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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Reconfigurable manufacturing systems (RMS) is one of the trending paradigms toward a digitalised factory. With its rapid reconfiguring 
capability, finding a far-sighted scheduling policy is challenging. Reinforcement learning is well-equipped for finding highly efficient 
production plans that would bring near-optimal future rewards. For minimising reconfiguring actions, this paper uses a deep reinforcement 
learning agent to make autonomous decision with a built-in discrete event simulation model of a generic RMS. Aiming at the completion of the 
assigned order lists while minimising the reconfiguration actions, the agent outperforms the conventional first-in-first-out dispatching rule after 
self-learning. 
© 2021 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile 
manufacturing and service operations: Lessons from COVID-19 (CIRPe 2021) 

 Keywords: Reconfigurable manufacturing system; scheduling; reinforcement learning; dueling double deep q learning; discrete event simulation 

 
1. Introduction 

Aiming at rapidly addressing demand fluctuation, the 
reconfigurable manufacturing system (RMS) was first 
introduced in 1999 [1]. RMS paradigm targets on medium-
volume-high-variant mixed orders. With its structural 
adjusting capability, RMS challenges the conventional 
Dedicated Manufacturing Line (DML) on product variation 
[2] and scalable setup [3]. RMS also challenges Flexible 
Manufacturing Systems (FMS) on productivity and cost [1].  
To classify the challenge into details, six core characteristics 
has been identified [4] for RMS that include modularity, 
integrability, diagnosability, scalability, customisability, and 
convertibility. Napoleone [5] investigated the interrelationship 
between these characteristics. Perceived value of a product 
lead to the emerging of massive customisation, the top level 
characteristic of RMS. Tang et al. [6] pointed out that a 
dynamic scheduling policy which can continuously evolve in a 

full sensing digital twin environment could help improving 
customisability by enhancing scalability and convertibility. 
However, the uncertainty, caused by the changing demand, 
scale, and constrains of manufacturing practice, keeps 
challenging this NP-hard [7] job-shop scheduling problem. 
Mathematical programming and metaheuristic algorithms [8] 
are the main tools to solve similar scheduling problems for 
FMS. These methods outperform the fixed dispatching rules 
like first-in-first-out but underperform while tackling the 
scalability of RMS with limited computing resources [4]. 
RMS needs a “far-sighted” and “resilient” control strategy. 
These features make reinforcement learning (RL) outstanding 
and particularly feasible to cope similar continuous and 
dynamic flexible job-shop scheduling problems [9]. In the 
present paper, a discrete-event simulation (DES) model, which 
simulates a simplified RMS, provides a Markov decision 
process environment for training a job releasing schedule 
agent. By observing the current system state, this agent sends 
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customisability by enhancing scalability and convertibility. 
However, the uncertainty, caused by the changing demand, 
scale, and constrains of manufacturing practice, keeps 
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an action command to the DES model to obtain state transition 
and a reward. Using continuous state updating and rewarding, 
this scheduling agent trains one value approximator which 
then provides an optimal scheduling policy. The rest of this 
paper is organised as follows: section two formulates the 
problem by reviewing the relative research on RMS 
scheduling, RL in scheduling optimisation, optimal paths of 
RL training, and RL-enabled DES. Section three describes the 
proposed RMS-DES workflow, explaining how data flow 
between the RL agent and DES model environment, and how 
the agent trains its neural networks and uses it as a value 
approximator. Section four presents a numerical case study 
operated in different setups for optimising general production 
time of an RMS by minimising the reconfiguring actions. 
Section five finally concludes that this framework could easily 
train an intelligent agent outperform conventional FIFO 
dispatch rule. 

