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In array signal processing, the direction of arrival (DOA) of the signal source has drawn broad research interests with its wide
applications in fields such as sonar, radar, communications, medical detection, and electronic countermeasures. In recent years,
the application of deep learning (DL) to DOA estimation has achieved great success. 0is study provides a systematic review of
research onDOA estimation using deep neural networkmethods.Wemanually selected twenty-five papers related to this research
from five prominent databases (SpringerLink, IEEE Xplore, ScienceDirect, Scopus, and Google Scholar) for exploration. Six
questions describing the overall trend of DOA estimation using deep learning are put forward.0en, we answered these questions
by reviewing the literature. 0is review is helpful for researchers in this field because it provides more specific and comprehensive
information needed for future research. Specifically, we first analyzed the background of the selected papers, including the type of
publication, the number of citations, and the country of origin.0en, the DL technology used in DOA estimation is systematically
analyzed, including the purpose of using DL in DOA estimation, various DL models (convolutional neural network, deep neural
network, and combination network), and various DOA estimation schemes. Finally, various evaluation criteria (root-mean-
squared error, accuracy, and mean absolute error) are used to evaluate the DL technology in DOA estimation, and various factors
(signal-to-noise ratio, number of snapshots, number of antennas, and number of signal sources) affecting DOA estimation are
analyzed. Based on our findings, we believe that deep learning can perform DOA estimation well, and there is still room for
improvement in deep learning technology. In this study, the factors affecting DOA estimation can be used as the direction for
researchers to conduct in-depth research.

1. Introduction

Early DOA estimation has its origins in the conventional
beamforming (CBF) [1], which directly corresponds to the
traditional Fourier spectrum estimation method from the
time domain signal processing method to the spatial domain
signal processing, such that the array angle resolution is
restricted by the Rayleigh limit constraint.0e Rayleigh limit
means that the two signals can be distinguished only when
the angular separation between the two far-field signal
sources is greater than the antenna beamwidth. 0e Capon
method [2] can minimize the output energy in the inter-
ference direction while keeping the output energy in the
desired direction constant. 0is method does not require the

number of sources in advance and is robust, but its reso-
lution is not high enough. Eigen subspace methods can
break the Rayleigh limit. 0e Pisarenko method is a har-
monic analysis method [3]. It obtains the signal subspace
and noise subspace by performing eigenvalue decomposi-
tion or singular value decomposition on the array covariance
matrix and uses the orthogonality between each other. 0e
eigenvector corresponding to the smallest eigenvalue is
taken as the noise subspace, and a high-precision DOA
estimation of the target is obtained with a small computa-
tional cost. However, this algorithm has limitations because
it is only suitable for the number of array elements that
exceeds the number of signal sources by one. 0e DOA
estimation is obtained with super-resolution capabilities, the
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most promising of which are the multiple signal classifi-
cation (MUSIC)method [4] based on noise subspace and the
estimation of signal parameters by the rotation immutability
technology (ESPRIT) [5].

Traditional DOA estimation methods are generally
based on a physical array structure, so they have certain
limitations. For virtual antenna array technology, the signal
received by the actual array antenna can be used to construct
the signal of the virtual array element [6]. It increases the
degree of freedom of the array and expands the array ap-
erture, which allows it to handle more signal sources and
improve the performance of DOA estimation. 0is tech-
nology mainly includes the interpolation transformation
method and the fourth-order statistics method. 0e inter-
polation transformation method divides the transformation
area according to the approximate direction of the received
signal from the array antenna. 0en it obtains the trans-
formation matrix according to the virtual transformation
array flow pattern vector and the actual array flow pattern
vector and calculates the virtual transformation covariance
matrix, ultimately achieving the virtual array transformation
[7]. 0e fourth-order statistics method treats the fourth-
order statistics of the data received by the array as a cross-
correlation between the specific actual array elements and
the corresponding virtual array elements. 0en, it replaces
the second-order covariance matrix with the constructed
fourth-order covariance matrix [8]. 0ese methods further
enhance the performance of DOA estimation because they
break through the limitations of physical arrays on DOA
estimation. In addition, there is a DOA estimation algorithm
based on the compressed sensing theory, which converts the
DOA estimation problem into a row sparse matrix recon-
struction problem and reduces the amount of calculation by
singular value decomposition.

In practical applications, the number of signal sources is
usually unknown. However, except for a few methods (such
as the Capon method), most DOA estimation methods
require prior knowledge of the number of signal sources. If
the estimated number of signal sources does not match the
actual number, the orthogonality of the signal subspace and
noise subspace will be affected. 0is severely affects the
accuracy of DOA estimation. In response to this limitation,
many scholars have proposed classical methods for esti-
mating the number of signal sources. Akaike [9] proposed a
method based on the Akaike information criterion (AIC).
Wax and Ziskind [10] proposed a method based on the
minimum description length (MDL). However, the AIC and
MDL criteria are only applicable to Gaussian white noise. In
a practical environment, colored noise is more common
than Gaussian white noise.0erefore, these two methods are
not applicable in the condition of colored noise. By contrast,
the RAIC [11] and RMDL [12] estimation methods using
diagonal loading technology in the information theory
criterion can effectively suppress the divergence of noise
eigenvalues to smooth color noise, with good estimation
performance under any form of array. 0e Gerschgorin disk
estimation (GDE) method proposed by Wu et al. [13] can
estimate the number of signal sources for an unknown array
signal against white noise and colored noise background.

0e GDE method does not obtain the signals from all
sensors, so when the number of sources is large, the
probability of correct detection will decrease rapidly due to
insufficient degrees of freedom.

