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With rapid economic growth and urbanization, the accelerated increase in car ownership has brought massive pressure on urban
traffic, and accurate traffic flow prediction information can provide an important basis for urban traffic dynamic planning. The
existing methods have problems such as low efficiency, large error, and inability to adapt to short-term traffic changes. To
solve the above problems, the CEEMDAN-SE-GWO-LSTM method was proposed in this paper. First, the traffic flow data is
processed for outliers and missing values. The Complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) method is used to decompose the traffic flow data, and sample entropy (SE) is used to reconstruct the
subsequence, which is used to improve the quality of the input data. Then, the Grey Wolf Optimizer (GWO) is used to
optimize the parameters of the long-short-term memory (LSTM) in order to improve the prediction accuracy and prevent the
model from falling into a local optimum. Three models are used to compare with the ensemble model proposed in this paper,
including back propagation neural network (BPNN), LSTM, and long-short-term memory optimized by Grey Wolf Optimizer
(GWO-LSTM). Root mean square error (RMSE) is reduced by 40.9% to 66.7%; R2 score is improved by 1.5% to 7.1%. The
experimental results show that CEEMDAN-SE-GWO-LSTM has a higher prediction accuracy than the existing traffic flow
prediction models. Finally, this paper uses the model prediction error to establish an interval prediction model based on the
kernel density estimation theory, which enhances the generalization of the model and the practical application value.

1. Introduction

1.1. Background. Traffic congestion has become increasingly
severe, generating social problems such as prolonged travel
times and frequent traffic accidents. These issues can be
effectively alleviated by collecting and processing traffic flow
data and building an intelligent transportation system (ITS)
[1]. The recent works on intelligent transportation system
are summarized in Table 1.

Traffic flow forecasting, as an important part of the traf-
fic system, can effectively reduce traffic congestion. Further-
more, accurate traffic prediction information can efficiently
help local governments allocate traffic resources to reduce
traffic congestion. Moreover, the forecast results can then

aid travelers in planning their traffic routes and thus reduce
travel time.

1.2. Literature Review. In cities, various factors can influence
traffic flow, such as weather, geography, and time of day.
These factors are predominately highly nonlinear and vola-
tile. Therefore, if the collected data is used directly in the
experiment, the model will not accurately discover the
changing pattern of traffic flow time series, resulting in low
prediction accuracy. To further reduce the effect of noise
on model predictions, Chen and Chou [8] proposed an
empirical mode decomposition (EMD) method, which
decomposes traffic flow signals to intrinsic mode functions
(IMFs) by using EMD theory. Ensemble empirical mode
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decomposition (EEMD) improves the mode mixing of EMD
by adding Gaussian white noise to the original sequence. Liu
et al. used EEMD to decompose the traffic flow data [9].
CEEMDAN improves the processing of EEMD and achieves
better decomposition results with higher computational effi-
ciency. Lu et al. used the CEEMDAN method to decompose
the raw traffic flow [10]. This paper uses the SE to reorganize
the IMFs obtained from CEEMDAN to complete the dimen-
sion reduction processing of traffic flow data.

Traffic flow can be predicted due to its strong regularity
and periodicity, but its uncertainty increases the difficulty of
prediction [11]. Many efforts have been made to forecast
STTF, and these efforts can be broadly classified into para-
metric and nonparametric methods. Autoregressive inte-
grated moving average (ARIMA) is a standard parametric
method for forecasting time series data. Yu and Zhang pro-
posed switching the ARIMA model and applied it to actual
data obtained from UTC/SCOOT system [12]. Kumar and
Vanajakshi proposed a seasonal ARIMA (SARIMA) model
for STTF prediction [13]. Chen et al. proposed an autore-
gressive integrated moving average with generalized autore-
gressive conditional heteroscedasticity (ARIMA-GARCH)
model to predict traffic flow [14].

Another standard parametric method for time series
prediction is the Kalman filter technique. Kumar proposed
a Kalman filter technique (KFT) model for traffic flow pre-
diction [15]. Guo et al. proposed an adaptive Kalman filter
approach to predict STTF prediction [16]. However,
parametric methods are limited by assumptions such as

smoothness of the time series, which may lead to poor accu-
racy when the time series varies irregularly. Therefore, the
parametric approach has limited applicability in the trans-
portation field. Unlike parametric methods, which are lim-
ited by several preconditions, nonparametric methods have
become the mainstream strategy for STTF prediction. Yang
and Lu proposed a combined wavelet-SVM prediction
model for STTF prediction [17]. Duan used a particle swarm
optimization (PSO) algorithm to select the appropriate
learning parameters of support vector machine (SVM) for
STTF prediction [18]. Alam et al. applied five regression
models to predict the traffic flow in the city of Porto [19].
However, the predictions calculated by these methods are
still unsatisfactory and need to be more precise in their
application. With the development of deep learning and data
volume growth, traffic flow prediction methods based on
deep learning have been gradually proposed and achieved
good results.

