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An electronic implementation of a novel Wien bridge oscillation with antiparallel diodes is proposed in this paper. As a result, we show
by using classical nonlinear dynamic tools like bifurcation diagrams, Lyapunov exponent plots, phase portraits, power density spectra
graphs, time series, and basin of attraction that the oscillator transition to chaos is operated by intermittency and interior crisis. Some
interesting behaviors are found, namely, multistability, hyperchaos, transient chaos, and bursting oscillations. In comparison with
some memristor-based oscillators, the plethora of dynamics found in this circuit with current-voltage (i-v) characteristic of diodes
mounted in the antiparallel direction represents a major advance in the knowledge of the behavior of this circuit. A suitable
microcontroller based design is built to support the numerical findings as these experimental results are in good agreement.

1. Introduction

An evidence fact in the research community is that the
electronic circuits containing nonlinear elements exhibit
rich dynamic behavior and it has been described in nu-
merous books [1-4]. The research of chaotic memristive
circuits is a hot topic of academic research in these recent
years [5-8] due to their tremendous engineering applica-
tions. We can cite the field applications of communication
systems, neural networks, image security, and so on.
Memristor-based circuits are famous for displaying a rich
variety of behaviors, including multiperiodic, quasiperiodic,
and chaotic oscillations as well as self-pulsing and the

coexistence of multiple attractors and hidden attractors
[9-14]. The Wien bridge oscillator among many types of
memristor-based oscillators appears to be one of the most
studied recently with good standing papers published
[15-17]. Memristor-based circuits are famous for displaying
a rich variety of behaviors. These striking scenarios are
defined as follows.

(i) Multistability is a critical property of nonlinear
dynamical systems, where a variety of behaviors
such as coexisting attractors can appear for the same
parameters, but different initial conditions. The
flexibility in the system’s performance can be
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achieved without changing parameters. This strik-
ing scenario has been witnessed in numerous fields
of engineering ranging across physics [18], biology
[19], chemistry [20], electronics [21-23], and me-
chanics, as well as reported applications in oscil-
lators and secure communications.

(ii) Quasiperiodicity is the property of a system that

displays irregular periodicity [24]. Quasiperiodic
behavior is a pattern of recurrence with a compo-
nent of unpredictability that does not lend itself to
precise measurement. It has been witnessed in rare
systems such as the acoustic field [25], laser [26],
and neural network [27].

(iii) Hyperchaotic scenario in the dynamical system is

defined as a chaotic system with more than one
positive Lyapunov exponent; this implies that its
chaotic dynamics extend in several different di-
rections simultaneously [24]. Therefore, comparing
with the traditional chaotic system, the hyperchaotic
system has more complex dynamical behaviors
which can be used to enhance the security of the
chaotic communication system [28]. Consequently,
the topic of theoretical design and circuitry reali-
zation of various hyperchaotic systems has recently
become a hotspot in the nonlinear research field.
Hyperchaos has been found numerically and ex-
perimentally such as Chua’s circuit [29], Chen
system [30], or Lorenz equation [31].

(iv) Bursting oscillations are defined as complex oscil-

lations consisting of spiking (cluster of spikes or
rapid oscillations) separated by periods of relative
quiescence [32]. They have been observed in many
practical systems and found a multitude of appli-
cations in areas such as electromechanics [33],
electronics [34], biology [35], and bioengineering of
artificial organs [36]. They have been discovered in
many fields, magnetohydrodynamics [37], plasma
confinement [25], and X-ray pulsar emission [26].
In biological neurons and cells electrophysiology,
bursting oscillations play an important role in in-
formation processing. Moreover, in biological
neurons, bursting oscillations are important for
motor pattern generation and synchronization.

(v) Transient chaos is a dynamical behavior that dis-

plays the existence of chaotic behavior on finite time
[38]. Generally, the phenomenon of transient chaos
can be observed in dynamical system with boundary
crisis [39] and also in families of the logistic and
Hénon maps.