Although researchers have proposed a number of DOA
estimation methods, a method that can accurately estimate
DOA has yet to be found. With the development of artificial
intelligence (AI), estimating DOA with AI has the potential
to yield a remarkable result. Compared with traditional
algorithms, the DOA estimation algorithm based on deep
learning greatly improves the estimation performance and
generalization, but there is still room for improvement in
performance under high noise or strong reverberation
conditions. In this paper, we present a systematic literature
review (SLR) on the approach of deep learning in DOA
estimation computation. 0is paper is organized as follows.
Section 2 is the introduction of deep learning. Section 3
presents the methodology used to perform the systematic
literature review. Section 4 analyzes the current research
status of DOA estimation. Section 5 examines the different
architectures of DL used in DOA estimation. Section 6
compares the performance of various methods of DOA
estimation using deep learning. Finally, the paper is con-
cluded in Section 7.

2. Deep Learning

Machine learning is a process by which machines use ar-
tificial neural networks (ANNs) to compute large amounts of
Internet-based data to autonomously simulate the process of
human learning and ultimately make smart decisions. ANN
is an adaptive nonlinear dynamic network system composed
of a large number of neurons connected to each other. It is a
simulation and approximation of biological neural net-
works. As shown in Figure 1, the MP model [14] is the first
mathematical model of neurons. Later, Rosenblatt [15] used
the linear optimization method to simulate the nervous
system of human learning and proposed a single-layer
perceptron model. However, their model cannot deal with
the linear inseparability problem. To make up for this
shortfall, Rumelhart et al. [16] proposed the back-
propagation (BP) neural network, which is a multilayer
feedforward neural network trained according to the error
backpropagation algorithm. However, when the number of
network layers increases, the BP neural network was found
to have problems such as local optimization, overfitting, and
gradient diffusion, which restrict the use of the BP neural
network. In addition, some other excellent shallow neural
networks have emerged, such as support vector machines
(SVM) [17] and Gaussian mixture models (GMM) [18]. But
they fail to address problems of machine learning such as
overfitting [19], the curse of dimensionality [20], and the-
oretical guarantees [21]. To solve these problems, a new
branch of machine learning was produced: deep learning.
Because such learning does not require artificial design or
feature extraction and can learn from data autonomously, it
is also called unsupervised learning.

Deep learning originated from machine learning and
statistical mechanics. Based on the discrete Hopfield
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network [22], Ackley et al. [23] used Boltzmann distribution
to propose the Boltzmann machine (BM), which introduces
statistical probability into the neuron state changes. 0e
equilibrium state of the network follows the Boltzmann
distribution, and the optimal solution is sought through the
simulated annealing algorithm. In the following year,
Smolensky [24] proposed a restricted Boltzmann machine
(RBM) by defining BM as a two-layer network, namely, the
visible unit layer and the hidden unit layer. Besides, it is
stipulated that the neurons in different layers are inde-
pendent of each other while those in the same layer are
connected to each other [25], as shown in Figure 2. Hinton
and Salakhutdinov [26] proposed to connect RBMs in series
to form a deep belief network (DBN) consisting of multiple
stacked RBMs and a backpropagation (BP) network. 0e
training process is divided into two steps: pretraining and
fine-tuning. In the pretraining process, the output of the
RBM of the previous layer is used as the input for the next
layer, and the unsupervised greedy method is used to train
each RBM from bottom to top with the weight being updated
during training. 0e weight obtained after the pretraining is
used as the initial weight of the DBN, and then the entire
network is adjusted by the error between the top-level output
and the expected output. 0e number of hidden layers of
RBM is increased to obtain a deep Boltzmann machine
(DBM), which uses the contrast divergence CD algorithm
[27] to greatly improve the training speed of the DBM. 0e
network structures of DBN and DBM are shown in Figure 3
[26].

Convolutional neural networks (CNNs) are currently
more popular than other artificial neural networks.0e basic
structure of the CNN consists of an input layer, a con-
volutional layer, a pooling layer, a fully connected layer, and
an output layer [28]. 0e convolutional layer is composed of
many feature maps, with each map consisting of many
neurons. Each neuron is connected to a part of the func-
tional graph of the previous layer by a convolution kernel
that serves as a weight matrix [29].0en the weighted sum of
the local area is passed to a nonlinear function to obtain the
output value of each neuron in the convolutional layer. 0e
weights of the CNN are shared between the same input
feature map and the output feature map. 0e convolutional
layer of the CNN extracts different features of the input
through a convolution operation, with the first layer
extracting low-level features and the higher-level one
extracting more advanced features. 0e convolutional layer

is followed by the pooling layer, which is also composed of
many feature maps. Each of the maps uniquely corresponds
to each feature map of the convolutional layer, so the
number of featuremaps is constant.0e pooling layer, which
plays the role of secondary extraction of features, obtains
spatially invariant features by reducing the resolution of the
feature map [30]. Each neuron in this layer performs pooling
operations on the local receptive field. Commonly used
pooling methods include maximum pooling, which is to take
the point with the largest value in the local receptive field,
and average pooling, which is to take the average of the
values in the locally accepted domain [31]. Among the
commonly used pooling methods, overlapping pooling
methods can be used even when different neurons in the
same feature map of the pooling layer do not overlap with
the local receptive field of the previous layer. For this pooling
method, there is an overlapping area between adjacent
pooling windows [32].0e pooling layer reduces the number
of neurons through the pooling operation and reduces the
amount of calculation of the network model. In a CNN, after
several convolutional layers and several pooling layers, one
or more fully connected layers are connected. In the fully
connected layer, which is also called a softmax layer, each
neuron is fully connected to all neurons in the previous layer,
and the activation function of the neurons in it is generally
the ReLU function [33]. 0is layer can integrate category-
discriminatory information in the convolutional layer or the
pooling layer [34]. 0en, its output value is passed to an
output layer for classification using softmax regression [35].
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Figure 3: Deep belief network and deep Boltzmann machine.
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Recurrent neural networks (RNNs) can be used to
process and predict sequence data. It overcomes many
limitations of traditional machine learning methods on
input and output data and can be well applied when there is
certain time dependence in the data. 0erefore, RNN is an
important model for deep learning. 0e long short-time
memory (LSTM) network proposed by Hochreiter and
Schmidhuber [36] is now the most effective sequence model
in practical applications. LSTM is improved on the basis of
RNN. LSTM uses three gate structures to control the state
and output at different times, namely, input gate, output
gates, and forget gate. 0e LSTM architecture mentioned by
Graves and Schmidhuber [37] is shown in Figure 4. LSTM
mitigates gradient disappearance by combining short-term
memory with long-term one through a gate structure. 0e
gate structure can be regarded as a fully connected layer that
stores and updates information, and its activation function is
the sigmoid function. 0e Sigmoid function will output a
value between 0 and 1 to indicate the number of messages
that can pass through the door at the current moment. Zero
means that no information can be passed, and 1 means that
all information can be passed. 0e forget gate is a key
component of the LSTM unit, which controls which in-
formation should be retained and which should be forgotten,
thus avoiding the gradient disappearance and the explosion
caused by gradient backpropagation over time. 0e input
gate controls the amount of information that flows into the
memory unit from the current input data, and the output
gate determines the amount of information that the memory
unit outputs in the current state.