2. Background and Literature Review 

This paper mainly focuses on optimising RMS scheduling 
using Deep Q Learning (DQL) by reducing reconfiguring 
actions and while minimising the makespan. Q-learning [10] 
based optimisation is used when the problems can be 
formulated as Markov Decision Processes (MDP). In short, an 
MDP means system state changes can only be affected by the 
last chosen action. Q-learning is a value-based policy training 
strategy. In an MDP environment, an agent has limited action 
options from an action-space for a certain state. Every action 
perform on that MDP environment leads to a state-transition. 
A value function estimates the expected reward feedback 
from the MDP environment. This expected reward from a 
particular action is the quality, Q, of this action. Serial 
actions, based on the highest Q-value, form an optimal policy. 
Then, labelling these actions with time forms an optimal 
schedule. For a simple environment with small number of 
states, all rewards due to the state-action pairs can be 
calculated and recorded in a tabulated database. This 
recording process is called Q-learning. State-action pairs 
quantity grows exponentially in a complex system. In such 
case, a neural network [11] is introduced as a powerful tool 
with limited input dimensions (state), limited output 
dimensions (actions), and estimating value for each output 
(expected reward). This deep neural network approximating Q 
value is named Deep Q-network (DQN). The training process 
to make DQN estimating the expected reward  closer to the 
accurate reward from MDP is called Deep-Q-learning (DQL) 
[12] which extends from Q-learning. Discrete-event 
simulation (DES) behaves similar to an MDP on state 
transition which makes it an appropriate environment training 
a smart agent. Aydin and Öztemel [13] trained an agent, 
through a revised version of Q learning, to solve a dynamic 
job-shop scheduling problem. The MDP process is formulated 
as a DES where the agent needs to choose one of fixed 
dispatching rules at certain scheduling time. These literatures 
suggested DES is an appropriate method to deal with “what-
if” problem. Solving job-shop scheduling problem using DES 
is not a new approach. For decades, scholars have focused on 
several significant open-shop scheduling problems [14] 

including m-machine, batch processing and setup time, 
resource-constrained project scheduling problem, release time 
and on-line scheduling, and so on. Fixed dispatching rules are 
the most common control policy of traditional production 
lines aiming on making scheduling fast. RMS paradigm and 
the evolving Industry 4.0 technologies bring extra dimensions 
for observing the system while raising additional 
considerations in previous scheduling problems. These added 
dimensions help operators understand the system better while, 
at the same time, make the mature methods underperform. In 
scheduling, conventional methods are incapable for complex 
system such as RMS [15–18] and advanced adaptive 
scheduling is needed to achieve a near optimal control 
solution. Improving system robustness is another scheduling 
research topic focused on optimal scheduling using 
reinforcement learning. Palombarini et al. [19] used an 
intelligent agent with DQL to reschedule a socio-technical 
manufacturing system in real time with new inserted tasks 
disturbance. Tackling on a resource-constrained scheduling 
problem, He et al. [20] proposed a two-stage DQN framework 
and suggested that RL has great potential in solving complex 
task assigning problems. Huang et al. [21] obtained a 
preventive maintenance policy on a DML by a DRL 
approach. Though most scheduling research focuses on DML, 
a shared patten could inspire and be implemented on RMS to 
achieve high-level decision-making autonomy [22] and tackle 
the computational difficulties of such complex system. 
Different from the sequential layout in DMLs, another 
inspiring research field is parallel machine scheduling 
problem [9]. Fixed dispatching policies, such as first in first 
out (FIFO) and earliest due date (EDD), are major 
comparisons for popular meta-heuristic multi-objectives 
optimisation methods like NSGA-II [23]. Using an intelligent 
agent to find optimal operating policies attracted researchers 
attention soon after Sutton and Barto [24] provided an 
excellent reinforcement learning background knowledge in 
1998. Creighton et al. [25] used state-action map (Q-learning) 
technique to optimising operation policy on a multi-part 
DML. Gabel et al [26] formulated a job-shop scheduling 
problem into a decentralised Markov decision process and 
successfully gained optimal scheduling control by applying 
gradient-descent methods. Waschneck et al [27] applied DQN 
in multiple machines for a global production scheduling 
problem by training these agents sequentially. To mitigate the 
impact of uncertainty in a wafer fabrication process with 32 
information input, Sticker et al [28] trained a DQN agent to 
orchestrate dispatching orders. By extending this real case, 
Kuhnle et al [29] modelled the wafer fabrication problem 
using discrete event simulation and concluded that even the 
simplest reward function can easily outperform fixed 
dispatching rules. 

3. RMS Scheduling Based on Deep Q Learning 

DES is a powerful tool for observing sequential jobs of an 
entity inside the system. DES enables decision-makers to 
observe the perceived performance of different scenarios, in a 
virtual, risk-free environment, without the need to experiment 
with the physical system itself. RMS scheduling has big 
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challenges on dealing complex system state and cooperate 
every component inside the system. DQL is a powerful tool to 
find optimal choice from given state and reward. Bridging 
these three topics is a necessary job for operation research.  

