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In the field of freeway traffic safety research, there is an increasing focus in studies on how to reduce the frequency and severity of
traffic crashes. Although many studies divide factors into “human-vehicle-road-environment” and other dimensions to construct
models whichshowthe characteristic patterns of each factor's influence on crash severity, there is still a lack of research on the
interaction effect of road and environment characteristics on the severity of a freeway traffic crash. &is research aims to explore
the influence of road and environmental factors on the severity of a freeway traffic crash and establish a prediction model towards
freeway traffic crash severity. Firstly, the obtained historical traffic crash data variables were screened, and 11 influencing factors
were summarized from the perspective of road and environment, and the related variables were discretized. Furthermore, the
XGBoost (eXtreme Gradient Boosting) model was established, and the SHAP (SHapley Additive exPlanation) value was in-
troduced to interpret the XGBoost model; the importance ranking of the influence degree of each feature towards the target
variables and the visualization of the global influence of each feature towards the target variables were both obtained. &en, the
Bayesian network-based freeway traffic crash severity prediction model was constructed via the selected variables and their values,
and the learning and prediction accuracy of the model were verified. Finally, based on the data of the case study, the prediction
model was applied to predict the crash severity considering the interaction effect of various factors in road and environment
dimensions. &e results show that the characteristic variables of road side protection facility type (RSP), road section type (LAN),
central isolation facility (CIF), lighting condition (LIG), and crash occurrence time (TIM) have significant effects on the traffic
crash prediction model; the prediction performance of the model considering the interaction of road and environment is better
than that of the model considering the influence of single condition; the prediction accuracy of XGBoost-Bayesian NetworkModel
proposed in this research can reach 89.05%. &e identification and prediction of traffic crash risk is a prerequisite for safety
improvement, and themodel proposed and results obtained in this research can provide a theoretical basis for related departments
in freeway safety management.

1. Introduction

With the continuous improvement of motorization degree,
freeway travel demand is increasing, and the freeway has

become an important part of the world’s highway trans-
portation system. Due to the driving characteristics of the
freeway, once a traffic crash occurs to the vehicle operating
on a freeway, it usually has a consequence with a serious
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casualty or property loss [1]; reducing the severity of traffic
crashes is of great significance to improve the safety of the
freeway operating. Simultaneously, the occurrence of traffic
crashes is sudden and accidental, which is quite difficult to
control. Based on this background, exploring the crash
precursors of freeway and predicting the severity of freeway
traffic crashes has become a popular topic in this field.

Regarding the severity of a roadway traffic crash: studies
on influencing factors of crash severity have always been
carried out from four dimensions of “human-vehicle-road-
environment,” among which the studies on environmental
factors, weather and road, account for a large proportion. In
order to better understand the influence of weather on traffic
crash severity, Satoshi et al. [2] developed a traffic crash
severity assessmentmodel based on the ordered Probitmodel,
which took into account traffic characteristics, road condi-
tions, environment, and factors related to multiple vehicles,
single vehicles, and bicycles. Lee et al. [3] applied the
structural equation model to analyze the relationship between
weather conditions and the severity of traffic crashes, and the
results showed that the severity of crashes was correlated with
the factors of road, traffic, environment, human, rain and
water depth on the road, and other factors. Amin et al. [4]
studied the impact of climate change on dangerous road
crashes related to weather and analyzed the spatiotemporal
relationship between weather-related explanatory variables
and crash severity index by using negative binomial regres-
sion and Poisson regression models; the results showed that
the surface weather conditions and weather had a strong
positive correlation with the crash severity index, while the
road surface form characteristics had a negative correlation
with the crash severity index. For the real-time freeway traffic
crash analysis, Sun et al. [5] proposed a method of crash risk
assessment based on traffic safety state division and quan-
titatively analyzed the influence of different traffic conditions
on freeway crash risk. However, traffic conditions alone may
be found to constitute an elevated crash risk, and without an
additional behavioral factor to help differentiate the relative
risk, the predicted crash risk shall remain low, giving rise to a
high proportion of false positive predictions [6]. &ese above
studies analyzed the relationship between subjective or ob-
jective factors and the severity of the traffic crash, explained
the correlation of the influencing factors by building models,
and analyzed whether the influencing factors of each di-
mension were significantly related to the severity of a crash.

Regarding roadway traffic crash severity prediction re-
search: predicting the severity of road traffic crashes is an
important part in the study of roadway traffic safety. &e
model with high prediction accuracy and accurate predic-
tion results can provide insight for relevant departments to
effectively reduce the severity of traffic crashes. In addition to
considering different influencing factors, scholars’ research
interests mainly focus on using various prediction models to
figure out the severity of road traffic crashes, including
regression prediction model, Decision Tree, Neural Net-
work, and Bayesian network prediction, etc. [7–10]. Celika
et al. [11] analyzed the severity of traffic crashes based on
multiple Logit models; in this study, the severity of traffic
crashes was divided into fatal accident, injury accident, and

noninjury accident, where the results showed that the factors
of driver’s education level, road grade, whether there is a
crosswalk, crash time, and weather all had a certain impact
on the severity of traffic crashes. Jiang et al. [12] adopted the
zero-expansion ordered Probit model to study the influence
of traditional influencing factors such as kerb and speed
limit changes on the severity of single-vehicle collision crash.
Shaheed et al. [13] applied the mixed Logit model to the
construction of the crash severity prediction model and
analyzed whether various factors had a significant influence
on the crash severity. &e study was based on motorcycle
crash data in Iowa State, USA; the crash severity was clas-
sified into five categories: fatal, major injury, minor injury,
possible or unknown, and PDO (property damage only). Lou
[14] analyzed the risk states of freeway under different time
conditions and proposed a traffic crash severity prediction
method based on the mixed Logit model. Alkheder et al. [15]
used three data mining models, including decision tree,
linear support vector machine, and Bayesian networkmodel,
to analyze the risk factors related to traffic crash severity, and
the performance of the application model showed that
Bayesian network predicted variables more accurately than
other models. In general, the study of Bayesian network has
been introduced into the field of traffic crash severity pre-
diction, and compared with regressionmodels, decision tree,
and other models, Bayesian network prediction is typically
more accurate.

