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Abstract: After conversational agents have been made available to the broader public, we speculate
that applying them as a mediator for adaptive environments reduces control complexity and increases
user experience by providing a more natural interaction. We implemented and tested four agents, each
of them differing in their system intelligence and input modality, as personal assistants for Mediated
Atmospheres, an adaptive smart office prototype. They were evaluated in a user study (N = 33) to
collect subjective and objective measures. Results showed that a smartphone application was the
most favorable system, followed by conversational text and voice agents that were perceived as being
more engaging and intelligent than a non-conversational voice agent. Significant differences were
observed between native and non-native speakers in both subjective and objective measures. Our
findings reveal the potential of conversational agents for the interaction with adaptive environments
to reduce work and information overload.

Keywords: ubiquitous computing; smart office; conversational agents; smart agents; chatbot; human–
computer interaction; adaptive environments; multimodal interaction; mediated atmospheres

1. Introduction

Smartphones have become an essential part of our daily life and are deeply embedded in our
everyday actions, in a personal as well as in a professional environment [1]. We use our smartphones
about 85 times a day, spending in total more than 5 h with the device [2]. Interacting with a smartphone
requires us to use our hands and easily distracts us from our other activities [1], therefore companies
like Apple (Siri, 2011), Google (Google Now, 2012), Microsoft (Cortana, 2015), and Amazon (Alexa, 2015)
have released smart voice assistants that are integrated into smartphones, computers, or IoT devices
and enable hands-free and more unobtrusive interaction. In 2016, Google announced Google Assistant
as the successor of Google Now. It was designed as an intelligent personal assistant that engages the user
in a two-way conversation, but also offers multimodal input via voice and text [3]. Research groups
have been developing agents that answer questions conversationally for the past two decades [4].
However, those companies have made them available for the broader public, following the vision of
the HCI community that the importance of voice agents will considerably increase as they will become
more conversational [5].

We believe that the emerging potential of such conversational agents offers new possibilities
for smart environments by facilitating interaction and to make them more adaptive—a necessity
for environments in order to appear intelligent, according to Mozer et al. [6]. By equipping the
environment with pervasive and ubiquitous technologies, it obtains information about itself, and the
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actions and preferences of the users. Through sensing their requests and responding accordingly, users
may perform those complex, seemingly intelligent tasks automatically [7] and create a symbiosis
between the space and the occupant for providing meaningful interactions with our surroundings.

As one scenario of an intelligent, adaptive environment, we use Mediated Atmospheres, a modular
workspace proposed by Zhao et al. [8]. It aims to dynamically influence the users’ abilities to focus
on a specific task or to recover from a stressful situation. Therefore, multimodal media—lighting,
video projection, and sound—is used to transform the appearance of the workspace. It is leveraged
to address concerns in contemporary, open-plan workplaces where recent reports showed a decline
in the satisfaction of office workers, leading to reduced productivity and motivation. In contrast,
employees reported that having more freedom in choosing their workplace leads to a higher level of
satisfaction, innovation, and effectiveness [9]. Utilizing Mediated Atmospheres, different environments
can be projected into the room according to the occupants’ preferences or different work scenarios in
order to foster creativity, productivity, and relaxation [8].

In order to unleash the full potential of such an adaptive environment, we do not want the
user experience to be compromised by a cumbersome and tedious interaction with our workspace,
e.g., by manually adjusting lighting and sound to change its appearance. We rather envision a system
acting as a mediator between us and our environment, thus reducing our work and information
overload [10]. It should be capable of understanding our requests and seamlessly translate them into a
manifestation of lighting, video, and sound.

However, nowadays, conversational agents still suffer from a “gulf of evaluation” between users
expectations and system operation [11]. Naturally, users have higher expectations towards a system
that pretends to be capable of conducting a conversation, and hence tend to be more disappointed
if the system provokes wrong actions [11]. Nonetheless, we speculate that the “gulf of evaluation”
depends on the input modality, and is wider for voice-based input than for text-based input.

Therefore, this paper explores the application of different agents as personal assistants for the
Mediated Atmospheres framework as an example for a multimodal mediated environment. We believe
that each interface has its strengths and weaknesses, and none of them will offer a perfect solution for
the interaction with a smart office prototype. We speculate that each interface is applicable for different
scenarios in the daily work flow in a smart office, depending on the current task and the user preference.
To evaluate the interplay between the agents and the multimodal mediated environment we present and
compare four different systems that are integrated into our smart office prototype, intended to increase
both system usability and user experience by providing a natural way of interaction. By creating and
evaluating agents that differ in their level of system intelligence and input modality, we want to assess if
these agents are superior to conventional interaction modalities, like a smartphone-based graphical user
interface. Furthermore, we are interested to find out whether we can observe differences between native
and non-native speakers. Especially for natural language interfaces, we speculate that these differences
are more pronounced compared to other interfaces, because possible false recognition might influence
user experience or perception. Finally, by synthesizing our results, we want to give recommendations
for what an effective agent might look like for the context of smart, adaptive environments.

