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 This thesis addresses the optimization of an intermodal system with freight 

transfers at a single hub. It investigates the transportation processes and constraints that 

arise in a system’s recovery after a major disruption during which backlogs have 

accumulated along the routes. When dealing with the backlogs, the system operator 

must coordinate the transportation processes and control the inflow of freight to the 

terminal in order to avoid overloading its storage facilities, which might reduce the 

throughput of the system. The coordination of transportation processes during the 

system’s recovery can further improve the overall system performance by reducing the 

dwell time, increasing vehicle utilization and reducing late delivery penalties. This work 

focuses on the scheduling problem and develops an approach that would help the 



 
 

 

system operator reduce the overall system cost while taking into account the constraints 

arising in actual intermodal and intra-modal systems. Assuming that the schedule on 

some routes is exogenously determined and inflexible, we seek to optimize the 

schedules of vehicles on remaining routes.  

 Models are developed that minimize the total cost of operating an intermodal 

system with freight transfers at one hub by optimizing the departure times of vehicles 

on the routes with flexible schedules. This model can be solved numerically without the 

approximations of alternative methods such as simulation. Moreover, it can be 

successfully applied to situations when statistical or queuing analyses are not applicable 

due to the small number of events (vehicle arrivals). We specifically analyze an 

intermodal system consisting of multiple feeder truck routes and multiple main airline 

routes. The specific example of two transportation modes was used to make the 

development and application of the model easier to understand. However, the 

mathematical model developed in this thesis is applicable to any other combination of 

transportation modes using discrete vehicles. 
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Chapter 1 

Introduction 

 Intermodal freight transport has many advantages which have encouraged its 

development during the last century. Reduced storage requirements and better 

utilization of infrastructure and transportation vehicles are just some of the 

characteristics that enable intermodal transport to outperform other transportation 

concepts. Intermodal freight systems include many interrelated operations and often 

require mechanization and human labor that tend to be expensive. Thus, even small 

changes in the ways such systems function can considerably influence the entire 

transportation process and thereby the overall system cost. Here we examine a way to 

reduce the overall cost of a system that has suffered a major disruption and focus on the 

vehicle scheduling problem. 

 In this thesis we study a single-terminal intermodal freight system and analyze 

the system’s recovery after a major disruption. Assuming that the schedule on some 

routes might be exogenously determined, we identify the set of routes with fixed 

schedules and the set of routes with flexible schedules. We focus on scheduling vehicle 

departure times on the routes with flexible schedules.  
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Figure 1.1 Intermodal Freight System 

 

1.1 Problem Statement 

 Let us consider the intermodal freight system in Figure 1.1, whose operations 

can be described as follows. Trucks gather the freight from various locations in the 

region around the terminal and unload it in the terminal’s storage facilities. At the 

terminal, the freight is further loaded into airplanes which transport it to multiple 

destinations. Moreover, when the takeoff on route ݈ is scheduled at time ݐ௜௟, we load into 

the airplane as much freight connecting to route ݈  as the airplane’s capacity allows. If 

an airplane’s capacity is exceeded, the remaining freight must wait for the next 
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connecting flight with available capacity. Conversely, if prior to the takeoff there is 

little freight connecting to route ݈, the airplane’s capacity is underused and an additional 

flight might be needed later.  

 Suppose that the system in Figure 1.1 has suffered a major disruption and that a 

lot of freight has accumulated at locations spread around the terminal. In order to 

dissipate the backlogs the system operator assigns to each truck certain number of 

roundtrips that should be carried out consecutively. The question that arises is when we 

should schedule the departure times on the routes with flexible schedules, in order to 

minimize the overall system costs. Determining which routes have flexible schedules is 

related to both technological characteristics of the observed transportation system as 

well the issue of ownership (e.g. the problem can be considered from a perspective of a 

trucking or an airline company, or a company controlling both truck and airline routes). 

Thus, two models are developed to optimize the schedules on flexible routes. The first 

model assumes that the schedules on airline routes are fixed and optimizes truck 

departure times. Conversely, the second model develops a method to optimize the 

number of takeoffs and their schedules for the given truck departures. 

 If we assume that the schedules on airline routes are fixed, the question that 

arises is when the trucks should begin their roundtrips. On the one hand, the operator 

would like to transport to the terminal as much freight as soon as possible and have it 
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connect to the first airplane with available capacities in order to avoid late delivery 

penalty. On the other hand, storing the freight at terminal’s storage while waiting for the 

connection represents an additional cost which could be reduced if freight arrives 

slightly prior to the takeoff. Moreover, the probabilistic duration of truck roundtrips and 

possibility of overloading the storage further complicate operator’s decisions about 

when to schedule the truck departures. 

 Although air transportation may be less flexible than other transportation modes, 

when a system recovers from a major disruption the system operator may dispatch the 

trucks as soon as the system becomes operational and then schedule the flight departure 

times. Assuming that the airline schedule is flexible, there exists a similar tradeoff in 

costs. The earlier one schedules the takeoff, the lower are storage and penalty cost 

associated with the freight that successfully connects. However, the earlier we schedule 

the takeoff, the greater are chances that airplane’s capacity will remain unused due to 

late truck arrivals. Having airplanes operate below capacity may require running 

additional flights, thereby increasing the airline cost. 

 This thesis will analyze the case with flexible schedules on truck routes and 

fixed takeoff times, as well as the case with the fixed truck departures and flexible 

numbers and schedules of flights. Therefore two distinct models will be developed and 

analyzed through the case studies. 
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1.2 Objective 

 The objective is to develop a model that will optimize the departure times on the 

routes with flexible schedules. When optimizing the schedules, the following 

assumptions are made:  

1. The number of roundtrips that a truck is assigned is given, as well as the 

randomly distributed duration of each roundtrip and the sequence of the 

roundtrips.  

2. The expected amount of freight in the terminal must never exceed the preset 

multiple of a terminal storage capacity (i.e. 80% of the storage capacity). 

3. The system is cyclic since the trucks are assigned consecutive roundtrips all 

ending at the terminal. 

4. Durations of truck roundtrips are independent. 

5.  Flow is unidirectional, which is typical for evacuation models. 

 We seek to find the schedules that minimize total system cost while considering 

the constraints and assumptions listed above. In calculating total cost the following is 

considered: 

1. Storage cost, which refers to the cost of storing freight in terminal’s storage 

facilities while waiting for a connection. 
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2. Cost of in-terminal operations that includes the cost of unloading and loading 

the freight. The cost of in-terminal operations is lower when a truck arrives 

slightly prior to the takeoff and unloads directly on the airplane. 

3. Penalty for late delivery, reflecting that the freight’s value decreases as delivery 

is delayed. Instead of using a time value function, we introduce a penalty 

function which depends on the time of the takeoff to which the freight connects. 

4. Airline service cost that includes both airplanes and airport services. This type 

of cost is not sensitive to the truck departure times since it solely depends on the 

given number of takeoffs. Therefore this type of cost will represent a constant in 

the model which assumes fixed schedules and number of takeoffs. However, this 

type of cost will not be a constant in the second model which assumes flexible 

number of takeoffs. 

 To find the schedule that minimizes the overall system cost, we formulate the 

total cost as a function of the departure times. Later we use a genetic algorithm (GA) to 

minimize the total system cost.  

1.3 Organization of the Thesis 

 The rest of this thesis is organized into four chapters. Chapter 2 provides the 

review of some related optimization problems. The model assuming flexible truck 

departures is developed in chapter 3 and tested on a case study in chapter 4. Chapter 5 
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provides a model that optimizes the schedule and number of takeoffs assuming fixed 

truck departures. This model is tested on the case studies in Chapter 6. Finally, Chapter 

7 provides conclusions.  
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Chapter 2 

Literature Review 

 The scheduling problem is a classical problem of operations research. Thus, a fair 

amount of research has been devoted to solving different variations of scheduling 

problems, but all under different assumptions from those considered in this thesis. The 

literature review is divided into two parts where we explain some of the related 

research. We also point out the differences in assumptions and problem settings of 

existing work, compared to the problem statement of this thesis.  

 

2.1 Machine Scheduling 

 The problem statement of this thesis is analogous in some ways to a scheduling 

problem for parallel machines with stochastic duration of jobs and deterministic due 

dates. In the machine scheduling problem there are typically ݊ jobs to be processed on 

݉ machines. The objective is to find the sequence of jobs to be processed in order to 

achieve overall system objective for the given due date(s). Different variations of the 

parallel machine scheduling problem include different assumptions, such as 

deterministic or stochastic job processing, identical or non-identical machines and 

durations of jobs, common or individual due dates for jobs, deterministic or stochastic 
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due date(s), deterministic or stochastic release dates, processing with or without 

preemption etc. Moreover, different objectives are found in literature. Some authors 

minimize the expected tardiness while others minimize the expected earliness or the 

weighted combination of the two. Here are considered a few publications on stochastic 

and deterministic parallel machine scheduling which include: Pinedo (1983), Lee & 

Pinedo (1997), Dessouky and Marcellus (1998), and Zied Bouyahia, Monia Bellalouna, 

Patrick Jaillet & Khaled Ghedira (2010). 

 Pinedo (1983) considers stochastic scheduling problems in which processing times 

of jobs are independent exponentially distributed random variables, the release dates are 

random variables with an arbitrary joint distribution, and the due dates are random 

variables with a joint distribution that satisfies certain conditions. Pinedo analyzes four 

models and develops simple policies which minimize the expected weighted sum of 

completion times and the expected weighted number of late jobs. The following 

problems, including both single and parallel machine scheduling, are studied: 

1. Minimization of the expected weighted sum of job completion times on a single 

machine when jobs have different release dates.  