Zhang et al. proposed a convolutional neural network-
(CNN-) based deep learning framework for STTF prediction
[20]. Zheng and Huang used a long-short-term memory
(LSTM) network to predict traffic flow data [1]. Qu et al.
proposed a new end-to-end improved LSTM model, M-B-
LSTM, to predict STTF [21]. Ma et al. used a convolutional
neural network (CNN) to extract traffic flow pattern fea-
tures, and the extracted features were fed into an LSTM unit
[22]. Zhao et al. proposed a temporal convolutional network
(TCN) model to predict STTF in the city [23]. LSTM is
widely used to predict time series among the algorithms

Table 1: Recent works on intelligent transportation system.

Number Solved problem Model name

1
Sensor data is analyzed using crow search algorithm optimized

long-short-term memory to correctly identify drivers [2].
Crow search algorithm optimized long-short-term memory
(CSA-LSTM)

2

Spatio-temporal individual mobility graph encoding network with
group mobility assistance (SIGMA) is proposed to encode

individual mobility behavior, which enables recommendation of
new locations [3].

Spatio-temporal individual mobility graph encoding
network with group mobility assistance (SIGMA)

3
This work proposes a deep learning-based traffic safety solution in
5G intelligent transportation systems that can effectively predict

drivers’ intention to change lanes [4].

(1) Lane-change intention recognition based on an LSTM
and historical driving-track data
(2) Lane-change intention recognition based on an LSTM
and natural-driving data
(3) Recognition of lane-change intention based on decision
layer fusion

4

This work presents an edge node deep learning-based traffic flow
detection scheme that combines vehicle detection and vehicle

tracking algorithms and is deployed to the edge device Jetson TX2
platform [5].

A vehicle detection network based on improved YOLOv3
and a vehicle tracking network based on the improved
DeepSORT

5

This work proposes a dynamic and intelligent traffic light control
system (DITLCS) that dynamically adjusts traffic light durations
by analyzing real-time traffic information, which improves the

efficiency of traffic light control systems [6].

Deep reinforcement learning and fuzzy inference system

6

This work presents a radial basis function neural network
algorithm based on quantum particle swarm optimization (QPSO)
strategy for traffic flow prediction in intelligent transportation

system (ITS) [7].

Quantum particle swarm optimization (QPSO) strategy
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related to neural networks. However, this algorithm has sig-
nificant complexities and has the disadvantage of not achiev-
ing global optimality. This paper uses the Grey Wolf
Optimizer (GWO) to optimize the parameters of the LSTM
network, which avoids the situation that the LSTM algo-
rithm falls into local optimum. In this paper, to reduce the
effect of variable nonstationarity on the prediction, we
decomposed the natural traffic flow data using the
CEEMDAN-SE method. Then, we used the Grey Wolf Opti-
mizer (GWO) LSTM algorithm for traffic flow prediction.

1.3. Contribution and Paper Framework. The main contribu-
tions of the paper are as follows.

(i) Noise reduction of the data is performed by the
CEEMDAN-SE method. Due to the volatility and
instability of traffic flow, using raw data directly as
the input to the model can lead to low prediction
accuracy. In this paper, we use CEEMDAN to decom-
pose the original sequences and use SE to measure the
complexity of each IMF component. Moreover, we
combined the subsequences with similar complexities
to reduce input dimension and improve prediction
efficiency

(ii) An optimized GWO-LSTM model is built to predict
the traffic flow data. Since the traditional LSTMmodel
is prone to fall into local optimum, this paper adopts
the GWO algorithm to optimize the parameters of
the LSTM, which improves the model’s optimization-
seeking speed and prediction accuracy

(iii) Multimodel comparison experiments are constructed.
The CEEMDAN-SE-GWO-LSTM model proposed
in this paper is compared with BPNN, LSTM, and
GWO-LSTM. The SSE, MAE, MSE, MAPE, RMSE,
and R2 metrics are calculated separately for the above
models to quantify prediction accuracy

(iv) Use the kernel density estimation function to esti-
mate the model prediction error distribution and
establish an interval prediction model

The rest of the paper is organized as follows. In Section
2, the paper describes the signal decomposition algorithm
used, the optimization algorithm, the deep learning model,
and the probabilistic interval estimation method. In Section
3, the paper presents the experiments performed, which
mainly include the results of the decomposition of the traffic
flow, the tuning of the hyperparameters by the optimization
algorithm, the comparison of the prediction results of the
proposed model with other models, and the results of the
interval prediction. In Section 4, the work done in this paper
is summarized, and the limitations of this research as well as
the future directions of development are described.

