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Nonnegative matrix factorization- (NMF-) based noise reduction methods can effectively improve the performance of
environmental sound recognition. However, when the environmental sound overlaps highly with the noise, the spectral line
loss and noise residue will occur in the low signal-to-noise ratio (SNR) condition. An adaptive noise reduction algorithm was
proposed in this paper. First, noisy environmental sound is separated into estimated noise and environmental sound using
NMF. Then, the estimated noise is used to calculate sound presence probability (SPP), which is adapted to decrease spectral
line loss and achieve accurately estimated noise. Subsequently, the estimated noise combines with noisy environmental sound
to obtain the estimated environmental sound. Finally, SPP is applied to reduce residual noise in the estimated environmental
sound and reconstruct the environmental sound. The simulation results demonstrate that the proposed algorithm outperforms
the traditional algorithms and NMF-based methods in terms of perceptual evaluation of speech quality (PESQ) and global
SNR with increase of X% and X%, respectively. Moreover, the proposed method can effectively improve the environmental
sound recognition rate. Particularly, the proposed method makes a 16.2% increase of F1-score in car horn recognition under
the realistic acoustic condition.

1. Introduction

The recognition of environmental sound (ES) enables the
monitoring of certain specific event, since ES have the
potential of characterizing the surrounding environment.
However, one key factor that affects detection and classifica-
tion performance is the diverse and unpredictable interfer-
ence noise in the real-life scenarios [1]. Therefore, noise
reduction (NR), as a part of the preprocessing of ES, has
important application prospects in human-computer inter-
action [2], animal behavior monitoring [3], anomalous
sounds for machine condition monitoring [4], and domestic
risk scenarios [5]. Speech as the first studied ES, some repre-
sentative NR methods such as spectral subtraction (SS) [6],

Wiener filtering (WF) [7], minimum mean square error
(MMSE) [8, 9], and short-time spectral amplitude (STSA)
[10] have been proposed. By the virtue of highly flexible
and ease of implementation, these methods are applied for
nonspeech NR in WASNs [11, 12]. It is important to notice
that these works have limited performance to suppress non-
stationary noise despite the various contributions, since their
strong assumption is based on stationary noise, especially
under low-SNR conditions [13].

To cope with the nonstationary noise, noise estimation
is performed before the NR gain function, which provides
accurate noise spectrum to evaluate the WF [14] or to
estimate the a priori SNR in the MMSE [15]. In [16],
the author used improved minimal controlled recursive
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averaging to estimate noise and combined with used opti-
mally modified log-spectral amplitude (OMLSA) to obtain
promising denoised performance. Although such approaches
can estimate noise spectrum continuously during ES activity,
it does not respond well to the increasing noise levels at low-
SNR conditions, which leads to the underestimation of the
noise spectrum and annoying residual noise.

In order to provide consistent performance in highly
nonstationary noisy environments under low-SNR condi-
tions, NMF models the input noisy as a weighted sum of
the nonnegative basis from clean ES and noise [17]. Since
the same acoustic elements exit for ES and noise, NMF is
not effective in separating regions where the ES and noise
spectral bands are heavily mixed [17]. Subsequent works
attempt to optimize separation rules [18, 19] and postpro-
cessing [20, 21] to improve the quality of separated ES. For
instance, a weighted NMF for interpolating missing data is
presented [18], which can address the overestimate of the
values in the masked regions and the computational cost
equivalent to standard NMF. In [20], Lee et al. introduced
spectral-temporal speech presence probabilities (SPP) to
reconstruct the regions of the separated speech with severe
spectral leakage to suppress the residual noise components.
As these methods are tempted to process the separated ES
as denoised result, they ignore the key issue that the spectral
line loss of separated ES is beyond repair, which affects the
clarity of denoised ES.

Benefiting from the high learning capacity of deep neural
network (DNN), a hybrid model which combined DNN and
NMF is proposed. In [22], DNN is applied to initialize the
activation matrix of NMF, with which the performance is
slightly better than the traditional NMF. Another approach
estimates the activation matrix through a DNN and then
reconstructs ES through multiplying it with the basis matrix
[23]. However, DNN-based methods require enormous
number of clean ESs which is difficult to obtain in advance,
such as gunshots and explosions. Without a sufficient train-
ing dataset, these methods might be overfitted.

