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As traditional cloud computing is not efficient enough to support large-scale computational task execution in IoT environments,
a task offloading and resource allocation algorithm for mobile edge computing (MEC) is proposed in this paper. First, a multiuser
computation offloading model is constructed, including a communication model and computation offloading model, which is
transformed into the minimization of users’ time delay and energy consumption (i.e., total system overhead) in the MEC system.
+en, the task offloading model is formulated into a Markov decision process, and an offloading strategy based on a deep Q
network (DQN) is designed to dynamically make fine tunings on the offloading proportion of each user so as to realize a low-cost
MEC system.+e proposed algorithm is analyzed based on the constructed simulation platform.+e simulation results show that
when the number of user terminals is 40, the average delay of the proposed algorithm does not exceed 0.9 s, and the average energy
consumption tends to 65 J, which is better than the comparison method. +erefore, the proposed algorithm has certain
application prospects.

1. Introduction

Nowadays, more and more mobile devices are emerging in
people’s lives, leading to the explosion in the population of
smart network edge devices [1]. Subsequently, the data and
computation tasks are also growing exponentially. In the
context of massive data and large-scale computation tasks,
mobile devices are required to process large amounts of
application data quickly, which lays a high demand on their
computing capacity. Due to the mismatch between data
volume and transmission channel, traditional cloud com-
puting brings huge pressure and ultrahigh delays to the
crowded network and cannot efficiently support the exe-
cution of large-scale computing tasks [2]. Mobile edge
computing (MEC) provides cloud computing capacity for
mobile devices at the edge of networks via wireless access,
which solves the problem of limited computation and energy
resources for mobile devices. MEC has become a new
paradigm for providing powerful computing and storage
capabilities for mobile devices [3, 4]. In order to further

ameliorate the quality of services for users and the increase
of resource utilization efficiency in MEC, complex com-
putation task offloading strategies and the allocation of
communication resources need to be addressed [5].

In early work on computation offloading, most re-
searches considered single-user scenarios, such as low
complexity dynamic computation offloading algorithms
based on Markov decision processes and Lyapunov opti-
mization, trying to achieve the load-balancing optimization
through offloading strategies [6, 7]. Reference [8] proposed a
low complexity heuristic algorithm to achieve load balancing
by using fractional programming with the optimization goal
of minimizing the energy consumption of task offloading.
However, the multiscenario and multidimensional optimi-
zation for computational resource allocation is yet to be
improved. Reference [9] realizes task unloading and efficient
channel resource allocation based on the differential evo-
lution algorithm. +is scheme can significantly reduce en-
ergy consumption while ensuring convergence. However,
the performance is poor for multiobjective optimization of
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complex tasks. On the new cloud edge computing network
designed by Reference [10], a joint optimization strategy
based on a binary custom fireworks algorithm is proposed,
which can ensure the rationality of system computing re-
sources and response time. But the high occupancy of
computational resources and the resource utilization need to
be improved. Reference [11] proposed a joint distributed
algorithm considering transmission power and unloading
strategy and established a queue model with a separate
capacity between different windows to optimize queue delay.
However, with the massive number of network devices
accessing the network in the 5G era, single-user scenarios are
no longer able to meet people’s daily needs.

Recently, deep learning techniques have been widely
studied with the development of artificial intelligence.
Since deep learning can solve some limitations in rein-
forcement learning, it is integrated into reinforcement
learning to open a new era of deep reinforcement learning
[12]. Deep reinforcement learning incorporates deep
neural networks to optimize the process of reinforcement
learning, thus improving the learning speed and perfor-
mance of reinforcement learning algorithms. +erefore,
deep reinforcement learning is widely used in the practice
of reinforcement learning [13]. Reference [14] proposed a
distributed optimization method based on an alternating
direction multiplier, which decomposes the optimization
problem into N subproblems and maximizes the weighted
sum calculation rate through the optimal allocation of
system resources and task calculation time. However, this
method is weakly adaptable to new environments. An
offloading strategy based on metareinforcement learning
was proposed in Reference [15]. Mobile applications are
modeled as directed acyclic graphs and offloading strategies
via neural networks, and the collaboration of first-order
approximation and tailoring of agent goals is applied for
effective training. Although the adaptability is enhanced,
the processing time for the strategy still needs to be im-
proved. Reference [16] constructs a task unloading model
based on multiagent deep reinforcement learning and uses
the MEC model to better realize computing task unloading
and resource allocation. Wang et al. proposed a rein-
forcement learning-based computing offloading strategy
[17]. Although the aforementioned deep learning algo-
rithms can achieve better performance in MEC, the
training process and initial conditions are very complex,
which means they need to be further optimized in practical
applications.