 

 

 Fig. 1. A Simplified Reconfigurable Manufacturing System 

A simplified version of an RMS is presented in this paper 
as shown in Fig 1. This dimensionless generic RMS has 4 
major components. First, according to a pre-set order list, a 
raw material storage will have exact numbers of raw material 
wait for manufacturing at the beginning of a simulation 
episode. Second, after receiving the material dispatching 
order, a material handling system (MHS) will spend some 
time to transport the assigned material to the assigned RMT. 
Third component is a group of parallel RMTs with a shared 
module warehouse. These RMTs response on manufacturing 
products from material to product. Different products need 
different RMT module and production time. If an RMT 
receive a raw material current configuration cannot make, it 
will ask the module warehouse to send an correct module to 
reconfigure itself and return the original module. After an 
RMT finish producing a product, MHS will move the product 
to the last RMS component, a finished good inventory with a 
dispatching area. This inventory will check whether current 
stock fulfil the first required order. The inventory will pile up 
the stock until the stock level is sufficient. A trained 
scheduling agent should find out the policy which could 
transfer raw materials into products and dispatching out from 
RMS as soon as possible. To minimise the lead time of a 
given set of orders, a deep reinforcement learning model 
training approach based on discrete-event simulation is 
proposed in this section. The scheduling solution contains two 
major phases. First phase requires building a deep 
reinforcement learning agent, shown with blue blocks in Fig 
2, which can learn from environment effective. Based on the 
observation of environment, the agent needs to pick one kind 
of raw material from the storage at a suitable time and send it 
to a free RMT inside the RMS.  

 

Fig. 2. Deep Q Learning Agent Training Process Flow Chart 

A size-limited replay buffer records tuples which contain 
rewards and state-transition information feedbacked from 
DES. All DQN are trained from the samples from this buffer. 

The second phase focuses on building a DES environment 
to imitate an RMS, shown in orange blocks in Fig 3, which 
can receive action decision, transit its state, and generate 
rewards. Green blocks in Figs. 2 and 3 present the information 
exchange.   

 

Fig. 3. Discrete Event Simulation Flow Chart 

3.1. Basic DQN learning process 

Basic Q learning uses Bellman’s equation to describe the 
expected reward. The quality value of reward is presented as  

                                  (1) 

Where  is the immediate reward for transmitting from 
current state, , to next state, . A discount factor, , 
weakens and balances the reward from future reward. Since 
DQL first introduction [30], there has been no significant 
change on the basic training process, which is shown in Table 
1. The training goal of the DQN is an accurate non-linear 
quality function estimator, , where and represent a 
state and an action respectively. In practice, two versions of 
one DQN is used for stabilising the learning process. The first 
one is an online neural network which is presented with a 
weight vector, , as . The second one is the target 
neural network with a weight vector, , which is presented as 

. Target neural network shares the same 
architecture of the online neural network but estimates the 
next step Q value of the next state, , and action, . While 
the online neural network learns every training step, the target 
neural network keeps stable for a fixed number of iterations 
before the online network weight, , is copied to . Based on 
this modification, Bellman’s equation for DQN can be written 
as 

                               (2)          

A mean square loss function is introduced here to be gradient 
descent and train the online neural network from the 
difference between the target network. This function is written 
as  

               (3) 

In this paper,  is calculated automatically by Pytorch. 
For implementing the DQN algorithm, a replay memory 

collecting D previous experience and a deep Q-network with 
random weights 𝜽𝜽 that represents the action-value function Q 
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to a free RMT inside the RMS.  

 

Fig. 2. Deep Q Learning Agent Training Process Flow Chart 

A size-limited replay buffer records tuples which contain 
rewards and state-transition information feedbacked from 
DES. All DQN are trained from the samples from this buffer. 

The second phase focuses on building a DES environment 
to imitate an RMS, shown in orange blocks in Fig 3, which 
can receive action decision, transit its state, and generate 
rewards. Green blocks in Figs. 2 and 3 present the information 
exchange.   

 

Fig. 3. Discrete Event Simulation Flow Chart 

3.1. Basic DQN learning process 

Basic Q learning uses Bellman’s equation to describe the 
expected reward. The quality value of reward is presented as  

                                  (1) 

Where  is the immediate reward for transmitting from 
current state, , to next state, . A discount factor, , 
weakens and balances the reward from future reward. Since 
DQL first introduction [30], there has been no significant 
change on the basic training process, which is shown in Table 
1. The training goal of the DQN is an accurate non-linear 
quality function estimator, , where and represent a 
state and an action respectively. In practice, two versions of 
one DQN is used for stabilising the learning process. The first 
one is an online neural network which is presented with a 
weight vector, , as . The second one is the target 
neural network with a weight vector, , which is presented as 

