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'e formation control issue for a group of underactuated unmanned surface vehicles (USVs) is discussed in the paper, and a
staged finite-time control strategy for the USVs is proposed. Firstly, we try to steer each USV to its own starting point in the
formation for a limited time, under the initial condition that each of these vehicles is parked at random. To deal with the
nonholonomic behavior of the system, the dynamics of the USV is transformed into cascade systems. 'en, the finite-time
controller is designed for each vehicle based on homogeneity theory. After each USV reaches its own starting point with desired
orientation, the model of the vehicle is decomposed into two subsystems under the Serret-Frenet frame. In order to maintain the
formation pattern, two finite-time distributed controllers are developed for the surge subsystem and the yaw subsystem, re-
spectively. 'e settling time for the staged control strategy is limited. Numerical simulations are carried out to illustrate the
effectiveness of the proposed formation control strategy.

1. Introduction

Over the last decade, a great attention has been paid by
scholars on unmanned surface vehicles (USVs), which can
be used to perform various tasks, such as marine surveil-
lance, oil spill collection, environmental monitoring,
bathymetric mapping, and marine floor investigation [1].
'ese tasks are usually complexity and onerous, which are
difficult to do by a single vehicle. Multivehicle cooperation is
the inevitable choice, which can not only accomplish the
tasks efficiently but also ensure personnel safety, reduce
system cost, and provide redundancy against individual
failure. Typical cooperative control issues of multiagent
systems include consensus, distributed tracking, formation
control, containment control, swarming, and aggregation. In
this paper, the formation control of multiple USVs is
considered.

'ere are two main difficulties in the formation control
problem of underactuated USVs, one of which exists in the
motion control of each single vehicle. Most existing USVs
are typical underactuated systems, whose number of actu-
ators is fewer than their degrees of freedom (DOF). 'e

trajectory tracking control of the underactuated USV is
studied in [2, 3], and the virtual target is adopted to generate
the reference trajectory. 'e path following of the under-
actuated USV is usually addressed by introducing the Serret-
Frenet frame and global coordinate transformation [4, 5].
'en, the underactuated problem is converted to a virtual
fully actuated problem by designing the virtual control law.
For the stabilization of the underactuated USVs, nonsmooth
or time-varying cascaded design is usually proposed due to
the nonholonomic constraints [6]. Moreover, finite-time
controllers are developed in [7, 8] via adding one power
integrator technique and terminal sliding mode method,
respectively.

Another difficulty is to maintain formation pattern of
multiple USVs, which will encounter issues of communi-
cation and coordination. From a review of the literature,
there are mainly four methods used for the formation
control of multiple vehicles, including virtual structure
method [9], graph theory method [10], behavioral based
approach [11], and leader-follower strategy [12, 13]. Among
these methods, the leader-follower strategy is most preferred
in practice for the formation of USVs because of its high
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reliability and easily implementation [14]. A robust adaptive
formation controller is proposed in [15] for the formation of
USVs with uncertainties and ocean disturbances, where
neural networks and dynamic surface control technique are
used to capture them. In [16], a parameter estimation- and
upper bound estimation-based sliding mode control scheme
is presented to deal with the model uncertainties and en-
vironmental disturbances. 'e control constraint issues in
the formation of underactuated USVs are also considered by
many scholars. In [17], a formation tracking controller is
developed by using generalized saturation functions to re-
duce the risk of actuator saturation. 'e receding horizon
control algorithm is adopted in [18] for the formation
tracking of a feet of underactuated autonomous underwater
vehicles (AUVs) with constrained inputs. In [19], auxiliary
dynamic systems and disturbance observers are designed to
deal with input saturations and disturbances respectively,
and a robust controller is developed for time-varying for-
mation control of underactuated AUVs. 'e fault tolerant
control problem in the leader-follower formation of USVs is
considered in [20], while both parametric and nonpara-
metric system uncertainties are discussed.

Another popular method for USV formation control is
based on the graph theory, which is proposed to settle the
consensus problem of multiagents. 'e literature [21]
considers the cooperative control of a group of under-
actuated USVs using the relative information between
neighbor’s information with the aid of results from graph
theory and Lyapunov techniques. In [22], a distributed
maneuvering controller of multiple USVs is designed in the
presence of unknown state constraints. An RNN-based
command governor is provided between the kinematic
controller and the kinetics controller. A cooperative path
maneuvering controller is designed based on a line of sight
guidance scheme in [23], where the modular adaptive
control method is employed to identify uncertain kinematics
and unknown kinetics of each vehicle.