3. Review Methodology

In this research work, twenty-five papers related to the topic
have been selected. Five prominent databases including
SpringerLink, IEEE Xplore, ScienceDirect, Scopus, and
Google Scholar have been explored. Six questions describing
the overall trend of DOA estimation using deep learning are
put forward in the research questions section. Based on the
guidelines provided by Kitchenham and Charters [38] (as
shown in Figure 5), three main steps have been undertaken
to carry out this SLR work, namely, planning, conducting,
and reporting, and each step consists of several activities.

3.1. Research Questions. 0e proposed system evaluation
aims to research how DOA estimates can benefit from the
application of DL technology. 0e research questions are
listed below:

RQ1: What types of publication distributions available
from the databases over the last seven years related to
the topic area?
RQ2: Why is DL technology applied to DOA
estimation?
RQ3: Which DL techniques are applied to DOA
estimation?
RQ4: What are the key aspects of DOA estimation?

RQ5: What evaluation criteria are used for DOA es-
timation, and how do they perform?
RQ6: What factors affect DOA estimation, and how do
they affect DOA estimation?

3.2. Study Identification and Selection. 0e searched phrases
are divided into two groups: DOA estimation and deep
learning. 0e string is defined as any term related to signal
processing (e.g., “DOA estimation,” and “source number
estimation,” “source number enumeration,” and “direction
of arrival,” combined with the function OR) with any term
related to deep learning (e.g., “artificial neural network,”
“human convolutional neural network,” “deep learning,”
“CNN,” “DNN,” and “RNN”). 0e search platform chosen
were EZAccess Portal (Malaysia Putra University Library
Database) and Google Scholar. 0e former portal contains
many well-known databases, namely, SpringerLink, IEEE
Xplore, ScienceDirect, and Scopus. 0e latter portal has a
wide range of academic literature, making it easier to search.

Using the above string combination in the database, a
total of 2,499 papers are returned. Table 1 shows the dis-
tribution of papers in each database. 0e duplicated papers
are deleted, and a total of 2,444 papers are excluded using the
exclusion criteria (not written in English, repetitions, books,
inaccessible papers, works not in the shipping area, and
papers less relevant to the research direction of the review).
During the extraction process, the remaining 55 papers are
analyzed. Given the great number of papers, we analyzed the
abstracts of these papers, and the 25 most relevant papers
were selected for review.

4. Analysis of Current Research

0is section aims to introduce the basic information of
related papers and provide the answer for RQ1 based on the
following findings:

(1) Figure 6 shows the number of related articles from
2015 to March 2021. As can be seen, since 2017, the
use of deep learning in DOA estimation studies has
become increasingly popular.

(2) 0e number of journal publications from each
country is presented in Figure 7. Among them,
papers from China account for the vast majority,
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Figure 4: LSTM unit structure.
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with a total of 17 papers, showing that China attaches
the most importance to this research direction. 0is
is followed by two papers each from India, the USA,
and Germany, and one each from Japan and Turkey.

(3) Table 2 shows our statistics on the number of cita-
tions and publication types for the 25 related papers.
As can be seen from the table, 7 papers were pub-
lished in conferences, and the other 18 papers were
published in journals. We included 7 conference
papers because there were not enough journal papers
to select as the application of deep learning in DOA
estimation is not yet widespread.

(4) Citation count is a reference indicator for published
papers. 0e more the citation count, the more
valuable the work is supposed to be. Table 3 provides
statistics on the number of times relevant papers
have been cited. It can be seen from the table that
there are 14 papers with a citation count less than 5, 2
papers with citations greater than or equal to 5 and
less than 10, and 9 papers with a citation count
greater than or equal to 10. It can be seen that nearly
half of the papers have citation counts greater than 5.
In addition, it should be noted that some papers have
a zero citation count due to their short publication
period. Among them, the work done by Huang et al.
[57] have been cited 321 times; the work done by
Chakrabarty and Habets [61] have been cited 114
times; the work done by Liu et al. [58] have been
cited 83 times; and the work done by Chakrabarty
and Habets [54] have been cited 70 times.

