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Traditional vulnerability detection mostly ran on rules or source code similarity with manually defined vulnerability features. In
fact, these vulnerability rules or features are difficult to be defined accurately, which usually cost much expert labor and perform
weakly in practical applications. To mitigate this issue, researchers introduced neural networks to automatically extract features to
improve the intelligence of vulnerability detection. Bidirectional Long Short-term Memory (Bi-LSTM) network has proved a
success for software vulnerability detection. However, due to complex context information processing and iterative training
mechanism, training cost is heavy for Bi-LSTM. To effectively improve the training efficiency, we proposed to use Extreme
Learning Machine (ELM). -e training process of ELM is noniterative, so the network training can converge quickly. As ELM
usually shows weak precision performance because of its simple network structure, we introduce the kernel method. In the
preprocessing of this framework, we introduce doc2vec for vector representation and multilevel symbolization for program
symbolization. Experimental results show that doc2vec vector representation brings faster training and better generalizing
performance than word2vec. ELM converges much quickly than Bi-LSTM, and the kernel method can effectively improve the
precision of ELM while ensuring training efficiency.

1. Introduction

As software becomes more and more complicated, software
vulnerabilities caused by design flaws and implementation
errors become an inevitable problem in engineering [1].
According to statistics released by the Common Vulnera-
bilities and Exposures (CVE) [2] and National Vulnerability
Database (NVD) [3], the number of software vulnerabilities
has increased from 1600 to nearly 100000 since 1999 [4].
Software systems containing these vulnerabilities will face
serious security risks.

On the one hand, existing vulnerability detection
techniques are mostly driven by rules [5–10] and code
similarity metrics [11, 12]. Vulnerability detection rules are
usually defined by experienced experts. -e performance of
these methods is limited by the experience of experts.
Generally, the features of software vulnerabilities are very

difficult to be described accurately, which leads to the
corresponding detection rules which are also difficult to be
defined accurately and completely.

-ese problems inspired researchers to propose auto-
matic vulnerability detection (source code level). Neural
networks show great potential [13–17]. Neural networks can
automatically extract complex features from input data,
avoiding the problems of high cost, instability, and in-
completeness of manually constructing features and em-
pirically defining rules. VulDeePecker [16] utilized Bi-LSTM
[18] for software vulnerability detection. Zhen Li et al. [17]
discussed the performance of different neural networks on
vulnerability detection separately, namely, MLP, CNN,
LSTM, and Bi-LSTM. All of the above neural networks train
the detection model with an iterative training mechanism,
which usually costs a lot of time. To solve this problem, we
introduce ELM [19], which trains the detection model with a
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noniterative training mechanism. In order to improve
precision performance, we then introduce the kernel
method.

On the other hand, there are two most classical data
preprocessing methods in neural network-based automatic
vulnerability detection, namely, vector representation and
program symbolization. -e most common vector repre-
sentation method is word2vec [20], which can vectorize the
software codes into form of vector (variable length) as the
input of neural network. However, word2vec usually re-
quires additional work to further preprocess the output
vector (e.g., padding zeros). -e final vectors usually with
large dimension can heavily affect the training efficiency of
detection model. Moreover, word2vec may also lose im-
portant semantic information of the source codes, which can
affect the precision of detection model. As for program
symbolization, the normal way is to symbolize the variables
and user-defined functions in the source code at the same
time [16,17], which can be seen as a single symbolization
level of 2. -is idea ignores to consider the influence of
multiple symbolization levels on performance of vulnera-
bility detection model.

To alleviate the above problems, we propose a multilevel
symbolization method for symbolic representation and in-
troduce doc2vec [21] for vector representation. In detail, we
first obtain symbolic representations of the source codes
related to vulnerabilities through three symbolizations.
Using three levels of symbolization can significantly reduce
the noise introduced by irrelevant information of vulnerable
codes. -en, we use doc2vec to automatically transform
symbolic representation of source codes to corresponding
vector representation. Compared to word2vec used in [16],
we found that doc2vec is more suitable for modeling vector
representation because it can not only transform source
codes with arbitrary length into a fixed-length feature
representation but also grasp the semantic information of
source codes better. -ese advantages are helpful to improve
the precision and training efficiency of vulnerability de-
tection model.

-e rest of this paper is organized as follows. Section 2
discusses the work related to automatic detection of software
vulnerability. Section 3 describes the details of the proposed
automatic software vulnerability detection method. Section
4 gives the details of experimental environment and pa-
rameter configuration, experimental results, and corre-
sponding analysis. -e conclusions and future works are
presented in Section 5.

2. Related Work

2.1. Vulnerability Detection Techniques. Existing classical
vulnerability detection techniques range from making use of
manually defined features [5–10] to code similarity metrics
[11, 12]. However, there are several primary flaws among
them. First, the effort for defining vulnerability features is
error-prone and manual labor consuming. Second, the
features can hardly be integral and usually contain only
partial information about the vulnerabilities, which may lead
to high false-positive and false-negative rates [16]. Moreover,

the application of the code similarity method is limited to
vulnerabilities caused by code clones.