2. Minimization of the expected weighted sum of job tardiness on a single machine 

when jobs have different due dates. 
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3. Minimization of the expected weighted number of late jobs on a single machine 

when the jobs have different due dates. 

4. Minimization of the expected weighted number of late jobs on parallel machines 

when the jobs have different due dates. 

 After stating that the deterministic counterparts of the four problems are NP-hard, 

he provides four simple policies and proves that they provide the optimal solutions for 

the stochastic version of the problems. The results in this paper contrast with the lack of 

any known polynomial time algorithms for the deterministic counterparts of the four 

models considered. The author lists some other scheduling problems with random 

duration jobs that are easier to solve than their deterministic counterparts.  

 Lee & Pinedo (1997) consider parallel machine scheduling problem with uniform 

machines, deterministic duration of jobs, and sequence dependent setup times. A job 

has a processing time, weight and due date. To minimize the sum of the weighted 

tardiness, the authors develop a three phase heuristic. In the first phase they compute 

certain statistics which help them construct the sequence of jobs using a dispatching 

rule in the second stage. In the third and final stage the simulated annealing method is 

applied starting from the seed solution which represents the result of the second stage. 

The application of heuristics is justified in the paper’s introduction by stating that 

minimizing the sum of the weighted tardiness for a single machine with all weights 
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being equal is an NP-hard problem. Finally, the authors state that variations of their 

algorithm are used in a number of factories and mention an implementation in the liquid 

packaging industry where the algorithm provided satisfactory schedules. 

 Dessouky and Marcellus (1998) address the scheduling of identical jobs on 

uniform parallel machines with random processing times. Scheduling identical jobs on a 

set of uniform parallel machines occurs when a batch of identical products need to be 

processed by a set of machines with different efficiencies. The authors do not consider 

the precedence constraint, nor preemption. They provide methods for optimizing the 

expected sum of weighted completion times and the probability of meeting a common 

due date. A relatively small example of solving 12 jobs on 5 machines is provided and 

the results are discussed.  

 Bouyahia et al. (2010) contribute to the parallel machine scheduling problem by 

addressing long-term robust optimization. Their goal is to design robust a priori 

schedules which on the long term horizon are optimal or suboptimal with respect to 

total weighted flow time. They consider designing a schedule without knowing in 

advance which jobs need to be processed. Hence, they treat the number of jobs to be 

processed as a random variable, and to each job they assign a probability that it will 

need to be processed. They show through both theoretical and experimental studies that 

simple strategies can provide upper bounds tight to known lower bounds. They discuss 
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two strategies, reoptimization and a priori strategy. In the experimental study they solve 

problems including 2, 4 and 6 machines, and 100, 200, 500 and 1000 jobs to be 

processed, and assess the quality of the a priori strategy. 

 In comparing parallel machine scheduling to our problem, we can treat each truck 

as a machine which is assigned certain number of jobs, which in our case represent 

randomly distributed roundtrips. The due dates in our intermodal freight system 

represent the connection times, while the earliness and tardiness penalties typical of 

machine scheduling can be observed as storage costs and late delivery penalties. 

However, the main difference is that we assume the sequence of roundtrips (jobs) for 

each truck (machine) to be given, and we seek to optimize truck departure times (starts 

of production), and schedule of takeoffs (due dates). Moreover, we assume multiple due 

dates for each job which represent connections. Finally, we develop a more 

sophisticated way to compute the earliness penalty (storage cost) than in the 

aforementioned literature on parallel machine scheduling.  

 

2.2 Scheduling in Freight Systems 

 Truck scheduling for ground to air connectivity has been studied by Randolph 

Hall (2001). He lists 11 steps in express transportation and points out the sorting 
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process at the origin airport as being particularly critical since it is susceptible to 

random delays in the arrival of work, and because it requires relatively large 

investments in facilities and labor. He further explains that the facilities and labor are 

only needed within concentrated time periods, which sometimes makes it uneconomical 

to provide sufficient capacity to process shipments as quickly as they arrive. The work 

focuses on scheduling the start time for the sorting process. The airport terminal is 

modeled as a queuing process with random bulk arrivals, and predictions are provided 

for expectation and standard variation of arrived work. The key concept behind the 

model is conversion of truck schedules into forecasts for the expected arrival of work, 

and forecasts for the standard deviation in the arrival of work. These pieces of 

information make it possible to predict the occurrence of starvation and the end time for 

a sort. The methods developed in this paper provide a tool for representing the trade-off 

between sort productivity and the objective of completing the sort as early as possible. 

 Ting and Schonfeld (1997) analyze the transfer coordination in transit networks 

with deterministic and stochastic travel times. Total system cost is used to evaluate the 

performance of the coordination under different demand and arrival distributions. The 

authors study three different policies: uncoordinated, fully coordinated and partially 

coordinated operations. Two heuristic algorithms are applied to optimize both headways 

and slack times using integer multiples of base cycle, which are a round fraction of 60 
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minutes. The results show that the coordination with integer-ratio headways is more 

advantageous than with a single common headway when the demand in the system is 

low, and the increasing variance of vehicle arrivals is caused by each route’s 

independently optimized headway. In addition, the integer-ratio approach based on 

integer multiples of a base cycle should be applied when the headway of each route is 

significantly different. The work of Ting and Schonfeld was extended to freight systems 

by Chen and Schonfeld (2010) who developed a hybrid GA-SQP method to optimize 

the headways.  

Several authors have addressed the airline scheduling problem under stochastic 

demand. Teodorović (1988) develops models to measure the level of service by 

minimizing the time difference between actual and desired departure times. In the first 

model, he demonstrates that the time difference can be approximately expressed as a 

function of flight frequency only, without regard to the departure times during the day. 

In the second model and numerical example, he finds the optimal departure times with 

respect to minimal average schedule delay for a known demand and preassigned 

frequency on a route between two cities. The work of Teodorovic is extended by Chang 

and Schonfeld (2001) through an integrated model that allows variability in flight 

departure times while resolving trade-offs between efficient fleet operation and quality 

of service. 
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 Finally, the models developed in this thesis are not directly related to other models 

found in the literature. This work bases the intermodal system analysis on the randomly 

distributed duration of vehicle roundtrips. This approach is deemed to provide greater 

precision than some other models found in literature. The advantages and disadvantages 

of such a method will be examined in this thesis. 
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Chapter 3 

Model Formulation Assuming Flexible Truck Departures 

 In this chapter a model is developed that optimizes the truck departure times 

given fixed takeoff schedules. The mathematical program is developed by 

comprehensively deriving the cost components and constraints. In sections 3.1-3.4 the 

cost components listed in the problem statement are formulated. After deriving the 

constraints in section 3.5, the model’s formulation is presented in section 3.6. Please 

note that when computing the storage cost in 3.1 we develop two mathematical 

expectations and an algorithm which will also be used when formulating the in-terminal 

operation cost and the penalty for late delivery. 

 

3.1 Storage Cost 

 To determine the storage cost we need to estimate the amount of time that 

freight spends dwelling in the terminal storage. To facilitate the computation, we 

separate the in-terminal dwell time into two parts. The first part refers to the dwell time 

from the moment the freight arrives to terminal till the first connection upon its arrival, 

regardless of whether the airplane has enough capacity to take the connecting freight. 

We call this primary dwell time and compute its expectation in section 3.1.1. The 
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second part refers to the dwell time from the first connection upon the arrival of freight 

until the moment the freight is actually loaded into the airplane with available 

capacities. We call it additional dwell time and compute its expected value in section 

3.1.2.  

 

3.1.1 Expected Primary Dwell Time ࡱሾࢀࡰࡼሿ 

 We first formulate the primary dwell time ܲܶܦ  which represents a random 

variable. Then we find its mathematical expectation ܧሾܲܶܦሿ which is a function of 

truck departure times and given duration of roundtrips and connection times. We 

comprehensively derive ܧሾܲܶܦሿ  by starting from the simplest case and gradually 

developing it into its generic form. 

 Suppose that truck ݇ is assigned a single roundtrip whose duration (including 

loading, unloading and a short break for the driver) is represented by a random variable 

ܺ௞,ଵ  with probability density function (PDF) ݂ሺݔ௞,ଵ, ݀௞ሻ , where ݀௞  represents the 

truck’s departure time which we seek to determine. Moreover, let’s assume that the 

truck’s starting and end point is the terminal where the truckload should connect to one 

of ݊௟  flights on route ݈ taking off at times ݐଵ௟ , ଶ௟ݐ ௡೗ݐ …
௟ . Let’s further assume that if a 

truck misses all ݊௟  takeoffs, its cargo must wait for the connection at time ݁௟  on the 
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following day. Finally, let’s suppose that the probability that the truck will arrive at the 

terminal after time ݁௟ is negligible, ܲሺܺ௞,ଵ ൐ ݁௟ሻ ൎ 0 

 

Figure 3.1 PDF of a Roundtrip Assigned to Truck k 

          Primary dwell time represents a random variable which depends on the departure 

time and the duration of roundtrip ܺ௞,ଵ, as well as connection times ݐଵ௟ , ଶ௟ݐ ௡೗ݐ …
௟   and ݁௟. 

