
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 103 (2021) 1–7

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing
and service operations : Lessons from COVID-19 (CIRPe 2021)
10.1016/j.procir.2021.09.089

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing
and service operations : Lessons from COVID-19 (CIRPe 2021)

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service
operations : Lessons from COVID-19 (CIRPe 2021)

9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service operations:
Lessons from COVID-19

A Deep Reinforcement Learning Based Scheduling Policy for
Reconfigurable Manufacturing Systems

 Jiecheng Tang, Konstantinos Salonitis *
aSustainable Manufacturing Systems Centre, Cranfield University, Bedford, MK43 0AL, UK

* Corresponding author. Tel.: +44 (0) 1234 758347. E-mail address: k.salonitis@cranfield.ac.uk

Abstract

Reconfigurable manufacturing systems (RMS) is one of the trending paradigms toward a digitalised factory. With its rapid reconfiguring
capability, finding a far-sighted scheduling policy is challenging. Reinforcement learning is well-equipped for finding highly efficient
production plans that would bring near-optimal future rewards. For minimising reconfiguring actions, this paper uses a deep reinforcement
learning agent to make autonomous decision with a built-in discrete event simulation model of a generic RMS. Aiming at the completion of the
assigned order lists while minimising the reconfiguration actions, the agent outperforms the conventional first-in-first-out dispatching rule after
self-learning.
© 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile
manufacturing and service operations: Lessons from COVID-19 (CIRPe 2021)

 Keywords: Reconfigurable manufacturing system; scheduling; reinforcement learning; dueling double deep q learning; discrete event simulation

1. Introduction

Aiming at rapidly addressing demand fluctuation, the
reconfigurable manufacturing system (RMS) was first
introduced in 1999 [1]. RMS paradigm targets on medium-
volume-high-variant mixed orders. With its structural
adjusting capability, RMS challenges the conventional
Dedicated Manufacturing Line (DML) on product variation
[2] and scalable setup [3]. RMS also challenges Flexible
Manufacturing Systems (FMS) on productivity and cost [1].
To classify the challenge into details, six core characteristics
has been identified [4] for RMS that include modularity,
integrability, diagnosability, scalability, customisability, and
convertibility. Napoleone [5] investigated the interrelationship
between these characteristics. Perceived value of a product
lead to the emerging of massive customisation, the top level
characteristic of RMS. Tang et al. [6] pointed out that a
dynamic scheduling policy which can continuously evolve in a

full sensing digital twin environment could help improving
customisability by enhancing scalability and convertibility.
However, the uncertainty, caused by the changing demand,
scale, and constrains of manufacturing practice, keeps
challenging this NP-hard [7] job-shop scheduling problem.
Mathematical programming and metaheuristic algorithms [8]
are the main tools to solve similar scheduling problems for
FMS. These methods outperform the fixed dispatching rules
like first-in-first-out but underperform while tackling the
scalability of RMS with limited computing resources [4].
RMS needs a “far-sighted” and “resilient” control strategy.
These features make reinforcement learning (RL) outstanding
and particularly feasible to cope similar continuous and
dynamic flexible job-shop scheduling problems [9]. In the
present paper, a discrete-event simulation (DES) model, which
simulates a simplified RMS, provides a Markov decision
process environment for training a job releasing schedule
agent. By observing the current system state, this agent sends

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service
operations : Lessons from COVID-19 (CIRPe 2021)

9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service operations:
Lessons from COVID-19

A Deep Reinforcement Learning Based Scheduling Policy for
Reconfigurable Manufacturing Systems

 Jiecheng Tang, Konstantinos Salonitis *
aSustainable Manufacturing Systems Centre, Cranfield University, Bedford, MK43 0AL, UK

* Corresponding author. Tel.: +44 (0) 1234 758347. E-mail address: k.salonitis@cranfield.ac.uk

Abstract

Reconfigurable manufacturing systems (RMS) is one of the trending paradigms toward a digitalised factory. With its rapid reconfiguring
capability, finding a far-sighted scheduling policy is challenging. Reinforcement learning is well-equipped for finding highly efficient
production plans that would bring near-optimal future rewards. For minimising reconfiguring actions, this paper uses a deep reinforcement
learning agent to make autonomous decision with a built-in discrete event simulation model of a generic RMS. Aiming at the completion of the
assigned order lists while minimising the reconfiguration actions, the agent outperforms the conventional first-in-first-out dispatching rule after
self-learning.
© 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile
manufacturing and service operations: Lessons from COVID-19 (CIRPe 2021)

 Keywords: Reconfigurable manufacturing system; scheduling; reinforcement learning; dueling double deep q learning; discrete event simulation

1. Introduction

Aiming at rapidly addressing demand fluctuation, the
reconfigurable manufacturing system (RMS) was first
introduced in 1999 [1]. RMS paradigm targets on medium-
volume-high-variant mixed orders. With its structural
adjusting capability, RMS challenges the conventional
Dedicated Manufacturing Line (DML) on product variation
[2] and scalable setup [3]. RMS also challenges Flexible
Manufacturing Systems (FMS) on productivity and cost [1].
To classify the challenge into details, six core characteristics
has been identified [4] for RMS that include modularity,
integrability, diagnosability, scalability, customisability, and
convertibility. Napoleone [5] investigated the interrelationship
between these characteristics. Perceived value of a product
lead to the emerging of massive customisation, the top level
characteristic of RMS. Tang et al. [6] pointed out that a
dynamic scheduling policy which can continuously evolve in a

full sensing digital twin environment could help improving
customisability by enhancing scalability and convertibility.
However, the uncertainty, caused by the changing demand,
scale, and constrains of manufacturing practice, keeps
challenging this NP-hard [7] job-shop scheduling problem.
Mathematical programming and metaheuristic algorithms [8]
are the main tools to solve similar scheduling problems for
FMS. These methods outperform the fixed dispatching rules
like first-in-first-out but underperform while tackling the
scalability of RMS with limited computing resources [4].
RMS needs a “far-sighted” and “resilient” control strategy.
These features make reinforcement learning (RL) outstanding
and particularly feasible to cope similar continuous and
dynamic flexible job-shop scheduling problems [9]. In the
present paper, a discrete-event simulation (DES) model, which
simulates a simplified RMS, provides a Markov decision
process environment for training a job releasing schedule
agent. By observing the current system state, this agent sends

2 Jiecheng Tang et al. / Procedia CIRP 103 (2021) 1–7
2 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000

an action command to the DES model to obtain state transition
and a reward. Using continuous state updating and rewarding,
this scheduling agent trains one value approximator which
then provides an optimal scheduling policy. The rest of this
paper is organised as follows: section two formulates the
problem by reviewing the relative research on RMS
scheduling, RL in scheduling optimisation, optimal paths of
RL training, and RL-enabled DES. Section three describes the
proposed RMS-DES workflow, explaining how data flow
between the RL agent and DES model environment, and how
the agent trains its neural networks and uses it as a value
approximator. Section four presents a numerical case study
operated in different setups for optimising general production
time of an RMS by minimising the reconfiguring actions.
Section five finally concludes that this framework could easily
train an intelligent agent outperform conventional FIFO
dispatch rule.