2. Related Work

In the past years, researchers have equipped the interior of buildings with pervasive and ubiquitous
technologies in order to control specific properties like lighting [12–14], glazing regulation [15], HVAC
control [16], sound [17], or information display [18–20].

Other research groups have created whole adaptive ambient environments to enable life-size
telepresence [21], or to transform its appearance and physical shape according to physiological data
of the occupant [22]. Another example is the ambientROOM that utilizes subtle cues of sound, light,
or motion to provide meaningful information to the user [23]. Similarly, context-aware systems have
also been explored within the last two decades. For instance, researchers have created the Aware
Home, an entire home equipped with ubiquitous computing technologies in order to create a living
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laboratory that is as realistic as possible [7]. Other examples that aimed to increase convenience are the
Neural Network House [24], or the Adaptive House [25].

In order to evolve from adaptive, augmented rooms to intelligent environments [26], agents have
been integrated into the built environment. They are supposed to learn the occupants’ preferences and
habits and, then, execute appropriate actions automatically. For instance, MavHome is an agent-based
smart home with algorithms to predict the inhabitants’ actions [27]. Other smart home applications see
the benefit of agents in power management [28], or to mediate the interaction with a smart grid [29].
In smart offices, agents have been integrated for a virtual secretary [30], or to accompany and lead
persons in an office building [31]. With increasing popularity of smart agents and environments,
people have analyzed them in terms of acceptance and trust [32], dominance and cooperativity [33],
or personality traits [34].

The idea of an agent, an artificial intelligence designed to maintain a conversation with a human,
has already been envisioned by Alan Turing in the 1950s [35] and was successfully implemented for
the first time by Joseph Weizenbaum with ELIZA [36]. It is considered the first “chatbot”, a text-based
conversational agent simulating a natural human interaction between the computer and a user. Recently,
conversational agents have been created for the touristic [37] and customer service domain [38], or in
social networks like Facebook or Twitter [39]. Additionally, agents have found wide-spread applications
in healthcare applications and clinical psychology, as indicated by recent reviews from Laranjo et al. [40],
Montenegro et al. [41], or Provoost et al. [42]. The findings of the reviews highlight the potential of
conversational agents in specialized areas, especially in the health domain. They not only increase
productivity by assisting medical professionals during consultation and documentation, but also increase
well-being by interacting and engaging with patients during their treatment. Through rapid technological
advancements—especially the ability of understanding unconstrained natural language input—it has
even become hard to distinguish between humans and chatbots in social networks [43,44]. For that
reason, we believe that smart conversational agents have also the potential to be applied in multimodal
environments in a similar way to reduce work and information overload during everyday work activities
in an office scenario.

Researchers like Schaffer et al. [45], Weiss et al. [46], or Silva et al. [47] presented multimodal input
solutions for applications like smart homes or smartphones using gestures, graphical user interfaces,
or voice. Additionally, Kühnel et al. [48] analyzed the applicability of established questionnaires for
evaluating multimodal input systems and concluded recommendations of which methods to use
in order to compare different systems which also influenced the choice of our evaluation measures.
However, none of them investigated different levels of system intelligence. Furthermore, they did
not consider possible differences between native and non-native speaker. This was investigated by
Pyae and Scifleet in a study analyzing the usability of voice user interfaces to better understand
usage differences between native and non-native speaker. Their findings reveal that native speakers
experienced better and more positive user experiences and also show that English language proficiency
is an important factor for the interaction with voice user interfaces [49].

3. System Description

We designed four systems that differ in the input modality (graphical vs. voice vs. text) and the
system intelligence (basic vs. advanced), as visualized in Figure 1. As shown in a top-level description
of our setup in Figure 2, the agents communicate with Mediated Atmospheres, a smart office prototype
that was introduced in previous work [8].
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Figure 1. Overview of systems for the interaction with the smart office prototype.

Mediated Atmospheres Lighting

Video

Sound

Smartphone Application

Basic Voice Agent

Advanced Voice Agent
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Dialog-
flow

Scene
Library

Scene
Control Server

Figure 2. Top-level description of agent integration into Mediated Atmospheres.

3.1. Mediated Atmospheres

Mediated Atmospheres is a modular workspace capable of digitally transforming its appearance
using controllable lighting, video projection, and sound. We combine all digital output capabilities
to design a library of scenes, multimodal virtual environments, with each of them possibly having a
different influence on our physiology or behavior [8]. Examples of the workspace, transformed into
different scenes, are shown in Figure 3.

Figure 3. Mediated Atmospheres office space with different scenes.

