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Symmetry methods for differential equations are a powerful tool for the solutions of differential equations. It linearizes nonlinear
differential equations, reduces the order of differential equations, reduces the number of independent variables in partial dif-
ferential equations, and solves almost all those differential equations for which the other analytic methods fail to solve them.
Similarity transformation is a particular case of symmetries, but it is easy and often used to deal with differential equations. The
similarity transformation can do all the aforementioned works. In this research, we use the similarity transformation to solve
different nonlinear differential equations. Particularly, we will apply this transformation to the nonlinear Navier-Stokes partial
differential equations to reduce them to ordinary differential equations. Ordinary differential equations are easy to deal with than
partial differential equations. Some nonlinear physical examples of ODEs and PDEs are given to show that the similarity

transformation solves those problems where the other analytic methods fail to work.

1. Introduction

Differential equations (DEs) are the dynamical equations,
which describe the motion of particles. We have a dynamic
world, everywhere anytime some dynamic phenomena
occur. When mathematicians model a natural phenome-
non, they put it in a mathematical system called DEs. DEs
are broadly divided into ordinary differential equations
(ODEs) and partial differential equations (PDEs). These
DEs arise from many purely mathematical considerations,
that is, the mathematician defines dependent and inde-
pendent variables along with parameters corresponding to
the given problem and put some constraints accordingly to
model and put the given natural phenomenon in a beautiful
and elegant short mathematical equation. There is a wide

spectrum of different types of DEs, and various techniques
and methods have been developed to deal with the
quantitative and qualitative behavior of these equations.
The field of fluid dynamics, for example, requires different
constraints and techniques to model the fluid flow through
different media and to make the computation of their
solutions possible. The techniques which can handle linear
PDEs such as integral transforms and Eigen functions can
transform them into ODEs, which is comparably easy to
solve. These techniques have some contributions in solving
nonlinear PDEs [1]. There are numerous PDE systems that
described natural phenomena. Some well-known systems
are different types of wave and heat equations, Maxwell
equations, Navier—Stokes equations, Schrodinger equation,
Dirac equation, etc.
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The majority of the natural phenomena are nonlinear in
nature and are therefore modeled into different orders of
nonlinear PDEs. Nonlinear PDEs [2, 3] are generally more
complex and are therefore difficult to solve using well-
established analytical and/or numerical techniques. Most of
the time, nonlinear PDEs have no exact solutions. In such
conditions, in the majority of the cases, we go for their
qualitative behavior or at most solve them numerically. It is
often very difficult to solve nonlinear PDEs analytically, such
as equations of fluid mechanics and equations of plasma
dynamics. [4, 5]. However, symmetry methods play an
important role to deal with nonlinear DEs (ODEs and PDEs
both). The similarity transformation (scaling symmetry) is a
way that regroups the existing variables and defines new
variables and puts the given harder nonlinear problem in the
most simplest and easy form. In most cases, the problem
becomes solvable or at least we reduce the order of ODE and
the number of independent variables involved in the PDEs.
In the case of two variables, PDEs become ODEs. The ODEs
are easy to deal with as compared to PDEs.

This method was developed in the early twentieth
century by Norwegian mathematician Sophus Lie, who
observed that regrouping of variables is applicable in all
types of DEs. The solutions obtained through similarity
transformation are called similarity solutions, which mostly
satisfy simpler equations than the real PDEs. The one-one
correspondence between the solution space of the original
and new solution space exists, and because of transforma-
tion, one can jump back and forth easily. The significance of
similarity solutions lies in their simple calculation. We will
apply the similarity conversion technique to PDEs to
completely solve them or at least simplify them. This
transformation decreases the number of autonomous (in-
dependent) variables of the system of PDE at least one less
than that of the original equation [6]. Hussain et al. [7]
recently studied the Hirota-Satsuma coupled system of KdV
equations using OHAM with the addition of Daftar-
dar-Jeffery polynomials. We also employ asymptotic ex-
pansion to the reduced Navier-Stokes equation. An
asymptotic expansion is the series expansion that has the
property of truncation after a finite number of terms and
hence gives an approximate solution of the given problem.
Power series is the most widely used form of an asymptotic
expansion. Integral transforms such as Mellen and Laplace
transforms and the Euler-Maclaurin summation formula
generate such kinds of expansions. Here in this research, we
are going to apply the similarity transformation to solve the
nonlinear ODEs and PDEs. Specifically, we are interested in
the solution of Burgers and Navier-Stokes equations.