Zhijun and Yicheng [40] employed a piecewise
linear memristor to construct a fourth-order
memristor-based Wien bridge circuit with hyper-
chaotic dynamics. Wu et al. [41] constructed an
active generalized memristor, in which a fourth-
order Wien bridge chaotic oscillator was designed
further. In recent years, the electronic research team
focused on the infinitely differentiable characteristic
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equation of the diode component in electronic
chaotic circuits replacing nonsmooth ones. The
synthesis are well presented in [42, 43] just to name
some well-standing papers. Some rare and inter-
esting dynamics are found, namely, coexisting
hidden attractors, quasi periodicity with anti-
monotonicity, and hyperchaos. As we recall, finding
chaotic circuits, (i) which modeled some important
unsolved problems in nature, (ii) shed insight on
that problems, and (iii) exhibited some behavior
previously unobserved [44], is still a major interest.
For this purpose, we explore the 5D Wien bridge
memristive oscillator with antiparallel diodes with
smooth (i-v) characteristics not yet explored in this
circuit with interesting dynamics discover:

(i) Intermittency route to chaos
(ii) Transient chaos
(iii) Hyperchaos with offset boosting and partial
amplitude control
(iv) Multistability
(v) Bursting oscillations
(vi) The successful microcontroller implementation

The (i-v) characteristic model without approximations
of the behavior of the nonlinear element diodes connected in
antiparallel direction, therefore, constitutes an advance in
the field of research for this Wien bridge oscillator.

The rest of this paper is organized as follows. In Section
2, the model and analysis of a memristive Wien bridge
oscillator are presented. It is followed in Section 3 by the
numerical analyses highlighting transitions to chaos. Then,
in Section 4, some complex dynamics are discovered in this
oscillator. We then continue with the microcontroller
implementation in Section 5 to verify the numerical findings.
The paper ends with some concluding remarks.

2. Modelling and Analysis of a Memristive Wien
Bridge Oscillator

The schematic diagram of a memristive circuit based on the
5D Wien bridge oscillator is presented in Figure 1.

2.1. The Model of the Circuit. The circuit of Figure 1 consists of
three capacitors C;, C,, Cs; an inductor L; with its internal
resistor R;; an operational amplifier; two antiparallel diodes Dy,
D,; three resistors R,, R3, Ry; and a flux-controlled memristor
w (¢). The authors in [16, 45] used a piecewise linear function
to describe the voltage-current characteristics of two antipar-
allel diodes. The exponent of the internal state of the flux-
controlled memristor was set to first order as in [46]. In this
work, the current-voltage characteristic of two antiparallel
diodes D; and D, is described without any approximation:
iy =ig (ePti=w) — 1)— ig (e Pi—1s) 1) = 2ig sinh (p (4,
—u3)), wherep =1/(#Vy), the parameters i, = 2.682nA,
and V=26 mV stand for the reverse saturation current,
ideality factor, and the thermal voltage of the diodes, re-
spectively. The exponent of the internal state of the mem-
ristor here is set to second order as in [47]. The five dynamic
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FIGURE 1: The memristive Wien bridge circuit.
elements C;, C,, Cs, L, and memristor correspond to each dx ) )
state variable u, u,, us, i, and ¢, respectively. For analysis of ar [C - e(a +3bv )]x —dy —egsinh(x - z), (2a)
the circuit, KirchhofFs law is applied to the circuit of Figure 1
to reveal five sets of first-order differential equations: d
q d% = cx - dy, (2b)
du R .
1 = ot~ w(Puy — = 2igsinh (p (u; - u3)),
dt Rst ) dz .
— =egsinh(x - 2) - w, (20)
(1a) dt
d
Czduz Ry "y — iuz, @w_ kz, (2d)
dt’  R,R, ' R, dr
(1b) d
d—:z —x +ef(—a+6x")v. (2e)
du; . . .
C3d7t'3 = 2igsinh (p (1, — u3)) — iy,
(1c)
2.2. Mathematical Analysis. System (2a)-(2e) is invariant
di, . under the transformation: S(x,y,z,w,v) — S(-x,-y,
ng =uz - R, (1d) -z, —w, —v); therefore, system (2a)-(2e) is symmetry about
the origin. The origin of the state space is a trivial equi-
d¢ 5 librium point E(0, 0, 0, 0, 0) meaning that the solution shows
@ T ad +ujd, (1e)  twin symmetric around the origin. The other equilibrium

where the parameter « is associated with the memristor and
w(¢) = (a+ 3b'</>2) is the memristance. Let us define