Based on the above analysis, to alleviate the network load
and reduce the risk of network congestion in traditional
cloud computing of IoT, MEC is introduced to formulate the
multiuser computing offloading problem. A task offloading
and resource allocation algorithm for MEC in an IoT en-
vironment is proposed. Since user’s tasks and the compu-
tation tasks in the edge server may be time-varying, a deep Q
network (DQN) based computation offloading strategy is
proposed to achieve the minimum operation overhead of the
system by dynamically fine-tuning the ratio of time delay
and energy consumption, which improves the robustness of
the proposed algorithm.

2. System Model and Optimization Objectives

2.1. System Model. In the MEC system, in order to better
serve users and improve system task processing capacity,
computing tasks can be offloaded to the MEC server for
execution via the wireless channel according to practical
situations [18]. As shown in Figure 1, the number of mobile
users is n � 1, 2, · · · , N{ }. +e MEC server is deployed in the
system, which is connected to the base station of this cell.
Namely, in the process of task offloading, the computation
task of each user cannot be split but can only be offloaded.
Meanwhile, the offloading strategy cannot be changed.

Supposing that the number of wireless transmission
channels between users and the base station is
m � 1, 2, · · · , M{ }, users can choose one of the multiple
wireless channels to offload tasks. +e offloading strategy of
the user n can be denoted as an � 0, 1, · · · , M{ }. When an � 0,
it indicates that the user selects local computing, and when
an > 0, it indicates that the user selects to uninstall the MEC
server for execution.

Assume that the computation-intensive task is
Tn � dn, cn􏼈 􏼉. Where dn and cn denote the input data size of
the task in K bits and the CPU cycles required to process the
input data, respectively.

2.2. Communication Model. +e communication model of
the system includes the selection and assignment of the
channel. When a user is connected n to the server Ω, let
Sa

n,Ω � 1, then the user n can offload tasks Tn to the server
through the high-speed network. At this point, if a task
needs to be offloaded, the server is required to allocate a
certain amount of network bandwidth to the user, which is
denoted as Bn,i. Since the offloading time for a task is very
short, we assume that the bandwidth obtained by the task is
not grabbed during the offloading. When the task is off-
loaded, the occupied bandwidth will be released and the total
bandwidth provided by the server Ω is BΩ. +e server can
choose different bandwidth allocation methods βC

Ω, such as
fixed percentage allocation, fixed amount allocation, or al-
location based on user payment criteria.

As the channel selection and allocation strategy are not
the focus of this work, the previously proposed communi-
cation model is adopted and the bandwidth allocation
method is given when several users share a channel that is
nonpreemptible. Namely, the bandwidth allocated to a user
cannot be released until the user’s data have been trans-
mitted [19, 20]. In addition, unlike the strategy that requires
waiting for the completion of a communication cycle before
releasing the bandwidth, the occupied bandwidth is released
immediately after the transmission is completed in this
paper. And it is shown in this paper that immediate
bandwidth release helps to improve the bandwidth utili-
zation of the system.

Based on the above analysis, it is known that the
remaining bandwidth of the current server is Ba

Ω, and the
offloading decision in each round offers n number of users to
offload their tasks, then the bandwidth obtained by each user
in this offloading process can be written as
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Bn,i � δ0log2 1 +
pn × gn,Ω

δ0 + 􏽐n∈N pnn × gnn,Ω􏼐 􏼑
⎛⎝ ⎞⎠, (1)

where δ0 is the background noise,p represents the trans-
mission power consumption, and g represents channel gain
between the user equipment and the base station.