Here in this research, we are going to apply the similarity
transformation to solve nonlinear ODEs and PDEs. Spe-
cifically, we are interested in the solution of Burgers and
Navier-Stokes equations. The organization of the present
article goes in the following fashion: basic definitions related
to Lie symmetries and similarity transformations are given
in Section 2. Subsections 2.1-2.5 show the power of the
similarity transformation that how this transformation
solves the nonlinear ODEs and PDE. Burgers equations are
solved by using appropriate similarity transformations in
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Section 3. Section 4 is devoted to the similarity solution of
the inviscid Burgers equation. The system of Navier—Stokes
equations of fluid dynamics is PDEs. By using the similarity
transformations, these equations are converted into a system
of ODEs, given in Section 5. The highlights of the investi-
gation are concluded in the final Section 6.

2. Basic Definitions

In this section, we give some basic definitions related to Lie
symmetries and solutions of DEs. The similarity symmetry
transformation and similarity solution is a special case of the
Lie symmetries. Our main concern in this paper is to use the
similarity transformation for the solution of DEs. What is
more special about the similarity transformation is that one
can use it without the knowledge of symmetry methods. That
is why we select the similarity transformation among others
to handle some nonlinear natural phenomena.

2.1. Lie Symmetries and Their Uses. We have an n' ordinary
differential equation of the form

E(x.y,y"...y") =0. (1)
A transformation,
X =X(x,y,¢),
X(x,9,0) = x,
Y =Y(x, ¢,
Y (x,9,0) =y,
’ X :jc/(X,Y,e), 2
x(X,Y,0) =X,
y=y(XY,e),
y(X,Y,0) =Y,

is said to be symmetry transformation of equation (1) if it
remains invariant under this transformation, that is,

E(x, 9,y ...Y")=E(X,Y,Y'...Y") 3)
=0.
An n' order extended Lie symmetry generator is
" 0 0 0
LY =ECop) e nGe 5o nelnry) 55
(4)
+ + ( ! n) a
et XYy .y >
T %
where
dmy  dE
g ®

where k is the order of differentiation. If equation (4) is the
Lie symmetry generator of the differential equation (1), the
Lie symmetry equation takes the form
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LYE(x, 9,9 ...yl = O. (6)

The Lie differential equations corresponding to equation
(6) are

dx

Ele—yo = E(x: )’),

dYy 7
X(x,9,0) = xaleﬁo =1(xy), @)

Y (x,9,0) = y.
The integration of Lie’s equation gives the corresponding

Lie symmetry transformation.

Example 1. Consider the first-order nonlinear ODE

dy _(y’
a = F + X. (8)
It admits the similarity symmetry generator

Loxl 420 (9)
- Tox yay'

Using the Lie differential equation, we can find the
corresponding Lie symmetry transformation

X = ex, (10)
10
Y =e*y.
The corresponding similarity transformation is

s=x,

2 (11)
t=—
Y

The differential equation (8) in the similarity variables s
and t takes the form

ds_ 1 .
a  (t-1)”
which is linear, the solution of which is
1
= +c. 13
$=17 +c (13)

The solution in the original coordinates takes the form

ln(x)=++c. (14)
(*-»)

The ODE given in equation (8) is nonlinear and none of
the analytic methods will be applicable here, but we see that
the similarity transformation converts it into linear and easily
solvable equation. For PDEs, consider a function v(x, t), the
dependent and independent variables can be changed by a
mapping (x,t,v) & (X, T, V), or more explicitly,

3
T=T(x,v,¢),
T(t,x,v,0)=t—=t=t(T,X,V,¢),
t(T,X,V,0)=T,
X =X(t,x,v,8),
X(t,xv,0)=x=x=x(T,X,V,e¢),
x(T,X,V,0) =X,
V =V {(t,x,v,¢),
V(t,x,v,0) =ve—=v=v(T,X,V,¢),v(T, X,V,0) =V,
(15)

where T, X,V are smooth invertible functions of the pa-
rameter € and the given variables [8, 9]. A PDE is trans-
formed by symmetry transformations given in equation
(15), if V. = V(T, X) is the solution of given PDE just like
the solution v(t,x). In other words, a symmetry trans-
formation maps the solution set of the original PDE to the
solution set of the target PDE and there is one corre-
spondence between both the solution sets. Let us explain
this by an example.

