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As one of the important components in the transmission line, the insulator is related to the safe and reliable operation of the entire
transmission line. Aerial images are characterized by complex backgrounds, multiple pseudotargets, and low signal-to-noise
ratios. Rapid and accurate localization of insulators in aerial images is a critical and challenging task in automatic inspection of
transmission lines. Most insulator localization methods suffer from the loss of target edge detail information and large amount of
model parameters. To solve these problems, this paper adopts an Encoder-Decoder architecture, called ED-Net, to realize end-to-
end intelligent and accurate identification of insulators in aerial images. Firstly, Initial Module and CA-Bottleneck which are used
to extract features from images to generate finer feature maps are proposed in the Encoder path. Meanwhile, global average
pooling is used to preserve the maximum receptive field. Secondly, in the Decoder path, Refinement Boundary Module and
Asymmetric Convolution Module are given to perform boundary optimization on the feature map, which are generated by the
Encoder path. Finally, the Attention Feature Fusion Module is introduced into the Decoder path to combine high-level features
with low-level features better and reduce the gap between features of different levels. The proposed model architecture keeps a
suitable balance between the model parameters and insulator segmentation performance on insulator test datasets. Specifically, for
a 512 x512 input image, 95.12% mean intersection over union is achieved on the insulator test datasets with different envi-
ronments and model parameters size being only 13.61 M. Compared with the current state-of-the-art semantic segmentation

methods, the results show that the proposed method has higher efficient and accuracy.

1. Introduction

As an important part of transmission line, the integrity of
insulator directly affects the safety and reliability of trans-
mission line. According to statistics, the trip accident of the
transmission lines due to insulator fault in Figure 1 accounts
for 81.3% [1]. Since insulators are exposed to the natural
environment for a long time, they will be affected inevitably
by different climate and environmental factors, resulting in
defects such as filthiness, corrosion, breakage, and so on,
which threaten the safe operation of transmission lines.
Therefore, it is necessary to inspect the insulators regularly to
eliminate hidden dangers in time to ensure the stable op-
eration of the entire transmission line.

In the early days, the regular inspection of transmission
lines was carried out manually, and the insulators on the

transmission lines were observed, inspected, and measured
manually through eyes or telescopes. This inspection
method requires personnel to have rich prior knowledge,
which is inefficient and dangerous. In recent years, with the
advancement of computer vision and Unmanned Aerial
Vehicle (UAV) multimodal information fusion, UAV-
based aerial solutions are widely used in the transmission
line inspection [2]. Camera is the main way for UAV to
perceive external information; technicians use the image
information collected by UAV and image processing
technology to complete the regular detection of insulators
in transmission lines. However, as transmission lines are
usually located in different natural environments, aerial
images obtained by UAV camera have characteristics of
complex background, multiple pseudotargets, and low
signal-to-noise ratio, which make it difficult for image
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FIGURE 1: Insulator image. (a) Original aerial image. (b) Common insulator defects.

processing technology to identify insulators from aerial
images [3].

In traditional image processing, artificial feature en-
gineering is used to design and extract the feature infor-
mation (e.g., color, texture, and edge) of the insulator to
distinguish the insulator from the background in the aerial
image [3]. Reddy et al. [4] first transformed the insulator
image into the LAB color space and used the k-means
clustering algorithm to fuse similar pixels in the image and
then calculated the pixel intensity to draw a bounding box
based on a preset threshold. The bounding box features are
extracted as the input of the adaptive neurofuzzy inference
system (ANFIS), and finally the ANFIS model is trained to
detect insulators in the image. The disadvantage of this
method is that the model relies on the bounding box
generated by the clustering results, which is suitable for the
segmentation of insulators with less background interfer-
ence. Murthy et al. used Hough transform and support
vector machines (SVM) to segment the insulators in aerial
images and used multiresolution wavelet changes to extract
the features of the extracted insulators and then used SVM
to judge the state [5]. This method is suitable for aerial
images where the background texture and intensity in-
formation are quite different from those of insulators. In
[6], a method based on orientation angle detection and
binary shape prior knowledge (OAD-BSPK) was proposed
to realize the localization of insulators with different azi-
muths in complex aerial survey images. The algorithm first
uses the binarization and multicascade morphological
methods to obtain the edge of the insulator in the image to
initially detect the possible azimuth of the insulator. For
possible azimuths, binary shape priors are used to precisely
locate the insulators in the image. However, this method
needs to set a large number of thresholds to segment the
insulators, and the thresholds for different environmental
changes need to be reset, which greatly weakens the de-
tection of insulators in the natural environment. In [7], a
method was proposed to identify insulators in aerial images
by fusing shape, color, and texture information. The line
segments in different directions in different images are
extracted; thus, the candidate regions are obtained by
clustering according to the characteristics of the insulators.