. Target neural network shares the same 
architecture of the online neural network but estimates the 
next step Q value of the next state, , and action, . While 
the online neural network learns every training step, the target 
neural network keeps stable for a fixed number of iterations 
before the online network weight, , is copied to . Based on 
this modification, Bellman’s equation for DQN can be written 
as 

                               (2)          

A mean square loss function is introduced here to be gradient 
descent and train the online neural network from the 
difference between the target network. This function is written 
as  

               (3) 

In this paper,  is calculated automatically by Pytorch. 
For implementing the DQN algorithm, a replay memory 

collecting D previous experience and a deep Q-network with 
random weights 𝜽𝜽 that represents the action-value function Q 
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are initialised at the beginning of a training process. Agent 
will randomly choose action until the D length replay memory 
is fulfilled. Then scheduling agent selects and executes 
actions according to an ε-greedy policy based on Q. ε is the 
probability the action would be chosen randomly, and it will 
decrease until a set value as training progresses. Every 
training episode ends at a terminal state like run out of 
simulation time or all order are fulfilled. 

 
 

Table 1. Basic DQL Process of a Scheduling Agent [31] 

Input: Capacity of replay memory N, Discount Factor γ, Learning Rate α, 
Episodes Limit M, Batch Sample Length L 

Output: An Agent Does Optimal Scheduling 

01 Initialise replay memory D with N capacity 

02 Initialise an online network Q with random weights θ 

03 for episode = 1 to iteration limit M 

04     Observe the initial state s0  

05     for t = 1 to T 

06         Choose an action, at, at according to Q with ε probability for a 
random action 

07         execute at on DES and get reward rt and next state st+1 

08         Store transition (st, at, rt, st+1) and whether it is terminal in D 

09         Randomly pick L sample (sj, aj, rj, sj+1) from D  

10         Set training target yj to  

             rj if current episode terminates at step j+1 

             rj+γQ(sj+1, argmaxa’Q(sj+1, a’, θ), θ) if current episode not 
terminates at step j+1 

11         Perform a gradient descent step (yj-Q(sj+1, aj, θ))2 

12         Decrease ε until a set minimum value 

The basic DQL training algorithm with single neural network 
could sometimes overly optimistically estimating the true 
rewards [32]. Decoupling the action estimation and action 
selection can simply fix it. The main neural network would 
decide not only current state optimal action but also the 
optimal action for next state. This approach is known as 
Double DQN algorithm and its Bellman’s equation is written 
as 

 
 
               (4) (4) 

Q value is made up two functions, V and A. The equation 
can be written as .V stands for state 
value function of current state which tells the expected reward 
from current state only. A represent the advantage function 
which tells the difference an optimal action can bring 
compared to the other actions. In neural network training, V 
and A are unidentifiable and cannot simply sum up for Q 
estimation. To solve this and chasing a better agent training 
performance, Wang [33] introduced Dueling DQN 
architecture which force the highest Q-value equal to V hence 
highest A has to be zero. To get optimisation stability, Wang 
trades-off the maximum Q for an average Q so that A doesn’t 
have to turn negative of an optimal action if A catch up the 
mean changing speed.  The Q calculation can be re-written as  

             (5)  (5)  

3.2. States to form an observation 

An input observation consists of four kinds of features, 
listed in Table 2, which include every RMT state, remaining 
raw material state, finished good stock state, and order state. 
State of an RMT include three elements which are installed 
module type, remaining time to finish reconfiguration , 
and remaining time to finish current production . The 
quantity of each kind of raw material still in the storage make 
up the remaining raw material state. The order list contains a 
sequence of orders. Each order consists of three elements 
which are product type, required quantity, and whether it has 
been finished or not. The finish good state describes the 
quantity of finished product for each kind of product. 