Furthermore, NMF is considered to be sensitive to non-
stationary noise and low-SNR conditions when using the
separated noise as the noise estimation result [22]. Based
on this, sparse and low-rank NMF with Kullback-Leibler
divergence is presented to noise estimation [24]. Lai et al.
[25] applied NMF for noise estimation in combination with
the Wiener filter gain function to obtain enhanced speech
with high quality and intelligibility under challenging condi-
tions. However, the above methods rely on a supervised
learning approach and still fail to improve the robustness
of the algorithm in an unseen noise environment.

Moreover, current NR algorithms for monitoring system
draw on speech enhancement schemes directly. In automatic
recognition system of porcine abnormalities [26], SS is
employed to suppress the pigpen background noise to
improve the detection performance. In [4], researchers use
the noisereduce libraries of Python 3.7 for removing back-
ground noise in the cattle farm and the analog white noise
of the microphone. After removing the noise, the perfor-
mance of cattle vocal classification improves from 91.38%
to 94.18%. Such methods lack consideration of monitoring

sound characteristics; for instance, Xu et al. [27] employed
the improved control recursive averaging algorithm to
estimate noise which would be disabled when the ES of
nonspeech changes more slowly than noise.

The contributions of this paper are summarized as
follows: (1) an adaptive NR algorithm using the semisuper-
vised learning mode, which reduces the interference from
segments of non-ES and further improves the performance
of recognition. (2) SPP-based threshold determination is
presented for locating the frame where ES is vocalized in
the sound clip. (3) To verify the validity of the proposed
algorithm in the monitoring system, experiments of simula-
tions and realistic acoustic conditions were conducted on the
nonspeech datasets. The experimental results showed that
the proposed algorithm achieves good NR performance.

The paper is organized as follows. Section 2 introduces
the NMF-based NR technique. Section 3 presents the frame-
work of the proposed algorithm and details the algorithm.
Section 4 analyzes the experimental results and evaluates
the performance of the proposed algorithm. Finally, we draw
the conclusions in Section 4.

2. The NMF-Based NR Technique

NMF is a technique of source separation to additive mix-
tures by using the basis matrix. Since NMF is capable of
interpreting the local properties of the image, NMF is pro-
posed as face recognition technology initially [28]. Recently,
NMF has been studied for blind source separation [29, 30]
and NR, on account of sound that can be converted to the
spectrogram form.

Consider the representation of a noisy ES yðnÞ in the
time-frequency (T-F) domain as the sum of environmental
Xð f , tÞ sound and noise Nð f , tÞ,

Y f , tð Þ = X f , tð Þ +N f , tð Þ, ð1Þ

where f is the frequency bins and t is the time index.
To satisfy the nonnegativity constraint of NMF in the

input matrix, the nonnegative real-valued matrix of f × t
dimensions, namely, the T-F amplitude spectrum matrix
jYð f , tÞj of noisy ES, is taken as the decomposition matrix.
In the decomposition of the matrix, the nonnegative basis
matrix W ∈ R f×t and the activation matrix W ∈ R f×t are
such that jYð f , tÞj ≈WH. NMF allows the original high-
dimensional matrix to be approximately decomposed into
the multiplication form of a low-rank matrix. The poten-
tial structure of the original structure is captured by W,
and H is its corresponding T-F gain. Therefore, the rank
k is required to be much smaller than f or t and satisfies
k < ft/ð f + tÞ.

To find optimize W and H, the Euclidean distance is
used to quantify the approximate mass of the decomposition
to minimize the reconstruction error,

D W,Hð Þ = Y −WHk k2F: ð2Þ
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Then, the W and H iterative multiplication update rules
are as follows [31]:

Wi =Wi−1 ⊗
Y ⋅ Hi−1À Á′

Wi−1 ⋅Hi−1 ⋅ Hi−1À Á′ , ð3Þ

Hi =Hi−1 ⊗
Y ⋅ Wi−1À Á′

Wi−1À Á′ ⋅Wi−1 ⋅Hi−1 , ð4Þ

where i is the number of iterations and ⊗ represents the
multiplication of the corresponding elements of the matrix.