Moreover, the insulator regions are obtained based on the
saliency features of the color and the prior knowledge
model; the texture features are used to detect the insulator
shedding defects. In [8], saliency detection was used to
determine the position of insulators based on color and
gradient features. Furthermore, adaptive morphological
methods were used to detect insulator defects. This method
is only suitable for the identification of glass insulators.
Traditional image processing algorithms are limited to
scenes with single background and fixed objects. Although
all the above methods can solve some problems in object
recognition, the design of artificial features requires more a
priori knowledge and makes it difficult to be highly robust
in natural environment image of insulators.

In recent years, with the development of deep learning,
many models based on convolutional neural networks
(CNN) have achieved excellent results in semantic seg-
mentation tasks, such as FCN [9], SegNet [10], U-Net [11],
and so on. Pixel-level segmentation can obtain targets in the
image and the location of the targets precisely; these models
have been widely used in the field of autonomous driving,
industry, and embedded devices, solving problems in
computer vision and promoting industrial automation.
Compared with traditional methods, CNN can automati-
cally extract features from images, which reduces the sub-
jectivity of artificially designed features and provides more
flexible solutions. It makes the insulator segmentation and
identification process more robust to light, background,
material, and other changes. At present, many researchers
have studied semantic segmentation network models to
perform pixel-level segmentation of insulator images. Gao
et al. [12] used the two-stage target detection Faster-RCNN
network to detect the insulators in the aerial images, input
the detected insulators into the fully convolutional network
(FCN) to complete the segmentation, and completed the
defect detection of the insulators. But the network is divided
into two convolutional neural networks: object detection
and semantic segmentation. This method reduces the
computational complexity of the semantic segmentation
algorithm and improves the segmentation speed. Ling et al.
[13] used the object detection network to identify insulators
in aerial images and cropped the identified insulators from
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the images, which were input into the U-Net semantic
segmentation network to complete the detection of the
insulator defects. The object detection would be unable to
satisfy demands for the detection of small defects (e.g.,
flashover and corrosion). However, semantic segmentation
is pixel-level detection, which would improve the accuracy of
model detection. It was noted that Up-Net network is given
to achieve semantic segmentation of insulator images in
[14]. This method does not require an object detection
network in advance and directly uses the semantic seg-
mentation method to complete the identification and seg-
mentation of insulators. Alahyari et al. [15] proposed a two-
stage convolutional neural network model consisting of
segmentation and classification units for fault classification
of insulators. Aerial insulator images have the characteristics
of complex backgrounds, many pseudotargets, and low
signal-to-noise ratios, which bring difficulties for segment
insulators. Semantic segmentation networks based on deep
convolutional neural networks are general algorithms.
Consequently, it is necessary to fine-tune the algorithm to
improve its accurate and efficiency for the enhancement of
insulator ~ segmentation  performance in complex

background.

Since the premise of insulator fault detection is to ac-
curately identify the insulator target in the image, it is radical
to develop a better insulator identification algorithm. This
paper focuses on the identification and segmentation of
insulators in complex background, aiming to improve the
identification efficiency and segmentation accuracy of in-
sulators in aerial images. In this paper, an insulator semantic
segmentation network is proposed, called ED-Net, which is
constructed based on an end-to-end Encoder-Decoder
structure, which realizes pixel-level segmentation of insu-
lators. The network consists of two parts: Encoder path and
Decoder path. In the Encoder path, Initial Module (IM) and
CA-Bottleneck Module are proposed to extract the feature of
the original image. The Coordinate Attention (CA) mech-
anism [16] and the depth-wise separable convolution are
used in the CA-Bottleneck module to make the network pay
more attention to the region of interest in the image and
reduce the amount of model parameters and make the
network more effective, respectively. The global average
pooling layer (GP) is added in the tail of the Encoder path to
retain the maximum receptive field. In the Decoder path, we
proposed Asymmetric Convolution Module (ASM) and
Refinement Boundary Module (RBM) to optimize the in-
sulator boundary information. For reducing the diversity of
features, the attention feature fusion module (AFFM) is
proposed to fuse the features better in each stage.

Our contributions are summarized as follows:

(1) In the Encoder path, the proposed IM is used to
quickly downsample the original image and then add
coordinate attention mechanism in the original
Bottleneck module, named CA-Bottleneck Module.
The module is stacked in the Encoder path to en-
hance the feature extraction ability of the network.
Ultimately, the GP is added at the end of the encoder
path to retain the maximum receptive field.