Since a truck’s departure may be scheduled after the takeoff at ݐଵ௟ , let’s define ݅௠௜௡ such 

that it represents the index of the first takeoff after ݀௞. In another words, let ݅௠௜௡ ൌ

൛݅หݐ௜ିଵ௟ ൑ ௜௟ݐ ٿ ݇݀ ൒ ݀݇ൟ. We denote the primary dwell time of the freight ܨ௞,ଵ௟  carried by 

truck ݇ and connecting to route ݈ as ܲܦ ௞ܶ,ଵ
௟  and define it as follows: 

    ݀௞                       ݐ௜೘೔೙
௟ ௜௟ݐ     …        ௡೗ݐ           …     

௟
                                                  ݁௟               

݂ሺݔ௞,ଵ, ݀௞ሻ
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ܦܲ ௞ܶ,ଵ
௟ ൌ

ە
ۖ
۔

ۖ
௞,ଵܨۓ

௟ ൫ݐ௜೘೔೙
௟ െ ܺ௞,ଵ൯    ݀௞ ൏ ܺ௞,ଵ ൏ ௜೘೔೙ݐ

௟              
…

௞,ଵ௟ܨ ൫ݐ௜௟ െ ܺ௞,ଵ൯         ݐ௜ିଵ௟ ൏ ܺ௞,ଵ ൏                 ௜௟ݐ
…

௞,ଵ௟ܨ ൫݁௟ െ ܺ௞,ଵ൯        ݐ௡೗
௟ ൏ ܺ௞,ଵ ൏ ݁௟                 

                                      (1) 

 Having defined ܲܦ ௞ܶ,ଵ
௟ , we can compute its expectation by the application of the 

law of the unconscious statistician (Allen 2010). If we denote ݐ௜೘೔೙ିଵ
௟ ൌ ݀௞  and 

௡೗ାଵݐ
௟ ൌ ݁௟ , the expected in-terminal dwell time of freight carried by truck ݇  and 

connecting to route ݈ is: 

ܦܲൣܧ ௞ܶ,ଵ
௟ ൧ ൌ ௞,ଵ௟ܨ ∑ ׬ ൫ݐ௜௟ െ ,௞,ଵݔ௞,ଵ൯ ݂൫ݔ ݀௞൯݀ሺݔ௞,ଵሻ

௧೔
೗

௧೔షభ
೗

௡೗ାଵ
௜ୀ௜೘೔೙                                        (2) 

 Now we can extend previous analysis to a more complex case in which a truck 

makes multiple roundtrips. So let’s consider the case when truck ݇  is assigned ݎ௞ 

consecutive roundtrips, all starting and ending at the terminal. If we denote as ܺ௞,௝ a 

random variable which describes the duration of the ݆௧௛ roundtrip made by truck ݇, the 

random variable ௞ܻ,௝ which describes the  ݆௧௛ truck arrival at the  terminal is given with 

the following sum: 

௞ܻ,௝ ൌ ܺ௞,ଵ ൅ ܺ௞,ଶ ൅ ൅ڮ ܺ௞,௝ିଵ ൅ ܺ௞,௝                                                                          (3) 

 The PDF of a variable ௞ܻ,௝ is defined as the convolution of PDF’s describing 

duration of ݆ roundtrips: 
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݂൫ݕ௞,௝, ݀௞൯ ൌ ݂൫ݔ௞,ଵ, ݀௞൯ כ ݂൫ݔ௞,ଶ൯ כ כ … ݂൫ݔ௞,௝ିଵ൯ כ ݂൫ݔ௞,௝൯                                   (4) 

 

Figure 3.2 PDF’s of the First, Second and ݎ௞-th Arrival of Truck ݇ 

 Bearing in mind equations (2), (3) and (4), we can define the expected primary 

dwell time of the freight ܨ௞,௝௟  carried by truck ݇ in the ݆௧௛ roundtrip and connecting to 

main route ݈:  

ܦܲൣܧ ௞ܶ,௝
௟ ൧ ൌ ௞,௝௟ܨ ∑ ׬ ൫ݐ௜௟ െ ,௞,௝ݕ௞,௝൯ ݂൫ݕ ݀௞൯݀ሺݕ௞,௝ሻ

௧೔
೗

௧೔షభ
೗

௡೗ାଵ
௜ୀ௜೘೔೙                      (5) 

 The primary dwell time of cargo connecting to route ݈ and transported by truck 

݇ in ݎ௞ roundtrips is given in (6). The probability of the last roundtrip ending after the 

takeoff scheduled on the following day is assumed to be negligible, ܲሺ ௞ܻ,௥ೖ ൐ ݁௟ሻ ൎ 0 

    ݀௞                       ݐ௜೘೔೙
௟ ௜௟ݐ     …            ௡೗ݐ           …     

௟
                                                  ݁௟           

݂ሺݕ௞,ଵ, ݀௞ሻ

݂ሺݕ௞,௥ೖ, ݀௞ሻ

݂ሺݕ௞,ଶ, ݀௞ሻ
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ܦܲൣܧ ௞ܶ
௟൧ ൌ ∑ ܦܲൣܧ ௞ܶ,௝

௟ ൧௥ೖ
௝ୀଵ                                                           (6)  

 We can now compute the expected primary dwell time of freight connecting to 

airline route ݈ and being transported by multiple trucks making multiple roundtrips. This 

can be easily done by summing (6) for all ݒ trucks in the intermodal freight system. 

௟ሿܶܦሾܲܧ ൌ ∑ ܦܲൣܧ ௞ܶ
௟൧௩

௞ୀଵ                                                                               (7) 

 Finally, we can compute the expected dwell time for cargo connecting to all ݉ 

aircraft routes. 

ሿܶܦሾܲܧ ൌ ∑ ௟ሿ௠ܶܦሾܲܧ
௟ୀଵ                                                                                                (8) 

 

3.1.2 Additional Dwell Time ࢀࡰࡰ࡭ 

 Since the calculation in 3.1 does not consider the possibility that freight might 

wait longer than period ሺݐ௜௟ െ ௞ܻ,௝ሻ due to the limited capacity of airplanes, we need 

additional calculations. For example, if the expected amount of freight arriving in 

interval ሺݐ௜ିଵ௟ , ௜௟ሻݐ  and connecting to route ݈  is greater than the capacity of airplane 

taking off at moment ݐ௜௟, we must consider additional dwell time of cargo that cannot fit 

in the plane. The additional dwell time represents the amount of time that freight spends 

dwelling in the terminal after the first connection upon its arrival.  
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 In order to calculate the additional dwell time we must compute the expected 

amount of freight connecting to route ݈ and arriving in each of ሺݐ௜ିଵ௟ ,  ௜௟ሻ  intervals. Theݐ

aforementioned expectation will be calculated in 3.2.2 based on the expected amount of 

freight arriving in ሺ0,  ௜௟ሻ interval, which we derive in section 3.2.1. Please note that 0ݐ

denotes the beginning of the observed period of time. Finally, in section 3.2.3 we 

provide an algorithm which computes additional dwell time ܦܣ஽். 

 

3.1.2.1 Expected Amount of Freight Arriving in Interval ሺ૙,  ሻ and Connecting࢒࢏࢚

to Route ࢒ 

 Again, we derive this expectation starting from the simplest case which includes 

a single truck. So let’s suppose again that truck ݇ is assigned ݎ௞ consecutive roundtrips 

and that we must calculate the expected amount of freight arriving in interval ሺ0,  ௜௟ሻ andݐ

connecting to route ݈. To do so, we must first find the probability that ܽ arrivals occur 

within the ሺ0,  ௜௟ሻ interval. In other words, we need to calculate the probability that theݐ

first ܽ roundtrips end prior to ݐ௜௟, while the subsequent roundtrip ends after ݐ௜௟.  

ܲሺܽሻ ൌ ܲሺܺ௞,ଵ ൏ ;௜௟ݐ   . . .   ; ܺ௞,ଵ ൅ ൅ڮ ܺ௞,௔ ൏ ;௜௟ݐ ܺ௞,ଵ ൅ ൅ڮ ܺ௞,௔ାଵ ൐  ௜௟ሻ                  (9)ݐ

 The aforementioned probability is given with an ሺܽ ൅ 1ሻ-dimensional integral: 
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ܲሺܽሻ ൌ ׬ .௞,ଵݔ݀ . ׬ ௞,௔ݔ݀
௧೔
೗ି௫ೖ,భି … ି௫ೖ,ೌషభ

଴
௧೔
೗

ௗೖ
׬ ݂ሺݔ௞,ଵ, . . , ,௞,௔ାଵݔ ݀௞ሻ
ାஶ
௧೔
೗ି௫ೖ,భି … ି௫ೖ,ೌ

௞,௔ାଵݔ݀                         

                                                                                                                                      (10) 

 Note that ݂ሺݔ௞,ଵ, … , ,௞,௔ାଵݔ ݀௞ሻ  from the above equation represents joint 

probability density function of random variables ܺ௞,ଵ, … , ܺ௞,௔ାଵ . Since durations of 

roundtrips are independent here, one can obtain the joint PDF by simply multiplying 

ܽ ൅ 1 probability density functions. (Please note that arrivals are mutually dependent; 

however the durations of individual roundtrips are independent.) 