Based on the above analysis, there aremany existing studies
which analyzed the influence of weather or road on crash
severity or comprehensively analyzed the influence of road and
environmental factors, but there is a lack of research consid-
ering the influence mechanism of interaction between road
dimension factors and environmental dimension factors on
traffic crash severity prediction. In order to achieve a more
accurate prediction for the severity of freeway traffic crashes,
identify the main risk factors of freeway traffic crashes, and
reduce the freeway crash severity, this research takes freeway
operation as the research object. In this research, XGBoost
model is constructed and SHAP value is introduced to interpret
themodel results.&e global impact and importance ranking of
each characteristic factor on the severity of the crash are ob-
tained through the interpretation results of SHAP values, and
the impact degree of a single variable on the severity of the
crash and the interaction effect between independent variables
are obtained. &e prediction model of freeway traffic crash
severity is determined by the inferencemodel based on clip-tree
propagation algorithm; finally, the traffic crash severity is
predicted considering the interaction effect between road and
environment.

2. Data Process

2.1. Data Source. In this research, traffic crashes on freeways
in Hebei Province, China, in 2018 are taken as the research
object. &e dataset used in this research includes a total of
567 pieces of crash data, covering 35 attribute variables.
Table 1 describes the summary of attribute variables in the
raw dataset.
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2.2. Data Variables Selection. Most of the studies involving
the severity prediction of freeway traffic crashes basically
include the selection of influencing factors from four aspects:
human-vehicle-road-environment. However, some studies
only selected some of the factors from some dimensions to
predict and analyze the crash severity. For example, Ma et al.
[16] selected 12 candidate objective independent variables
from the aspects of time, road, and traffic operation envi-
ronment in order to avoid excessive attention to human
factors while ignoring the impact of objective factors on
traffic crashes and established a cumulative logistic model to
analyze their impact on the severity of traffic crashes.
&rough the goodness of fit and prediction accuracy test of
the model, the model fitting effect performed better, and the
modeling conclusion had a certain practical reference sig-
nificance. Hence, the establishment of a prediction model
based on the influence of objective factors also has a certain
research significance. Consequently, based on the sample
dataset, this research screens out the influencing factors of
road and environment, mainly exploring the influence of
road and environment factors on crash severity. Table 2 gives
the influencing variables of freeway traffic crash severity in
this research. Since the selected factor variables include
attribute variables and continuous variables, they need to be
discretized to meet the requirements of modeling.

3. Screening Influence Factors
Based on XGBoost

3.1. 3e Fundamentals of XGBoost. Boosting library
XGBoost [17, 18] is a boosting library developed by Chen
in 2016, which is an improvement of the gradient lifting
algorithm. Gradient lifting algorithm does not only have a
gradient lifting tree; thus, the weak estimators in XGBoost
algorithm can also choose linear models such as logistic
regression and linear regression in addition to the tree
model. However, XGBoost technically uses the tree model
for integration. In many machine learning algorithms, the

loss function is used to measure the generalization ability
of the model, that is, the prediction accuracy of the model
on unknown data, and the calculation speed of the model
cannot be measured. XGBoost algorithm achieves a bal-
ance between model performance and model operation
speed; it combines the prediction accuracy of the model
with engineering capability. In addition to the loss
function, model complexity is also introduced into the
objective function of XGBoost algorithm to measure the
operation efficiency of the algorithm [19, 20]. Its objective
function is as follows:

Obj(t)
� 

n

t−1
l yi, yi

(t− 1)
+ ft xi(   +Ω ft(  + constant. (1)

For the freeway traffic crash data set, where i represents
the i-th crash sample in the dataset, the first item represents
the loss function of themodel, whichmeasures the difference
between the real value yi and the predicted value of the crash
severity. &e loss function can be selected according to the
predicted demand. &e second term is the regularization
term, which represents the complexity of the model. It is
represented by some transformation Ω of the tree model,
which means that the complexity of the tree model is
measured from the structure of the tree. &e approximate
target is obtained by Taylor expansion [19, 20], which is

f(x + Δx)≃f(x) + f′(x)Δx +
1
2
f″(x)Δx2

. (2)

Define expression:

gi � z
y

(t−1) l yi, y(t−1)( , hi � z
2
y

(t−1) l yi, y(t−1)( . (3)

&e second-order Taylor expansion of the loss function
can be obtained as
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Table 1: Summary of the attribute variables of the raw dataset.

Order Attribute name Order Attribute name
1 Administrative division of province 19 Scene form
2 Prefectural administrative divisions 20 Weather
3 Road no. 21 Visibility
4 Road name 22 Pavement condition
5 Milepost 23 Surface condition
6 Meters 24 Traffic control mode
7 Week 25 Light condition
8 Month 26 Roadway type
9 Year 27 Administrative class
10 Occurred date 28 Geography
11 Occurred hour 29 Road alignment
12 Total deaths in 24H 30 Road section type
13 Total injuries in 24H 31 Physical road isolation
14 Location 32 Pavement structure
15 Direct property loss 33 Type of central isolation facility
16 Crash type 34 Type of roadside protection facilities
17 Crash cause 35 Number of involved
18 Crash form
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&e second partial derivative Taylor expansion in
XGBoost has a strong advantage, which makes the gradient
descent faster and more accurate. &e second derivative
form of the function as an independent variable is obtained
according to Taylor expansion; the specific form of the loss
function does not have to be selected, but it only depends on
the value of the input data for calculation, which increases
the compatibility of the model.