(2) In the Decoder path, this paper introduces ASM and
RBM modules for optimizing edge detail informa-
tion of feature maps. AFFM is thus used to fuse high-
level features and low-level features and reduce the
diversity of them. In this case, the effectiveness of
feature fusion can be ensured.

(3) The impressive results are achieved on the insulator
dataset. More specifically, 95.18% mean IOU on the
insulator test dataset and the parameter amount of
the network of only 13.61 M are obtained.

The rest of this paper is organized as follows: Section 2
reviews the semantic segmentation network model and the
work of attention mechanism. Section 3 introduces the
proposed semantic segmentation network model based on
the encoder-decoder structure and the details of each part of
the network. Section 4 introduces the insulator segmenta-
tion dataset and discusses the impact of each module in the
network model proposed in Section 3 on the overall seg-
mentation accuracy. The experimental results of mainstream
semantic segmentation models in the insulator test dataset
are compared and analyzed. Section 5 provides the
conclusions.

2. Related Work

In recent years, researchers have made a lot of progress on
insulator defect detection and state classification. How-
ever, in most of these tasks, deep learning-based object
detection algorithms are used to obtain the region of the
insulator in the image and crop it into the region of in-
terest. The segmentation method is used to obtain the
segmentation map of the insulator in the region of interest
(Rol), and finally the insulator defect detection is carried
out. These algorithms usually require two CNN models,
resulting in a large number of model parameters, which
cannot be applied to devices with limited computing
resources. With the development of semantic segmenta-
tion algorithms in deep learning, more and more semantic
segmentation models can be used to solve the problems of
complex backgrounds and many pseudotargets when
segmenting insulator images and have achieved state-of-
the-art performance. Most of the current insulator seg-
mentation methods are based on FCN [9] variants or
U-Net [11] variants to achieve high performance. How-
ever, these methods do not consider applying the CNN
model to mobile devices. In semantic segmentation tasks,
most networks are designed based on encoder-decoder
structures, and to achieve a balance between network
speed and accuracy, some methods will be used, such as
depth-wise separable convolution and attention
mechanisms.

2.1. Encoder-Decoder Structure. The encoder part inherent
in the FCN [9] model encodes the feature of different scales.
Naturally, some methods combine features of different scales
to optimize the final prediction map. These methods mainly



consider the loss of target spatial information due to the
decrease of spatial resolution caused by continuous pooling
and convolution with stride equal to 2 and restore the
resolution of the feature map by feature fusion. For example,
SegNet [10] restores the resolution of the feature map by
saving the index at the time of the maximum pooling op-
eration to reduce the loss of image spatial information,
U-Net [11] uses skip joins to fuse high-level semantic in-
formation with low-level spatial information to improve the
result of the segmentation, GCN [17] uses a large convo-
lution kernel to obtain a larger receptive field and extract
more image context information when fusing the feature
map in the encoding and decoding structure. However,
spatial information lost during image downsampling is
difficult to be restored by directly fusing feature maps of
different scales [18].

2.2. Feature Fusion in Semantic Segmentation. Feature fusion
is a common method in the semantic segmentation task,
which is used to fuse feature images extracted at different
stages. In DeepLab series [19-22], ASPP modules are pro-
posed to extract multiscale features with different dilation
rates and combine them to process targets of different scales.
The pyramid pooling module in PSPNet [23] achieves the
goal of coding different scales through the feature map of
different stages. ParseNet [24] adds global pooling branches
to extract multiscale feature.

2.3. Context Information. Semantic segmentation requires
more image context information to generate more accurate
segmentation results. Recently, most methods use the fusion
of different scale feature maps or large receptive fields to
obtain the context information of the image. DeepLab v2/v3
uses hole convolution with different dilation rates in parallel
to extract multiscale context information from the feature
map extracted from the backbone network. It is proposed
that ASPP module can change the receptive field of con-
volution kernel by controlling the dilation rate so as to
capture richer multiscale features. PSPNet [23] proposed a
PSP module using multiscale pooling to captures multiscale
information. However, atrous convolution will lose the
continuity of image information while increasing the re-
ceptive field, which is not conducive to the pixel-level dense
prediction task [25].

2.4. Attention Mechanism. The attention module can make
the model pay more attention to the region of interest.
Attention mechanism is a powerful tool for depth convo-
lution neural network [26]. At present, the most popular
attention mechanism is the SE Attention proposed by SENet
[27]. Tt calculates channel attention through 2D global
pooling, providing significant performance improvements at
arelatively low computational cost. However, the SE module
only considers the encoding of information between
channels and ignores the importance of location informa-
tion, which is crucial for semantic segmentation. CBAM [28]
combines the spatial attention module and the channel
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attention module to refine the extracted features and im-
prove the expressive force of the model.