2. Background and Literature Review

This paper mainly focuses on optimising RMS scheduling
using Deep Q Learning (DQL) by reducing reconfiguring
actions and while minimising the makespan. Q-learning [10]
based optimisation is used when the problems can be
formulated as Markov Decision Processes (MDP). In short, an
MDP means system state changes can only be affected by the
last chosen action. Q-learning is a value-based policy training
strategy. In an MDP environment, an agent has limited action
options from an action-space for a certain state. Every action
perform on that MDP environment leads to a state-transition.
A value function estimates the expected reward feedback
from the MDP environment. This expected reward from a
particular action is the quality, Q, of this action. Serial
actions, based on the highest Q-value, form an optimal policy.
Then, labelling these actions with time forms an optimal
schedule. For a simple environment with small number of
states, all rewards due to the state-action pairs can be
calculated and recorded in a tabulated database. This
recording process is called Q-learning. State-action pairs
quantity grows exponentially in a complex system. In such
case, a neural network [11] is introduced as a powerful tool
with limited input dimensions (state), limited output
dimensions (actions), and estimating value for each output
(expected reward). This deep neural network approximating Q
value is named Deep Q-network (DQN). The training process
to make DQN estimating the expected reward closer to the
accurate reward from MDP is called Deep-Q-learning (DQL)
[12] which extends from Q-learning. Discrete-event
simulation (DES) behaves similar to an MDP on state
transition which makes it an appropriate environment training
a smart agent. Aydin and Öztemel [13] trained an agent,
through a revised version of Q learning, to solve a dynamic
job-shop scheduling problem. The MDP process is formulated
as a DES where the agent needs to choose one of fixed
dispatching rules at certain scheduling time. These literatures
suggested DES is an appropriate method to deal with “what-
if” problem. Solving job-shop scheduling problem using DES
is not a new approach. For decades, scholars have focused on
several significant open-shop scheduling problems [14]

including m-machine, batch processing and setup time,
resource-constrained project scheduling problem, release time
and on-line scheduling, and so on. Fixed dispatching rules are
the most common control policy of traditional production
lines aiming on making scheduling fast. RMS paradigm and
the evolving Industry 4.0 technologies bring extra dimensions
for observing the system while raising additional
considerations in previous scheduling problems. These added
dimensions help operators understand the system better while,
at the same time, make the mature methods underperform. In
scheduling, conventional methods are incapable for complex
system such as RMS [15–18] and advanced adaptive
scheduling is needed to achieve a near optimal control
solution. Improving system robustness is another scheduling
research topic focused on optimal scheduling using
reinforcement learning. Palombarini et al. [19] used an
intelligent agent with DQL to reschedule a socio-technical
manufacturing system in real time with new inserted tasks
disturbance. Tackling on a resource-constrained scheduling
problem, He et al. [20] proposed a two-stage DQN framework
and suggested that RL has great potential in solving complex
task assigning problems. Huang et al. [21] obtained a
preventive maintenance policy on a DML by a DRL
approach. Though most scheduling research focuses on DML,
a shared patten could inspire and be implemented on RMS to
achieve high-level decision-making autonomy [22] and tackle
the computational difficulties of such complex system.
Different from the sequential layout in DMLs, another
inspiring research field is parallel machine scheduling
problem [9]. Fixed dispatching policies, such as first in first
out (FIFO) and earliest due date (EDD), are major
comparisons for popular meta-heuristic multi-objectives
optimisation methods like NSGA-II [23]. Using an intelligent
agent to find optimal operating policies attracted researchers
attention soon after Sutton and Barto [24] provided an
excellent reinforcement learning background knowledge in
1998. Creighton et al. [25] used state-action map (Q-learning)
technique to optimising operation policy on a multi-part
DML. Gabel et al [26] formulated a job-shop scheduling
problem into a decentralised Markov decision process and
successfully gained optimal scheduling control by applying
gradient-descent methods. Waschneck et al [27] applied DQN
in multiple machines for a global production scheduling
problem by training these agents sequentially. To mitigate the
impact of uncertainty in a wafer fabrication process with 32
information input, Sticker et al [28] trained a DQN agent to
orchestrate dispatching orders. By extending this real case,
Kuhnle et al [29] modelled the wafer fabrication problem
using discrete event simulation and concluded that even the
simplest reward function can easily outperform fixed
dispatching rules.

3. RMS Scheduling Based on Deep Q Learning

DES is a powerful tool for observing sequential jobs of an
entity inside the system. DES enables decision-makers to
observe the perceived performance of different scenarios, in a
virtual, risk-free environment, without the need to experiment
with the physical system itself. RMS scheduling has big

 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000 3

challenges on dealing complex system state and cooperate
every component inside the system. DQL is a powerful tool to
find optimal choice from given state and reward. Bridging
these three topics is a necessary job for operation research.

 Fig. 1. A Simplified Reconfigurable Manufacturing System

A simplified version of an RMS is presented in this paper
as shown in Fig 1. This dimensionless generic RMS has 4
major components. First, according to a pre-set order list, a
raw material storage will have exact numbers of raw material
wait for manufacturing at the beginning of a simulation
episode. Second, after receiving the material dispatching
order, a material handling system (MHS) will spend some
time to transport the assigned material to the assigned RMT.
Third component is a group of parallel RMTs with a shared
module warehouse. These RMTs response on manufacturing
products from material to product. Different products need
different RMT module and production time. If an RMT
receive a raw material current configuration cannot make, it
will ask the module warehouse to send an correct module to
reconfigure itself and return the original module. After an
RMT finish producing a product, MHS will move the product
to the last RMS component, a finished good inventory with a
dispatching area. This inventory will check whether current
stock fulfil the first required order. The inventory will pile up
the stock until the stock level is sufficient. A trained
scheduling agent should find out the policy which could
transfer raw materials into products and dispatching out from
RMS as soon as possible. To minimise the lead time of a
given set of orders, a deep reinforcement learning model
training approach based on discrete-event simulation is
proposed in this section. The scheduling solution contains two
major phases. First phase requires building a deep
reinforcement learning agent, shown with blue blocks in Fig
2, which can learn from environment effective. Based on the
observation of environment, the agent needs to pick one kind
of raw material from the storage at a suitable time and send it
to a free RMT inside the RMS.

Fig. 2. Deep Q Learning Agent Training Process Flow Chart

A size-limited replay buffer records tuples which contain
rewards and state-transition information feedbacked from
DES. All DQN are trained from the samples from this buffer.

The second phase focuses on building a DES environment
to imitate an RMS, shown in orange blocks in Fig 3, which
can receive action decision, transit its state, and generate
rewards. Green blocks in Figs. 2 and 3 present the information
exchange.