+e model has the following features. If many users
choose to offload tasks at the same moment, they will bring
large interference among each other and reduce the trans-
mission rate, which results in a challenge for the offloading
algorithmwhen choosing the combination of offloading user
devices. For a task with an uplink data volume of d

⌢

n,i, the
relationship between the data volume and the transmission
time can be calculated as

t
C
n,i �

d
⌢

n,i

Bn,i

. (2)

+us, the communication model CΩ of the server can be
formulated as

CΩ �〈BΩ, β
C
Ω〉. (3)

+e communication model Cn,i of the user device can be
formulated as

Cn,i �〈tC
n,i, d

⌢

n,i〉. (4)

2.3. Computation Offloading Model

2.3.1. Local Execution. When an � 0, the user n chooses to
execute the computation-intensive task Tn locally. Let fn be
the computing capacity of the user n, then the time delay t1
incurred by the task Tn when it is executed locally can be
calculated as

t1 �
cn

fn

. (5)

+e energy consumption e1 for local execution can be
calculated as

e1 � χ1cn fn( 􏼁
2
, (6)

where χ1 is a constant.
According to equations (5) and (6), the total overhead of

local execution Θ1 can be expressed as

Θ1 � ωtt1 + ωee1, (7)

where ωt is the weight of time delay, ωe is the weight of
energy consumption, 0≤ωt ≤ 1, and 0≤ωe ≤ 1, ωt + ωe � 1.

2.3.2. MEC Offloading Computation. When an > 0, the user
selects to uninstall to the MEC server for execution, during
the offloading process, the TD and EC are generated during
the following three steps: (1) the computation task is
transmitting data through the wireless channel; (2) the
computation task is executed at the MEC server; and (3) the
computation result is returned to the user.

When data are transmitted to the MEC, the user selects
the wireless channel, and the resulting time delay can be
written as

t2 �
dn

v
⌢

n(a)
, (8)

where v
⌢

n(a) is the uplink data transmission rate.
+e energy consumption incurred by the data trans-

mission to the MEC can be expressed as

e2 � pnt2 �
pndn

v
⌢

n(a)
. (9)

When the task is uploaded to the MEC server, it is
computed using the computational resources of the server,
at this point the resulting time delay can be calculated as

t3 �
cn

Fn

, (10)

where Fn denotes the MEC server computing capacity.
+e energy consumed when executing tasks at the MEC

can be formulated as

e3 � χ0cn Fn( 􏼁
2
. (11)

Generally, the size of the result calculated by the MEC
server is very small compared with the input data, so the TD
and ECwhen returning the calculation result to the user can be
ignored [21]. +us, the total overhead of offloading the
computation task to theMEC for execution can be expressed as

Θ2 � ωt t2 + t3( 􏼁 + ωe e2 + e3( 􏼁. (12)

Based on equations (7) and (11), the overhead of each
user can be expressed as

Θn(a) �
Θ1, an � 0,

Θ2, an > 0.
􏼨 (13)

2.4.OptimizationObjectives. +e optimization objective of a
multiuser MEC system is to minimize the TD and EC.
Hence, it can be modeled as

Mobile 
user N

Mobile user n Mobile user 3 Mobile user 2

Mobile user 1
Channel 3

Channel 2

Channel M

Channel m

Channel 1

MEC server

Base station

Figure 1: Multiuser MEC system model in single-cell.
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min 􏽘
n∈N
Θn(a)

s.t.
an ∈ 0, 1, · · · , M{ },∀n ∈ N

pn ∈ pmin, pmax􏼂 􏼃,

(14)

where pmin is the minimum values of the transmission power
and pmax is the maximum values of the transmission power.

+e above optimization problem involves the combi-
natorial optimization problem in multidimensional discrete
space. We can consider using reinforcement learning
technology and making use of the intelligent characteristics
of mobile users so that mobile users can get mutually sat-
isfactory unloading strategies.