3.2. Model Interpretation Based on SHAP. Compared with
conventional linear models, XGBoost has improved the
prediction accuracy. However, it loses the interpretability
that linear models have; thus, it is almost considered as a
black box model. Lundberg et al. [21] proposed the method
of SHAP value in order to interpret various models (clas-
sification and regression) including the black box model.

SHAP is an additive interpretation model inspired by
Shapley values. In the prediction model, each prediction
sample will generate the corresponding prediction value,

and the value assigned to each feature in the sample is SHAP
value. Assume that the ith sample is xi, the jth feature of the
ith sample is xij, the predicted value of the model for the ith
sample is yi, and the baseline of the whole model is y

(basically it is the mean of the target variable of all samples);
hence the SHAP value follows the following formula [22]:

yi � y + f xi, 1(  + f xi, 2(  + · · · + f xi, k( , (5)

where f (xi, 1) denotes the SHAP value of the first feature of
the ith sample, that is, the contribution value of f (xi, 1) to the
predicted value yi. When f (xi, 1)> 0, it means that this
feature improves the predicted results; that is, it has a
positive effect; otherwise, it has a negative effect, which
means that this feature reduces the predicted value.

“Feature importance” was previously used to explain the
XGBoost model. &is method is applied to measure the
importance of each feature in the dataset to the model and
determine which features have a greater impact on the final
model, but the relationship between features and predicted

Table 2: Variables applied in this research and their values.

Variable categories Variables Symbols Values

Control variable Severity SEV
0: Property loss

1: Injuries
2: Fatal

Location LOC 0: Carriageway
1: Noncarriageway

Surface condition RDC 0: Dry
1: Wet

Road alignment RDA 0: Straight
1: Not straight

Road factors Roadway type LAN
0: Normal section
1: Special section
2: Complex node

Central isolation facilities CIF

0: W-beam guardrail
1: Isolation pier
2: Concrete fence
3: Metal guardrails

4: Green belt

Roadside protection facilities RSP

0: W-beam guardrail
1: Isolation pier
2: Concrete fence
3: Metal guardrails

4: Green belt
5: Border tree
6: Others

Geography GEO
0: Plain
1: Hills

2: Mountainous

Visibility VIS

0: <50m
1: 50∼100m
2: 100∼200m
3: >200m

Environmental factor Light condition LIG

0: Daylight
1: Dusk/dawn

2: Lighting at night
3: No lighting at night

Crash time TIM

0: 0–6 am
1: 6–12 am

2: 12–18 (pm)
3: 18–24 (pm)
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results cannot be determined. Not only can SHAP values
reflect the influence degree of each feature in each sample on
the model, but it is able to show the positiveness and
negativity of the influence, which is the advantage of using
SHAP value to interpret the model [22].

3.3. XGBoost Hyperparameter Optimization. In this re-
search, Grid Search CV is introduced to search the optimal
parameter value of the model, among which, “Learnin-
g_rate” (update shrinkage step in the learning process),
“max_depth” (maximum depth of tree), “n_estimators”
(control number of weak estimators), and “subsample”
(random sampling ratio), which have great influence on the
model performance, are selected for optimization searching,
where “learning_rate” typically ranges from 0.0 to 0.05 and
the “search step” is 0.01. “Max_depth” typically ranges from
3 to 11 and the “search step” is 1. “N_estimators” typically
ranges from 100 to 400 and the “search step” is 50. &e
candidate values of “subsample” are 0.7, 0.8, and 0.9.

Firstly, the data is imported, and the regression pre-
diction model is established, and any candidate values are
selected as the initial values of parameters. After the model is
established, the parameter optimal solution of the model is
searched by using the hyperparameter meshing optimization
function, and the model optimization result is
learning_rate� 0.04, max_depth� 3, n_estimators� 100,
subsample� 0.9.&e optimal parameters are reinput into the
model to obtain the optimal solution model, and then the
SHAP interpreter is built.&e interpretation of SHAP on the
model results is visualized, and the global influence and
importance ranking diagram of each factor variable on the
severity of the traffic crash can be output.

3.4. XGBoost Hyperparameter Optimization and Model In-
terpretation Analysis. First, the data is imported, and the
regression prediction model is established. &en, any can-
didate value is selected as the initial parameter value. After
the model is established, the optimal parameter solution of
the model is searched by using the hyperparametric gridding
optimization function.&e optimization results of the model
are learning_rate� 0.04, max_depth� 3, n_estimators� 100,
subsample� 0.9. Reinput the optimal parameters into the
model to obtain the optimal solution model, and then build
the SHAP interpreter to visualize the interpretation of SHAP
to the model results. &e global impact and importance
ranking of each factor variable on the traffic crash severity
can be output as shown in Figure 1.

Figure 1(a) shows the contribution degree of feature
factors to the severity degree of the traffic crash. Here, the
importance of features is sorted according to the mean value
of the absolute value of the impact degree of feature on the
target variable. It can be seen from the figure that the variable
RSP has the greatest global impact on the severity of the
crash; that is, it has the greatest contribution to the pre-
diction result of the freeway traffic crash severity. Addi-
tionally, LAN, CIF, LIG, and TIM also have great impact on
the prediction.