Vulnerability detection with traditional machine
learning techniques such as Decision Tree [22] and Support
Vector Machine (SVM) [23] mainly extracts vulnerability
features from preclassified vulnerabilities. However, vul-
nerability detection patterns based on this type of feature are
usually available for specific vulnerabilities. In the paper by
Boris Chernis [24], both simple text features (e.g., character
count, character diversity, andmaximum nesting depth) and
complex text features (e.g., character n-grams, word
n-grams, and suffix trees) are extracted from the source
codes and analyzed by using the naive Bayes classifier.
Experimental results show that simple features performed
unexpectedly better by comparing with the complex
features.

Neural networks can learn complex vulnerability fea-
tures automatically. Zhen Li [16] presented a vulnerability
detection system VulDeePecker based on deep learning,
which initiates the study of using deep learning for vul-
nerability detection. VulDeePecker collects the samples by
first extracting code gadgets from the buggy programs and
then transforming them into the vector representations
using word2vec. -e detection model is designed based on
Bi-LSTM. Siqi Ma [13] proposed a tool called VuRLE for
automatic detection and repair of vulnerabilities. VuRLE
uses the context patterns to detect vulnerabilities and
customizes the corresponding edit patterns to repair them.
Jacob A. Harer [14] implemented various machine learning
models for detecting bugs that can lead to security vul-
nerabilities in C/C++ code. Specifically, they used features
derived from the build process and the source code.
Rebecca L. Russell [15] developed a vulnerability detection
tool based on deep feature representation learning that can
directly interpret the parsed source codes. -e source codes
are firstly transformed into tokens and then embedded as
vectors for both CNNs and Recurrent Neural Networks
(RNNs). Zhen Li [25] proposed a systematic framework by
using deep learning to detect vulnerabilities that combined
syntax-based, semantics-based, and vector representations
(SySeVR). SySeVR can accommodate syntax and semantic
information pertinent to vulnerabilities. -e source codes
are successively represented by syntax-based, semantics-
based, and vector representations. Zhen Li [17] performed
a quantitative evaluation of the impacts of different factors
(e.g., data dependency and control dependency) on the
effectiveness of neural network-based vulnerability detec-
tion techniques. Zhen Li [26] presented VulDeeLocator, a
deep learning-based fine-grained vulnerability detector. It
leverages intermediate code to capture semantic infor-
mation that cannot be conveyed by source code-based
representations and presents a new idea of granularity
refinement. Xin Li [27] proposed an automated and in-
telligent vulnerability detection method in source code
based on the minimum intermediate representation
learning. -e sample in the form of source code is first
transformed into a minimum intermediate representation;
then, it is transformed into a real value vector through
pretraining on an extended corpus. -e vector is fed to
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three concatenated convolutional neural networks to ob-
tain high-level features of vulnerability.

2.2. Preprocessing Method. -e commonly used pre-
processing methods for automatic source code vulnerability
detection are program symbolization and vector represen-
tation. Zhen Li [16, 25] first maps variable names to symbolic
names (e.g., “V1” and “V2”) in a one-to-one fashion, then
maps function names to symbolic names (e.g., “F1” and
“F2”) in a one-to-one fashion, and finally uses word2vec to
perform vector representation. Gustavo Grieco [28] uses
word2vec to preprocess the dynamic features of source codes
since it was successfully used in a variety of text mining
applications. Savchenko [29] proposed a system for vul-
nerability detection based on deep learning approach, which
performs the following steps: source code preprocessing,
AST creation, code gadget extraction, and code gadget
vectorization using word2vec.

2.3.KernelMethod. -e kernel method is often used to solve
the linear indivisibility problems. Qin-Qin Tao [30] pro-
posed a locality-sensitive support vector machine using
kernel combination (LS-KC-SVM) algorithm, which solved
the large appearance variations due to some real-world
factors on face detection. Liang [31] proposed an SVM-based
method combining with the deep quasilinear kernel (DQLK)
learning for large-scale image classification. It could train
SVM on a large-scale dataset with less memory space and
less training time. Zhang [32] developed a least-squares (LS)
SVM-based identification scheme, where the system pa-
rameters were estimated in a reproducing kernel Hilbert
space. It can effectively solve the issue that LS results in low
accuracy in ill-conditioned scenarios. Lu Li [33] proposed
the AdaBoost-WCKELM made of ELM, AdaBoost, and
composite kernel method, which derived a good improve-
ment in HSI classification accuracy.

3. The Methodology

Figure 1 is an overview of the proposed automatic source
code vulnerability detection system using enhanced ELM on
the source code level. Starting with the dataset in form of
code gadget, it then obtains symbolic representation of each
code gadget using multilevel symbolization. Next, it trans-
forms the symbolic representations into vector represen-
tations with a low-dimension using doc2vec. Finally, it
applies enhanced ELM neural networks to train the detec-
tion model. As for testing, code gadget is firstly preprocessed
successively through multilevel symbolization and doc2vec,
and then the vector representations of them are input to
detection model to get the detection results. In the subse-
quent sections, we give the details of the main components
of this system.

3.1. Symbolic Representation. A code gadget is composed of
several program statements (i.e., lines of code), which are
semantically related to each other in terms of data

dependency or control dependency [16]. It can be further
transformed into a form of symbolic representation using
symbolization. -e symbolic representation is then collected
as a corpus for training the vector representation tool, such
as doc2vec.