The scene library currently features more than 30 elements, ranging from nature landscapes,
like forests, beaches, mountains, over urban scenes, like walking through a city or train rides, to indoor
spaces, like libraries or cafés. The scenes were selected to cover a wide range of environments. Each of
them are identified by a descriptive name, and contain video and sound data, as well as lighting
configurations. Furthermore, we defined different scene properties, that will later be used by the
agents to filter scenes, like:

• Color Temperature: Color temperature of the scene’s lighting configuration in Kelvin
• Brightness: Brightness of the scene’s lighting configuration, measured as the horizontal

illumination on the desk in lux
• Primary Color: Dominant color of the scene’s video content
• Keywords: Keywords describing the scene’s video content

The scene library was implemented as an Amazon dynamoDB database, a scalable and non-relational
database web service, that offers APIs for platforms like Python, Node.js, or Android [50].
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For controlling the office space in real-time, the Mediated Atmospheres system features a Scene
Control Server with a Websocket API to dynamically control the appearance of the workspace from
different applications (as visualized in Figure 2).

3.2. Smartphone Application

The smartphone application was developed for Android-based mobile devices using the Android
SDK 9.0 (API level 28). It is able to communicate with the Scene Control Server to change the current
scene and is connected to the Scene Library for fetching scene information. The user interface is based
on the “What You See Is What You Get” (WYSIWYG) principle, allowing users to see preview images
for each scene, filter scenes by their properties using sliders (see Figure 4), and change the environment
by selecting a scene. An overview of features available in the smartphone app is depicted in Table 1.

Table 1. Feature range of agents. x = available, – = not available.

Agent

Feature/Action Smart-Phone Basic Voice Advanced Voice Advanced Text

Turn on/off x x x x
List scenes x x x x
Current scene x x x x
Switch scene based on:

- Descriptive name
- Scene properties

(color temperature, brightness, etc.)
- Comparison with current scene

(warmer, brighter, etc.)
- Keywords describing scene content

(forest, beach, etc.)

–
x

–

–

x
–

–

–

x
x

x

x

x
x

x

x

Context-awareness
(information about occupant and
previous interactions)

– – x x

Recommend scene based on:

- Current weather information
- Current time of day
- Desired mental state of occupant

(focus/relaxed)

–
–
–

–
–
–

x
x
x

x
x
x

Figure 4. Examples of user interface for interaction with Mediated Atmospheres. Left: Graphical User
Interface of Smartphone Application; Right: Example dialog between user and Advanced Text Agent.
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3.3. Smart Agents

All agents were implemented in Dialogflow, a platform for building conversational agents for
different applications (https://dialogflow.com). It uses Intents for representing the mapping between
the User Input and the Action the system should perform, and provides a webhook integration. For this
work, we used a Node.js backend to perform further logic, create more diversified agent responses,
access the scene library, and connect the agents to external APIs. The agent designed in Dialogflow can
be integrated into different platforms. For the voice agents, we used the Actions on Google platform,
which deploys the agent on Google Home (Google Inc., Mountain View, CA, USA), a wireless smart
speaker. It runs the Google Assistant, an intelligent personal assistant designed to engage the user in a
two-way conversation (https://blog.google/products/assistant/io-building-next-evolution-of-google).
Once deployed on Google Home, an agent can be invoked by saying “Okay Google, let me talk to
{agent_name}”.

For the text agent, we used the Facebook Messenger platform to build a chatbot for a Facebook page,
allowing users to directly text the agent with the desired action, without any invocation necessary (https:
//developers.facebook.com/docs/messenger-platform/getting-started/quick-start). In order to make
the agent more engaging, we included emojis into its text responses (see Figure 4 for an example dialog).

3.3.1. Basic Voice Agent

This voice agent was designed to cover the basic requirements of an agent for Mediated Atmospheres,
so that we end up with the features listed in Table 1. The agent is non-conversational, meaning that
the interaction with the user is based on a simple Request–Action scheme with static text responses,
rather than engaging the user in a dialog. As it has no information about scene properties, users have
to directly tell the agent which scene to switch to by using its descriptive name, either by having prior
knowledge about certain scenes, or by asking the agent to list a subset of scenes.

3.3.2. Advanced Voice and Text Agent

The advanced agents exceed the basic agent in terms of both feature range (see Table 1) and
context-awareness. As shown in an example dialog in Figure 4, the advanced agents were implemented
as conversational agents, incarnating a personal assistant for the smart office. Therefore, they talk
about themselves in first person and ask occupants for their names in order to personally address
them and to remember previous interactions. Furthermore, we designed the advanced agents to offer
a wider range of possible text responses for more diversified conversations. Text responses consist of
randomly selected text modules from a database, which are concatenated and modified depending
on the current context, such as the current time or whether the user is leaving the room at the end
of his work day or just to have a break. For all possible actions, we designed interaction dialogs in
Dialogflow to cover as many contingencies as possible. Figure 5 shows the possible interaction flow
for the Current scene action.

output.current_scene

true

false

check if room currently 
has a scene

What‘s the
current scene?

The current scene is called 
{scene_name}. Do you want

me to switch the scene for you?