Figure 1(b) shows the tendency of influencing factors to
different traffic crash severity. Each row in the figure denotes
a feature factor, the horizontal coordinate represents the
SHAP value, each dot represents a sample, and the color of
each dot denotes the value of the corresponding feature.
From blue to red, the value of the feature itself is getting
bigger. Smooth color transitions of SHAP values can be
observed horizontally as changes in the values of the feature
itself and the influence of the feature gradually alter the
output of the model.

Figure 2 specifically reflects the influence of each
characteristic independent variable value on the traffic crash
severity of the dependent variable. &e abscissa is the value
of the independent variable, and the ordinate is the SHAP
value, which is the contribution value of the feature to the
prediction result of the crash severity. &ere are deputy
ordinates in Figures 2(a)–2(d), which indicates that there are
collinearity problems between CIF and RSP, LAN and RSP,
RDA and GEO, ROC and WEA. &e figure reflects the
interaction effect between the two collinear independent
variables and their contribution degree to the prediction
results of crash severity, indicating that the model used in
this research can deal with the collinearity problem well, and
the collinear independent variables will not affect the fitting
of the model. For example, as shown in Figure 2(a), the
SHAP value of CIF does not change significantly under
various CIF values, and the VALUE of CIF is large. &at is,
when the central isolation is metal guardrails and green belts,
roadside protection facilities are generally metal guardrails,
green belts, and roadside trees.

Figures 2(e)–2(h) reflect the relationship between a
single variable and the severity of the traffic crash.

Figure 2(e) illustrates that when the lighting condition is
daytime, dusk, or dawn, SHAP value is basically less than 0,
which may reduce the value of crash severity; that is, slight
severity crashes are more likely to occur. When the lighting
condition is night with lighting or night without lighting,
SHAP value is basically greater than 0, which has a positive
promoting effect towards the occurrence of serious crashes.

Figure 2(f ) illustrates that the proportion of crashes that
occurred in the carriageway is large; concurrently, the se-
verity of crashes is evenly distributed in both carriageway
and noncarriageway.

Figure 2(g) shows that when the value of TIM is 3, that is,
during 18:00∼24:00, the corresponding SHAP value is ba-
sically concentrated on the side greater than 0, which has a
positive promoting effect on the occurrence of serious
crashes.

Figure 2(h) indicates that most of the crashes occurred
when the visibility value is 3; that is, when the visibility is
above 200meters, SHAP value greater than 0 has a positive
effect on serious crashes.

Figure 3 illustrates the interaction of multiple variables.
&ere is an interaction effect between RSP and LAN.
However, the interaction effect is not a simple linear rela-
tionship. When the red dots are mainly concentrated on the
side with SHAP values less than 0 and the blue dots are
mainly concentrated on the side with SHAP values greater
than 0, RSP is negatively correlated with LAN. &ere is a
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output. (b) Impact on model output.
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certain threshold, and when the interaction between RSP
and LAN exceeds this threshold, the correlation gradually
shows positive. LAN and CIF have an interaction effect and
weak positive correlation.&e nonlinear interaction between
LIG and RSP, and LIG and WEA also exists. &ere are
interaction effects betweenGEO and CIF and a weak positive
correlation between GEO and RDA. &ere are interaction
effects between GEO and RDC and a weak negative cor-
relation between LAN and RDC. RDA and LAN, and RDA
and TIM have interactive effects and positive correlations.
&ere is almost no interaction between the other two var-
iables, and their sample distribution is random.

4. Modeling of Bayesian Network

Bayesian network has a strong probability theory foundation
and strong explanatory ability through graph theory; hence
some uncertain problems in many fields can be solved via
Bayesian methods, such as fault diagnosis, pattern recog-
nition, and accident prediction, etc. [23]. &e content of this
research is traffic crash severity prediction; since the oc-
currence of traffic crashes is uncertain, the content also

belongs to the uncertain inference problem [24]; using
Bayesian network is effective to the advantage of uncertainty
inference and can build a relatively accurate inference model
and realize effective prediction of the severity of traffic
crashes.

4.1. Validation of Bayesian Network Learning Results. &e
data sample information used in this study is complete, and
there are many node variables selected; therefore, the
structure learning method based on scoring search is picked.
&e structure learning method based on score search in-
cludes two parts: one is to select an appropriate score
function to evaluate the quality of the network structure; the
other is to determine the appropriate search strategy for
finding the highest rated network structure. &e scoring
function selected in this research is the BD scoring function
based on Bayesian statistics, which has good accuracy and
fitting effect. K2 search algorithm is a commonly used search
strategy for searching high-scoring network structures,
which combines the selected scoring function and search
strategy to search for the optimal network structure [25].
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K2 search algorithm uses greedy search to obtain the
maximum score function. When the K2 search algorithm is
applied to learn the structure search of Bayesian network, it
is necessary to determine the node order in advance. Given
the order, the search range can be reduced, and the maxi-
mum number of parent nodes in the network should be
given first, which is a constraint on the search optimization
and can improve the search efficiency. After determining the
order of nodes, consider any node in the network; if the node
Xi is before nodeXj, the network edge cannot exist fromXj to
Xi. According to the order of network nodes and the
maximum number of parent nodes, the node with the
maximum value of the scoring function is selected as its
parent node. When the scoring function can no longer
increase, the loop is stopped. &e specific optimization al-
gorithm flow is shown in Algorithm 1.

Since the order of network nodes is required to be given
when the K2 search algorithm is used for structure learning
to reduce the search range, the determination of the order of
network nodes is mostly based on the correlation analysis
results of independent variables and dependent variables in
previous studies [26]. &e determination of node order is a
subjective decision process, and the variables have an in-
teraction effect with each other. It is not proper to determine
the node order via analyzing the correlation between in-
dependent variables and dependent variables; the input of
such network node order will affect the result of Bayesian
network structure learning. &erefore, it is necessary to
address this problem by the proposed approach in this
research considering the interaction effect of features.