-e benefit of symbolic representation is that it can result
in higher training effectiveness by further reducing the
length of code gadget. In symbolization, vulnerability fea-
tures of each code gadget such as local variables, user-de-
fined functions, and data types are transformed into short
and fixed-length symbolic presentations, where the same
features are mapped to the same symbolic presentation. In
this work, we deploy three symbolization types that are
shown as follows:

(i) Function calls symbolization (F): User-defined
function names are symbolically represented as FN.
-is symbolization type is assigned the priority
because vulnerability is mostly caused by improper
utilization of library/API function calls. Symboli-
zation on user-defined functions can improve the
Signal-Noise Ratio (SNR) of library/API function in
vulnerability information.

(ii) Variable symbolization (V): Variable names in-
cluding parameters and local variables are sym-
bolically represented as VN. In practice, the
variables account for a large proportion of the
codes.

(iii) Data type symbolization (T): Data types of variable
and user-defined function are symbolically repre-
sented as TN. It has the least priority since many
data types are not related to vulnerability
information.

-e symbol N mentioned above in symbolization is a
number which represents the index of the first occurrence of
the feature while noting that multiple functions may be
mapped to the same symbolic name when they appear in
different code gadgets. Moreover, all the symbolization types
will reserve keywords of C/C++ language.

We build a multilevel symbolization mechanism
according to the priority of symbolization shown in Table 1.
Level 2 includes two symbolization groups, namely, F+V
and F+T. -is is because symbolizations V and Tmay have
different effects on SNR of vulnerability information in
different datasets.

We take Sample 0 as an example to show how the
symbolization works, where the symbolization group F+V
is chosen from level 2. From Figure 2, we can observe that
there are 2 user-defined functions, 5 variables, and 2 data
types in Sample 0.

(i) In level 1, the two user-defined functions are
symbolically represented as F1 and F2.

(ii) In level 2, the five variable names are symbolically
represented as Vi, i ∈ [1, 5].

(iii) In level 3, the two data types are symbolically
represented as T1 and T2.
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As a result, through three levels of symbolization, Sample
0 is gradually simplified to a generalized symbolic repre-
sentation, which can effectively characterize different
manifestations of the same vulnerability.

3.2. Vector Representation. Since the neural network can
only accept vector as input, the symbolic representation of
source code needs to be further converted to the vector
representation. Currently, the most popular vectorization
methods are word2vec [34] and doc2vec [35].

Compared with the one-hot representation, a high-di-
mensional and sparse representation method, word2vec,
outputs a low-dimensional and dense vector representation,
which is conducive to improving training efficiency and
precision of themodel, making it widely used for vulnerability
detection recently [14, 16, 17]. However, there is a drawback
of word2vec; that is, it ignores the influence of word order that
relates to information of a sentence or a document.

doc2vec was proposed in [35], and the authors proposed
the unsupervised algorithm called ParagraphVector that can
learn fixed-length feature representation from texts with
arbitrary length, ranging from a sentence to a document.
Moreover, the ParagraphVector can memorize the topic of
the paragraph, which makes it be able to better extract global
features than word2vec.

Given the fact that word2vec converts word to vector
representation in a one-to-one fashion, thus, the length of the
converted vector varies with the length of the input text. To
satisfy the neural network requirement of input with a fixed
length, the vector generated by word2vec needs to be further
processed to obtain the corresponding fixed-length form.
Different from word2vec, doc2vec can directly output fixed-
length vectors from input texts with arbitrary length. Fur-
thermore, doc2vec can also grasp more semantic information
from the context of input text than word2vec. In summary,
doc2vec shows great potential in source code vector
representation.

3.3. Neural Network Model. ELM is a special type of feed-
forward neural network with the noniterative training
mechanism, which was proposed by Huang et al. in the 1990s
[19]. Unlike traditional neural networks, which use gradient
descent techniques to iteratively fine-tune all the parameters
of the model, ELM randomly assigns values to some pa-
rameters according to certain rules and keeps these param-
eters frozen throughout the training process, while other
parameters are calculated by the least square method. In other
words, the training mechanism of ELM is noniterative, which
can bring it much faster training speed than conventional
neural networks on some tasks with relatively large data scale.
Here, we take ELM with a single hidden layer network

Table 1: Multilevel symbolization.

Symbolization level Symbolization group
Level 1 F
Level 2 F+V; F+T
Level 3 F+V+T

Code gadget Multilevel
symbolization

Detecion
modelDoc2vec

Doc2vec

Vulnerable or
not

Neural network

Detection
modelKELM

Multilevel
symbolization

Trainig

Code gadget

Testing

1 static void goodG2B()
2 list < char ∗ > dataList ;
3 goodG2BSink (dataList);
4 void goodG2BSink (list < char ∗>
List)
5 char ∗ data = List.back ();
6 if (sscanf (data , “&d” , & n) == 1))

1 static void F1()
2 list < char ∗ > V1 ;
3 F2 (V1) ;
4 void F2 (list < char ∗> V2)
5 char ∗ V3 = V2. back ();
6 if (sscanf (V3, V4, & V5) ==1))

0.352282, 0.239948, –0.134481,
0.42993, 0.230350, 0.005943,
–0.042881 ,–0.123437, –0.129882,
......
0.161606, 0.182229, 0.113613,
–0.073532, 0.259034, –0.117222,
0.177871, –0.024659, 0.013019

