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Unmanned aerial vehicle (UAV) has recently gained significant attention due to their efficient structures, cost-effectiveness, easy
availability, and tendency to form an ad hoc wireless mobile network. IoT-enabled UAV is a new research domain that uses
location tracking with the advancement of aerial technology. In this context, the importance of 3D aerial networks is attracting a
lot of attention recently. It has various applications related to information processing, communication, and location-based
services. Location identification of wireless nodes is a challenging job and of extreme importance. In this study, we introduced a
novel technique for finding indoor and open-air three-dimensional (3D) areas of nodes by measuring the signal strength. +e
mathematical formulation is based on a path loss model and decision tree machine learning classifier. We constructed 2D and 3D
models to gather more accurate information on the nodes. Simulation findings demonstrate that the proposed machine learning-
based model excels in nodes location estimation, the actual and estimated distance of different nodes, and calculation of received
signal strength in aerial ad hoc networks. In addition, the decision tree constructs an offline phase control in the flying vehicle’s
location to enhance the time complexity along with experimental accuracy.

1. Introduction

Due to recent advancements in communication and net-
working, the flying ad hoc network (FANET) is considered
as a more feasible alternative to the wireless sensor network
(WSN). To meet growing high-speed networking and
communication requirements, unmanned aerial vehicles are
the optimal choice for communication. +ey are used for
different cellular network applications such as border sur-
veillance, search operations, crime scene security, home-
based security, emergency assistance, and rescue operations.
Unmanned aerial vehicles use air-to-air communication
(a2a communication) like UAV communicating with other

UAVs and air-to-ground communication (a2g communi-
cation) like UAV communicating with the ground base
station. Air-to-air communication between different UAVs
generally requires less energy as compared to air-to-ground
communication. UAVs face different challenges such as
limited power, short-communication ranges, rapid topo-
logical changes, low bandwidth, and handover.

Generally, for radio-range transmission communica-
tions, WLAN orWiFi networking is considered, but for long
range communication requirements, 802.15.4 is used.
WLAN induces heavy overheads due to which it is usually
discouraged. Single UAV cannot create FANET; therefore,
multiple UAV’s are required, and not every UAV needs to be

Hindawi
Mobile Information Systems
Volume 2021, Article ID 5523553, 11 pages
https://doi.org/10.1155/2021/5523553

mailto:vinh.th@ou.edu.vn
https://orcid.org/0000-0003-3637-6977
https://orcid.org/0000-0002-0967-1885
https://orcid.org/0000-0003-0522-4348
https://orcid.org/0000-0001-5111-9923
https://orcid.org/0000-0002-4658-1133
https://orcid.org/0000-0002-3464-3894
https://orcid.org/0000-0003-4595-9015
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5523553


connected to the base station. UAV does usually have a
speed between 30 and 360 km/h due to which communi-
cation problems in multiple unmanned aerial vehicles arise.
In flying ad hoc networks, there must be a sparse density
with a large distance between unmanned aerial vehicles;
however, it also depends upon the nature of flying ad hoc
networks. +e communication between UAV’s can be af-
fected due to their high speed, changing topology, changing
location, connection failure, and updated processing needed
every time. Localization means selecting the location of each
UAV even at high speed. +ere is a need for efficient and
accurate localization within short intervals of time according
to the high speed.

+e weighted centroid algorithm depends upon the
beacon frames sent from nodes. +ese nodes are either
expressed in 2D or 3D space. It is measured through the
received signal strength identifier (RSSI) for indoor and
outdoor environments. +is study presents a novel strategy
for aerial ad hoc networks using the three-dimensional
measurement of received signal strength power which shows
optimal outcome in terms of location and the distance of
nodes. Calculation of signal strength is performed using a
log-normal model. Signal strength plays an important role
from aerial vehicles to the land station where cyber-security
attacks can be deployed by intruders to overcome and hijack
the network which causes disruption. Optimal flying signals
transmission mitigates aerial data congestion which reduces
many problems in smart cities. Intelligent signaling systems
directly mixup in the field of smart cities which improve
decision making, the interaction of information, and also
smart flying things that increase the behavior of human
interaction, energy, and context awareness. +e main con-
tributions of this study are as follows.