In this research, the order of network nodes is deter-
mined based on the interpretation results of XGBoost model
by SHAP. XGBoost model is used to analyze the factors

influencing the severity of freeway traffic crashes, and SHAP
is used to explain the model to obtain the order of the
importance of the global impact of each characteristic
variable on the crash severity. &e importance degree from
large to small is type of road side protection facilities, type of
road section, central isolation facilities, lighting conditions,
accident time, weather, terrain, visibility, road alignment,
road surface, and road section location.

Figure 4 depicts a thermal diagram of correlation co-
efficients between variables. According to the correlation
coefficient between each independent variable and the de-
cision variable in the figure, all variables are sorted in order
from large to small: roadside protective facilities type, road
type, lighting conditions, geography, road alignment, road
surface conditions, weather, visibility, accident time, central
isolation facilities, and road section location.

In the order obtained from the correlation of sorting, the
impact of road surface conditions on the severity of crashes
contributes more than that of weather; this is indeed un-
reasonable, because road surface conditions are largely
influenced by the weather. Based on the preceding content
about the interaction between the variables’ effect diagram,
we can see the weather and road conditions have a signif-
icant positive correlation. &erefore, the influence of
weather on the severity of the crash is greater than that of the
road surface condition. It can be seen that the importance
ranking obtained by the proposed approach in this research
is relatively reasonable.

According to the above analysis, the order of node
variables is determined as follows: 1- road section location, 2-
road surface condition, 3- road alignment, 4- visibility, 5-
geography, 6- weather, 7- accident occurrence time, 8- lighting
conditions, 9- central isolation facilities, 10- road section type,
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Figure 3: Independent variable interaction effect plot.
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Figure 4: Correlation coefficient heat map.

Input: node variable set “n,” node order “order,” maximum number of parent nodes “Max_fan_in,” observation data set “D.”
Output: Optimal network structure based on K2 algorithm, that is, each point and its parent node.
(1) for i� 1 to n (n represents the number of total nodes);
(2) π i �∅;
(3) p old � g (i, πi);
(4) Set variable OKTOProceed� true;
(5) while OKTOProceed� true and |πi|<m do;
(6) pick one node z from pred (i)− πi, let g (i, πi ∪ {z}) maximize, where pred (i) denotes the nodes whose order is before the ith node;
(7) Calculate Pnew � g(i, πi⋃


z{ });

(8) If Pnew >Pold then;
(9) Pold � Pnew;
(10) πi � πi⋃


z{ };

(11) πi � πi⋃


z{ };
(12) else OKTOProceed � false;
(13) end while;
(14) return (node i, parent node πi);
(15) end for;
(16) end K2.

ALGORITHM 1: K2 algorithm optimization process.
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11- road side protection facilities type, 12- crash severity. For
the obtained Bayesian network, the validity analysis is needed
to ensure that the Bayesian network inference model is ac-
curate. &en the validity of the constructed network is verified
from the aspect of learning accuracy of Bayesian network. &e
error of parameter learning can be obtained by comparing the
statistical calculation results in the sample with the node pa-
rameter learning results in the Bayesian network. &e learning
accuracy of the Bayesian network can be inferred from the
parameter learning error [27]. &e decision variable in this
research is the traffic crash severity; thus, the parameter
learning results of the node of crash severity are used to verify.
&e learning results of node parameters of decision variables
are compared with the statistical results of sample data; the
absolute error and relative error between them are calculated to
judge the learning effect. Due to the large number of types of
roadside protection facilities directly affecting decision vari-
ables [28], the comparison results cannot be fully displayed.
&erefore, the comparison results of fatal crashes are selected
for analysis. Specific calculation results are shown in Table 3.

&e maximum absolute error of parameter learning
results is less than 6%, while the maximum relative error is
mostly within 5%. Although the learning accuracy of the
model network structure is not very high, the network model
still has certain reference significance. &e reason affecting
the training accuracy probably is that the sample size of
crash data is small.

4.2. Construction and Verification of Bayesian Network In-
ference Model. After the Bayesian network structure is
obtained, the inference operation engine in the full-BNT
toolbox of MATLAB software is called on the basis of this
structure to obtain the Bayesian network inference model.
&e expected probability distribution of the desired nodes
can be figured out by inputting the values of any one or more
network nodes in the inference model. &e node to be
speculated in this research is the severity of the traffic crash,
so the query variable in the model can be set to the traffic
crash severity. When the values of other node variables or
combinations of variables are known, the probability dis-
tribution of traffic crash severity can be calculated according
to the model; that is, the severity of the crash can be pre-
dicted. &e inference method selected in this research is the
more commonly used and efficient clip-tree propagation
algorithm, which belongs to precise reasoning, and the
corresponding operation engine in the toolbox is
“Jtree_INF_engine.” Figure 5 shows the inference process.

4.2.1. Constructing the Moral Graph. Constructing the
moral graph is the first step of Bayesian network inference
based on clip-tree propagation algorithm. In this process, the
direction of each directed edge in the directed acyclic graph
is removed, and then each parent node in the network is
combined. &e undirected graph is the moral graph. After
getting the initial moral graph, check whether each node is in
the triangle region. If the most simplified region of the node
is the polygon region, then remove the polygon by adding
edges. Finally, make each node in the triangle region, and get

the final moral graph of the network. Figure 6 is the moral
graph of the constructed Bayesian network for freeway traffic
crash severity.