Fig. 3. Discrete Event Simulation Flow Chart

3.1. Basic DQN learning process

Basic Q learning uses Bellman’s equation to describe the
expected reward. The quality value of reward is presented as

 (1)

Where is the immediate reward for transmitting from
current state, , to next state, . A discount factor, ,
weakens and balances the reward from future reward. Since
DQL first introduction [30], there has been no significant
change on the basic training process, which is shown in Table
1. The training goal of the DQN is an accurate non-linear
quality function estimator, , where and represent a
state and an action respectively. In practice, two versions of
one DQN is used for stabilising the learning process. The first
one is an online neural network which is presented with a
weight vector, , as . The second one is the target
neural network with a weight vector, , which is presented as

. Target neural network shares the same
architecture of the online neural network but estimates the
next step Q value of the next state, , and action, . While
the online neural network learns every training step, the target
neural network keeps stable for a fixed number of iterations
before the online network weight, , is copied to . Based on
this modification, Bellman’s equation for DQN can be written
as

 (2)

A mean square loss function is introduced here to be gradient
descent and train the online neural network from the
difference between the target network. This function is written
as

 (3)

In this paper, is calculated automatically by Pytorch.
For implementing the DQN algorithm, a replay memory

collecting D previous experience and a deep Q-network with
random weights 𝜽𝜽 that represents the action-value function Q

 Jiecheng Tang et al. / Procedia CIRP 103 (2021) 1–7 3
2 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000

an action command to the DES model to obtain state transition
and a reward. Using continuous state updating and rewarding,
this scheduling agent trains one value approximator which
then provides an optimal scheduling policy. The rest of this
paper is organised as follows: section two formulates the
problem by reviewing the relative research on RMS
scheduling, RL in scheduling optimisation, optimal paths of
RL training, and RL-enabled DES. Section three describes the
proposed RMS-DES workflow, explaining how data flow
between the RL agent and DES model environment, and how
the agent trains its neural networks and uses it as a value
approximator. Section four presents a numerical case study
operated in different setups for optimising general production
time of an RMS by minimising the reconfiguring actions.
Section five finally concludes that this framework could easily
train an intelligent agent outperform conventional FIFO
dispatch rule.

2. Background and Literature Review

This paper mainly focuses on optimising RMS scheduling
using Deep Q Learning (DQL) by reducing reconfiguring
actions and while minimising the makespan. Q-learning [10]
based optimisation is used when the problems can be
formulated as Markov Decision Processes (MDP). In short, an
MDP means system state changes can only be affected by the
last chosen action. Q-learning is a value-based policy training
strategy. In an MDP environment, an agent has limited action
options from an action-space for a certain state. Every action
perform on that MDP environment leads to a state-transition.
A value function estimates the expected reward feedback
from the MDP environment. This expected reward from a
particular action is the quality, Q, of this action. Serial
actions, based on the highest Q-value, form an optimal policy.
Then, labelling these actions with time forms an optimal
schedule. For a simple environment with small number of
states, all rewards due to the state-action pairs can be
calculated and recorded in a tabulated database. This
recording process is called Q-learning. State-action pairs
quantity grows exponentially in a complex system. In such
case, a neural network [11] is introduced as a powerful tool
with limited input dimensions (state), limited output
dimensions (actions), and estimating value for each output
(expected reward). This deep neural network approximating Q
value is named Deep Q-network (DQN). The training process
to make DQN estimating the expected reward closer to the
accurate reward from MDP is called Deep-Q-learning (DQL)
[12] which extends from Q-learning. Discrete-event
simulation (DES) behaves similar to an MDP on state
transition which makes it an appropriate environment training
a smart agent. Aydin and Öztemel [13] trained an agent,
through a revised version of Q learning, to solve a dynamic
job-shop scheduling problem. The MDP process is formulated
as a DES where the agent needs to choose one of fixed
dispatching rules at certain scheduling time. These literatures
suggested DES is an appropriate method to deal with “what-
if” problem. Solving job-shop scheduling problem using DES
is not a new approach. For decades, scholars have focused on
several significant open-shop scheduling problems [14]

including m-machine, batch processing and setup time,
resource-constrained project scheduling problem, release time
and on-line scheduling, and so on. Fixed dispatching rules are
the most common control policy of traditional production
lines aiming on making scheduling fast. RMS paradigm and
the evolving Industry 4.0 technologies bring extra dimensions
for observing the system while raising additional
considerations in previous scheduling problems. These added
dimensions help operators understand the system better while,
at the same time, make the mature methods underperform. In
scheduling, conventional methods are incapable for complex
system such as RMS [15–18] and advanced adaptive
scheduling is needed to achieve a near optimal control
solution. Improving system robustness is another scheduling
research topic focused on optimal scheduling using
reinforcement learning. Palombarini et al. [19] used an
intelligent agent with DQL to reschedule a socio-technical
manufacturing system in real time with new inserted tasks
disturbance. Tackling on a resource-constrained scheduling
problem, He et al. [20] proposed a two-stage DQN framework
and suggested that RL has great potential in solving complex
task assigning problems. Huang et al. [21] obtained a
preventive maintenance policy on a DML by a DRL
approach. Though most scheduling research focuses on DML,
a shared patten could inspire and be implemented on RMS to
achieve high-level decision-making autonomy [22] and tackle
the computational difficulties of such complex system.
Different from the sequential layout in DMLs, another
inspiring research field is parallel machine scheduling
problem [9]. Fixed dispatching policies, such as first in first
out (FIFO) and earliest due date (EDD), are major
comparisons for popular meta-heuristic multi-objectives
optimisation methods like NSGA-II [23]. Using an intelligent
agent to find optimal operating policies attracted researchers
attention soon after Sutton and Barto [24] provided an
excellent reinforcement learning background knowledge in
1998. Creighton et al. [25] used state-action map (Q-learning)
technique to optimising operation policy on a multi-part
DML. Gabel et al [26] formulated a job-shop scheduling
problem into a decentralised Markov decision process and
successfully gained optimal scheduling control by applying
gradient-descent methods. Waschneck et al [27] applied DQN
in multiple machines for a global production scheduling
problem by training these agents sequentially. To mitigate the
impact of uncertainty in a wafer fabrication process with 32
information input, Sticker et al [28] trained a DQN agent to
orchestrate dispatching orders. By extending this real case,
Kuhnle et al [29] modelled the wafer fabrication problem
using discrete event simulation and concluded that even the
simplest reward function can easily outperform fixed
dispatching rules.

3. RMS Scheduling Based on Deep Q Learning

DES is a powerful tool for observing sequential jobs of an
entity inside the system. DES enables decision-makers to
observe the perceived performance of different scenarios, in a
virtual, risk-free environment, without the need to experiment
with the physical system itself. RMS scheduling has big

 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000 3

challenges on dealing complex system state and cooperate
every component inside the system. DQL is a powerful tool to
find optimal choice from given state and reward. Bridging
these three topics is a necessary job for operation research.