Example 2. The given PDE
v (t, x) = v(t, x)v,, (£, x), (16)
which admits the Lie symmetry generator

== (17)

The corresponding similarity transformation takes the
form

T = €°t,
X = e%x, (18)
V=w

Suppose the solution of the given PDE is v(x,t); it is
simple to check that V (T, X) = v(e‘t, e??x) is also the so-
lution simply by putting it into the given PDE, that is,

9T V (T, X) = ¢ 0,v(T, X)

= V(T, X)dxxV (T, X)

= Py (T, X)0,, (v(T, X))
e “v(T, X)v(T, X).

(19)

From the above equation, we cancel the term e™* from
both sides and get

V (T, X)y = V(T, X)Vx x (T, X). (20)

Hence, the symmetry transformation given in equation
(18) does not change the structure of the given PDE. The
PDE given in equation (16) also admit the similarity
transformation



4
T =t,
X=ln(x), (21)
14
1% =—2.
X

This transformation reduces the PDE (11) to a first-order
ODE

dv(T) 2
_ = 22
T 2V (T) = 0, (22)
the solution of which is
1
T) =- 3 23
viT) 2T -C (23)

The solution of the PDE given in equation (16) takes the
form

2
v(t,x) = —th_ - (24)

We see that the PDE (11) is not solvable by another
analytic method, but the similarity transformation given in
equation (21) easily solved it.

Generally, we can define a similarity transformation for a
system of PDEs in n independent variables (x!,x?...x")
and m dependent variables u/(x!,x*...x"), j=
1,2,3...m, as

—i ea' i

X =e x, i=123...n

2 (25)

w=e¢"v, j=12...m,

where ¢ is the parameter and a', bl are constant to be de-

termined correspondingly.

2.2. Similarity Transformation. The transformations which
reduce the number of independent variables of a PDE (or a
system of PDEs) at least one less than that of the original
equation are designated as similarity transformations [10, 11].
Example 3. Consider the nonlinear PDE,

Uy (£, x) = U2 (£,x) = 0, (26)

admits the similarity Lie symmetry (scaling symmetry generator)

L=t%—2u% (27)
The corresponding similarity transformations is
T =In(t),
X =x, (28)
U = ut’.

2.3. Similarity Method. The method which searches for such
a similarity transformation is known as similarity method.
For example, the transformation given in equation (28) is the
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similarity transformation corresponding to the PDE given in
equation (26).

2.4. Similarity Equations. When we transform a PDE or
system of PDEs, Q) = 0 (say), in n independent variables to a
PDE, Q=0 in n-1 independent variables, then the
equation is known as similarity equation or similarity
representation of the system of Q[12, 13]. Using the simi-
larity transformation given in (19) in the PDE given in

equation (26), we have the ordinary differential equation,
(U (X)-6U(X) = 0. (29)

The similarity transformation given in equation (28)
not only reduces the independent variables in the PDE
given in (26) but also reduces the order of differentiation.
We see that the ODE given in equation (29) is first-order
ODE.

2.5. Similarity Solution. The solution which is obtained by
employing the similarity transformations is known as
similarity solution [14]. The nontrivial similarity solution of
the reduced ODE given in equation (29) is
3
U :E(X—Cl)z. (30)

When we take the back transformation, the solution in
the original coordinates become

u(t, x) :g(x—tcl)z. (31)

Thus, we solve a nonlinear PDE given in equation (26),
with the help of similarity transformation, given in equation
(28). The existing analytic methods other than symmetry
methods will not be able to solve equation (26).

3. Solution of Burgers Equation by
Similarity Transformation

Afterwards, we will use the similarity transformation to
handle the problems. The detail calculation for finding the
similarity transformation corresponding to each PDE is
given. There is no need of the symmetry methods’ knowledge
for finding the similarity transformation. First, we consider
the Burgers equation. In the universe, most of the physical
phenomena are nonlinear, and the corresponding mathe-
matical models are nonlinear PDEs. Burgers equation is one
of the most celebrated PDEs, which models the fluid flow in
a dissipative system given by [15-17]

ov(x,1t) ov(x,t)  v(x,t)
ot ax e

where v(x,t) is the velocity field, x is the spatial coor-
dinate, t is the time, and g is the viscosity parameter. The
term v, models the diffusion and the vv, models the
convective flow, introducing the similarity transforma-
tions as

(32)

+v(x,t)

>
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z, =&'x,
s=ét, (33)
w=¢",

where ¢ is a positive parameter.

