
Research Article
Intelligent Resource Allocation Method for Wireless
Communication Networks Based on Deep Learning Techniques

Hancheng Hui

China University of Geosciences (Wuhan), Wuhan, Hubei 430000, China

Correspondence should be addressed to Hancheng Hui; 20191004352@cug.edu.cn

Received 14 September 2021; Revised 24 September 2021; Accepted 25 September 2021; Published 5 October 2021

Academic Editor: Guolong Shi

Copyright © 2021 Hancheng Hui. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a deep learning approach is used to conduct an in-depth study and analysis of intelligent resource allocation in
wireless communication networks. Firstly, the concepts related to CSCN architecture are discussed and the throughput of small
base stations (SBS) in CSCN architecture is analyzed; then, the long short-term memory network (LSTM) model is used to
predict the mobile location of users, and the transmission conditions of users are scored based on two conditions, namely, the
mobile location of users and whether the small base stations to which users are connected have their desired cache states, and
the small base stations select the transmission. The small base station selects several users with optimal transmission conditions
based on the scores; then, the concept of game theory is introduced to model the problem of maximizing network throughput
as a multi-intelligent noncooperative game problem; finally, a deep augmented learning-based wireless resource allocation
algorithm is proposed to enable the small base station to learn autonomously and select channel resources based on the
network environment to maximize the network throughput. Simulation results show that the algorithm proposed in this paper
leads to a significant improvement in network throughput compared to the traditional random-access algorithm and the
algorithm proposed in the literature. In this paper, we apply it to the fine-grained resource control problem of user traffic
allocation and find that the resource control technique based on the AC framework can obtain a performance very close to the
local optimal solution of a matching-based proportional fair user dual connection algorithm with polynomial-level
computational complexity. The resource allocation and task unloading decision policy optimization is implemented, and at the
end of the training process, each intelligent body independently performs resource allocation and task unloading according to
the current system state and policy. Finally, the simulation results show that the algorithm can effectively improve the quality
of user experience and reduce latency and energy consumption.

1. Introduction

Wireless communication technology has developed from the
first generation of mobile communication technology, which
emerged in the 1980s, to the fifth generation of mobile
communication technology, from the beginning of satellite
communication, radio transmission, and then developed into
intelligent terminal devices, which makes wireless communi-
cation technology not only able to provide general voice
communication or simple data services but also is fully inte-
grated into people’s daily life, becoming an indispensable
part of today’s society [1]. It has become an integral part of
today’s society, making people’s lives more convenient and
richer. The introduction of fourth-generation wireless tech-

nology provides a platform for moving towards higher data
rates and reliable communication standards [2]. The growing
demand for data services has led to the development of global
interoperability for microwave access and the long-term evo-
lution of wireless communication standards. However, with
the increasing number of smart terminal devices, the expo-
nential increase in wireless data demand and usage, and the
introduction of emerging multimedia applications, it is very
difficult to support the rapidly growing data rates and con-
nected devices in the current 4GLTE cellular system. In the
traditional radio access network architecture, the base station
controller performs data transmission and reception by con-
trolling the RF units, while the wireless network scales the
system capacity mainly by expanding the number and
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density of base station deployments; thus, the expansion of
the number and density of base stations also poses many
challenges and difficulties [3]. On the one hand, it is men-
tioned in the literature that in the traditional wireless access
network architecture, the base stations mainly consume
energy, and the increase in the number of base stations leads
to a large increase in energy consumption; on the other hand,
the traditional wireless access network architecture cannot be
applied to the multiscenario and multiservice requirements
of 5G wireless networks; therefore, a new network architec-
ture that can achieve green energy saving and flexible deploy-
ment is urgently needed [4]. With the continuous increase of
smart terminal equipment, the increase of wireless data
demand and usage index, and the introduction of emerging
multimedia applications, it is very difficult for the current
4GLTE cellular system to support the rapidly increasing data
rate and connected devices. The highly dynamic nature of the
network refers to the frequent changes in network topology
and mobile data services; through the design of reasonable
resource management techniques, users can access the net-
work adaptively according to the current network topology
and services, without low communication rate and quality
of service due to frequent changes in network topology or
frequent changes in mobile data services [5]. The variable
density feature of the network helps to adapt the network
to user flows at different densities, ensuring that the through-
put of the network is maintained in the right range when the
density of user flows increases sharply.