 Fig. 1. A Simplified Reconfigurable Manufacturing System

A simplified version of an RMS is presented in this paper
as shown in Fig 1. This dimensionless generic RMS has 4
major components. First, according to a pre-set order list, a
raw material storage will have exact numbers of raw material
wait for manufacturing at the beginning of a simulation
episode. Second, after receiving the material dispatching
order, a material handling system (MHS) will spend some
time to transport the assigned material to the assigned RMT.
Third component is a group of parallel RMTs with a shared
module warehouse. These RMTs response on manufacturing
products from material to product. Different products need
different RMT module and production time. If an RMT
receive a raw material current configuration cannot make, it
will ask the module warehouse to send an correct module to
reconfigure itself and return the original module. After an
RMT finish producing a product, MHS will move the product
to the last RMS component, a finished good inventory with a
dispatching area. This inventory will check whether current
stock fulfil the first required order. The inventory will pile up
the stock until the stock level is sufficient. A trained
scheduling agent should find out the policy which could
transfer raw materials into products and dispatching out from
RMS as soon as possible. To minimise the lead time of a
given set of orders, a deep reinforcement learning model
training approach based on discrete-event simulation is
proposed in this section. The scheduling solution contains two
major phases. First phase requires building a deep
reinforcement learning agent, shown with blue blocks in Fig
2, which can learn from environment effective. Based on the
observation of environment, the agent needs to pick one kind
of raw material from the storage at a suitable time and send it
to a free RMT inside the RMS.

Fig. 2. Deep Q Learning Agent Training Process Flow Chart

A size-limited replay buffer records tuples which contain
rewards and state-transition information feedbacked from
DES. All DQN are trained from the samples from this buffer.

The second phase focuses on building a DES environment
to imitate an RMS, shown in orange blocks in Fig 3, which
can receive action decision, transit its state, and generate
rewards. Green blocks in Figs. 2 and 3 present the information
exchange.

Fig. 3. Discrete Event Simulation Flow Chart

3.1. Basic DQN learning process

Basic Q learning uses Bellman’s equation to describe the
expected reward. The quality value of reward is presented as

 (1)

Where is the immediate reward for transmitting from
current state, , to next state, . A discount factor, ,
weakens and balances the reward from future reward. Since
DQL first introduction [30], there has been no significant
change on the basic training process, which is shown in Table
1. The training goal of the DQN is an accurate non-linear
quality function estimator, , where and represent a
state and an action respectively. In practice, two versions of
one DQN is used for stabilising the learning process. The first
one is an online neural network which is presented with a
weight vector, , as . The second one is the target
neural network with a weight vector, , which is presented as

. Target neural network shares the same
architecture of the online neural network but estimates the
next step Q value of the next state, , and action, . While
the online neural network learns every training step, the target
neural network keeps stable for a fixed number of iterations
before the online network weight, , is copied to . Based on
this modification, Bellman’s equation for DQN can be written
as

 (2)

A mean square loss function is introduced here to be gradient
descent and train the online neural network from the
difference between the target network. This function is written
as

 (3)

In this paper, is calculated automatically by Pytorch.
For implementing the DQN algorithm, a replay memory

collecting D previous experience and a deep Q-network with
random weights 𝜽𝜽 that represents the action-value function Q

4 Jiecheng Tang et al. / Procedia CIRP 103 (2021) 1–7
4 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000

are initialised at the beginning of a training process. Agent
will randomly choose action until the D length replay memory
is fulfilled. Then scheduling agent selects and executes
actions according to an ε-greedy policy based on Q. ε is the
probability the action would be chosen randomly, and it will
decrease until a set value as training progresses. Every
training episode ends at a terminal state like run out of
simulation time or all order are fulfilled.

Table 1. Basic DQL Process of a Scheduling Agent [31]

Input: Capacity of replay memory N, Discount Factor γ, Learning Rate α,
Episodes Limit M, Batch Sample Length L

Output: An Agent Does Optimal Scheduling

01 Initialise replay memory D with N capacity

02 Initialise an online network Q with random weights θ

03 for episode = 1 to iteration limit M

04 Observe the initial state s0

05 for t = 1 to T

06 Choose an action, at, at according to Q with ε probability for a
random action

07 execute at on DES and get reward rt and next state st+1

08 Store transition (st, at, rt, st+1) and whether it is terminal in D

09 Randomly pick L sample (sj, aj, rj, sj+1) from D

10 Set training target yj to

 rj if current episode terminates at step j+1

 rj+γQ(sj+1, argmaxa’Q(sj+1, a’, θ), θ) if current episode not
terminates at step j+1

11 Perform a gradient descent step (yj-Q(sj+1, aj, θ))2

12 Decrease ε until a set minimum value

The basic DQL training algorithm with single neural network
could sometimes overly optimistically estimating the true
rewards [32]. Decoupling the action estimation and action
selection can simply fix it. The main neural network would
decide not only current state optimal action but also the
optimal action for next state. This approach is known as
Double DQN algorithm and its Bellman’s equation is written
as

 (4) (4)

Q value is made up two functions, V and A. The equation
can be written as .V stands for state
value function of current state which tells the expected reward
from current state only. A represent the advantage function
which tells the difference an optimal action can bring
compared to the other actions. In neural network training, V
and A are unidentifiable and cannot simply sum up for Q
estimation. To solve this and chasing a better agent training
performance, Wang [33] introduced Dueling DQN
architecture which force the highest Q-value equal to V hence
highest A has to be zero. To get optimisation stability, Wang
trades-off the maximum Q for an average Q so that A doesn’t
have to turn negative of an optimal action if A catch up the
mean changing speed. The Q calculation can be re-written as

 (5) (5)

3.2. States to form an observation

An input observation consists of four kinds of features,
listed in Table 2, which include every RMT state, remaining
raw material state, finished good stock state, and order state.
State of an RMT include three elements which are installed
module type, remaining time to finish reconfiguration ,
and remaining time to finish current production . The
quantity of each kind of raw material still in the storage make
up the remaining raw material state. The order list contains a
sequence of orders. Each order consists of three elements
which are product type, required quantity, and whether it has
been finished or not. The finish good state describes the
quantity of finished product for each kind of product.

Table 2. 4 States to Form an Observation

State State Structure

RMT State Module, Tcfg, Tpdc

Raw Material Stock Quantity of each raw material

Order State Type, Quantity, Completed or not

Finished Good Stock Quantity of each product

3.3. Action

An optimal action, which has the highest quality value Q
calculated by a forward function from neural network is the
outcome from the agent for a certain state. This action is
presented as . When training
starts, the value function Q is far from accurate. Aiming on
fast converging at the beginning stage, the agent should
perform more arbitrary actions to explore the DES
environment. A large random action choosing rate, ε, is
assigned for helping agent to choose arbitrary action rather
than based on a rough Q estimation. This process happens in
the action selector as shown in Fig 2. With learning episode
increasing, the Q-network approximate Q more accurately so
ε keeps on decreasing until a pre-set minimum. The
combination of all possible actions forms an action space. In
this paper, there is only one agent to operate the entire RMS
so that it can choose only one optimal action for a single state.
For an RMS contains more than one RMT, the action-space
expand exponentially due to the RMT number. For example, a
two-product RMS with two RMT has an action-space with 9
outputs. The optimal choice contains decisions including
which kind of raw material will be send to each RMT or keep
an RMT idle. The data flow of input state and output action is
shown in Fig. 4. The Agent receives an observation that
contains every RMT status, situation of material storage,
finished good inventory, and all rest unfinished order.