Table 2. 4 States to Form an Observation 

State State Structure 

RMT State Module, Tcfg, Tpdc 

Raw Material Stock Quantity of each raw material 

Order State Type, Quantity, Completed or not 

Finished Good Stock Quantity of each product 

3.3. Action 

An optimal action, which has the highest quality value Q 
calculated by a forward function from neural network is the 
outcome from the agent for a certain state. This action is 
presented as . When training 
starts, the value function Q is far from accurate. Aiming on 
fast converging at the beginning stage, the agent should 
perform more arbitrary actions to explore the DES 
environment. A large random action choosing rate, ε, is 
assigned for helping agent to choose arbitrary action rather 
than based on a rough Q estimation. This process happens in 
the action selector as shown in Fig 2. With learning episode 
increasing, the Q-network approximate Q more accurately so 
ε keeps on decreasing until a pre-set minimum. The 
combination of all possible actions forms an action space. In 
this paper, there is only one agent to operate the entire RMS 
so that it can choose only one optimal action for a single state. 
For an RMS contains more than one RMT, the action-space 
expand exponentially due to the RMT number. For example, a 
two-product RMS with two RMT has an action-space with 9 
outputs. The optimal choice contains decisions including 
which kind of raw material will be send to each RMT or keep 
an RMT idle. The data flow of input state and output action is 
shown in Fig. 4. The Agent receives an observation that 
contains every RMT status, situation of material storage, 
finished good inventory, and all rest unfinished order. 
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Fig. 4. Neural Network Forward Function for RMT Action 

3.4. Reward and Terminal State 

Designing a proper reward mechanism is critical for 
training an RL agent. In this paper, RMS-DES runs on 
discrete simulation time step. For each time step, the agent 
needs to decide whether to send a material for an RMT. The 
principle of defining reward rules is encouraging an agent 
keep an RMS in value-adding state instead of constant 
reconfiguring. While an agent implementing a logy 
scheduling policy, there will be no positive nor negative 
reward. When RMT is reconfiguring itself, it generates -50 
reward per unit time. When an RMT raw material is in 
manufacturing, it will generate +5 reward per unit time until 
the process finish and the good send to the storage. One 
finished good in storage generate -1 reward per unit time. The 
agent will receive a -100 reward if it decides to send material 
to a busy RMT. 

Table 3. Reward Rule for Unit Simulation Time 

Reward Items Reward Generating Rate 

A raw material stays in a storage 0 

An RMT stays in idle  0 

An RMT is manufacturing a raw material +5 

An RMT is reconfiguring itself -50 

RMT is busy but agent decide to send in a material -100 

A finished good dispatched with an order +100 

All order cleared +1,000,000 

To avoid unnecessary computational power waste, there 
are three kinds of scenario that will end current training 
episode. In every simulation step, DES first updates its current 
state and calculate an inertial reward from previous events 
like reconfiguration and production. Then DES asks the agent 
to provide an action. This action will move DES to another 
state with new events and in general another instant reward 
which accumulates with the inertial reward. This single-step 
reward and new state are sent back to the agent for training 
while it will be accumulated to a general reward recorded 
inside DES to check if current simulation episode performed 
too bad to end. If the accumulated reward does not excess the 
threshold, (set as negative 2 million in all numerical cases in 
this paper), DES will keep running until a pre-set simulation 
time runs out, (set as 7200 min that equals one week), or all 
order are fulfilled. 

4. Model Evaluation and Analysis 

Three RMS cases based on the same structure are studied. 
An RMS can contain 1 to 3 RMTs. An RMT need to 
reconfigure itself to a unique configuration for manufacturing 
a specific product variant. The reconfiguration time for 
product variant 0 and 1 are identical, 300 min in all numerical 
cases. After an RMT reconfigures to correct form, the cycle 
time for producing one finished good is 1 min. All finished 
good will be temporally stocked until the quantity fulfils the 
first unfinished order. When a training episode starts, the DES 
environment initialises a deterministic group of sequential 
orders labelled with product type and quantity. One order list, 
shown in appendix, contains 20 individual sub-orders have 
been studied in this paper. This order list, OL1, requests 166 
product 0 and 362 product 1 which will raise up to 9 
reconfigurations in an RMS with single RMT when it follows 
FIFO. RMSs with different RMT quantity require unique 
DQN aggregate output layers. RMS01 with only one RMT has 
3 possible actions. RMS02 contains 2 RMTs has 9 potential 
action combinations. RMS03 with 3 RMTs has 27 possible 
reaction mode.  

 
Fig. 5. Basic DQN Training Process Comparison (RMS01&02) 

 
Fig. 6. Agent Performance Improving Trend 
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are initialised at the beginning of a training process. Agent 
will randomly choose action until the D length replay memory 
is fulfilled. Then scheduling agent selects and executes 
actions according to an ε-greedy policy based on Q. ε is the 
probability the action would be chosen randomly, and it will 
decrease until a set value as training progresses. Every 
training episode ends at a terminal state like run out of 
simulation time or all order are fulfilled. 