3. Solutions

3.1. Reinforcement Learning. Reinforcement learning (RL) is
an autonomous learning framework that implements expe-
rience-driven learning through interactions and is used to
maximize the reward when intelligent agents are finding the
optimal behavior at a given state. Reinforcement learning, as a
part of machine learning, differs from supervised learning,
where training is based on the right answer itself [22, 23]. In a
standard RL model, the autonomous-learning agents interact
with the environment. +e process of reinforcement learning
is shown in Figure 2. At each timestamp t, a state s(t) is first
observed from the environment, then an action φ(t) is ex-
ecuted based on the current state, after which a reward/
punishment rt is fed back by the current environment.
+ereafter, the environment will move to another state
s(t + 1), where the probability of the environment moving to
a state s(t + 1) after performing an action φ(t) from the state
s(t) can be represented by the state probability transfer
function σ(s(t + 1)|s(t), φ(t)).

+e process described above is going to continue, which
maximizes the desired reward in the long run. Mathemat-
ically, reinforcement learning can be described as a Mar-
kovian decision process in which the response of the
environment to the state s(t + 1) depends on s(t) and φ(t).
Furthermore, the key point of reinforcement learning is to
learn without the knowledge of the underlying environment
model. And the reinforcement learning that cannot compute
rewards before actions are selected and cannot know the
state probability transfer function is referred as model-free
reinforcement learning [24]. Meanwhile, reinforcement
learning uses a ε-greedy approach as the fundamental policy,
where ε is a probability value between [0,1]. Each time an
action is selected, there is a probability of ε being exploited in
the Q-table and the action with the largest reward is ex-
pected, and there is a probability that an action is randomly
performed in the exploitation.

3.2. Systematic Action Transitions and Delayed Rewards.
Figure 3 demonstrates how the system states change over
time. Assuming that at the moment t, the reinforcement
learning algorithm, taking DQN as an example, obtains
observation ot from the server state, and makes offloading

action φt based on the observation. +en the offloading
action will affect the state of the user who receives the
offloading permission, which in turn affects the state of the
specific task to be offloaded. Once a task is in the offloading
process, it undergoes state transitions such as transmission,
arrival at the server cache, execution on the server, and
execution completed, which have a continuous impact on
the resources and state of the server throughout the tran-
sition process.

When the task is executed, the rewards rt recorded by
the system at this moment are returned to the decision-
making algorithm for learning. It is clear from the de-
scription that at the moment t, the decision-making al-
gorithm does not have access to the immediate rewards for
this action but can only obtain the reward for the action at
a previous moment. +is is a distinctive feature of the
incomplete observation system and is a key point for the
offloading model to meet the conditions for asynchronous
decision-making [25, 26]. +erefore, the cumulative re-
ward of successive decisions constructed by the learning
process is the key to determining whether the optimiza-
tion objective of the system is satisfied.

Assuming that the cumulative positive rewards of re-
inforcement learning (excluding punitive rewards) are equal
to the optimization objective Ψ of the system. +erefore, an
upper bound on the cumulative reward is the optimization
objective, which can be expressed as

􏽘
t∈T

rt + rt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Ψ, (15)

where rt is the punitive rewards.
+e computation offloading in the edge environment is a

complex process of continuous decision-making. And a
model-free reinforcement learning method, i.e., temporal-
difference (TD), is applied, which combines Monte Carlo
sampling and bootstrapping in dynamic programming and
usually leads to better learning performance and efficiency.
Here, the loss function can be defined as

Agent Environment

State
s (t) Reward

r (t+1)

New state s (t+1)

Reward
r (t)

Execute action
φ (t)

Figure 2: +e process of reinforcement learning.
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L y, y′( 􏼁 �
􏽐

n
i�1 yi − yi

′( 􏼁
2

n
, (16)

where y and y′ are the real value and target value of the
model output, respectively.

