CAρ−2B · · · CB O

⎤
⎥⎥⎥⎥⎦

A = eAch, B =

hZ

0

eActBcdt

If at time instant (k + 1)ρh the FD system receives the packets containing the information of the
output samples y((kρ+ j)h) and input samples u((kρ+ j)h), j = 0, · · · , ρ− 1, then a residual signal
r can be generated by the following residual generator

x̃(k + 1) = Āx̃(k) + B̄ū(k) + L̄(ȳ(k)− ỹ(k))

ỹ(k) = C̄x̃(k) + D̄ū(k)

r(k) = W̄ (ȳ(k)− ỹ(k)) (19.15)

where L̄ and W̄ are constant free parameters. Recall that it is shown in Chapter 16 that the residual
signal r generated by (19.15) is a lifting of the residual generated by the observer-based residual
generator with sampling period h as follows

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(k)− ŷ(k))

ŷ(k) = Cx̂(k)

r(k) = W (y(k)− ŷ(k)) (19.16)

if and only if x̃(0) = x̂(0) and

L̄ =
£
(A− LC)ρ−1L · · · (A− LC)L L

¤

W̄ =

⎡
⎢⎢⎢⎢⎣

W O · · · O

−WCL W
. . .

...
...

. . .
. . . O

−WC(A− LC)ρ−2L · · · −WCL W

⎤
⎥⎥⎥⎥⎦

(19.17)

We would like to point out that the weighting matrix W̄ plays an important role in avoiding the loss
of FD performance. The additional detection delay caused by packet-based data transmission is ρh
in the worst case. But (19.15) can achieve the FD performance that is achieved by (19.16).

19.4 Optimal partition of subsystems

In distributed systems, as described by (17.6), the partition of subsystems and the information
exchange strategy among subsystems will influence the structural property of the NCS and the
FD performance. To analyze fault detectability and isolability, an approach based on the graph
theory is proposed by [136]. It is apparent that loose coupling between subsystems will reduce the
requirement on communication. On the other side, [58] have shown that, based on consensus filters,
suitable overlapping partition of the subsystems can be used to improve the FD of faults affecting
the shared variables. An optimal scheme for partition of subsystems is worthy of further discussion.
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19.5 Local encoder and transmission of local residual signals

For a distributed system described by (17.6), if the information of up,i(k) and yp,i(k) of the local
systems are available to the central control and monitoring system (CCMS), then an observer-based
residual generator can be constructed as

x̂(k + 1) = Ax̂(k) +Bup(k) + L(yp(k)− ŷ(k))

ŷ(k) = Cx̂(k) +Dup(k)

r(k) = W (yp(k)− ŷ(k)) (19.18)

Since the CCMS can send the state estimation vector x̂(k) to all subsystems. Then a local encoder
can be built as

rSi(k) = yp,i(k)− Cix̂i(k)−Diup,i(k) (19.19)

where rSi(k), i = 1, · · · , p, is the local residual signal. That means, instead of the measurements of
the local outputs yp,i(k), the local residual signal rSi(k) will be sent from the subsystems to the
CCMS. Then the central observer (19.18) can be implemented as

x̂(k + 1) = Ax̂(k) +Bup(k) + L

⎡
⎢⎢⎢⎣

rS1(k)
rS2(k)
...

rSp(k)

⎤
⎥⎥⎥⎦

r(k) = W

⎡
⎢⎢⎢⎣

rS1(k)
rS2(k)
...

rSp(k)

⎤
⎥⎥⎥⎦ (19.20)

As it is often the case that
sup krSi(k)kpeak ¿ sup kyp,i(k)kpeak (19.21)

the number of the bits needed for transmitting rSi(k) should be less than that needed for transmitting
yp,i(k) at the same quantization error.
Note that the observer (19.20) still needs the values of the local control inputs up,i(k), i = 1, · · · , p,

through the network from the subsystems. Fortunately, if an observer-based state feedback controller
in the form of

up,i(k) = −Kix̂(k) +Wiw(k) (19.22)

is used as the local controller, then this part of communication can be avoided by computing (19.22)
simultaneously at the CCMS, as shown in Fig. 19.2.
The above scheme is characterized by a low flow rate over the network and the main computation

of (19.20) is carried out by the state observer of the CCMS. On the other side, we notice that, when
the global network fails, the local FD will stop running, as the information of the state estimation is
no longer available. Therefore, to be tolerant to the faults of the global network, the local FD unit
must be able to perform its work autonomously to a certain degree, which motivates the study in
the next section.