 
 

Table 1. Basic DQL Process of a Scheduling Agent [31] 

Input: Capacity of replay memory N, Discount Factor γ, Learning Rate α, 
Episodes Limit M, Batch Sample Length L 

Output: An Agent Does Optimal Scheduling 

01 Initialise replay memory D with N capacity 

02 Initialise an online network Q with random weights θ 

03 for episode = 1 to iteration limit M 

04     Observe the initial state s0  

05     for t = 1 to T 

06         Choose an action, at, at according to Q with ε probability for a 
random action 

07         execute at on DES and get reward rt and next state st+1 

08         Store transition (st, at, rt, st+1) and whether it is terminal in D 

09         Randomly pick L sample (sj, aj, rj, sj+1) from D  

10         Set training target yj to  

             rj if current episode terminates at step j+1 

             rj+γQ(sj+1, argmaxa’Q(sj+1, a’, θ), θ) if current episode not 
terminates at step j+1 

11         Perform a gradient descent step (yj-Q(sj+1, aj, θ))2 

12         Decrease ε until a set minimum value 

The basic DQL training algorithm with single neural network 
could sometimes overly optimistically estimating the true 
rewards [32]. Decoupling the action estimation and action 
selection can simply fix it. The main neural network would 
decide not only current state optimal action but also the 
optimal action for next state. This approach is known as 
Double DQN algorithm and its Bellman’s equation is written 
as 

 
 
               (4) (4) 

Q value is made up two functions, V and A. The equation 
can be written as .V stands for state 
value function of current state which tells the expected reward 
from current state only. A represent the advantage function 
which tells the difference an optimal action can bring 
compared to the other actions. In neural network training, V 
and A are unidentifiable and cannot simply sum up for Q 
estimation. To solve this and chasing a better agent training 
performance, Wang [33] introduced Dueling DQN 
architecture which force the highest Q-value equal to V hence 
highest A has to be zero. To get optimisation stability, Wang 
trades-off the maximum Q for an average Q so that A doesn’t 
have to turn negative of an optimal action if A catch up the 
mean changing speed.  The Q calculation can be re-written as  

             (5)  (5)  

3.2. States to form an observation 

An input observation consists of four kinds of features, 
listed in Table 2, which include every RMT state, remaining 
raw material state, finished good stock state, and order state. 
State of an RMT include three elements which are installed 
module type, remaining time to finish reconfiguration , 
and remaining time to finish current production . The 
quantity of each kind of raw material still in the storage make 
up the remaining raw material state. The order list contains a 
sequence of orders. Each order consists of three elements 
which are product type, required quantity, and whether it has 
been finished or not. The finish good state describes the 
quantity of finished product for each kind of product. 

Table 2. 4 States to Form an Observation 

State State Structure 

RMT State Module, Tcfg, Tpdc 

Raw Material Stock Quantity of each raw material 

Order State Type, Quantity, Completed or not 

Finished Good Stock Quantity of each product 

3.3. Action 

An optimal action, which has the highest quality value Q 
calculated by a forward function from neural network is the 
outcome from the agent for a certain state. This action is 
presented as . When training 
starts, the value function Q is far from accurate. Aiming on 
fast converging at the beginning stage, the agent should 
perform more arbitrary actions to explore the DES 
environment. A large random action choosing rate, ε, is 
assigned for helping agent to choose arbitrary action rather 
than based on a rough Q estimation. This process happens in 
the action selector as shown in Fig 2. With learning episode 
increasing, the Q-network approximate Q more accurately so 
ε keeps on decreasing until a pre-set minimum. The 
combination of all possible actions forms an action space. In 
this paper, there is only one agent to operate the entire RMS 
so that it can choose only one optimal action for a single state. 
For an RMS contains more than one RMT, the action-space 
expand exponentially due to the RMT number. For example, a 
two-product RMS with two RMT has an action-space with 9 
outputs. The optimal choice contains decisions including 
which kind of raw material will be send to each RMT or keep 
an RMT idle. The data flow of input state and output action is 
shown in Fig. 4. The Agent receives an observation that 
contains every RMT status, situation of material storage, 
finished good inventory, and all rest unfinished order. 
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Fig. 4. Neural Network Forward Function for RMT Action 

3.4. Reward and Terminal State 

Designing a proper reward mechanism is critical for 
training an RL agent. In this paper, RMS-DES runs on 
discrete simulation time step. For each time step, the agent 
needs to decide whether to send a material for an RMT. The 
principle of defining reward rules is encouraging an agent 
keep an RMS in value-adding state instead of constant 
reconfiguring. While an agent implementing a logy 
scheduling policy, there will be no positive nor negative 
reward. When RMT is reconfiguring itself, it generates -50 
reward per unit time. When an RMT raw material is in 
manufacturing, it will generate +5 reward per unit time until 
the process finish and the good send to the storage. One 
finished good in storage generate -1 reward per unit time. The 
agent will receive a -100 reward if it decides to send material 
to a busy RMT. 