5. Deep Learning in DOA Estimation

Research on related papers shows that different DL models
frameworks and algorithms are applied to DOA estimation.
0is section answers the research questions RQ2, RQ3, and
RQ4. To this end, the advantages of DL applied to DOA
estimation compared to traditional DOA estimation

• Background searching for
current and upcoming reviews; • Identification of research papers;

• Preliminary selection of the papers;

• Data management;

• Analysis of the research situation;
• Evaluation of neural network models;

• Analysis of variables;
• Final report of the SLR;

• Description of the key aspects of DOA
estimation;• Clear definition of the research

questions; • Application of paper selection
criteria;• Definition of search terms;

Selection of database;
• Definition of inclusion and

exclusion criteria;

Planning

Conducting

Reporting

Figure 5: A systematic literature review process [38].

Table 1: Number of papers retrieved from each database.

Database Number of articles found
SpringerLink 129
IEEE Xplore 67
ScienceDirect 133
Scopus 891
Google Scholar 1,280
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methods are emphasized. 0en, we introduced various DL
techniques used in DOA estimation. Finally, we summarized
various scenarios in DOA estimation.

5.1. Purpose of Using DL. To answer RQ2, we analyzed the
disadvantages of the traditional DOA estimation method
and the advantages of the DL method. 0e traditional DOA
estimation algorithm is generally limited by many factors.
For example, the received coherent signal will cause the
signal subspace and the noise subspace to permeate each
other, which reduces the accuracy of many classical sub-
space-like DOA estimation algorithms. In addition, the
resolution of the DOA estimation algorithm will be limited
by the physical aperture of the array, and the maximum
number of resolvable targets will be limited by the number of
elements. Besides, in practical applications, the number of
signal sources is often unknown, and most DOA estimation
methods need to know the number of signal sources in
advance. Otherwise, the estimation of the signal subspace

and the noise subspace will be inaccurate, which affects the
orthogonality of the signal subspace and the noise subspace
and ultimately DOA estimation accuracy.

Compared with traditional methods, the DL method
converts DOA estimation into pattern recognition. 0e
DOA estimation is carried out by extracting the features of
the signal data, which overcomes the disadvantages of the
traditional DOA estimation algorithm and improves the
accuracy of the DOA estimation.

5.2. Deep Learning Techniques. To answer RQ3, the DL
techniques used were reviewed from several papers. Table 4
is the summarization of the array model, DL model, acti-
vation function, number of network layers, and description
of the network structure used in the considered papers.

0e information given in Figures 8–10 provides the
answer to RQ3. Figure 8 summarizes the array model used in
DOA estimation. It can be seen from the figure that ULA is
used the most (81%), followed by UCA (14%), and SMA
(5%) is also used in speech DOA estimation. Figure 9 is the
distribution of DL techniques applied in the research work
of the selected reviewed papers. 0e most used DL model is
CNN (40%), followed by DNN (36%). 0en, some combi-
nation networks (12%) are used, such as CNN-RNN, CNN-
LSTM, and DNN-SVM. 0ere are also some rarely used
network models (12%), such as DFN, RNN, and SVM.
Figure 10 summarizes the activation functions used in the
DLmodel for DOA estimation. It can be seen from the figure
that the most used activation functions are ReLU (57%),
followed by Sigmoid (19%), Tanh (10%), and others (14%).

In summary, ULA is the most frequently used array
model by researchers; CNN and DNN are the most fre-
quently used DL models; and ReLU is the most commonly
used activation function.

5.3. Different Aspects of DOA Estimation

5.3.1. DOA Estimation in Signal Processing. DOA estimation
is an important task in signal processing, and it has a wide
range of applications in fields such as radar, sonar, and so on.
Xiang et al. [51] analyzed the unknown multipath signal and
concluded that the unknown multipath signal severely
distorts the phase characteristic distribution of the desired
signal. 0e designed supervised deep neural network is used
for phase enhancement, thereby effectively reducing the
phase distortion. 0e verification of real data shows that this
method effectively improves the DOA estimation. Goodman
et al. [52] evaluated two new techniques for estimating the
direction of arrival of RF sources: constrained integer op-
timization and deep learning. Research has found that deep
learning is more robust to significant calibration errors. To
adapt to the DOA estimation in the urban environment, Shi
et al. [42] proposed a complex-valued convolutional neural
network (CCNN). Experiments show that CCNN has a
faster convergence rate than CNN and a higher DOA es-
timation accuracy. Xiang et al. [47] proposed a supervised
CNN phase enhancement model, which can reduce phase
distortion by enhancing the phase characteristics. 0eir

Table 3: Number of citations for the considered papers over
2015–2021.

Citation count <5 ≥5 and <10 ≥10
Number of papers 14 2 9

Table 2: Publication type of selected papers (citation data via
Google Scholar, checked on March 1, 2021).

Publication Type of publication

Source Amount of
citations Journal Conference

Liu et al. [39] 0 √
Varanasi et al. [40] 1 √
Xiao et al. [41] 3 √
Shi et al. [42] 0 √
Chen et al. [43] 0 √
Elbir [44] 12 √
Yao et al. [45] 2 √
Cong et al. [46] 0 √
Xiang et al. [47] 1 √
Zhu et al. [48] 0 √
Rogers et al. [49] 0 √
Yang et al. [50] 6 √
Xiang et al. [51] 6 √
Goodman et al. [52] 0 √
Fu et al. [53] 2 √
Chakrabarty and Habets
[54] 70 √

Wajid et al. [55] 3 √
Pan et al. [56] 3 √
Huang et al. [57] 321 √
Li et al. [31] 15 √
Liu et al. [58] 83 √
Kase et al. [59] 13 √
Wang et al. [60] 12 √
Chakrabarty and Habets
[61] 114 √

Zheng et al. [62] 10 √
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Table 4: General description of the systematized papers.

References Array
model Technique Activation

function
Convolutional

layers Description of architecture

Liu et al. [39] ULA CNN Sigmoid 9 0e depth of the network and the number of convolution
and pooling layers will increase as the input increases.

Varanasi et al. [40] SMA CNN ReLU 27
It consists of two different CNNs: one CNN is used to
estimate the elevation angle and the other CNN is used to

estimate the azimuth angle.

