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+is study addresses the problem of output quasisynchronization for coupled complex-valued memristive reaction-diffusion
complex networks via the distributed event-triggered control scheme. First, by using the separate method, set value mapping, and
intermediate value theorem, the complex-valued memristive reaction-diffusion complex networks can be transferred into two
semi-uncertain real-valued reaction-diffusion complex networks. Second, a distributed output piecewise event-triggered control
(OPETC) scheme with spatial sampled-data is first proposed including a spatial sampling event-triggered generator and spa-
tiotemporal sampling state feedback controller. Furthermore, this scheme can effectively save the measurement resources and
lower the update rate of controllers in spatial and time domain. +ird, the synchronization analysis is considered by utilizing an
appropriate Lyapunov function, the Halanay inequality, and the improved Wirtinger inequality. Subsequently, several output
event-triggered quasisynchronization criteria are derived.+e relations among event trigger conditions, spatial sampling interval,
convergence rate, and control gain are given by rigorous mathematical derivation. Finally, multiple simulations are compared to
substantiate the validation of the OPETC scheme.

1. Introduction

Complex networks have excited continuous interest for their
nonlinear learning characteristics and have been extensively
implemented in various domains such as deep learning
[1–3], natural language analyzation, optimization comput-
ing, and image segments. When two or more networks
interact, coupled complex networks, such as coupled neural
networks (CNNs), can be formed and have attracted much
considerable attentions for their significant collective dy-
namical behaviour. As an important collective dynamical
behaviour, synchronization means that the states of complex
networks are always consistent over time. Many crucial
results about the synchronization of CNNs have been
achieved in literatures [4–7]. For instance, Bai and Xu [4]
studied the synchronization of CNNs with hybrid coupling,
Luo and Yao [5] investigated the finite-time synchronization

of uncertain complex dynamic networks, Wang et al. [6]
researched the synchronization of coupled CNNs via the
pinningmethod, and Ding et al. [7] considered the impulsive
synchronization of complex networks.

It should be highlighted that most research studies
suppose that the electromagnetic fields of complex networks
are uniform, and the networks states vary only with time. In
fact, inhomogeneous electromagnetic fields inevitably exist
in cellular networks [8], genetic regulatory networks, and
traffic networks. In nonuniform electromagnetic fields, the
networks states in different spatial positions are distinct and
change simultaneously. +is phenomenon can be expressed
as the reaction-diffusion (RD) term in mathematical models.
+en, the CNNs model is transformed into coupled RD
neural networks (CRDNNs) with infinite dimensional states.
Up to now, plenty of impressive studies on the synchro-
nization of CRDNNs have been achieved. +e authors
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investigated the impulsive synchronization [9], the adaptive
synchronization [10], and the passivity [11] of CRDNNs.+e
abovementioned works assumed that the global spatial state
information was known, and all these research studies aimed
to synchronize all states. In some applications, it is costly and
not necessary to measure the whole infinite dimensional
state and to synchronize all states. +erefore, it is valuable to
research partial state synchronization using incomplete
measurements. Partial state synchronization named output
synchronization (OS) has been investigated in literatures
[12–15].+e authors [16] studied OS of CRDNNs with input
constraints via continuous time control, and the authors [17]
investigated OS of CRDNNs with spatial sampled-data via
continuous time control. To our knowledge, few results
about OS of CRDNNs have been investigated via noncon-
tinuous time control. +is is our first motivation for this
study.

Abovementioned investigations of complex networks
have intensively emerged with state-independent weights
realized by resistors. As a special resistor, memristor has
been proposed by Chua [18] and has been realized first by
HP Labs. Memristor can retain its history state owing to its
switch characteristic which makes the memristor an at-
tractive candidate to emulate the biological brain to improve
machine intelligence [19, 20]. Consequently, memristive
reaction-diffusion neural networks (MRDNNs) can be
constructed with richer properties than common CRDNNs.
Accordingly, it is significant to study MRDNNs with state-
dependent weight. Until now, many worthwhile results
about MRDNNs have been achieved. Global synchroniza-
tion [21, 22], exponential Lag synchronization [23], and
fixed-time synchronization [24] of MRDNNs have been
studied. Nonetheless, the mismatch of the master-slave
system due to state-dependent parameters inevitably causes
the synchronization error of the collective behaviour to
change in a certain range. +at is quasisynchronization [25].
Actually, the research results on quasisynchronization of
MRDNNs have not yet been published. +is is our second
motivation for this study.