=u,/p, = uz/p, z = us/p, = 11\/R2R3/p,
v = ¢/(pC VR,R; )t =t'/C,+/R,R;, b= R2R3 (C,p)°Y,
c=Ry/\[RyR;, d = \/R3/R2, e=+RRsf =pC,, g =2i/p,
k =R,R,C,/L, § = p*, C, = C, = C; by inserting the nor-
malized parameters in the set of equations (la)-(le); the
dimensionless set of equations (1a)-(le) is given by equa-
tions (2a)-(2e) suitable for numerical studies:

points of system (2a)-(2e) are obtained by solving
dx/dt = 0,dy/dt = 0,dz/dt = 0,dw/dt = 0,dv/dt = 0, which
gives

Z" =0, (3a)
cx”

Y= (3b)

w" = egsinh(x"), (30)



3b #\2
a+ (") x" +gsinh(x") = 0.

(ef?[-a+d(x")]

Equation (3d) cannot be solved analytically. Then, the
Newton-Raphson method [48] is used to find the value of x*

(3d)

[c—e(u+3bv2)]—egcosh(x—z) -d egcosh(x—-z) 0

(o

Jac = eg cosh (x — z)

0
(-1 +2eféxv)

where Jac is the Jacobian matrix. Thus, the stability of E can
be determined by solving the characteristic equation
det(M; — AI;) = 0, where Isrepresents the 5x5 identity
matrix. Table 1 illustrates the eigenvalues obtained by the
Newton-Raphson method.

The screening parameter « is kept in the range 1.4 < a < 2
while the other parameters of the model are the ones defined
previously.

We can conclude that, for « belonging to the interval, the
system can develop self-excited attractors.

The overview of the stability of system (2a)-(2e) is
performed by plotting the stability diagram versus param-
eters a and a.

In Figure 2, we can notice that the unstable area is limited
to the stable area at a critical value of a around 0.75; this helps
to choose the value of the parameter for numerical analyses.

3. Numerical Analysis

3.1. 2D Bifurcation Diagrams. Numerical analyses of the
dynamical system can be obtained by plotting the 2-D MLE
when varying simultaneously two parameters to provide
global information about the dynamic behavior of the
system under investigation [49].

The colors on these diagrams of the model of our os-
cillator vary according to the value of the MLE computed
using the well-known method of Wolf et al. [50]. In these
figures, the light green, cyan, and magenta characterize a
chaotic motion while the dark-green yellow and dark red
represent periodic or quasiperiodic motion. It is therefore
visible that parameters ¢, d, and g provide many diverse
dynamics in contrary to the parameter e that is monotone.
For these reasons, we choose them in their interesting in-
terval to study the scenario toward chaos (Figure 3).

3.2. Transitions to Chaos. In this section, intensive numerical
analyses are performed by monitoring the bifurcation pa-
rameter « and initial states. We plot the local maxima of the
coordinate x (xy,,x) and record the Lyapunov spectra. We
noticed sparse chaotic windows alternating with periodic
ones while increasing or decreasing the bifurcation
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for the chosen value a=0.05, b=0.03, f=1, g=1, a=2,
delta=1, e=2, and the method yield x*=-3.08¢-18
resulting in the trivial E. By linearizing system (2a)-(2e)
around E, we obtain

—6ebvx
—d 0 0 0
0 —egcosh(x—-2z) -1 0 , (4)
0 k 0 0

0 0 0 ef(—(x+5x2)

parameter a. The red curve is obtained during the increasing
path of a while the red one is during the decreasing path.

In this manner, the hysteresis firstly discovered in dy-
namical systems by Berglund [51] occurs in Figure 4(a) while
the red and black curve does not overlap. It is used here to
discover symmetric or multiple attractors.