Figure 1: Overview of the proposed automatic source code vulnerability detection system using KELM.

static void goodG2B()
list < char∗ > dataList;
goodG2BSink(dataList);
void goodG2BSink(list < char∗ > List)
char ∗ data = List.back();
if(sscanf(data,“&d”, &n) == 1))

(a)

static void F1()
list < char∗ > dataList;
F2(dataList);
void F2(list < char∗ > List)
char ∗ data = List.back();
if(sscanf(data,“&d”, &n) == 1))

(b)

static void F1()
list < char∗ > V1;
F2(V1);
void F2(list < char∗ > V2)
char ∗ V3 = V2.back();
if(sscanf(V3,V4, &V5) == 1))

(c)

T1 F1()
list < T2∗ > V1;
F2(V1);
void F2(list < T2∗ > V2)
T2 ∗ V3 = V2.back();
if(sscanf(V3,V4, &V5) == 1))

(d)

Figure 2: An example of multilevel symbolization of source code. (a) Sample 0. (b) Level 1 F. (c) Level 2 F+V. (d) Level 3 F+V+T.
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structure as an example to introduce its training mechanism.
-e network structure of ELM is shown in Figure 3.

3.3.1. ELM. In Figure 3, d, L, and m refer to the number of
the input layer neurons, the hidden layer neurons, and the
output layer neurons, respectively. ω is the input weights
connecting the input layer to the hidden layer, b is the
thresholds of the hidden layer neurons, and β is the output
weights connecting the hidden layer to the output layer. ω
and b are generated randomly from the range (−1, 1) and (0,
1) under a uniform distribution. -ey are kept frozen
throughout the training process of the model.

Given a training data set D � (xi, ti)|xi ∈ Rd, ti ∈􏼈

Rm}, i � 1, 2, . . . , N, the ELM model can be represented as

Hβ � T,

H �

h x1( 􏼁

⋮

h xN( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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tT1
⋮

tTN
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

t11 . . . t1m
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(1)

where T is the expected output matrix and H is the hidden
layer output matrix.
h(xi) � 􏽐

L
j�1 g(ωj · xi + bj), i � 1, 2, . . . , N, which is the

output vector of the hidden layer with respect to the input xi.
g(·) is the activation function of the ELM. And ωj · xi de-
notes the inner product of the input weights and the features
of the ith training sample. -e output weights β can be
obtained by

β � H+T �
HT λI + HHT

􏼐 􏼑
− 1
T, whenN≤L,

λI + HTH􏼐 􏼑
− 1
HTT, whenN≥L,

⎧⎪⎨

⎪⎩
(2)

where H+ refers to the Moore − Penrose generalized inverse
of H, L refers to neuron number of hidden layers, I refers to
an N identity matrix, and λ refers to a regularization factor
with a value between [0,1].

-e ELM output function is

f(x) �
h(x)HT λI + HHT

􏼐 􏼑
− 1
T, whenN≤L,

λI + HTH􏼐 􏼑
− 1
HTh(x)T, whenN≥L.

⎧⎪⎨

⎪⎩
(3)

-e optimization objective of the ELM model can be
expressed as

min 􏽘

N

i�1
f xi( 􏼁 − ti

����
����
2⎛⎝ ⎞⎠, (4)

where f(xi) and ti refer to the predictive label and the real
label of the ith sample, respectively.

3.3.2. KELM. Kernel method is an effective way to solve the
nonlinear problems by mapping the data to high-dimen-
sional space so that the nonlinear problem can be trans-
formed into a linear problem. With the combination of
kernel method, there are two benefits compared with
conventional ELM. For one thing, it solves the problem that
the number of hidden layer nodes in conventional ELM
depends on manual setting, which shows better stability
[36]. For another thing, the kernel function maps the data to
the high-dimensional space, and the distribution of the data
in the transformed space is very smooth. In fact, the smooth
new data make the classification problem easier, so the
model can show better effectiveness. Radial Basis Function
(RBF) is the preferred kernel function in our experiments
because it has only one hyperparameter which simplifies the
model configuration and training cost. RBF kernel function
can be expressed as

K(x, y) � e
− c‖x− y‖2

, (5)

where x and y represent the samples, c represents the unique
hyperparameter of Gaussian kernel function, and ‖x − y‖

denotes the norm of vectors.
-e kernel matrix for ELM can be defined as [37]

ΩELM � HTH,

ΩELMij
� h xi( 􏼁 · h xj􏼐 􏼑 � K xi, xj􏼐 􏼑.

(6)

And we can revise equation (2) when N≥L as

β � (λI + Ω)
− 1HTT, (7)

and then, the ELM output function (3) can be as follows:

f(x) � λI + HTH􏼐 􏼑
− 1
HTh(x)T

� (λI + Ω)
− 1

K x, x1( 􏼁

⋮

K x, xN( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

T.

(8)

From equation (8), we can find that ELM combined with
the kernel method can avoid the problem that the number of
hidden layer nodes in conventional ELMdepends onmanual
setting.

1

1 2 L

m21

d

β

b

Hidden layer

Output layer

Input layer

ω

Figure 3: A typical ELM with a single hidden layer network
structure.
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4. Experiment and Evaluation

-e goal of our work is to construct an automatic software
vulnerability detection model with both superior precision
and efficiency. To be specific, we investigate the following
questions in experiments:

(i) Question1 (Q1): How differently do neural network
models perform on vulnerability detection?

