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Abstract— We have established a dynamic modeling 
framework for predicting spatiotemporal behaviors of cancer 
cell migration in the extracellular matrix (ECM). Dynamic 
model of cancer cell migration is integrated from four individual 
simulations, such as 1) filopodia penetration dynamics into the 
ECM, 2) intracellular mechanics including remodeling of 
cellular and nuclear membranes, contractile motion of actin 
stress fibers, and focal adhesion dynamics, 3) structural 
mechanics of ECM fiber networks, and 4) reaction diffusion 
mass transfer of degrading enzymes in the ECM. This work is 
motivated by experimental observations of malignant cancer 
cell migration, which shows that abundant filopodial formation 
in cancer cells is a critical characteristic of aggressive cancer cell 
which invade into the tissue. The dynamic model presented in 
this work suggests the mechanical interplay between filopodia of 
cancer cell and surrounding viscoelastic ECM fiber network. 
The work presented here compares filopodia dynamics in 
between soft and stiff ECMs varying its pore size. 

 

I. INTRODUCTION 

Cancer cell migration in the stiff extracellular matrix 
(ECM) plays causative roles in cancer pathology since it has 
been known that abnormal ECM structure and changes in 
tissue stiffness promote cancer initiation and progress [1]. In 
addition, cancer cells invade and metastasize more 
aggressively as their surrounding ECM is stiffer [2]. In cancer 
cell invasion dynamics in the ECM, cancer cells migrate 
collectively in a similar manner of vascularizing tissues and 
invade surrounding tissues through the ECM. Although many 
tumor cells migrate collectively in tightly or loosely connected 
group, most malignant cancer cells migrate as individuals to 
metastasize into tissues [3].  

In general, it has been known that there are two kinds of 
single cancer cell invasions including mesenchymal and 
amoeboid cancer cell migrations. Depending on surrounding 
ECM’s mechanical properties, such as its pore sizes, they 
adjust their morphologies. For example, when ECM fibers are 
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tightly crosslinked with small pore sizes, mesenchymal cancer 
cells secrete matrix metalloproteinase (MMP) family to 
degrade local ECM in which cellular membrane interact with. 
In contrast, cancer cells can deform their morphologies like 
amoeboid when pore sizes of surrounding ECM are large, then 
they squeeze into ECM fiber network [4].  

Dynamics of mesenchymal cancer invasion are 
significantly different from that of amoeboid cancer invasion 
in the aspect of abundant filopodial formations at the leading 
edge of mesenchymal cancer cell. Filopodia are finger-like 
actin-rich plasma membrane protrusions that are linked to 
enhancement of directed cell migration [5]. In addition, 
filopodia play two critical roles in interacting with the ECM as 
sensors they probe the environment, and as mechanical 
actuators they bind to ECM fibers and generate strong traction 
forces by a feedback control of contractile actin-myosin 
machineries in filopodia. However, distinct differences of 
filopodia penetration dynamics in between both soft and stiff 
ECMs remains poorly understood.  

To address this question, we first construct a 
computational model of single cancer cell invasion into a 
viscoelastic ECM fiber network that predicts the interplay 
between filopodial traction generation and the remodeling of 
viscoelastic substrate. We integrated the following four key 
components: 1) filopodia penetration dynamics, 2) 
intracellular dynamics [6][7], including focal adhesion 
dynamics, actin motor activity of stress fibers (SFs), and 
cellular and nuclear membrane mechanics 3) ECM fiber 
dynamics [8], and 4) reaction diffusion mass transfer models 
of MMP family in the domain of ECM to degrade crosslinked 
ECM fibers. To our knowledge, this is the first report of 
integrated cancer cell migration model that takes into account 
various motions of filopodia phases interacting with a ECM 
fiber network. 

II. DYNAMICAL MODEL 

A. Dynamics of single cancer cell migration  
We construct four different modules of simulations 

(Figure 1A), including filopodia penetration dynamics in 3D 
ECM, intracellular dynamics [6][7], intercellular dynamics, 
viscoelastic ECM fiber dynamics [8], and reaction diffusion 
mass transfer phenomena to elucidate the mesenchymal 
cancer cell migration behaviors in the viscoelastic ECM 
during cancer metastasis process. Dynamic models of these 
three modules are constructed using the Lagrange approach, 
and a module of reaction diffusion mass transfer is constructed 
using a finite volume method (FVM) [9].  