Currently, finite-time formation control of multiple
USVs become an active research area, since a lot of works
have been carried out in both the finite-time control of single
USV [24–26] and the finite-time consensus of multiagents
[27–29]. In [30], the finite-time formation control of
underactuated USVs is investigated with consideration of
model uncertainty and environmental disturbance. 'e
reference trajectory of each USV is given first according to
the desired geometric pattern. 'en, a nonlinear controller
with fractional power feedback is designed for each USV, to
make sure each vehicle follows its own trajectory in finite
time. In [31], the terminal sliding mode approach is used to
deal with the finite-time formation of underactuated ships.
Specifically, a generalized error which contains topology
information of communication is defined so that the method
based on graph theory can be used for the nonlinear system.

Motivated by the aforementioned works, the finite-time
control for single USV and the finite-time cooperative
control for multiple USVs are integrated is this paper. A
staged finite-time control scheme is proposed for the for-
mation of multiple underactuated USVs. Our major con-
tributions are listed as follows:

(1) To deal with the underactuated nature and achieve
the goal of finite-time convergence, we mainly
separate the formation control process into two
stages. In the first stage, we try to steer each USV to
its own starting point in the formation configuration
for a limited time. In the second stage, the formation
pattern is maintained by using two finite-time co-
operative controllers. As a consequence, the resulting
control scheme can guarantee finite-time
convergence.

(2) In the first stage, the positioning problem of every
single underactuated USV is regard as a finite-time
stability problem of the homogeneous system. Ho-
mogeneous theory is applied in the control design, to
make each vehicle get to its own position in the
formation pattern.

(3) In the second stage, the model of each USV can be
decoupled into two subsystems with a series of in-
tegrators: the surge subsystem and the yaw subsys-
tem. Taking communication link topology into
account, two finite-time cooperative controllers are
designed based on graph theory to maintain the
formation pattern.

'e remainders of the paper are organized as follows. In
Section 2, preliminaries and problem formulation are in-
troduced. Section 3 presents the main results on the staged
control algorithm design, where finite-time control for
single USV is designed in Section 3.1 and finite-time co-
operative control for formation maintenance is given in
Section 3.2. In order to illustrate the effectiveness of the
proposed control laws, numerical simulation results are
presented in Section 4. Finally, some conclusion remarks are
drawn in Section 5.

2. Preliminary

In this section, theories of finite-time stability, homogeneity,
and algebraic graph are introduced briefly, and some
lemmas are given. 'en, the kinematics and dynamics of the
underactuated USV are provided, and the task of formation
control for multiple USVs is summarized.

2.1. Finite-Time Stability andHomogeneity. Both asymptotic
stability and finite-time convergence of the closed-loop
system are required in our design, which leads to the
conception of the finite-time stability.

Definition 1. Consider the system

_x � f(x),

f(0) � 0, x ∈ Rn
,

(1)

where f: Rn⟶ Rn is continuous. Assume that, for every
initial condition x(0) � x0 ∈ Rn, system (1) possesses a
unique solution x(t) � ξ(t, x0) in forward time which is
defined on [0,∞). 'e origin is said to be a finite-time stable
equilibrium of (1) if there exists an open neighborhoodU of
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the origin and a function tf: U⟶ [0,∞) called the set-
tling time function such that the following statements hold:

(1) For every x0 ∈ U/ 0{ },
ξ(t, x0) ∈ U/ 0{ }, for 0≤ t< tf(x0),

ξ(t, x0) � 0, for t≥ tf(x0).
􏼨

(2) limt⟶tf(x0)ξ(t, x0) � 0.

'e origin is said to be a globally finite-time stable
equilibrium if it is a finite-time stable equilibrium and
U � Rn.

In general, there are three techniques which can be used
to achieve finite-time stability for the feedback stabilization,
including homogeneous theory, terminal sliding mode
method, and adding one power integrator approach [32]. In
this paper, nonsmooth feedback finite-time controllers are
designed with the help of the homogeneous system.

Definition 2 (see [32]). Consider the dilation of the form
δ(c1 ,...,cn)
ε (x1, . . . , xn) � (εc1x1, . . . , εcn xn), where x1, . . . , xn

are suitable coordinates on Rn and c1, . . . , cn are positive
real numbers. A vector field is homogeneous of degree k if
and only if the ith component fi is homogeneous of degree
k + ci. System (1) is said to be a homogeneous system if its
vector field f is homogeneous.

'e connection between the finite-time stability and the
homogeneous system is concluded in the following two lemmas.