3. Methodology

In daily inspections, UAV can collect hundreds of thousands
of aerial images. The network should have less complexity
and less parameters while ensuring the segmentation ac-
curacy. Traditional convolutional neural networks (e.g.,
GoogLeNet [29] and ResNet [30]) have a large number of
network model parameters and high computational com-
plexity, making it difficult to run on mobile devices (e.g.,
UAV). Aiming at the characteristics of the complex back-
ground of aerial images, the traditional CNNs is complicated
calculation, and the number of model parameters is large. In
this section, an alternative network is proposed to solve the
above problems, called ED-Net; Figure 2(a) shows the
overall framework of the network. The network achieves a
balance between the amounts of parameters and the seg-
mentation accuracy. Then, the details of components in
these two paths are described. Finally, how we fuse features
of different scales in the decoder path and restore the image
resolution to obtain the final prediction result is
demonstrated.

3.1. Encoder Path. For the insulator semantic segmentation
task, ensuring a large receptive field is crucial for the final
semantic segmentation result. Since the insulator is only in a
small part of the aerial image and the pseudotarget in the
background will interfere with the segmentation of the
insulator, it is necessary to retain the largest receptive field to
ensure the accuracy of insulator segmentation from a global
perspective. At present, the mainstream methods of
expanding the receptive field use the pyramid pooling
module, Atrous Spatial Pyramid Pooling [20], or large kernel
[17]. In this paper, attention mechanism and depth-wise
separable convolution are introduced in the encoder stage to
reduce the number of model parameters and expand the
receptive field so that it can obtain more image context
information. The encoder path consists of five stages, one of
which is the initial module, and the other four stages are
modules with the same structure. The details of Encoder
path are shown in Figure 3, including IM, CA module, and
CA-Bottleneck module. The initial module consists of two
branches. One branch uses the depth-wise separable con-
volution of 3 x 3 and stride equal to 2 to downsample the
original image; the other is divided into max-pooling to
downsample the original image and finally fuse and input to
the next stage in Figure 3(a). The next four stages consist of
stacking different numbers of CA-Bottleneck modules, and
only the first CA-Bottleneck module in each stage uses 1 x 1
conv for input-output feature map scale matching. The rest
of the CA-Bottleneck modules have the same structure, as
shown in Figure 3(c). It consists of the following four parts:
(1) 1 x 1 convolution layer for dimension decline. (2) Depth-
wise separable convolution is used to extract its features. The
significance of depth-wise separable convolution layer is to
reduce the amount of model parameters. (3) Adding



Complexity

Encoder Path

Decoder Path

Global Pooling
|

C5
16x16x2048

Bottleneck+CA Module

C4
32x32x1024

Bottleneck+CA Module

€3
64x64x512

BonleneckIC/\ Module

Up-sample

ASM

RBM

RBM

M5
16x16x2
M4
32x32x2
M3
64x64x2

P5
M

Deconv

P4
32x32x2

Deconv

P3
64x64x2

Deconv

AFFM

AFFM

ReLU

BatchNorm

|
C2 M2
128x128x256 RBM

Bottleneck+CA Module

P2
AFFM 128x128x2

Deconv

|
| |
Cl P1
256X%256x64 256X256%2
£

Initial Module

Deconv

|
|
|
: Sum
- | I
|
|
|
|
|
|
|
|
|

~

Inr;ljllkl;nagc Predict High-level feature

(a) ED-Network

|
|
Feature Map | : Feature Map :
| | |
I | !
I
Conv | | DepthwiseConv :
(CxclsxKx1) | | (Cxclsx3x3) |
! |
Conv Conv |
|
l (Cxelsxixl)  (Cxelsxix1) | : . Ba‘c(l:;j)”m :
onv
5 Con @ | ! (Cxelsx1x1) + I
clsxclsxIx.
| | ReLU :
G | I I
Joncat
= | | DepthiseCony I
. | | (clsxclsx3x3) |
Sum +—mm | |
l | | Sum :
BatchNorm I | 4 |
| | |
| | |
| | |
| | |
I | |
! |

(b) Asymmetric Convolution Module

ReLU

(c) Refinement Boundary Module

Output

T

mul

(d) Attention Feature Fusion Module |

X Avg Pool

Y Avg Pool

Concat —» Conv+BN+ReLU

FIGURE 2: Overview of proposed ED-Net architecture (a). It consists of two parts: Encoder path and Decoder path. The feature maps of C1,
C2, C3, C4, and C5 are obtained by the Initial Module (IM) and Bottleneck + CA Module. M2, M3, M4, and M5 are the feature maps of the
encoder path obtained through Asymmetric Convolution Module (ASM) or Refinement Boundary Module (RBM). P1-P5 are obtained by
the Attention Feature Fusion Module (AFFM), and P1 is used for insulator segmentation. The details of ASM, RBM, and AFFM are
illustrated in (b), (c), and (d), respectively. The red and black lines represent the upsample and downsample operations, respectively. The
green line does not change the size of the feature map, only the number of channels.