As
w=¢, (34)
therefore
ov ow
o 35
ot Os (35)
and
ov ow
AR Gt
Ea oz, (36)
Similarly,
v, 0w
— = T—. 37
ox” 0z; 37

Putting (35), (36), and (37) in (32), we get
ow M,yazw
=¢ —_—
S aZl azl
(38)
2
p-yow wsa-zva_w - SZa—Va_w.
Os 0z, 0z;
Equation (38) will be invariant under the similarity
transformations, if

p-y=0.
a—2y=0, (39)
20—y =0.

Solving (39), we get

N | —

(40)

NI ™R
—

So, we take the solution of (47) of the form
v(x,t) =" g (y),
y = xt P,
v(x,t) = tf(”z)g(w),
Y= xt™ 2,

(41)

Differentiating (41) with respect to t, we obtain

1
t -(3/2)

g -t yg (). (42)

Ve =

Now, differentiating (41) twice with respect to x, we get
respectively

v =t g (), (43)

Ve = t7(3/2)g” (ll/) (44)

Putting (41), (42) (43), and(44) in (32), we obtain
1
t —(3/2)

t (3/2) t—(1/2)

g(y) - vg' (y) + gt g (v)

- t—(3/2)g// (l//)
(45)
After simplification, we get
" 1 1 ! !
g W+gW+vg W -g(yg (y)=0.  (46)
Equation (46) can be written as
i ! 1// ! 1 2 r_
(g(wn+(5g(w)-—jg(wn =0.  (47)
Integrating (47), we get
, 1
g W +gg(w) —59' W =m (48)

Equation (48) is the Riccati-type equation, which has
standard solution. Its solution is

—2e ¥ (49)
9y = C + fmer f (y/2)

4. Solution of Inviscid Burgers Equation by
Similarity Transformation

The inviscid Burgers equation [18, 19] for which y=0
models the nondissipative flow which is given by

Bv(aJ:, t) (o) 61/(—(;;, t) _ (50)
Introducing similarity transformations, we have
z =¢"x,
s=¢'t, (51)
u=_¢v,
where ¢ is a positive parameter.
As
u=_ev, (52)
therefore
ov 5 ,0u
P ¢ Vg, (53)
and
X (54)

Putting (53) and (54) in (50), we get



ou ou
-y a=2y = 0. 55
& P +e5 Ty g 0 (55)

Equation (55) will be invariant under the similarity
transformations, if

y=a-p. (56)
Therefore, we look for the solution of the form

v, t) =t"g(¢), ¢= ai/;;
t (57)
=t g (¢).

Let (a/f)—-1=m, then oa/f =m+1; therefore, (25)
becomes

X
+1°

vix,t) =t"g(¢), ¢= i (58)

Differentiating (58) with respect to t, we get
v=t" mg(@) - m+ Dog @), $= o (59)
Now, differentiating (58) with respect to x, we get

v (x,t) =t"" g (¢) tim (60)

Putting (60) and (59) in (54), we obtain
t"" [mg (9) — (m + 1)pg' ()] + g ()g' () =0.  (61)

For m =0, (61) becomes

' [-¢g () + g(#)g' ($)] = 0, (62)
since t # 0, therefore
-¢g' (9) + g(¢9)g' (¢) =0, (63)
This gives
9(¢) = ¢ (64)
Therefore,
9(¢) = ti,ﬁ ¢= ti,ﬂ (65)

As (a/f) — 1 =m, but m =0, therefore o/ff = 1. Now,
equation (64) becomes

g =5 (66)
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$0
v(x,t) =t"g(¢). (67)
Putting m = 0 and g(¢) = x/t, we have

v(x,t) = ;, (68)

which is a solution of the inviscid Burgers equation.

5. Reduction of Navier-Stokes Equations by
Similarity Transformations

Fluid dynamics is a hot area of research and almost all
dynamical equations that describe the motion of fluids are
nonlinear. The basic ingredients of the fluid dynamics are the
Navier-Stokes equations of fluid motion. The Navier—Stokes
equations are nonlinear in nature and thus it is very difficult
to find their exact/analytical solutions. Therefore, different
constraint/assumptions are needed to approach the possible
solutions of these equations. The analytic solution of the
Navier-Stokes equations is possible only if we ignore the
complexities and nonlinearities in the equations, or we
proceed toward the possible solutions with numerical
computation. But, these types of solutions not provide the
actual picture of problem. The general compact form of the
Navier-Stokes equations is

dp
E'{'[)(VV)—O,

av _ VP + uv*v
Py =P8 uvov.

where p(t) is the fluid density, V = (u,v,w) is the fluid
velocity, g = (g, g, g.) is the gravitational acceleration, P
is the pressure of fluid, y is the a constant, and