Lemma 1 (see [32]). For system (1), suppose there exists an
open neighborhood U of the origin, a C1 positive definite
function V(x), and real number ε> 0 and 0< α< 1, such that
_V(x) + εVα(x) is negative semidefinite onU. 2en, the origin
is a finite-time stable equilibrium of the system.

Lemma 2 (see [32]). Suppose that system (1) is homogeneous
of degree k with respect to (c1, . . . , cn), the origin is a finite-
time stable equilibrium of (1) if and only if the origin is an
asymptotically stable equilibrium of (1) and k< 0.

Consider the following chain of integrators:
_x1 � x2, x1 t0( 􏼁 � x10,

_x2 � x3, x2 t0( 􏼁 � x20,

⋮ ⋮

_xn � u, xn t0( 􏼁 � xn0.

(2)

System (2) is finite-time convergent to the origin if the
control input is designed as

u � − k1x
α1
1 − k2x

α2
2 − · · · − knx

αn

n , (3)

where the exponents αi ∈ (0, 1), i � 1, . . . , n − 1, are selected
satisfying

αi �
αi+1αi+2

2αi+2 − αi+1( 􏼁
,

αn+1 � 1,

αn � α, 0< α< 1.

(4)

'e item x
αi

i is defined as |xi|
αisgn(xi), where sgn(·) is

the sign function.'e gains ki, i � 1, . . . , n, are selected such
that the following matrix is Huiwitz:

Ax �

0 1 0 . . . 0

0 0 1 . . . 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . 1

− k1 − k2 − k3 . . . − kn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

Define the Lyapunov function candidate V(ζ) � ζTPζ
with ζ � (x

α1
1 , x

α2
2 , . . . , x

αn
n )T. P andQ are symmetric positive

definite matrices satisfying

PAx + AT
xP � − Q. (6)

Lemma 3 (see [33]). Consider system (2) together with (3).
2e state x � (x1, x2, . . . , xn)T converges to the origin for a
finite time. Moreover, the upper bound of the settling time can
be estimated as

tf x0( 􏼁≤
αV ζ0( 􏼁

(1− α/α)

(1 − α)ρ
, (7)

for all x0 � (x10, x20, . . . , xn0)
T in some open neighborhoodU

of the origin, where ρ � λmin(Q)/λmax(P). λmin(Q)> 0 is the
minimum eigenvalue of the matrix Q, and λmax(P)> 0 is the
maximum eigenvalue of the matrix P.

2.2. Graph 2eory. 'e communication links topology
among the group of NSVs can be represented by a graph
G � V,E,A{ }, where V � υ1, υ2, . . . , υm􏼈 􏼉 is the set of
vehicles, E represents the set of links between the vehicles
(also called edge set), and A is the weighted coefficients of
edge setE. In the directed graph, (i, j) ∈ E represents the jth

vehicle can communicate with ith vehicle, but not conversely.
'e ith vehicle is called the parent node, and the jth vehicle is
also called the child node of the ith vehicle, and they are
neighbors. In the undirected graph, (i, j) ∈ E denotes the
information can be exchanged between the two vehicles. All
vehicles are connected with a single undirected path.
However, in the directed graph, each vehicle has only one
parent node, except for one vehicle, which is called the root.
If m vehicles are in the scenario, then the associated adja-
cency matrix of G can be defined as A � aij􏽮 􏽯

m×m
∈ Rm×m.

aij > 0 if and only if there is a link from jth vehicle to ith

vehicle; otherwise, aij � 0. 'e Laplacian matrix
L � lij􏽮 􏽯

m×m
∈ Rm×m associated with the matrix A is defined

by lii � 􏽐
m
j�1 aij and lij � − aij, when i≠ j. 'e Laplacian

matrix can be written as L � D − A, where D is the degree
matrix [34].

Consider a virtual leader υ0 moving with the group
centroid. Define the augmented graph as G � V,E,A􏽮 􏽯,
where V � υ0, υ1, . . . , υm􏼈 􏼉 and E � ⊆V × V are the new
node set and edge set, respectively. Diagonal matrix B �

diag a10, a20, . . . , am0􏼈 􏼉 is called the leader adjacency matrix,
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where ai0 > 0 if follower i is connected to the leader; oth-
erwise, ai0 � 0. In this work, the communication topology
verifies the following assumption.

Assumption 1. 'e graph G associated with the follower is
undirected, and in the graph G the leader has directed path
to all followers.

Lemma 4 (see [35]). Under Assumption 1, L + B is a sym-
metric positive definite matrix.