2. Proposed Method

This chapter mainly introduces our proposed STTF predic-
tion model. It is well known that traffic flow is a signal that
varies nonstationarily over time (frequency varies over

time). Previously, there were no excellent theories for non-
stationary processing signals. The EMD decomposition
[24] proposed by Huang et al. in 1998, part of the Hilbert-
Huang transform (HHT), was a breakthrough in this kind
of signal analysis. Huang et al.’s method was based upon
spectral decomposition. Spectral decomposition decomposes
the signal into components of different frequencies. In our
proposal, we adopted the theory of CEEMDAN [25] (an
improved version of EMD) to decompose the original non-
stationary traffic flow signal. We decomposed the signals
into several IMF subsignals of different frequencies as the
input of the prediction model GWO-LSTM to improve the
model’s prediction accuracy.

Furthermore, this paper utilised SE to measure the non-
linear complexity of the IMF subsequence processed by
CEEMDAN [26] to reduce the dimension of the IMF subse-
quence. Thus, SE was introduced to solve the problem of
excessive computational scale. In the prediction model, we
utilised the LSTM model based on GWO optimisation to
improve the prediction accuracy and reduce the training
time by optimising parameters such as the number of nodes,
iterations, and learning rate. The superiority of our proposed
CEEMDAN-SE-GWO-LSTM is demonstrated by compari-
son with other benchmark models. We will introduce our
model in detail through the following three aspects: decom-
position of nonstationary traffic flow signals, SE-based IMF
subsignal fusion, and STTF prediction based on GWO-
LSTM. This work’s general arrangement is shown in
Figure 1.

2.1. CEEMDAN-SE

2.1.1. CEEMDAN. EMD (empirical mode decomposition) is a
classic adaptive method for solving nonstationary signal prob-
lems [18]. However, the modal aliasing problem of EMD will
cause severe sawtooth lines in the time-frequency distribution.
It makes certain eigenmode functions lose their physical
meaning, which leads to the degradation of the performance
of EMD.

Based on the CEEMD-SE method, Wang et al. [27] pre-
sented a wind power short-term prediction model. In their
experiment, the RMSE and MAE were 2.16 and 0.39, respec-
tively, better than EMD-SE-HS-KELM, HS-KELM, KELM,
and ELMmodels. In 2020, Tian [28] presented a STTF predic-
tion model. The model was based upon EMD method and
combination model; their proposed model demonstrated
superior performance in STTF prediction. However, the two
models have limitations. Neither model takes noise into
account; neither can automatically adjust to follow changes
in noise.

Therefore, we propose utilizing CEEMDAN [25] method
to decompose the traffic flow time series to reduce its nonsta-
tionarity. CEEMDAN is an EMD-based algorithm, and it uses
the EEMD method to add Gaussian noise to the original sig-
nal. Then, the signal decomposition performance is improved.
The mode mixing problem is solved by the idea of multiple
stacking and averaging operation to cancel the influence of
noise to obtain better mode decomposition results. The pro-
cess of the CEEMDAN algorithm is shown in Figure 2.
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2.1.2. Sample Entropy Theory. N subsequences will be gener-
ated after the CEEMDAN decomposition of the traffic flow-
time series data. Using them directly as the input data of the
GWO-LSTM model will result in a sizeable computational
scale. Therefore, SE, a nonlinear complexity measure, is used

to classify and reconstruct the traffic flow-time series sam-
ples to reduce the complexity of subsequences. SE [29] is a
method based on approximate entropy (ApEn) [26], which
evaluates time series complexities by measuring the proba-
bility of generating new patterns in time series signals. SE