+e proposed learning method runs on an offloading
model on the edge server and is mainly as follows:

(1) At the beginning of learning, the server starts the
offloading process and updates the reward value rt �

(TL
n,i/εn,i) of the latest task for that user if the task has

been executed
(2) If the system is overloaded, it updates the reward

value as rt � − |rt− 1| of the latest task for that user
(3) +e server state st

Ω, and the list of users φt
Ω are

obtained and can be offloaded in this decision from
the action space. +en the offloading notifications
are sent to the users in the list by the server

(4) +e server reads the latest reward value of the task
and takes the triplet of state, action, and reward as
the training input to the reinforcement learning
algorithm

3.3. DQN-based Offloading Strategy. To better evaluate the
effect of the policies on action selection, the value function
about states and actions is converted into a recursive form,
which can be denoted as

Q st,φt( 􏼁 � Φt + ζminφt+1
Q st+1,φt+1( 􏼁, (17)

whereΦt is the value of cost and ζ is the discount coefficient.
In conventional Q-learning algorithms, the number of

states in the environment is generally assumed to be rela-
tively small, and therefore a look-up table is used to record
the state-action pairs (s,φ). However, since the number of

states in the constructed MEC network is so large, it is
computationally expensive to update the Q function in an
iterative manner if the Q learning algorithm continues to be
used. So DQN is proposed to address the problem.+e DQN
algorithm is a typical value-based policy algorithm that
collects the state st of the current network environment as
input data of the estimated value of the deep network. And
the output of the estimated value network is
Q(st,φ),∀φ ∈ A, where Q values corresponds to all the
actions. +en, a greedy algorithm, i.e., ε − greedy, is used to
select the actions φt. Next, the user performs the action φt,
and the network environment turns to the next state st+1,
while the value of cost Φt is generated. Based on this value,
the parameters of the estimated value network are updated,
and after many iterations of update, the estimated value
network has been trained to output the optimal Q function
Q(s, φ). +e mean square error function is used to define the
loss function of the estimated value network, which can be
written as

Lt � E Yt − Q st, at|θ( 􏼁( 􏼁
2

􏽨 􏽩, (18)

where θ denotes the weight parameter of the estimated value
network, and Yt represents the value of optimization ob-
jective for the estimated value network. However, if an
identical deep neural network is used to obtain the target
value, the target output of the network also changes with the
update of the parameters, that is, the label changes during
the deep learning training, which is obviously unreasonable
[27]. +erefore, it is necessary to introduce another neural
network named as the target value network, whose network
structure is exactly the same as the estimated value network.
+e only difference between them is that the parameter θ of
the target value network will not be updated at each timeslot
but will be copied from the parameters of the estimated value
network after every K steps of training. Namely, the
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Figure 3: Learning process and delayed reward.
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parameter of the target value network is updated K steps
slower than the estimated value network. +e target value
can be expressed as

Yt � Φt + ζminφt+1
Q st+1,φt+1|θ

−
( 􏼁. (19)

In addition, the samples of training data are independent
of each other in supervised learning. But, it is noted that the
states of the MEC network are continuous in time series,
which affects the reliability of training to some extent.
+erefore, an experience replay unit (ERU) is introduced in
the DQN network and all the samples coming from the
interaction between environments and agents are stored in
the memory of the ERU in the form of quaternions
(st,φt,Φt, st+1), where st+1 is the next state for the statest. In
the training phase, one sample packet is randomly grabbed
from the ERU at a time, and the size of the packet can be set
arbitrarily within the maximum number of samples so that
the temporal correlation between datasets can be broken,
making the samples independent and increasing the gen-
eralization ability of deep learning. +e pseudocode of the
DQN-based offloading algorithm is shown in Algorithm 1.

4. Experiments and Analysis

+e simulation experiment platform uses MATLAB math-
ematical software, and the version is 2016a. +e computer
hardware conditions used in the simulation are as follows:
CPU is i7-7200U and the running memory size is 4GB. In
the experiments, the simulation scenario is assumed as
follows: the bandwidth B � 5MHz, and the computing ca-
pacity F� 12GHz/sec, and the computing capacity of each
mobile user itself is f� 5GHz/sec.+e transmission power of
the mobile users is between pmin andpmax , where
pmin � 150mW and pmax � 300mW. Assuming that the
computation offloading follows a uniform distribution be-
tween 3000 and 5000 Kb. Besides, decision weights are set as
ωt � ωe � 0.5.