2.3. Mathematical Model of Underactuated USV. Two ref-
erence coordinate systems are defined to describe the model
of the USV, where XEOEYE is the earth-fixed inertial frame
and XbObYb is the body-fixed frame, as shown in Figure 1.
'e model state of the USV in horizontal plane is given by
(x, y,ψ, u, v, r), where x, y, and ψ denote the position and
orientation of the vehicle in the earth-fixed frame, u, v, and r

denote the surge, sway, and yaw velocity of the vehicle in the
body-fixed frame, respectively.

Based on the above definition, the kinematic model of
the USV can be described as

_x � u cosψ − v sinψ,

_y � u sinψ + v cosψ,

_ψ � r.

(8)

And the dynamic model of the USV can be given by

mu _u − mvvr + duu � τu,

mv _v + muur + dvv � 0,

mr _r − muvuv + drr � τr,

(9)

where du, dv, anddr are the hydrodynamic damping of the
vehicle and mu, mv, andmr are the inertia of the vehicle
including added masses in surge, sway, and yaw. Besides,
muv is the hydrodynamic added mass and τu and τr are the
surge force and yaw moment, respectively.

It can be seen from (9) that the USV can only get the
surge force and yaw moment from the thrusters and the

rudder in the stern, and there is no sway force from the vessel
thruster, so the vehicle is a typical underactuated system.

2.4. Formation of Multiple USVs. Consider a group of m

USVs, whose mathematical models are expressed as (8) and
(9). For clarity, the subscript “i” (i � 1, . . . , m) is used to
distinguish one from another. Such as, the state of the USV i

is denoted by (xi, yi,ψi, ui, vi, ri). Assume that all the USVs
are scattered randomly in the water at any initial states. 'e
goal of this work is to steer these vehicles to achieve the
prescribed formation pattern along a given straight line or
arc path with a desired speed. Moreover, the settling time is
required to be finite. Without loss of generality, the earth-
fixed frame is defined with its origin located on the center of
the formation at starting point. 'e XE-axis coincides with
the tangent of path with the positive axis pointing to the
motion direction of the group, as shown in Figure 2.

A feasible desired trajectory can be described by the
states (x0, y0,ψ0, u0, v0, r0) of the group centroid which is
moving along the path. 'e object of the control system can
be expressed as follows.

In the first stage:

lim
t⟶tf1

xi(t) − x0 tf1􏼐 􏼑 � Δxi,

lim
t⟶tf1

yi(t) − y0 tf1􏼐 􏼑 � Δyi,

lim
t⟶tf1

ψi(t) − ψ0 tf1􏼐 􏼑 � Δψi,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

lim
t⟶tf1

ui(t) � 0,

lim
t⟶tf1

vi(t) � 0, for i � 1, . . . , m,

lim
t⟶tf1

ri(t) � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

In the second stage:

lim
t⟶tf2

si(t) − s0(t)( 􏼁 � Δsi,

lim
t⟶tf2

di(t) − d0(t)( 􏼁 � Δdi,

⎧⎪⎪⎨

⎪⎪⎩
for i � 1, . . . , m, (11)

where (Δxi,Δyi,Δψi) are the relative position and ori-
entation of USV i to the group centroid, (si, di) are longi-
tudinal and transversal displacements of USV i with respect
to the path, and (Δsi,Δdi) are the longitudinal and trans-
versal distances between USV i and the group centroid.

XE

YE

u

ψ

v

Vt

Xb

Yb

(x, y)

x

y

r

OE

Figure 1: 'e earth-fixed inertial and the body-fixed frame.
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3. Staged Control Design for the
Formation of USVs

For formation control of the USVs, vehicles should be forced
to achieve the desired formation firstly and then maintain
the geometric configuration. Consequently, the proposed
control strategy includes two stages. In the first stage, each
vehicle is steered to its own position in the formation pattern
within a finite time. After that, the dynamics of the
underactuated USV can be transformed into two integrator
systems. In the second stage, two finite-time cooperative
controllers are employed to maintain the formation shape
and guarantee the stabilities of the systems.

3.1. Finite-Time Control for Single USV. In this stage, each
vehicle is controlled separately to reach its initial position in
the formation.We hope that this process could be completed
in a limited time. For the underactuated USV i, its desired
pose vector to the group centroid is (Δxi,Δyi,Δψi). We can
transform the set point tracking problem of USV i to the
stabilization problem by defining the following new state
variables:

xi � xi − Δxi,

yi � yi − Δyi,

ψi � ψi − Δψi.