With the advent of the Internet era, marine wireless
services are diversifying and the demand is growing expo-
nentially, and ship users are putting forward higher require-
ments for communication service quality. Therefore, to meet
the growing demand for services, the “intelligent” manage-
ment of maritime information systems is realized [6]. The
distribution of users and service equipment is not equal,
and full coverage access is not possible. Different infrastruc-
ture networks have a different coverage in different sections
of the sea, and a single network cannot meet all the commu-
nication needs, which greatly exceeds the supply of the net-
work. In addition to deploying wireless networks at sea, it is
difficult to arrange network base stations in a fixed location
on the sea surface, except for using existing lighthouses
and other fixed locations to deploy network nodes, so
designing a network architecture adapted to the maritime
environment is the primary challenge for the current
deployment of wireless networks at sea [7]. To handle the
requests of increasing data streams and break through the
limitations of maritime communication, today’s maritime
communication networks cannot meet the interoperability
between networks as they deployed and interact through
multiple layers and heterogeneous architectures, creating a
maritime communication environment where many hetero-
geneous networks coexist to support a large and diverse user
base. To meet the everincreasing business needs, the “intelli-
gent” management of the maritime information system is
realized. The distribution of users and service equipment is
not equal, and full coverage access cannot be realized. The
quality of service when communicating at sea cannot be
met. Because ships are always in motion scenarios, the

network environment changes rapidly, and the user density
is also unevenly distributed in the marine network, tradi-
tional communication networks can only meet the QoS
requirements for real-time data, packet loss rate, and time
delay in a single way, and cannot do comprehensive consid-
eration. For example, real-time information-related service
navigation channels have higher requirements for reliability
and transmission delays, while the Internet and video ser-
vices will be more concerned about bandwidth [8]. The issue
of optimal allocation and scheduling that puts efficiency at
the forefront of various network resources becomes a top
priority. Therefore, the development of efficient solutions
to deal with large-scale optimization problems becomes a
new task for future wireless networks. The Internet and
video services will pay more attention to bandwidth. Among
various network resources, the optimization of allocation
and scheduling, which puts efficiency in the first place, has
become a top priority. Therefore, the development of effi-
cient solutions for large-scale optimization problems has
become a new task for future wireless networks.

To address the bandwidth bottleneck in centralized fed-
eration learning and to ensure the convergence performance
of federation learning, at each synchronization time node,
each node randomly selects a few nodes to transmit part of
the model. Our goal is to maximize the bandwidth capacity
between nodes, and to improve the convergence perfor-
mance of the solution, “model replicas” are introduced to
ensure that sufficient information is obtained from different
nodes during the aggregation process. At the same time, we
propose a synchronization mechanism at the granularity of
model fragmentation. We “split” the model into a collection
of slices that contain the same number of model parameters
and do not overlap with each other. Nodes perform slice
level updates by aggregating local slices with corresponding
slices from other k nodes. To further speed up the conver-
gence, we propose a bandwidth-aware node selection
method based on a bandwidth-aware node selection method
using the epsilon-greedy algorithm, where nodes always
monitor and estimate the average bandwidth between peer
nodes (Peer) and select the peer node with a high probability
of fast transmission speed to transmit the model slice.
Finally, we implemented Balcombe, a prototype system
based on a model slicing-based gossip policy and a
bandwidth-aware node selection policy, and experimental
results show that the design significantly reduces the total
training time by a factor of up to 18, while keeping the
model accuracy constant.

2. Current Status of Research

With the development of artificial intelligence techniques,
artificial intelligence algorithms have been applied to com-
plex decision-making problems such as resource allocation
[9]. Currently, AI techniques such as machine learning and
deep learning can extract useful information from wireless
systems, learn and make decisions from dynamic environ-
ments, and are considered potential solutions to complex
and typical problems in future wireless networks that were
previously difficult to solve [10]. Machine learning can not
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only use data analysis to enhance the situational awareness
and overall network operation of wireless networks but also
effectively drive wireless network optimization. In addition,
machine learning can play a key role in the physical layer
of wireless networks. The application of machine learning
in wireless networks has been studied, and research results
and tutorials have been published [11]. The literature pro-
poses some emerging learning frameworks suitable for IoT
applications and summarizes the advantages, limitations,
IoT applications, and key results of machine learning,
sequential learning, and reinforcement learning. A new
learning-based approach to wireless resource management
was proposed in literature [12]. The core idea is to consider
the input and output of the resource allocation algorithm as
an unknown nonlinear mapping and to approximate it using
deep neural networks. Literature [13] proposes a real-time
multi-intelligent reinforcement learning method to manage
the aggregated interference generated by multiple wireless
area network systems. Literature [14] proposes an enhance-
ment learning-based downlink power control scheme for
nonorthogonal multiple access without considering interfer-
ence and wireless channel parameters. The literature [15]
proposes a Q-learning-based transmission scheduling mech-
anism that uses the idea of deep learning to solve the prob-
lem of how to transmit packets with different buffers over
multiple channels to maximize the system throughput. Liter-
ature [16] uses deep learning to process wireless channels in
an end-to-end manner and implicitly estimates the channel
state information (CSI) and directly recovers the transmitted
symbols based on the deep learning approach. Literature
[17] proposes a design scheme for a cognitive engine and
implements the learner in the cognitive engine using a neu-
ral network-based learning algorithm.