(ii) Question2 (Q2): How differently do vector repre-
sentation methods affect the performances of neural
networks? Specifically, does doc2vec outperform
word2vec on vulnerability detection?

(iii) Question3 (Q3): What are the effects of different
symbolization on the performances of neural
networks?

4.1. Experiment Setting and Implementation

4.1.1. Dataset. In our experiments, we include the following
three datasets from [16]. Each sample is a piece of source
code with known vulnerabilities. Table 2 shows the number
of samples (i.e., source code files) in each dataset.

(i) BE-ALL includes samples with buffer error vul-
nerabilities (CWE-119) and ALL library/API
function calls.

(ii) RM-ALL includes samples with resource manage-
ment error vulnerabilities (CWE-399) and ALL li-
brary/API function calls.

(iii) HY-ALL includes samples with hybrid buffer error
vulnerabilities (CWE-119), resource management
error vulnerabilities (CWE-399), and ALL library/
API function calls.

Each dataset is partitioned into two parts with a pro-
portion of 80% and 20%, where the larger part is for
training and the other part is for testing. Each sample in the
dataset is in the form of code gadget with a ground truth
label.

4.1.2. Evaluation Metrics. In our experiment, we used the
indexes mentioned in [38] to evaluate the effectiveness of
vulnerability detection model, that is, False Positive Rate
(FPR), True Positive Rate (TPR), Precision (P), and F1-
measure (F1).-e value range of these four indicators is [0, 1].
For FPR, the closer their values are to 0, the better the per-
formance of the model is; for other indicators, the closer their
values are to 1, the better the performance of the model is.

-e quality of vector representation can be evaluated by
Cosine Similarity (cosine) between vectors in the vector
space, which can be calculated by the following formula. -e
range of cosine value is [−1, 1]. -e closer the value is to 1 or
−1, the more similar the two vectors are.

cosine(A, B) �
A · B

‖A‖2‖B‖2
, (9)

where A and B refer to vectors. Given the fact that
Cosine Similarity only considers the angle between vectors,
so that it can avoid too large output deviation due to dif-
ferent dimension of input vectors. -is is the main reason
why we choose Cosine Similarity as the evaluation metric of
vector representation.

4.1.3. Parameters Setting for Neural Networks. In our ex-
periments, we used two types of neural networks for the
vulnerability detection model, namely, Bi-LSTM and ELM.
For both, there is only one hidden layer in the network
structure. We build the following five configurations. We do
not list the configuration of AdaBoost KELM because it is
predictable that the calculation of KELM with weight and
iteration mechanism is very complex and the efficiency will
be greatly reduced.

(i) word2vec with Bi-LSTM (w+B), which was used by
VulDeePecker

(ii) doc2vec with Bi-LSTM (d+B)
(iii) doc2vec with ELM (d+ E)
(iv) doc2vec with AdaBoost ELM (d+Ada-E)
(v) doc2vec with KELM (d+KE)

We have implemented the CPU versions of Bi-LSTM
and ELM, and all the models were trained in the PC en-
vironment with CPU. For Bi-LSTM, the batch size, the
dropout rate, the number of epochs, and the number of the
hidden layer neurons were set to 64, 0.5, 2, and 60, re-
spectively, and the optimizer chosen was Root Mean Square
Prop (RMSProp). For ELM, the number of the hidden layer
neurons was set to 5000 and the activation function used
sigmoidal function. -e input weights and the hidden biases
of ELM were generated randomly from (−1, 1) and (0, 1),
respectively, under a uniform distribution. -e details of the
parameters’ configuration of ELM are given as follows.

To determine which activation function is the best
choice for the ELM-based detection model, we implement
an experiment to discuss the effectiveness of ELM with five
activation functions, respectively. -e number of neurons
is set to 250 and the dataset is HY-ALL. From the results in
Figure 4, we can find that ELM with sigmoidal function
outperforms the other activation functions on precision
and F1.

In terms of neuron configuration of ELM, we have done
several experiments to analyze the effect of a different
number of neurons on the precision of ELM as shown in
Table 3. Generally speaking, when the number of neurons
ranges from 250 to 12000, the precision of ELM gradually
increases with the number of neurons increasing, but when
the number of neurons is more than or equal to 15000, the

Table 2: Number of samples in each dataset.

Dataset Code gadgets Vulnerable code gadgets
BE-ALL 39753 10440
RM-ALL 21885 7285
HY-ALL 61638 17725
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precision of ELM begins to decline slowly. In particular,
when the number is between 250 and 5000, the precision
improvement is more obvious, while the number increases
from 5000 to 12000, the precision improvement is slight,
nearly 0.3%, and the training time increased by 4 times.
Considering the cost-effectiveness of precision improve-
ment and time consumption, we set the number of neurons
as 5000.

Kernel function plays a very important role in KELM,
which largely determines its precision performance. We
collect three commonly used kernel functions to make a
comparison experiment. -e comparison of the results
after fine-tuning is shown in Figure 5. It is clear from the
result that RBF shows the best overall performance than
the other two kernel functions. -us, the subsequent
KELM-related experiments set the RBF as the kernel
function.