⎧⎪⎪⎨

⎪⎪⎩
(12)

'en, the kinematic equation of USV i can be rewritten
as

x
.

i � uicosψi − visinψi,

y
.

i � uisinψi + vicosψi,

ψ
.

i � ri.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

Since the mathematical model of the underactuated USV
is a typical nonholonomic system, the following global
coordinate transformation is employed before control de-
sign [36]:

z1i � xicosψi + yisinψi,

z2i � − xisinψi + yicosψi +
mv

dv

vi,

z3i � ψi,

z4i � −
mu

dv

ui − z1i,

z5i � vi,

z6i � ri,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1i �
du

dv

− 1􏼠 􏼡ui − z2iz6i −
τui

dv

,

τ2i �
muv

mr

uivi −
dr

mr

ri +
τri

mr

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

where (τ1i, τ2i) represents the new input transformation
pattern. 'us, system (13) together with (9) can be trans-
formed into

_z2i � z4iz6i,

_z3i � z6i,

_z4i � τ1i,

_z6i � τ2i,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

_z1i � −
dv

mu

z1i −
dv

mu

z4i + z2iz6i −
mv

dv

z5iz6i,

_z5i � −
dv

mv

z5i +
dv

mv

z6i z1i + z4i( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(16)

Remark 1 (see [36]). 'e system stabilization problem in
(13) and (9) is equal to systems (15) and (16). If system (16) is
global asymptotic convergent within finite time, the overall
system of (15) and (16) is global asymptotic convergent.

Remark 2. As (τui, τri) and (τ1i, τ2i) can be converted to
each other, just (τ1i, τ2i) need to be designed to make
variables z1i, z2i, z3i,z4i,z5i, and z6i asymptotically converge
to zero, which means that the tuple (xi, yi,ψi, ui, vi, ri)

converges to (Δxi,Δyi,Δψi, 0, 0, 0). 'at is to say, the USV
has arrived to its initial place in the formation pattern with
desired orientation.

In view of the above remarks, our objective has shifted
from set point tracking for each USV to simply stabilizing
system (15). Note that this system does not satisfy Brockett’s
necessary condition. Hence, we divide system (15) into two
cascade subsystems and try to provide a discontinuous

XE

YE

OE

USV1

USV2

USV3

(∆x3, ∆y3)

(∆x2, ∆y2)

(∆x1, ∆y1)

∆s2

∆d1

∆d3

Figure 2: 'e reference frame and the formation pattern of the
NSVs.
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control law. Suppose z6i is not zero at the initial time, such as
z6i(0)≠ 0.'e first cascade subsystem is given as the follows:

_z2i � z4i
′ ,

_z4i
′ � τ1i
′ ,

⎧⎨

⎩ (17)

where z4i
′ � z6i(0)z4i and τ1i

′ � z6i(0)τ1i. 'e finite-time
control law is designed as

τ1i
′ � − k1iz

α1
2i − k2iz

α2
4i ,

τ2i � 0, for t ∈ 0, t1i􏼂 􏼃,
(18)

where the exponents α1, α2 are selected as
α1 � α2/(2 − α2), 0< α2 < 1.'e gains k1i and k2i are selected
to satisfy

P1i

0 1

− k1i − k2i

􏼠 􏼡 +
0 1

− k1i − k2i

􏼠 􏼡

T

P1i � − Q1i. (19)

'us, t1i is the settling time which can be calculated by

t1i �
α2 ζT

1i(0)P1iζ1i(0)􏼐 􏼑
1− α2( )/α2

1 − α2( 􏼁ρ1i

, (20)

where ζ1i(0) � (z2i(0), z4i(0))T and ρ1i � λmin(Q1i)/
λmax(P1i). According to Lemma 3, the feedback control law
(18) presents a homogeneous closed-loop system with
negative degree of homogeneity. 'us, the states z2i and z4i

of system (17) reach to zero in finite time; then, τ2i would not
affect system (17) any more. Moreover, τ2i can be designed
independently for the second cascade system:

_z3i � z6i,

_z6i � τ2i.
􏼨 (21)

After time t1i, we have

τ1i
′ � 0,

τ2i � − k3iz
α3
3i − k4iz

α4
6i , for t ∈ t1i, t1i + t2i( 􏼃,

(22)

where the exponents α3 and α4 are selected as α3 � α4/
(2 − α4), 0< α4 < 1. 'e gains k3i and k4i are selected to
satisfy

P2i

0 1

− k3i − k4i

􏼠 􏼡 +
0 1

− k3i − k4i

􏼠 􏼡

T

P2i � − Q2i. (23)

'us, t2i is the settling time which can be calculated by

t2i �
α4 ζT

2i t1i( 􏼁P2iζ2i t1i( 􏼁􏼐 􏼑
1− α4( )/α4

1 − α4( 􏼁ρ2i

, (24)

where ζ1i(t1i) � (z3i(t1i), z6i(t1i))
T and ρ2i � λmin(Q2i)/λmax

(P2i). By using Lemma 3 again, the control law (22) makes
the states z3i and z6i of system (21) converge to zero in finite
time.