IoT-based unmanned aerial vehicles are used to im-
prove signal strength in smart cities
Secure communication channels in flying ad hoc
networks utilize a two-ray model and centroid algo-
rithm for node localization
Machine learning framework decision tree is applied on
the network topology to improve signal strength

Rest of the study is structured with Section 1 which
consists of introduction, while Section 2 is composed of brief
literature having past data about the problem. Similarly,
detailed classification is incorporated in Section 3; also,
Section 4 represents the proposed model. Section 5 dem-
onstrates results of the algorithm. +e theoretical analysis
and future direction is discussed in Section 6, which is
explained in conclusion section.

2. Related Survey

In [1], Bilal et al. discussed that the hexahedral method is
being replaced by centroid localization algorithms. +ey
compared the performance of the proposed approach with
maximum likelihood estimation (MLE); this is further
compared with the two-dimensional weighted centroid lo-
calization algorithm.

Syed et al. [2] designed a new routing protocol which can
select cluster head (CH) for path planning and intelligent
routing. +e protocol design is based on selecting the group
leader in the nodes. +e group leader must have some
specific attributes or characteristics. +e group leader selects
nodes and senses the environmental changes; whereas, the
OPEN protocol performs better results as compared with the
traditional routing techniques which improve energy
lifetime.

In [3], Liu et al. compared optimal ant-based distance
protocols.+e analysis of different protocols is performed by
using primary metrics.+ese routing protocols are evaluated
in simulation-based environments, rather than real-time
scenario. In this study, almost all of the protocols are based
on transition probability, which is pheromone and heuristic-
based, and the operation level is energy level control and
distance transmission control.

Network topology such as flat and hierarchical describes
routing challenges in ant-based protocols. +is study also
highlights the latest developments in this research field. Pu
et al. [4] projected a novel idea in this study. +e motivation
of the study is a result of rapid development in technology
such as sensors and communications in multisized UAVs
leading to flying ad hoc networks. Because of the easy de-
ployment of nodes and configurations, FANET is used in
many applications such as search operations, rescue oper-
ations, and civil family functions. Due to high topological
changes in communication links failure, there is an inten-
tional jamming in unmanned aerial vehicles. +is work can
be further extended by making a connectivity-based mo-
bility model for unmanned aerial vehicles.

Qiang et al. [5] explained the problem of the single
connected flying ad hoc network, which can be segmented
because of the special attributes of unmanned aerial vehicles.
+ey also described different movements using k hope
physical structure; this algorithm is studied in a three-di-
mensional FANET in numerical computation using a sim-
ulation environment. +e proposed algorithm is compared
with the local and also with the roof of a brief time, offset
distance, cascade movement of motes, and also maintaining
the original link at the same time.

Guillen-Perez and Cano et al. [6] came up with a new
area in the network communication that is flying networks
in which we find some different attributes from other areas.
+is study presents brief literature on mobility models of
flying ad hoc networks positioning, propagating proposed
for FANETs such as path planning. +ey used a pure ran-
domized structural approach. In this study, they performed
two experiments to advance state of the art by measuring the
drones’ onboard WiFi radiation patterns. To achieve, this
experiment is performed in a controlled environment.
Different wireless technologies such as WiFi, LTE, and
WiMAX are used. +rough these technologies quantifying
the influence of radiation pattern onboard communication,
the communication is mainly carried out in two-dimen-
sional boundary, but in the future, we can use three-di-
mensional boundary for this practical experimentation.

Anis and Basit [7] described technical and experimental
data on Internet of drones. +is technology opens a new
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horizon on smart tracking of drones through web and
android-based applications using the robot operating sys-
tem. +is study explains object tracking through drones
using Internet. Drone tracker uses drone map planner. A
cloud-based system manages drones over Internet. Practical
experimentation is performed, which shows drone tracking
systems with a low speedy destination.

In [8], Zhang et al. [8] presented radio frequency
identification for unmanned aerial vehicles that provides 6
degrees of freedom. +ey attached modern ultrahigh fre-
quency tags that are interrogated. For this purpose, the
Bayesian algorithm is used. +e proposed experimentation
was tested on rich structure for inside environments. SVD-
based algorithm and Bayesian filter is used, and this method
is efficient for different aerial vehicles. An unscented Kalman
filtering mechanism is applied on directional antenna-based
aerial networking to estimate the position of unmanned
aerial vehicles [9].

