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The lack of labelled signal datasets in noncooperative scenarios limits the performance of specific emitter identification (SEI). To
address this limitation, a method for SEI with limited labelled signals is proposed. The bispectrum of the received signal is
estimated to enhance individual discriminability. An information-maximising generative adversarial network (InfoGAN) is
then developed to perform SEI with limited labelled signals. To prevent nonconvergence and mode collapse due to the
complexity of the radiofrequency signals, we improve the InfoGAN, respectively, from the generator and discriminator
perspective. For the former, an encoder is combined with the InfoGAN generator to form a variational autoencoder that
reduces the difficulty of convergence during training. For the latter, a gradient penalty algorithm is applied during the training
of the InfoGAN discriminator, which enables its training loss function to obey the 1-Lipschitz constraint, thereby avoiding
gradient disappearance. The design of the objective function for the training of each subnetwork and the training procedure
are provided. The proposed network is trained with limited labelled and abundant unlabelled data, and an auxiliary classifier
categorizes the emitters after training. Numerical results indicate that our method outperforms state-of-the-art algorithms for
SEI with limited labelled signal samples in terms of effectiveness, convergence, accuracy, and robustness against noise.

1. Introduction

With the advent of the 5G era, the demand for radio spec-
trum has increased significantly. Due to this, technologies
that enable the usage of spectrum resources to be monitored
and regulated have become complex but important tools for
its successful exploitation [1–3]. Specific emitter identifica-
tion (SEI), as one of such key technologies, enables the iden-
tification of individual sources of radiofrequency (RF)
signals based on the RF fingerprints (RFFs) that result from
the nonideal hardware tolerances of the emitters [4]. The
RFFs extracted from the RF signals produced by a particular
emitter contain unique characteristics that enable SEI to be
implemented [5, 6].

In recent years, various methods for performing SEI
have been proposed. For instance, Bihl et al. [7] developed
a method to extract RFFs through a dimensional reduction
analysis (DRA) based on feature selection and designed a
multiple discriminant analysis classifier to recognize individ-
ual emitters based on DRA feature subsets. The method
shows an excellent performance in terms of classification
accuracy and robustness when applied for SEI of Zigbee
devices. Padilla et al. [8] successfully identified 28 Wi-Fi
devices with an accuracy of more than 95% by analysing
the preamble information in the communication. However,
this method is limited to signals with a communication pre-
amble. A method for SEI based on the bispectrum-Radon
transform was proposed in [9]. The method first estimates
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the bispectrum of the RF signal to preliminarily represent
the RFFs and then compresses it via the Radon transform
to obtain the bispectrum projection vector, which is used
as the input of a hybrid network model to extract deep RFFs
and conduct individual emitter identification. The method
was able to classify six emitter individuals with an identifica-
tion accuracy higher than 90%. However, the bispectrum
analysis-based method can easily lose some important subtle
features, resulting in a negative impact on the SEI perfor-
mance. Yuan et al. [10] applied the Hilbert–Huang trans-
form (HHT) to transient RF signals, extracted RFFs based
on the estimated time–frequency energy distribution, and
finally used a support vector machine (SVM) for emitter
identification. The method was able to successfully identify
eight mobile phones but is only applicable to transient RF
signals. Satija et al. [11] proposed the use of variational mode
decomposition (VMD) to derive the temporal and spectral
modes of RF signals. Various spectral features were then
selected as RFFs to identify the received signals. The VMD
spectral feature-based method is highly adaptable to various
scenarios, including single hop and relaying, and consider-
ably robust against noise in both additive white Gaussian
noise (AWGN) and flat-fading channels. However, the per-
formance of the method was verified using simulated rather
than real-world signal data; thus, its practicality requires
further research.

The abovementioned traditional RFF extraction schemes
have achieved certain advancements in individual emitter
identification, but some drawbacks remain. Owing to their
complexity, RFFs cannot be represented by a unified mathe-
matical model, which makes it necessary to blindly attempt
multiple RFF extraction schemes and find a relatively opti-
mal method for a specific SEI task. As a result, significant
subjectivity is involved and successful identification is
dependent on the cognitive level of the researcher. In other
words, conventional methods mainly rely on measurements
to extract the RFFs defined by specialists and cannot
completely scan the representative characteristics of each
emitter’s RFFs.

With the progress in artificial intelligence technology,
researchers have applied deep learning (DL) [12–14] to
many fields. Various DL-based methods have been devel-
oped and have demonstrated considerable potential in appli-
cations such as computer vision (CV) and natural language
processing (NLP). Furthermore, these advanced technolo-
gies have already achieved great success in emerging fields,
such as the Internet of Vehicles [15–17], wireless radio pro-
cessing [18–20], radar waveform recognition [21, 22], and
edge computing [23–25]. Motivated by these developments,
works on SEI have found in DL a new research direction.
Wu et al. [26] proposed an RFF extraction scheme based
on a long short-term memory (LSTM) network to learn
the high-order correlation of the received signal and identify
its emitter. Considering the advantages of convolutional
neural networks (CNNs) in image processing, Wang et al.
[27] used pulse waveform images and a CNN to identify
specific radar emitters. Recently, considering the characteris-
tics of SEI application, scholars have proposed some new
network models and algorithms for SEI using basic network

models, such as CNNs and LSTM networks. Qian et al. [28]
proposed an automatic SEI system based on a CNN with
multilevel sparse representation. The SEI system splices the
shallow and deep RFF features extracted by the CNN and
then performs SEI based on the sparse representation iden-
tification. With limited signal samples, this approach can
identify nine emitter devices with an accuracy of more than
90%.Wang et al. [29] proposed a novel DL-based model com-
prising a complex-valued neural network (CVNN) for SEI.
Just as CNNs were designed to process two-dimensional
(2D) images, CVNNs were developed to process complex-
valued data. Therefore, the CVNN model is suitable for
directly processing complex baseband RF signals.