After that the states of (15) converge to zero, system (16)
is also asymptotically stabilized according to Remark 1.
Actually, system (16) is simplified to first-order systems,
whose settling time periods are 3mu/dv and 3mv/dv. We let

t3i � max
3mu

dv

,
3mv

dv

􏼨 􏼩. (25)

So, the final convergence time of all USVs is calculated as

tf1 � max
i

t1i + t2i + t3i􏼈 􏼉. (26)

'at is to say, all USVs can arrive to their positions in the
formation pattern after time tf1.

3.2. Cooperative Control for Formation Maintenance. 'e
goal of the second stage is to maintain the formation pattern
by means of finite-time distributed control. It is assumed
that only local distributed state information would be uti-
lized by each vehicle to make its own surge velocity and yaw
angular consistent with others. Consider a virtual leader
moving with the group centroid, labeled 0. 'e commu-
nication graphG among the n vehicles and the virtual leader
satisfies Assumption 1.

After the first stage, the group of USVs has come into a
prespecified geometric pattern with desired yaw angular. A
reference path Γ0 is previously specified for the centroid of
the group which must be followed by the group of the USVs,
as shown in Figure 3. 'e kinematic model of each vehicle
can be rewritten according to the Serret–Frenet frame.
Suppose that there is a virtual S-F frame XtO0Xn moving
along the path Γ0 for the virtual vehicle 0. 'e kinematics of
vehicle i expressed in new state coordinates is [37]

_di � uisinφi + vicosφi,

_φi � ri − c _si,

_si �
1

1 − cdi

uicosφi − visinφi( 􏼁,

(27)

where φi � ψi − Δψi − ψ0 and c is the curvature of the path
which is constant for the straight line or arc. Since each
vehicle is on its own path and tangent to it at the initial
moment, we assume that di ≈ Δdi, vi ≈ 0 and
sin φi ≈ φi, cos φi ≈ 1. We define

ri � ri − c _si,

hi �
1

1 − cdi

,

τ3i �
1

mu

τui − duui( 􏼁,

τ4i �
1

mr

τri − drri( 􏼁 − chiτ3i.

(28)

'en, the dynamics of vehicle i can be decoupled into
two subsystems: the surge subsystem

_si � hiui,

_ui � τ3i,
(29)

and the yaw subsystem
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_di � uiφi,

_φi � ri,

r
.

i � τ4i.

(30)

Suppose that hi, i � 1, . . . m are not zero. 'e cascade
subsystem (29) can be written as

_si � u1i
′ ,

_u1i
′ � τ3i
′ ,

(31)

where ui
′ � hiui and τ3i

′ � hiτ3i. 'e finite-time distributed
protocols based on the relative position and relative velocity
are designed as

τ3i
′ � − k5i 􏽘

m

j�1
aij si − sj − Δsi − Δsj􏼐 􏼑􏼐 􏼑 + ai0 si − Δsi( 􏼁 − s0( 􏼁⎛⎝ ⎞⎠

α5

− k6i 􏽘

m

j�0
aij ui
′ − uj
′􏼐 􏼑 + ai0 ui

′ − u0′( 􏼁⎛⎝ ⎞⎠

α6

, for t ∈ tf1,∞􏼐 􏼑,

(32)

where the exponents α5 and α6 are selected as
α5 � α6/(2 − α6), 0< α6 < 1.'e gains k5i and k6i are selected
such that s2 + k6is + k5i are Hurwitz polynomials.