4.2. Results and Evaluation

4.2.1. Results for Q1. Regarding the impacts of different
neural network models on the performances of vulnerability
detection, we evaluate the precision and efficiency of the
above five configurations on all datasets. Table 4 shows the
effect of different neural network models on vulnerability

detection precision, while Table 5 gives the efficiency of
different neural network models on vulnerability detection.
In the experiments, all three datasets are preprocessed with
the symbolization group F+V.

According to the results in Table 4, we analyze them
from two aspects: precision comparison of conventional Bi-
LSTM and ELM and enhanced effect of conventional ELM
using kernel function and AdaBoost method.

Compared with ELM, Bi-LSTM is slightly inferior in
RM-ALL, a small-scale dataset, but superior in BE-ALL and
HY-ALL, the large-scale datasets.-is may be due to the fact
that the deep learning model is more suitable for large
dataset scenarios. Besides, Bi-LSTM shows lower FPR than
ELM on all three datasets, which can be explained by the fact
that Bi-LSTM can express the long-term dependency in-
formation in the input, while ELM is based on forwarding
neural network; it is slightly inferior to Bi-LSTM in the
context processing.

For Ada-E, it outperforms conventional ELM on RM-
ALL and HY-ALL, which shows the advantage of the en-
semble learning, for example, combination enhancement.
However, it shows similar P and lower TPR than ELM on
RM-ALL, which may be due to the overfitting effect of
ensemble learning for high-precision base classifiers. It can
be seen that if the base classifier is with very high precision,
the final classifier generated by AdaBoost does not always
show the higher precision but may be worse if the basic
classifier shows high enough precision. For KE, it shows the
lowest FPR and the highest P on the three datasets compared
with the other five configurations, which benefits from its
effective way to solve nonlinear problems through high-
dimensional mapping. Besides, it also results in the lowest
TPR, but this is acceptable; it is due to the fact that the high
false-positive rate is the primary problem of vulnerability
detection tools in practical application.

From Table 5, we can find that the configuration w+B
performs the longest time for training and detection on HY-
ALL, while configuration d+B costs less than 1/30 of
configuration w+B. It is because the configuration w+B in
[16] outputs vectors with a longer dimension of 2500, which

P (%)
F1 (%)

Sigmoidal Sine Hardlim Tribas Radbas

75
.4

65
.7

75
.3

51
.5

70
.3

57
.8

69
.1

52
.5

69
.9

53
.7

Figure 4: Effect of different activation function on the precision of ELM.

Table 3: Effect of different number of neurons on the precision of
ELM.

Neuron
number

FPR
(%)

TPR
(%)

P
(%)

F1
(%)

Training time
(s)

250 7.5 58.2 75.4 65.7 0.92
500 6.6 66.1 80.0 72.4 2.52
1000 6.4 72.8 81.9 77.1 7.75
3000 5.4 80.5 85.5 82.9 49.11
5000 4.4 83.6 88.3 85.9 128.72
10000 4.4 85.9 88.6 87.2 496.02
12000 4.3 85.9 88.9 87.4 640.68
15000 4.4 86.6 88.6 87.6 1143.70
20000 4.6 86.7 88.2 87.4 2201.60
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results in a higher computation complexity for Bi-LSTM.
Moreover, compared with configuration d+B, configuration
d+ E further reduces the time cost of the training and de-
tection to a few minutes. -is can be explained by the fact
that the noniterative training mechanism of ELM reduces
the computation of parameters. Ada-E improves the pre-
cision of ELM by adding the iteration mechanism and in-
troducing the weight mechanism to ELM, but these
operations increase the computational complexity.

-erefore, the training and detection time of ELM will be
multiplied accordingly. KE shows a lower efficiency than
conventional ELM because it maps the input and output to a
higher dimension for calculation which will result in a larger
computational complexity than the former.

-us, we can conclude that configuration with con-
ventional Bi-LSTM achieves a higher precision, while the
configuration with conventional ELM is more effective.
Using AdaBoost and kernel function can effectively further
improve the precision of conventional ELM in vulnerability
detection. In particular, the kernel function achieves a very
good precision improvement effect while maintaining
higher efficiency than conventional Bi-LSTM.

4.2.2. Results for Q2. To answer the second question, we
evaluate the effectiveness of the two vector representation
methods, namely, doc2vec and word2vec. We implement
experiments with four samples shown in Figure 6. Sample 2
and Sample 4 are labeled as “vulnerable,” while Sample 1 and
Sample 3 are not. We collect these four samples from dataset

Table 4: Effect of different neural network models on vulnerability detection precision.

Dataset Pattern FPR (%) TPR (%) P (%) F1 (%)

BE-ALL

w+B 2.9 82.0 91.7 86.6
d+B 3.9 83.1 88.1 85.5
d+E 4.4 81.9 86.8 84.3

d+Ada-E 3.9 82.7 88.1 85.3
d+KE 1.8 78.7 93.8 85.6

RM-ALL

w+B 2.8 95.3 94.6 95.0
d+B 3.8 90.3 91.9 91.1
d+E 3.9 92.4 94.9 92.1

d+Ada-E 2.8 83.8 93.4 88.3
d+KE 1.1 82.7 97.4 89.5

HY-ALL

w+B 5.1 83.9 86.9 85.4
d+B 3.3 83.8 91.1 87.2
d+E 4.4 83.6 88.3 85.9

d+Ada-E 3.8 84.3 89.8 87.0
d+KE 1.9 81.0 94.3 87.1

RBF Linear Polynomial

P (%)
F1 (%)

94
.3

87
.1

77
.7

68
.6 74

.5 77
.4

Figure 5: Effect of different kernel function on the precision of KELM.