݂ሺݔ௞,ଵ, … , ,௞,௔ାଵݔ ݀௞ሻ  ൌ ݂ሺݔ௞,ଵ, ݀௞ሻ∏ ݂ሺݔ௞,௝ሻ௔ାଵ
௝ୀଶ                      (11) 

 After having computed the probability of ܽ  arrivals in interval ሺ0, ௜௟ሻݐ , we can 

calculate the expected amount of freight connecting to route ݈ that truck ݇ delivers to 

terminal in the aforementioned interval as: 

,௞௟ሺ0ܨሾܧ ௜௟ሻሿݐ ൌ ∑ ܲሺܽሻܨ௞,௔௟
௥ೖ
௔ୀଵ                                                                         (12) 

 Now, we can consider the general case including multiple trucks making multiple 

roundtrips. For this case, the expected amount of freight connecting to route ݈  and 

arriving at the terminal in interval ሺ0,  ௜௟ሻ can be obtained by simply summing (12) forݐ

all v trucks. 
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,௟൫0ܨሾܧ ௜௟൯ሿݐ ൌ ∑ ,௞௟ሺ0ܨሾܧ ௜௟ሻሿ௩ݐ
௞ୀଵ                                                                                  (13)         

 

3.1.2.2 Expected Amount of Freight Arriving in Interval ሺି࢏࢚૚࢒ ,  ሻ and࢒࢏࢚

Connecting to Route ࢒ 

 In section 3.1.2.1 the expected amount of freight connecting to route ݈  and 

arriving at the terminal in interval ሺ0,  ௜௟ሻ was computed. Based on that result, we areݐ

able to calculate the expected amount of freight connecting to route ݈ and arriving at the 

terminal in interval ሺݐ௜ିଵ௟ , ௜ିଵ௟ݐ௟൫ܨሾܧ ௜௟ሻ, denoted asݐ , ௜ିଵ௟ݐ௟൫ܨሾܧ ௜௟൯ሿ. Thisݐ ,  ௜௟൯ሿ equals theݐ

expected amount of freight arriving at the terminal in ሺ0,  ௜௟ሻ minus the expected amountݐ

of freight arriving in ሺ0, ௜ିଵ௟ݐ ሻ.  

௜ିଵ௟ݐ௟൫ܨሾܧ , ௜௟൯ሿݐ ൌ ,௟൫0ܨሾܧ ௜௟൯ሿݐ െ ,௟൫0ܨሾܧ ௜ିଵ௟ݐ ൯ሿ                                                          (14) 

 Having derived the previous expectation, we are now able to determine the 

expected amount of freight arriving between consecutive flights and thereby estimate 

the additional dwell time that occurs due to limited airplane capacity. 
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3.1.2.3 Algorithm for Computing Additional Dwell Time ࢀࡰࡰ࡭ 

 The algorithm for computing additional dwell time for cargo connecting to route 

݈ uses the previously derived expectation ܧሾܨ௟൫ݐ௜ିଵ௟ ,  ௜௟൯ሿ. For the given takeoff times, itݐ

examines the expected amount of freight arriving between consecutive flights and 

determines whether this amount exceeds the airplane’s capacity ܣ௜. If it exceeds ܣ௜, the 

algorithm computes associated additional dwell time and adds it to ܦܣ஽்௟  

 Let’s denote as ݏ௜௟ the amount of freight connecting to route ݈ left in storage after 

the ݅௧௛ takeoff, and assign initial values of zero to ݏ௜௟ and ܦܣ஽்௟ . Now, we can compute 

the additional dwell time for the cargo connecting to route ݈ with the recursive formula 

given in equations (15)-(18). 

஽்௟ܦܣ ൌ ଴௟ݏ ;0 ൌ 0                                                                                                        (15) 

݅ ݎ݋ܨ ൌ  ௟                                                                                                             (16)݊ ݋ݐ 1

௜௟ݏ ൌ ,൛0ݔܽ݉ ௜ିଵ௟ݏ ൅ ௜ିଵ௟ݐ௟൫ܨሾܧ , ௜௟൯ሿݐ െ  ௜ൟ                                                                   (17)ܣ

஽்௟ܦܣ ൌ ஽்௟ܦܣ ൅ ௜ାଵ௟ݐ௜௟ሺݏ െ  ௜௟ሻ                                                                                     (18)ݐ

 Finally, after having computed additional dwell for cargo connecting to route ݈, 

we can calculate total additional dwell time by simply summing (18) for all ݉ main 

routes. 
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஽்ܦܣ ൌ ∑ ஽்௟௠ܦܣ
௟ୀଵ                                                                               (19) 

 

3.1.3 Formulation of the storage cost 

 Since we know how to calculate the expected primary dwell time as well as the 

additional dwell time, we can compute the expected ton-hours of dwell time in terminal 

storage by summing two expectations. To obtain the storage cost, we multiply the sum 

of two expectations with unit storage cost  ܥ஽்.  

ܥܵ ൌ ሺܧሾܲܶܦሿ ൅  ஽்                                                      (20)ܥ஽்ሻܦܣ

 

3.2 In-Terminal Operation Cost 

 As previously argued, the cost of in-terminal operations can be reduced when a 

truck arrives at the terminal slightly prior to the takeoff and takes its truckload directly 

to the aircraft. Thus, cost of in-terminal operations is sensitive to the schedule of 

takeoffs and should be considered in the optimization. Since we can formulate the 

expected amount of freight connecting to ݈ and arriving in a certain interval (14), we can 

estimate the expected amount of freight unloaded directly onto aircraft. We first denote 

as ∆ݐ, the time interval such that a truck arriving within the ሺݐ௜௟ െ ,ݐ∆  ௜௟ሻ  will unloadݐ

directly onto the airplane departing at ݐ௜௟. We can now define the expected amount of 

freight connecting to route ݈ that will be transferred directly from truck to airplane.  
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ܾௗ௟ ൌ ∑ ௜௟ݐ௟൫ܨሾܧ െ ,ݐ∆ ௜௟൯ሿ௡೗ݐ
௜ୀଵ                                                (21) 

 To find the total amount of freight loaded directly to airplanes, we sum (21) for 

all ݉ airplane routes: 

ܾௗ ൌ ∑ ∑ ௜௟ݐ௟൫ܨሾܧ െ ,ݐ∆ ௜௟൯ሿ௡೗ݐ
௜ୀଵ

௠
௟ୀଵ                                                              (22) 

 It is clear that remaining freight will be processed regularly and that another cost 

will be associated with it. Let us now denote as ܥ௧ௗ  the unit cost of in-terminal 

operations for the case when truck takes its truckload directly to the airplane. Moreover, 

let’s denote as ܥ௧௥ the unit cost of in-terminal operations when the freight is processed 

regularly. Finally, if we denote as ݃ the overall amount of freight, then the total in-

terminal operation cost is: 

ܥܫ  ൌ ሺܾௗܥ௧ௗሻ ൅ ሺ݃ െ ܾௗሻܥ௧௥                                                                                       (23) 

 

3.3 Penalty Cost 

 In order to estimate the late delivery penalty, we formulate the time-dependent 

penalty function ௣݂ሺݐ௜௟ሻ and assume that the takeoff time ݐ௜௟ is relevant for calculating the 

penalty. For example, if ݄௜௟ tons of freight are loaded on the flight taking off at ݐ௜௟, the 
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corresponding penalty will be ݄௜௟ ௣݂ሺݐ௜௟ሻ. The penalty cost associated with freight carried 

on all ݊௟ ൅ 1 flights on route ݈ is given in equation (24). Please note that ݐ௡೗ାଵ
௟ ൌ ݁௟ 

௟ܥܲ ൌ ∑ ݄௜௟ ௣݂ሺݐ௜௟ሻ௡೗ାଵ
௜ୀଵ                                                                (24) 

 However, the problem with the equation (24) is that we do not  know in advance 

how much freight will be loaded in the airplane departing at ݐ௜௟. Therefore, we need an 

algorithm that computes the penalty cost for the given ݐ௜௟’s. Similarly to the algorithm 

from the previous section, we compute the penalty cost using a recursive formula given 

in (25)-(28). We use again the expected amount of freight connecting to ݈ and arriving 

in the ሺݐ௜ିଵ௟ ,  .௜௟ሻ intervalݐ

௟ܥܲ ൌ 0; ݄଴௟ ൌ 0                                                                           (25) 

 ݅ ݎ݋ܨ ൌ ௟݊ ݋ݐ 1  ൅ 1                                                                               (26) 

݄௜௟ ൌ ݉݅݊൛ܣ௜, ௜ିଵ௟ݏ ൅ ௜ିଵ௟ݐ௟൫ܨሾܧ ,  ௜௟൯ሿൟ                                     (27)ݐ

௟ܥܲ ൌ ௟ܥܲ ൅ ݄௜௟ ௣݂ሺݐ௜௟ሻ                                                   (28) 

 To calculate the total penalty cost associated with truckloads carried at all ݉ 

main routes, we need to sum (28) for all airplane routes: 

ܥܲ ൌ ∑ ௟௠ܥܲ
௟ୀଵ                                                                (29) 
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3.4 Airline Cost 

 The last type of cost we consider is the airline service cost which refers to the 

use of both airplanes and airport facilities. Let’s denote as ܥ௜௟ the cost of the ݅௧௛flight on 

route ݈. Then the airline service cost for all routes is: 

ܥܣ ൌ ∑ ௟௠ܥܣ
௟ୀଵ ൌ ∑ ∑ ௜௟௡೗ܥ

௜ୀଵ
௠
௟ୀଵ                                         (30) 

 

3.5 Constraints 

 The airplane capacity constraint has already been considered by calculating the 

additional dwell time ܦܣ஽் . However, the constraint regarding maximum storage 

capacity has not yet been included. Moreover, since the takeoff times might be 

restricted to certain intervals, we consider time windows for takeoffs. Finally, to 

represent possible airport capacity limits, we include minimum headway constraints for 

takeoffs. 

 We must first ensure that the expected amount of freight never exceeds storage 

capacity. We define a vector ܶ such that its elements represent takeoff times on all ݉ 

main routes organized in ascending order. Element ݐ௜ represents the ݅௧௛ takeoff from the 

terminal. Let’s denote ݏ௜ the total amount of freight left in terminal after the ݅௧௛ takeoff, 
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similarly to ݏ௜௟ in the algorithm in (15)-(18). If we denote ݊ the total number of takeoffs 

from terminal and ܧሾܨሺݐ௜ିଵ,  ௜ሻሿ the expected total amount of freight arriving betweenݐ

two consecutive flights, the storage constraint is given in (31). Please note that ݐ଴ ൌ 0, 

଴ݏ ൌ 0, storage capacity is given as ܵ௖ and the storage multiplier is ݏ௠ 

௜ିଵݏ ൅ ,௜ିଵݐሺܨሾܧ ௜ሻሿݐ ൑ ݅      ௠ܵ௖ݏ ൌ 1,… , ݊                  (31) 

 General working agreements may allow a trucking company to schedule truck 

departures only within certain time windows (e.g. not at midnight). 