We model the geometric structure of a cell as a triple 
meshes structure: the outer, middle, and inner meshes 
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Figure 1: Dynamic model of cancer cell migration in an elastic ECM fiber 
network. A) Integrated cancer cell migration model consisting of cellular 
membrane, nuclear membrane, actin stress fibers, and filopodial membrane. 
The cellular membrane is not only connected by actin stress fibers (SFs), but 
also anchored to the elastic substrate by forming focal adhesions (FAs), and 
viscoelastic behaviors in cellular membrane is modeled using Kelvin-Voigt 
model. B) The free body diagram of the i-th filopodial node in the circle 
marked in A) where four external forces are acting. 

represent the cellular , transduce, and nuclear membranes, 
respectively. Each mesh consists of 546 nodes connected 
elastically to adjacent nodes. Viscoelastic behaviors in the 
cellular membrane is modeled using the Kevin-Voigt model (a 
spring and a dashpot in Figure 1A), that is, the cellular 
membrane and the transduce layer are coupled with the actin 
cortex at the i-th node. The middle and outer mesh nodes may 
be connected when SFs are formed between the nucleus and 
the transduce layers. Multiple transmembrane integrin 
molecules (100 integrins per a node) are clustered together and 
placed at each node on the outer mesh of cellular and 
filopodial membranes. They can bind to ECM fibers, forming 
focal adhesions on the cellular membrane, to which actin 
stress fibers (SF) are connected, or forming focal complexes 
on the filopodial membrane. An example of focal complexes 
is shown in Figure 1B. 

B. Filopodia penetration dynamics 

We assume that filopodia penetration dynamics into 3D 
ECM consists of four different phases, such as 1) an 
outgrowing phase due to protrusive actin polymerization, 2) a 
retractile phase due to zero or weak focal complex (FC) force 
at the filopodial tip, 3) a contractile phase due to strong FC 
forces at the filopodial tip, and 4) a tugging phase due to the 
attachment of a filopodial tip to an nearby ECM. Depending 
on the strength and spatiotemporal properties of the FC 
formation, the bond of FC at the filopodial tip either ruptures 
or results in the generation of a significant traction force. This 
phase plays a critical role in switching among the other phases 
and coordination of the diverse filopodial dynamics, leading to 
either success or failure of cell migration depending on local 
ECM conditions. To solve the filopodia penetration 
dyanamics into 3D ECM, a dynamic equation at the i-th node 
on the filopodial membrane can be expressed as  

, , , , , 1, , .
f

f f f fi
f E i FC i P i AM i f
d

C i N
dt

= + + + = !
x

F F F F     (1) 

where fC is a coefficient of dissipation energy for the 

filopodial membrane (0.001 N s m-1), ,
f
E iF , ,

f
FC iF , ,

f
P iF  , and 

,
f
AM iF  are an elastic force, a focal complex force, an actin 

polymerization force, and an actin-myosin contractile force at 
the i-th node of the filopodial membrane, respectively. fN is 

total number of nodes on the filopodial membrane. ,
f
E iF is 

derived from total elastic energy of filopodial membrane. 
Two types of elastic energies are considered here. One is the 
elastic energy associated with line element changes between 
nodes, and the other is the elastic energy associated with area 
element changes between triangular nodes. These two elastic 
energies are expressed as: 
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where f
LE and f

AE are total elastic energies associated with line 
and area elements in the filopodial membrane, respectively. 

f
Lk and f

Ak are stiffness of line (5.0×10-5 N/m) and area 
(1.0×10-4 N/m2) elements in the filopodia, respectively. 
f
jL and f

jA are the length and area at the stressed state, and 
0f
jL and 0f

jA are the length and area at the unstressed state, 

respectively. Elastic force ,
f
E iF at the i-th node on the 

filopodial membrane can be obtained by differentiating two 
total energies (virtual energy method) as following: 
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Focal complex force ,
f
FC iF at the i-th node on the filopodial 

membrane can be expressed as 

( ), ,, ˆf f
FC i R iLRb i bn Lk l= -F n                      (4) 

where 
,b i

n is the number of integrin-collagen bonds, LRk is the 
spring constant of a single ligand-receptor bond (~1 pN/nm), 
bL is the average stretched length of the ligand-receptor bonds, 

l is an unstressed length of bonds (~30nm) and ,ˆ fR in is a unit 
vector at the local surface of the i-th filopodial (Figure 2). 
Here ( )bL l- represents the stretched distance from the 

equilibrium. 
,b i

n is calculated by Bell’s equation [10].  