Xiao et al. [41] ULA CNN Tanh 8 0e network structure is similar to the deep residual
network.

Shi et al. [42] ULA CNN ReLu —
0e existing CNN is converted into a complex-valued
convolutional neural network to gain more degrees of

freedom.

Chen et al. [43] ULA DNN ReLu 4 DNN consists of an input layer, a hidden layer, and an
output layer. 0e number of hidden layers is 2.

Elbir [44] ULA CNN ReLU 17 CNN has more network layers than signals, and each
layer corresponds to an angular spectrum.

Yao et al. [45] ULA CNN and
RNN Sigmoid — 0e network structure consists of a convolutional layer, a

BiLSTM layer, and a fully connected feedforward layer.

Cong et al. [46] ULA DNN Tanh and
Sigmoid —

0e framework includes an autoencoder, a feedforward
network, a network parameter database, and a collection

of a series of directed acyclic graph networks.

Xiang et al. [47] ULA CNN ReLU —
CNN consists of two convolutional layers, a nonlinear
layer and a linear layer, and then the maximum pooling

layer.

Zhu et al. [48] UCA CNN ReLU 5
Each convolutional layer has 128 feature maps; the fully
connected layer has 512 neurons; and the output layer

uses three neurons.

Rogers et al. [49] ULA DNN ReLU 15

DNN has an input layer, four sets of fully connected
layers, and then a batch normalization layer. Before the

last fully connected layer, there is a dropout layer,
followed by a softmax and classifier layer.

Yang et al. [50] ULA DNN ReLU 10 DNN is composed of a regression network and
classification network.

Xiang et al. [51] ULA DNN ReLU 4 Each layer contains 1,000 neurons.

Goodman et al.
[52] UCA DFN exp− x2 6

NFN includes two components: the internal feedback
interaction component and an external feedback

interaction component.

Fu et al. [53] ULA CNN — — Integrate deep learning and convolutional nonnegative
matrix factorization for DOA estimation.

Chakrabarty and
Habets [54] ULA CNN — 7 CNN consists of an input layer, three hidden layers, two

fully connected layers, and an output layer.

Wajid et al. [55]) ULA RNN — — RNN is based on bidirectional long short-term memory
(BiLSTM) networks.

Pan et al. [56] UCA SVM — — 0e MATLAB toolbox “libsvm” is used to determine the
best parameters.

Huang et al. [57] — DNN Sigmoid and
ReLU 8

0e hidden layer of DNN can be divided into coding
layer, dropout layer, noise layer, and decoding layer

according to its function.

Li et al. [31] — CNN and
LSTM ReLU 7 0e model consists of three convolutional layers, one

LSTM layer, and a full connection layer.

Liu et al. [58] ULA DNN Linear —
0e network consists of two parts: one is a multitasking
autoencoder and the other is a fully connected multilayer

neural network.
Kase et al. [59] ULA DNN Ramp — DNN is stacked by several single-layer neural networks.

Wang et al. [60] — DNN and
SVM — 7 DNN contains three hidden layers, which are cascaded

with SVM for multisource DOA estimation.
Chakrabarty and
Habets [61] ULA CNN ReLU 7 0e number of convolutional layers of CNN is one, less

than the number of microphones in the array.

Zheng et al. [62] — DNN — 5 DNN has 3 hidden layers, and each hidden layer has 512
neurons.
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model can effectively improve the DOA estimation accuracy
of the very high frequency (VHF) radar system under co-
herent multipath signals. Zhu et al. [48] proposed to train
five CNNs under different conditions, with each CNN
learning the direction image converted from the real and
imaginary parts of the spatial covariance matrix. 0en, the
prediction results of each CNN are calculated as an average
value to obtain the final DOA estimation results. Simulation
shows that this method can perform effective two-dimen-
sional (2D) DOA estimation. Cong et al. [46] proposed a
DNN-based DOA estimation framework that includes an
autoencoder, a feedforward network, a network parameter
database, and a collection of a series of directed acyclic graph
networks (DAGN). Among them, the autoencoder is
equivalent to the noise filter, and each subnet of DAGN is
composed of a convolutional neural network (CNN) and

two bidirectional long short-term memory (BiLSTM) net-
works. 0e simulation shows that the DOA estimation
performance of this network is better than the traditional
subspace algorithm. Yao et al. [45] proposed a DOA esti-
mationmodel based on a recurrent neural network.With the
help of Toeplitz matrix reconstruction, the model can es-
timate DOA for signals with unknown signal sources.
However, this model does not perform well in an envi-
ronment with a low signal-to-noise ratio and color noise.
Elbir [44] designed multiple CNNs, and such that each CNN
is dedicated to an angular spectrum to learn the multiple
signal classification (MUSIC) spectra of the corresponding
angle subregion. 0is method reduces the amount of cal-
culation and improves the accuracy of DOA estimation.
Kase et al. [59] designed a stacked DNNwithmultiple single-
layer neural networks. 0e lower triangular part of the
correlation matrix of the received signal vector is used as
input to train the DNN.0e simulation results show that the
DNN designed in a specific scenario has good DOA esti-
mation performance. Liu et al. [39] designed multiple CNNs
based on the number of array elements and used covariance
matrices containing real and imaginary numbers for
training. After a large amount of data learning, this method
can effectively identify the direction of underwater acoustic
signals. Liu et al. [58] proposed a DNN framework, which
consists of a multitask autoencoder and a series of parallel
multilayer classifiers. 0e encoder and the classifier are
trained on different data sets. 0e function of the autoen-
coder is to decompose the input into multiple components
in different spatial subregions. Simulation shows that this
method can be well applied to array defects, but in practical
applications, it faces a significant challenge as it requires a
large amount of labelled data for training. Chen et al. [43]
proposed a DNN framework for DOA estimation of radio
waves.0e network is divided into a detection network and a
DOA estimation network. For the detection network, the
search area of the antenna array is divided into several
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Figure 8: Distribution of array models of related papers.
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Figure 9: Distribution of DL technique of related papers.