Overall, the existing SEI approaches based on DL mainly
focus on supervised learning, where all training data are
assumed to be labelled. However, in noncooperative scenar-
ios, it is difficult to obtain labelled training data for SEI,
which limits the performance of the DL methods used. To
address this limitation, Yang et al. [30] applied a few-shot
learning method based on model-agnostic meta-learning
(MAML) to SEI with limited availability of labelled signal
data. Similarly, to solve the problems of SEI in noncoopera-
tive scenarios, in this study, we propose a novel network
model for SEI, referred to as VAE-InfoGAN-GP, which
comprises a variational autoencoder (VAE) embedded in
an information-maximising generative adversarial network
(InfoGAN), and a gradient penalty algorithm. Unlike the
method in [30], our method can make full use of a large
number of easily accessible unlabelled signal data to perform
SEI. Accordingly, the system can learn RFFs in a more
comprehensive and deeper way, thereby achieving better
performance in the identification process. We conducted
bispectrum analysis on the received signals as a preprocess-
ing step. The InfoGAN model [32], which is a DL algorithm
based on a generative adversarial network (GAN) [31], was
used because of its excellent performance in unsupervised
learning and was improved by embedding a VAE into it
and applying a gradient penalty algorithm during the dis-
criminator training. Additionally, a new latent vector was
used as the generator input.

The main contributions of this study can be summarised
as follows:

(1) The RF signals are preprocessed using a bispectrum
analysis to enhance the discriminability of different
emitter individuals

(2) Considering the fact that the complexity of RFFs
may pose certain difficulties during the execution of
the InfoGAN, especially mode collapse and noncon-
vergence, we incorporate some innovations in both
generators and discriminators. An encoder is added
before the generator to compress the RF signal
bispectrum into a low-dimensional hidden variable
that is then decoded by the generator to recover real
RFF representation data. This provides the prior RFF
representation data to the generator, thereby facili-
tating the generator training. Additionally, we
propose a gradient penalty algorithm to train the
discriminator, enabling its loss function to obey the
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1-Lipschitz constraint, which can avoid gradient dis-
appearance and further optimise the network

(3) To improve the practicability of the proposed net-
work, the loss function of each subnetwork training
is analysed and designed; moreover, the training flow
of the whole network is analysed and provided

(4) Numerous experiments are carried out to evaluate
the convergence and identification performance of
our method. Simulation results show that our
method can perform SEI tasks well in noncoopera-
tive scenarios

The remainder of this paper is organised as follows. In
Section 2, the proposed method for semisupervised SEI is
provided. We first introduce the signal preprocessing
method based on bispectrum analysis, then describe the
design of the VAE-InfoGAN model and the details of the
gradient penalty algorithm, and lastly explain a novel latent
vector used as the generator input. The results of the exper-
iments conducted on a real-world RF dataset generated
through the software-defined radio (SDR) platform are
presented in Section 3. Finally, Section 4 presents the
conclusions of the paper.

2. Proposed Method for SEI with Limited
Labelled Signals

2.1. Signal Preprocessing. A bispectrum analysis is an effec-
tive method for signal preprocessing, which can retain the
amplitude and phase of the signal and measure its degree
of nonlinearity and asymmetry [33, 34]. The estimated bis-
pectrum of the RF signals forms the basis for RFF extraction.
The estimated bispectrum can be obtained as follows:

B ω1, ω2ð Þ =〠
τ1

〠
τ2

c3x τ1, τ2ð Þe−j ω1τ1+ω2τ2ð Þ, ð1Þ

where ω1 and ω2 represent the 2D frequencies, and the
third-order cumulant c3xðτ1, τ2Þ can be expressed as

c3x τ1, τ2ð Þ = E x∗ tð Þx t + τ1ð Þx t + τ2ð Þ½ �: ð2Þ

To form some intuition, we perform a bispectrum anal-
ysis on two RF signals, x1ðtÞ and x2ðtÞ, recorded from two
emitter individuals of the same device type, obtaining the
bispectral energy distributions shown in Figure 1. It is
observed that the energy side lobe distribution in
Figure 1(a) is smoother than that in Figure 1(b), whereas
the main lobe distribution in Figure 1(b) is more concen-
trated than that in Figure 1(a). To visualise the differences
more intuitively, the corresponding bispectral contour maps,
which are the bispectra of the signals, are obtained in
Figure 2 as the RFF representation data that are used as
the input of the proposed network model.

As shown in Figure 2, there are visible differences
between the two bispectrums, demonstrating the effective-
ness of the bispectrum analysis for signal preprocessing,
which can enhance individual discriminability.

2.2. VAE-InfoGAN. The basic architecture of the InfoGAN
consists of a generator (G), a discriminator (D), and an aux-
iliary classifier (Q). The generator output data Gðz, cÞ after
being fed with the latent vector z and latent code c, which
is an interpretable constraint variable such as the real data
category. The discriminator aims to distinguish the gener-
ated data from the real data, thereby facilitating the genera-
tor to output data that is as close to the real data as possible.
Lastly, the auxiliary classifier decodes Gðz, cÞ to maximise
the mutual information between the generated data and
the latent code c, thereby enabling the generator output to
have a higher correlation with said code. When InfoGAN
converges, the auxiliary classifier can effectively identify gen-
erated data, Gðz, cÞ, that is similar to the real data. Therefore,
the auxiliary classifier can also be used for the unsupervised
classification of the real data.