    The actin polymerization force, ,
f
P iF , is only nonzero during 

the outgrowing phase. The polymerization of actin filopodia in 
a filopodium generate protrusive force against the membrane 
of the filopodial tip, and the magnitude of ,

f
P iF is assumed to 

be ~2 nN since the diameter of filopodium is ~ 300nm 
consisting of > 30 actin filaments. The direction of ,

f
P iF is  



  

 
Figure 2: Mechanical interplay between filopodia and ECM fiber. 
Schematic showing integrin molecules on the filopodial membrane 
interacting with an extracellular matrix fiber, and illustrating a stochastic 
ligand-receptor bonding process at the focal complex site. Also, this 
schematic shows that filopodia can sense the strength of external force (or the 
magnitude of ,

f
FC iF ) from the surrounding ECM fibers, and adjust their 

myosin sliding rates ( mv ) with a function of the strength of external force. 
Contractile actin-myosin assemblies are located along to the shaft of 
filopodia.  Small blue arrows on the actin-myosin assemblies indicate 
directions of contractile actin filaments, small blue lines are integrin 
molecules at the tip of filopodium. 

assumed to be identical to the direction of normal unit vector 
at the filopodial root.     

    The filopodial model is geometrically composed of NAM 
compartments of actin-myosin (AM) assemblies; the first 
compartment is attached to the root of filopodium and the last 
compartment is connected to the tip of filopodium (Figure 2). 
We model filopodial contractile motion using AM assemblies 
as shown in Figure 2. We assume that the stiffness of an AM 
is variable as the length of the AM ( 1

,AM jL ) is decreased by 
time. Thus, the length of each AM contracts at both ends 
according to the myosin II sliding rate, and rate of change for  

1
,AM jL  is expressed as, 

1
,

,2AM j
m j

dL
v

dt
= - . The stiffness of an 

AM is expressed as, , 1
,
, 1.. AM

AM AM
AM j

AM j

E A j N
L

k = = . Note 

that 1
,AM jL is an unstressed length of a single compartment of 

the j-th AM. In addition, to incorporate mechanical interplay 
between the filopodia and ECM, we adopt the force-velocity 
relation of muscle myosin II as following: 

0
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where 0mv is the sliding rate of myosin in the absence of load, 

stallF is the stall force of 1 nN, mc is a dimensionless myosin 
parameter of 0.1, and TRF is the magnitude of sensed elastic 
force from the ECM at the tip of filopodium. The total 
elastic energy stored in the AMs in the filopodium is 
given by 
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where ,AM jd represents the distance of the j-th contractile 

AM compartment under tension. Using the virtual work 
theory, forces due to contractile myosin motor activity at the 
j-th node of filopodial shaft is given by 
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C. Intracellular dynamics 
    The intracellular dynamics is another key mechanisms 
involved in cancer cell migration in 3D ECM. The essential 
equations in the model include: 1) an equation for stochastic 
focal adhesion (FA) dynamics based on Monte-Carlo 
simulations of ligand-receptor bonds, 2) three equations for 
deformations of double viscoelastic cellular membranes: an 
outer cell membrane and an inner transduce membrane, and a 
nuclear membrane, 3) an equation describing the contractile 
motion of actin stress fibers, which is extended from FAs on 
the cortical surface to the nuclear membrane, and 4) 
lamellipodium protrusion by actin polymerization. Among 
them, the major extension in the model of intracellular 
mechanics presented here is FAs dynamics in 3-D ECM fiber 
network model. The FA force acts between the i-th integrin 
node on the cellular membrane and points of ECM fibers 
where the extension of the unit vector normal to the cellular 
membrane interacts with the nearest point of ECM fibers. A 
dynamic equation at the i-th node on the outer cellular 
membrane can be expressed as 
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where cC and cortC are coefficients of dissipation energy for 
the outer cell membrane (0.001 N s m-1)  and the actin cortex 
(0.001 N s m-1), respectively.  In addition, cortC is a drag 
coefficient associated with viscoelastic behaviors in the actin 
cortex (0.001 N s m-1). ,

c
FA iF , ,

c
E iF , ,

c
L iF , and ,

c
T iF are a FA 

force, an elastic force, a lamellipodium force, and a transduce 
force representing the elastic force of actin cortex at the i-th 
node of the outer cell membrane, respectively. The FA force, 