Data preprocessing

Data cleaning

Eliminate outliers Interpolate fill data

Continous non-stationary traffic flow

Modal decomposition

Reconstruction based on sample entropy

Signal processing

Result analysis

Evaluation indicators

Comparison different models

Dynamically update hyperparameters per training

LSTM

Model SSE MAE MSE RMSE MAPE R2

BP 11226551 93.60002 19524.437 139.72987 0.1635115 0.926

LSTM 9756640 79.9905 16938.607 130.1484 0.1513894 0.936

GWO-LSTM 3560689 43.4375 6181.7526 78.6241 0.112324 0.977

CEEMDAN-SE-
GWO-LSTM 1244319 37.3297 2160.2774 46.4788 0.106236 0.992

Prediction model

𝜛 or other wolves

R

MoveD𝛼

D𝛽

D𝛿

GWO optimization

Subsequences result

a1 a3

a2

C1

C3

C2

𝛼

𝛽

𝛿

A

Figure 1: The framework of this paper.
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Figure 2: The process of the CEEMDAN algorithm.
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is defined as the negative natural logarithm of the condi-
tional probability, where self-matches are not included.

SampEn m, rð Þ = lim
N⟶∞

−ln Am rð Þ
Bm rð Þ

� �� �
: ð1Þ

BmðrÞ in Equation (1) is the probability of the two
sequences matching m points under the similarity tolerance
r, and AmðrÞ is the probability of the two sequences match-
ing m + 1 points. The calculation formulas are Equation (4)
and Equation (5), respectively.

Am
i rð Þ = 1

N −m − 1Ai, ð2Þ

Bm
i rð Þ = 1

N −m − 1Bi, ð3Þ

Am rð Þ = 1
N −m

〠
N−m

i=1
Am
i rð Þ, ð4Þ

Bm rð Þ = 1
N −m

〠
N−m

i=1
Bm
i rð Þ: ð5Þ

Ai and Bi are the number of the maximum distance, not
greater than r, between the vector sequences XmðiÞ and Xm
ðjÞ of the dimension m composed of time series data when
the dimension is m + 1 and m, respectively. Specifically, Xm
ðiÞ = fxðiÞ, xði + 1Þ,⋯, xði +m − 1Þg, 1 ≤ i ≤N −m + 1, rep-
resents m consecutive values of x starting from the ith point.

The amount of data is usually limited in specific applica-
tions. Thus, Equation (1) evolved into

SampEn m, r,Nð Þ = − ln Am rð Þ
Bm rð Þ

� �
: ð6Þ

2.2. GWO-LSTM. LSTM was first presented in 1997 [30] as
an algorithm that could make machines learn much faster
and help solve complex artificial long-time-lag tasks. As
the GWO algorithm [31] imitates the hunting mechanism
that the leadership hierarchy of grey wolves in nature, it
could be used to optimize the LSTM model. Our presented
model has a significant optimization effect compared to
LSTM neural networks and BP neural networks. Thus, this
paper uses GWO-LSTM method to complete the postpro-
cessing of CEEMDAN-SE. The general process of the
GWO-LSTM framework is shown in Figure 3.

2.2.1. LSTM. LSTM is designed to have the problem in long-
long-term dependence solved. Compared to RNN, LSTM
has three more gates—forgetting gate, input gate, and output
gate—enabling it to achieve better results in traffic flow
prediction.

Since the output is a linear combination of the inputs, we
need to enhance the nonlinearity of LSTM. The enhance-
ment will be done through the use of the activation function

as it exacerbates the nonlinearity of the network model.
Common activation functions for LSTM are tanh (-1, 1),
sigmoid (0, 1) and relu [0, 1). Following experimental verifi-
cation, tanh (-1, 1) presents better results to our problem
and is selected as our activation function.

(1) GWO. We first divided the traffic flow prediction into
four layers and entered them into the GWO model to com-
plete the initialization, with the first three layers being of
greater significance. We defined α as the optimum solution.
During the hunt, the behavior of grey wolves rounding up
their prey was defined as Equation (7) and Equation (8),
where t is the current iterative generation, A and C are the
coefficient vectors, and Xp and X are the prey position vector
and the grey wolf position vector, respectively.

D = CXp tð Þ − X tð Þ�� ��, ð7Þ

X t + 1ð Þ = Xp tð Þ −AD: ð8Þ
The calculation equations of A and C are shown in

Equation (9) and Equation (10), where α is the convergence
factor. As iterations decreases linearly from 2 to 0, the norms
of r1 and r2 are random numbers between [0, 1].

A = 2αr1 − α, ð9Þ

C = 2r2: ð10Þ
In the GWO model, the upper layer leads the lower layer

to the set of update equations shown in Equation (11), and
after completing the update, the GWO model outputs Xðt
+ 1Þ to the LSTM model according to Equation (12). Subse-
quently, the model calculates the loss function and adjusts
the learning rate of the GWO model according to the vector
X.