4.2.2. Determining the Elimination Order of Variables.
According to the moral graph, the maximum potential
search method can be adopted to determine the order of
variables elimination. &e working principle of the maxi-
mum potential search method is that, on the basis of de-
termining the eliminated variables, the selection of the next
variable can minimize the correlation potential between
variables. &e specific process is as follows: firstly, select any
node and mark it, then find the unmarked node that is
connected to themost marked nodes, and continuemarking.
If there are multiple nodes with the most adjacent marked
nodes, select any node to continue marking. When all nodes
are marked, the nodes are sorted according to the marked
order, with the first marked in the last and the last marked in
the first. &e resulting node order is the optimal elimination
order of variables. Generally, any root node in the Bayesian
network is selected as the starting marker, and the elimi-
nation order of variables according to the above search
method is 12⟶ 9⟶ 2⟶ 3⟶10⟶
7⟶ 5⟶ 4⟶ 6⟶ 8⟶11⟶ 1.

4.2.3. Constructing the Cluster-Tree. After determining the
elimination order of variables, the elimination of variables is
carried out according to the elimination order starting from
the Bayesian network moral graph. Before eliminating the
nodes, a clique consisting of the variable to be eliminated
and all variables adjacent to that variable is constructed until
all variables are eliminated in order. After elimination, the
resulting cliques are organized in an appropriate way to
obtain a cluster-tree containing all nodes. Via this approach,
a Bayesian network cluster-tree of freeway crash severity is
constructed, and the results are shown in Figure 7.

4.2.4. Setting Inferential Evidence. Given the information of
any node variable, the tree can effectively transfer and share
the information of the node after constructing the cluster-
tree according to the above way.&e efficiency of cluster-tree
propagation algorithm lies in its real-time information
sharing, which can simplify the transfer process between
cluster-tree and inference process. Before inferential anal-
ysis, the evidence variables should be given first, and then the
query variables should be determined. &e evidence variable
and query variable can be one or a combination of multiple
variables. &e query process of multiple query variables uses
the shared inferencemechanism of cluster-tree to deduce the
results of multiple query variables, based on the inference of
query variables. After determining the query variable and the
evidence variable, the correlation between the evidence
variable and the query variable can be figured out according
to the conditional probability and Bayesian theorem.

&e sequence of nodes of Bayesian network of freeway
traffic crash severity established in this research is as follows:
[TIM] [LOC] [RDC] [RDA] [LAN] [CIF] [RSP] [GEO]
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[WEA] [VIS] [SEV]. &e purpose of constructing Bayesian
network inference model is to deduce the severity of traffic
crash. &erefore, “SEV” is set as the query variable in this
research, which belongs to single-query variable inference.
&e selection of evidence variables can be any combination
of the first 11 node variables.

4.2.5. Inference Learning. &e inference solution process of
Bayesian network is based on conditional probability and
Bayesian theorem. In this research, the prediction model of
crash severity is constructed via the toolbox “FULL-BNT” in
MATLAB software, which integrates the learning and in-
ferring algorithm functions of Bayesian network. &e

Construct moral graph

Maximum potential search Determine the elimination
order of variables

Build cluster-free Graph elimination algorithm

Set evidence

Single query variable Multiple query variable

Obtain the results

Figure 5: Traffic crash severity Bayesian network inference flow.

Table 3: Parameter verification of the crash severity nodes.

Variables Parameter learning results

Road section type Type of roadside protection facilities
Fatal traffic crashes

&e relative error Absolute error &e real value Bayes

1

1 0.0335 0.0142 0.4369 0.4227
2 0.0002 0.0001 0.5555 0.5556
3 0.0303 0.0187 0.6341 0.6154
4 0.0124 0.0060 0.4866 0.4806
5 0.0177 0.0138 0.7916 0.7778
6 0.0000 0.0000 0.0000 0.0000
7 0.1110 0.0666 0.6666 0.6000

2

1 0.0000 0.0000 0.3333 0.3333
2 0.0000 0.0000 0.0000 0.0000
3 0.1001 0.0455 0.5000 0.4545
4 0.0689 0.0503 0.7800 0.7297
5 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 1.0000 1.0000

3

1 0.0000 0.0000 0.2500 0.2500
2 0.0000 0.0000 1.0000 1.0000
3 0.0476 0.0286 0.5714 0.6000
4 0.0661 0.0480 0.7731 0.7251
5 0.0000 0.0000 0.0000 00.0000
6 0.0554 0.0416 0.7916 0.7500
7 0.0000 0.0000 1.0000 1.0000
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specific inference process is as follows: Input the previously
obtained Bayesian network, then use the joint tree inference
engine “jtree _ inf _ engine (bnet)” in FULL-BNT toolbox to
build the inference model, and finally input evidence vari-
ables and query variables to carry out inference learning.
What this research expects to predict is the traffic crash
severity; thus the query variable is set as SEV. After obtaining
the inferencemodel based on the above work, the probability
distribution of crash severity can be figured out by the in-
ference prediction model by inputting the values of other
expected node variables into the inference program.

4.2.6. Validation of the Model Accuracy. &e specific process
of calculating the prediction accuracy of the model in
MATLAB is as follows: First, import the existing sample data
and input values of the other 11 dependent variables cor-
responding to each crash data into the predictionmodel, that
is, input evidence variables; then, the predicted results of
crash severity are compared with the actual severity of the
corresponding crash data, and the severity of all sample data
is predicted in turn; the ratio analysis is processed towards
the correctly predicted quantity of traffic crashes with the
quantity of all crashes; finally, the accuracy of the prediction
model is carried out.

&e realization for this part of the work needs to design
verification programs in MATLAB and then go through 557
pieces of crash data, in which 496 crashes are accurately
predicted; hence the prediction accuracy of the model is
89.05%. When the prediction accuracy of the model is
greater than or equal to 80%, the prediction results of the
model are relatively good [19]. &erefore, it can be seen that
the traffic crash severity prediction model constructed in this
research has good prediction accuracy.