,
c
FA iF , can be expressed in a similar manner of focal complex 

force at the filopodia (See Eq. (4)): 

( ), ,, .ˆc c
FA i R iLRb i bn Lk l= -F n                     (9) 

The elastic force, ,
c
E iF , is also can be similarly expressed 

like Eq. (3): 
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Normally, cells experience a small protrusive pressure that 
results from osmotic pressure or actin branches stimulated by 
activated arp2/3. Here we assume that the magnitude of the 
lamellipodium force, ,

c
L iF , at the i-th cytoskeleton node is 

constant at 300 pN, and exists at only leading edges of the cell. 



  

The transduce force, ,
,
c k
T iF  is an elastic force in the Kevin-Voigt 

model and expressed as 

( ),

1
,1 0

, ,
c
T i

T i
cort T i T i c

i

L
k L L

¶
= - -

¶
F

x
                           (11) 

where cortk is an effective spring constant of line element of 
the actin cortex (8.0×10-3 N/m), ,1

,
k
T iL  is the length of the i-th 

line in the actin cortex, and it is updated at every time-step. 
,0
,
k
T iL is its relaxed (zero force) length (500 nm). 

    A dynamic equation at the i-th node of the inner transduce 
membrane can be expressed as 

( )
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where tC is a coefficient of dissipation energy for the inner 
transduce membrane (0.001 N s m-1), and tN  is the number 
of the inner transduce membrane. ,

t
E iF , ,

t
SF iF , and ,

t
T iF are 

an elastic force, actin stress fiber (SF) force, and a transduce 
force at the i-th node of the inner transduce membrane 
respectively. The elastic force, ,

t
E iF , can be expressed in a 

similar manner of ,
c
E iF as 
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The actin SF force, ,
t
SF iF , can be similarly expressed like the 

Eq. (7): 
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The transduce force, ,
t
T iF , is expressed as 

,, .cT i
t
T i = -FF                                  (15) 

    Lastly, a dynamic equation at the i-th node of the nuclear 
membrane can be expressed as 

, , , 1, ,
n

n ni
n nE i SF i
dC i Ndt = + = !x F F             (16)                                                          

where nC is a coefficient of dissipation energy for the nuclear 
membrane (0.001 N s m-1), and nN is the number of nodes in 
the nuclear membrane. ,

n
E iF  and ,

n
SF iF are an elastic force and 

a SF force at the i-th node of the nuclear membrane. The 
elastic force, ,

n
E iF , can be expressed in a similar manner of the 

Eq (10) as 
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The details of parameters in the above equation can be found 
in the literature [6].  The actin SF force, ,

n
SF iF , can be 

expressed as 

, , .
n t
SF i SF k= -F F                                 (18) 

 In particular, Equations (8) and (12) can be coupled with the 
viscoelastic actin cortex using kelvin-voigt model (Figure 1). 
To solve these ordinary differential equations numerically, 
they should be converted with respect to 

vectors ,
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i id d
dt dt
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x x as followings: 
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D. Dynamics of ECM fibers 
We assume the ECM fiber network to be composed of 

elastic ECM fibers and crosslinks, which make strong bonds 
between adjacent fibers. The elastic energy stored in the ECM 
fiber network can be expressed in terms of the stretching and 
bending properties of the constituent fibers. In addition, cells 
and filopodia interact with ECM fiber network by forming 
focal adhesion and focal complex, respectively. Thus, forces 
exerted on the i-th node in a single ECM fiber are elastic 
force ,

e
E iF , focal adhesion force ,

e
FA iF  (cell membrane), and 

focal complex force ,
e
FC iF (filopodial membrane). A dynamic 

equation at the i-th ECM fiber node can be expressed as 

,, , , 1, , .
e

e e ei
e eE iFA i FC i
dC i Ndt = + + = !x F F F     (20) 