V—ii+i'+3k
“ox' "oy "oz
(70)
d_0,., i=1,2,3
dr ot - o

In more explicit form, the Navier-Stokes equation given
(69) can be written as
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dp ou ov ow
—+p —+—]=0,
dt ox 0y 0z
2 2 2
i: a_u+ua_u Va_u+wa_u = _a_P+ a_u+a_u+a_u
P\ T ox dy oz “PI o TR 52 oy’ 9z°)
(71)
VPGt ox TV ay T Vaz) TP oy TG Tay Ta)
Plar T ox oy 0Oz ~ P95, TH B2 ay> 97" )
For the steady flow of the fluid, the flow becomes time
independent, in that case with d/dt and 0/0t becoming zero,
that is, the system (73) takes the form
8u+8v+aw_0
ox 0y 0z
i ua_u+va_u wa_u = _E+ az_u+az_u+az_u
P\ Max oy T ez ) TP T T o Ty T o)
(72)
i u@*_v@*_w@ = a£+ &_f_&*_&
FP\"ax oy T az) TPI oy T 0 Yoyt o)
P\ "ox dy 0z ~ P95 TH B2 oy’ 9" )
For incompressible fluid, the density of the fluid be-
comes independent of time, therefore we have dp/dt = 0. In
that case, we have
au+av+8w_0
ox dy 0z
i: a_u+ua_u+va_u+wa_u = _E_*. az_u+az_u+az_u
Plar Mo T oy T ez ) TP T T o T2 T o)
(73)
i %‘Fu@‘l'vgﬁ'w% = a£+ & & &
VPG ox Ty TWaz) TP oy T o Ta Ta )
k: a—w+ua—w+va—w+wa—w = _B_P Tw Fw 82_w
Plar T ox oy 0Oz ~ P95, TH B2 oy’ 97" )

We consider the incompressible fluid in the x y plane, which
flows steadily in the x direction [20-22]. For the asymptotic
behavior of the fluid flow, an asymptotic term U (x) (dU/dx) =
pg, — 0P/0x is included in the dynamics which satisfy the given

conditions. Our first aim is to find and use the similarity
transformation and reduce the given nonlinear Navier-Stokes
PDEs equations in ODEs equations. A step-by-step procedure
for this conversion is given in the remainder of this paper.



aj.{_%—o
ox dy
o, ou_du
“ox Vay_ayz dx’

(74)
u(x,0) =0,
v(x,0) =0,
u(x,00) =U(x).

Introducing the following similarity transformation,

x =e"x,
yr _ esbly)
u' =y, (75)
v =Py
U =e1U
from (75), we have
!
a_u 5(“1’61)%. (76)
ox ox’'
a_u =¢° (bl‘fl)a_u” (77)
oy oy
@_ (b)Y (78)
oy oy
2
a_u e(zbl—cl)a” , (79)
0y’ oy’
d_U_ e(“l“h)dil (80)
dx dx’

Putting the above equations from (76) to (80) in (74), we
get

/ '
es(alfcl)a_ul_’_ ef(blfpl)a_vl =0,
Ox oy

! ! 2 1
es(al—ZC])ul?_Fes(b]—cl—p])vla_”lz es(zb]—c])a u

x oy ay’z
oy ,dU
+ef zq‘)U'W,
u' (x',0) =0,
V' (x',0) =0,
u' (x',00) = U (x).
(81)
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In (81), dividing by the coefficients of the leading terms
in each equation, we get the transformed equations as

! !
ai + ee(bI“I*“l*Pl)a_V =0
ox' ay'

i l 2 1
u/au, +ee(b1+c1—al—pl)vlaul _ ee(2b1+c1—a1)a u

Ox oy ay’z
yeera)ydy (82)
dx
u' (x',0) =0,
V' (x',0) =0,

U (x',00) = e (" DU ().

b+c,—a,-p, =0,
2b, +¢;—a; =0, (83)
c,—q,=0.

Solving (83), we get

_ (C1 -a,)
P = 2
bl — (611 - Cl), (84)
2
€1 =4

Now, we have two arbitrary parameters a, and ¢;; this
gives flexibility in assigning specific values to these pa-
rameters. We assume that ¢, = ra;, where r is another
parameter. Using this new parameter, (84) becomes

_ (ra, —ay)
b= TR
p, - (@ —ray) (85)
1= D >
q, =ra,.