In addition to this, literature [18] proposes a cell
selection-based aggregation method for multi-interface het-
erogeneous networks; for users at the edge of two LTE cells,
the algorithm focuses on allowing the user to select the LTE
cell where the LWA mode can be performed. Literature [19]
proposes a self-optimizing algorithm that controls how data
services are sliced by adjusting the aggregation mode
between LTE, WLAN, and its results show that the proposed
algorithm can derive the optimal control parameters for
each cell under different load cases. The goal of the adaptive
transmission mode selection system in the algorithm is to
assign transmission modes to each user in the cell from the
point of view of cell load and user throughput so that the
resources of both technologies can be optimally utilized.
For this purpose, the base station assigns LWA mode to a
user if the user is in a good condition under both networks.
When the user is in a poor LTE network, a full switch to
WLAN transport mode results in a performance gain. The
signal-to-noise interference ratio (SINR) threshold deter-
mines whether the WLAN transport mode is used, while
the received signal strength indicator (RSSI) threshold deter-
mines the perceived range of the WLAN network.

If the current rate of a single connection cannot meet the
smooth video playback requirements, then the user device
can send a request to the core network manager, which
selects a suitable access network for the user and establishes

a second connection with the user based on a built-in rein-
forcement learning policy to achieve the purpose of satisfy-
ing the user’s quality of service. This paper presents a high
dynamic density variable heterogeneous network resource
management architecture, and the functions of the core net-
work manager, access network reconfiguration manager,
and user terminal manager in the network resource manage-
ment architecture and the format and main workflow of the
transmitted data packets in the network resource manage-
ment architecture. And a simple user-adaptive access algo-
rithm based on reinforcement learning is implemented
based on the heterogeneous network resource management
architecture to improve the utilization of network resources
and user quality of service.

3. Deep Learning Techniques for Intelligent
Resource Allocation in Wireless
Communication Network Analysis

3.1. Deep Learning Algorithms for Intelligent Resource
Allocation Analysis. DQN’s experience playback uses a uni-
form distribution, and uniformly distributed sampling does
not make efficient use of the data. Because the subject’s expe-
rience is the experienced data, but this data is not equally
important for training, the subject learns more efficiently
in some states than in others. The idea of prioritized experi-
ence playback is to break the subject’s original experience
playback using uniform sampling and instead give greater
sampling weights to the system states that are learned effi-
ciently. An ideal criterion in the sampling of sampling
weights problem is that the more efficient the subject learns
at the system state, the larger the weight assigned to the sam-
ples corresponding to this system state [20]. Reinforcement
learning also needs to explore the environment, learn from
the effective behavior feedback that has been made, to gener-
ate rewards, and update the exploration actions, that is, trial
and error search, to achieve the goal. The larger the
difference between the Q value function at the system state
and the TD objective function value, i.e., the larger the TD
deviation, the more updates the subject must make when
learning, and therefore, the more efficient the learning is at
that location.

Reinforcement learning is the process by which an intel-
ligence learns by “trial and error” and is guided to its next
action by the rewards obtained through interaction with
the environment, with the goal of maximizing the value of
the rewards obtained by the intelligence. Reinforcement
learning is mainly used to solve sequential multistep
decision-making problems where the system (RLS) must rely
on its own experience to learn due to the low information
provided by the external environment, where the RLS gains
experience in an action-evaluation environment and
improves the action plan to fit the current environment.
The characteristics of reinforcement learning delayed reward
and trial-and-error search makes it an important branch of
machine learning research. The intelligent body learning
process needs to look at the whole picture and consider
not only immediate rewards but also long-term cumulative
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rewards, i.e., delayed rewards. In addition, reinforcement
learning requires exploring the environment and learning
from the feedback of valid behaviors made by itself to gener-
ate rewards and update exploratory actions, i.e., trial-and-
error search, to achieve the final goal. In the iterative interac-
tion between the decision-making behavior of the RLS and
the state of the environment feedback as well as the evalua-
tion, reinforcement learning continuously modifies the map-
ping strategy from the state to act in a learning manner to
achieve the goal of optimizing the system performance.
Reinforcement learning mapping from the state of the sur-
rounding environment to the action behavior enables the
strategy chosen by the intelligence to obtain the maximum
reward value so that the external environment evaluates
the RLS in some sense (or the operational performance of
the whole system) as optimal.