Looks like there is no
scene at the moment. Do you
want me to put on a scene?

output.switch_scene

Alright, I'm here if you 
need anything.

output.switch_scene.yes

output.switch_scene.dontknow

Which one
do you want to 

pick?

output.switch_scene
Let me list some

scenes for you [...]
Which one do you

want to pick?

Waiting for
other command

Yes!

No!

I don‘t know... Switch to 
{scene_name}.

List more
scenes.

output.switch_scene.no

Figure 5. Possible interaction dialog with advanced agent for Current scene action. Orange: User input;
Green: Agent output; Blue: recognized intent.

Because both advanced agents have information about scene properties, users can not only switch
to a scene by specifying the descriptive name, but are also able to select scenes by more abstract queries,

https://dialogflow.com
https://blog.google/products/assistant/io-building-next-evolution-of-google
https://developers.facebook.com/docs/messenger-platform/getting-started/quick-start
https://developers.facebook.com/docs/messenger-platform/getting-started/quick-start
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like “Can you take me to a nature scene?”, or “Can you put on a warm and bright scene?”. It is further
possible to switch to a scene with properties relative to the current scene, like a scene with warmer or
colder color temperature. However, these features still require the users to map their scene expectation
to the different properties. Therefore, we wanted the agent to recommend scenes based on the current
context, or the users’ preferences:

• Weather: Recommending a scene according to the current weather was based on mapping
real-time weather information (obtained from the Dark Sky API (https://darksky.net/dev))
to scene properties. We mapped the general weather situation to the scenes’ color temperature to
approximate the current lighting situation outside. Additionally, because high levels of humidity
were found to be a key factor for concentration loss and sleepiness [51], we counteracted this
phenomenon by recommending scenes with higher brightness.

• Time: Color temperature of natural light changes over the day. It is colder in the morning and
at noon, and warmer during afternoon and evening hours [52]. Therefore, scenes with different
color temperatures are recommended for different day segments to match the human circadian
rhythm [53].

• Desired mental state: The advanced agents are aware of current occupant in the workspace, allowing
them to recommend scenes to users based on their preferences, like scenes that helped them being
more focused or more relaxed. To set these preferences users can create their own models using a
website. The agent was then able to access these personal scene models.

4. Evaluation

4.1. Experiment Design

Our population of interest is mainly knowledge workers. Therefore, we recruited university
students, researchers, and local office workers as subjects for our experiment. N = 33 people (61%
Female) participated in the experiment, with an average age of 27.5 ± 3.6 (M ± SD). 52% of the
participants named English as their native language. The experiment consisted of two parts: Agent
Exploration and Task Completion.

4.1.1. Agent Exploration

The first part of the experiment was conducted as a within-subject design. For this, each participant
interacted with every agent: Smartphone Application (SA), Basic Voice Agent (BV), Advanced Voice
Agent (AV), and Advanced Text Agent (AT). For each agent, they were asked to complete the following
list of tasks using all features available for the respective agent:

1. Turn Mediated Atmospheres off because you’re about to get lunch, followed by Turn Mediated Atmospheres
on after returning from lunch

2. Find a scene that has warm color temperature
3. Find an indoors scene
4. Find a scene that helps you focus
5. Find a scene that matches the current weather

Both the order of agents and the order of tasks for every agent were randomized to avoid possible
adaptation effects. The Agent Exploration part was mainly intended to make the subjects familiar with
the usage of each agent and allow them to explore the different ranges of features. We further collected
subjective responses in a survey to measure overall usability, perception of intelligence, and engagement,
as well as perception of trust and control. These measures are explained in detail in Section 4.3.

https://darksky.net/dev
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4.1.2. Task Completion

After the first part, all subjects should have the same knowledge on how to communicate with
the agents, which allows us to measure quantitative information about the agent interaction in the
second part of the experiment. For that, we chose a between-subjects design where each participant
was randomly assigned to one agent to allow a better assessment of objective measures without
possible habituation effects. Additionally, we wanted to limit the duration of this explorative study
to a reasonable length. In total, nine subjects were assigned to the Advanced Voice Agent, and eight
subjects were assigned to each of the other agents, respectively.

For the experiment, participants were asked to complete the following list of tasks utilizing the
agent’s features:

1. Find a city scene
2. Find a scene that shows mountains
3. Find a bright and blue scene
4. Find a scene that is warm and shows a forest
5. Find a scene that matches the current time of day
6. Find a scene that helps you relax after a rough day

The tasks were selected to represent the different features from Table 1 equally. For each task, we
collected objective measures like task completion time, number of interactions, and agent recognition
rate. These measures are explained in detail in Section 4.4.

4.2. Procedure

Both parts of the experiment were performed in the Mediated Atmospheres office space and consecutively
in one sitting. Each sitting began with a tutorial, during which the study personnel described the
concept of Mediated Atmospheres and explained the study protocol. It was followed by an introduction
into the different agents, their range of features, and the way of interacting with them. Subsequently,
participants were left alone in the workspace, and a website showing the task list for the currently
selected agent guided them through the first part of the experiment. After completing all tasks with
one agents, subjects were asked to provide feedback in form of a questionnaire and advance with the
next agent. This was repeated for every agent.