57%

14%

10%

19%

ReLU
Sigmoid

Tanh
Others

Figure 10: Distribution of DL activation functions of related
papers.
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sectors, with each of them corresponding to a DOA esti-
mation network. 0is is to detect the signal radiated by each
sector. According to the detection result, one or more DOA
estimation networks can be activated for DOA estimation.
Simulation shows that compared with the traditional
method, this method streamlines the calculation, improves
the estimation accuracy, and has excellent generalization
ability. Huang et al. [57] proposed a novel DNN framework
for super-resolution DOA estimation and channel estima-
tion through offline learning and online learning. Among
them, offline learning is to use simulated data for training
under different channel conditions, and online learning is to
obtain the corresponding output data based on the current
input data. Experiments have confirmed that methods based
on deep learning can achieve better DOA estimation than
traditional methods. Xiao et al. [41] proposed a DeepFPC
network structure similar to the deep residual network.
DeepFPC has high sparse signal recovery performance and
good DOA estimation performance under low SNR.

5.3.2. Speech DOA Estimation. Speech DOA estimation can
be applied to distant automatic speech recognition. Varanasi
et al. [40] proposed a network architecture applied to DOA
estimation by discussing the azimuth angle and source
height existing in the amplitude and phase characteristics of
spherical harmonics. 0ey also expanded the DOA esti-
mation method into a dense DOA search grid. Training and
testing were performed using data sets of simulated and real
environments, respectively, and performance evaluation
showed that DOA estimation was improved even in noisy
and reverberant environments. Fu et al. [53] proposed a new
blind DOA estimation method that uses the 2D convolution
nonnegative matrix factorization method to generate a new
array signal to estimate the azimuth angle of the reverber-
ation signal. Wajid et al. [55] proposed to use the recurrent
neural network (RNN) model to learn some similar features
used in DAS beamforming. 0e results show that the DOA
estimation result based on RNN is better than DAS
beamforming. Li et al. [63] developed a supervised learning
algorithm combining CNN and long short-term memory
(LSTM) network for DOA estimation. Retraining the model
with new data makes the method robust to noise and re-
verberation and can quickly adapt to new microphone ar-
rays. Chakrabarty and Habets [54] proposed to use the
supervised learning method of CNN to estimate the DOA of
multiple speakers. 0is method formulates the multispeaker
DOA estimation as a multiclass multilabel classification
problem. Among them, the characteristics of each input
element are regarded as a separate binary classification
problem. 0is method can accurately locate the speaker in a
dynamic acoustic scene. Zheng et al. [62] proposed to use
different values of SNR and noise to train DNNs, which
achieved higher DOA accuracy at low SNR and improved
the intersensor data ratio (ISDR) performance of a single
acoustic vector sensor (AVS) in a noisy environment. Wang
et al. [60] proposed to use acoustic vector sensors (AVSs) to
estimate the DOA of multiple voice sources through clus-
tering of data ratios between sensors. 0is method designs a

connection between DNN and SVM. Using a soft mask
learner, the time-frequency points (TD-TFP) dominated by
the target speech can be extracted under different noisy and
reverberation conditions, thus improving the estimation
performance. Chakrabarty and Habets [61] proposed to use
CNN as a classifier for wideband DOA estimation. 0eir
method uses the synthesized noise signal to train the CNN. It
directly feeds the phase component of the short-time Fourier
transform coefficients of the received microphone signal
into the CNN and performs wideband DOA estimation.
Experimental evaluation shows that the method has good
robustness to noise and small disturbances.

5.3.3. Signal Source Number Estimation. Most of the existing
DOA estimation algorithms require prior knowledge of the
signal source number, so the estimation of the number of
signal sources is the primary task of DOA estimation. If the
estimated quantity is different from the actual one, the DOA
estimation will be affected. Pan et al. [56] proposed a source
number enumeration model (M-UCA) of UCA with M
antennas. 0is model can estimate the number of signal
sources at most M− 1 by extracting features from the in-
stantaneous phase of the array signal and then using SVM as
a classifier to classify signals with different numbers of signal
sources. Yang et al. [50] proposed to use a regression net-
work (ERNet) and a classification network (ECNet) for
source number detection. 0en the signal’s covariance
matrix is taken as input and the number of signal sources as
data labels for training. 0is data-driven method can au-
tomatically learn the threshold used to separate signal and
noise characteristic values and does not require a Gaussian
hypothesis for derivation like traditional methods. Simu-
lation experiments have verified the effectiveness of this
method. Rogers et al. [49] designed a 15-layer deep learning
network with parameter correction linear units, which uses
eigenvalues and spatial smoothing covariance matrix entries
as inputs to estimate the number of sources of narrowband
signals. Although this literature survey is preliminary, it
plausibly suggests that deep learning can have better source
number estimation capabilities.

6. Performance Metrics and
Explanatory Variables

0is section aims to answer the research questions RQ5 and
RQ6. For this purpose, the performance metrics of related
papers are counted, and the factors affecting DOA estimates
are analyzed.

6.1. PerformanceMetrics. Evaluating the performance of the
DL model is important for verifying the quality of the DOA
estimation algorithm. To answer RQ5, we summarized the
performance of the DL model in the considered papers. As
shown in Table 5, some performance criteria are used to
evaluate the performance of the DL model.