For NR tasks, W can be rewritten as a joint dictionary
form of ES and noise, namely, W = ½WX WN �. Similarly,
H = ½HX HN �.

Accordingly, the decomposition process of the noisy T-F
amplitude spectrum matrix is shown in Figure 1. By matrix
operation, the T-F amplitude spectrum matrix of ES jXð f , t
Þj and noise jNð f , tÞj can be approximated as

X f , tð Þj j ≈WXHX ,

N f , tð Þj j£WNHN :
ð5Þ

jXð f , tÞj can be considered as denoised output.
When NMF decomposing the ES matrix, the basis

matrix is activated unstably because the same sound ele-
ments overlap between the basis matrices of different sounds
[24]. Thus, there is a mutual spectral component leakage
between the separated jXð f , tÞj and jNð f , tÞj in the strong
noise area where the spectrum of ES and noise overlaps
highly. This leads to the spectral line loss of the separated
ES which affects the quality and clarity of the denoised out-
put. Therefore, a reconstruction scheme based on separated
noise is proposed for the separated ES distortion region.

3. The Proposed Denoised Scheme

The block diagram of the proposed algorithm scheme is
shown in Figure 2. An unsupervised learning method was
applied to the captured noise by building a noise buffer,
and the separated noise from NMF was considered as the
preliminary noise estimation result. In the noise processing
stage, an SPP algorithm was used to adaptively suppress
the leaked ES component in the separated noise. Combined
with an OMLSA spectral estimator, the high-frequency
structural information of ES can be retained to further
improve the ES quality. Finally, the ES output can be
enhanced through a residual noise suppression process.
The key steps include building noise buffer, adaptive noise
processing, and residual noise suppression.

3.1. Semisupervised NMF. For the monitoring system, the
target ES to be monitored is clear. Thus, WX is prefetched
from the ES dataset. Without presetting the type of noise
in the environment, we extract WN from building noise
buffer and combine WN with the pretrained WX to achieve
semisupervision NMF. The noise buffer is considerable to
capture noise-only segments to update the noise basis matrix

online, which meets the demand of NR in unknown noise
environment.

In the test stage, unsupervised NMF [28] is executed.
First, initialize WX , WN , HX , and HN with negative random
values. Then,WN is updated iteratively by Equation (3), and
HX and HN are updated iteratively by Equation (4). Iteration
stops when i = imax or the convergence Equation (2) is satis-
fied, resulting in the separated T-F amplitude spectrum
matrix of ES jX̂1ð f , tÞj and the separated noise T-F ampli-
tude spectrum matrix jN̂1ð f , tÞj.
3.2. Adaptive Noise Suppression. Due to the overlap of acous-
tic elements, semisupervised NMF is only used as a prelimi-
nary separation. The separation results are used to calculate
instantaneous SNR and the presence probability of ES in the
separation noise, providing accurate prior information for
the subsequent estimation of clean ES. In this stage, SPP is
used to adaptively suppress the leaked ES component in
the separated noise to improve the performance of the
OMLSA estimator.

First, it is assumed that the T-F amplitude spectrum of
ES and noise satisfies the complex Gaussian distribution
and that H1ð f , tÞ and H0ð f , tÞ, respectively, represent the
presence and absence of ES at the T-F point. Then, the
conditional probability distribution function of the observed
signal can be given by the variance of ES σX ð f , tÞ and noise
σN ð f , tÞ.

p Y f , tð Þ H0 f , tð Þjð Þ = 1
πσX f , tð Þ exp −

Y f , tð Þj j2
σN f , tð Þ

( )
,

p Y f , tð Þ H1 f , tð Þjð Þ = 1
π σX f , tð Þ + σN f , tð Þð Þ

Á exp −
Y f , tð Þj j2

σX f , tð Þ + σN f , tð Þ

( )
:

ð6Þ

By applying Bayes’ rule, the conditional probability of ES
presence pð f , tÞ is given by the following formula [10]:

p f , tð Þ = 1 +
q f , tð Þ

1 − q f , tð Þ 1 + ξ f , tð Þð Þ exp −υ f , tð Þð Þ
� �−1

,

ð7Þ

where qð f , tÞ ≜ PðH0ð f , tÞÞ is the prior probability of ES
absence and υð f , tÞ is obtained from the ratio of prior and
posterior SNR, namely,