5. Results and Discussion

Considering the influence of the interaction of various
factors on the severity of crashes, the influence rule of these
factors on the traffic crash severity is obtained by analyzing
the inference results of the prediction model, which can
provide a direction for the follow-up traffic safety man-
agement countermeasures.

5.1. Interaction between Weather and Road Type. Input
values of weather and road type in the prediction model. Set
the variables as Evidence {WEA}� I, Evidence {LAN}� j,
where I ranges from 1 to 5 and j ranges from 1 to 3. &e
output results of the model are the prediction results of
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Figure 7: &e cluster-tree of Bayesian network inference on crash severity.
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accident severity under the corresponding weather variables
and road section type variables, and the specific contents are
shown in Table 4.

Road section types have a certain influence on the three
types of traffic crashes, among which the influence on
property loss crashes is relatively greater. When the road
type is a complex node (ramp, road entrance and exit, etc.),
the probability of injury crash is lower than other road types
under any weather condition; synchronously, the probability
of property loss and fatal crash is relatively increased. &is is
consistent with the inference result of single factor analysis
[19].

By analyzing the inference results of the two variables on
injury crashes, it can be seen that injury crashes are most
likely to occur in foggy conditions of special road sections.
By analyzing the inference results of property loss crashes, it
can be seen that the possibility of property loss crashes in
complex node sections is greater than other sections under
any weather conditions; in particular it is the greatest in
foggy conditions. It can be seen from the analysis of the
inference results of two variables on fatal crashes that the
probability of fatal crashes is the highest in rainy days at
ordinary road sections, while the analysis results towards
single factor influence in the previous section of this paper
show that the probability of fatal is the highest in complex
node crashes and the probability of fatal crashes is the
highest in rainy days.

5.2. Interaction between Weather and Road Alignment.
Input evidence values of weather and road alignment; the
settings are as follows: evidence {WEA}� i, evidence
{RDA}� j, where i ranges from 1 to 5 and j ranges from 1 to
2. &e output results of the model are the prediction results
of crash severity under the corresponding weather variables
and road alignment variables, and the specific contents are
shown in Table 5.

&e results in Table 5 indicate that the interaction of the
two variables has an impact on all three types of crashes,
among which the impact on injury and death is relatively
greater. For the road alignment, the possibility of injury
crash occurring in nonstraight alignment is greater than that
in straight alignment, while the possibility of a fatal crash
occurring in nonstraight alignment is greater than that in
straight alignment, which is consistent with the law of road
alignment affecting the severity of crashes by a single factor
[19].

By analyzing the inference results of the two variables to
the property loss crash, it can be seen that the property loss
crash is most likely to occur in the foggy days of nonstraight
road section. By analyzing the inference results of the two
variables on injury crashes, it can be seen that injury crashes
are most likely to occur in foggy conditions of nonstraight
sections. It can be seen from the analysis of the inference
results of fatal crashes that the possibility of fatal crashes is
the greatest in the case of straight sections under snowy
conditions, and the possibility of fatal crashes is relatively
greater in the case of straight sections under rainy condi-
tions, which is basically consistent with the influence rule of

the single factor on the crash severity [19]. &erefore, the
interaction effect of weather and road alignment on the
severity of crashes is not obvious.

5.3. Interaction between Road Alignment and Crash Time.
&e evidence variables’ values of road alignment and crash
occurrence time are input into the prediction model. &e
settings are as follows: evidence {RDA}� i, evidence
{TIM}� j, where the value of i ranges from 1 to 2 and the
value of j ranges from 1 to 4. &e output results of the model
are the prediction results of crash severity under the cor-
responding road alignment variables and crash occurrence
time variables, and the specific contents are shown in
Table 6.

&e interaction of road alignment and crash occurrence
time on the severity of the accident is analyzed. Combined
with the inference results in Table 6, it can be seen that the
interaction of the two variables has a certain impact on the
severity of the three types of crashes; among them, the
impact of property loss crash and fatal crash is relatively
greater. By analyzing the inference results of the two vari-
ables on property loss crash and injury crash, it can be seen
that when the road alignment is not straight and the time is

Table 4: &e effect of weather and road type on the severity of
crashes.

Road type Weather Property loss
crash

Injury
crash

Fatal
crash

Normal
section

Sunny 0.0281 0.4141 0.5578
Overcast 0.0278 0.4137 0.5585
Rainy 0.0277 0.4131 0.5592
Snowy 0.0250 0.4098 0.5652
Foggy 0.0250 0.4102 0.5647
Sunny 0.1088 0.4097 0.4815
Overcast 0.1099 0.4122 0.4779

Special section

Rainy 0.1098 0.4123 0.4779
Snowy 0.1147 0.4233 0.4620
Foggy 0.1214 0.4397 0.4389
Sunny 0.1238 0.3530 0.5232
Overcast 0.1253 0.3534 0.5213

Complex node
Rainy 0.1258 0.3536 0.5205
Snowy 0.1309 0.3572 0.5118
Foggy 0.1409 0.3564 0.5027

Table 5: &e effect of weather and road alignment on the crash
severity.

Road
alignment Weather Property loss

crash
Injury
crash

Fatal
crash

Straight

Sunny 0.0068 0.3930 0.6002
Overcast 0.0280 0.4259 0.5461
Rainy 0.0030 0.3892 0.6077
Snowy 0.0014 0.3900 0.6086
Foggy 0.0455 0.4528 0.5018

Nonstraight

Sunny 0.0021 0.4895 0.5084
Overcast 0.0145 0.4944 0.4911
Rainy 0.0049 0.4830 0.5121
Snowy 0.0146 0.4665 0.5190
Foggy 0.0597 0.5158 0.4245
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during 12:00 to 18:00, the probability of property loss crash
or injury crash is the largest. It can be seen from the analysis
of the inference results of the two variables to the fatal crash
that when the road alignment is not straight and the oc-
currence time is 18:00 ∼ 6:00, the probability of fatal crashes
accounts the largest on the nonstraight road at night.