ܽ௞ ൑ ݀௞ ൑ ܾ௞    ݇ ൌ 1,… ,  (32)                                                                                         ݒ

 

3.6 Mathematical Formulation of the Model 

 In sections 3.1-3.5 we explained the types of costs and constraints considered. 

Now we can provide the mathematical formulation of the model (33)-(35), which 

represents a stochastic mathematical program. 

ܥܶ ݊݅ܯ ൌ ܥܵ  ൅ ܥܫ ൅ ܥܲ ൅  (33)                                                                                  ܥܣ

Subject to: 

௜ିଵݏ ൅ ,௜ିଵݐሺܨሾܧ ௜ሻሿݐ ൑ ݅      ௠ܵ௖ݏ ൌ 1,… , ݊                                                                (34) 
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ܽ௞ ൑ ݀௞ ൑ ܾ௞    ݇ ൌ 1,… ,  (35)                                                                                          ݒ

 It should be noted that formulation (33)-(35) is given in the compact form and 

includes all the results from sections 3.1-3.5.  
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Chapter 4 

Model Performance Assuming Flexible Truck Departures 

 In order to test the mathematical formulation proposed in Chapter 3, we design 

two numerical examples. The first case includes a single aircraft route, while the second 

case deals with multiple aircraft routes. For the first case we also provide a sensitivity 

analysis where we study the tradeoffs in types of costs discussed in the Introduction of 

this thesis. For both cases we use a genetic algorithm (Goldberg 1995 and Michalewicz 

1995) to optimize the schedules. An off-the-shelf GA toolbox (Global Optimization 

Toolbox) was used to optimize the schedules. In order to decrease the chances of 

getting the GA stuck in a local minimum, each optimization was performed multiple 

times with different input parameters such as initial population, population size and 

crossover function. The population size was varied between 10 and 15 individuals, 

while for the crossover function we tested several available options: scattered, one-point 

and two-point. Finally, since the GA is not guaranteed to find an optimal solution, we 

refer to the resulting schedules as “optimized” rather than “optimal”.  
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4.1 Case with a Single Main Route 

 A numerical example is developed that includes eleven truck roundtrips 

performed by four trucks. A truck with a capacity of 20 tons is assigned two roundtrips, 

while three trucks with 5 ton capacity are assigned three roundtrips each. All truck 

roundtrip times are exponentially distributed with average durations given in Table 4.2. 

The freight carried by trucks can connect to two flights during the current day or to the 

flight on the following day. Assuming the inputs from Table 4.1 and Table 4.2, we seek 

to optimize the truck schedule.  

Table 4.1 Cost and Capacities 

airplane capacity ܣଵଵ 40 tons 
airplane capacity ܣଶଵ 45 tons 

aircraft cost ܥଵଵ 11000 mu/flight 
aircraft cost ܥଶଵ 12000 mu/flight 

terminal storage capacity Sc 65 tons 
storage capacity multiplier  ௠ 0.80ݏ

storage cost SC 8 mu/ton hr 
amount of time ∆t 15 min 

in-terminal operation cost ܥ௧௥ 30 mu/ton 
in-terminal operation cost ܥ௧ௗ 10 mu/ton 

penalty function ௣݂ሺݐሻ 0 if t≤2 mu/ton 
25t-50 if 2<t≤10 mu/ton 

200 if t>10 mu/ton 
takeoff time ݐଵଵ 5.4 hrs 
takeoff time ݐଶଵ 9.1 hrs 

time of the last takeoff ݁ଵ 25 hrs 
time windows ሾܽ௞, ܾ௞ሿ [0,5] hrs 
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Table 4.2 Exponentially Distributed Roundtrip Durations 

truck truckload 
capacity [ton]

1st roundtrip
[hr] 

2nd roundtrip
[hr] 

3rd roundtrip 
[hr] 

1 20 1/λ = 2.1 1/λ = 1.9 NA 
2 5 1/λ = 0.9 1/λ = 0.6 1/λ = 1.2 
3 5 1/λ = 1.0 1/λ = 0.7 1/λ = 1.4 
4 5 1/λ = 0.5 1/λ = 1.1 1/λ = 0.8 

  

 The optimized schedule for four trucks is given in Table 4.3. It provides the 

optimized start times of truck assignments and total system cost. The optimization time 

of approximately 2 hours was needed for the GA to converge within 25 to 35 

generations for different input parameters. 

Table 4.3 Optimized Truck Schedule and Total Cost 

truck truck departure time optimized total cost 
1 ݀ଵ ൌ2.84  

ܥܶ ൌ38748 2 ݀ଶ ൌ4.24 
3 ݀ଷ ൌ4.25 
4 ݀ସ ൌ4.58 

 

 To verify the model and the tradeoff in types of costs that was explained in 

problem statement, we reoptimize the system varying the penalty for the freight that 

does not connect to the second flight and needs to wait for the connection on the next 

day. In another words, we reoptimize the system while varying ௣݂ሺݐሻ  for ݐ ൐ 10 . In 
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Figure 4.1 we plot the penalty versus amount of freight that was not delivered during 

the current day. As the penalty increases, the amount of undelivered freight decreases 

until it reaches about 3.5 tons. 

 

Figure 4.1 Undelivered Amount of Freight vs. Penalty 

 To investigate the reason why the undelivered amount of freight does not drop 

below some 3.5 tons even for the penalty as high as 100000 mu/ton, we analyze the 

expected amount of freight arriving to terminal on ሾ0, ,11ݐ11ሿ, ሾݐ ,21ݐ21ሿ, and ሾݐ ݁1ሿ. In Table 

4.4 we show optimization summary for different values of penalty cost. 
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Table 4.4 Optimization Summary with Different Penalties 

Penalty 
௣݂ሺݐሻ for 
ݐ ൐ 10 

Optimized schedule Total 
cost 

Expected 
amount of 
freight on 
ሾ0,  ଵଵሿݐ

Expected 
amount of 
freight on 
ሾݐଵଵ,  ଶଵሿݐ

Expected 
amount of 
freight on 
ሾݐଶଵ, ݁ଵሿ 

200 2.84 4.24 4.25 4.58 38748 40.01 38.27 6.72 
300 1.93 4.40 3.94 4.84 39360 44.08 35.58 5.34 
400 1.07 4.00 3.61 4.68 39816 51.99 29.04 3.97 
500 1.07 4.00 3.61 4.68 40213 51.99 29.04 3.97 
800 0.01 4.98 3.43 4.42 41347 52.00 29.48 3.52 
1100 0.01 4.98 3.43 4.42 42404 52.00 29.48 3.52 
1400 0.01 4.98 3.43 4.42 43460 52.00 29.48 3.52 
1700 0.01 4.98 3.43 4.42 44516 52.00 29.48 3.52 
2000 0.01 4.98 3.43 4.42 45572 52.00 29.48 3.52 
10000 0.01 4.98 3.43 4.42 73738 52.00 29.48 3.52 
100000 0.01 4.98 3.43 4.42 390604 52.00 29.48 3.52 

 

 From Table 4.4 we can conclude that the expected amount of freight arriving on 

ሾ0, 11ሿݐ  approaches the multiple of terminal storage capacity of 0.8ൈ65=52 tons for 

penalties higher than 300 mu/ton. Thus, we can assume that the storage capacity 

constraint is binding for penalties higher than 300 mu/ton and insures that at least 3.52  

tons are delayed to the following day. In other words, there exists no feasible schedule 

that would enable more freight to be delivered during the current day. To examine this 

assumption we run additional optimizations, but this time we relax the problem by 

disregarding the storage capacity constraint. We wish to see whether the amount of 

freight that overflows to the next day could be further reduced if the storage capacity 
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was unlimited. The optimization summaries for different penalties and relaxed storage 

capacity constraints are presented in Table 4.5. 

Table 4.5 Optimization Summaries for Different Penalties and Relaxed Storage 

Capacity Constraints 

Penalty 
௣݂ሺݐሻ 
for 

ݐ ൐ 10 

Optimized schedule Total 
cost 

Expected 
amount of 
freight on 
ሾ0,  ଵଵሿݐ

Expected 
amount of 
freight on 
ሾݐଵଵ,  ଶଵሿݐ

Expected 
amount of 
freight on 
ሾݐଶଵ, ݁ଵሿ 

200 2.84 4.24 4.25 4.58 38748 40.01 38.27 6.72 
300 1.93 4.40 3.94 4.84 39360 44.08 35.58 5.34 
400 1.12 3.95 3.50 4.28 39807 54.52 26.70 3.78 
500 0.53 4.02 3.02 3.66 40146 60.21 21.83 2.96 
800 0.00 2.95 1.95 3.19 40840 69.03 13.95 2.02 
1100 0.00 2.45 1.76 3.00 41432 70.83 12.27 1.90 
1400 0.00 2.40 1.30 2.90 41991 71.67 11.49 1.84 
1700 0.00 1.50 0.50 2.50 42533 74.23 9.10 1.67 
2000 0.00 2.00 0.65 1.50 43048 74.77 8.58 1.65 
10000 0.00 0.00 0.00 0.13 55433 77.16 6.32 1.52 
100000 0.00 0.00 0.00 0.00 192101 77.19 6.29 1.52 
 

 Optimization results from Table 4.5 support our hypothesis that the storage 

capacity constraint was delaying about 3.5 tons to the next day. Comparing Table 4.4 

and 4.5, we can conclude that optimized schedule and the cost is the same for both 

original and relaxed problem when the penalty is up to 300 mu/ton. This outcome was 

expected since the storage capacity constraint was not used up in these cases (the 

expected amount of freight arriving between consecutive flights was always less than 
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the maximum allowed 52 tons). Furthermore, we can conclude from Table 4.5 that the 

expected amount of freight on ሾ0,  ,11ሿ exceeds 52 tons for a penalty above 300 mu/tonݐ

implying that the storage capacity constraint was binding in these cases. The optimized 

cost is also lower for the relaxed version of the problem when the penalty exceeds 300 

mu/ton. This outcome was expected since relaxation should yield a solution that is at 

least as good as the solution to the original problem. This claim comes from the 

definition of the relaxation (Wolsey 1998). Moreover, from the last column in Table 4.5 

we can conclude that the expected amount of freight does not drop to 0, even when all 

the trucks are scheduled at the beginning of the observed period of time. The 

explanation for this lies in the infinite tails of the exponentially distributed durations of 

vehicle roundtrips.  