Figure 11 helps answer RQ5 by counting the distributions
of different evaluation criteria used by researchers. 0e most
commonly used evaluation criteria are root-mean-squared
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error (RMSE), accuracy (A), and mean absolute error (MAE),
accounting for 44%, 24%, and 16%, respectively. In addition,
there are some other evaluation criteria that are less used, such
as mean squared error (MSE), gross error (GE), mean error
(ME), and average accuracy (AA). 0e following is a brief
description of the frequently used criteria.

0e root-mean-squared error is used to measure the
deviation between the observed value and the true value.0e

average absolute error can avoid the mutual cancellation
of errors, so it can accurately reflect the size of the
actual forecast error. We assume: (i) y � true value; (ii)
h(x) � observed value; and (iii) m � number of obser-
vations. 0en the expressions of RMSE and MAE are as
follows:

RMSE(X, h) �
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m
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m

i�1
h x
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(1)

Accuracy refers to the ratio of the number of samples
correctly predicted to the total number of predicted
samples. It does not consider whether the predicted
samples are positive or negative. For the two-category
confusion matrix, the implications of the four parameters
are as follows: (i) true positives (TP): both the predicted
and actual samples are positive; (ii) false positives (FP):
positive predicted samples and negative actual samples;
(iii) true negatives (TN): both predicted and the actual
samples are negative; (iv) false negatives (FN): negative

Table 5: Parameter comparison and performance evaluation during DOA estimation.

Reference SNR (dB) Number of
snapshots

Number of
sensors

Number of
sources Evaluation index Evaluation value

Liu et al. [39] 10 — 10 1 Accuracy 98%
Varanasi et al. [40] 1 — 32 3 GE 0.14
Xiao et al. [41] 15 10 40 3 MAE 0.6
Shi et al. [42] 10 8 8 1 Accuracy 74.8%
Chen et al. [43] 2 400 10 2 RMSE 0.2
Elbir [44] 25 100 16 6 RMSE 0.02
Yao et al. [45] 10 100 11 3 MAE 0.95
Cong et al. [46] 25 400 5 2 RMSE 0
Xiang et al. [47] 14 42 21 2 RMSE 0.1
Zhu et al. [48] 10 1,024 9 1 RMSE 0.59
Rogers et al. [49] 3 20 11 5 Accuracy 0.77
Yang et al. [50] 5 100 10 — Accuracy 100%
Xiang et al. [51] 3 48 24 1 RMSE 0.02
Goodman et al. [52] 5 100 6 1 ME 0.028
Fu et al. [53] 10 20 3 1 RMSE 0
Chakrabarty and Habets [54] 5 — 4 2 MAE 0.6
Wajid et al. [55] 14 — 4 1 AA 1
Pan et al. [56] 20 500 4 3 Accuracy 98%
Huang et al. [57] 15 64 128 32 ME 0.001
Li et al. [31] 6 — 6 — Accuracy 74.8%
Liu et al. [58] 10 400 10 2 RMSE 0.2
Kase et al. [59] 30 100 5 2 RMSE 2.6
Wang et al. [60] 15 — — 2 RMSE 2.6
Chakrabarty and Habets [61] 30 — 4 2 MAE 1.5
Zheng et al. [62] 20 — 4 1 RMSE 0
RMSE: root-mean-squared error; MAE: mean absolute error; MSE: mean squared error; GE: gross error; ME: mean error; A: accuracy; AA: average accuracy.
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Figure 11: Distribution of evaluation criteria in the considered
papers.
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predicted samples and positive actual samples. 0e ex-
pression can be expressed as follows:

accuracy �
TP + TN

TP + TN + FP + FN
. (2)

0e gross error is an error other than a random error or
systematic error. 0e mean error is the average of all errors
in a group. 0e average accuracy refers to the average of the
accuracy rates of all categories.

By comparing each method, Fu et al. [53] had the best
performance when using RMSE as the evaluation method,
and RMSE is 0. When using A as the evaluation method,
Yang et al. [50] had the best performance, and A is 100%.
When using MAE as the evaluation method, Chakrabarty
and Habets [54] had the best performance, and MAE is 0.6.
However, the performance of different methods is subject to
the influence of various factors, which lead to performance
variations. 0e various factors affecting DOA estimates will
be described in the next section.

6.2.FactorsAffecting theDOAEstimation. 0e result of DOA
estimation is related to the incident signal source and the
environment in which it is applied. 0is section aims to
answer RQ6, so we first count the various factors that affect
the DOA estimation and then analyze the results of each
factor’s influence on the DOA estimation.

0e DL method of DOA estimation is affected not only
by the DL models but also by the data set. 0e data set is
determined by the characteristics of the incident signal.
Table 6 counts the various factors affecting DOA estimation
in the papers reviewed, including signal-to-noise ratio
(SNR), as well as the number of snapshots, antennas, and
signal sources. 0e following is an analysis of how each
factor affects DOA estimation.

6.2.1. 8e Impact of SNR on DOA Estimation. SNR directly
affects the performance of the super-resolution DOA
estimation algorithm. As shown in Table 6, increasing the
SNR from −5 dB to 5 dB in [51] reduces its RMSE from
0.08 to 0.02. Increasing the SNR from −5 dB to 5 dB in [53]
reduces its RMSE from 3.3 to 0.3, while the RMSE drops
from 1.3 to 0.28 when increasing the SNR from −10 dB to
10 dB in [43]. From the above relationship between SNR
and RMSE, it can be seen that as the signal’s SNR in-
creases, the DOA estimation performance of the algo-
rithm also improves. 0erefore, improving the DOA
estimation performance of the algorithm under low SNR
conditions is the primary task of the high-resolution DOA
estimation algorithm.