According to the past research, we have found that most
of the research work was conducted on wireless sensor
networks based on the two-dimensional centroid localiza-
tion algorithm; whereas, we have seen many limitations in
the work such as calculating range-based methods; the
availability of the data on sensors/hubs is part of range free
calculation, and later, the received signal strength power was
introduced. Formulation of signal strength on receiving
flying nodes makes use of wireless infrastructure which
enhances the capabilities of line-of-sight in air-2-ground
signals multiplication to maximize the sensor networks.
Achieving the optimal signal strength directly increases
received signal power; whereby, wireless radio energy of the
channel can uphold the power level in flying ad hoc net-
works. +e industrial Internet of things is concerned where
communication workstation security and reliable data
transmission are the most important factors to safeguard the
information centers. Pervasive edge computing is proposed
to secure IIoT [10]. However, for lightweight mutual au-
thentication, the client-server model utilizes encryption to
secure sessions among the nodes [11, 12]. +reat intelligence
can be minimized in dynamic malware analysis using a
decision tree to examine behavior and overcome security
risks [13]. In the decentralized web of networks, cognitive
radio gives optimal results that employ the hidden Markov
model to dedicate direct short range communication
channels for transmission [14, 15]. Maintain the quality of
service in multihop communication to detect Sybil attack;
whereas for this purpose, QoS-aware secure communication
technique can be easily deployed using Internet of things-
based networks, which can be performed on large scale data
[16].

3. Detail Classification

3.1. Aerial Networks. Topology construction plays an im-
portant role in aerial networks. In UAV networks, every
node is a nonstatic node and moves in three axes. We do a
study on how far is the node from the base station and how
far is the drone away from the cluster head; for tackling
these problems, making topology is important. Kim [17]

discussed that due to rapid fluctuations in topological
parameters of futuristic networks, UAV networks are
promising technology due to the versatile behavior. +is
study describes the optimization of topological manage-
ment to maximize the performance by optimizing the
location and movements of unmanned aerial vehicles. It is
achieved by adapting the topological changes while car-
rying out UAV’s missions. +erefore, for this purpose, two
algorithms were proposed, one for topology construction
based on swarm optimization and the second one is
adjusting topological changes in flying ad hoc networks,
which is based on aerial flying networks. Shi et al. [18]
introduced a new area that is a drone-assisted vehicular
network (DAVN), which provides connectivity between
vehicles and futuristic networks of unmanned aerial ve-
hicles. In [18], they further discussed a brief architecture of
software define the drone-assisted vehicular network
(DAVN) by cooperating with vehicle infrastructure that
can improve connectivity between drones and vehicles. +e
architecture is constructed on a mobile ad hoc network that
includes static nodes and a remote server/node for com-
munication; then, this process was updated into flying ad
hoc networks that comprise a base station and drones. A
pictorial representation of DAVN is presented in Figure 1.

3.2. Localization. Localization means to measure the dis-
tance between the nodes; there are two types of localization:
one is indoor localization and the second one is open-air/
outdoor localization. Yves and Peng [19] in their study
described that low cost received signal strength can be found
by simple experimentation of two devices that will be
connected to a database to store the data. +e algorithm
works on the location of an unknown mote by using the
received signal strength indicator (RSSI) with angle-based
localization estimation (RALE). RSSI value gets increased
when it comes near to hidden workstations which keep away
from angle unreliable RSSI. +e results obtained after the
practical experiment show that RALE only requires RSSI and
the angles. It does not require a complex computationally
expensive algorithm. Furthermore, they suggested that this
research can be tested on the position and height of the node.
Wireless sensor networks mostly work in the bounded area
of communication that forms clusters; the tracking of a static
node or cluster is very easy, and these issues can be tackled
by dynamic programming. As communication advances in
many areas, hybridization of many heterogeneous sensor
networks offers low power in high communication net-
works. Akter et al. [20] described the tracking and locali-
zation algorithm in wireless sensor networks. Due to the
drawbacks in the static clustered routing, this research in-
crementally updates, creates maintenance through online
learning, and shows us energy-efficient tracking and local-
ization in wireless sensor networks. Some nodes decrease
computational complexity calculation and give us proper
information of the coordinate systems. Our research study
will make use of signal strength power that shows howmuch
is received which will be opposite to the distance between
unmanned aerial vehicles.
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3.3. Localization Strategies and Algorithm. As discussed in
Section 3.2, localization is the estimation of the distance
from one node to another node, such as environmental
monitoring checking animals’ habitat, fire surveillance,
water quality checking from where the water is coming,
search operations, and intrusion detection systems. Wireless
sensor localization is the process to estimate the location of
the sensors having unknown locations, time, distance, angle
of arrival, and how the motes are connected. As far as the
global positioning system (GPS) is a concern, this is very
expensive to implement in every mote; so that is why we go
for the technique of localization. Sensor with a known lo-
cation of position information is called anchors. Range free
localization includes pattern matching and hop-count-based
localization. +ere is another branch called target/source
localization, which includes single and multiple target
localizations.