Table 3. Reward Rule for Unit Simulation Time 

Reward Items Reward Generating Rate 

A raw material stays in a storage 0 

An RMT stays in idle  0 

An RMT is manufacturing a raw material +5 

An RMT is reconfiguring itself -50 

RMT is busy but agent decide to send in a material -100 

A finished good dispatched with an order +100 

All order cleared +1,000,000 

To avoid unnecessary computational power waste, there 
are three kinds of scenario that will end current training 
episode. In every simulation step, DES first updates its current 
state and calculate an inertial reward from previous events 
like reconfiguration and production. Then DES asks the agent 
to provide an action. This action will move DES to another 
state with new events and in general another instant reward 
which accumulates with the inertial reward. This single-step 
reward and new state are sent back to the agent for training 
while it will be accumulated to a general reward recorded 
inside DES to check if current simulation episode performed 
too bad to end. If the accumulated reward does not excess the 
threshold, (set as negative 2 million in all numerical cases in 
this paper), DES will keep running until a pre-set simulation 
time runs out, (set as 7200 min that equals one week), or all 
order are fulfilled. 

4. Model Evaluation and Analysis 

Three RMS cases based on the same structure are studied. 
An RMS can contain 1 to 3 RMTs. An RMT need to 
reconfigure itself to a unique configuration for manufacturing 
a specific product variant. The reconfiguration time for 
product variant 0 and 1 are identical, 300 min in all numerical 
cases. After an RMT reconfigures to correct form, the cycle 
time for producing one finished good is 1 min. All finished 
good will be temporally stocked until the quantity fulfils the 
first unfinished order. When a training episode starts, the DES 
environment initialises a deterministic group of sequential 
orders labelled with product type and quantity. One order list, 
shown in appendix, contains 20 individual sub-orders have 
been studied in this paper. This order list, OL1, requests 166 
product 0 and 362 product 1 which will raise up to 9 
reconfigurations in an RMS with single RMT when it follows 
FIFO. RMSs with different RMT quantity require unique 
DQN aggregate output layers. RMS01 with only one RMT has 
3 possible actions. RMS02 contains 2 RMTs has 9 potential 
action combinations. RMS03 with 3 RMTs has 27 possible 
reaction mode.  

 
Fig. 5. Basic DQN Training Process Comparison (RMS01&02) 

 
Fig. 6. Agent Performance Improving Trend 
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Fig. 7. DDDQN Scheduling Agent Training Process for RMS02 & RMS03 

The first experience trained two basic DQN agents for two 
RMS setups for OL1. Agents will be trained one iteration 
when it gets one state-transition tuple. Every simulation turn 
forms one train episode which contains thousands of training 
iteration. After finishing one simulation turn, the agent run in 
exploit mode to benchmark its performance using accumulate 
reward. Two solid lines in Fig 5 present the benchmark trends 
of two agents of RMS01 and RMS02. Dashed lines are the 
average accumulated rewards when RMS01 and RMS02 act 
randomly. Fig. 5 also illustrate that both agents converged 
quickly after only around 30 turns. However, increasing 
training episodes did not bring more advantages to agents. 
Some episodes’ ill performance even worse than complete 
random actions. 

When an RMS perform in FIFO mode, raw material will 
dispatch to every free RMT only according to the order 
sequence only regardless the RMT current configuration. To 
overcome this shortcoming, a far-sighted agent needs to 
combine orders with the same variant together to reduce total 
reconfiguration action hence minimising the total production 
time. Fig. 6 shows a DDDQN agent training process in a One-
RMT RMS. Due to different initial RMT configuration, FIFO 
can finish the OL1 around 3000 mins. Start from a poor 
performance level, the agent quickly outperforms FIFO after 
only training iterations. The agent achieved its optimal 
strategy at around 20 thousand iterations. 

Aiming on improving the training stability, two Double 
DQN agents with duelling architecture are set for RMS02 and 
RMS03. Fig. 7 shows that DDDQN agent perform more 
stable after converging compares to the basic DQN agent. 