The chaos behavior is obtained as we can see by the
intermittency route. We note that this phenomenon is rarely
found in dynamical system interring chaotic dynamics [52].
It is described as a scenario involving several frequencies and
spontaneously becomes chaotic while varying the bifurca-
tion parameter. The sudden changes in the quality behavior
(competition between several frequencies and chaos) are
revealed in detail in Figure 5 where some phase portraits
with corresponding power density spectra are plotted.

According to Figure 5, we can reveal to the reader the
transition to chaos (in forward and in the reversed directions
of the bifurcation parameter «) from Figure 5(j) €
Figure 5(k). We can observe a periodic behavior suddenly
followed by chaotic dynamics by a tiny variation of a.

In this numerical research, it is usually during the in-
termittency route to encounter the same scenario while time
elapsed. In this situation, chaos can appear and disappear to
become periodic: this scenario is called transient chaos and it
is very rare in dynamical systems.

3.2.1. Transient Chaos Behavior. The findings of transients’
chaos are of great interest since they are believed to be the
culprit for disastrous such as voltage collapse in electric
power systems [53] and species extinction in ecology. We
choose the set of system parameters a = 0.05,b = 0.03, ¢ = 6,
d=3,e=2,f=1,g=1,k=2, a =13, delta = 1 and plot
the time trace of the dynamical system in Figure 6.

In Figure 6, one can notice that starting the system at
t=0, the behavior of the system is chaotic until t = 600 s. This
description is revealed by the chaotic attractor in (b) with the
corresponding power density spectra. Passing the critical
time 600s, the system becomes regular as shown in
Figure 6(d). This phenomenon is also reported in memristive
systems [54] including Chua’s [55] and Duffing oscillators
[56] and deserves to be shared.
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TaBLE 1: Eigenvalues and stability nature of the equilibrium point E computed for some discrete values of the parameter a.

o A A, Ay Ay As Stability nature of E
2 —4.0000 0.8727 + 1.3475i 0.8727-1.3475i —1.4227 + 1.6926i —1.4227-1.6926i Instable
2.5 -5.0000 0.8727 +1.3475i 0.8727-1.3475i —1.4227 + 1.6926i —1.4227-1.6926i Instable
2.8 -5.6000 0.8727 + 1.3475i 0.8727-1.3475i —1.4227 + 1.6926i —1.4227-1.6926i Instable
3 —6.0000 0.8727 +1.3475i 0.8727-1.3475i —1.4227 + 1.6926i —1.4227-1.6926i Instable
3.2 —-6.4000 0.8727 +1.3475i 0.8727-1.3475i —1.4227 + 1.6926i —1.4227-1.6926i Instable
33 —6.6000 0.8727 +1.3475i 0.8727-1.3475i —1.4227 + 1.6926i —1.4227-1.6926i Instable
1 —-2.0000 0.8727 +1.3475i 0.8727-1.3475i —1.4227 + 1.6926i —1.4227-1.6926i Instable
1.2 —-2.4000 0.8727 +1.3475i 0.8727-1.3475i —1.4227 + 1.6926i —1.4227-1.6926i Instable
1.4 —-2.8000 0.8727 +1.3475i 0.8727-1.3475i —1.4227 + 1.6926i —1.4227-1.6926i Instable

stable region

unstable region

0.5 1 1.5 2
a

FiGure 2: Stability diagram of the Wien bridge oscillator in the
plane (a, a) highlighting the stable regions (blue) and unstable
regions (red) of system (la)-(le).

3.2.2. Intermittency Route to Chaos during Symmetric In-
terior Crisis. Another interesting dynamic found in this
system is the interior crisis. It describes the bifurcation
events in which a chaotic attractor suddenly expands in size.
It was initially observed by Grebori et al. [57].

In Figure 7, when the control parameter is varied, we
noticed the expansion in size of the red and black attractors until
they merged to form a unique huge attractor in Figure 7(f). This
striking phenomenon is shown with the time traces of the black
and red attractors in the right column of Figure 7.

The description of the multiple routes to chaos observed
in system (2a)-(2e) rise to a very interesting and complex
behavior as we revealed in the next section.