For the Task Completion part, subjects were left alone in the workspace, again with a website showing
a list of tasks to complete with the agent assigned to them. Since we were interested in collecting
objective measures for this part, participants were asked to press a button once they successfully
accomplished a task to advance with the next one.

4.3. Subjective Measures

4.3.1. Overall Usability

For a subjective measure of the usability for each agent, we used the System Usability Scale
(SUS) [54]. It consists of a 10 item questionnaire with a five-level Likert scale (1 = Strongly Disagree,
5 = Strongly Agree), and yields a high-level subjective view of the usability as a linear scale of 0–100.
We chose the SUS scale over questionnaires particularly designed for speech interfaces, such as SASSI [55],
because it is independent from the input modality and allows to compare the different systems [48].
At the end of Part I of the experiment, we further asked the participants to directly compare the agents
by ranking them according to their personal preference, with 1 being the most favorite, and 4 being the
least favorite agent.

4.3.2. Intelligence and Engagement

We were interested in how intelligent and engaging the agents were found by the users. Therefore,
we asked the study participants to rank intelligence and engagement for all the agents on a five-level
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Likert scale (1 = Not Intelligent/Engaging, 5 = Very Intelligent/Engaging). Additionally, we asked the
participants to write down the reasons why the agents were found to be (not) intelligent or engaging,
respectively.

4.3.3. Trust and Control

As some of the agents recommended scenes, and, hence, autonomously made decisions,
the perception of trust in the system and the feeling of being in control can be affected by the rate of
automation error or misautomation. Therefore, we were interested in measuring the perception of
trust and control towards the different agents. We adopted a survey proposed by Hossain et al. [32]
and modified it to a five-level Likert scale to fit to the rest of our questionnaire. It consisted of an equal
number of questions having positive and negative trust and control implications.

4.4. Objective Measures

4.4.1. Task Completion Time

Task completion time was computed as the absolute time participants needed to find a scene that
was in their opinion appropriate for the given task.

4.4.2. Number of Interactions

For the Smartphone Application, the number of interactions was defined as the number of times
users pressed the Search for scenes button per task. For the voice and text agents, it was defined as the
number of times users invoked one of the agents’ actions from Table 1.

4.4.3. Recognition Rate

For the Smartphone Application, recognition rate was assumed to be 100%, because users directly
changed scenes without having an agent in between. For the voice and text agents, recognition rate
per task was defined as the number of correctly recognized and mapped actions divided by the total
number of interactions needed to accomplish the task.

4.5. Statistics

For statistical analyses, homogeneity of variances were assessed by the Levene test. Greenhouse-
Geisser corrections were applied if the assumption of sphericity (indicated by Mauchly Test), was violated.
We then conducted t-tests to determine group differences (native vs. non-native speaker) and repeated-
measurement ANOVAs to assess differences between the agents. As post-hoc test the Tukey Honestly
Significant Difference (HSD) test was used. Significance level α was set to 0.05. Effect sizes are reported
as Cohen’s d for t-tests and η2

p with 95 % confidence intervals for ANOVAs.

5. Results

5.1. Subjective Measures

5.1.1. Overall Usability

The highest SUS score was achieved by SA with 79.8± 20.0 (M ± SD), followed by AT with
76.3± 20.2, the AV with 61.3± 20.6, and BV with 47.0± 24.4. Only SA and AT achieved SUS scores
above 68, which is considered “above average” [54]. Native speakers rated the overall usability of AV
considerably lower than non-native speakers (56.0± 20.6 vs. 66.9± 19.8), whereas no differences were
observed for the other agents.

Similarly, SA was ranked as the best input modality by 39.4 % of the users, followed by AT
(36.4 %), AV (15.1 %) and BV (9.1 %). The majority (57.6 %) of study participants ranked BV as the
worst input modality.
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Table 2 shows the response to the question whether the agents met the participants’ expectations.
For both native and non-native speaker, BV was the only input modality for which expectations were
not met, i.e., where a negative scoring was achieved.

Table 2. Results of question whether expectations of subjects towards agents were met. Values are
reported as mean ± standard deviation. (M ± SD). Negative values (indicating that expectations were
not met) are denoted in bold. SA = Smartphone Application, BV = Basic Voice Agent, AV = Advanced
Voice Agent, AT = Advanced Text Agent.

SA BV AV AT

Native Speaker 1.00± 1.37 −0.18± 1.38 0.12± 1.32 0.47± 1.50
Non-native Speaker 1.12± 0.89 −0.62± 1.41 0.25± 1.06 1.06± 1.34

5.1.2. Intelligence and Engagement

Repeated-measurements ANOVA revealed significant differences between the agents in the
perception of intelligence and engagement (F(3, 96) = 12.31, p < 0.001, η2

p = 0.278 and F(3, 96) =

8.766, p < 0.001, η2
p = 0.215), respectively. Post-hoc testing showed significantly lower perceived levels

of intelligence between BV and all other agents as well as significantly lower levels of engagement
between BV and the two advanced agents. Additionally, AT showed significantly higher perceived
levels of engagement than all other agents.