In this study, we used InfoGAN as the initial structure
of the algorithm and extended it by including a VAE.
Figure 3 shows the resulting architecture of the proposed
VAE-InfoGAN model, where x = fxl, xug represents the
bispectrum of the RF signals, that is, the RFF representation
data, and includes both labelled data xl and unlabelled data
xu. The labels of xl can be denoted as yl = fyl1, yl2,⋯,ylMg.
Additionally, the latent code c is sampled from a categorical
distribution, CatðK , p = 1/KÞ, where K represents the
emitter classes.

To further optimise the network, instead of an original
Gaussian distribution, the latent vector z is taken from a
Gaussian mixture distribution [35], which can be expressed
as follows:

Pz zð Þ = 〠
K

k=1
wk ⋅

1ffiffiffiffiffiffiffiffiffiffi2πσk
p exp z − μkð ÞT z − μkð Þ

2σ2
k

( )
, ð3Þ

where K represents the emitter classes, μk and σk are, respec-
tively, the mean and covariance of the k-th emitter, and wk
represents a categorical random variable such that wk ≥ 0
and ∑K

k=1wk = 1.
Finally, we feed z and c into the generator to produce

fake representation data Gf .
The InfoGAN model has a number of inherent failure

modes that can occur during training. Of particular interest
in this case are the problems of modal collapse and noncon-
vergence, which can be further exacerbated due to the com-
plexity of the RF signals. To address this limitation, we
introduce a VAE into the InfoGAN (which is referred to as
VAE-InfoGAN). The VAE consists of an encoder (E) and
a decoder (corresponding to generator G). The former
encodes the RFF representation data to obtain bottleneck
vectors, which include the mean vector μ and covariance
vector σ. The bottleneck vector space is then constructed
as follows [36].

Z = μ + ε ⊙ exp σð Þ,
ε ∼N 0, Ið Þ,

ð4Þ
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Figure 1: Bispectral energy distributions. (a) x1ðtÞ; (b) x2ðtÞ.
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Figure 2: Two-dimensional-bispectral contour map. (a) x1ðtÞ; (b) x2ðtÞ.
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where ε represents a random vector that follows a standard
normal distribution.

By sampling from Z, we obtain the hidden variable z′
which is subsequently decoded by the generator to recon-
struct the real RFF representation data Gr , aiming for it to
be as close as possible to the RFF representation data x. In
the original InfoGAN, the training may become unstable
because of the difficulty in balancing the capabilities of both
the generator and discriminator. This results from the fact
that the generator has no prior knowledge of the complex-
featured RFF representation data and simply generates fake
sets from random noise. Therefore, during training, the
generator is significantly less powerful than the discrimina-
tor, and an effective confrontation cannot be achieved. In
this case, the network will have a poor training effect, and
mode collapse or nonconvergence problems may appear.
However, when the VAE is embedded in the original Info-
GAN, we can provide the generator with a loss value
between the real RFF representation data Gr and RFF rep-
resentation data x, so that it obtains prior knowledge about
the RFF representation data. With the help of this informa-
tion, the generator can converge faster, thereby simplifying
the training of the whole network.

Based on [36], the encoder training process can be
expressed as follows:

Eopt = min
E

V ′ E,Gð Þ =min
E

V E,Gð Þ − Vprior Eð Þ� �
, ð5Þ

where VðE,GÞ is the function used to make the real RFF
representation data Gr as close as possible to the RFF repre-
sentation data x and VpriorðEÞ is used to guide the encoded

hidden variable z′ into following the normal distribution.
This can be expressed as follows:

V E,Gð Þ = Ex∼Pdata
G E xð Þð Þ − xk k22, ð6Þ

Vprior Eð Þ = 1
2 μTμ+〠 eσ − σ − 1ð Þ
h i

, ð7Þ

where Pdata represents the real data distribution.
The discriminator is used to classify data as “real/fake,”

and its training process can be expressed as follows:

Dopt = max
D

V D,G, Eð Þ =max
D

V real D,G, Eð Þ −V fake D,Gð Þ½ �,
ð8Þ

where V realðD,G, EÞ is used to maximise the output value of
the real RFF representation data Gr produced by the gener-
ator, which can be expressed as follows:

V real D,G, Eð Þ = Ex∼Pdata
log D G E xð Þð Þð Þð Þ½ �: ð9Þ

In contrast, V fakeðD,GÞ is used to minimise the output
value of the fake RFF representation data Gf produced by
the generator, which can be expressed as follows:

V fake D,Gð Þ = Ez∼Pz c∼Pc
log D G z, cð Þð Þð Þ½ �: ð10Þ

The auxiliary classifier is used to maximise the mutual
information between the latent code c and the generated
data Gf =Gðz, cÞ; its training process can be expressed
as follows:

Qopt = max
Q

Lul G,Qð Þ =max
Q

E z∼pz c∼pc
c ⋅ log Q G z, cð Þð Þð Þ

h i
:

ð11Þ

When labelled training data are present, the training
process can be extended as follows:

Qopt = max
Q

V G,Q, Eð Þ =max
Q

Lul G,Qð Þ + Ll G,Q, Eð Þ½ �, ð12Þ

where LlðG,Q, EÞ denotes the mutual information between
the labelled RFF representation data xl and the corre-
sponding labels yl, which can be expressed as follows:

V G,Q, Eð Þ = E xl∼pdata yl∼pdata
yl ⋅ log Q G E xlð Þð Þð Þð Þ:

ð13Þ

Acting as the link between the different subnetworks,
the generator training process can be expressed as follows:

Gopt = min
G

max
D

V G, E,D,Qð Þ
=min

G
max
D

V E,Gð Þ +V D,G, Eð Þ − V G,Q, Eð Þ½ �,
ð14Þ

where VðE,GÞ, VðD,G, EÞ, and VðG,Q, EÞ are equivalent
to those in Equations (5), (8), and (13), respectively.