Coordinate Attention Mechanism and residual connection
to weight the feature map to make the model pay more
attention to the region of interest. (4) 1 x 1 convolution layer
is used to improve the dimension and fuse with the input
feature map to obtain the final output. The Batch Nor-
malization [31] and ReLU are placed in the between of whole
convolution operation.

3.2. Decoder Path. In the semantic segmentation task, the
final segmentation result of the network is determined by the
quality of feature fusion, since the features at different stages
have different recognition capabilities. In the shallow stage
of the encoder path, the network pays more attention to
some low-level features, such as point, line, or edge infor-
mation. At this time, the feature map has a large resolution,
so it contains a lot of spatial information. However, in the
high-level stage of the encoder, the features extracted from
the network contain more semantic information, but the
resolution of the feature map is low at this time, and the
spatial information of the image is lost. Therefore, the
Decoder path proposed in this paper integrates the high-
level semantic information extracted from the network into
the low-level features so as to better combine the semantic
information and spatial information, thus improving the
segmentation result of the network.

In this paper, RBM is proposed to optimize edge details
of feature maps. The module is a residual structure com-
posed of depth-wise separable convolution, Batch normal-
ization, and nonlinear activation function, as shown in

Figure 2(c). It is worth noting that only the feature maps
from stage 2 to stage 4 of the Encoder path need to go
through RBM. Second, inspired by the structure of Incep-
tionV3, on m x m feature maps, where m ranges between 12
and 20, using asymmetric convolutions can improve the
classification performance of the network [32]. Therefore,
this paper proposes ASM for the feature map of stage 5
output in the Encoder path, as shown in Figure 2(b). ASM
uses asymmetric convolution. Compared with the tradi-
tional 3x3 convolution, it requires less resource con-
sumption and parameter amount, which is more effective for
large kernel sizes. Finally, due to the difference between low-
level features and high-level features, these features cannot
be simply added together. In the early stage of the network,
the network encodes rich spatial information, and in the
later stage of the network, it mainly encodes the context
information of the image. In other words, the feature map
output at the early stage of the network is of low level, and
the feature map output at the later stage of the network is of
high level. Therefore, the AFFM is proposed to fuse low-level
and high-level features in Figure 2(d). This module first sums
low-dimensional and high-dimensional features for differ-
ent levels of features. Next, average pooling is performed on
the x-direction and y-direction of the feature map, re-
spectively. After concatenating the feature map, convolu-
tion, Batch normalization and ReLU are used to balance the
feature map scale. Finally, the weight vectors in the x-di-
rection and y-direction are obtained through the sigmoid
activation function, respectively, and the original feature
map is reweighted. This module uses high-level semantic
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CA-Bottleneck Module.

features to guide low-level detail features and refines feature
maps so as to obtain improved segmentation result.

The proposed Encoder-Decoder Path Network did not
use bias terms in any of the projections in order to reduce
the number of kernel and overall memory operations, as
cuDNN [33] uses separate kernels for convolution and bias
addition. This choice did not have any impact on the ac-
curacy. It is noted that each convolution operation make
network better for gradient return accompanied by nor-
malization and activation function, reducing the phe-
nomenon of gradient disappearance and gradient
explosion.

3.3. Network Architecture. With the Encoder path and
Decoder path, a semantic segmentation network based on
Encoder-Decoder structure is proposed to segment insu-
lator images, called ED-Net. The overall flow of the network
in this paper is shown in Figure 4. The multiscale feature
map that is extracted from different stages of the Encoder
path is used in the decoder path to generate finally pre-
dicted result.

In the Encoder path, the IM and stacked CA-Bottle-
neck module are used as the backbone network. CA-
Bottleneck module adds coordinate attention mechanism

with depth-wise separable convolution. The coordinate
attention mechanism is effectively applied to semantic
segmentation tasks, which enables the convolutional
kernel to capture channel, direction, and position in-
formation and enables the model to locate the target more
accurately. Depth-wise separable convolution is used to
reduce the number of model parameters and improve the
efficiency of model calculation. Then, the GP is added in
the tail of backbone network to get the strongest con-
sistency feature.