4.1. Convergence Procedure in Training DQN Strategy. As
shown in Figure 4, three different sets of variables are
adopted in the experiments, which are as follows: (1) the
number of users is the same as the number of edge servers
(N, M) � (15, 15); (2) (N, M) � (15, 20); and (3)
(N, M) � (20, 15). And the number of iterations is 20,000.

As shown in Figure 4, in the DQN-based offloading
strategy, the average system cost of these three curves de-
creases rapidly until convergence. When (N, M) � (15, 15),
the average cost converges to the lowest value after about
11,000 iterations; when (N, M) � (15, 20), the average cost
converges to a stable value after about 9,000 iterations, and
this value approximates the value in the case of an equal
number of users and edge servers. When (N, M) � (20, 15),
the average cost converges to a larger value than that in the
other two cases after about 13,000 iterations. Hence, it is
confirmed that the proposed strategy allows the system cost
to gradually decrease and converge to a stable value re-
gardless of the relationship between the number of users and
the number of edge servers.

4.2. Comparison with Other Algorithms. Besides, it is com-
pared with the algorithms in Reference [8], Reference [10],
and Reference [15] in the simulation.

4.2.1. Comparison of the Number of Terminals and Average
Delay. +e relationship between the number of user ter-
minals and the average delay for different algorithms is il-
lustrated in Figure 5.

It can be seen in Figure 5 that since the algorithm
proposed in Reference [8] does not consider the collabo-
ration mechanism, the load on the computing server rises
with the increase of the number of user terminals, leading to
an overall rise in the user task delay. +erefore the average
user delay is the biggest. +e algorithm proposed in Ref-
erence [10] adopts side cloud collaboration, and when the
number of user terminals increases, the MEC server can
transmit the tasks that cannot be processed in time to the
cloud server for execution. Although the side cloud col-
laboration can reduce the task delay, the average user delay is
also relatively high because the cloud server is far away from
the user, which increases the transmission delay. Algorithms
proposed in this paper and Reference [15] both use rein-
forcement learning to design the offloading strategy.
However, the proposed algorithm constructs a multiuser
MEC model to offload computation tasks as quickly as
possible or execute them locally, so the delay is the smallest
and the average delay does not exceed 0.9 s when the number
of terminals is 40.

4.2.2. Relationship between Computing Capacity of MEC
Servers and Maximum User Delay. +e effect of the com-
puting capacity of MEC servers on the maximum user delay
under different algorithms is shown in Figure 6.

From Figure 6, it is illustrated that the user task delay
becomes smaller with the increase of the MEC computing
capacity. Also, the proposed algorithm has a smaller delay
compared to the other three algorithms, and its maximum
user delay is about 0.6 s when the computing capacity of
MEC servers reaches 16GHz/sec. +is is because when the
computing capacity of MEC servers is low, the servers
collaborate with each other to balance their load and reduce
the task delay. +erefore, the advantages of edge-cloud
collaboration will no longer be obvious, and the perfor-
mance of the algorithm proposed in Reference [8] gradually
approaches the curve of Reference [10].

4.2.3. Relationship between Average SystemOverhead and the
Number of Mobile Users. Figure 7 illustrates the perfor-
mance of the average system overhead with a different
number of mobile users, where the number of channels is set
to be 12 and the computing capacity of MEC servers is set as
F� 12GHz/sec.

As shown in Figure 7, the average system overhead of all
four algorithms increases with more and more users. In
Reference [10], some of the computation tasks are offloaded
to the cloud computing center for execution, and the cloud
computing center is far away from users, thereby the TD and
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EC increases significantly and its computation overhead is
the highest. Heuristic algorithms are applied in Reference [8]
for system optimization, while its optimal solution searching
performance is weaker compared to the learning results in
deep learning networks. Meanwhile, as the number of
mobile users increases, the resources that the system can
provide in the process of task offloading are limited, so the
competition for the limited resources in the system is in-
tense, which can cause an increase in the system delay and
energy consumption. In such an environment of intense
competition for resources, the metareinforcement algorithm
proposed in Reference [15] has a more obvious advantage
over the DQN strategy of the proposed algorithm. +e
proposed algorithm realizes the optimal task unloading and
resource allocation through the powerful data optimization
ability of DQN. Its total system overhead is less than 120 and

can dynamically fine-tune the delay and energy consump-
tion according to the actual needs.