3.3. Complex Dynamics of the Oscillator

3.3.1. Multistability. The famous and interesting behavior of
multistability in the dynamical system was shown in the optical
chain by [58] and in the isolation of a new defect in n-type
silicon [59, 60]. It was recently encountered in well-known
systems such as Chua ([61]) and Sprott [62], jerk system [63]. A
simple technique to detect this property is to scan the bifur-
cation diagram upward and downward using the same control
parameter (see Figure 4). In the light of this technique, one can
obverse in Figure 4(a) some windows where the black curve
and the red curve do not overlap showing the multistability
phenomenon. We draw a zoom in the interesting interval of
the control parameter to share this scenario, Figure 8(a).

In Figures 8(bl) and (b2), one can see that the 4
attractors coexist for the same set of system parameters. The
red ones are obtained with positive initial conditions while
black attractors are obtained with negative initial conditions.
The basin of attraction showing the space of initial condi-
tions resulting from each coexisting steady state is plotted in
Figure 9. Recall that the basin of attraction associated with
attractors red or black is the closure of the set of initial points
that, taken as initial conditions, converge to red or black
attractors when time increases to infinity. This subset-plane
of initial points are determined using the computation of
maximum Lyapunov Exponent (MLE) using the well-known
algorithm by Wolf et al. [50]. For the 5D system under study,
we fixed the initial points x,(0) = x3(0) = x4(0) = 1. The sys-
tem parameters are set in the caption of Figure 9 and remain
unchanged during the computation. For any couple of
starting points.

-4<x,(0) <4 and -10<x5(0) <10, the long-term be-
havior of system (la)-(le) is computed using the Run-
g-Kutta algorithm, and the MLE is determined using the
Wolf et al.’s method. Then, it is saved. If:

(a) MLE > 0, we plot on the substate space the point with
magenta color for positive chaotic attractors while
the blue color area is for negative ones.

(b) MLE <0, we plot on the substate space the point with
black color (for negative limit cycles) and red color
(for positive limit cycles) for initial conditions that
led to periodic attractors.

In Figure 9, the reader can discover the fractal form of
the substate space resulting in the complexity of system
(1a)-(le). Note that other planes are not plotted for sim-
plicity purposes.

3.3.2. Hyperchaos. The new memristive Wien Bridge os-
cillator, as in Figure 1, generates hyperchaotic attractor with
two positive Lyapunov exponents. In Table 2, Lyapunov
exponents and dynamics of system (la)-(le) for different
values of « are given.

Figure 10 displays the phase portraits of the hyperchaotic
attractors.

As we can see, the spiraling trajectories are much denser
than those in the chaotic ones, showing to the reader the
striking phenomenon of hyperchaos. In Table 2, there are
two Lyapunov exponents greater than zero.
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FIGURE 3: 2D maximum Lyapunov exponent (MLE) bifurcation diagrams in the plane: (a) (g, «); (b) (d, a); (c) (d, ¢); and (d) («, ¢) depicting
the region of complex dynamics of system (2a)-(2e) with respect to the MLE (right column bar); the system parameters are: a =0.05;
b=0.03; c=6; d=3; e=2; g=1; k=2. Initial conditions are (xo; yo; zo; Wy;vy) =(1; 1; 1; 0.1; 1) (color figure online).
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a (i) a (ii)
1 T 102
o-s- el
- UREEEEE] S EEEEEEENEEE RN
| = : B : | H ‘ : b :
x ol ,.|| {'l E ook U
Il |w & Y , %
‘ a Al
[%2]
A : HEHEE : : H H
0.5 - R WPkl
1 : 10°10 s
-5 0 5 0 1 2 3 4 5
v Freq
(a)
b (i) b (ii)
2 T T 100 H H H it H
1t 1072
/m
o
x OF i 104
@)
w
(=9
-1f 1001
-2 . . . 10 . . . .
-10 -5 0 5 10 0 1 2 3 4 5
v Freq

(®)

FiGgure 5: Continued.