Dα = C1Xα − Xj j,
Dβ = C2Xβ − X

�� ��,
Dδ = C3Xδ − Xj j,

8>><
>>: ð11Þ

X t + 1ð Þ = Xα − A1Dαð Þ + Xβ − A2Dβ

� �
+ Xδ − A3Dδð Þ

3 :

ð12Þ
(2) GWO-LSTM. We referenced the data on the LSTM
model to derive a prediction of the baseline model. Subse-
quently, we incorporated the LSTM prediction results into
the GWOmodel to obtain the new four strata. Once the four
strata are obtained, GWO will calculate the coefficient matri-
ces A and C according to Equation (9) and Equation (10).
Then, it will calculate the ratios of each stratum in the four
strata using A and C, inputting them into the LSTM model
for automated parameter tuning, and continue to train the
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LSTM model. The above process will then repeat until a
user-specified number of iterations is reached.

Machine learning training aims to update the parameters
and optimize the objective function. In this paper, the GWO
is set as an optimizer to perform a local estimation (jAj
shown as Equation (9)) based on the results of each LSTM
iteration to minimize the loss function. We use 1024 as the
initial batch size and 0.01 as the initial learning rate. GWO
decides to update or not update (eliminate or not eliminate)
the population of grey wolves based on the results of each
LSTM iteration and, thus, dynamically adjusts the learning
rate of the LSTM each time. In addition, our GWO network
is optimized for four layers.

Finally, this paper constructs a CEEMDAN-SE-GWO-
LSTM model combining GWO-LSTM with CEEMDAM-
SE to obtain a more accurate traffic flow prediction. Repeat-
ing the above process, when jAj is less than 1, the local opti-

mum is trapped at this time; when jAj is greater than 1, the
global optimum is reached.

2.3. Probability Interval Prediction. We define the STTF pre-
diction error ε as the deviation between the actual observed
value Pobs of traffic flow and the predicted value Ppred of traf-
fic flow at a certain moment, defined as

ε = Pobs − Ppred: ð13Þ

Then, we use the historical data of prediction error to
perform probability density function fitting; the purpose is
to avoid the contingency of STTF error accuracy using ker-
nel density estimation (KDE). Finally, we use the inverse
cumulative distribution function (ICDF) to expand the pre-
diction results into intervals to improve the prediction accu-
racy and generalization.

Recombination signal after CEEMDAN-SE processing

Dynamically update hyperparameters per training

LSTM

A AAAAAAA

 𝜛or other wolves

R

MoveD𝛼

D𝛽

D𝛿

GWO optimization

a1
a3

a2

C1

C3

C2

𝛼

𝛽

𝛿

Estimated position of prey

Figure 3: The presented GWO-LSTM framework.
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Due to the randomness of STTF and its dependence on
time characteristics, the prediction error of STTF does not
conform to the assumption of normal distribution, as is
shown in Figure 4 that the error distribution of our proposed
method does not belong to the normal distribution after
being discriminated by the Q-Q diagram.

Therefore, the normal distribution based on the parameter
estimation method is not suitable for the confidence estimation

of STTF problems. Correspondingly, nonparametric estimation
methods do not require prior assumptions about the distribu-
tion of prediction errors. Instead, it fits a probability distribution
according to the input data, which is more adaptable to nonsta-
tionary data.

As a nonparametric probability density estimation
method, KDE has a stable fitting effect, so this paper uses
KDE to predict the confidence interval of traffic flow. KDE
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assigns the probability of each point to nearby intervals, and
the final density function can be obtained by accumulating
the interval densities of all points.

Assuming the sample set X = fx1, x2,⋯,xng of traffic
sequence data, all sample points obey the distribution f ðxÞ,
let the function f̂ ðxÞ be the KDE of f ðxÞ, f̂ ðxÞ can be
expressed as

f̂ xð Þ = 1
nh

〠
n

i=1
K

x − xi
h

	 

: ð14Þ

In the upon formula, xi represents the ith sample in the
dataset, h is the window width, which represents the interval
division size of the sample error distribution, and KðxÞ is the
kernel function, which determines the role of each sample

point xi in density estimation. In practical applications, the
Gaussian kernel function is the most widely used due to its
good mathematical properties. This paper selects the Gauss-
ian kernel function for kernel density estimation, and its
expression is as

K xð Þ = 1ffiffiffiffiffiffi
2π

p e−x2/2: ð15Þ

2.4. Inverse Cumulative Distribution Function. The inverse
cumulative distribution function gives the value associated
with a specific cumulative probability. Therefore, this paper
uses ICDF to determine the confidence interval. That is,
we want to expand the prediction results into an interval
and discuss whether the method can include observations
in our prediction interval, thereby further improving the
prediction accuracy [32].