Rt = 〠
T

i=t
γ i+tð Þ ⋅ γi, ð1Þ

Qk+1 st , atð Þ =Qk+1 sa, asð Þ − sa ⋅ as,
δk = rr+1 − γ min Qk+1 st , atð Þ:

(
ð2Þ

Reinforcement learning is very effective in dealing with
problems of high small-scale complexity in real-world appli-
cations and is used in many autonomous learning problems,
such as autonomous driving, robot manipulation, and other
humans. However, it is not as effective when facing real-
world large-scale, complex problems, which limits the devel-
opment of reinforcement learning, so the idea of combining
deep learning with reinforcement learning is introduced, as
shown in Figure 1.

Cellular mobile communication is the use of cellular
wireless networking to connect between terminals and net-
work devices through wireless channels, which in turn
enables users to communicate with each other during their
activities. Its main feature is the mobility of the terminal
with cross-area switching and automatic roaming across
the local network [21]. In the small cell network, the cover-
age of small base stations is small, and the network through-
put will be greatly affected by the movement of users. It is
necessary to locate users in advance. Unlike the traditional
one-step REL technology, it can store information for a long
time. It has the ability to store the state of the previous hid-
den layer network. In a conventional cellular network con-
sisting of macrobase stations, the movement of users has
less impact on the network throughput due to the wide cov-
erage area of macro base stations. In contrast, in small-cell
networks, the small base stations cover a smaller area and
the network throughput is affected more by user movement.
From the previous section, it is known that each small base
station has a certain caching capacity and the cached content
of each small base station is not necessarily the same. There-
fore, during a user’s movement, there is no guarantee that all
the small base stations connected to its mobile route have
the requested content of that user on their caches. This sec-
tion considers the impact on network throughput in terms of
both the user’s mobile location and whether the small base

station to which the user is connected has the cache state it
needs, by which the small base station selects the few users
with optimal transmission conditions.

Q∗ ssys, a
� �

=Q ssys, a
� �

− a Ronce − γ max Qk+1 st , atð Þ½ �, ð3Þ

L θð Þ = E Qk+1 sa, asð Þ − sa ⋅ as½ �,
Qk = Rr+1 + γ min Qk+1 st , atð Þ:

(
ð4Þ

As the speed of mobile communication is increasing, the
variety of mobile communication services is growing, and
data services have replaced traditional voice services as the
mainstream services, the research on user mobility is not
only limited to seamless switching and roaming but also
experts are turning to the combination of user mobility
and caching technologies. Therefore, in small-cell networks,
it is particularly important to study the combination of user
mobility and caching technology. In a traditional cellular
network consisting of macrobase stations, user mobility
has less impact on network throughput because the macro-
base stations cover a wide area and have enough time to
locate users in advance. Next, this paper allocates spectrum
resources based on the established unweighted conflict
graph. This method determines the user allocation order in
a distance-aware manner and tries to allocate orthogonal
subchannels for users that may cause strong interference
with each other in the conflict graph. In the case of success,
the user is allocated the subchannel with the largest net
income to eliminate strong interference between users. In
contrast, in small-cell networks, where the coverage area of
small base stations is small, the network throughput is
affected by the user’s movement, and the user needs to be
in advance. Unlike the traditional one-step RL technique,
which can store information for a long time, where the
memory can store previous hidden layer network states
and can predict sequences of future network states, it is very
powerful in predicting time series. The prediction for a given
time step is affected by the network state of the previous time
steps and the current input, so using LSTM to predict the
user’s location compounds the requirements of this paper,
as shown in Figure 2.

The surge in demand for machine learning services has
led to the investigation of adaptive solutions to reduce com-
putational consumption while still providing satisfactory
quality of service. The trade-off between accuracy and
latency is exploited to allow consumers to choose the level
of tolerance in machine learning as a service platform, thus
allowing consumers to sacrifice the quality of the service’s
results by using a different version of the model, thereby
improving other aspects of the service’s quality, such as ser-
vice response time and invocation cost. Interference man-
agement is an important tool to improve the spectrum
efficiency of wireless networks in the resource allocation
process, which is especially important for ultradense net-
works with severe interference. In this paper, a centralized
user-centric resource allocation algorithm based on a coali-
tion formation game is proposed. The coalition formation
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game is used to find the optimal user coalition formation
method under the defined resource allocation principle.