Similarly, ui, i � 1, . . . m are assumed to change slowly
and not zero. 'e cascade system (30) can be written as

_di � φi
′,

_φi
′ � ri
′,

r
.

i
′ � τ4i
′,

(33)

where φi
′ � uiφ′, ri

′ � uiri, and τ4i
′ � uiτ4i. 'e finite-time

distributed protocols based on the relative position and
relative velocity are designed as

τ4i
′ � − k7i 􏽘

m

j�1
aij di − dj − Δdi − Δdj􏼐 􏼑􏼐 􏼑 + ai0 di − Δdi( 􏼁 − d0( 􏼁⎛⎝ ⎞⎠

α7

− k8i 􏽘
m

j�1
aij φi
′ − φj
′􏼐 􏼑 + ai0 φi

′ − φ0′( 􏼁⎛⎝ ⎞⎠

α8

− k9i 􏽘

m

j�1
aij ri
′ − rj
′􏼐 􏼑 + ai0 ri

′ − r0′( 􏼁⎛⎝ ⎞⎠

α9

, for t ∈ tf1,∞􏼐 􏼑,

(34)

where α7, α8, and α9 are selected as α7 � α8α9/
(2α9 − α8) and α8 � α9/(2 − α9), 0< α9 < 1. 'e gains
k7i, k8i, and k9i are selected such that s3 + k9is

2 + k8is + k7i

are Hurwitz polynomials.
'e main result is given by the following theorem.

Theorem 1. Under Assumption 1, protocols (32) and (34)
can guide system (31) and (33) to realize finite-time con-
sensus, respectively.

Proof. For systems (33) and (34), define the error states as

ei,1 � 􏽘

m

j�1
aij di − dj − Δdi − Δdj􏼐 􏼑􏼐 􏼑 + ai0 di − Δdi( 􏼁 − d0( 􏼁,

ei,2 � 􏽘
m

j�1
aij φi
′ − φj
′􏼐 􏼑 + ai0 φi

′ − φ0′( 􏼁,

ei,3 � 􏽘
m

j�1
aij ri
′ − rj
′􏼐 􏼑 + ai0 ri

′ − r0′( 􏼁.

(35)

Denoting e1 � (e1,1, e2,1, . . . em,1)
T, e2 � (e1,2, e2,2,

. . . em,2)
T, and e3 � (e1,3, e2,3, . . . em,3)

T, it is straightforward
to express the error dynamics as

_e1 � e2,

_e2 � e3,

_e3 � (L + B) − K7e
a7
1 − K8e

a8
2 − K9e

a9
3( 􏼁,

(36)

where K7 � diag k71, k72, . . . , k7m􏼈 􏼉,K8 � diag k81, k82, . . . ,􏼈

k8m},K9 � diag k91, k92, . . . , k9m􏼈 􏼉, and eαj , j � 1, 2, 3, denotes
(eα1,j, eα2,j, . . . , eαm,j)

T.
Let

Ae �

0 I 0

0 0 I

− K7 − K8 − K9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

M �

I

I

L + B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Ae � MAe �

0 I 0

0 0 I

− (L + B)K7 − (L + B)K8 − (L + B)K9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(37)

Xn
Xt

XE

YE Г0

OE

O0

Figure 3: 'e virtual leader and the Serret–Frenet frame.
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Consider a Lyapunov function candidate V(e) � eTPee,
where e � (eT

1 , eT
2 , eT

3 )T and Pe � PT
e > 0. It is obviously that

Ae is a Hurwitz satisfying the Lyapunov equation
PeAe + AT

e Pe � − Qe, where Qe � QT
e > 0. Since M is a

symmetric positive definite matrix, the Lyapunov equation
PeAe + AT

e Pe � − Qe holds with Pe � PeM− 1 > 0, which
means that V(e) � eTPee is a Lyapunov function for the
linear system _e � Aee.

From the proof of 'eorem 1 in [33], we can see that
V(ζe) � ζT

e Peζe is a Lyapunov function for system (36),
where ζe � ((eα71 )T, (eα82 )T, (eα93 )T)T. So, system (36) is as-
ymptotically stable. Moreover, it can be verified that system
(36) is a homogeneous system of degree α9 − 1/α9 < 0.
Hence, by Lemma 2, system (36) is finite-time convergent to
the origin. It follows that the finite-time consensus problem
of system (33) with protocol (34) is solved.

'e finite-time consensus of system (31) with protocol
(32) can be proved similarly. 'eorem 1 is proven.

4. Numerical Simulation and Results

To illustrate the effectiveness of the proposed control law, a
simulation study based on the model is presented in [15].
'e same model parameters are chosen as in [38] and given
as follows: mu � 25.8, mv � 33.8, mr � 2.76, muv � 6.2,
du � 12 + 2.5|u|, dv � 17 + 4.5|v|, and dr � 0.5 + 0.1|r|.