To get the ICDF, the cumulative distribution function
(CDF) of the error function needs to be calculated first.
The cumulative distribution function of a random variable
X is a function on the real numbers that is denoted as F
and is given by Equation (16), where x is for any x ∈ R.

F xð Þ = P X ≤ xð Þ =
ðx
−∞

f tð Þdt: ð16Þ

The ICDF and CDF are inverse to each other, so we draw
the ICDF diagram under different algorithms, as shown in
Figure 5, which is the ICDF diagram of the error distribution
of the LSTM algorithm on the dataset used in this paper. The
ICDF and CDF are inverse to each other, so we draw the
ICDF diagram under different algorithms, as shown in the
figure, the ICDF diagram of the error distribution of the
LSTM algorithm on the dataset used in this paper. Then,
we take the 80%, 90%, and 95% confidence intervals, respec-
tively, and calculate their error intervals under different
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Table 2: The reconstructed subordinate list.

IMFn
Hse
(n)

Merged sequence
New IMF
component

IMF1 1.142 IMF1, IMF2, IMF3 NEW1

IMF2 1.003

IMF3 1.088

IMF4 0.555 IMF4, IMF5 NEW2

IMF5 0.528

IMF6 0.389 IMF6, IMF7 NEW3

IMF7 0.228

IMF8 0.068
IMF8, IMF9, IMF10, IMF11,

IMF12
NEW4

IMF9 0.041

IMF10 0.026

IMF11 0.011

IMF12 0.002
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algorithms, so the predicted value can be expanded based on
the error interval. Thereby, a prediction result with band-
width is generated. It makes the prediction model results
more accurate, and the specific results will be shown in the
experiments chapter.

3. Experiment

The section in question will thoroughly examine the related
experiments. Notably, the CEEMDAN-SE and the GWO-
LSTM were initially tested on our datasets. Finally, we com-
bined the two models and created CEEMDAN-SE-GWO-
LSTM. CEEMDAN-SE-GWO-LSTM will then be placed

into direct comparison with other state-of-the-art models
to evidence how it surpasses other models.

3.1. Sample Selection and Data Sources. Among the most sig-
nificant ways of travel, flying remains one of the most prev-
alent means in which the public opts. The geographical
location of an airport generally is distant from an individ-
ual’s area of residence. Hence, providing accurate traffic
information is essential for planning in advance. This paper
utilizes the measured traffic flow data of high-speed stations
near the M25 Heathrow Airport to ensure the reliability and
authenticity of predicated results. The dataset is the traffic
flow data for 30 consecutive days from September 1, 2019,
to September 30, 2019, with a collection frequency of 15
minutes. The data volume became 2880 ensuing the interpo-
lation method. The interpolation method was applied to fill
in the missing values of the time series and remove the out-
liers. In this paper, we uniformly divided the dataset into the
training set and test set according to the ratio of 8 : 2.

3.2. CEEMDAN-SE. We first employed the CEEMDAN
method to decompose the traffic flow. After the CEEMDAN
decomposition (as shown in Figure 6), we obtained the first
11 IMF components with different complexities and one
IMF residual component with a relatively gentle change.

In order to avoid the input signal data being too large, we
introduced the theory of SE. We introduced said theory in
order to group and reconstruct the IMF subsignals that were
obtained after decomposition. Figure 7 is the SE of the IMF
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Figure 8: The reconstitution components of heat load through CEEMDAN-SE.

Table 3: The prediction results of GWO-LSTM.

Features Iterations
LSTM GWO-LSTM

Train Test Train Test

1/2 100 0.0319 0.0291 0.0210 0.0197

1/2 200 0.0305 0.0282 0.0153 0.0125

1/2 300 0.0269 0.0253 0.0109 0.0068

3/4 100 0.0286 0.0253 0.0219 0.0205

3/4 200 0.0260 0.0244 0.0175 0.0186

3/4 300 0.0245 0.0226 0.0130 0.0152

2/3/4 100 0.0218 0.0188 0.0090 0.0107

2/3/4 200 0.0185 0.0169 0.0081 0.0069

2/3/4 300 0.0160 0.0120 0.0075 0.0048
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component. The IMF subfunctions of similar SE were super-
imposed to reduce the input sample dimension, then feed it
into the GWO-LSTM model.