PSD (x (1)) dB

-5 0 5
v
(c)
d @)
m
o
=
Ko
A
w
Ay
-10 0 10
v
(d)
e (i)
M
o
=
X
a
w
o
-10 0 10
\'s
(e)

Mathematical Problems in Engineering

c (ii)
100 o
108 ~
0 1 2 3 4 5
Freq
d (ii)
10°
102 |
10 i
10*6
108 ~
0 1 2 3 4 5
Freq
e (ii)
10° Rt
1072
104
100}
108 -
0 1 2 3 4 5
Freq

Ficure 5: Continued.



Mathematical Problems in Engineering

g (ii)

£(i) £ (ii)
4 . . 10—
102 ot bk
- ‘
o b
= |
x = 10*
D i
193] H
= s
10 iy
108 —
0 1 2
Freq
®
10°
102
M
o
=
X > 10t ;
=) :
%] H
A s
100 s
108 —
0 1 2
Freq
(€9
h (ii)
10° —
M F [
o ]
E A
* )
a :
[%¢]
A ;
4 . N
-10 -5 5 10 2
v Freq
(h)

FiGgure 5: Continued.



10 Mathematical Problems in Engineering

i (ii)
4 10°
2+
M
o
E
x OFf =
o)
w
A
2t
-4 . . . 10710 . . . .
-10 -5 0 5 10 0 1 2 3 4 5
v Freq
()
j (i)
4 102 .
2t 10° ]
m
o
=
- -2
x 0} = 10 1
a
%2
=W
2t 10 |
4 . . . 106
-10 -5 0 5 10 0 1 2 3 4 5
\4 Freq
(6)]
k (ii)
5 10? -
100 | i
- !
©
= :
- -2
x O0Ff = 102 ¢ .l
Q o
w H
A é
10 |
-5 10 ~
0 1 2 3 4 5
v Freq
(k)

F1GURE 5: Phased portrait revealing the transition to chaos in column (i) with their corresponding power density spectra in column (ii): (a)
the pair of chaotic attractors with « = 0.01; (b) symmetric attractor period-8 with & = 0.1; (c) symmetric attractor period-2 with a = 0.2; (d)
symmetric attractor period-15 with a = 0.3; (e) two-wing symmetric chaotic attractor with « = 0.4; (f) four-wing symmetric chaotic
attractor with & = 0.5; (g) two-wing symmetric period-20 attractor with a = 0.9; (h) two-wing symmetric full chaotic attractor with & = 1; (1)
four-wing period-9 attractor with a = 1.6; (j) four-wing period-2 attractor with « = 1.9; (k) four-wing merge chaotic attractor with « = 3.2.
Initial conditions: (1, 1, 1, 0.1, +1).



Mathematical Problems in Engineering 11

chaos

<« periodic part

2F
-3 " " " " L
200 400 600 800 1000 1200
t
(a)
b (i) b (ii)
3 - - - -
2
w w
-3 . . . . 2 . . . .
100 200 300 400 500 600 700 800 900 1000 1100 1200
t t
(b)
c (ii)
3 -
4|
2L
2+ L
< ol x OFf
1t
21
2L
-4 -3 . . .
-15 -10 -5 0 5 10
v v
(c)

FiGgure 6: Continued.



12 Mathematical Problems in Engineering

d (i) d (i)
10° [ T T T 10° . . . ;
3 w0 o8
= | : =
A o)
2 il | 2
|
S ‘ i A
-6 L
107 2 4 6 8 10
Freq Freq

(d)

FIGURE 6: (a) Time trace of the state variable x of the system while time elapsed. (b) Division of the interval of monotone dynamics: b(i)
chaotic; b(ii) periodic. (c) Corresponding chaotic phase portrait: during time f< 600 s c(i) and c(ii) periodic phase portrait during regular
motion t>600s (system parameters: a=0.05 b=003 c=6, d=3, e=2, f=1, g=1, k=2, a=13, §=1; initial state:
(X03 Y03 203 Wo3 Vo) = (131;1;0.1; 1)).
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Figure 7: Continued.
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FIGURE 7: 3D projection of the attractors of system (3a)-(3d) in the (x, y, z) plane (i) and the corresponding time traces (ii) illustrating crisis
transitions: the transition from (e)=(f) indicates the interior crisis behavior while « is varied. Initial conditions (1;1;1; 1;0.01): (a) period-2
for & = 0.2, (b) period-6 for a = 0.3, (c) period-5 for « = 0.35, (d) symmetric chaotic attractors for « = 0.4, (e)a = 0.42, and (f) chaotic single
band for a = 0.43.
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FIGURE 8: Zoom in the bifurcation diagram (a) and the corresponding discovery of coexistence of 4 attractors (2 symmetric chaotic and 2
symmetric periodic attractors) for the same set of parameters « =0.9,a=0.05,b=0.03,c=6,d=3,e=2,f=1,g=1,k=2,0=1.3, § = 1. Initial
conditions are (x; yg;20; Wi ve) = (£ 1; £ 1; £ 1; £0.1; £1).