υ f , tð Þ ≜ γ f , tð Þξ f , tð Þ
1 + ξ f , tð Þ : ð8Þ

Since the T-F points of mutual leakage between the ES
and noise are the regions with serious spectrum aliasing,
instantaneous SNR is considered to determine the T-F
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points ðti, f iÞ that need to be reconstructed in the separated
noise.

ti, f ið Þ = 10 log
X̂1 t, fð Þ�� ��2
N̂1 t, fð Þ�� ��2 < inputSNR t, fð Þ: ð9Þ

According to Equation (7), if the conditional probability
of ES presence in the separated noise N1ð f , tÞ is p1ð f , tÞ and
p1ð f , tÞ ∈ ½0, 1�, then

N2 f2, tið Þ = 1 − p1 f i, tið Þð Þ ×N1 f i, tið Þ,
N3 f i, tið Þ = α f i, tið ÞN1 f i, tið Þ + 1 − α f i, tið Þð ÞN2 f i, tið Þ,

ð10Þ

where αðti, f iÞ is an adaptive factor that automatically
adjusts the noise component of the separated noise accord-
ing to the instantaneous SNR level. That is, αðti, f iÞ is a
weighting factor of the power ratio of the ES component to
the noise component in the aliasing region of the reaction
spectrum. At higher SNRs, a larger α should be used to avoid
weakening of the separated noise components, resulting in

more residual noise in the denoising ES. At low-SNR condi-
tions, a smaller α should be used to avoid denoising ES
distortion.

α f , tð Þ =

0:95, p1 f , tð Þ = 1,
1

e−instantaneous SNR t,fð Þ , 0:2 < p1 f , tð Þ < 1,

0:05, p1 f , tð Þ ≤ 0:2:

8>>><
>>>:

ð11Þ

Then, the separated noise N3ð f , tÞ, which is processed by
adaptively suppressing the ES component, is used as the
input for the OMLSA estimator to provide noise informa-
tion in the noisy ES, to accurately determine the spectral
gain function Gð f , tÞ [10].

G f , tð Þ = GH1
f , tð ÞÈ Ép f ,tð Þ ⋅G1−p f ,tð Þ

min : ð12Þ

Gminð f , tÞ is the lower threshold of Gð f , tÞ for the
absence of ES, while GH1ð f , tÞ is the spectral gain function
that minimizes the logarithmic MMSE of the estimated ES

Joint dictionary

WX
HX HNWN × =

|X (f,t)|

|N (f,t)|

Figure 1: NMF for noise reduction.

|Y(f,t)|

p1 (f,t)

p2 (f,t)

NMF Instantaneous SNR
|X1 (f,t)|

Calculate SPP Adaptive noise
processing

OMLSA

Residual noise suppression

environmental
sound dataset

WX WN

Unsupervised NMF

Noise buffer

Unsupervised NMF

ˆ

|N2 (f,t)|ˆ

|X2 (f,t)|ˆ

|N1 (f,t)|ˆ

Figure 2: Block diagram of the proposed algorithm.
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amplitude and the true amplitude as an optimization objec-
tive in the presence of ES.

GH1
f , tð Þ = ξ f , tð Þ

1 + ξ f , tð Þ exp
1
2

ð∞
υ f ,tð Þ

e−t

t
dt

 !
: ð13Þ

As the noisy ES had been separated by NMF, σX ð f , tÞ
and σN ð f , tÞ can be given by X̂1ð f , tÞ and N̂1ð f , tÞ, respec-
tively, when computing γð f , tÞ and ξð f , tÞ using a decision-
direction approach.