In this paper, the entropy value of each component (as
shown in Figure 7) is used as the judging standard; each
IMF component is reorganized. Specifically, IMF1, IMF2,
and IMF3 have similar complexities and thus can be com-
bined into recombined components. Similarly, the remain-
ing IMF components are merged and recombined; the
recombination result is shown in Table 2, and the new sub-
sequence after reconstruction is shown in Figure 8.

3.3. GWO-LSTM. Experiments are conducted based on the
above data to verify the effectiveness of the GWO-LSTM
model on traffic flow prediction. The initialized batch size
is 1024, and the learning rate is 0.01. The number of implied
layers of the LSTM network chosen are two. The learning
rate of the LSTM model, thus, is continuously and dynami-
cally adjusted in the iterative process using the GWO algo-
rithm with four implied layers until the loss function is
obtained below a predefined specific value. In the experi-
ments of this paper, we uniformly set the number of itera-
tions to 500 to train GWO-LSTM and CEEMDAN-SE-
GWO-LSTM.

In order to obtain better results from the CEEMDAN-
SE-GWO-LSTM model, we need to pretrain the GWO-
LSTM. Our optimization target is the loss function; the loss
values of LSTM and GWO-LSTM with different feature
combinations and iteration numbers are shown in Table 3.
The numbers in column features shown in Table 3 stand
for the corresponding layers that the GWO optimizes.

3.4. Comparative Analysis of Prediction Models. To further
illustrate the effectiveness of the CEEMDAN-SE-GWO-
LSTM model, the BP model, standard LSTM model, and
the improved GWO-LSTM model was selected for
comparison.

As more error evaluation indexes are found in traffic
flow prediction, six commonly indexes are used to evaluate
the model in this paper. The related equations of the six
error evaluation indexes mentioned are shown from Equa-
tion (17) to Equation (22), where n is the number of test
set data, and yi and ŷi are the actual traffic flow value and
predicted traffic flow value at moment i, respectively.

MAPE = 1
n
〠
n

i=1

ŷi − yi
yi

����
���� × 100%, ð17Þ

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
ŷi − yið Þ2

s
, ð18Þ

MSE = 1
n
〠
n

i=1
ŷi − yið Þ2, ð19Þ

SSE = 〠
n

i=1
ŷi − yið Þ2, ð20Þ

MAE = 1
n
〠
n

i=1
ŷi − yij j, ð21Þ

R2 = 1 − ∑n
i=1 ŷi − yið Þ2

∑n
i=1 ŷi − yið Þ2 :

ð22Þ

The results of different models are shown in Table 4, and
the comparison of prediction results of different models is
shown in Figures 9 and 10.

Table 4 shows the quantitative results of different
models, and it can be seen that our method performs the
best among all the compared models. From a numerical
point of view, the proposed model is 88.9%, 60.1%, 88.9%,
66.7%, and 35% lower in the SSE, MAE, MSE, RMSE, and
MAPE evaluation indicators of the BP comparison model,
and 7.1% higher in the R2 evaluation indicator. Similarly,
the values of our model for LSTM model are 87.2%, 53.3%,
87.2%, 64.2%, 29.8%, and 6%, respectively, and the values
for GWO-LSTM are 65.1%, 14.1%, 65.1%, 40.9%, 5.4%,
and 1.5%, respectively.

For the analysis of different models, Figure 10(a) is the
result of the BP neural network. The limitation of the BP
network is that it has a significant error in the prediction
of extreme values, and traffic congestion often occurs in
the period when the extreme values are generated.
Figure 10(b) is the result of the LSTM model. The predicted
value can better reflect the traffic flow trend, and it performs
well at extreme values. However, when the traffic flow has a
long-term trend, it has a hysteresis, which cannot perfectly
solve the problem of timely forecasting. Figure 10(c) is
GWO-LSTM, and it shows that the error performs well in
each quantization index. However, the forecast results will
have large fluctuations at certain times; this is due to the
characteristics of LSTM and nonstationary signals. When
LSTM uses the node information of adjacent nonstationary
signals, it will be affected by a considerable fluctuation value
and generate a significant prediction error. Figures 9 and
10(d) show the prediction results of each subsequence and
the sum of each subsequence, respectively. Our proposed
modal decomposition can better suppress this noise effect.

Table 4: The result of different models.

Model SSE MAE MSE RMSE MAPE R2

BP 11226551 93.60002 19524.4368 139.72987 0.16351147 0.926

LSTM 9756640 79.9905 16938.607 130.1484 0.1513894 0.936

GWO-LSTM 3560689 43.4375 6181.7526 78.6241 0.112324 0.977

CEEMDAN-SE-GWO-LSTM 1244319 37.3297 2160.2774 46.4788 0.106236 0.992
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It can make better use of the information of each subse-
quence to obtain an integrated model with a stable trend
response, adapting to extreme values, overcoming delay
effects, and practical significance. Finally, we integrate the
prediction results of different models into Figure 10(e).