And the unprivileged conflict graph reflecting the inter-
ference relationship is constructed based on the network
division (i.e., the result of coalition formation). Then, this
paper performs spectrum resource allocation based on the
established unweighted conflict graph, which determines

the user allocation order in a distance-aware manner and
tries to allocate orthogonal subchannels for users in the con-
flict graph that may have strong interference with each
other. The subchannel with the highest net gain is assigned
to users in case of unavailability of free subchannels to elim-
inate strong interuser interference. In addition, to overcome
the limitation of “only one subchannel per user” in the
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Figure 1: Deep learning resource intelligent allocation algorithm.
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previous coalition formation game, this paper proposes a
low-complexity supplementary allocation algorithm to allo-
cate the remaining subchannels to improve the spectrum
efficiency of the system.

yτ = σ W ′h2τ
� �

, ð5Þ

hτ = ot tanh C2
τ

� �
: ð6Þ

To solve timing-related problems, such as predicting the
next frame of a video or the next word in a text, traditional
neural networks cannot work because they cannot “remem-
ber,” so recurrent neural networks are derived based on neu-
ral networks. In traditional neural networks, the output of
the hidden layer at the next moment is only related to the
input of the hidden layer at the next moment, while in recur-
rent neural networks, the output of the hidden layer at the
next moment is also related to the output of the hidden layer
at the previous moment, thus introducing the concept of
temporal order. However, when the recurrent neural net-
work expands too deeply in the temporal order, it tends to
lead to the gradient dispersion problem, which makes the
parameters of the neural network stop training and updat-
ing, so in practical applications, recurrent neural networks
are rarely used directly, but a variant of recurrent neural net-
works. The difference between LSTM and recurrent neural
networks is mainly the main difference between LSTM and
recurrent neural network is that LSTM has an additional
hidden parameter for recording the state of LSTM, which
is generally called cell state. The LSTM also introduces a
complex gating mechanism to automatically learn which
information should retained or forgotten by the cell state
[22]. The gating mechanism of the LSTM contains three dif-
ferent types of gates, namely, input gates, forgetting gates,
and output gates. The input gate determines which new
information the cell state should retain, the forgetting gate
determines which information the cell state should forget,
and the output gate determines which information from
the cell state is used as the output of the LSTM.

hmgm = 1
U

〠
U

u=1
hngmu: ð7Þ

The value of the minimum correlation coefficient affects
the performance of the user clustering algorithm. If the value
of the minimum correlation coefficient is set too large, the
number of users in the same cluster will be too small, which
greatly reduces the network performance, and if the value of
the minimum correlation coefficient is set too small, the
beamwidth will be too large, which greatly increases the dif-
ficulty of beamforming. There is very little research on this
aspect of the minimum correlation coefficient in domestic
and international literature, and the minimum correlation
coefficient is usually set as a constant.

3.2. Experiment on Intelligent Resource Allocation for
Wireless Communication Networks. Consider a D2D-
assisted cloud hybrid system for efficient offloading of ser-

vices and resource management. Each user finds the neigh-
boring user that interferes most strongly with each other
from the current user’s interference list and tries to join
the coalition in which that neighboring user is located,
resulting in a new network partition. Subchannel assignment
is performed under the new network division, and the
potential gain (total system throughput) is calculated. When
the packet arrival rate of data packets reaches 1.5 or above,
the pressure of the buffer gradually increases. In order not
to affect the data transmission, the system moves against
the six-watt macro of the network between the right to
increase the throughput. Attempts are made one by one to
join the current user to the coalition where the neighboring
strongly interfering user is located in the order of interfer-
ence descending, and the above attempts are stopped when
the total system throughput is improved, and the optimal
network division and the maximum gain are updated to
the current network division and gain. The merge or split
operation occurs when and only when the system gain is
improved. The game convergence reaches stability when
no user can obtain higher system gain by the merge or split
operation. Output the recursive kernel of the game at this
point: the optimal network partition, the network again,
and the result of subchannel assignment at this point. Each
user joins the coalition of interfering users in its interference
list in descending order of interference. Thus, strong inter-
ference in a wireless network can be suppressed by dividing
users that are likely to interfere strongly with each other into
a coalition and allocating orthogonal resources to users
within the same coalition whenever possible. The process
of such attempts continues in a 3-determined order until
the game converges and reaches stability, at which point
the most suitable network partition has been obtained for a
given subchannel allocation strategy. It should be noted that
this paper adopts the centralized architecture of C-RAN,
where the control center “cloud” stores the network node
location information collected from each base station. Dur-
ing the game, the stored network node location information
is used to determine the proposed grouping of each user,
and the road loss model and distance information are used
to estimate the throughput and then determine whether the
new coalition formation method can improve the network
performance and whether the game updates the network
division and its corresponding benefits, as shown in Figure 3.