Figure 6 visualizes the perceived levels of intelligence and engagement for native and non-native
speaker, separately. T-testing revealed significantly lower perceived levels of intelligence and engagement
for AV among native speakers compared to non-native speakers (intelligence: t(30.98) = −2.926,
p = 0.006, d = −1.018, engagement: t(30.88) = −2.153, p = 0.039, d = −0.750). In contrast, native
speakers perceived AT to be significantly more engaging than non-native speakers (t(27.73) = 2.220,
p = 0.035, d = 0.780).

Smartphone Basic Voice Advanced Voice Advanced Text
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(a) Intelligence
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(b) Engagement

Figure 6. Perceived levels of Intelligence and Engagement per agent for native and non-native speaker.
Error bars represent the 95% confidence interval. Note: * p < 0.05, ** p < 0.01, *** p < 0.001.

5.1.3. Trust and Control

Overall, SA achieved the highest positive and lowest negative levels of trust and control (positive:
4.15± 0.92, negative: 1.42± 0.80), followed by AT (positive: 3.92± 0.91, negative: 1.63± 0.81), AV
(positive: 3.20± 0.87, negative: 2.15± 0.88), and BV (positive: 2.78± 1.15, negative: 2.34± 1.18).
Repeated-measurement ANOVA revealed significant differences between the agents for both positive
and negative implications (positive: F(3, 96) = 17.113, p < 0.001, η2

p = 0.348, negative: F(3, 96) =

11.123, p < 0.001, η2
p = 0.258 after Greenhouse-Geisser correction), respectively. Post-hoc testing
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showed that both SA and AT scored significantly higher levels of trust and control compared to the
other two agents.

5.2. Objective Measures

5.2.1. Task Completion Time

Task completion times for Part II are visualized in Figure 7. Mean task completion times,
normalized to the task completion times of SA, are further listed in Table 3. Results yield that tasks were
on average performed fastest with SA and that the mean task completion times of the two voice agents
are significantly higher (BV: t(10) = −2.754, p = 0.020, d = −1.590, AV: t(10) = −3.223, p = 0.009,
d = −1.861)). Additionally, all agents showed significantly higher standard deviations in the task
completion times compared to SA (BV: t(10) = −4.078, p = 0.002, d = −2.355, AV: t(10) = −4.350,
p = 0.001, d = −2.511, AT: t(10) = −2.335, p = 0.042, d = −1.348). On average, users needed 1.26
and 1.60 times longer with AT and AV, respectively, whereas BV had a 2.02 times higher mean task
completion time. Furthermore, results show that participants using BV had particular trouble finding
a “Mountain” scene (353.9 %), whereas finding a “Warm Forest” scene was apparently difficult when
using one of the advanced agents (AV: 234.3 %, AT: 190.0 % higher task completion times, compared
to SA). However, on average, two out of the six tasks (“City” and “Relaxing”) were performed faster
with AT than with SA.
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Figure 7. Task completion time per task and agent during Part II. Note: * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 3. Mean task completion time and mean number of interactions per task and agent during Part
II of the experiment. Values are reported in percent, normalized to the task completion time and the
number of interactions of SA, respectively. SA = Smartphone Application, BV = Basic Voice, AV = Advanced
Voice, AT = Advanced Text.

Bright & Blue City Current Time Mountains Relaxing Warm Forest

Task
Completion
Time (in %)

SA 100.0 100.0 100.0 100.0 100.0 100.0
BV 190.2 143.7 171.5 353.9 193.5 147.5
AV 189.6 105.6 142.5 129.0 164.0 234.3
AT 177.2 67.2 134.7 106.9 92.6 190.0

Number of
Interactions
(in %)

SA 100.0 100.0 100.0 100.0 100.0 100.0
BV 150.0 90.5 110.0 182.1 95.8 158.8
AV 95.2 76.2 75.6 63.5 81.5 183.0
AT 107.1 57.1 75.0 50.0 58.3 135.3
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5.2.2. Number of Interactions

Number of interactions per task are visualized per agent in Figure 8. Average number of
interactions, normalized to the number of interactions of SA, are further listed in Table 3. On average,
both advanced agents required less interactions to complete the same tasks than SA (AV: 9 % less, AT:
25 %), whereas participants using BV required 31 % more interactions.
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Figure 8. Number of interactions per task and agent during Part II. Note: * p < 0.05, ** p < 0.01, *** p < 0.001.