 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000 5

Fig. 4. Neural Network Forward Function for RMT Action

3.4. Reward and Terminal State

Designing a proper reward mechanism is critical for
training an RL agent. In this paper, RMS-DES runs on
discrete simulation time step. For each time step, the agent
needs to decide whether to send a material for an RMT. The
principle of defining reward rules is encouraging an agent
keep an RMS in value-adding state instead of constant
reconfiguring. While an agent implementing a logy
scheduling policy, there will be no positive nor negative
reward. When RMT is reconfiguring itself, it generates -50
reward per unit time. When an RMT raw material is in
manufacturing, it will generate +5 reward per unit time until
the process finish and the good send to the storage. One
finished good in storage generate -1 reward per unit time. The
agent will receive a -100 reward if it decides to send material
to a busy RMT.

Table 3. Reward Rule for Unit Simulation Time

Reward Items Reward Generating Rate

A raw material stays in a storage 0

An RMT stays in idle 0

An RMT is manufacturing a raw material +5

An RMT is reconfiguring itself -50

RMT is busy but agent decide to send in a material -100

A finished good dispatched with an order +100

All order cleared +1,000,000

To avoid unnecessary computational power waste, there
are three kinds of scenario that will end current training
episode. In every simulation step, DES first updates its current
state and calculate an inertial reward from previous events
like reconfiguration and production. Then DES asks the agent
to provide an action. This action will move DES to another
state with new events and in general another instant reward
which accumulates with the inertial reward. This single-step
reward and new state are sent back to the agent for training
while it will be accumulated to a general reward recorded
inside DES to check if current simulation episode performed
too bad to end. If the accumulated reward does not excess the
threshold, (set as negative 2 million in all numerical cases in
this paper), DES will keep running until a pre-set simulation
time runs out, (set as 7200 min that equals one week), or all
order are fulfilled.

4. Model Evaluation and Analysis

Three RMS cases based on the same structure are studied.
An RMS can contain 1 to 3 RMTs. An RMT need to
reconfigure itself to a unique configuration for manufacturing
a specific product variant. The reconfiguration time for
product variant 0 and 1 are identical, 300 min in all numerical
cases. After an RMT reconfigures to correct form, the cycle
time for producing one finished good is 1 min. All finished
good will be temporally stocked until the quantity fulfils the
first unfinished order. When a training episode starts, the DES
environment initialises a deterministic group of sequential
orders labelled with product type and quantity. One order list,
shown in appendix, contains 20 individual sub-orders have
been studied in this paper. This order list, OL1, requests 166
product 0 and 362 product 1 which will raise up to 9
reconfigurations in an RMS with single RMT when it follows
FIFO. RMSs with different RMT quantity require unique
DQN aggregate output layers. RMS01 with only one RMT has
3 possible actions. RMS02 contains 2 RMTs has 9 potential
action combinations. RMS03 with 3 RMTs has 27 possible
reaction mode.

Fig. 5. Basic DQN Training Process Comparison (RMS01&02)

Fig. 6. Agent Performance Improving Trend

 Jiecheng Tang et al. / Procedia CIRP 103 (2021) 1–7 5
4 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000

are initialised at the beginning of a training process. Agent
will randomly choose action until the D length replay memory
is fulfilled. Then scheduling agent selects and executes
actions according to an ε-greedy policy based on Q. ε is the
probability the action would be chosen randomly, and it will
decrease until a set value as training progresses. Every
training episode ends at a terminal state like run out of
simulation time or all order are fulfilled.

Table 1. Basic DQL Process of a Scheduling Agent [31]

Input: Capacity of replay memory N, Discount Factor γ, Learning Rate α,
Episodes Limit M, Batch Sample Length L

Output: An Agent Does Optimal Scheduling

01 Initialise replay memory D with N capacity

02 Initialise an online network Q with random weights θ

03 for episode = 1 to iteration limit M

04 Observe the initial state s0

05 for t = 1 to T

06 Choose an action, at, at according to Q with ε probability for a
random action

07 execute at on DES and get reward rt and next state st+1

08 Store transition (st, at, rt, st+1) and whether it is terminal in D

09 Randomly pick L sample (sj, aj, rj, sj+1) from D

10 Set training target yj to

 rj if current episode terminates at step j+1

 rj+γQ(sj+1, argmaxa’Q(sj+1, a’, θ), θ) if current episode not
terminates at step j+1

11 Perform a gradient descent step (yj-Q(sj+1, aj, θ))2

12 Decrease ε until a set minimum value

The basic DQL training algorithm with single neural network
could sometimes overly optimistically estimating the true
rewards [32]. Decoupling the action estimation and action
selection can simply fix it. The main neural network would
decide not only current state optimal action but also the
optimal action for next state. This approach is known as
Double DQN algorithm and its Bellman’s equation is written
as

 (4) (4)

Q value is made up two functions, V and A. The equation
can be written as .V stands for state
value function of current state which tells the expected reward
from current state only. A represent the advantage function
which tells the difference an optimal action can bring
compared to the other actions. In neural network training, V
and A are unidentifiable and cannot simply sum up for Q
estimation. To solve this and chasing a better agent training
performance, Wang [33] introduced Dueling DQN
architecture which force the highest Q-value equal to V hence
highest A has to be zero. To get optimisation stability, Wang
trades-off the maximum Q for an average Q so that A doesn’t
have to turn negative of an optimal action if A catch up the
mean changing speed. The Q calculation can be re-written as

 (5) (5)

3.2. States to form an observation

An input observation consists of four kinds of features,
listed in Table 2, which include every RMT state, remaining
raw material state, finished good stock state, and order state.
State of an RMT include three elements which are installed
module type, remaining time to finish reconfiguration ,
and remaining time to finish current production . The
quantity of each kind of raw material still in the storage make
up the remaining raw material state. The order list contains a
sequence of orders. Each order consists of three elements
which are product type, required quantity, and whether it has
been finished or not. The finish good state describes the
quantity of finished product for each kind of product.

Table 2. 4 States to Form an Observation

State State Structure

RMT State Module, Tcfg, Tpdc

Raw Material Stock Quantity of each raw material

Order State Type, Quantity, Completed or not

Finished Good Stock Quantity of each product

3.3. Action

An optimal action, which has the highest quality value Q
calculated by a forward function from neural network is the
outcome from the agent for a certain state. This action is
presented as . When training
starts, the value function Q is far from accurate. Aiming on
fast converging at the beginning stage, the agent should
perform more arbitrary actions to explore the DES
environment. A large random action choosing rate, ε, is
assigned for helping agent to choose arbitrary action rather
than based on a rough Q estimation. This process happens in
the action selector as shown in Fig 2. With learning episode
increasing, the Q-network approximate Q more accurately so
ε keeps on decreasing until a pre-set minimum. The
combination of all possible actions forms an action space. In
this paper, there is only one agent to operate the entire RMS
so that it can choose only one optimal action for a single state.
For an RMS contains more than one RMT, the action-space
expand exponentially due to the RMT number. For example, a
two-product RMS with two RMT has an action-space with 9
outputs. The optimal choice contains decisions including
which kind of raw material will be send to each RMT or keep
an RMT idle. The data flow of input state and output action is
shown in Fig. 4. The Agent receives an observation that
contains every RMT status, situation of material storage,
finished good inventory, and all rest unfinished order.