Previous articles exploring how reinforcement learning
can do user access or resource management in communica-
tion systems have been limited to the process of establishing
connections to only one type of network. However, for
future heterogeneous networks where multiple types of net-
works coexist, it has become a promising trend for users to
aggregate data traffic from different networks to improve
their communication rate, and the “fragmented” remaining
resources in the communication system can be utilized by
users in this way, and the utilization of the network will be
greatly improved compared to the user. The utilization of
the network will greatly improve compared with the single
connection method. For the multiport resource aggregation
technique, represented by the dual connection technique,
many papers explore it in-depth and give algorithms for

6 Journal of Sensors



the maximum utilization that can be achieved when the user
supports the dual connection transmission mode in the
system. However, some algorithms, although reaching
the theoretical upper bound on the system utilization, are
required to search for the optimal solution of the system uti-
lizing optimized traversal or multiple iterations and therefore
have high complexity, and both the user access process and
the process of resource control in the actual system require
short time delays, so these algorithms are not of practical sig-
nificance. To solve the above problems, the DQN-based sub-
scriber access multiport technique proposed in this section
will be analyzed by simulation results to illustrate the gain
of the algorithm for the communication system and its feasi-
bility in the real system.

Assuming the cell simulation scenario, the WLAN AP
and microbase station locations are obtained by uniformly
randomly scattering points within the cell area, the corre-
sponding system utilization can be obtained by simulating
different user number scenarios using the DQN-based user
multiport access algorithm, and the simulation parameters
are shown in Table 1.

To represent the gap between the system utilization of
dual connection transmission and single connection trans-

mission, this paper simulates the relationship between the
number of users and the utilization of the system when all
the users are single connection; to represent the gap between
the DQN-based user access algorithm and the traditional
user access algorithm, this paper simulates the user nearest
neighbor access algorithm and the signal-to-noise ratio
(SNR) maximum access algorithm, respectively. To repre-
sent the gap between the DQN-based user access algorithm
and the traditional user access algorithm, we simulate the
user nearest neighbor access algorithm and the signal-to-

Suitable network partition

Network node location information

Architecture of C-RAN

Reaches stability

Determined order Game converge

Network node location information

Sub-channel allocation strategy

Attempts continues

Figure 3: System scenario.

Table 1: Network simulation parameters.

Cellular network parameters Values

Channel bandwidth 11.34

Noise power 2.76

Macrocell base station transmit power 2.03

Microbase station transmit power 2.04

Path loss between macrobase station and user 9.57

Path loss between microbase station and user 9.64

Lognormal distribution shadow fading 11.69
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noise ratio (SNR) maximum access algorithm, where the
user nearest neighbor access algorithm indicates that each
user selects the nearest microbase station to establish the
second connection, and the SNR maximum access algorithm
indicates that the user selects the microbase station with the
largest SNR to establish the second connection. To represent
the difference between the DQN-based user access algorithm
and the theoretical upper bound, the matching-based pro-
portional fair user dual connection access algorithm is also
simulated in this paper, as shown in Figure 4.

From Figure 4, it can be seen that the system utility tends
to decrease with the increase of the number of users, and it
can be observed that the system utility is the worst when
all users take a single connection; the system utility is the
highest when all users adopt matching-based dual connec-
tion access algorithm; the performance of reinforcement
learning-based user access algorithm and nearest neighbor
entry algorithm and SNR maximum access algorithm is in
between the user single connection access algorithm and
matching-based user access algorithm, the performance of
the nearest neighbor access algorithm and SNR maximum
access algorithm are basically similar, and the DQN-based
user access algorithm is better than the nearest neighbor
access algorithm and SNR maximum access algorithm, but
there is still some gap compared to the optimal performance
curve [23]. As can be seen from Figure 4, the DQN-based
user access algorithm curve continues to lie between the
matching-based proportional fair user access algorithm and
the traditional user access algorithm, except for the case
when all users use a single connection, where the system
utility increases with the number of small cells. When all
users use a single connection, as the number of small cells

increases, increased users will leave the macro base station
with high probability and switch to a single connection with
small cells, and since the transmit power of small cells is much
smaller than that of microcells, the throughput of users acces-
sing small cells decreases; thus, the system utility tends to
decrease with the increase in the number of small cells.