Yu et al. [21] in their study introduced two algorithms
that give us better results to localize a node. First, error terms
of the estimated distance between anchor motes. Second, the
QDV-Hop algorithm minimizes error to obtain optimal
localization. Almost both proposed algorithms achieve
similar accuracy by solving unconstrained optimization
issues. Later, localization can be improved by reducing
computational complexity while improving accuracy.

+e range free estimation can be expressed using cen-
troid algorithms, DV-Hop, and APTI algorithms. In Fig-
ure 2, we briefly presented localization taxonomy that
comprises of (i) target/source localization, (ii) distribution,
(iii) mobility, (iv) ranging, (v) coordinates, and (vi) location.
Figure 3 elaborates the classification of node localization
strategies for wireless technology like 802.1, which mainly
covers centralized and distributed localization. Distribution

localization techniques further extend to six modules such as
bacon based, relaxation based, coordinate system, hybrid,
error propagation, and interferometer ranging. Bacon-based
techniques have three more modes, which are diffusion,
gradient, and bounding box. +e 2D view of sensor work-
stations in flying vehicles gives the flat view where the three-
dimensional implication displays a real-time field of vision
in the network topology. Deep insight idea of the 3D location
where flying nodes is having practical applications is uti-
lizing sensor nodes. Besides, working on 3D-based envi-
ronments on Internet of drones to improve node localization
is a difficult task. Our simulation environment is based on a
3D centroid algorithm which will estimate not only node
distance computation but also signal power between two
unmanned aerial vehicles to measure the distance between
aerial vehicles. Figure 2 represents the taxonomy ladder of
localization, where Figure 3 shows wireless sensor com-
munication networks’ distribution in terms of centralized or
either distributed localization.

3.4. Proposed Model. Signal strength power measurement
commonly known as the received signal strength identifier
(RSSI) is a technique for calculating the distance between
two UAVs or wireless nodes. Signal strength varies as the
distance between nodes changes. However, if you compare it
to the real environment, the received signal strength indi-
cator is highly influenced by environmental noise. Gao et al.
[22] used a two-ray model for their proposed scheme for
node localization. +ey tested the proposed technique in the
rice field. With advancements in wireless communication
technologies, there must be some efficient mathematical
models that can be used to improve the accuracy in motes

Satellite

UAV’s swarm

Drone

BS

BS

Wirel
ess

 lin
k

Figure 1: Drone-assisted vehicular networks.
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localization algorithms. Received signal strength measure-
ment is based on distance; we applied this technique in the
centroid algorithm for node localization in aerial technol-
ogy. Figure 4 elaborates the ideal relationship of received
signal strength and distance between nodes.

RSSI � −k logd + a,

d � 10
(a − rssi)

k
􏼢 􏼣.

(1)

Syed et al. [1] discussed that remote signal plays a vital
role in wireless communication; so remote received signals
and motes relationship is given in the following equation:

Pr � Pt

1
d

􏼒 􏼓. (2)

We must take ten times logarithm on both sides and
convert it into dBm, as given in the following equation.

PR(dBm) � A − 10n log d. (3)

Syed et al. [1] further discussed that the above equations
are for urban environments, and the equation for received
signal strength on the receiver side is given by the following
equation.

Pr(dB)PtGtGr ∗
ht

2
hr

2

d
4􏼠 􏼡. (4)

+e shadowingmodel using signal strength power can be
briefly explained using the following equation.

P(d) � P d0( 􏼁 − 10η log 10
d

d0
􏼠 􏼡 + Xσ. (5)

η is the signal attenuation used for some specific envi-
ronments even when some obstacles come on the path of
signal. X σ is the Gaussian random variable, for smaller
values and larger distances calculation of error for small
values of measured signal strength.
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Figure 2: Localization taxonomy.
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d � 10 −
P(d) − P d0( 􏼁 − Xσ( 􏼁

10η
,

d � 10 −
P(d) − P d0( 􏼁 + Xσ1( 􏼁

10
if P(d)≥P1,

d � 10 −
P(d) − P d0( 􏼁 + Xσ2( 􏼁

10η2
if P(d)<P1.