 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000 5

Fig. 4. Neural Network Forward Function for RMT Action

3.4. Reward and Terminal State

Designing a proper reward mechanism is critical for
training an RL agent. In this paper, RMS-DES runs on
discrete simulation time step. For each time step, the agent
needs to decide whether to send a material for an RMT. The
principle of defining reward rules is encouraging an agent
keep an RMS in value-adding state instead of constant
reconfiguring. While an agent implementing a logy
scheduling policy, there will be no positive nor negative
reward. When RMT is reconfiguring itself, it generates -50
reward per unit time. When an RMT raw material is in
manufacturing, it will generate +5 reward per unit time until
the process finish and the good send to the storage. One
finished good in storage generate -1 reward per unit time. The
agent will receive a -100 reward if it decides to send material
to a busy RMT.

Table 3. Reward Rule for Unit Simulation Time

Reward Items Reward Generating Rate

A raw material stays in a storage 0

An RMT stays in idle 0

An RMT is manufacturing a raw material +5

An RMT is reconfiguring itself -50

RMT is busy but agent decide to send in a material -100

A finished good dispatched with an order +100

All order cleared +1,000,000

To avoid unnecessary computational power waste, there
are three kinds of scenario that will end current training
episode. In every simulation step, DES first updates its current
state and calculate an inertial reward from previous events
like reconfiguration and production. Then DES asks the agent
to provide an action. This action will move DES to another
state with new events and in general another instant reward
which accumulates with the inertial reward. This single-step
reward and new state are sent back to the agent for training
while it will be accumulated to a general reward recorded
inside DES to check if current simulation episode performed
too bad to end. If the accumulated reward does not excess the
threshold, (set as negative 2 million in all numerical cases in
this paper), DES will keep running until a pre-set simulation
time runs out, (set as 7200 min that equals one week), or all
order are fulfilled.

4. Model Evaluation and Analysis

Three RMS cases based on the same structure are studied.
An RMS can contain 1 to 3 RMTs. An RMT need to
reconfigure itself to a unique configuration for manufacturing
a specific product variant. The reconfiguration time for
product variant 0 and 1 are identical, 300 min in all numerical
cases. After an RMT reconfigures to correct form, the cycle
time for producing one finished good is 1 min. All finished
good will be temporally stocked until the quantity fulfils the
first unfinished order. When a training episode starts, the DES
environment initialises a deterministic group of sequential
orders labelled with product type and quantity. One order list,
shown in appendix, contains 20 individual sub-orders have
been studied in this paper. This order list, OL1, requests 166
product 0 and 362 product 1 which will raise up to 9
reconfigurations in an RMS with single RMT when it follows
FIFO. RMSs with different RMT quantity require unique
DQN aggregate output layers. RMS01 with only one RMT has
3 possible actions. RMS02 contains 2 RMTs has 9 potential
action combinations. RMS03 with 3 RMTs has 27 possible
reaction mode.

Fig. 5. Basic DQN Training Process Comparison (RMS01&02)

Fig. 6. Agent Performance Improving Trend

6 Jiecheng Tang et al. / Procedia CIRP 103 (2021) 1–7
6 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000

Fig. 7. DDDQN Scheduling Agent Training Process for RMS02 & RMS03

The first experience trained two basic DQN agents for two
RMS setups for OL1. Agents will be trained one iteration
when it gets one state-transition tuple. Every simulation turn
forms one train episode which contains thousands of training
iteration. After finishing one simulation turn, the agent run in
exploit mode to benchmark its performance using accumulate
reward. Two solid lines in Fig 5 present the benchmark trends
of two agents of RMS01 and RMS02. Dashed lines are the
average accumulated rewards when RMS01 and RMS02 act
randomly. Fig. 5 also illustrate that both agents converged
quickly after only around 30 turns. However, increasing
training episodes did not bring more advantages to agents.
Some episodes’ ill performance even worse than complete
random actions.

When an RMS perform in FIFO mode, raw material will
dispatch to every free RMT only according to the order
sequence only regardless the RMT current configuration. To
overcome this shortcoming, a far-sighted agent needs to
combine orders with the same variant together to reduce total
reconfiguration action hence minimising the total production
time. Fig. 6 shows a DDDQN agent training process in a One-
RMT RMS. Due to different initial RMT configuration, FIFO
can finish the OL1 around 3000 mins. Start from a poor
performance level, the agent quickly outperforms FIFO after
only training iterations. The agent achieved its optimal
strategy at around 20 thousand iterations.

Aiming on improving the training stability, two Double
DQN agents with duelling architecture are set for RMS02 and
RMS03. Fig. 7 shows that DDDQN agent perform more
stable after converging compares to the basic DQN agent.

5. Conclusions

DQN scheduling agents showed great performance
advantage potential in this paper. Agents out-perform a
traditional dispatch rule, first-in-first-out, in very limited
simulation turns. The training results show that all kinds of
DQN agent can quickly converge to an above average level.
Dueling Double DQN agents shows an advanced stability as
its inventor suggested. However, even if the converging
capability and stability of DDDQN is much premium
compares to the basic DQN, it is clear that an agent can
perform way from optimal occasionally regardless the
increasing training episodes. Keeping on optimising the agent
stability with advanced techniques, such as priority replay
memory, bagging strategy is necessary. All agent converges

in several episode suggest the over-simplified RMS cannot
full unveil the agent potential. The only randomness inside the
environment is the initial configuration of every RMT.
Material handling system with fluctuated deliver time,
random breakdown on RMT, limited number of modules,
material resource, products with multi manufacturing
processes, and dynamic order lists with task inserting should
be considered in a future model.

Appendix A. Order List

Order List 1 - OL1: 166 Product 0 and 362 Product 1
Order # Variant Quantity Order # Variant Quantity

0 0 22 10 0 24
1 1 27 11 1 19
2 1 47 12 0 19
3 1 31 13 1 22
4 0 17 14 1 43
5 1 20 15 1 20
6 1 24 16 0 33
7 1 24 17 0 21
8 1 40 18 1 35
9 0 30 19 1 10

References
1. Koren Y, Heisel U, Jovane F, et al (1999) Reconfigurable Manufacturing

Systems. CIRP Ann 48:527–540.
2. Mittal KK, Jain PK (2014) An Overview of Performance Measures in

Reconfigurable Manufacturing System. Procedia Eng 69:1125–1129.
3. Moghaddam SK, Houshmand M, Saitou K, Fatahi Valilai O (2020)

Configuration design of scalable reconfigurable manufacturing systems for
part family. Int J Prod Res 58:2974–2996.