The matching-based proportional fair user access
algorithm achieves a locally optimal solution to the system
model but at the cost of increased computational complex-
ity, while the DQN-based user access algorithm is well
balanced compared to the nearest neighbor access algorithm
and the SNR maximum access algorithm as it improves the
system utility at the expense of only a small fraction of
the latency.

4. Analysis of Results

4.1. Deep Learning Algorithm Performance Results. Overall,
although the reinforcement learning model requires a lot
of learning time in the early exploration of the system, when
the parameters of the neural network in the AC framework
slowly converge to a stable value as the learning rate
decreases, for any kind of user distribution, the reinforce-
ment learning model based on the AC framework can
quickly give a reasonable user access and resource matching
scheme, with a performance close to that of the matching-
based local optimal access algorithm, but with much delay
savings, which means that AI techniques can replace tradi-
tional engineering optimization methods to bring gains in
throughput as well as long-term downlink utilization to the
communication system, as shown in Figure 5.
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Figure 5 compares the average throughput and average
utility values of the three algorithms. The utility value indi-
cates the link utilization of the system during data transmis-
sion. When the packet arrival rate increases, the system
helps it to reduce the cache pressure in the form of increas-
ing the outgoing volume. However, this practice is relatively
energy-intensive. The proposed algorithm in this paper nor-
malizes the Q value so that a slight increase in Q value pro-
duces a large fluctuation and thus transmits more packets, so
the S-DQN algorithm transmits more packets and has
higher throughput. As the data volume increases, the cache
pressure on each network node increases. For routing, the
traditional routing algorithm does not consider whether
other channels are in congestion and just makes the decision
of the shortest path to the source node with self as the core,
which will lead to a significant decrease in the link utilization
of the system. The pressure on the cache gradually increases
when the packet arrival rate reaches 1.5 or more. In order
not to affect the data transmission, the system day-
activates the inverse companion right between the net of
six Walden macros, thus thinking of high spit volume. At
the same time, as the modulation method changes, the agent
increases the frequency of interaction with the environment,
thus increasing the link utilization. Moreover, in Figure 6,
the DQN algorithm does not compare in the same plot as
the data packet arrival rate increases due to its high
computational complexity, resulting in relatively low average
utility values.

Since Dijkstra’s algorithm sometimes falls into local
optimum, which results in the network resource allocation
scheme given by the agent not being the best policy and
the average energy consumption is too high. Dijkstra’s algo-
rithm consumes more energy compared to the other two AI
algorithms. Due to the limited cache capacity, the energy
consumption curve generated by the S-DQN algorithm

tends to grow slowly and then stabilize. When the amount
of data reaches the load limit of the cache, the cache pressure
does not increase and eventually stabilizes. Compared with
the performance of the coloring method 1/2/3, the perfor-
mance of this method is improved by 43.88%, 62.00%, and
88.86%, respectively. In addition, the corresponding algo-
rithms are also simulated when the network load is 50%,
70%, and 90%. Dijkstra’s algorithm also leads to a decrease
in transmission efficiency when the data packet arrival rate
increases, and packets are not transmitted in the time lead-
ing to packet loss. The S-DQN algorithm produces much
lower latency than Dijkstra’s algorithm. This is because the
S-DQN algorithm makes the system throughput higher
when the data packet arrival rate increases, putting more
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pressure on the cache and forcing the relay network nodes to
choose higher-order modulation to transmit data whenever
possible, thus guaranteeing the real-time performance of
the system. Since the s-DQN algorithm outputs the proba-
bility of the Q value, it is equivalent to quantizing the Q
value, reducing the range of fluctuations in each state trans-
fer, and thus reducing the delay jitter.

4.2. Experimental Results of Intelligent Resource Allocation
for Wireless Communication Networks. Figure 7 reflects the
relationship between the energy efficiency of the system
and time. The horizontal axis is time, and the vertical axis
is the energy efficiency of the system. Overall, it appears that
the energy efficiency of the RL-LSTM-based resource alloca-
tion algorithm is significantly higher than that of the RL
algorithm and the random access algorithm. It is worth not-
ing that the energy efficiency of both the RL-LSTM algo-
rithm and the RL algorithm gradually decreases as time
increases. This is because as the RL-LSTM algorithm serves
increased users, the energy efficiency of the system decreases
for all users connected to the small base station within the
coverage area of the small base station for which the trans-
mission condition is best has been completed, and the small
base station may have to serve users with longer transmis-
sion distances.

As the number of small base stations increases, the pro-
portion of the load volume served by each small base station
decreases. In addition, reducing the number of subchannels
leads to a decrease in the proportion of the load volume
served. Although the number of subchannels is not a player
in the game, they affect the choice of spectrum allocation
action for each small base station. As the number of sub-

channels increases, the action space of the channel selection
vector increases, thereby increasing the amount of load
served by the small base station.