Mathematical Problems in Engineering

X5 (0)

-4 -2

15

FIGURE 9: Basin of attraction plotted in the plane (x;(0), x5(0)) showing the initial conditions that lead to each coexisting steady state: the
orange area is for positive chaotic attractor while the blue area is for negative ones. The black and red zones are for initial conditions that led
to periodic attractors. System parameters are a=0.05, b=0.03,c=6,d=3,e=2,f=1, g=1, k=2, a= 1.3, § = 1. The other initial conditions

are X,(0) =1, X5(0) =1, X4(0) =1 (color version online).

TaBLE 2: Lyapunov exponents and dynamics of system (2a)-(2e) with parameter alpha varying.

o LE, LE, LE; LE, LEs Dynamics Figure
0.525 0.119 0.00107 -0.156 -1.368 -15 Hyperchaos Figure 10
0.69 0.107 0.001 -0.105 —-1.462 -1.612 Hyperchaos

15 T T T T T T T 2.5

()

Figure 10: Phase portraits of the four-scroll hyperchaotic attractor for (a)a =0.525 (LE; = 0.119381and LE, = 0.00107263) and
(b)a = 0.69 (LE; = 0.107339and LE, = 0.001000881) initial conditions (x0; y0; z0; w0; v0) = (1;1;1;0.1; 1).

3.3.3. Offset Boosting. The flexibility of the Wien Bridge
oscillator can be used as a chaotic encoding circuit by means of
varying parameters. For this purpose, we exploit the rescaling
factor k to illustrate the displaced attractor on the w axis as
follows: w—w + . System (2a)—(2e) is written as follows:

i—jz [c—e(a+3bv2)]x—d)’_e!]5inh(x_Z)’ (52)
(:1—); =cx—dy, (5b)
% =egsinh(x - z) — (w + p), (50)

dw

_ 5d
dt kz, 5D
dv 2
T —x—ef(—(x+6x )v. (5e)

In Figure 11, the attractor moved in the z-axis in ac-
cordance with the offset variable y.

3.3.4. Amplitude Control. In this section, we show that the
amplitude of the attractor of the oscillator can be varied by
means of the scaling factor m. In Figure 12, one can see that
the dimension attractor can be shrunk or expanded in ac-
cordance with the amplitude control factor m.
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(a)

(b)

FiGure 11: Offset boosting dynamics in w axis (i.e., w =w + p): (a) phase portraits in (w, x) plane and (b) the time series of w(t) for discrete
values of the boosted parameter p: y = —3 red; y = 0 blue; 4 = + 3 green. Initial conditions: x(0) = 1, y(0) = 1, 2(0) = 1, w(0) = 1, v(0) = 0.01. The

rest of the system (2a)-(2e) parameters are in Figure 2.

F1Gure 12: Total amplitude control dynamics by substitution of state variables x—x/m, y by y/m, z by z/m, w by w/m, and v by v/m shown
by means of (a) phase portraits in (z, w) plane and (b) (x, z) plane for discrete values of the amplitude parameter m: m = 0.5 red; m = 0.2 blue;
m =30 black. The rest of the system (3a)-(3d) parameters are in Figure 2; ¢ is the dimensionless time.

As we can see, the striking amplitude behavior can be
exploited in engineering instrumentation.