(6)

In wireless communication using static access points,
indoor localization is having importance, through which
accuracy can be improved. Wang et al. [23] proposed that
access point for indoor localization in 2D space is divided by
special access points.+ey suggested that regions are divided
by different locations, and the distance of the rank is pro-
vided to each region on access point. Location sequenced is
obtained by using channel status information (CSI) between
the access points. +is algorithm is compared with the
traditional method, i.e., received signal strength indicator
(RSSI), and the simulations results show us accuracy of
about 24.31%.

3.5. Wireless Technology. Short range communication is
mostly used in aerial technology by using ZigBee. ZigBee is a
low cost, easy to configure IEEE 802.15.4-based specification,

which is generally used to create personal wireless area
networks. It is used in different applications such as agri-
culture, smart homes, and military. Yu et al. described 3D
localization in [24]. It uses a well-known loop invariant
technique for division, with reference to point anchor
bounded in an outer side using parameter points known as
parametric loop division (PLD), for the measurement of
noise. In Figure 5, we presented a novel technique called the
three-dimensional centroid algorithm and RSSI framework
in FANETs.

PL(dB) � 10 log Q,

PL(dB) � −10 log
R

S
􏼚 􏼛.

(7)
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Using the prior n-1 formulas minus n-1th formula,

X
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2
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2
− Y
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− M

2
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2
� 2X0 Xi − Xn( 􏼁 + 2Y0 Yi − Y0( 􏼁,

AX � B.
(9)

Basically, A is a tall matrix, whose inverse does not exist;
so, premultiply with AT:

A
T
AX � A

T
B. (10)

ATA� square matrix.
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Figure 4: Relationship between RSSI and distance.
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X � A
T
A􏼐 􏼑

−1
A

T
B. (11) 4. Mathematical Formulation for Three-

Dimensional (3D) Calculation
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(12)

Using the prior (n-1) formula minus the nth formula,

X
2
0 + Y
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2
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2
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A
T
AX � A

T
B,

X � A
T
A􏼐 􏼑

−1
A

T
B.

(13)

5. Simulation Results

We used Matlab for the simulation of the proposed model.
We deployed 9 nodes randomly in the topology. All the
nodes used in the topology are mobile and move in all three
access at the same time. We constructed two scenarios one
for 2D space and another for 3D. Pictorial representation of

2D and 3D topologies are presented in Figures 6 and 7,
respectively. Few important simulation parameters are
presented as follows.

(1) Number of nodes: 9.
(2) Calculation method for RSSI: log-normal method.
(3) Path loss for reference distance: 55 db.

Begin

In FANETS, unknown sensor nodes coordinates is set (x, y, z) for 3D and for 
2D (x, y), then CLA based on received signal strength

Nodes sending their related information, ID, position coordinates 
information into the surrounding nodes

Unknown node receives info need to record info broadcast by the node 
for several times and calculate RSS

Selection of 
unknown

nodes

Drive local position 
for reference node

Obtaining position 
selecting node

Distance 
estimation

Polygon is formed by all anchor nodes

Calculate the location of selected unknown node

Any selected ref node 
without calculation

End

Figure 5: +ree-dimensional centroid algorithm and RSSI framework in FANETS.
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(4) Path loss exponent: 1.
(5) Reference distance: 1m.
(6) Noise variance: 7.
(7) Machine learning classifier: decision tree.
(8) Cost function: mean square error.

Figures 8 and 9 are MATLAB generated results which
show some parameters such as estimated distance, nodes
with signal strength, and actual distance among the aerial

vehicles. Figure 8 is utilized for 2D and Figure 9 for 3D using
Internet of flying vehicles.

Table 1 shows the comparison between the proposed
solution and wireless sensor node localization which rep-
resents optimal results by using a decision tree to improve
receive signal strength in the dynamic network. +erefore,
signal power is improved more while utilizing machine
learning technique as compared with the static node
localization.