Different from real-valued neural networks, complex-
valued neural networks own more complicated properties.
Some scientific questions, such as the phase-sensitive de-
tection [26] and exclusive or problem [27] in optical signal
processing, can only be addressed by complex-valued neural
networks. Complex-valued MRDNNs (CMRDNNs) have
complex-valued states, state-dependent parameter, and
complex-valued activation function which are more general
than real-valued MRDNNs. Hence, it is necessary to in-
vestigate CMRDNNs. Besides, the existing difficulty is that
complex-valued functions may not be bounded or analytic
[28]. Many assumptions about real-valued functions cannot
be utilized in the complexed-valued domain without any
preprocessing. +us, the general approach is to convert
complex-valued functions into two parts: real and imaginary
parts. Using this conversion method, intermittent control
synchronization [28], exponential sampled-data synchro-
nization, [29] and pinning control synchronization [30] of
complex-valued memristive networks were investigated
without considering RD term. Nevertheless, the

synchronization problem of CMRDNNs has rarely been
addressed. Song et al. [31] studied the finite-time syn-
chronization of CMRDNNs with known full state infor-
mation and activation function bounds. +erefore, it is
meaningful to further research the synchronization problem
of CMRDNNs with incomplete measurements.

To achieve the synchronization of complex networks,
many control strategies have been studied, such as con-
tinuous time control [16], sampled-data estimation and
control [29, 32], and intermittent control [28]. Among these
control strategies, sampled-data control has received wider
attention because this method can reduce communication
bandwidth. Sampled-data control includes time-triggered
control and event-triggered control [33–35]. Compared with
the time-triggered control mechanism, the event-triggered
control scheme updates information only when the mea-
surement error satisfies the triggering threshold condition,
which leads to a lower information exchange rate.+erefore,
the event-triggered sampling control strategy performs
better than the time-triggered method [36]. Event trigger’s
form can be considered as ‖e(x, t)‖2 > c‖z(x, t)‖2 + η(t).+e
event trigger is considered static one when the function η(t)

is a constant, and the event trigger is considered dynamic
one when the derivative of the function η(t) is not zero [37].
+us, the event-triggered control strategy can be classified
into dynamical event triggers and static event triggers
according to the function η(t). Meanwhile, the event-trig-
gered control can be classified into centralized control and
distributed control according to the scope of the controller.
In large-scale coupled networks, it is difficult to realize
complete centralized control. +us, further research on
distributed event-triggered control is crucial, and one of the
primary problems to be prevented by event-triggered con-
trol scheme is Zeno phenomenon. As far as we know, the
distributed event-triggered control strategy for synchroni-
zation of CMRDNNs with incomplete spatial measurement
has not been studied so far. +is is our third motivation for
this study.

Motivated by the abovementioned analysis, the main aim
of this work is to establish the output quasisynchronization
conditions of CMRDNNs via distributed event-triggered
partial spatial control strategy. More specially, some questions
should be solved: How to obtain the error model of the master-
slave networks systems with state-dependent parameters? How
to design an efficient distributed piecewise event-triggered
control strategy using incomplete measurement to achieve
output synchronization?What are the effects of dynamic event
trigger and static event trigger on quasisynchronization? To
achieve the control goal and answer the above three questions,
there are three innovations in this study:

(1) A general CMRDNNs mathematical model with the
output matrix is proposed. By using set-valued map-
pings, differential inclusions, and nonfragile techniques,
the real-valued synchronization error model with un-
certainty parameters is derived, and the assumption
conditions about activation functions are more relaxed.

(2) We establish a distributed output piecewise event-
triggered control (OPETC) strategy with spatial
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sampled-data to ensure the convergent speed and to
reduce the communication cost. By using some in-
equalities and an appropriate Lyapunov functional,
several universal criteria guaranteeing the output
quasisynchronization of the discussed networks are
established, where the relations among diffusion
coefficients, control gains, memristive complex-
valued range, and time delays are clear.

(3) By comparing the simulation results of time trigger,
dynamical event trigger, static event trigger, and
piecewise event trigger, the high efficiency of the
OPETC strategy is verified.

+e structure of this study is as follows: the mathematical
model is established and some assumptions are given. +en,
the real-valued synchronization error models with uncer-
tainty parameters are deduced in Section 2. A distributed
piecewise event-triggered control strategy with spatial
sampled-data is designed, and several universal criteria
guaranteeing the output quasisynchronization of the dis-
cussed networks are deduced in Section 3. Simulation ex-
amples are given to compare the effect of different triggers
and to corroborate the quasisynchronization conditions in
Section 4. Section 5 draws the conclusion of this study and
clarifies our future research.

2. Preliminaries

In this section, we provide some necessary lemmas and show
the process of deriving the mathematical model of the master-
slave networks system to two real-valued error models.

2.1.Notations. LetN � 0, 1, 2, . . .{ } andN+ � 1, 2, . . .{ }. For
each n ∈N+, Nn � 0, 1, 2, . . . , n{ } andN+

n � 1, 2, . . . , n{ }.R
and C denote the set of real-valued space and complex-
valued space, respectively. Similarly, Rn and Cn represent
the sets of n-dimensional real-valued and n-dimensional
complex-valued vectors.Rn×N andCn×N describe the sets of
n × N real-valued matrices and complex-valued matrices.
+e Hilbert space of square integrable functions over Ω is
denoted by L2

n(Ω) with norm ‖z(x, ·)‖2 � Ωz
T(x, ·)z

(x, ·)dx, Ω � (0, l), and n ∈N+. In is a n-dimensional
identity matrix.H1

n(Ω) � z ∈L2
n(Ω)|/dzdx ∈L2

n(Ω)  is a
Sobolev space which is also a subspace ofL2

n(Ω). T denotes
the matrix transposition, and ⊗ represents the Kronecker
product. l denotes the imaginary part with ι �

���
− 1

√
.

z(x, ·) � zR(x, ·) + ιzI(x, ·), zR(x, ·) ∈R, and zI(x, ·) ∈R.