In the Decoder path, the output feature maps of Encoder
path C2 to C4 are passed through RBM module, and the
output of C5 is passed through ASM module to further
enhance the consistency of feature. The feature maps of GP
are 2 x upsampling and the feature maps of C5 are fused by
AFFM. The fused feature map is deconvolved and the output
feature map of the previous stage of RBM is fused by AFFM.
Through this operation, high-level features and low-level
features are fused together to reduce the gap between feature
maps so that feature maps contain rich semantic informa-
tion and spatial information. Finally, the image size is re-
stored through deconvolution to achieve end-to-end
training of the network. It is worth noting that the attention
mechanism is only performed on the current feature map in
the last AFFM.
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4. Experiment Results

In this section, the proposed ED-Net network model is
evaluated to verify the segmentation effect of the model on
insulators in different environments. Firstly, the insulator
dataset, implementation, and evaluation metrics used in the

experiments are introduced. Then, the impact of each
module in the proposed method on the overall model is
analyzed. Next, the amounts of parameters, GFLOPs of the
network, and the results that are generated by our algorithm
on the insulator test dataset are shown, respectively. Finally,
comparison with the current mainstream semantic seg-
mentation models is carried out.

4.1. Insulator Dataset and Implementation

4.1.1. Insulator Dataset. Figure 5 shows the acquisition
equipment of the aerial insulator image data used in this
paper. The data acquisition system is composed of a FC300S
camera of CASIO and a DJI Phantom 3 advanced UAV. The
camera captures insulator images of transmission lines lo-
cated in different environments, and the captured images are
used as the insulator dataset in this paper. The insulator
dataset used in this paper contains 100 training images and
20 testing images, which are resized to 512 x 512. Examples
of train sample and label data are shown in Figure 6. The
images contain 2 semantic categories, namely, insulator and
background.

4.1.2. Training details. During the training time, a batch size
of 16 is applied. The standard Adaptive Moment Estimation
(Adam) optimizer is used to update the model weight pa-
rameters, where 8, and f3, are set to 0.9 and 0.99, respec-
tively, weight decay le™3, initial learning rate le™*, and the
learn rate is multiplied by 0.1 for every 40 iterations. All
experiments are implemented in Python and trained using
the PyTorch deep learning framework. All the experiments
have been conducted on a Nvidia GeForce GTX 3090 GPU
under Ubuntu 16.04.

4.1.3. Evaluation Metrics. In order to better understand the
results of the insulator semantic segmentation network, this
paper summarizes the different evaluation metrics [9] as
follows:

(i) Pixel Accuracy: (Ym;/ (2;Xm))
(ii) Class  Accuracy:  ((X;m; + X m;)/ (Xmy; + Xy,
+) My + Zjnjj))
(iii) Mean Intersection over Union (mean IOU):
(Un (il (Ximy; + 2 mj = 157))
(iv) Frequency weighted Intersection over Union (f.w.

I0U): ((1/21'2]‘”1‘]')21'”&/(21‘”1‘]' + Zjnji - n;))

where n, represents the number of categories in the
dataset, n; represents the number of pixels whose real pixel
class is i predicted to belong to class i, nj; represents the
number of pixels whose real category j predicted to belong
to class i, and n;; represents the number of pixels whose real
category is i predicted to belong to class j.

In the following sections, a series of ablation experiments
is to evaluate the effectiveness of proposed method. Then, the
full results on Insulator test dataset are reported.
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FIGURE 6: Example of train sample and label data.

4.2. Ablation Study. In this section, the proposed method is
broken down step by step to reveal the effect produced by
each module. The effectiveness of our method on the in-
sulator dataset is verified using the Base Model as the base
network.

Base Model. ResNet-50 is used as the feature extraction
module of the Base Model, which is the Encoder Path. The
Decoder Path directly deconvolution and fuses the feature
maps to obtain the final prediction result, as shown in
Figure 7. The Conv-1 in the Base Model uses the convo-
lution of kernel size equal to 7, stride equal to 2 to
downsample the image, and then stacks different numbers
of Bottlenecks Module to obtain feature maps Res-2, Res-3,
Res-4m and Res-5. The pooling operation is not used in the
network, and the convolution with stride equal to 2 is used
for downsampling instead. Considering the amounts of
parameter in the network, all 3 x 3 convolution operations
in the network are replaced by depth-wise separable
convolutions. The depth-wise separable convolution can
greatly reduce the amount of network parameters, reducing
the complexity of the model and making it possible to run
on devices with limited computing resources, as shown in
Table 1. The output feature map of each stage first needs to
go through the Trans Module (composed of 1 x 1 convo-
lution), and after reducing the number of channels,
deconvolution is performed and the feature map of the

previous stage is fused. It is worth noting that the Conv-1
feature map does not participate in the fusion. After
obtaining the P2 feature map, the image size is restored by
two deconvolutions to obtain the final prediction result.
The network prediction results are shown in the second
column of Figure 8.