5.4.3eInteractionbetweenWeatherandLightingConditions.
Enter the values of the evidence variables weather and
lighting conditions into the prediction model; set the var-
iables as evidence {WEA}� i, evidence {LIG}� j, where the
value of i ranges from 1 to 5 and the value of j ranges from 1
to 4. &e output results of the model are the prediction
results of crash severity under the corresponding weather
variables and lighting condition variables, and the specific
contents are shown in Table 7.

&e influence rules of weather and lighting conditions on
the severity of crashes are analyzed. According to the in-
ference results in Table 7, it can be seen that the interaction of

the two variables has a great influence on the severity of the
three types of crashes. In terms of lighting condition, the
possibility of property loss crash is the greatest (including all
weather conditions), and the overall probability of fatal
crashes occurring when there is no lighting at night is the
highest, while the overall probability of fatal crash occurring
when there is lighting at night is the highest, which is basically
consistent with the results of single factor analysis [19].

By analyzing the inference results of the two variables on
property loss and injury crashes, it can be seen that the
possibility of property loss and injury crashes on a foggy
night with lighting is greater than that in other weather and
lighting conditions. By analyzing the inference result of fatal
crashes, the possibility of fatal crash is greater when it is
sunny or rainy and there is lighting at night. &e univariate
analysis results show that the probability of injury crashes is
high on foggy days, while the probability of fatal crash is high
on rainy days [19]. &erefore, the interaction between
weather and lighting conditions has no significant change on
the law of traffic crash severity.

6. Conclusions

&is research considers the influence of road and envi-
ronmental factors on the severity of freeway traffic crashes,
uses XGBoost to determine the importance of features, and
establishes a Bayesian network model to analyze the pre-
diction of traffic crash severity under the interaction of road
and environmental factors. &e main conclusions are as
follows:

(1) Inclement weather conditions such as rain, snow,
and fog occur in most of the combined conditions of
fatal crashes; the nonguardrail form of roadside
protection facilities, such as green belt and road trees,
is more likely to cause fatal crashes; foggy days have
great influence on property loss and injury crashes.
Rainy days are the most likely to cause fatal crashes.
&e interaction between ordinary road sections and
rainy days has a great influence on the crash severity.
Driving on nonstraight roads at night may aggravate
the severity of the crash.

(2) In this research, XGBoost-SHAP value model is
introduced in the learning of Bayesian network
structure to obtain the global importance ranking of
each variable on decision variables. Compared with
the order of importance obtained from correlation

Table 6: &e effect of road alignment and time on the crash severity.

Road alignment Time Property loss crash Injury crash Fatal crash

Straight

0:00∼6:00 0.0088 0.3686 0.6226
6:00∼12:00 0.0111 0.3892 0.5997
12:00∼18:00 0.0108 0.3888 0.6004
18:00∼24:00 0.0081 0.3675 0.6244

Nonstraight

0:00∼6:00 0.0033 0.3682 0.6285
6:00∼12:00 0.0153 0.4380 0.5467
12:00∼18:00 0.0173 0.4642 0.5185
18:00∼24:00 0.0033 0.3682 0.6285

Table 7: &e effect of weather and lighting conditions on the crash
severity.

Lighting
condition Weather

Property
loss
crash

Injury crash Fatal crash

Daytime

Sunny 0.0060 0.4221 0.5719
Overcast 0.0186 0.4362 0.5453
Rainy 0.0048 0.4224 0.5728
Snowy 0.0029 0.4251 0.5720
Foggy 0.0511 0.4725 0.4763
Sunny 0.0124 0.3876 0.6001
Overcast 0.0497 0.4455 0.5049

Dusk/Dawn

Rainy 0.0026 0.3886 0.6088
Snowy 0.0007 0.4335 0.5658
Foggy 0.0620 0.4643 0.4737
Sunny 0.0171 0.2966 0.6864
Overcast 0.0541 0.4324 0.5135

Lighting at night

Rainy 0.0101 0.3055 0.6844
Snowy 0.0026 0.3736 0.6238
Foggy 0.0879 0.5529 0.3592
Sunny 0.0065 0.4742 0.5193
Overcast 0.0322 0.4687 0.4991

Nonlight at night
Rainy 0.0031 0.4674 0.5294
Snowy 0.0021 0.4390 0.5589
Foggy 0.0522 0.4650 0.4828
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analysis, the determination of the order of variable
importance is more reasonable, which is conducive
to obtaining a higher scoring Bayesian network
structure.

(3) Partial results obtained by the traffic crash severity
prediction method considering the features inter-
action effect proposed in this research consist of
some of the results obtained by considering only a
single factor model in previous studies, indicating
that the model used in this research is reliable.
Additionally, since the crash-prone variables have an
interaction effect with each other, the model with the
consideration of features interaction can produce
more reliable results. Finally, corresponding effective
measures can be put forward to prevent the occur-
rence of crashes or reduce the crash severity
according to the combination form of road and
environmental factors with higher risk coefficient,
which can be applied by the relative transportation
department for the freeway safety management.

(4) &e amount of sample data used in this research is
small, and the factor variables in the dimension of
road condition in the used dataset are not complete
enough. Furthermore, before learning the structure
of the Bayesian network, further research into how to
eliminate the influence of small datasets on Bayesian
network model construction should be completed
and addressed in future models.
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