2.3. Gradient Penalty for Discriminator. In the previous
section, we introduced a VAE to reduce the training diffi-
culty of the generator. However, this measure only improves
the network from the perspective of the generator, so that it
can effectively play an adversarial game with the discrimina-
tor. The defects of discriminator training are also an impor-
tant factor hindering the training effect of the network. If the
discriminator is too weakly trained, it will not be indicative
enough for the generator to obtain good results. On the con-
trary, if the discriminator is too well trained, the generator
will not obtain enough gradient information for further opti-
misation. As a result, discriminator training is very difficult
to control. The mathematical proof in [37] shows that the
above problem is caused by the use of JS divergence to
measure the distance between the real and generated data
distribution, which can cause gradient disappearance during
training. In this regard, Arjovsky et al. [38] proposed a novel
measurement method for calculating the distance between
the real and generated data distribution, called the earth
mover’s distance (EMD), which can be expressed as

W Pdata, Pg

� �
= inf

γ∈Π Pdata,Pgð Þ
E x,yð Þ~γ x − yk k½ �, ð15Þ

where Pdata and Pg represent the real and generated data
distributions, respectively.
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To apply the EMD to neural networks, Equation (15)
needs to be transformed using the Kantorovich–Rubinstein
duality [39] theory; the transformation result can be
expressed as

W Pdata, Pg

� �
= sup

fk kL≤1
Ex~Pdata

f xð Þ½ � − Ex~Pg f xð Þ½ �, ð16Þ

where f ð⋅Þ denotes a neural network function that obeys the
1-Lipschitz constraint, i.e., j f ðx1Þ − f ðx2Þj ≤ jx1 − x2j.

Therefore, to apply the EMD to the GAN-based model,
the mathematical model of the discriminator in (8) should
be changed, which can be expressed as

Dopt = max
D∈1−Lipschitz

V real D,G, Eð Þ −V fake D, Gð Þ½ � = max
D∈1−Lipschitz

� Ex∼Pdata
log D G E xð Þð Þð Þð Þ½ � − E z∼Pz c∼Pc

log D G z, cð Þð Þð Þ½ �
n o

:

ð17Þ

Directly implementing a discriminator function subject
to the 1-Lipschitz constraint is difficult, and this problem
can be solved through a mathematically equivalent method,
which can be expressed as

D ∈ 1 − Lipschitz⟺ ∇xD xð Þk k ≤ 1: ð18Þ

This essentially requires that ∇xDðxÞ corresponding to
all inputs x is less than 1. However, traversing the entire
input data distribution is impossible. In this regard, we
define a penalty data distribution,Ppenalty , that only meets
the requirement that the data sampled from Ppenalty corre-
spond to a gradient less than 1. Therefore, the mathematical
model of the discriminator in (17) should be changed, which
can be expressed as follows:

Dopt = max
D

V real D,G, Eð Þ − V fake D,Gð Þ½ � =max
D

� Ex∼Pdata log D G E xð Þð Þð Þð Þ½ � − E z∼Pz c∼Pc
log D G z, cð Þð Þð Þ½ �

n

− λEx∼Ppenalty
∇xD xð Þk k − 1½ �2

o
,

ð19Þ

where Ex∼Ppenalty
½k∇xDðxÞk − 1�2 acts as a regular term that

penalises the behaviour of gradient k∇xDðxÞk larger than 1
when the discriminator weight parameters are updated.

In terms of the definition of the penalty data distribu-
tion, we define the data distribution space between the real
RFF representation data distribution space PGr

and the fake
RFF representation data distribution space PGf

as Ppenalty , as

intuitively shown in Figure 4.
The implementation details can be denoted as follows:

Gpenalty1 =Gr1 + ζ1 ⋅ Gf 1 − Gr1
� �

0 < ζ1 < 1,

Gpenalty2 = Gr2 + ζ2 ⋅ Gf 2 − Gr2
� �

0 < ζ2 < 1,
ð20Þ

where Gr1 and Gr2 represent real RFF representation data

samples sampled from PGr
, Gf 1 and Gf 2 represent fake RFF

representation data samples sampled from PGf
, Gpenalty1

and Gpenalty2 denote penalty data samples sampled from
Ppenalty , and ζ1 and ζ2 denote random parameters.

2.4. Method Procedure. The training process of the proposed
method is described in Algorithm 1.

3. Results and Discussion

3.1. RF Signal Data Collection and Experimental Setup. We
collected real-world RF signal data to evaluate the perfor-
mance of our method based on an SDR system imple-
menting GNU radio and containing seven USRP (B210)
devices. We used seven USRP devices as transmitters at an
RF of 2.4GHz, with each device connected to a laptop run-
ning the Linux Ubuntu 18.04 operating system. The remain-
ing USRP device was connected to the same laptop and
served as a receiver to collect the seven classes of RF signals
generated by the other devices. The SDR platform is shown
in Figure 5.

For each of the seven classes of RF signals generated, we
obtained 20,000 segments of RF signal data, and the modu-
lation method is QPSK. Next, using MATLAB, we added
different levels of AWGN to adjust the SNR to 0, 2, 4, …,
and 20dB. Bispectrum analysis was then applied to the RF
signal data to obtain the RFF representation data, which
have a uniform size of 256 × 256. At each SNR level,
20,000 RFF representation data were obtained per class. Of
all the RFF representation data, 80% were used for training,
10% for validation, and the remaining 10% was used for test-
ing. For the training sets, 20% were set as training data with
category labels, and 80% were set as training data without
category labels. Figure 6 shows the dataset structure.