5.2.3. Recognition Rate

Apart from SA, the highest recognition rate was achieved by AT (88.3 %), followed by AV (78.8 %)
and BV (71.1 %). Whereas finding a “city scene” achieved high recognition rates throughout all agents,
commands leading to finding a “mountain” scene were well recognized by both advanced agents
(AV: 88.9 %, AT: 96.9 %), but very poorly by BV (55.1 %). In contrast, BV achieved a higher recognition
rate for the task of finding a “warm forest scene” (81.2 %) than the advanced agents (AV: 71.0 %, AT:
74.6 %). In addition, AV had difficulties recognizing commands to find a “bright and blue scene”,
compared to AT (68.4 % vs. 89.6 %).

6. Discussion

6.1. Smartphone Application

Study results showed that the Smartphone Application as the simplest and most familiar system was
also the most favorable system. It achieved the highest SUS score, the best overall ranking, and was
the system that exceeded users’ expectations the most. They liked the “simple and clear graphical
user interface” (S06) that facilitated quick and efficient interactions, and especially appreciated the
visual preview of scenes (S11) (see also Table 4). On the other hand, the lack of autonomy required
users to resolve the tasks and map their requests to scene properties all by themselves. Accordingly,
they reported that using the smartphone application felt more like “controlling a fancy light switch”
(S08) rather than having an actual interaction, and made the office space appear “inanimate and lonely”
(S08). On average, the smartphone application had the lowest task completion time. It outperformed
other systems for tasks that could directly be mapped to the sliders of the user interface, such as
finding a bright and blue or a warm forest scene. However, users criticized that adjusting the sliders
can be time consuming and “not as intuitive for more abstract tasks” (S24), like finding a relaxing
scene. Additionally, in an office scenario, users might be more susceptible to distraction by the
smartphone, causing disruption in their workflow as they would have to switch from the computer
to the smartphone and back [1]. However, whether regular users of the smart office prototype might
even be willing to accept this potentially more distracting interface in return for a simpler and quicker
way of interaction still needs to be analyzed in further detail.
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Table 4. Strengths and weaknesses for each agent.

Strengths Weaknesses

Smartphone
Application

- Quick, familiar interaction
- Predictable actions
- Visual scene preview
- Efficient filtering of scenes

- No hands-free interaction
- No interaction with room
- No autonomy
- Disrupts workflow easily

Basic
Voice Agent

- Hands-free interaction
- Manageable feature range,

no overtaxing of user

- Rigid, inanimate,
time-consuming interaction

- No intelligence or context-awareness
- Strong familiarity with system required

Advanced
Voice Agent

- Hands-free interaction
- Engaging, conversational
- Abstract scene description possible

- Bad smalltalk handling
- Wide gulf of user expectation

and experience
- False recognition increases with

request complexity

Advanced
Text Agent

- Fast interaction, especially in
office scenario

- Engaging, conversational
- Abstract scene description possible
- Narrow gulf of user expectation

and experience

- No hands-free interaction
- Bad smalltalk handling
- False recognition increases with

request complexity

6.2. Basic Voice Agent

The Basic Voice Agent created the impression of being very “rigid and time consuming” (S28),
often reminding users of “talking to a customer service hotline” (S08). Additional problems with
voice recognition, causing users to repeat the same commands over and over, made them feel
uncomfortable when interacting with the agent (S16). Combined with a lack of system intelligence and
context-awareness, it led to the lowest overall usability, and also the lowest ratings of intelligence and
engagement. However, some users appreciated the limited range of features. In their opinion, it made
the basic agent appear structured and led to predictable results—as long as the voice recognition
worked correctly. Users were able to accomplish some tasks equally fast or even faster with the basic
agent than with the advanced agents. For example, for the “warm forest” task, they simply looked for
forest scenes in general and then iterated through them using the “next” command until they found
one with warm color temperature.

6.3. Advanced Voice Agent

Users reported that the Advanced Voice Agent was very friendly and cooperative in finding a
matching scene. The possibility of transforming the workspace using a more open command list, such
as providing a high level description of scenes, or by letting the agent autonomously recommend
scenes, was appreciated throughout all users. The agent tried to conduct a normal conversation by
referring to users by their names, using a more informal language, and offering a broader variety of
text responses (S18). In the questionnaires, users referred to the agent as “she” instead of “it” because
it appeared emotional and engaging, and even made users users laugh occasionally (S25). However,
the SUS score yields that the advanced voice agent was rated worse than the average score, which
was mainly due to the voice recognition. It was reported as the main bottleneck that impairs the
user experience and creates a gulf between user expectations towards a seemingly intelligent system.
User experience was compromised by the system being unable to correctly recognize commands
such as “find a bright and blue scene”, which was often falsely recognized as “find a bride and blue
scene”. As results indicate, native speakers were more critical towards voice recognition because
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their judgement appeared to be more determined by correct voice recognition and a smooth, natural
conversation than by the actual range of features. Therefore, they rated this agent more similar to the
Basic Voice Agent, mentioning that the lack of voice recognition accuracy made it feel dumb. In contrast,
non-native speakers noticed a clear difference between both voice agents. Users also reported that the
interaction over voice could be time consuming because it sometimes took too long to get a response
from the agent, especially when it did not understand the command.