19.6 Distributed realization of observers

To improve the tolerance to the network faults, in each subsystem a residual generator in the form
of

x̂Si(k + 1) = Aiix̂Si(k) +Biup,i(k) + LSi(yp,i(k)− ŷSi(k))

ŷSi(k) = Cix̂Si(k) +Diup,i(k)

rSi(k) = yp,i(k)− ŷSi(k) (19.23)
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Fig. 19.2 Information exchange between the CCMS and the subsystems in the local encoder scheme

will be built, where LSi is the gain matrix of the local observer based residual generator. The
local residual generator is only based on the local information yp,i(k), up,i(k) and doesn’t need any
information from the CCMS or the other subsystems. Even if the global network fails, the local
residual generator should still guarantee the detection of local faults. The dynamics of the i-th local
residual signal is governed by

eSi(k + 1) = (Aii − LSiCi)eSi(k) +

pX

j=1,j 6=i

Aijxj(k)

+(Ed,i − LSiFd,i)d(k) + (Ef,i − LSiFf,i)f(k)

rSi(k) = CieSi(k) + Fd,id(k) + Ff,if(k) (19.24)

where eSi(k) = xi(k) − x̂Si(k). The detection of the local faults follows from a residual evaluation
with the residual evaluation function

rSi,ev(k) =
q
rTSi(k)rSi(k) (19.25)

and the decision logic

rSi,ev(k)

½
≤ Jth,Si ⇒ The i-th subsystem is fault-free
> Jth,Si ⇒ The i-th subsystem is faulty

(19.26)

where Jth,Si is the local threshold defined by

Jth,Si = sup
d,xj ,j 6=i,f=0

rSi,ev(k) (19.27)

In order to reduce the miss detection rate, Jth,Si can be minimized by selecting the local observer
gain matrix LSi with the help of the LMI technique.
Now we shall discuss in this case how to design the observer-based FD system in the CCMS. The

basic idea is still to try to make use of the local residual signals rSi(k), i = 1, · · · , p, generated by
(19.23), instead of transmitting yp,i(k) directly, to reduce the amount of data transmission by the
same quantization error, as in general (19.21) holds.
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The following theorem provides such a possibility [37].
Theorem 19.1 Given the system model (17.6). Let a central observer based residual generator

be constructed as

x̂C(k + 1) = Ax̂C(k) +Bup(k) + L

⎡
⎢⎢⎢⎣

r1(k)
r2(k)
...

rp(k)

⎤
⎥⎥⎥⎦ (19.28)

x̂C(k) =

⎡
⎢⎢⎢⎣

x̂C,1(k)
x̂C,2(k)
...

x̂C,p(k)

⎤
⎥⎥⎥⎦ , up(k) =

⎡
⎢⎢⎢⎣

up,1(k)
up,2(k)
...

up,p(k)

⎤
⎥⎥⎥⎦ , L =

⎡
⎢⎢⎢⎣

L1
L2
...
Lp

⎤
⎥⎥⎥⎦ (19.29)

λi(k + 1) = Aiiλi(k)−
pX

j=1
j 6=i

Aij x̂C,j(k) + LSirSi(k)− Li

⎡
⎢⎢⎢⎣

r1(k)
r2(k)
...

rp(k)

⎤
⎥⎥⎥⎦ (19.30)

⎡
⎢⎢⎢⎣

r1(k)
r2(k)
...

rp(k)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

rS1(k)
rS2(k)
...