We evaluated the performance of our method based on
Python 3.6 in TensorFlow. The DL PC was equipped with
an NVIDIA GeForce GTX 3090 Ti GPU, and the details of
the network structure and training hyperparameters are
presented in Table 1.

3.2. Convergence Performance. We compared the conver-
gence performance of the VAE-InfoGAN performing gradi-
ent penalty algorithm (VAE-InfoGAN-GP) with other two
network frameworks: VAE-InfoGAN and InfoGAN.
Figure 7 shows the training loss value curves in 400 epochs.

Gr1

Gf2

Gpenalty 1

Gpenalty 2

Ppenalty

PGr

PGf

Gr2

Gf1

Figure 4: Penalty data distribution.
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As shown in Figure 7, VAE-InfoGAN-GP achieves the
fastest convergence speed and reaches the best convergence
plane. In contrast, the loss value of VAE-InfoGAN is main-
tained at a higher level because the traditional discriminator
adopts JS divergence to calculate the distance between the
real and fake data distribution, resulting in gradient disap-
pearance. In this case, the further optimisation of network

parameters will be affected, so that the training loss value
cannot be further decreased. This comparison demonstrates
the effectiveness of the gradient penalty algorithm in avoid-
ing disappearance and improving the network training
effect. Additionally, the loss value curve of InfoGAN shows
significant fluctuations, which are the manifestation of

Input:
ðsl , sulÞ: Raw RF signal data;
c: Latent code;
z: Latent vector;

Output:
θE , θG, θD, θQ: Parameters of sub-networks E, G, D, Q

1. Perform bispectrum analysis on RF signal data ðsl , sulÞ and obtain bispectrum as RFFs representation data ðxl , xulÞ;
2. Initialize network parameters of encoder, generator, discriminator and auxiliary classifier;
3. Fix the network parameters of encoder and generator, generate real and fake RFFs representation data based on the RFFs repre-
sentation data ðxl , xulÞ, latent code c and latent vector z:

z ′ ⟵ EðxÞ Gr ⟵Gðz ′Þ
Gf ⟵Gðz, cÞ

4. Calculate the loss function of discriminator:
LD = EGr∼pGðz ′Þ½log ðDðGrÞÞ� − EGf ∼pGðz,cÞ½log ðDðGf ÞÞ�

−λEx∼Ppenalty ½k∇xDðxÞk − 1�2
5. Network parameters of discriminator are updated according to the loss function:

θi+1D ⟵ θiD − ηD∇θLDðθÞ
6. Calculate the loss function of auxiliary classifier:

LQ = EGf∼pGðz,cÞ
c∼pc

c log ðQðGf ÞÞ + λQEGr∼pGðz ′Þyl log ðQðGrÞÞ

7. Network parameters of auxiliary classifier are updated according to the loss function:
θi+1Q ⟵ θiQ − ηQ∇θLQðθÞ

8. Fix network parameters of discriminator and auxiliary classifier, and train encoder and generator;
9. Calculate the loss function of generator:

LG = λG1LD − λG2LQ + λG3kGr − xk22
10. Network parameters of generator are updated according to the loss function:

θi+1G ⟵ θiG − ηG∇θLGðθÞ
11. Calculate the loss function of encoder:

LE = kGr − xk22 − 1/2½μTμ+∑ðeσ − σ − 1Þ�
12. Network parameters of encoder are updated according to the loss function:

θi+1E ⟵ θiE − ηE∇θLEðθÞ
13. Repeat steps (2)-(12) until the network converges, and then auxiliary classifier is used to conduct semi-supervised SEI;

Algorithm 1: Training procedure of VAE-InfoGAN-GP.

Figure 5: SDR platform.
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network nonconvergence. However, the loss value curve of
VAE-InfoGAN tends to flatten out with the progress of net-
work training, showing a superior convergence performance.
The reason for this significant difference is that VAE-
InfoGAN can provide the generator for the prior informa-
tion of the real data, thereby reducing the training difficulty
of the generator and facilitating convergence of the whole
network model. This comparison demonstrates that the

VAE embedded original InfoGAN can effectively prevent
mode collapse and nonconvergence, which is of considerable
benefit to the improvement of the convergence performance.

3.3. Identification Performance vs. SNRs. We tested the iden-
tification performance of the proposed method according to
the SNR. Furthermore, we compare it with that of the orig-
inal InfoGAN and existing methods, including MAML [30]
and virtual adversarial training (VAT) [40].

Figure 8 shows the identification accuracy as a function
of the SNRs of the evaluated methods under AWGN and
Rayleigh noise.

As shown in Figure 8(a), our method has an average
identification accuracy of 7–10% higher than the original
InfoGAN, which further demonstrates that the embedded
VAE and gradient penalty algorithm can improve the train-
ing effect of InfoGAN, thereby enhancing the identification
performance of the SEI system. Additionally, our proposed
method achieves an approximate accuracy of 90% at 6 dB
and 95% at 10 dB. Compared with the existing methods of
VAT and MAML, the identification performance of our
method is improved to different degrees. Especially at low
SNRs, our method shows superior noise robustness, and
the maximum accuracy gap between our method and
MAML and VAT can, respectively, reach up to approxi-
mately 12% and 21%.

As is shown in Figure 8(b), our proposed method
achieves an approximate accuracy of 84% at 6 dB and 90%
at 10 dB, whereas the MAML method achieves the same
accuracy at 10 dB and 14 dB, respectively. The VAT method
deteriorates significantly in this scenario such that it is no
longer considered. The results show that our method
achieves the same excellent identification performance and
noise robustness in the Rayleigh propagation channel, which
further proves its practicability and superiority.