Estimation of 3D location with the decision tree algorithm for flying Ad hoc networks 
Number of nodes: 9 
Actual distance from node 1: 2.828427e + 00  
Actual distance from node 2: 7.280110e + 00  
Actual distance from node 3: 2.236068e + 00  
Actual distance from node 4: 7.071068e + 00  
Actual distance from node 5: 7.071068e + 00  
Actual distance from node 6: 4.690416e + 00  
Actual distance from node 7: 5.099020e + 00  
Actual distance from node 8: 8.774964e + 00  
Actual distance from node 9: 6.557439e + 00  
Calculation of received signal strength by the log‐normal model  
Path loss for reference distance: 55dB  
Path loss exponent: 1  
Reference distance: 1m  
Noise variance: 7  
Received signal strength from node 1: 5.748455e + 01  
Received signal strength from node 2: 5.337862e + 01  
Received signal strength from node 3: 5.850515e + 01  
Received signal strength from node 4: 5.350515e + 01  
Received signal strength from node 5: 5.350515e + 01  
Received signal strength from node 6: 5.528789e + 01  
Received signal strength from node 7: 5.492513e + 01  
Received signal strength from node 8: 5.256755e + 01  
Received signal strength from node 9: 5.383266e + 01  
Estimated distance from node 1: 5.643454e – 01  
Estimated distance from node 2: 1.452573e + 00  
Estimated distance from node 3: 4.461542e – 01  
Estimated distance from node 4: 1.410864e + 00  
Estimated distance from node 5: 1.410864e + 00  
Estimated distance from node 6: 9.358610e – 01  
Estimated distance from node 7: 1.017388e + 00  
Estimated distance from node 8: 1.750836e + 00  
Estimated distance from node 9: 1.308381e + 00  
Node with good signal strength: node 3  
Node with good signal strength: node 1  
Node with good signal strength: node 6  
Node with good signal strength: node 7  
Actual location: (5, 3, 1)  
Estimated location with the decision tree algorithm: (5.009588e + 00, 3.019663e + 00, 1.041434e + 00)  

Figure 8: Decision tree for FANETS (3D).
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6. Conclusions

Aerial networks refer to flying ad hoc networks or un-
manned aerial vehicles. +e rapidly changing dynamic
structure of drones using different mobility models and
topologies makes a challenge in implementing an algorithm

that can measure signal strength power accurately. +is
study implementation presented a theoretical analysis and
provided a brief discussion on using the three-dimensional
centroid localization technique, step by step sequences using
only 9 UAV’s which have improved received signals on some
UAVs. In the future, we can make use of different locations

Estimation of 2D location with the decision tree algorithm  
Number of nodes: 9 
Actual distance from node 1: 2  
Actual distance from node 2: 4.123106e + 00  
Actual distance from node 3: 2.236068e + 00  
Actual distance from node 4: 5  
Actual distance from node 5: 5.830952e + 00  
Actual distance from node 6: 4.242641e + 00  
Actual distance from node 7: 5.099020e + 00  
Actual distance from node 8: 7.211103e + 00  
Actual distance from node 9: 4.242641e + 00  
Calculation of received signal strength by the log‐normal model  
Path loss for reference distance: 55dB  
Path loss exponent: 1  
Reference distance: 1m  
Noise variance: 7  
Received signal strength from node 1: 5.898970e + 01  
Received signal strength from node 2: 5.584776e + 01  
Received signal strength from node 3: 5.850515e + 01  
Received signal strength from node 4: 5.501030e + 01  
Received signal strength from node 5: 5.434261e + 01  
Received signal strength from node 6: 5.572364e + 01  
Received signal strength from node 7: 5.492513e + 01  
Received signal strength from node 8: 5.341998e + 01  
Received signal strength from node 9: 5.572364e + 01  
Estimated distance from node 1: 3.990525e – 01  
Estimated distance from node 2: 8.226677e – 01  
Estimated distance from node 3: 4.461542e – 01  
Estimated distance from node 4: 9.976312e – 01  
Estimated distance from node 5: 1.163428e + 00  
Estimated distance from node 6: 8.465181e – 01  
Estimated distance from node 7: 1.017388e + 00  
Estimated distance from node 8: 1.438804e + 00  
Estimated distance from node 9: 8.465181e – 01  
Node with good signal strength: node 1  
Node with good signal strength: node 3  
Node with good signal strength: node 2  
Actual location: (5, 3)  
Estimated location with the decision tree algorithm: (5.005643e + 00, 2.995822e + 00)

Mean square error for 3D position: 7.317732e – 04m  
Mean square error for 2D position: 1.643185e – 05m 

Figure 9: Decision tree for FANETS (2D).

Table 1: Comparison of the proposed work with WSN-based node localization.

Ref/Proposed
work

Number of
nodes

WSN-based node
localization

Flying things node
localization

Node with good RSS using
decision tree and dynamic

mobility

Node with good RSS
using WSN nodes

2D or
3D

[1] 9 YES NO NO 5.704609 Both
Proposed
work 9 NO YES 5.850515 NO Both
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on using distinct topological arrangements in aerial vehicles.
Simulation results show that our decision tree-based model
has shown good potential to address this problem.

Data Availability

+is research is based on simulations, which are performed
in a simulator. +erefore, there is no dataset used in this
research.
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