γ f , tð Þ ≜ Y f , tð Þj j2
σN f , tð Þ =

Y f , tð Þj j2
N̂1 f , tð Þ�� ��2 ,

ξ f , tð Þ ≜ X f , tð Þj j2
σX f , tð Þ

= aG2
H1

f , t − 1ð Þγ f , t − 1ð Þ
+ 1 − að Þ max γ f , tð Þ − 1, 0½ �:

ð14Þ

Finally, by applying the OMLSA spectral gain function
to jYð f , tÞj, the T-F amplitude spectrum of the denoised
ES can be obtained as

X̂2 f , tð Þ�� �� =G f , tð Þ Y f , tð Þj j: ð15Þ

3.3. Residual Noise Suppression. If the ES type is speech, the
jX̂2ð f , tÞj obtained from Equation (15) is used as the final
denoised output. However, for NR in nonspeech monitoring
system, the input data is a sound segment of about five
seconds obtained by endpoint detection processing. The
presence of non-ES frames in the input data, especially those
with residual noise, would affect recognition performance.
In this stage, we design the T-F weighting factor βð f , tÞ to
further enhance the jX̂2ð f , tÞj.

βð f , tÞ extracts the frame with the highest probability of
ES, while suppressing the frames dominated by interference
noise.

β f , t j
À Á

=
1,

1
wlen

〠
wlen

k=1
A f kð Þ ≥ δ2,

0, otherwise,

8><
>: ð16Þ

where Að f Þwlen×1 and δ2 represent the flag matrix and the
decision threshold, respectively, to determine the presence
of ES in each frame. By comparing p2ð f , tÞ calculated from
jX̂2ð f , tÞj with the decision threshold of the frequency point
δ2, Að f Þwlen×1 is given by

A f kð Þ =
1, p2 f k, t j

À Á
≥ δ1,

0, otherwise:

(
ð17Þ

Therefore, the final output of the denoised nonspeech
can be expressed as

X̂3 f , tð Þ�� �� = β f , tð Þ X̂2 f , tð Þ�� ��: ð18Þ

4. Experimental Results

This study evaluated the denoised performance of the
proposed adaptive NR method and compared it with the
standard NMF [28], RNMF [20], and the traditional speech
enhancement methods Wiener [8], STSA [10], and OMLSA
[32] on the ES datasets. In addition, we apply the proposed
method to the nonspeech monitoring system and conducted
simulations and real experiments.

4.1. Datasets and Experimental Parameter Setting. ES data-
sets consist of the Google dataset [33] and TIMIT dataset
[34], including car horn, scream, gunshot, and speech. The
dataset is divided according to the ratio of 7 : 3 as training
set and test set, respectively. Noise test set including nonsta-
tionary noise babble, factory2, F16, destroyerops, pink, and
white were selected from NOISEX-92 dataset [35], and the
natural environment noises rain and wind were selected
from ESC-50 database [36]. The SNRs ranged in volume
from −5 to 5 dB, and noise that did not overlap with the
training set was added to the clean sound of the test set
to generate enough noisy ES to evaluate the performance
of the proposed algorithm. All audio was resampled to
16 kHz, and the time domain signal was converted into a
T-F amplitude spectrum by STFT, with a hamming window
length of 32ms and a 50% frame shift. The dimensions of
the ES and noise basis matrices were derived from experience
and set as 90 and 60, respectively.

4.2. Evaluation Metrics. In the speech-based noise suppres-
sion experiments, global SNR and PESQ [37] were selected
as the evaluation metrics. Global SNR is defined as the
power ratio between ES and noise over all T-F regions,
reflecting the relative magnitude of the two. Through the
improvement of global SNR, the amount of noise rejection
of the algorithm from an objective perspective is given for
speech quality evaluation. PESQ is considered to be an
objective expression of subjective evaluation, which can
compensate for the lack of global SNR measurement. In
nonspeech experiments, the F-score index of the sound
event recognition model was used to reflect the noise sup-
pression ability of the algorithm [38]. This index is the result
of balancing the precision and recall indexes comprehen-
sively, and the index is defined as follows:

P =
TP

TP + FN
,

R =
TP

TP + FN
,

F‐score = 1 + β2À Á P ⋅ R
β2 P + Rð Þ

,

ð19Þ
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where the TP, TN, FP, and FN codes are positive, negative,
false positive, and false negative, respectively [39]. P is the
precision rate, while R is the recall rate. In this experiment,
when β = 1, the weight of precision and recall rates was the
same; that is, the F1-score index was selected.