Without loss of generality, in our simulation scene, we
assume that there are only 3 USVs in the formation. Consider
the fact that not all the follower vehicles can receive infor-
mation from each other, but all of them can directly com-
municate with the “virtual leader,” as depicted in Figure 4. In
addition, their initial conditions and the desired positions and
orientations of each USV in the first stage are listed in Table 1.

According to the setting of aforementioned scenario, the
adjacent matrix A, the degree matrixD, the Laplace matrix L,
and the leader adjacency matrix B can be deduced as follows:

A �

0 1 0

1 0 1

0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

D �

1 0 0

0 2 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

L �

1 − 1 0

− 1 2 − 1

0 − 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(38)

'e expected path of the group centroid is given as a circle
with radius 100m.'us, the expected paths for USV1, USV2,
and USV3 are concentric circles with radius 90m, 100m, and
110m, respectively. According to the design guideline, the
control parameters are chosen as listed in Tables 2 and 3.

'e final convergence time tf1 of the first stage for all
USVs is selected as 150s, which is more than the sum of t1i,
t2i, and t3i. In the second stage, we assume that there is a
virtual leader moving along the path with a fixed velocity
ut � 2m/s.

'e simulation results are shown in Figures 5–8. Figure 5
shows the formation trajectory of the USVs under the
proposed control scheme. It can be seen that each of the
USVs could arrive at their own starting points in formation
first and then could track the desired paths and maintain the
triangular pattern well.

Figure 6 shows the curves of the states and control
inputs of the USVs. It can be observed that, in the first
stage, the positions of the USVs converge to the expected
values within about 40 seconds, before the first switch of the
control algorithm. And then the orientations of the USV
converge to the expected values within about 140 seconds,
which is also before the second switching time of the

Virtual
leader

USV1

USV2

USV3

Figure 4: 'e communication links relationship in the formation.

Table 1: Initial and desired states of the USVs.

Initial states
USV1: [− 30, 60, π/3, 0, 0,− π/18]
USV2: [-20,-30, π/2, 0, 0,− π/18]
USV3: [50,-50,− π/4, 0, 0, π/18]

Desired states in formation
USV1: [0, 10, 0, 0, 0, 0]

USV2: [6.3, 0.2, π/50, 0, 0, 0]
USV3: [0, − 10, 0, 0, 0, 0]

Table 2: 'e gains of the controllers.

Gains k1 k2 k3 k4 k5 k6 k7 k8 k9

USV1 5 0.5 0.1 1 0.5 0.5 5 5 5
USV2 5 0.5 0.1 1 0.5 0.5 5 5 5
USV3 5 0.5 0.1 1 0.5 0.5 5 5 5

Table 3: 'e exponents of the controllers.

Exponents α1 α2 α3 α4 α5 α6 α7 α8 α9
USV 1.81 0.90 1.81 0.90 0.20 0.33 0.25 0.33 0.50
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Figure 5: Trajectory of the USVs.
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Figure 6: Continued.
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control algorithm. 'e control inputs of the USVs are
depicted in Figure 7. In the first stage, the exponents
α2 and α4 have great influences on the convergence time. A
good choice of them can greatly reduce the settling time of

stage one. In the second stage, the feedback gains of the yaw
subsystem k7i, k8i, and k9i are usually selected to more than
the gains of the surge subsystem k5i and k6i, to make the
USVs on their paths.

USV1
USV2
USV3

0 100 200 300 400
t (s)

–2

0

2

v (
m

/s
)

(e)

USV1
USV2
USV3

0 100 200 300 400
t (s)

–0.5

0

0.5

r (
ra

d/
s)

(f )

Figure 6: Curves of states with respect to time.
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Figure 7: Curves of control efforts with respect to time.
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Figure 8: Curves of state errors di − d0 and si − s0 with respect to time.
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Figure 8 shows the errors of the longitudinal displace-
ment and the transversal displacement between the follower
vehicles and the leader vehicle.'e cooperative control starts
working after which every USV gets to its own start points.
'erefore, the time starts at 150 seconds and the errors of the
displacements are constant, which means that the formation
of the USV is kept well.

5. Conclusion

A formation control strategy based on finite-time control and
leader-follower theory is proposed in the paper to achieve
formationmaneuver control for USVs.'e formation control
process is divided into two stages. In the first stage, all the
USVs would be steered to their starting points in the for-
mation pattern in finite time.'en, in the second stage, all the
vehicles would be controlled to maintain the formation
pattern based on finite-time distributed cooperative control.
By using tools from homogeneous theory, it is theoretically
shown that the proposed protocol can guarantee finite-time
converge and consensus, respectively. Numerical simulation
is made to illustrate effectiveness of our strategy.
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