5. Conclusions 

DQN scheduling agents showed great performance 
advantage potential in this paper. Agents out-perform a 
traditional dispatch rule, first-in-first-out, in very limited 
simulation turns. The training results show that all kinds of 
DQN agent can quickly converge to an above average level. 
Dueling Double DQN agents shows an advanced stability as 
its inventor suggested. However, even if the converging 
capability and stability of DDDQN is much premium 
compares to the basic DQN, it is clear that an agent can 
perform way from optimal occasionally regardless the 
increasing training episodes. Keeping on optimising the agent 
stability with advanced techniques, such as priority replay 
memory, bagging strategy is necessary. All agent converges 

in several episode suggest the over-simplified RMS cannot 
full unveil the agent potential. The only randomness inside the 
environment is the initial configuration of every RMT. 
Material handling system with fluctuated deliver time, 
random breakdown on RMT, limited number of modules, 
material resource, products with multi manufacturing 
processes, and dynamic order lists with task inserting should 
be considered in a future model. 

Appendix A. Order List 

Order List 1 - OL1: 166 Product 0 and 362 Product 1 
Order # Variant Quantity Order # Variant Quantity 

0 0 22 10 0 24 
1 1 27 11 1 19 
2 1 47 12 0 19 
3 1 31 13 1 22 
4 0 17 14 1 43 
5 1 20 15 1 20 
6 1 24 16 0 33 
7 1 24 17 0 21 
8 1 40 18 1 35 
9 0 30 19 1 10 
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Fig. 7. DDDQN Scheduling Agent Training Process for RMS02 & RMS03 

The first experience trained two basic DQN agents for two 
RMS setups for OL1. Agents will be trained one iteration 
when it gets one state-transition tuple. Every simulation turn 
forms one train episode which contains thousands of training 
iteration. After finishing one simulation turn, the agent run in 
exploit mode to benchmark its performance using accumulate 
reward. Two solid lines in Fig 5 present the benchmark trends 
of two agents of RMS01 and RMS02. Dashed lines are the 
average accumulated rewards when RMS01 and RMS02 act 
randomly. Fig. 5 also illustrate that both agents converged 
quickly after only around 30 turns. However, increasing 
training episodes did not bring more advantages to agents. 
Some episodes’ ill performance even worse than complete 
random actions. 

When an RMS perform in FIFO mode, raw material will 
dispatch to every free RMT only according to the order 
sequence only regardless the RMT current configuration. To 
overcome this shortcoming, a far-sighted agent needs to 
combine orders with the same variant together to reduce total 
reconfiguration action hence minimising the total production 
time. Fig. 6 shows a DDDQN agent training process in a One-
RMT RMS. Due to different initial RMT configuration, FIFO 
can finish the OL1 around 3000 mins. Start from a poor 
performance level, the agent quickly outperforms FIFO after 
only training iterations. The agent achieved its optimal 
strategy at around 20 thousand iterations. 

Aiming on improving the training stability, two Double 
DQN agents with duelling architecture are set for RMS02 and 
RMS03. Fig. 7 shows that DDDQN agent perform more 
stable after converging compares to the basic DQN agent. 

5. Conclusions 

DQN scheduling agents showed great performance 
advantage potential in this paper. Agents out-perform a 
traditional dispatch rule, first-in-first-out, in very limited 
simulation turns. The training results show that all kinds of 
DQN agent can quickly converge to an above average level. 
Dueling Double DQN agents shows an advanced stability as 
its inventor suggested. However, even if the converging 
capability and stability of DDDQN is much premium 
compares to the basic DQN, it is clear that an agent can 
perform way from optimal occasionally regardless the 
increasing training episodes. Keeping on optimising the agent 
stability with advanced techniques, such as priority replay 
memory, bagging strategy is necessary. All agent converges 

in several episode suggest the over-simplified RMS cannot 
full unveil the agent potential. The only randomness inside the 
environment is the initial configuration of every RMT. 
Material handling system with fluctuated deliver time, 
random breakdown on RMT, limited number of modules, 
material resource, products with multi manufacturing 
processes, and dynamic order lists with task inserting should 
be considered in a future model. 

Appendix A. Order List 

Order List 1 - OL1: 166 Product 0 and 362 Product 1 
Order # Variant Quantity Order # Variant Quantity 

0 0 22 10 0 24 
1 1 27 11 1 19 
2 1 47 12 0 19 
3 1 31 13 1 22 
4 0 17 14 1 43 
5 1 20 15 1 20 
6 1 24 16 0 33 
7 1 24 17 0 21 
8 1 40 18 1 35 
9 0 30 19 1 10 
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