When the number of subchannels is less than 10, the
SAR value decreases faster; when the number of subchannels
keeps increasing, the SAR value decreases gradually slower.
In other words, combined with Figure 7, because the net-
work has already reached the optimal subchannel allocation
rate, continuing to divide the system bandwidth into more
subchannels does not continue to increase the total through-
put. Since too much interference reduces the total through-
put, no more spectrum resources should be allocated to
users after the optimal subchannel allocation rate is reached.
Also, the subchannels of the allocated users when the opti-
mal subchannel allocation rate is reached should not be
removed because it will lead to underutilization of the sub-
channels and thus reduce the total network throughput.
Moreover, since subchannel allocation is independent of
network size and network density, the variation curve of
the subchannel allocation rate with the number of subchan-
nels holds for different network densities. Therefore, in a
sparse network scenario, a suitable number of subchannels
can be found at a low computational cost and applied to a
high-density network, as shown in Table 2.

The curves of the system spectral efficiency with the
number of FAPs in the network for a certain network load
are given in Table 2. The proposed load-aware resource allo-
cation method is compared with three recently published
representative coloring methods in Table 2. When we
increase the number of FAPs in the network (scale up the
network), the proposed load-aware FAP resource allocation
method has better spectral efficiency than all the benchmark
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algorithms. When the network load is 30% and there are 128
FAPs in the network, the performance improvement of the
method compared to the coloring method 1/2/3 is 43.88%,
62.00%, and 88.86%, respectively. In addition, the correspond-
ing algorithm is also simulated at 50%, 70%, and 90% of the
network load. The method outperforms all the benchmark
methods for most network sizes and network loads.

In this section, the problem of interference modeling and
resource allocation for downlink communication in the case
of unavailability of geographic location information of net-
work nodes is investigated. The relative interference inten-
sity of the uplink is modeled based on the association rule
algorithm using the large amount of data generated in the
network. In addition, this section proposes a load-aware
resource allocation method, which calculates the bounds
for multiplexing the same spectrum resources and allocating
orthogonal spectrum resources for each user with its inter-
ference source based on the modeled relative interference
intensity and the network load in each TTI. The set of
orthogonal interference sources for each user is generated
based on the time-varying multiplexing/orthogonal bound-
aries for each user, and then, the spectrum resources are
allocated based on the set of orthogonal interference sources
for each user. In the simulation results section, the accuracy
of the relative interference intensity modeling scheme based
on the association rule algorithm proposed in this section is
evaluated, and the simulation results show that the method
can achieve high modeling accuracy with fewer samples. In
addition, the simulation analysis section also analyzes the
performance of the load-aware resource allocation algorithm
proposed in this section under different network loads and
different network sizes, and the results show that the method
achieves good performance in most network density and
network load cases.

5. Conclusion

With the rapid development of wireless communication
technology, users can enjoy increasingly high-speed data ser-
vices. This has further stimulated the use of mobile terminals
(smartphones, tablets, smartwatches, etc.) by users, and as a
result, the volume of data services in cellular networks has
grown dramatically. Mobile network architectures need to
be continuously innovated to adapt to the network environ-
ment where the volume of data services is increasing
dramatically. Small-cell networks and caching technologies
are two of the most promising technologies currently being
studied by experts. The current resource allocation algo-

rithms applied to traditional cellular networks are no longer
applicable to small-cell network architectures with caching,
so new resource allocation algorithms need to be proposed.
It is in this context that the study of resource allocation for
small-cell network architectures with cache is of great
importance in this paper. The basic concepts of wireless
access networks, prospective technologies for network
development are briefly explained, and a small-cell network
architecture with caching are introduced. After that, the
throughput of small cells in CSCN architecture is calculated
by two transmission links, and the conditions for selecting
users in small cells are optimized in terms of both the user’s
mobile location and the cache state of the small cells to
which the user is connected. The problem is then modeled
using the knowledge of game theory and an RL-LSTM-
based resource allocation algorithm is proposed based on
the knowledge of deep augmented learning. Based on the
small base stations selecting good users according to their
transmission conditions, the algorithm considers each small
base station as an intelligent learning body. Using the
encoder-decoder model, the semantic vector is obtained by
encoding the input historical traffic sequence, after which
the decoder decodes the semantic vector to obtain the action
sequence of the small base station, and the optimal weight
matrix parameters of the model are obtained by continuous
iterative training. Then, the small base station action
sequences are learned based on the optimal weight parame-
ters so that the objective function is maximized.
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