4. Koren Y, Shpitalni M (2010) Design of reconfigurable manufacturing systems. J
Manuf Syst 29:130–141.

5. Napoleone A, Pozzetti A, Macchi M (2018) Core Characteristics of
Reconfigurability and their Influencing Elements.

6. Tang J, Emmanouilidis C, Salonitis K (2020) Reconfigurable Manufacturing
Systems Characteristics in Digital Twin Context. IFAC-PapersOnLine
53:10585–10590.

7. Luo S (2020) Dynamic scheduling for flexible job shop with new job insertions
by deep reinforcement learning. Appl Soft Comput J 91:106208.

8. Bakakeu J, Tolksdorf S, Bauer J, et al (2018) An Artificial Intelligence
Approach for Online Optimization of Flexible Manufacturing Systems. Appl
Mech Mater 882:96–108.

9. Zhang Z, Zheng L, Weng MX (2007) Dynamic parallel machine scheduling
with mean weighted tardiness objective by Q-Learning. Int J Adv Manuf
Technol 34:968–980.

10. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8:279–292
11. Mnih V, Kavukcuoglu K, Silver D, et al (2015) Human-level control through

deep reinforcement learning. Nature 518:529–533.
12. Mnih V, Kavukcuoglu K, Silver D, et al (2013) Playing Atari with Deep

Reinforcement Learning. 1–9
13. Aydin ME, Öztemel E (2000) Dynamic job-shop scheduling using

reinforcement learning agents. Rob Auton Syst 33:169–178.
14. Ahmadian MM, Khatami M, Salehipour A, Cheng TCE (2021) Four decades of

research on the open-shop scheduling problem to minimize the makespan. Eur
J Oper Res.

15. Xu W, Guo S (2019) A multi-objective and multi-dimensional optimization
scheduling method using a hybrid evolutionary algorithms with a sectional
encoding mode. Sustain 11:.

16. Xiao H, Wu X, Zeng Y, Zhai J (2020) A CEGA-Based Optimization Approach
for Integrated Designing of a Unidirectional Guide-Path Network and
Scheduling of AGVs. Math Probl Eng 2020:.

17. Carli R, Digiesi S, Dotoli M, Facchini F (2020) A control strategy for smart
energy charging of warehouse material handling equipment. Procedia Manuf
42:503–510.

 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000 7

18. Guan J, Lin G, Feng H Bin, Ruan ZQ (2020) A decomposition-based algorithm
for the double row layout problem. Appl Math Model 77

19. Palombarini JA, Martinez EC (2019) Closed-loop rescheduling using deep
reinforcement learning. IFAC-PapersOnLine 52:231–236.

20. He Y, Wu G, Chen Y, Pedrycz W (2021) A Two-stage Framework and
Reinforcement Learning-based Optimization Algorithms for Complex
Scheduling Problems. 1–11.

21. Huang J, Chang Q, Arinez J (2020) Deep reinforcement learning based
preventive maintenance policy for serial production lines. Expert Syst Appl
160:113701.

22. Han W, Guo F, Su X (2019) A reinforcement learning method for a hybrid
flow-shop scheduling problem. Algorithms 12.

23. Souier M, Dahane M, Maliki F (2019) An NSGA-II-based multiobjective
approach for real-time routing selection in a flexible manufacturing system
under uncertainty and reliability constraints. Int J Adv Manuf Technol
100:2813–2829.

24. Barto RSS and AG (1998) Introduction to Reinforcement Learning
25. Creighton DC (2002) Proceedings of the 2002 winter simulation conference -

Volume 2. Winter Simul Conf Proc 2:1945–1950.

26. Gabel T, Riedmiller M (2012) Distributed policy search reinforcement learning
for job-shop scheduling tasks. Int J Prod Res 50:41–61.

27. Waschneck B, Reichstaller A, Belzner L, et al (2018) Optimization of global
production scheduling with deep reinforcement learning. Procedia CIRP
72:1264–1269.

28. Stricker N, Kuhnle A, Sturm R, Friess S (2018) Reinforcement learning for
adaptive order dispatching in the semiconductor industry. CIRP Ann 67:511–
514.

29. Kuhnle A, Kaiser JP, Theiß F, et al (2021) Designing an adaptive production
control system using reinforcement learning. J Intell Manuf 32:855–876.

30. Mnih V, Kavukcuoglu K, Silver D, et al (2013) Playing Atari with Deep
Reinforcement Learning. 1–9.

31. Sutton RS, Barto AG (2018) Reinforcement Learning: An Introduction.
32. Hasselt H van, Guez A, Silver D (2016) Deep Reinforcement Learning with

Double Q-Learning. Proc Thirtieth AAAI Conf Artif Intell 30:7.
33. Wang Z, Schaul T, Hessel M, et al (2016) Dueling Network Architectures for

Deep Reinforcement Learning. 33rd Int Conf Mach Learn ICML 2016 4:2939–
2947.

 Jiecheng Tang et al. / Procedia CIRP 103 (2021) 1–7 7
6 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000

Fig. 7. DDDQN Scheduling Agent Training Process for RMS02 & RMS03

The first experience trained two basic DQN agents for two
RMS setups for OL1. Agents will be trained one iteration
when it gets one state-transition tuple. Every simulation turn
forms one train episode which contains thousands of training
iteration. After finishing one simulation turn, the agent run in
exploit mode to benchmark its performance using accumulate
reward. Two solid lines in Fig 5 present the benchmark trends
of two agents of RMS01 and RMS02. Dashed lines are the
average accumulated rewards when RMS01 and RMS02 act
randomly. Fig. 5 also illustrate that both agents converged
quickly after only around 30 turns. However, increasing
training episodes did not bring more advantages to agents.
Some episodes’ ill performance even worse than complete
random actions.

When an RMS perform in FIFO mode, raw material will
dispatch to every free RMT only according to the order
sequence only regardless the RMT current configuration. To
overcome this shortcoming, a far-sighted agent needs to
combine orders with the same variant together to reduce total
reconfiguration action hence minimising the total production
time. Fig. 6 shows a DDDQN agent training process in a One-
RMT RMS. Due to different initial RMT configuration, FIFO
can finish the OL1 around 3000 mins. Start from a poor
performance level, the agent quickly outperforms FIFO after
only training iterations. The agent achieved its optimal
strategy at around 20 thousand iterations.

Aiming on improving the training stability, two Double
DQN agents with duelling architecture are set for RMS02 and
RMS03. Fig. 7 shows that DDDQN agent perform more
stable after converging compares to the basic DQN agent.

5. Conclusions

DQN scheduling agents showed great performance
advantage potential in this paper. Agents out-perform a
traditional dispatch rule, first-in-first-out, in very limited
simulation turns. The training results show that all kinds of
DQN agent can quickly converge to an above average level.
Dueling Double DQN agents shows an advanced stability as
its inventor suggested. However, even if the converging
capability and stability of DDDQN is much premium
compares to the basic DQN, it is clear that an agent can
perform way from optimal occasionally regardless the
increasing training episodes. Keeping on optimising the agent
stability with advanced techniques, such as priority replay
memory, bagging strategy is necessary. All agent converges

in several episode suggest the over-simplified RMS cannot
full unveil the agent potential. The only randomness inside the
environment is the initial configuration of every RMT.
Material handling system with fluctuated deliver time,
random breakdown on RMT, limited number of modules,
material resource, products with multi manufacturing
processes, and dynamic order lists with task inserting should
be considered in a future model.