where eN is the total number of nodes in ECM fiber network. 
The stretching modulus of a fiber is given by ( ),

e e
f s f fE Ak = , 

where e
fE  and ( )2f fA rp= are the Young’s modulus (1 MPa) 

and the cross-sectional area of a single fiber, respectively. The 
bending modulus of a fiber is given by ( ),

e
f b f fE Ik = , 

where ( )4 4f fI rp= [11]. The stretching elastic energy of the 
j-th node in fiber network is given as a function of the 
difference between the stressed ( e

ijL ) and unstressed ( 0e
jL ) 

lengths, and the bending elastic energy as the one of stressed 
( e

jq ) and unstressed ( 0e
jq ) angles at the j-th node between two 

segments in a fiber. The total elastic energy in the ECM fiber 
network can be expressed as following: 
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Similarly, the elastic force at the j-th node in the fiber network 
can be derived by using the virtual work theory: 
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In addition, ,
e
FA iF and ,

e
FC iF are coupled with intracellular 

mechanics and filopodia penetration dynamics through two 
equations of , , 0e c

FA i FA k+ =F F , and , , 0fe
FC i FC m+ =F F , 

respectively. 

E. Reaction-diffusion mass transfer in ECM 
To consider chemical interactions of the ECM fiber network 
with a cancer cell, we model the degradation, proteolysis, and 
haptotaxis of the ECM fiber network. Six reaction-diffusion 
equations for concentrations of MMP-2 ( 1f ), TIMP-2 ( 2f ), 
MT1-MMP ( 3f  ), a ternary complex of MT1-MMP: 

TIMP-2:proMMP-2 ( 4f  ) (12), ligands ( 5f  ) (or collagen 

molecules) and ECM ( 6f  ) are numerically solved using 
Finite Volume Method (FVM). Constitutive partial 
differential equations for the six biochemical concentrations 
are summarised in followings [12]:    
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where
1

decaykf and 
5

decaykf are decay coefficients of MMP-2 

(0.0017 s-1), and ligands (0.0001 s-1), respectively. 
5

degkf is a 

degradation coefficient of ECM (1.04×106 M-1s-1). 
1 2:
onkf f is a 

kinetic association rate constant for binding TIMP-2 with 
MMP2 (5×105 M-1s-1) and its term physically represents the 
reduction of MMP-2 by the endogenous soluble inhibitor 
TIMP-2. 

3 4:
onkf f is a kinetic association rate constant for 

binding the ternary complex with MT1-MMP 
(1.95×104M-1s-1), which results in the release of activated 
MMP-2. 

2 3:
onkf f is a kinetic association rate constant for  

 
Figure 3: Schematic diagram of signal pathway. This extracellular signal 
pathway activates MMP-2, and degrades the integrity of ECM. 
 
binding TIMP-2 with MT1-MMP (2.74×106M-1s-1), and 

4

offkf is a kinetic dissociation rate constant of the ternary 
complex for unbinding TIMP2 and MT1-MMP (2×10-4s-1). 

1
Df , 

3
Df and 

6
Df are the diffusion coefficients of MMP-2 

(68.8×10-12 m2/s), TIMP-2 (1.29×10-12 m2s-1) and ligands 
(1.0×10-15 m2s-1), respectively. In particular, ( )

2

f
basexfa and 

( )
3

f
basexfa represent secretion rates of TIMP2 (1.0×10-3M s-1) 

and MT1-MMP (1.0×10-1M s-1) at the root of a filopodium, 
respectively. f

basex  indicate the bases of filopodia, and 
MT1-MMP and TIMP-2 secretions at the membrane near the 
bases of filopodia are modelled as source terms [13].  

III. RESULTS AND DISCUSSION 

To simulate cancer cell migration in 3D ECM, two cases 
of simulations were performed to investigate dynamic 
behaviors of cancer cell migration in both soft and stiff ECMs. 
Accordingly, cancer cell models were initially embedded into 
two cases of ECM fiber network models; pore size is 1.0 µm 
and single fiber diameter of 32 nm for the stiff ECM, and pore 
size is 1.5 µm and single fiber diameter of 41 nm for the soft 
ECM. Previously, we modeled cell invasion into ECM fiber 
network, that is, cell extravasation into the ECM [8], and 
performed cell migration experiments using endothelial cells 
transfected with cytosolic GFP in the microfluidic device for 
the validation for the model [8]. We found that speeds of both 
tip and root of filopodia increase as the pore size is increased 
in experiments. The simulated speeds of both tip and root of 
filopodia, too, showed a good correlation to the experiments 
[8]. Here we assumed that cancer cell migration was started 
from its embedded condition in the ECM by the projection of 
some related ECM nodes located in the cell model towards 
the cellular membrane.  