 Finally, the sensitivity analysis was intended to examine the behavior of the 

model and verify the anticipated tradeoff in types of cost, as well as the mathematical 

formulation of the model. The sensitivity analysis showed that leaving more freight to 

be delivered on the subsequent day yields better solution for relatively low penalty. As 

the penalty increases while the storage cost remains the same, the amount of freight left 

undelivered decreases. The undelivered amount of freight drops as much as the storage 

capacity constraint allows it, or as much as possible considering the infinite tails of 

exponential distributions. The sensitivity analysis also showed effects of the storage 
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capacity constraint on the optimized schedule and total cost. By comparing the 

optimization summary for the original and relaxed version of the problem, we showed 

that the storage capacity constraint was binding for higher penalty cost. Thus we can 

conclude that similar sensitivity analysis can be used to optimize the storage capacity.  

 

4.2 Case with Multiple Main Routes  

 Here we design a numerical example including two aircraft routes and the input 

data from Table 4.6. Table 4.7 provides means for truck roundtrip durations, as well the 

connecting airplane routes for the freight carried. Again, all the roundtrip times are 

exponentially distributed. This time, we consider a case with eight trucks making 

twenty-two roundtrips and freight connecting to two airplane routes. The amount of 

freight connecting to airplane routes is given in Table 4.8.  
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Table 4.6 Input Data 

airplane capacity, route 1 ܣଵଵ 40 tons 
airplane capacity, route 1 ܣଶଵ 45 tons 
airplane capacity, route 2 ܣଵଶ 45 tons 
airplane capacity, route 2 ܣଶଶ 50 tons 

aircraft cost, route 1 ܥଵଵ 11000 mu/flight 
aircraft cost, route 1 ܥଶଵ 12000 mu/flight 
aircraft cost, route 2 ܥଵଶ 14000 mu/flight 
aircraft cost, route 2 ܥଶଶ 15000 mu/flight 

terminal storage capacity Sc 85 tons 
storage capacity multiplier ݏ௠ 0.80 

storage cost SC 8 mu/ton hr 
amount of time ∆t 15 min 

in-terminal operation cost ܥ௧௥ 30 mu/ton 
in-terminal operation cost ܥ௧ௗ 10 mu/ton 

penalty function ௣݂ሺݐሻ 0 if t≤2 mu/ton 
25t-50 if 2<t≤10 mu/ton

200 if t>10 mu/ton 
takeoff time on route 1 ݐଵଵ 5.7 hrs 
takeoff time on route 1 ݐଶଵ 9.4 hrs 

time of the last takeoff on route 1 ݁ଵ 26 hrs 
takeoff time on route 2 ݐଵଶ 4.9 hrs 
takeoff time on route 2 ݐଶଶ 8.8 hrs 

time of the last takeoff on route 2 ݁ଶ 27 hrs 
time window for truck 1 ሾܽଵ, ܾଵሿ [2,3] hrs 
time window for truck 2 ሾܽଶ, ܾଶሿ [0,4.5] hrs 
time window for truck 3 ሾܽଷ, ܾଷሿ [2,3] hrs 
time window for truck 4 ሾܽସ, ܾସሿ [0,4.5] hrs 
time window for truck 5 ሾܽହ, ܾହሿ [4,4.5] hrs 
time window for truck 6 ሾܽ଺, ܾ଺ሿ [0,4.5] hrs 
time window for truck 7 ሾܽ଻, ܾ଻ሿ [0,4.5] hrs 
time window for truck 8 ሾ଼ܽ, ଼ܾሿ [0,4.5] hrs 
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Table 4.7 Exponentially Distributed Truck Roundtrip Duration 

truck 
 

truckload capacity
[ton] 

roundtrip #1
in hours 

roundtrip #2
in hours 

roundtrip #3
in hours 

1 20 1/λ = 2.13 1/λ = 1.95 NA 
2 5 1/λ = 0.76 1/λ = 1.27 1/λ = 1.59 
3 5 1/λ = 0.58 1/λ = 0.96 1/λ = 0.62 
4 5 1/λ = 1.39 1/λ = 1.83 1/λ = 0.76 
5 20 1/λ = 2.09 1/λ = 2.47 NA 
6 5 1/λ = 0.51 1/λ = 1.52 1/λ = 1.09 
7 5 1/λ = 1.19 1/λ = 1.11 1/λ = 1.10 
8 5 1/λ = 0.94 1/λ = 1.64 1/λ = 1.76 

 

Table 4.8 Amount of Freight Carried in Each Roundtrip and its Destination 

truck roundtrip #1 roundtrip #2 roundtrip #3 
l=1 l=2 l=1 l=2 l=1 l=2 

ଵ,ଵଵܨ 1 ൌ5.6 ܨଵ,ଵଶ ൌ14.4 ܨଵ,ଶଵ ൌ15.1 ଵ,ଶଶܨ ൌ4.9 NA NA 
ଶ,ଵଵܨ 2 ൌ1.4 ܨଶ,ଵଶ ൌ3.6 ܨଶ,ଶଵ ൌ5.0 ܨଶ,ଶଶ ൌ0.0 ܨଶ,ଷଵ ൌ1.6 ܨଶ,ଷଶ ൌ3.4
ଷ,ଵଵܨ 3 ൌ ଷ,ଵଶܨ 5.0 ൌ ଷ,ଶଵܨ 0.0 ൌ1.9 ܨଷ,ଶଶ ൌ3.1 ܨଷ,ଷଵ ൌ2.2 ܨଷ,ଷଶ ൌ2.8
ସ,ଵଵܨ 4 ൌ3.0 ܨସ,ଵଶ ൌ2.0 ܨସ,ଶଵ ൌ ସ,ଶଶܨ 0.0 ൌ5.0 ܨସ,ଷଵ ൌ2.3 ܨସ,ଷଶ ൌ2.7
ହ,ଵଵܨ 5 ൌ8.7 ܨହ,ଵଶ ൌ 11.3 ହ,ଶଵܨ ൌ9.8 ܨହ,ଶଶ ൌ10.2 NA NA 
଺,ଵଵܨ 6 ൌ0.0 ܨ଺,ଵଶ ൌ ଺,ଶଵܨ 5.0 ൌ1.1 ܨ଺,ଶଶ ൌ3.9 ܨ଺,ଷଵ ൌ5.0 ܨ଺,ଷଶ ൌ0.0
଻,ଵଵܨ 7 ൌ3.9 ܨ଻,ଵଶ ൌ1.1 ܨ଻,ଶଵ ൌ0.0 ܨ଻,ଶଶ ൌ ଻,ଷଵܨ 5.0 ൌ2.5 ܨ଻,ଷଶ ൌ2.5
ܨ଼ 8 ,ଵ

ଵ ൌ0.0 ଼ܨ ,ଵ
ଶ ൌ ܨ଼ 5.0 ,ଶ

ଵ ൌ2.4 ଼ܨ ,ଶ
ଶ ൌ2.6 ଼ܨ ,ଷ

ଵ ൌ4.5 ଼ܨ ,ଷ
ଶ ൌ0.5

 

Table 4.9. provides optimization summary for the case including two airplane routes. It 
presents optimized departure times and total system cost. 
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Table 4.9 Optimization Summary 

truck truck departure time truck truck departure time optimized total cost
1 ݀ଵ ൌ2.11  5 ݀ହ ൌ4.00 

ܥܶ ൌ83709 mu 2 ݀ଶ ൌ3.43 6 ݀଺ ൌ4.14 
3 ݀ଷ ൌ3.00 7 ݀଻ ൌ3.09 
4 ݀ସ ൌ2.47 8 ଼݀ ൌ4.21 
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Chapter 5  

Model Formulation Assuming Flexible Takeoff Times 

In this chapter a model is developed that optimizes the number and schedule of 

takeoffs assuming fixed truck departure times. Here it is assumed that trucks begin with 

their roundtrips as soon as the system becomes operational (e.g. at time 0) and the 

operator’s objective is to determine (1) number of takeoffs on each airplane route and 

(2) corresponding schedule. In this chapter it is assumed that the truck fleet is 

homogenous and we work with truckloads rather than tons. Section 5.1 provides the 

formulation of the expected primary dwell time ܧሾܲܶܦሿ, which is derived somewhat 

differently than in Chapter 3. The section 5.2 contains the formulation of the additional 

dwell time ܦܣ஽் arising from limited airplane capacity. As in the model in Chapter 3, 

both ܧሾܲܶܦሿ and ܦܣ஽் are needed for computing storage cost and are included in the 

formulation of the model provided in section 5.3.  