rSp(k)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

C1λ1(k)
C2λ2(k)

...
Cpλp(k)

⎤
⎥⎥⎥⎦ (19.31)

rC(k) = W

⎡
⎢⎢⎢⎣

r1(k)
r2(k)
...

rp(k)

⎤
⎥⎥⎥⎦ , x̂C(0) =

⎡
⎢⎢⎢⎣

x̂S1(0)
x̂S2(0)
...

x̂Sm(0)

⎤
⎥⎥⎥⎦ , λi(0) = 0 (19.32)

where rC(k) is the residual signal, L is the gain matrix of the central observer, rSi(k), i = 1, · · · , p,
is the local residual signal sent by the i-th local subsystem to the CCMS, λi(k), i = 1, · · · , p, is some
correction term. Then x̂C(k) and rC(k) are the same as x̂(k) and r(k) generated by (19.18), as long
as x̂C(0) = x̂(0).
Proof: Let ξi(k) = x̂C,i(k)− (x̂Si(k)− λi(k)). Then from (19.28), (19.30) and (19.23) we get

ξi(k + 1) = Aiiξi(k)

As ξi(0) = x̂C,i(0)− (x̂Si(0)− λi(0)) = 0, there is ξi(k) = 0, ∀k, i.e. x̂C,i(k) = x̂Si(k) − λi(k) , and
the feedback signal ri(k), i = 1, · · · , p, in the central observer state equation can be re-written as

ri(k) = yp,i(k)− Cix̂Si(k)−Diup,i(k) + Ciλi(k)

= yp,i(k)− Cix̂C,i(k)−Diup,i(k) (19.33)

Substituting (19.33) into (19.28) and (19.32) gives

x̂C(k + 1) = Ax̂C(k) +Bup(k) + L (yp(k)− Cx̂C(k)−Dup(k))

rC(k) = W (yp(k)− Cx̂C(k)−Dup(k)) (19.34)

Comparing (19.34) with (19.18) shows that x̂C(k) = x̂(k) and rC(k) = r(k), if and only if x̂C(0) =
x̂(0). ¤

From (19.34) in the proof it can be seen that the parameters L,W in the central residual generator
described by (19.28)-(19.31) can be selected with the known standard decoupling or optimization
techniques.
The communication and FD scheme introduced in this section can be summarized, as shown in

Fig. 19.3 as:
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� In each subsystem there is a local FD system consisting of (19.23), (19.25) and (19.26).
� Each local subsystem transmits the local residual signal rSi(k), i = 1, · · · , p, to the central
monitoring system.

� There is a central residual generator constructed as (19.28)-(19.31), which makes use of the
information from all subsystems for fault detection.
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Fig. 19.3 Information exchange between the CCMS and the subsystems in the scheme of distributed real-
ization of observers

19.7 Conclusion

In this chapter, different possibilities of reducing the network load at the application level and
increasing the effective utilization of the limited bandwidth have been discussed. The structural
change caused by different information exchange strategies has been pointed out. For the analysis
and design, time-varying system theory has been applied. It is also possible to combine different
approaches. From the system engineering viewpoint, the next step should be to allocate the limited
resource to the most needed place by a systemwide planning and optimization.
One of the key problems in NCS design is to cope with the compromise between the utilization of

the network and the real-time behaviour. The current discussion on the future-oriented bus systems
in the automobile industry indicates the time-triggered technology for transmission of safety-critical
data to meet the real-time requirements. With the advanced sensing and actuating technology,
periodic and time-varying system theory can help the analysis and design of the controllers and the
FD systems. In this framework, it is also possible to integrate the communication and the computing
in embedded NCS.
It is interesting to notice the difference between the FD problem and the control problem of the

NCS. For the FD system design, residual evaluation needs more attention and corresponding tools
can be developed, especially if the QoS parameters under consideration are stochastic. An in-depth
study of open problems will surely not only improve the reliability of the NCS but also contribute
to the theoretical development of the related areas.
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