A selected simulated result shows that cellular 
morphology of each cell in both cases was elongated towards 
the direction of cell migration at t + 2400 seconds (Figure 4A 
& 4B). Interestingly, ECM densification was significantly 
observed in the trailing side of cell migration, and it was 
thicker in the stiff ECM than the soft ECM. Additionally, 
their orientations in densified regions were changed to align 
towards the direction of cell migration despite initial 
orientations of ECM fibers were isotropic. It appeared that 
cancer cell model in the soft ECM further migrated than that 
in the stiff ECM since the filopodia penetration dynamics 



  

were experimentally observed to be the faster as filopodia 
interacts with the larger pore-sized ECM [8]. Furthermore, it 
is interesting to observe the size of ECM tunnel (or lumen) 
generated by cancer cell model. It has been known that as the 
speed of tip cell in the angiogenesis is the faster, the lumen is 
more narrowed [14]. Similarly, our simulations reveal a wide  

 
Figure 4: Simulation of cancer cell invasion into a densified ECM fiber 
network. Simulated cancer cell migration in two different ECM fiber 
network models with pore sizes of A) 1.0, and B) 1.5 µm at t + 2400 s. Green 
color indicate cellular and filopodial membranes, and blue color indicate a 
nuclear membrane. Black lines are ECM fibers with a diameter of 42 nm and 
a modulus of 1 MPa. Note that two different single fiber diameters of 34, and 
41 nm are used for two ECM model with pore sizes of 1.0, and 1.5, 
respectively. Each inset in A) and B) indicates ECM tunnels (or lumens) 
generated during cancer cell migration. Selected simulation results of 
MMP-2 concentration distributions using simplified reaction-diffusion mass 
transfer model for MMP-2 activation in two different ECM fiber network 
models with pore sizes of C) 1.0, and D) 1.5 µm at t + 2400 s. 

tunnel ECM tunnel and slightly slow cell migration in the stiff 
ECM model. 

As simulated results shown in Figure 4C& 4D, as the cell 
made a deep invasion into the ECM domain, MMP-2 is 
secreted at the root of filopodia. Highest concentration of 
MMP-2 is found at the root of filopodia, and its concentration 
decays at the concentric circles from the root of filopodia. It 
should be noted that rates of secreted MMP-2 are varied 
depending on binding MT1-MMP with the ternary complex. 
In addition, all diffusion coefficients and some secretion rates 
of biochemical concentrations in the current model were 
assumed to be identical for two ECM fiber models. However, 
in fact, heterogeneous diffusion coefficients and secretion 
rates of biochemical concentrations  should be considered in 
the future cell migration model since  recent experimental 
observations have indicated that diffusion coefficient of 
bovine serum albumin (BSA) is decreased as the ECM is 
stiffer and a pore sizes of ECM network is reduced more [15]. 

IV. CONCLUSION 

In conclusion, we successfully established a dynamic 
model for simulating cancer cell migration in 3D ECM to 
observe ECM remodeling due to mechanical interaction with 
cancer cell and its filopodia. The integrated cell model was 
incorporated from four individual dynamic models of 
filopodia penetration dynamics, intracellular dynamics, ECM 
fiber dynamics, and reaction diffusion mass transfer model. 
Our simulations reveal three interesting results in the stiff 

ECM comparing with the soft ECM: 1) slow speed of cancer 
cell migration, 2) thick ECM densification, and 3) the 
formation of wide ECM tunnel. 

Future direction for the development of model will 
include the addition of intracellular signal pathway to guide 
the directed cancer cell migration cell towards the stiffer 
ECM, and be used to predict cancer metastasis including a 
collective migration mediated by both cell-cell and cell-ECM 
adhesions, epithelial-mesenchymal transition (EMT) 
-mediated mesenchymal cell migration, amoeboid migration 
in ECM. 
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