Table 5: Efficiency of different neural network models on vul-
nerability detection.

Pattern
Training
code

gadgets

Detection
code gadgets

Training
time (s)

Detection
time (s)

w+B 48744 12894 36372.2 156.2
d+B 49310 12328 1543.5 3.0
d+E 49310 12328 128.7 2.7
d+Ada-
E 49310 12328 2914.0 7.8

d+KE 49310 12328 335.4 11.0
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BE-ALL and dataset HY-ALL for two experiments. And both
samples are preprocessed with symbolization group of F+V.

We evaluate the effectiveness of vector representations
by using the similarity measure cosine. -e output vector
dimension of word2vec is set to 2500, where the output
vector dimension of one word is set to 50, and the number of
words to represent a paragraph is set to 50.-e output vector
dimension of doc2vec is set to 250. -e reason of making
different output vector dimension settings of word2vec and
doc2vec is due to the fact that if both dimensions are set to be
the same (e.g., 250), then word2vec outputs vector di-
mension of one word will be 5, or the number of words to
represent a paragraph will be 5, which may have a great
influence on the effectiveness of vector representation. As a
result, the comparison of the effectiveness of word2vec and
doc2vec is carried out under the condition that they both use
a proper dimension of output vector representation.

From the perspective of vulnerability detection, in terms
of the fact that two similar samples are given different labels,
it is better to make the similarity between the two vectors
after vectorization be small as far as possible, which is
conducive to the training of vulnerability detection model
using neural network. From Table 6, we find that, for Sample
1 and Sample 2, word2vec outputs vectors with a higher
cosine value than doc2vec, while for Sample 3 and Sample 4,
it outputs a lower cosine value than doc2vec. Generally,
compared with word2vec, doc2vec can output nearly similar
or better vector representation with smaller dimension. It
can be explained by the fact that, as noted in [16], in order to
obtain a fixed length of vector representation, vectors
generated by word2vec should be padded with zeros, which
may cause the loss of semantic information of the samples.
Moreover, it is obvious that a neural network model with
low-dimension input vectors can result in good efficiency.
We can also observe that, for the same sample in different
dataset, doc2vec can output more similar cosine results than
word2vec; the biggest output cosine deviation of doc2vec is
0.008, while word2vec results in a value of 0.032. It shows
that doc2vec can perform well on large datasets. -is

conclusion also can be justified by the results in Table 4,
where the configurations with doc2vec show better results
than the ones with word2vec on HY-ALL.

4.2.3. Results for Q3. To answer the third question, we take
the configuration d+B and d+KE as baselines to discuss
whether symbolization can further improve the precision of
the neural network model. We implement experiments with
all the three datasets. And for each dataset, we apply
symbolization level from 1 to 3 for preprocessing the
datasets.

Table 7 summarizes results of how differently symbol-
ization levels affect the precision of Bi-LSTM. From the
perspective of different datasets, symbolization levels have a
bigger impact on the precision of Bi-LSTM vulnerability
detection model with smaller datasets, which shows a
maximum deviation of precision at 3.1% in BE-ALL and
2.6% in RM-ALL. However, with the largest dataset HY-
ALL, the maximum precision deviation is 0.9%. -is may be
because the scale of datasets can affect generalization per-
formance of detection model, while the impact of symbol-
ization is gradually reduced according to the scale becoming
smaller. From the perspective of symbolization levels,
configuration d+B with the symbolization level 1 shows a
better and more stable performance than other symboli-
zation levels, while the symbolization level 2 results in an
unstable performance, and the symbolization level 3 shows
the worst performance. -e main reason is that a high level
of symbolization may lose some key vulnerability infor-
mation in the source codes. Moreover, it should be men-
tioned that symbolization groups of F+T outperform than
symbolization groups of F+Vwith all datasets; it may be due
to the fact that there are many codes related to data type in
the source codes; symbolizing them can better capture the
vulnerability information.

Table 8 summarizes results of how differently symbol-
ization levels affect the precision of KELM. From the per-
spective of different datasets, symbolization levels have a big

data = ( char∗)malloc(100 ∗ sizeof( char));
goodG2BSource(data);
void goodG2B Source(char ∗ &data)
memset(data, “A” , 50 – 1);
data[50 – 1] = “\0” ;
char dest[50] = “”;
strcpy(dest, data);

(a)

char ∗ data;
data = (char∗)malloc(100 ∗ sizeof(char));
if(5 == 5)
memset(data, “A” , 100 – 1);
data[100 – 1] = “\0”;
char dest[50] = “”;
strcpy(dest, data);

(b)

data = –1;
char inputBuffer[CHAR_ARRAY _SIZE] = “”;
if(fgets(inputBuffer, CHAR_ARRAY _SIZE, stdin)! = NULL)

(c)

char inputBuffer[CHAR_ARRAY _SIZE] = “”;
if(fgets(inputBuffer, CHAR_ARRAY _SIZE, stdin)! = NULL)
data = atoi(inputBuffer);