3.3.5. Bursting Oscillations. By selecting some discrete
values of the parameter a=0.01, the time series and phase
portraits of y versus x and z versus y are displayed in
Figures 13(iii) and (iv) illustrating the periodic bursting
oscillations. According to these figures, one can observe that
sometimes, the system is fast while other times, it is slow in
regular space by a constant period, T=50s.

4. Flectronic Implementation of a Memristive
Wien Bridge Oscillator

In this section, the objective of the study is to verify some
interesting behaviors found during the numerical simulation
of the model of the Wien bridge oscillator with real anti-
parallel diodes.

It is important to note that recently, numerous advan-
tages of digital components like FPGA, FPAA, DSP, and
SOC have made them suitable for the implementation of
chaotic systems just to name a few compared to the analog
electronics component. Among them, the microcontrollers
offer more flexibility for setting control parameters and
initial conditions accurately, reducing the system to a
portable source code, and realizing complicated mathe-
matical operations or algorithms without needing special
tools. These features increase the number of realizable
chaotic systems and simplify the implementation process
[64-67].

For this purpose, the experimental setup is drawn in
Figure 14.

The experimental setup is composed of an Arduino
MEGA board powered by a 9V DC battery. The computer is
connected to the USB port of the Arduino card built with an
ATMEGA2560 microprocessor. It is connected to the
computer to display data from the Arduino MEGA interface.
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FiGUure 13: Periodic bursting oscillations of the Wien Bridge Oscillator: (i) + (ii) time traces of y and z; (iii) + (iv) 2D phase portraits.
Parameters of the system are a=0.01; the other ones are in Figure 8.
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FIGURE 14: Microcontroller experiment workbench of the Wien bridge oscillator.

The memristive Wien bridge oscillator described by system  downloaded in the Arduino MEGA. The resulting real state
(1a)-(1e) is transformed in numerical form by means of the variables x, y, z, w, v are sent to the serial monitor of the
4™ order Runge-Kutta numerical method with a tiny step  software from the analog signal. Figures 15 and 16 show the
time of 0.005s, typed in the Arduino software, and  phase planes obtained from the microcontroller.
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F1GURE 15: Four-wing phased portraits of the Arduino-based implementation of the Wien bridge oscillator confirming the intermittency
chaotic scenario for external input Ay. (a) Ag=2.95 period-2 and (b) A,=3.2 chaotic; this figure reassembles Figure 8(m), (n).
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FIGURE 16: Experimental phase portraits of the four-scroll hyper-
chaotic attractor: (a) a« = 0.525 starting points are (1; 1; 1; 3.1; 1).

As the reader can see, the experimental design produces
on the screen of the computer data that are captured and
plotted in MATLAB software for comparison purposes and
similar results are recovered.

4.1. Intermittency Route to Chaos with Symmetry Crisis
Verification

4.2. Hyperchaotic Behavior. As we can see, Figure 15 re-
produces the intermittency scenario and Figure 16 the
hyperchaotic dynamic of the real component.

5. Conclusion

In this contribution, a new Wien bridge oscillator was
introduced and analyzed. The investigations show that
some additional behavior found apart from those already
revealed in this oscillator was discovered, namely,

intermittency route to chaos, transient chaos, hyperchaos
with offset boosting, partial amplitude control, and
bursting oscillations. The route to chaos is intermittent,
transient chaos with some multistability characterized by
the coexistence of up to 4 attractors for the same set of
parameters. A basin of attraction is the plot to highlight
this scenario. Experiment results based on an isolated
Arduino card-built ATMEGA2560 processor producing a
digital output of each state variable of the Wien bridge
oscillator are consistent with theoretical and numerical
predictions. With the research on fracmemristor [68, 69]
increasing with high interest, the outlook of this paper is to
propose the fractional version of the circuit in Figure 1
with fracmemristor to increase the complexity of the
nonlinear Wien bridge oscillator because it can increase
the number of disconnected attractors of the Wien bridge.
The dimension of the system under scrutinizing is 5D
greater than the ones in the literature, but the presence of
4-wing hyperchaotic attractors is an important metric for
the system to be used as an image encryption oscillator
embedded on an Arduino microcontroller. Therefore, we
are planning in the nearest future to experiment with this
fascinating application.
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