3.4. Visualised Analysis. To evaluate the excellent identifica-
tion performance of our method in an intuitive way, the
algorithm of t-SNE [41] was used to visualise the high-
dimensional feature vectors, which were extracted from the
MAML and VAE-InfoGAN-GP methods. Figure 9 displays
the t-SNE dimensionality reduction distribution of two
methods with SNR = 6dB.

As shown in Figure 9, there are seven clusters in the 2D
scatter diagram, representing seven different emitter individ-
uals. Figure 9(a) shows that seven different clusters show
stronger intraclass aggregation and larger interclass differen-
tiation. In Figure 9(b), however, seven clusters show higher
intraclass dispersion. The results show that our method
can extract more discriminative feature parameters, partly
due to the improvement of the network structure and the
training algorithm and partly because of making full use of
a large number of easily accessible unlabelled signal data,
which can enhance the generalisation ability of the network
to a certain extent. As a result, our method can identify
different emitter individuals with a higher accuracy.

3.5. Identification Performance vs. Ratios of Labelled to Total
Signal Data Samples. In this section, the identification

Table 1: Network structure and hyperparameters.

Encoder E

Conv 2D Kernel size = 4 × 8, Filters = 80, Tanh, batch norm

Conv 2D Kernel size = 2 × 4, Filters = 32, Tanh, batch norm

Dense Units = 100, ReLU, batch norm

Generator G

Dense Units = 8192, LeakyReLU, batch norm

Reshape 32 × 256 × 1
Conv 2D Kernel size = 4 × 8, Filters = 256, Tanh, batch norm

Conv 2D Kernel size = 4 × 12, Filters = 80, Tanh, batch norm

Conv 2D Kernel size = 4 × 16, Filters = 1, Tanh, batch norm

Discriminator D & auxiliary classifier Q

Conv 2D
Kernel size = 4 × 16, Filters = 32, ReLU, batch norm,

Maxpooling

Conv 2D
Kernel size = 4 × 12, Filters = 32, ReLU, batch norm,

Maxpooling

Conv 2D Kernel size = 4 × 8, Filters = 8, ReLU, batch norm

Discriminator D Auxiliary classifier Q

Dense Units = 128, ReLU Dense Units = 256, ReLU
Dense Units = 1, sigmoid Dense Units = 64, ReLU

Dense Units = 6, softmax

Hyperparameters Value

Optimiser Adam

Learning rate 0.0001

Epochs 400

Minibatch 64

Dropout rate 0.5
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Figure 7: Training loss curves of VAE-InfoGAN-GP, VAE-
InfoGAN, and InfoGAN.
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performance depending on different ratios of labelled to
total signal data samples is considered. The ratios of labelled
to total signal data samples are important factors affecting
the classification performance of the algorithm. For the
training samples of each class of signal, the ratios are set as
0%, 2%, …, 10%, and then, the identification accuracy is
tested at different ratios. The experimental results are shown
in Figure 10.

Figure 10 shows that the identification performance of
our method remains relatively stable after reaching a ratio
of 4%, which indicates that our method is still effective for
the task of SEI with very limited labelled signal data. In par-
ticular, when the ratio decreases to 0%, that is, the training
samples are all unlabelled signal data, the identification
performance deteriorates but not seriously, and the accuracy
can reach 90% at 12 dB. This result further proves the excel-
lent performance of the proposed method in solving the few-
shot problem in SEI.

3.6. Other Evaluation Metrics for Identification Performance.
The accuracy, which is the most common evaluation metric
for classification problems, was used to evaluate the identifi-

cation performance in the above experiments. However, it
can only count the proportion of samples that are
correctly predicted, which can reflect only the overall
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Figure 8: Identification accuracy as a function of the SNR. (a) AWGN. (b) Rayleigh noise.
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identification performance. For multicategory identifica-
tion, each class is in a minority with respect to the rest
of the RF signals, and it is difficult to evaluate whether
one single class of RF signals is correctly identified
through the evaluation metric of accuracy.

In this section, we use the metric of receiver operating
characteristic (ROC) to further evaluate the identification
performance. To avoid class imbalance, we select one USRP
as a positive class with a weight of six and the other six
USRPs as a negative class with a weight of one. Figure 11
shows the ROC curves of our method and MAML with the
SNR set at 20 dB.

As shown in Figure 11, the ROC curves of our method
are distributed in the upper left of the figure, while those
of MAML are relatively offset to the lower right. This indi-
cates that our method can achieve a higher true-positive rate
with a lower false-positive rate, thereby intuitively illustrat-
ing that our method can efficiently identify each USRP
device. The area under the curve (AUC) is also calculated
for each USRP device. Figure 11 shows that the AUC for

each device with our method is higher than 0.97, whereas
the AUC for each device with MAML is between 0.926 and
0.951. Additionally, Table 2 provides the mean ROC AUC
of the two methods at SNRs of 0–20 dB, and our method
achieves a higher AUC than MAML at all SNRs. As
expected, the results further demonstrate that our proposed
method is superior to state-of-the-art methods in terms of
identification performance and noise robustness.
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Figure 11: (a) ROC curves of proposed method. (b) ROC curves of MAML.

Table 2: Mean ROC AUC at different SNRs.