 

5.1 Expected Primary Dwell Time ࡱሾࢀࡰࡼሿ 

We formulate ܧሾܲܶܦሿ using the same notation introduced in Chapter 3. Clearly, this 

time we do not go through all the details but point out the main differences in 



 

 

computation

distribution 

F

So th

roundtrip:  

ܦܲൣܧ ௞ܶ,௝
௟ ൧ ൌ

If a 

expected pr

(36) for all 

some round

parameter ݌

n. Since the 

for the first 

Figure A1 PD

he expected 

ൌ ∑ ׬
௧೔
೗

௧೔షభ
೗

௡೗ାଵ
௜ୀଵ

truck was 

rimary dwel

the truckloa

dtrips might

௞,௝௟݌ which is 

ଵ௟ݐ                  

trucks begin

roundtrip. M

DF’s of the F

primary dw

൫ݐ௜௟ െ ௞,௝൯ݕ
భ

carrying tru

l time of ca

ads carried in

t not be con

1 if truckloa

݂ሺݕ௞,ଵሻ

ݐ      …            

݂ሺݕ௞,ଶ

44 

n their roun

Moreover, w

First, Second

well time of t

݂൫ݕ௞,௝൯݀ሺݕ௞

uckloads con

argo from tr

n ݎ௞ roundtri

nnecting to 

ad carried by

             …      ௜௟ݐ

ଶሻ

ndtrips and ti

we integrate s

d and ݎ௞-th A

he truckload

௞,௝ሻ    

nnecting to 

ruck ݇ would

ips. Howeve

airline rou

y truck ݇ in 

݂ሺݕ௞

௡೗ݐ      
௟            

ime 0, we d

starting from

Arrival of Tr

d carried by 

  

route ݈ in al

d be calcula

er, since truc

te ݈ , we int

the ݆௧௛ roun

௞,௥ೖሻ

                     ݁

do not use sh

m 0 instead o

 

ruck ݇ 

truck ݇ in th

  

ll roundtrips

ated by sum

ckloads carri

troduce a b

ndtrip connec

௟     

hifted 

f ݀௞. 

he ݆௧௛ 

(36) 

s, the 

mming 

ied in 

binary 

cts to 



 

45 
 

route ݈, and 0 otherwise. The dwell time of cargo from truck k connecting to route ݈ is 

given in (37).  The probability of the last roundtrip ending after the takeoff scheduled on 

the following day is assumed to be negligible, ܲሺ ௞ܻ,௥ೖ ൐ ݁௟ሻ ൎ 0. 

ܦܲൣܧ ௞ܶ
௟൧ ൌ ∑ ௞,௝௟݌ ܦܲൣܧ ௞ܶ,௝

௟ ൧௥ೖ
௝ୀଵ                                                   (37)  

Finally, we can compute expected primary dwell time for cargo carried by all ݒ 

trucks and connecting to all ݉ outbound aircraft routes. 

ሿܶܦሾܲܧ ൌ ∑ ∑ ܦܲൣܧ ௞ܶ
௟൧௩

௞ୀଵ
௠
௟ୀଵ                                                                          (38) 

 

5.2 Additional Dwell Time ࢀࡰࡰ࡭ 

Again, to compute ܦܣ஽்  we need to find the expected number of truckloads 

arriving in interval ሺݐ௜ିଵ௟ , ݈ ௜௟ሻ and connecting to routeݐ . We begin by finding the 

aforementioned expectation on ሺ0, ௜௟ሻݐ . Then we extended to interval ሺݐ௜ିଵ௟ , ௜௟ሻݐ  and 

finally provide the algorithm for computing ܦܣ஽். 
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5.2.1 Expected Number of Connecting Truckloads Arriving in Interval 

ሺ૙,  ሻ࢒࢏࢚

The probability that first ܽ  roundtrips end prior to ݐ௜௟  is computed similarly like in 

Chapter 3, but with different boundaries for the multidimensional integral. This time the 

first roundtrip is integrated starting at time 0 instead of ݀௞.   

ܲሺܽሻ ൌ ׬ ௞,ଵݔ݀ ׬… ௞,௔ݔ݀
௧೔
೗ି௫ೖ,భି … ି௫ೖ,ೌషభ

଴
௧೔
೗

଴ ׬ ݂ሺݔ௞,ଵ, … , ௞,௔ାଵሻݔ
ାஶ
௧೔
೗ି௫ೖ,భି … ି௫ೖ,ೌ

         ௞,௔ାଵݔ݀

             (39) 

The joint PDF in (39) is defined as follows: 

݂ሺݔ௞,ଵ, … , ௞,௔ାଵሻݔ  ൌ ∏ ݂ሺݔ௞,௝ሻ௔ାଵ
௝ୀଵ                                         (40) 

After having computed the probability of ܽ arrivals in interval ሺ0,  ௜௟ሻ, we canݐ

calculate the expected number of arrivals of truck ݇ in the aforementioned interval as: 

∑ ܲሺܽሻܽ௥ೖ
௔ୀଵ                                                                         (41) 

However, truck ݇  may not be carrying freight connecting to route ݈  in all ݎ௞ 

roundtrips. Thus, we should not multiply ܲሺܽሻ with the number of arrivals in order to 

calculate the expected number of arriving truckloads connecting to route ݈. Instead, we 

use again binary parameter  ݌௞,௝௟  and express the expected number of truckloads 

delivered by truck ݇ in interval ሺ0,  :௜௟ሻ and connecting to route ݈ as followsݐ
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ሾܴܶ௞௟ܧ  ሺ0, ௜௟ሻሿݐ ൌ ∑ ܲሺܽሻ∑ ௞,௝௟௔݌
௝ୀଵ

௥ೖ
௔ୀଵ                                        (42) 

Now, we can consider the general case including multiple trucks making 

multiple roundtrips. For this case, the expected number of truckloads connecting to 

route ݈  and arriving at the terminal in interval ሺ0, ௜௟ሻݐ  can be obtained by simply 

summing (42) for all v trucks. 

,ሾܴܶ௟൫0ܧ ௜௟൯ሿݐ ൌ ∑ ሾܴܶ௞௟ܧ ሺ0, ௜௟ሻሿ௩ݐ
௞ୀଵ                                        (43)                        

 

5.2.2 Expected Number of Connecting Truckloads Arriving in Interval ሺି࢏࢚૚࢒ ,  ሻ࢒࢏࢚

The expected number of truckloads connecting to route ݈ and arriving at the terminal in 

interval ሺݐ௜ିଵ௟ ,  ௜௟ሻ equals the expected number of truckloads arriving at the terminal inݐ

ሺ0, ,௜௟ሻ minus the expected number of truckloads arriving in ሺ0ݐ ௜ିଵ௟ݐ ሻ.  

௜ିଵ௟ݐሾܴܶ௟൫ܧ , ௜௟൯ሿݐ ൌ ,ሾܴܶ௟൫0ܧ ௜௟൯ሿݐ െ ,ሾܴܶ௟൫0ܧ ௜ିଵ௟ݐ ൯ሿ                                                  (44) 

 

5.2.3 Algorithm for Computing Additional Dwell Time ࢀࡰࡰ࡭ 

The algorithm for computing the additional dwell time is exactly the same as for the 

model assuming the flexible truck departures and thus we do not repeat it here. 
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5.3 Model Formulation 

As previously stated, our objective is to minimize total system cost while satisfying 

certain constraints. Since the constraints are slightly different than the ones considered 

in the model assuming flexible truck departures, we focus more on them.  

 

5.3.1 Total Cost 

The total cost function can be computed according to the procedure described in 

Chapter 3 and using the two modified expectations provided in 5.1 and 5.2. Thus we 

avoid repeating the equations and simply provide the objective function in its compact 

form. 

ܥܶ ൌ ܥܵ  ൅ ܥܫ ൅ ܥܲ ൅  (45)                                                                     ܥܣ

 

5.3.2 Constraints 

The storage capacity constraint is the same as in the model in Chapter 3: 

௜ିଵݏ ൅ ,௜ିଵݐሾܴܶሺܧ ௜ሻሿݐ ൑ ݉௖ܵ௖      ݅ ൌ 1,… , ݊                                        (46) 
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We consider the time window constraint for takeoffs. Utilization of airport 

facilities is often restricted to certain time slots. Therefore each one of ݊ takeoff times 

must occur within corresponding time window. Moreover, time windows might be 

restricted by the preferred delivery times.  

ܽ௜ ൏ ௜ݐ ൏ ܾ௜       ݅ ൌ 1,… , ݊                                                                     (47) 

Finally, we assume that limited airport capacity might require a minimum time 

interval between any two takeoffs.  

௜ݐ െ ௜ିଵݐ ൒ ݅       ௠௜௡ݐ ൌ 2,… , ݊                                                                                    (48) 

 

5.3.3 Mathematical Formulation of the Model 

The formulation of the problem is given in (49)-(52). 

ܥܶ ݊݅ܯ ൌ ܥܵ  ൅ ܥܫ ൅ ܥܲ ൅  (49)                                                                    ܥܣ

Subject to: 

௜ିଵݏ ൅ ,௜ିଵݐሾܴܶሺܧ ௜ሻሿݐ ൑ ݉௖ܵ௖      ݅ ൌ 1,… , ݊                              (50) 

ܽ௜ ൏ ௜ݐ ൏ ܾ௜       ݅ ൌ 1,… , ݊                                                                              (51) 

௜ݐ െ ௜ିଵݐ ൒ ݅       ௠௜௡ݐ ൌ 2,… , ݊                                                                      (52) 
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Chapter 6 

Model Performance Assuming Flexible Takeoff Times 

A genetic algorithm (GA) is used to optimize (49)-(52). Similarly to the previous 

analysis, we repeat each optimization several times in order to decrease the chances of 

the GA getting stuck in the local optimum. Again, we analyze the case with a single and 

multiple aircraft routes. 