CA-Bottleneck Module. The Encoder part of the ED-Net
proposed in this paper uses the CA-Bottleneck module for
stacking, and adding an attention mechanism to the Bot-
tleneck makes the network better focus on the global in-
formation of the image. The key parameter reduction ratio
y is gradually increased, but the performance of the model
decreases when y is increased to 512, as shown in Table 2.
This shows that choosing a suitable reduction ratio y in the
early stage of the model is crucial to improve the perfor-
mance of the model. Note that only multiples of two are
used in the experiments because there is a twofold rela-
tionship between feature map size reduction and channel
count improvement. In particular, when y equals to 2, the
model outperforms the Base Model by 6.05%. In the Base
Model, the size of the feature map at each stage needs to be
reduced by 1/2, and the number of corresponding channels
needs to be doubled. According to this idea, the corre-
sponding reduction ratio y in the CA module of Res-3, Res-
4, and Res-5 should also be reduced by two times to in-
crease the number of channels. Using the CA-Bottleneck
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FIGURE 7: Base Model. Trans is to use 1 * 1 convolution to change the number of channels. Sum is the addition of the corresponding
elements of the feature map. Deconv uses the deconvolution of kernel size equal to 4, stride equal to 2, and padding equal to 2 to expand the
feature map size.

TaBLE 1: Accuracy and parameter analysis of Base Model on the insulator dataset. ResNet-50 and depth-wise separable convolution (DW)—
ResNet-50 refers to the replacement of all 3 x 3 convolution in the network with depth-wise separable convolutions. GFLOPs estimated
model complexity for 3 x 512 x 512 input image.

Parameter (M) GFLOPs mIOU (%)
Base 25.56 21.71 72.57
DW-base 13.48 13.18 72.50

F1GUre 8: Examples of semantic segmentation results on insulator test dataset. (a) Original input image; (b) the predicted image of Base
Module; (c) the predicted image of the former combined with CAM; (d) the predicted image of the former combined with RBM; (e) the
predicted image of the former combined with AFFM; and (f) Ground truth.
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TaBLE 2: Experimental results of setting different reduction ratios y using the CA-Bottleneck module in Res-2. The score is evaluated by

standard mean IOU (%) on insulator test dataset.

y Base 8 16

64 128 256 512

mlIOU 72.50 73.91 74.88

75.14

75.58 76.89 78.55 77.65

module in ResNet-50, the model mIOU =81.08%. After
adding CA Module, the network prediction results are
shown in the third column of Figure 8.

Initial Module. As described in Section 3, the module is
proposed which consists of depth-wise separable convolu-
tion and max-pooling to reduce model parameters and
spatial information loss. The module subjects the input
image to 3 x 3 depth-wise separable convolution with stride
equal to 2 and overlapping max-pooling, respectively. The
two outputs are concatenated in the channel dimension
through Batch Normalization and ReLU. This module re-
places the convolution of kernel size equal to 7, and the
network performance is improved from 81.08% to 82.29%, as
shown in Table 3.

4.2.1. Global average Pooling. The layer is used to make the
Encoder path provide a larger receptive field. Although the
original ResNet-50 network can theoretically cover most of
the input image, it is necessary to use GP to further expand
the receptive field. In this paper, the GP is added to the tail of
the Encoder Path, then the output upsampling of the GP is
fused with the feature map of Res-5 in the Encoder path in an
additive manner. Model performance ranges from 82.29% to
83.93%, validating the effectiveness of GP, as shown in
Table 3.

4.2.2. Refinement Boundary Module. To further improve
the performance of the network, the RBM is designed in the
Decoder Path. This module contains convolution, Batch
normalization, and ReLU wunit. Compared with Trans
Module, RBM improves the model ability to optimize the
target boundary, as shown in Table 3. After adding RBM,
the network results are shown in the fourth column of
Figure 8.

4.2.3. Asymmetric Convolution Module. Based on the RBM
in the Decoder Path, the ASM is proposed to be applied in
the stage with the smallest feature map size. ASM uses large
convolution kernels to densely connect feature maps. The
model performance ranges from 88.51% to 89.57%, which
verifies the improvement of the overall performance of the
model by ASM, as shown in Table 3.

4.2.4. Attention Feature Fusion Module. Considering the
different levels of feature maps generated in different
stages of the network, the low-level features generated
when the network is shallow, and the high-level features
generated by the deep network, the AFFM is proposed to
effectively fuse these features. The evaluation of the results

TaBLE 3: Detailed performance comparison of each component in
our proposed ED-Net.