Expanding the exponentials in (75) by Taylor series and
keeping the terms up to first order in € and denoting the
difference in transformed and original variables as differ-
ential, we have for the first term,

I ea
X =e€

X5
x'=(1+ea))x,
x' = x+aex,
x' —x=aex, (86)
dx = a,ex,
dx
—=c

a,x
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Similarly, the expansion of the other terms gives

dy
— =¢ (87)
by
d
X (88)
cu
dv
— == (89)
pv
dUu
— == (90)
qU
Comparing (86), (87), (88), (89), and (90), we have
dx _dy
a,x a b,y
e
Cqu
(91)
_dv
pv
L
U

Using the values of b, ¢, p;, and g from (85) in (91), we
obtain

dx _ dy
x  ((1-7r)/2)y
B du
T ru
(92)
B dv
T ((r=1D/2)wv
~du
-

Using the method of characteristic to solve (92), the
solution of

dx dy
x  ((A-nn)y (93)
is
¢ — yx(r— 1)/2. (94)

Similarly, the solutions of the other equations in (92) are
respectively given by

u=x"f(¢),

95
Y= x(r— 1)/2g(¢)’ ( )

U =kx". (96)

Thus, we obtained the following similarity variable and
functions:

¢ _ yx(r—l)/z
u=xf(¢),

y = x(r— 1)/2g(¢)’
U =kx',

(97)

where k is constant, using (97) to obtain the first- and
second-order derivatives as in the following,

0 - - — /
AT R YO}

g_; — xr . xr—l/zf/ (¢))

*u (98)
a_yz — xr .xr—lfrr((p)’

Ea):/ — x(r— l)g/ ((/5)

Using these derivatives in (74), we get

F O+ e 9 (@) =0,

(S5 )65@F @+ @)+ g@F 9 = ' (9) 4k

2
(99)
We have reduced the Navier-Stokes equation,
a_u + ﬁ =0
ox dy
ua—u + va—u = 82_u + Ud—U
ox Jy ayz dx’
(100)
u(x,0) =0,
v(x,0) =0,

u(x,00) =U(x),

to ODEs using the proposed similarity transformations

@9+ @)+ 9 9 =0,

(S5)0F DF @+ 9+ g 9 = 1" (@) 1k,

f) =0,

g(0) =0,

fM) =k
M — co.

(101)
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6. Conclusion

In this research, we used the similarity transformation to
solve completely or at least reduce the nonlinear PDEs to
nonlinear ODEs. As the similarity transformations are the
subclass of Lie symmetries, therefore some basic definitions
related to Lie symmetry along with examples are given in
Section 2. In the same section, we see the power of similarity
transformation in solving the nonlinear ODEs and PDEs.
Similarity transformation is a technique for solving complex
and nonlinear DEs without the knowledge of Lie symmetry
methods, that is, the main reason for using the similarity
transformation in this research work. In this method, one
takes a general similarity transformation, inserts it into the
given equation (or system of equations), and solves for a
particular similarity transformation. This procedure is
shown in detail in Sections 3 and 4.

Generally, modeling fluid flow is a complex phenome-
non due to its nonlinear nature. Burgers equation models the
diffusion of the viscous fluid, whereas the inviscid Burgers
equation is its special case by ignoring the viscous nature of
the fluid. The mathematical model which described Burgers
equation is nonlinear and cannot be solved analytically. We
solve Burgers equation by using the similarity transforma-
tions. This technique reduced the number of independent
variables in the equation and reduced the nonlinear PDEs to
nonlinear ODEs. The similarity transformation transforms
Burgers equation into Riccati-type equation, which has a
standard solution. The detailed and step-by-step calculation
of this work is given in Section 3.

The Navier-Stokes equations are second-order nonlinear
PDEs that had been developed to model the compressible
viscous fluid flow by adding the viscous term to the original
Euler equations, which models the compressible friction-less
flow. The general Navier-Stokes equations deal with com-
pressible, viscous, nonsteady, and steady flow fluids. One can
simplify these equations for his/her problem nature. For ex-
ample, most of the fluids are incompressible, which implies that
the density of the fluids does not depend on time, and
equations become independent of the density derivative term.
Similarly, for a steady flow, the velocity of the fluids becomes
independent of time, which not only simplifies the equations
but also helps in solving these nonlinear PDEs. The similarity
transformation corresponding to the Navier-Stokes equations
is given in Section 4. We reduced the nonlinear system of PDEs
of the Navier-Stokes equations to nonlinear ODEs by using the
similarity transformation. The quantitative and qualitative
analyses of the transformed ODE system are the future works
in which we will give the complete analysis of the fluid dy-
namics of the Navier-stokes equations.
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