(d)

Figure 6: Four samples used to evaluate the effectiveness of the two vector representation methods. (a) Sample 1. (b) Sample 2. (c) Sample 3.
(d) Sample 4.
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impact on the precision of the KELM-based vulnerability
detection model with dataset HY-ALL, which shows a
maximum deviation of precision at 3.2%. However, with
smaller datasets BE-ALL and RM-ALL, the maximum de-
viation precision is 1.5% and 0.8%, respectively. -is is
because the semantic changes of samples generated by
different symbolization are smaller in small datasets and
larger in large datasets. -erefore, it will cause a large de-
viation of precision performance. From the perspective of
symbolization levels, configuration d+B with the symbol-
ization group of F+T shows the best and most stable per-
formance than other symbolization levels, while the
symbolization level 1 results in a better performance than
symbolization level 3 with all the datasets. -e former
phenomenon may be due to the fact that KELM is more
suitable for extracting the vulnerability information with
dataset preprocessed by symbolization of F+T, and the
latter one can be explained by the reason mentioned above.

Furthermore, to verify the training efficiency of the
proposed multilevel symbol representation, we also give the
comparative analysis of time complexity as shown in Table 9.
From Table 9, we can observe two phenomena as follows:
one is that, for the same dataset, there is a linear downward
trend of training time as the symbolization level increases
from 1 to 3; the other is that the training time increases
correspondingly as the size of dataset increasing.Meanwhile,
compared with the symbolization level 1, symbolization level
3 improves training efficiency by about 20% on all three
datasets. -is can indicate that multilevel symbolization can
slightly improve the efficiency of preprocessing, which is not
worth mentioning when it is used to improve the precision
performance of neural networks.

5. Conclusions

We have made the first effort to use ELM to solve the
training efficiency issue of the vulnerability detection model.

Table 8: Effect of different symbolization levels on KELM
precision.

Dataset Symbolization
group

FPR
(%)

TPR
(%) P (%) F1

(%)

BE-ALL

F 2.1 83.5 93.4 88.1
F+V 1.8 78.7 93.8 85.6
F+T 2.0 83.6 93.6 88.3

F+V+T 2.3 79.1 92.3 85.2

RM-
ALL

F 1.3 88.0 97.0 92.3
F+V 1.1 82.7 97.4 89.5
F+T 1.2 87.5 97.3 92.1

F+V+T 1.3 83.1 96.8 89.5

HY-ALL

F 1.1 81.8 96.8 88.7
F+V 1.9 81.0 94.3 87.1
F+T 0.87 82.3 97.5 89.3

F+V+T 1.8 81.6 94.7 87.7

Table 6: Effectiveness of word2vec compared with doc2vec.

Sample Tool Vector dimension Cosine (BE-ALL) Cosine (HY-ALL)

1 and 2 word2vec 2500 0.832 0.828
doc2vec 250 0.642 0.639

3 and 4 word2vec 2500 0.482 0.514
doc2vec 250 0.586 0.578

Table 7: Effect of different symbolization levels on Bi-LSTM precision.

Dataset Symbolization group FPR (%) TPR (%) P (%) F1 (%)

BE-ALL

F 2.9 86.2 91.2 88.6
F+V 3.9 83.1 88.1 85.5
F+T 3.2 84.6 90.4 87.4

F+V+T 3.5 84.5 89.4 86.9

RM-ALL

F 2.8 92.2 94.1 93.1
F+V 3.8 90.3 91.9 91.1
F+T 2.6 93.5 94.5 94.0

F+V+T 3.4 90.9 92.7 91.8

HY-ALL

F 3.2 87.8 92.0 89.8
F+V 3.3 83.8 91.0 87.2
F+T 3.2 85.6 91.7 88.5

F+V+T 3.3 86.0 91.1 88.5

Table 9: Efficiency of different symbolization levels on
preprocessing.

Dataset Symbolization group Training time (s)

BE-ALL

F 1721.9
F+V 1645.5
F+T 1674.1

F+V+T 1639.3

RM-ALL

F 930.8
F+V 920.8
F+T 908.1

F+V+T 907.4

HY-ALL

F 2762.7
F+V 2693.6
F+T 2692.2

F+V+T 2665.2
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Moreover, we then introduce the kernel method to improve
the precision of ELM. Experimental results show that ELM
with the kernel method is an effective combination of both
efficiency and precision. Particularly, for the data pre-
processing issue, we find that vector representation using
doc2vec performs well on large datasets, and an appropriate
symbolization level can effectively improve the precision of
vulnerability detection. -ese experimental conclusions will
provide researchers and engineers with guidelines when
choosing neural networks and data preprocessing methods
for vulnerability detection.

-ere are several limitations of this paper, which are
expected to be researched in the future. First, from more
than one kind of single-layer feedforward neural network
that could be used for vulnerability detection, we only used
ELM in this work. Second, not limited to the kernel method,
we expect to explore other methods to improve the precision
of ELM subsequently. -ird, the datasets used in our ex-
periment are provided by a single source, and more datasets
from different sources can be expanded to verify the ef-
fectiveness of our proposed approach.

Data Availability

Previously reported vulnerability data were used to support
this study and are available at https://github.com/CGCL-
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