In addition, since T-F spectrogram analysis is a common
method for analyzing the frequency and level of time-
varying signals, this paper also uses a T-F spectrogram as
an evaluation metrics in both speech and nonspeech
experiments.
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4.3. Performance Comparison of Different Algorithms to
Suppress Nonstationary Noise under Low-SNR Conditions.
To directly reflect the nonstationary noise suppression abil-
ity of the proposed algorithm at low-SNR conditions, noisy
speech, which was disrupted by six nonstationary noises
from NOISEX-92 database, was selected for the experiments.
The proposed algorithm was compared with a traditional
speech enhancement algorithm [7, 10, 32], standard NMF
[28], and reconstructed NMF (RNMF) [20].

According to Figure 3, the proposed algorithm is supe-
rior to the compared algorithm in both global SNR and
PESQ metrics. When compared with other algorithms
under the three input SNR conditions, the proposed algo-
rithm improved by 0.13–0.60 (0.26 on average) under the
PESQ index. With the global SNR indicator, the minimum
improvement was 1.44 dB, the maximum improvement
was 3.78 dB, and the average improvement was 2.39 dB. As
shown in Figure 3(a), when the input SNR was equal to
−5 dB or 0 dB, NMF, RNMF, and the proposed algorithm
were superior to the traditional algorithm under the global
SNR index. This showed the superiority of the algorithm
based on NMF under low-SNR conditions and its ability to
better protect speech quality. At SNR = 5 dB, NMF was lower
than the conventional Wiener and STSA algorithms, which is
consistent with the previous conclusion that noise spectrum
leakage and high spectral line blurring in separated ESs
would result in poor noise suppression. The conclusion is
also reflected in Figure 3(b), where the PESQ values of
NMF were lower than that of theWiener or STSA algorithms
at both 0 dB and 5dB.

Comparing the T-F spectrograms found in Figures 4(c)
and 4(d), the enhanced speech of the proposed algorithm
had clear spectral lines and less residual noise in the overlap-
ping region of speech and noise. This shows that the
proposed algorithm can effectively suppress the spectral
components leaked during NMF separation while preserving
the high-frequency information of speech (indicated in the
red-boxed region) and thus had the highest global SNR
and PESQ performance. Although RNMF addressed the
noise spectrum leakage of NMF through reconstructing,
there is still a loss of high-frequency information (indicated
in the red-boxed region), because the reconstruction of
RNMF is based on the separation of ES. This is also why
RNMF exhibits limited noise rejection performance
(Figure 3). In the 0–0.7 s region for the T–F spectrograms,
fewer isolated noise fragments remained after the processing
of the proposed algorithm, indicating that the proposed
algorithm suppresses nonstationary noise more thoroughly.

4.4. Influence of Environmental Sound Noise Reduction on
the Recognition Result. NR is an indispensable part of recog-
nition task preprocessing; this paper selected three types of
nonspeech, namely, car horns, screams, and gunshots, as
the recognized sound events for the experiments. The noise
suppression performance of the proposed algorithm can be
measured by the improvement of model recognition ability
before and after NR. Nonstationary noises, such as rain,
wind, and babble, were selected as interference noises in
the outdoor environment. Noisy ES under low-SNR condi-

tions was synthesized for the experiments. The recognition
model is based on the two-input convolutional neural net-
work of the previous work [38].

Figure 5 shows the T-F spectrogram of the nonspeech
used as the input for the recognition model, displaying three
kinds of nonspeech ES destroyed by nonstationary rain noise
at 0 dB SNR condition. Comparing Figures 5(b) and 5(c), the
proposed method can locate the segments with ES and set
T-F weights of non-ES segments to 0 (the dark blue part).
This demonstrated that the T-F weighting factor we designed
is effective. Figure 4(d) shows the NR results without using
the T-F weighting factor, and we can see that there is noise
residue in the low frequency at 0.5 seconds (indicated in
the black-boxed region). Setting zero to the weights of non-
ES segments can solve the performance degradation caused
by residual noise of pure noise segments. Thorough suppres-
sion of residual noise is more conducive to subsequent ES
recognition. In addition, by comparing Figures 5(a) and
5(c), the spectrum structure of the nonspeech reconstructed
from the proposed method processing was mainly intact. In
the low-frequency range where noise damage was serious
and in the high-frequency range where nonstationary noise
is the main component, there was less noise residue.