3.5. Analysis of Interval Prediction Results. First, we use KDE
to estimate the distribution functions of the prediction
errors of different models in the previous section and then
calculate the error intervals under different confidence levels
through ICDF. Table 5 is the error interval of different
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Figure 10: Continued.
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models under different confidence levels. From a longitudi-
nal perspective, the error interval of any model increases
with the increase of confidence. As the model continues to
be optimized, horizontally, our proposed model performs
the best with any error interval at any confidence level.

Figure 11 shows that in the BP and LSTM models, the
prediction error is large, and the prediction is hysteretic,
which leads to a traffic flow prediction error of 200-300
when the confidence level is 80%. This is very disadvanta-
geous for traffic planning dynamic planning. At the high
confidence level of 80% in our proposed model, the error
every fifteen minutes can be controlled within 100, and it
can be seen from the figure that most of the true observa-
tions are within the prediction interval. Even some extreme
fluctuations are included, which shows that the interval pre-
diction proposed in this paper can improve the accuracy of
STTF.

4. Conclusion and Discussion

In this paper, we proposed a method to solve accurate short-
term predictions for signals, using real datasets for model
validation. The method is generally integrated into two
parts: CEEMDAN-SE and GWO-LSTM. First, we performed
data cleaning on the traffic flow dataset by removing outliers
and invalid values and then performing interpolation to
ensure data consistency. Secondly, the CEEMDAN method
is used to deconstruct the time series data of traffic flow. In
order to prevent excessive computational scale, we intro-
duced SE to measure the nonlinear complexity of the IMF
subsequence processed by CEEMDAN to reduce the dimen-
sion of the IMF subsequence. The data is then fed into the

optimised GWO-LSTM model. GWO minimises its loss
function by continuously and dynamically optimising the
hyperparameters during training with different sequences
to achieve the desired accuracy. Finally, the component pre-
diction results are integrated to obtain the predicted value,
and the quantitative calculation of the evaluation index is
carried out. The results evidence how our proposed ensem-
ble model performs the best compared to other commonly
used models. In order to improve the generalization of our
model, we propose an interval prediction model based on
KDE theory, which can increase the accuracy and be more
practical. Our method can accurately predict extreme values
with a rapid response to sudden changes in short-term
trends. After the modal decomposition, the component fea-
tures can be better utilised so that the final predicted value
and its derivative will be smoother and have more practical
application significance. The research shows that the ensem-
ble model proposed by us can improve STFF prediction
accuracy to a certain extent, which can provide a reference
for related research.

Our work also presents certain limitations. More
methods to evaluate the importance of the variables for fea-
ture selection might be required. Some scholars use a ran-
dom forest algorithm (RF) to evaluate it, which more
rigorously demonstrates the excellence of their model. Fur-
thermore, both CEEMDAN-SE and GWO-LSTM could be
improved if the two parts are combined well. We initial
GWO model by random values in different values. It might
be better to fix the values adapted to CEEMDAN-SE.

Thus, our future work is to solve the spiking phenomenon
after CEEMDAN decomposition; the reason is that the
decomposition is not thorough enough and has
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Figure 10: The prediction results of traffic flow prediction.

Table 5: Error fluctuation intervals for different models.

Confidence BP LSTM GWO-LSTM CEEDMAN-SE-GWO-LSTM

95% (-275.664, 288.577) (-263.724, 224.41) (-111.734, 113.799) (-96.7679, 15.1717)

90% (-212.354, 200.558) (-189.884, 154.638) (-79.4818, 93.3297) (-89.2135, 6.25768)

80% (-156.438, 130.56) (-140.351, 98.9233) (-57.4794, 68.4463) (-79.7756, -0.818)
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pseudomodalities. Using the IMF component of the original
noise signal as the noise for each calculation of the IMF may
better avoid pseudomodal phenomena and reduce unneces-
sary components to improve the input data quality of subse-

quent prediction models. For better prediction, other better
time-series models can be applied to form a combined model.
For instance, when given better time-series model X, scholars
could consider using the GWO model to optimize the time-
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series model, and we hope to be able to consider other dimen-
sion features to get better prediction performance, find the
most suitable combination, and use a machine learning model
like random forest to evaluate.
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