4.2.4. Relationship between Average System Energy Con-
sumption and Training Rounds. When ωt � 0 and ωe � 1,
the optimization objective can only be concerned about the
energy consumption of the whole system and neglect the
system delay. Under such circumstances, the performance of
energy consumption of the system is shown in Figure 8.

From Figure 8, it can be seen that the average system
energy consumption of the four algorithms tends to be stable
as the number of training rounds increases, but the proposed
algorithm has the smallest average system energy con-
sumption, which tends to be 65 J when the number of
training rounds exceeds 19. +e proposed algorithm uses
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100
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Sy
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m
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3000 6000 9000 12000 15000 18000 210000
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Figure 4: Convergence procedure in training the DQN strategy.
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(1) Emptying the storage area of the ERU
(2) Initialize the weight parameters of the estimated value network θ, and make the parameters of the target value network θ− � θ
(3) Initialization status s

(4) For t� 1 :1 :T
(5) do
(6) Under the greedy algorithm, an action is selected based on the state stφt

(7) Execute the action φt and observe the system costs Φt and st+1
(8) Collecting samples (st,φt,Φt, st+1) and storing them in the ERU
(9) If the samples are larger than the size of the sample pack then grabbing a sample packet at ERU
(10) If st is the final state then Yt � Φt

Otherwise Yt � Φt + ζminφt+1
Q(st+1,φt+1|θ

− )

(11) Execute RMSPropOptimizer, optimize (Yt − Q(s,φ|θ))2

(12) Every K time slots elapsed, so that θ− � θ
(13) st � st+1
(14) End

End

ALGORITHM 1: DQN-based offloading algorithm.
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Figure 5: Comparison between the number of terminals and the
average delay.
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DQN to construct an offloading strategy in which the system
optimization search is accelerated by system action transi-
tion with delayed reward and introduces the MEC system
model, leading to smaller overall energy consumption. +e
meta-reinforcement strategy proposed in Reference [15] is
computationally complex and lacks a reasonable system
architecture, so the energy consumption increases. In Ref-
erence [10], the task offloading is executed based on the
cloud edge collaborative architecture, but its stable energy
consumption is more than 100 J due to the long distance
between cloud computing centers and the users. Reference
[8] has less computational overhead due to low complexity.

However, the time delay is large, so the overall offloading is
not effective.

5. Conclusion

To alleviate the network load and reduce the risk of network
congestion in traditional cloud computing of IoT, MEC is
introduced to formulate the multiuser computing offloading
problem, where the optimization objective is set to minimize
the total weighted overhead of time delay and energy
consumption to ensure reasonable system resource alloca-
tion. Additionally, the optimization problem is solved using
a DQN-based offloading strategy, obtaining the optimal
scheme. +e results based on the simulation platform show
that:

(1) +e introduction of MEC, which enables the com-
putation task in close proximity to the users, can
reduce system time and energy consumption. +e
average delay of the proposed algorithm does not
exceed 0.9 s, and the average energy consumption
tends to be 65 J when the number of user terminals is
40.

(2) +e proposed algorithm can execute computational
tasks as close as possible by adopting the MEC
system, enabling it to reduce the total system
overhead to a great extent. And the total overhead is
lower than 120 when the number of users is 50.

As the mobile user devices have very limited resources
and suffer from the problem of battery aging, the energy
provided to the users is not enough for them to complete the
whole offloading procedure in some cases. +erefore, how to
renew the energy for mobile users to ensure that offloading
will not be interrupted deserves deep study, which will also
be the focus of our research in the future.
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Figure 6: Relationship between computing capacity of MEC
servers and maximum user delay.
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