SNR Our method MAML

0 dB 0.924 0.871

4 dB 0.939 0.898

8 dB 0.947 0.911

12 dB 0.958 0.928

16 dB 0.961 0.935

20 dB 0.972 0.941
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4. Conclusion

In this paper, we proposed a method for SEI with limited
labelled signals. Bispectrum analysis was performed as a pre-
processing method on labelled and unlabelled RF signal data
to obtain RFF representation data, which was then fed to the
network model InfoGAN for semisupervised training and
emitter identification. Considering the mode collapse and
nonconvergence in InfoGAN and the fact that the complex-
ity of RFFs may lead to difficulties, the network model Info-
GAN was improved, and a VAE was introduced to compress
the labelled and unlabelled RFF representation data into a
hidden variable, which was then restored into real RFF
representation data by the generator. In this way, the VAE
can provide the prior information of RFF representation
data for the generator, thereby facilitating generator training.
Additionally, we proposed a gradient penalty algorithm to
train the discriminator, enabling its loss function to obey
the 1-Lipschitz constraint, which prevents gradient disap-
pearance and further optimises the network.

The experimental results demonstrate the effectiveness
of our proposed VAE-InfoGAN-GP method in improving
the convergence performance. Furthermore, the identifica-
tion accuracy of our method is higher than that of the
state-of-the-art MAML and VAT methods and the baseline
InfoGAN network model. Additionally, our method can
maintain a high identification accuracy when only a few
labelled data are available. Moreover, we used the metric of
ROC AUC to further evaluate the identification perfor-
mance. The results further demonstrate that our proposed
method outperforms the state-of-the-art MAML method in
terms of identification performance and noise robustness.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant 91538201, in
part by the Taishan Scholar Project of Shandong Province
under Grant ts201511020, and in part by the Project sup-
ported by the Chinese National Key Laboratory of Science
and Technology on Information System Security under
Grant 6142111190404.

References

[1] S. Ni, L. Yang, Z. Zhang, Y. Gong, and X. Yu, “Multiband
cooperation for 5G HetNets: a promising network paradigm,”
IEEE Vehicular Technology Magazine, vol. 14, no. 4, pp. 85–93,
2019.

[2] J. Liu, L. Yang, B. Ai, and S. Ni, “Future 5G-oriented system for
urban rail transit: opportunities and challenges,” China Com-
munications, vol. 18, no. 9, pp. 1–10, 2021.

[3] L. Yang, M. Xia, and M. Motani, “Unified analysis of coordi-
nated multi-point transmissions in mmWave cellular net-
works,” IEEE Internet of Things Journal, pp. 1–10, 2021.

[4] K. I. Talbot, P. R. Duley, and M. H. Hyatt, “Specific emitter
identification and verification,” Technology Review Journal,
vol. 11, no. 1, pp. 203–209, 2003.

[5] A. E. Spezio, “Electronic warfare systems,” IEEE Transactions
on Microwave Theory and Techniques, vol. 50, no. 3,
pp. 633–644, 2002.

[6] O. Ureten and N. Serinken, “Wireless security through RF fin-
gerprinting,” Canadian Journal of Electrical and Computer
Engineering, vol. 32, no. 1, pp. 27–33, 2007.

[7] T. J. Bihl, K. W. Bauer, and M. A. Temple, “Feature selection
for RF fingerprinting with multiple discriminant analysis and
using ZigBee device emissions,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 11, no. 8, pp. 1862–1874,
2016.

[8] P. Padilla, J. L. Padilla, and J. F. Valenzuela-Valdés, “Radiofre-
quency identification of wireless devices based on RF finger-
printing,” Electronics Letters, vol. 49, no. 22, pp. 1409-1410,
2013.

[9] Y. P. Zhou, X. Wang, Y. Chen, and Y. Tian, “Specific emitter
identification via bispectrum-radon transform and hybrid
deep model,” Mathematical Problems in Engineering,
vol. 2020, Article ID 7646527, 17 pages, 2020.

[10] Y. J. Yuan, Z. T. Huang, H.Wu, and X.Wang, “Specific emitter
identification based on Hilbert–Huang transform-based time–
frequency–energy distribution features,” IET Communica-
tions, vol. 8, no. 13, pp. 2404–2412, 2014.

[11] U. Satija, N. Trivedi, G. Biswal, and B. Ramkumar, “Specific
emitter identification based on variational mode decomposi-
tion and spectral features in single hop and relaying scenarios,”
IEEE Transactions on Information Forensics and Security,
vol. 14, no. 3, pp. 581–591, 2019.

[12] L. Fan and X. Lei, “Learning-based MIMO detection with
dynamic spatial modulation,” SCIENCE CHINA Information
Sciences, vol. 2022, no. 1, pp. 185–199, 2022.

[13] T. O’Shea and J. Hoydis, “An introduction to deep learning for
the physical layer,” IEEE Transactions on Cognitive Communi-
cations and Networking, vol. 3, no. 4, pp. 563–575, 2017.

[14] L. Han, J. Z. Sun, and W. Zhang, “Convolutional neural net-
work for convective storm nowcasting using 3-D Doppler
weather radar data,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 58, no. 2, pp. 1487–1495, 2019.

[15] L. Zhang and F. Zhu, “DQN based mobile edge computing for
smart internet of vehicle,” EURASIP Journal on Advances in
Signal Processing, vol. 2022, no. 1, 2022.

[16] J. Lu and M. Tang, “Analytical offloading design for mobile
edge computing based smart internet of vehicle,” EURASIP
Journal on Advances in Signal Processing, vol. 2022, no. 3,
2022.

[17] J. Zhao, X. Sun, Q. Li, and X. Ma, “Edge caching and com-
putation management for real-time internet of vehicles: an
online and distributed approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 4,
pp. 2183–2197, 2021.

[18] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep
learning based radio signal classification,” IEEE Journal of

11Wireless Communications and Mobile Computing



Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168–179,
2018.