 

6.1 Case with a Single Aircraft Route 

We develop a numerical example that includes twelve truck assignments conducted by 

four trucks. Each truck is assigned three consecutive roundtrips, all exponentially 

distributed with average durations given in Table 6.1. Assuming the remaining inputs 

from Table 6.1, we seek to optimize the number of takeoffs and corresponding 

schedule.  
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Table 6.1 Input Data 

airplane capacity Ac 5 truckloads 
aircraft cost CA

1 2000 mu/flight 
multiple of storage 

capacity 
mcSc 8 truckloads 

storage cost SC 40 mu/truckloadൈhr 
amount of time ∆t 15 min 

in-terminal cost Ctr 150 mu/truckload 
Ctd 50 mu/truckload 

time of the last takeoff e1 30 hrs 

penalty function ௣݂ሺݐሻ 
0 if t≤2 mu/truckload 

125t-250 if 2<t≤10 mu/truckload
1000 if t>10 mu/truckload 

Exponentially Distributed Truck Roundtrip Durations: 
truck 1st roundtrip 

[hr] 
2nd roundtrip 

[hr] 
3rd roundtrip 

[hr] 
1 1/λ = 1.5 1/λ = 1.3 1/λ = 0.8 
2 1/λ = 0.9 1/λ = 0.6 1/λ = 1.2 
3 1/λ = 1.0 1/λ = 0.7 1/λ = 1.4 
4 1/λ = 0.5 1/λ = 1.1 1/λ = 1.3 

 

The optimization results for 3, 4, 5, 6 and 7 takeoffs are presented in Table 6.2. 

We present optimized schedule for five different numbers of takeoffs and corresponding 

costs. Please note that in “other costs” we consider storage, penalty, loading & 

unloading cost. Moreover, by marginal savings in other costs we consider savings in 

storage, penalty, loading & unloading cost due to introducing an additional flight. 
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Table 6.2 Optimized Schedule and Costs 

Number 
of 

Flights 

Total 
Aircraft 

Cost 

Other 
Cost 

Marginal 
Savings in 
Other Cost 

Total 
Cost 

Takeoff Times 
 

3 6000 7042 NA 13042 1.21 3.45 30 
4 8000 4598 2444 12598 1.21 3.13 6.14 30 
5 10000 3938 660 13938 1.21 2.47 4.19 7.10 30 
6 12000 3561 377 15561 0.84 2.00 3.22 4.98 7.61 30 
7 14000 3327 234 17327 0.80 2.00 2.80 3.98 5.56 8.10 30

 

The results presented in Table 6.2 show that the total cost was minimized in the 

case with four takeoffs. Therefore we conclude that at the cost of 2000 mu/roundtrip, 

one more flight than necessary to satisfy the demand should be introduced. Moreover, 

we can observe that storage, penalty and loading/unloading cost decrease with the 

increase in the number of takeoffs. This outcome was expected and it confirmed the 

tradeoff between types of cost that we explained in the problem statement. We can also 

note that the marginal savings in storage, penalty and loading/unloading cost decrease 

with the number of aircraft roundtrips, which is another outcome we anticipated.  

Based on the values for storage, penalty and loading/unloading cost we can 

explore how different flight costs affect the optimized number of takeoffs and hence the 

schedule. In Figure 6.1 we plot total cost for 3, 4, 5, 6 and 7 flights vs. flight cost. In 

Figure 4 can be seen four threshold values for airplane roundtrip cost which determine 

the optimized number of takeoffs. Those values are 234, 377, 660 and 2444 monetary 
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units respectively. Clearly, for a relatively low aircraft roundtrip cost, the total system 

cost is optimized by scheduling more takeoffs than necessary to satisfy the demand. As 

the airline cost increases, the optimized number of takeoffs decreases until it eventually 

drops to the minimum number needed to satisfy the demand. 

 

Figure 6.1 Sensitivity Analysis 
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6.2 Case with Multiple Aircraft Routes 

Here we design a numerical example including multiple aircraft routes. In Table 6.3 we 

provide the mean for truck roundtrip duration, as well the connecting airplane route for 

the carried truckload. Again, all the roundtrips are exponentially distributed. This time, 

we consider the case with twelve trucks making three roundtrips and freight connecting 

to three air routes. Adopting the inputs from Table 6.3 and 6.4 we optimize six takeoff 

times on three outbound airplane routes, while considering the maximum terminal 

storage capacity, minimum time between takeoffs and time windows for two takeoffs. 

Table 6.4 provides optimization results. It should be noted that by “other cost” in Table 

6.4, we consider storage, penalty, loading and unloading cost. 
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Table 6.3 Input Data 

flight cost on route ݈ 
CA

1 4000 mu/flight 
CA

2 4800 mu/flight 
CA

3 4500 mu/flight 
multiple of storage capacity mୡSୡ 15 truckloads 

storage cost SC 40 mu/truckloadൈhr

in-terminal cost Ctr 150 mu/truckload 
Ctd 50 mu/truckload 

penalty function ௣݂ሺݐሻ
0 if t≤2 

125t-250 if 2<t≤10 
1000 if t>10 

last takeoff on route ݈ 
݁ଵ 30 hrs 
݁ଶ 31 hrs 
݁ଷ 32 hrs 

minimum time between two takeoffs ݐ௠௜௡ 0.5 hrs 
amount of time ∆t 15 min 

time window for the first takeoff on route 1 (a, b) (2, 3) hrs 
time window for the first takeoff on route 2 (a, b) (1.5, 2.1) hrs 
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Table 6.4 Exponentially Distributed Truck Roundtrip Duration and Connecting 

Airplane Route 

 1st 
roundtrip 

[hr] 

connecting
route ݈ 

2nd 
roundtrip 

[hr] 

connecting
route ݈ 

3rd 
roundtrip 

[hr] 

connecting
route ݈ 

truck 1 1/λ = 1.13 2 1/λ = 1.65 3 1/λ = 1.47 2 
truck 2 1/λ = 0.76 3 1/λ = 1.27 2 1/λ = 1.59 1 
truck 3 1/λ = 0.58 2 1/λ = 0.96 1 1/λ = 0.62 2 
truck 4 1/λ = 1.39 1 1/λ = 1.83 3 1/λ = 0.76 1 
truck 5 1/λ = 1.53 2 1/λ = 0.99 3 1/λ = 1.33 1 
truck 6 1/λ = 0.51 3 1/λ = 1.52 1 1/λ = 1.09 3 
truck 7 1/λ = 1.19 1 1/λ = 1.11 3 1/λ = 1.10 1 
truck 8 1/λ = 0.94 1 1/λ = 1.64 3 1/λ = 1.76 3 
truck 9 1/λ = 1.56 2 1/λ = 1.96 2 1/λ = 1.70 1 
truck 10 1/λ = 1.42 2 1/λ = 1.95 1 1/λ = 1.07 3 
truck 11 1/λ = 0.94 3 1/λ = 1.63 2 1/λ = 1.99 1 
truck 12 1/λ = 1.68 3 1/λ = 1.77 3 1/λ = 1.14 2 

 

Finally, the optimized takeoff times and corresponding costs on three airline routes are 

given in Table 6.5. 

Table 6.5 Optimization Summary 

Aircraft 
Route ݈ 

Number of 
Flights on  ݈ 

Aircraft 
Cost on ݈ 

Other 
Cost on ݈

Takeoff times on 
route  ݈ 

Total 
Cost 

 
1 3 12000 8180 2.37 5.10 30 

63770 2 3 14400 6447 1.87 4.60 31 
3 3 13500 9243 1.37 3.74 32 
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Chapter 7 

Conclusions  

 Models are developed to optimize the departure times on routes with flexible 

schedule in a single-terminal intermodal freight system. The models are designed to 

minimize the total cost of a system that has suffered a major disruption during which 

backlogs have accumulated. They can be applied to very general cases but seem 

especially suitable for applications with relatively few vehicle arrivals on truck routes. 

The models’ complex and exact mathematical formulation improve their precision but 

decrease the solvable problem size. Therefore these proposed models are most suitable 

for optimizing intermodal systems in situations when statistical or queuing analyses are 

less preferable due to the small number of events (vehicle arrivals), or when high 

variance appears in simulation analysis (Law 2007).   

 An off-the-shelf genetic algorithm was used to solve the stochastic programs 

and optimize the schedules in case studies. The canned genetic algorithm performed 

well for the analysis of the observed intermodal systems with relatively few arrivals on 

truck routes. However, the development of a customized GA would be preferable for 

the analysis of larger intermodal systems.  
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 Sensitivity analyses were performed to examine the behavior of two suggested 

models. In Chapter 4, multiple optimizations were conducted for different penalty cost 

and both the original and relaxed versions of the problem were studied. The sensitivity 

analysis showed that storage capacity constraint affected the optimized schedule and 

that suggested model could be used to optimize the terminal storage capacity in addition 

to truck departures. The sensitivity analysis in Chapter 6 examined the influence of 

flight cost on the optimized number of takeoffs and the corresponding schedule. It also 

determined the thresholds for introducing additional flights. 

 Finally, this thesis focused on the integration of truck and air operations. 

However, the mathematical models developed in this thesis are general and can be 

applied to other combinations of transportation modes with discrete vehicles. 
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