Appendix A. Order List

Order List 1 - OL1: 166 Product 0 and 362 Product 1
Order # Variant Quantity Order # Variant Quantity

0 0 22 10 0 24
1 1 27 11 1 19
2 1 47 12 0 19
3 1 31 13 1 22
4 0 17 14 1 43
5 1 20 15 1 20
6 1 24 16 0 33
7 1 24 17 0 21
8 1 40 18 1 35
9 0 30 19 1 10

References
1. Koren Y, Heisel U, Jovane F, et al (1999) Reconfigurable Manufacturing

Systems. CIRP Ann 48:527–540.
2. Mittal KK, Jain PK (2014) An Overview of Performance Measures in

Reconfigurable Manufacturing System. Procedia Eng 69:1125–1129.
3. Moghaddam SK, Houshmand M, Saitou K, Fatahi Valilai O (2020)

Configuration design of scalable reconfigurable manufacturing systems for
part family. Int J Prod Res 58:2974–2996.

4. Koren Y, Shpitalni M (2010) Design of reconfigurable manufacturing systems. J
Manuf Syst 29:130–141.

5. Napoleone A, Pozzetti A, Macchi M (2018) Core Characteristics of
Reconfigurability and their Influencing Elements.

6. Tang J, Emmanouilidis C, Salonitis K (2020) Reconfigurable Manufacturing
Systems Characteristics in Digital Twin Context. IFAC-PapersOnLine
53:10585–10590.

7. Luo S (2020) Dynamic scheduling for flexible job shop with new job insertions
by deep reinforcement learning. Appl Soft Comput J 91:106208.

8. Bakakeu J, Tolksdorf S, Bauer J, et al (2018) An Artificial Intelligence
Approach for Online Optimization of Flexible Manufacturing Systems. Appl
Mech Mater 882:96–108.

9. Zhang Z, Zheng L, Weng MX (2007) Dynamic parallel machine scheduling
with mean weighted tardiness objective by Q-Learning. Int J Adv Manuf
Technol 34:968–980.

10. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8:279–292
11. Mnih V, Kavukcuoglu K, Silver D, et al (2015) Human-level control through

deep reinforcement learning. Nature 518:529–533.
12. Mnih V, Kavukcuoglu K, Silver D, et al (2013) Playing Atari with Deep

Reinforcement Learning. 1–9
13. Aydin ME, Öztemel E (2000) Dynamic job-shop scheduling using

reinforcement learning agents. Rob Auton Syst 33:169–178.
14. Ahmadian MM, Khatami M, Salehipour A, Cheng TCE (2021) Four decades of

research on the open-shop scheduling problem to minimize the makespan. Eur
J Oper Res.

15. Xu W, Guo S (2019) A multi-objective and multi-dimensional optimization
scheduling method using a hybrid evolutionary algorithms with a sectional
encoding mode. Sustain 11:.

16. Xiao H, Wu X, Zeng Y, Zhai J (2020) A CEGA-Based Optimization Approach
for Integrated Designing of a Unidirectional Guide-Path Network and
Scheduling of AGVs. Math Probl Eng 2020:.

17. Carli R, Digiesi S, Dotoli M, Facchini F (2020) A control strategy for smart
energy charging of warehouse material handling equipment. Procedia Manuf
42:503–510.

 Jiecheng Tang & Konstantinos Salonitis / Procedia CIRP 00 (2019) 000–000 7

18. Guan J, Lin G, Feng H Bin, Ruan ZQ (2020) A decomposition-based algorithm
for the double row layout problem. Appl Math Model 77

19. Palombarini JA, Martinez EC (2019) Closed-loop rescheduling using deep
reinforcement learning. IFAC-PapersOnLine 52:231–236.

20. He Y, Wu G, Chen Y, Pedrycz W (2021) A Two-stage Framework and
Reinforcement Learning-based Optimization Algorithms for Complex
Scheduling Problems. 1–11.

21. Huang J, Chang Q, Arinez J (2020) Deep reinforcement learning based
preventive maintenance policy for serial production lines. Expert Syst Appl
160:113701.

22. Han W, Guo F, Su X (2019) A reinforcement learning method for a hybrid
flow-shop scheduling problem. Algorithms 12.

23. Souier M, Dahane M, Maliki F (2019) An NSGA-II-based multiobjective
approach for real-time routing selection in a flexible manufacturing system
under uncertainty and reliability constraints. Int J Adv Manuf Technol
100:2813–2829.

24. Barto RSS and AG (1998) Introduction to Reinforcement Learning
25. Creighton DC (2002) Proceedings of the 2002 winter simulation conference -

Volume 2. Winter Simul Conf Proc 2:1945–1950.

26. Gabel T, Riedmiller M (2012) Distributed policy search reinforcement learning
for job-shop scheduling tasks. Int J Prod Res 50:41–61.

27. Waschneck B, Reichstaller A, Belzner L, et al (2018) Optimization of global
production scheduling with deep reinforcement learning. Procedia CIRP
72:1264–1269.

28. Stricker N, Kuhnle A, Sturm R, Friess S (2018) Reinforcement learning for
adaptive order dispatching in the semiconductor industry. CIRP Ann 67:511–
514.

29. Kuhnle A, Kaiser JP, Theiß F, et al (2021) Designing an adaptive production
control system using reinforcement learning. J Intell Manuf 32:855–876.

30. Mnih V, Kavukcuoglu K, Silver D, et al (2013) Playing Atari with Deep
Reinforcement Learning. 1–9.

31. Sutton RS, Barto AG (2018) Reinforcement Learning: An Introduction.
32. Hasselt H van, Guez A, Silver D (2016) Deep Reinforcement Learning with

Double Q-Learning. Proc Thirtieth AAAI Conf Artif Intell 30:7.
33. Wang Z, Schaul T, Hessel M, et al (2016) Dueling Network Architectures for

Deep Reinforcement Learning. 33rd Int Conf Mach Learn ICML 2016 4:2939–
2947.

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2021-10-20

A deep reinforcement learning based

scheduling policy for reconfigurable

manufacturing systems

Tang, Jiecheng

Elsevier

Tang J, Salonitis K. (2021) A deep reinforcement learning based scheduling policy for

reconfigurable manufacturing systems. Procedia CIRP, Volume 103, pp. 1-7. 9th CIRP global

Web conference (CIRPe 2021): Sustainable, resilient, and agile manufacturing and service

operations : Lessons from COVID-19, 26-28 October 2021, Saint-Etienne, France

https://doi.org/10.1016/j.procir.2021.09.089

Downloaded from Cranfield Library Services E-Repository