The F1-score of the noisy ES and the denoised ES is
listed in Table 1. According to the table data, the ES proc-
essed by the algorithm in this paper had higher F1-score.
On average, F1-score improved by 11.1%, 11.8%, and
16.8%, respectively, under the three low-SNR conditions.
At -5 dB, the largest improvement in the model indicates
the effectiveness of the proposed algorithm at low-SNR
conditions and can significantly improve the recognition
performance of the recognition model.

4.5. Analysis of the Application of the Proposed Algorithm in
Environmental Sound Recognition Systems. To verify the
effectiveness of the proposed algorithm in improving the
performance of the recognition systems under real scenarios,
the recognition system designed in the previous work
[40, 41] was used in this paper for real-time environmental
sound data acquisition and recognition processing. To
ensure the authenticity of the experiment, a car horn was
collected from the Guilin University of Electronic and
Technology. Along with a car horn used by electric vehicles,
two mobile-side devices and two fixed-side devices were
placed for real-time data collection. The collection scenario

Table 1: F1-score for the recognition task.

Input SNR Method Scream Car horn Gunshot Average

5 dB
Noisy 87.9 76.2 77.3 80.5

Pro 90.0 92.8 92.0 91.6

0 dB
Noisy 82.0 75.7 75.0 77.6

Pro 88.0 91.2 89.1 89.4

-5 dB
Noisy 67.2 65.5 67.5 66.7

Pro 80.8 85.7 84.0 83.5

Average
Noisy 79.0 72.4 73.3 74.9

Pro 86.2 89.9 88.4 88.2
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and device placement are shown in Figure 6. The experiment
was conducted in July of 2021, and the main background
sounds on the campus were cicadas, birds, wind, and build-
ing noises. The energy range of the noise measured with a
sound level meter at the acquisition microphone was 70 to
90 dB.

The duration of each piece of sound data collected in this
experiment was 3-5 s, each with 16 kHz sampling rate, and
saved in WAV format. Figure 7 shows an example of the
captured noisy ES and ES processed by the proposed algo-
rithm. As shown in Figure 7(b), in the frequency band of
4-8 kHz with cicadas, the spectrum line of the denoised car
horn was clear. At the same time, the noise was completely
muted or set to a smaller amplitude in the pure noise
segments. This demonstrates the ability of the proposed
algorithm to learn the noise feature in the real system, suc-
cessfully extracting the nonspeech components from the
noisy bands. By suppressing the noise components, the pro-
posed algorithm can prevent the low recognition rate caused
by interference noise in the acquired ES.

Carhorn generated by
electric vehicles

Self-developed
collection device

Figure 6: Collection scenarios and device placement.
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Figure 7: T-F spectrogram of real ES. (a) Noisy ES; (b) the proposed algorithm.
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In this experiment, the F1-score in Experiment 2 was
used to measure the NR performance of the proposed
algorithm. Figure 8 shows that in a real environment, the
F1-score of the model for handling the noisy and denoised
car horn is 76.2% and 88.8%, respectively. The 16.2%
improvement in the F1-score after NR was also consistent
with the 15.5% improvement at SNR = 0 dB demonstrated
in the simulation experiment of Experiment 2.

5. Conclusion

In this paper, an adaptive NR algorithm used in various
noisy environments was proposed. First, a noise buffer was
set to implement semisupervised NMF so that the algorithm
can suppress the unseen noise to improve algorithm robust-
ness. Next, the proposed algorithm designed an adaptive
weight factor based on SPP to suppress leaked ES compo-
nents in the separation noise, avoiding misclassification of
the ES as noise for suppression and solving the distortion
problem. In addition, to reduce the residual noise interfer-
ence of non-ES segments on recognition, the T-F threshold
was used for each frame of the OMLSA estimator output.
The results show that the proposed algorithm outperformed
other methods in terms of the average PESQ and SNR.
Under realistic acoustic conditions, the proposed algorithm
combined with the monitoring system significantly improved
the recognition performance of the monitoring system.

However, the ES and basis matrices are in one-to-one
correspondence. Therefore, in the system with high real-
time performance, it is necessary to increase the calculation
cost to determine the corresponding basis matrix. In future
works, the optimization of the algorithm will be considered
to improve its computational speed and suitability for tasks
where real-time performance is required.
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