6.4. Advanced Text Agent

The Advanced Text Agent achieved the second highest overall usability and was the only agent
with a SUS score higher than the average score. Compared to the Advanced Voice Agent, the interaction
with this agent was found to be smoother and more straightforward as the agent instantly provided
a response over text. Similarly, it was on average rated as being more engaging, especially among
native speakers, indicating that the use of emojis was an effective compensation for the missing
voice interface.

However, the Advanced Text Agent was the only agent that achieved higher perceived levels of
engagement among native speakers compared to non-native speakers. Replacing the voice interface
by a text-based interface, and, thus, enabling smoother conversation by preventing occasionally
faulty voice recognition, made the Advanced Text Agent appear far more intelligent or engaging for
native-speaker. This further supports the conclusion that native speakers are more critical towards
voice recognition, which heavily impairs user experience if not working reliably. In contrast, non-native
speakers were not as critical of voice recognition as native speaker (indicated by comparable levels
of both intelligence and engagement for the two advanced agents among non-native speakers) even
though some non-native speakers reported that the voice agent apparently had trouble understanding
their accent (e.g., S03, S20, S29). Our findings are, to some extent, in contrast to the work of Pyae and
Scifleet [49] who reported that native speakers had a better overall user experience with smart speakers,
such as Google Home, than non-native speakers. However, their study was focused on exploring the
general features of the speaker rather than evaluating a custom application for a particular use case.
Future work, nonetheless, needs to follow-up on these results in further detail.

Furthermore, we observed that users used different wordings to communicate with the two
advanced agents. For instance, when trying to find a relaxing scene, they asked the voice agent “Can
you find a scene that makes me relax?”, whereas they used more informal and shorter commands for
the text agent, like “Relaxing scene” or even just “Relax”. Users reported that it felt strange talking
to an agent in such an informal manner, but it did not when they texted the system, since it is also
usual for them to text their friends in the same way. However, participants emphasized that they were
confused by both advanced agents of being conversational on the one side, but offering only limited
understanding for small talk and filler language.

On average, both AV and AT required less interactions than the smartphone application and
can more easily be integrated into the workflow of office workers. They can interact with the agent
while performing other tasks in the meantime. Moreover, the radius of interaction at the workplace is
usually more restricted to desk, compared to a smart home scenario. Therefore, it might be easier to
interact with a text agent over the computer by simply switching to the agent’s conversation window
rather than having to speak out loud to a voice agent. For future applications, a hybrid agent, offering
the possibility to interact via voice and text depending on the current situation, might considerably
improve user experience as well as productivity in the smart office. Additionally, moving away from
general-purpose voice and text agents to a more domain-specific for the office context will be important
for increasing the acceptance [56].

7. Conclusions and Outlook

We introduced smart agents, differing in system intelligence and input modality, for the interaction
with an ambient adaptive environment. Using such agents, users could dynamically change the
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appearance of their workspace either by switching to particular scenes, by describing scenes in an
abstract way, or by letting the agent recommend scenes based on a certain context. We designed
and conducted an experiment to evaluate the different agents and to find out which one is the best
for the smart office context. Our results show that the Smartphone Application as the most familiar
user interface is also the system that achieved the highest usability and the best overall ranking. It
was followed by the Advanced Text Agent and the Advanced Voice Agent, which were both found to be
very friendly and engaging conversational agents that facilitate finding the right scenes. However,
especially the Advanced Voice Agent created a clearly different perception among native and non-native
speakers. For their judgement, non-native speakers considered more the range of features, whereas
native speakers were more influenced by correct voice recognition and a smooth, natural conversation.
Future improvements in voice user interfaces, especially with an enhanced ability to understand
smalltalk and filler language, could make significant improvements in closing the gulf of evaluation
between user expectation and experience.

In general, our experiment shows that all agents have their strengths and weaknesses, with the
Advanced Text Agent offering a well appreciated trade-off between a quick and easy interaction, a natural,
engaging, and entertaining conversation, and an open command list with the possibility to let the agents
recommend scenes. Future work should, therefore, synthesize our findings and combine different
interaction modalities to build a flexible, multimodal agent for the smart office domain—similar to the
Jarvis AI developed by Mark Zuckerberg for his home [57]. The agent would consist of a chatbot as
core part, enhanced with visual scene previews integrated into the conversation feed. Additionally,
hands-free interaction over voice commands should be possible, for instance if the occupant is entering
or leaving the office or performs a hands-demanding task. Evaluating the usage (or avoidance) behavior
of the different modalities of such a multimodal agent in a longitudinal study would allow to better
identify the individual strengths and weaknesses, and would reveal which modality lags behind the
others, and which would need to be better adapted for the particular use case in an adaptive smart office
scenario. Finally, we are confident that such a multimodal agent will eventually be beneficial for future
smart office systems by reducing work and information overload and foster creativity, productivity,
and relaxation.
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