6.2.2. 8e Impact of the Number of Snapshots on DOA
Estimation. 0e number of snapshots is defined differently:
in the time domain, it is the number of sampling points; in
the frequency domain, it is the number of time subsegments
of the discrete Fourier transform. As shown in Table 7, if the
number of snapshots in [45] increases from 20 to 100, the
MAE drops from 1.6 to 0.1. Increasing the number of
snapshots from 50 to 400 in [46] reduces the RMSE from 0.4
to 0.1. Increasing the number of snapshots from 10 to 1,000
in [50] increases the accuracy from 91% to 100%. 0e above
relationship between the number of snapshots and the
evaluation criteria shows that the DOA estimation perfor-
mance improves as the number of snapshots increases.

6.2.3.8e Impact of the Number of Antennas and the Number
of Signal Sources on DOA Estimation. 0e number of an-
tennas in the array and the number of sources of the incident
signal also affect the DOA estimation. Table 8 shows the
relationship between the ratio of the number of signal
sources to the number of antennas and the evaluation cri-
teria. If the ratio in [41] increases from 1/20 to 5/20, theMAE
increases from 0.35 to 1.02. In [51], if the ratio increases from
1/20 to 1/10, the accuracy will drop from 100% to 97%; if the
ratio in [44] increases from 1/8 to 3/8, the RMSE increases
from 0.01 to 0.018. From the above relationship, the DOA
estimation performance will improve as the ratio increases.
0at is to say, the smaller the number of signal sources and
the greater the number of antennas, the better the DOA
estimation.

7. Conclusions

Deep learning (DL) has been successfully applied in many
fields due to its powerful capabilities. 0erefore, this article
presents a systematic literature review of the main papers on
DOA estimation using DL technology. 0is research first
conducted a cursory analysis of the 25 selected papers, in-
cluding the type of publication, the number of citations, and

Table 6: 0e estimated performance of each method under dif-
ferent SNRs.

Xiang et al. [51] SNR −5 dB 0 dB 5 dB
RMSE 0.08 0.03 0.02

Fu et al. [53] SNR −5 dB 0 dB 5 dB
RMSE 3.3 0.6 0.3

Chen et al. [43] SNR −10 dB 0 dB 10 dB
RMSE 1.3 0.3 0.28

Table 7: 0e estimated performance of each method under dif-
ferent number of snapshots.

Yao et al. [45] Snapshots 20 60 100
MAE 1.6 1.0 0.1

Cong et al. [46] Snapshots 50 200 400
RMSE 0.4 0.21 0.1

Yang et al. [50] Snapshots 10 100 1,000
Accuracy 91% 99% 100%

Table 8: 0e estimated performance of different methods under
different M/L.

Xiao et al. [41] M/L 1/20 3/20 5/20
MAE 0.35 0.50 1.02

Xiang et al. [51] M/L 1/20 — 1/10
Accuracy 100% — 97%

Elbir [44] M/L 1/8 — 3/8
RMSE 0.01 — 0.018

Note: M is the number of signal sources and L is the number of array
antennas.
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the country of origin. 0en, a systematic analysis of DL
techniques used in DOA estimation is then presented, in-
cluding the purpose of using DL in DOA estimation, various
DL models, and various DOA estimation scenarios. Finally,
the DL technology in DOA estimation is evaluated, and
various factors affecting DOA estimation are analyzed.

7.1. 8e Answer of Six Research Questions. After presenting
an overview of the results of this literature review, here, we
answer the six research questions given in Section 3.

RQ1: What types of publication distributions available
from the databases over the last seven years related to
the topic area?

(i) Since 2017, applying deep learning to DOA esti-
mation has become increasingly popular. (ii) Seven-
teen papers are from China, accounting for a majority
of all papers. (iii) Seven papers were published in
conferences, and the other eighteen papers were
published in journals. (iii) Eleven of the twenty-five
papers have an index number of not less than five.

RQ2: Why is DL technology applied to DOA
estimation?

0e DOA estimation is carried out by extracting the
features of the signal data, which overcomes the dis-
advantages of the traditional DOA estimation algorithm
and improves the accuracy of the DOA estimation.

RQ3: Which DL techniques are applied to DOA
estimation?

ULA is the most frequently used array model by
researchers; CNN and DNN are the most frequently
used DL models; and ReLU is the most commonly
used activation function.

RQ4: What are the key aspects of DOA estimation?

(i) DOA estimation is an important task in signal
processing, and it has a wide range of applications in
fields such as radar, sonar, and so on. (ii) Speech DOA
estimation can be applied to distant automatic speech
recognition. (iii) 0e estimation of the number of
signal sources is the primary task of DOA estimation.
If the estimated quantity is different from the actual
one, the DOA estimation will be affected.

RQ5: What evaluation criteria are used for DOA es-
timation, and how do they perform?

0e most commonly used evaluation criteria are root-
mean-squared error (RMSE), accuracy (A), and mean
absolute error (MAE), accounting for 42%, 27%, and
16%, respectively. Fu et al. [53] had the best perfor-
mance when using RMSE as the evaluation method,
and RMSE is 0. When using A as the evaluation
method, Yang et al. [50] had the best performance,
and A is 100%. When using MAE as the evaluation
method, Chakrabarty and Habets [54] had the best
performance, and MAE is 0.6.

RQ6: What factors that affect DOA estimation, and
how do they affect DOA estimation?

Various factors affecting DOA estimation in the pa-
pers are reviewed, including signal-to-noise ratio
(SNR), as well as the number of snapshots, antennas,
and signal sources. (i) As the signal’s SNR increases,
the DOA estimation performance of the algorithm
also improves. (ii) 0e DOA estimation performance
improves as the number of snapshots increases. (iii)
0e smaller the number of signal sources and the
greater the number of antennas, the better the DOA
estimation.

7.2. Final Remarks. 0e application of deep learning tech-
nology to DOA estimation has achieved good results. 0is
paper reviews methods for research and achievement. It is
hoped that this paper can provide an overview for re-
searchers interested in this field.
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