Module mIOU (%)
CAM 81.08
CAM +IM 82.29
CAM +IM + GP 83.95
CAM +IM + GP + RBEM 88.51
CAM +IM + GP + RBM (ASM) 89.57
CAM +IM + GP + RBM (ASM) + AFFM 95.12

TABLE 4: Parameter comparison of our method against other state-
of-the-art methods on the Insulator test dataset. GFLOPs are es-
timated for input of 3 x512 x 512.

Model Backbone GFLOPs Parameters (M)
FCN-8s VGGl6 80.63 20.1
SegNet VGGl16 286.0 29.43
U-Net \ 184.64 34,53
DeepLabV3 Xception 57.06 29.4
GCN ResNet152 67.96 58.38
Ours CA-Bottleneck 12.62 13.61

that is generated by summing these features directly and
proposed AFFM is shown in Table 3. The network pre-
diction results after using AFFM are shown in the fifth
column of Figure 8.

4.3. Comparison of Different Semantic Segmentation
Algorithm. In this section, the complexity and parameter
quantity of the model in this paper are firstly analyzed, and a
comparative analysis is made with the current mainstream
semantic segmentation networks, as shown in Table 4.
Secondly, the segmentation results of the proposed algo-
rithm and the mainstream algorithm in the insulator test set
are compared, as shown in Table 5. Finally, some visual
examples of the method in this paper and the mainstream
semantic segmentation models are also given, as shown in
Figure 9.

As shown in Table 4, the comparison between our
proposed method and other methods between GFLOPs and
parameter quantities is shown. GFLOPs represent the
complexity of the model, and the amounts of parameter
represents the number of operations when processing the
image. In this paper, the unified input image resolution is
512x512. Table 5 shows the accuracy and speed com-
parison between the different methods in the insulator test
dataset. Figure 10 shows the ROC curves generated by ED-
Net and mainstream semantic segmentation models on the
insulator test dataset. Compared with other mainstream
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TaBLE 5: Experimental results of our method against other state-of-the-art methods on the Insulator test dataset comparison of our method
against other state-of-the-art methods on the Insulator test dataset.

Model Pixel Acc Class Acc mIOU f.w. IOU Time (ms)
FCN-8s 98.85 88.50 86.66 97.75 157
SegNet 99.07 93.01 89.64 98.22 167
U-Net 99.20 93.28 90.67 98.46 181
DeepLabV3 98.90 91.10 87.40 97.89 176
GCN 99.06 92.11 89.07 98.18 348
Ours 99.61 97.44 95.12 99.24 67

7
N 7
| 7N
{
. . - p,
’ //
.
,

FIGURE 9: In the insulator test dataset, the ROC curves are generated by ED-Net and mainstream segmentation models.
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FIGURE 10: Semantic segmentation results of our method and other state-of-the-art methods on the insulator test set. The figure is the
original image and the prediction results of each algorithm. From top to bottom are the original image, Ground Truth, FCN-8s, SegNet-
VGG16, U-Net, DeepLabV3+, and GCN-ResNet152 and the last row is the prediction result of the network in this paper. The yellow box

shows the details of the segmentation.

semantic segmentation models, our method has achieved
great progress in both speed and accuracy.

Figure 9 shows the segmentation results of the pro-
posed segmentation method and other state-of-the-art
segmentation methods on the insulator test dataset. This
set of images is representative because these images in-
clude insulators that are in different shapes, viewing
angle, environments, and so on. As shown in Figure 9,
semantic segmentation results of insulators can be
achieved in most networks, but misclassification and
missing segmentation will occur when there is too much
background and insulator interference, such as the fourth
and sixth images. The robustness of the proposed method
is proved.

5. Conclusion

In this paper, an insulator semantic segmentation network
is designed to achieve accurate and efficient segmentation
insulators in different environments, which is based on
Encoder-Decoder structure, called ED-Net. The network
architecture consists of two paths: Encoder path and De-
coder path. In the Encoder path, in order to improve the
feature extraction ability of encoder, the CA Module is
added into original Bottleneck to make the network focus

on the insulator region. The amount of model parameters is
reduced by initial module and depth-wise separable con-
volution to improve the efficiency of feature extraction.
Moreover, GP is used to achieve more semantic infor-
mation. In the Decoder Path, the RBM optimizes the edge
details of the feature map generated by Encoder path. ASM
uses large kernel size to obtain rich contexture information
and reduce the number of parameters. Attention feature
fusion model are proposed to reduce the difference between
high-level features and low-level features and improve the
accuracy of the model. For aerial images under different
environments and lighting conditions, 95.12% mean IOU is
obtained in the insulator test dataset and the amount of
model parameters is only 13.61 M. In the future work, the
insulator dataset needs to be further extended to ensure
that the model can obtain accurate insulators in more
complex environments. In addition, we will pay more
attention to lightweight convolution neural network to
obtain real-time segmentation results.
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