[19] M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, “End-to-
end learning from spectrum data: a deep learning approach
for wireless signal identification in spectrummonitoring appli-
cations,” IEEE Access, vol. 6, pp. 18484–18501, 2018.

[20] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent
wireless networks: a comprehensive survey,” IEEE Commun
Surveys Tuts, vol. 20, no. 4, pp. 2595–2621, 2018.

[21] C. Wang, J. Wang, and X. Zhang, “Automatic radar waveform
recognition based on time-frequency analysis and convolu-
tional neural network,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 2437–
2441, New Orleans, LA, USA, 2017.

[22] Z. Zhou, G. Huang, H. Chen, and J. Gao, “Automatic radar
waveform recognition based on deep convolutional denoising
auto-encoders,” Circuits, Systems, and Signal Processing,
vol. 37, no. 9, pp. 4034–4048, 2018.

[23] L. Chen and S. Tang, “Physical-layer security on mobile edge
computing for emerging cyber physical systems,” Computer
Communications, vol. 2022, no. 1, pp. 101–112, 2022.

[24] X. Lai and L. Fan, “Outdated access point selection for mobile
edge computing with cochannel interference,” IEEE Transac-
tions on Vehicular Technology, vol. 70, no. 3, pp. 185–196,
2022.

[25] Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing
in vehicular networks,” IEEE Transactions on Vehicular Tech-
nology, vol. 68, no. 8, pp. 7944–7956, 2019.

[26] Q. Y. Wu, C. Feres, D. Kuzmenko et al., “Deep learning based
RF fingerprinting for device identification and wireless secu-
rity,” Electronics Letters, vol. 54, no. 24, pp. 1405–1407, 2018.

[27] X. B.Wang, G.M. Huang, C. S. Ma,W. Tian, and J. Gao, “Con-
volutional neural network applied to specific emitter identifi-
cation based on pulse waveform images,” IET Radar, Sonar
& Navigation, vol. 14, no. 5, pp. 728–735, 2020.

[28] Y. H. Qian, J. Qi, X. Y. Kuai, G. Han, H. Sun, and S. Hong,
“Specific emitter identification based on multi-level sparse
representation in automatic identification system,” IEEE
Transactions on Information Forensics and Security,
vol. 16, pp. 2872–2884, 2021.

[29] Y. Wang, G. Gui, H. Gacanin, T. Ohtsuki, O. A. Dobre, and
H. V. Poor, “An efficient specific emitter identification method
based on complex-valued neural networks and network com-
pression,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 8, pp. 2305–2317, 2021.

[30] N. Yang, B. Zhang, G. Ding et al., “Specific emitter identifica-
tion with limited samples: a model-agnostic meta-learning
approach,” IEEE Communications Letters, vol. 26, 2022.

[31] I. Goodfellow, “Generative adversarial nets,” in in Proc.
Advances in Neural Information Processing Systems,
pp. 2672–2680, Montreal, Canada, 2014.

[32] X. Chen, Y. Duan, and R. Houthooft, “InfoGAN: interpret-
able representation learning by information maximizing
generative adversarial nets,” in in Proc. Advances in Neural
Information Processing Systems, pp. 2172–2180, Barcelona,
Spain, 2016.

[33] D. Zhang and W. B. Wu, “Asymptotic theory for estimators of
high-order statistics of stationary processes,” IEEE Transac-
tions on Information Theory, vol. 64, no. 7, pp. 4907–4922,
2017.

[34] L. Saidi, J. Ben Ali, and F. Fnaiech, “Application of higher
order spectral features and support vector machines for bear-
ing faults classification,” ISA Transactions, vol. 54, pp. 193–
206, 2015.

[35] M. Ben-Yosef and D. Weinshall, Gaussian mixture generative
adversarial networks for diverse datasets, and the unsupervised
clustering of images, 2018, http://arxiv.org/abs/1808.10356.

[36] D. P. Kingma and M. Welling, “Auto-encoding variational
Bayes for inferring topics and visualization,” in Proceedings
of the 28th International Conference on Computational Lin-
guistics, Barcelona, Spain, 2014.

[37] M. Arjovsky and L. Bottou, Towards principled methods for
training generative adversarial networks, 2017, http://arxi-
v.org/abs/1701.04862.

[38] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein GAN,
2017, http://arxiv.org/abs/1701.07875.

[39] D. A. Edwards, “On the Kantorovich–Rubinstein theorem,”
Expositiones Mathematicae, vol. 29, no. 4, pp. 387–398, 2011.

[40] T. Miyato, S. I. Maeda, M. Koyama, and S. Ishii, “Virtual
adversarial training: a regularization method for supervised
and semi-supervised learning,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 8, pp. 1979–
1993, 2019.

[41] L. V. Der Maaten and G. E. Hinton, “Visualizing data using
t-SNE,” Journal of Machine Learning Research, vol. 9,
pp. 2579–2605, 2008.

12 Wireless Communications and Mobile Computing

http://arxiv.org/abs/1701.07875

	Specific Emitter Identification with Limited Labelled Signals Based on Variational Autoencoder Embedded in Information-Maximising Generative Adversarial Network and Gradient Penalty
	1. Introduction
	2. Proposed Method for SEI with Limited Labelled Signals
	2.1. Signal Preprocessing
	2.2. VAE-InfoGAN
	2.3. Gradient Penalty for Discriminator
	2.4. Method Procedure

	3. Results and Discussion
	3.1. RF Signal Data Collection and Experimental Setup
	3.2. Convergence Performance
	3.3. Identification Performance vs. SNRs
	3.4. Visualised Analysis
	3.5. Identification Performance vs. Ratios of Labelled to Total Signal Data Samples
	3.6. Other Evaluation Metrics for Identification Performance

	4. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