2.2. Model Transform. In a master-slave system scheme,
there are two coupled networks with the same structure and
diverse initial values. +e master-coupled complex-valued
memristive reaction-diffusion networks can be expressed as

zzi(x, t)

zt
� − Azi(x, t) + B

z
2zi(x, t)

zx
2 + c zi(x, t)( fi zi(x, t)(  + 

N

j�1
dijΓgj zj x, t − τj(t)  ,

yi(x, t) � βzi(x, t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where zi(x, t) � (zi1(x, t), · · · , zin(x, t))T ∈H1
n(Ω) denotes

the state information of the ith networks with i ∈N+
N,

t ∈ [t0, +∞) and t0 ≥ 0; x ∈ Ω corresponds to the space
variable; A ∈Rn×n represents the self-inhibition coefficient;
B ∈Rn×n denotes the diffusion coefficient; τj(t) represents
the nonnegative time-varying transmission delay from the
jth networks to the ith networks; τ � max(τj(t)); c(zi(x, t))

is the connection weights with memristive characteristic;
fi(·) corresponds to the neural activation vector function of
the ith networks; Γ ∈Rn×n is the inner coupling matrix; D �

(dij)N×N ∈ C
N×N denotes the coupling strength matrix

where dii � − 
N
j�1,j≠ i dij  ; gj(·) denotes the complex-valued

state function; yi(x, t) ∈ Cr×1 is the output vector; β ∈Rr×n

represents the output matrix; and βTβ is the idempotent
matrix.

+e initial values and the Dirichlet boundary values of
the master networks are given by

zi(x, s) � ]i(x, s), (x, t) ∈ Ω × t0 − τ, t0 ,

zi(0, t) � zi(l, t) � 0, (x, t) ∈zΩ × t0 − τ, +∞ ,
(2)

,where ]i(x, s) is a complex-valued function.
Similarly, the slave networks can be designed as

zzi(x, t)

zt
� − Azi(x, t) + B

z
2zi(x, t)

zx
2 + ci zi(x, t)( fi zi(x, t)(  + 

N

j�1
dijΓgj zj x, t − τj(t)    + ui(x, t),

yi(x, t) � βzi(x, t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)
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where ui(x, t) ∈H1
n(Ω) is the control input of the ith net-

works to achieve output synchronization; the initial con-
dition and the Dirichlet boundary condition of the slave
networks are given by

zi(x, s) � ]i(x, s), (x, t) ∈ Ω × t0 − τ, t0 ,

zi(0, t) � zi(l, t) � 0, (x, t) ∈zΩ × t0 − τ, +∞ ,
(4)

where ]i(x, s) is a complex-valued function.
Suppose that c0i and c1i are two complex-valued constants

and υi(x, t) ∈ C. According to the switch property of
memristor, the connection weight ci(υi(x, t)) can be defined
as

ci υi(x, t)(  �

c
0
i , υi(·, t)↑,

c
1
i , υi(·, t)↓,

lim
s⟶t−

ci υi(·, t)( , υi(·, t) unchange,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

where c0i � c0R
i + ιc0I

i , c1i � c1R
i + ιc1I

i , cR
i � max c0R

i , c1R
i ,

cR
i � min c0R

i , c1R
i , cI

i � max c0I
i , c1I

i , and cI
i � min c0I

i , c1I
i .

We can formulate equations (1) and (3) in a compact
matrix form as

zz(x, t)

zt
� − IN ⊗A( z(x, t) + IN ⊗B( 

z
2z(x, t)

zx
2 + C(z(x, t))f(z(x, t)) + D⊗ Γg(z(x, t − τ(t))),

y(x, t) � IN ⊗ β( z(x, t),

zz(x, t)

zt
� − IN ⊗A( z(x, t) + IN ⊗B( 

z
2z(x, t)

zx
2 + C(z(x, t))f(z(x, t)) + D⊗ Γg(z(x, t − τ(t))) + u(x, t),

y(x, t) � IN ⊗ β( z(x, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where z(x, t) � (zT
1 (x, t), . . . , zT

N(x, t))T, z(x, t) � (zT
1

(x, t), . . . , zT
N(x, t))T, u(x, t) � [uT

1 (x, t), uT
2 (x, t), . . . , uT

N

(x, t)]T, C(z(x, t)) � (c1(zT
1 (x, t)), . . . , cN(zT

N(x, t)))T, C

(z(x, t)) � (c1(zT
1 (x, t)), . . . , cN(zT

N(x, t)))T, f(·) � (fT
1

(·), . . . , fT
N(·))T, g(·) � (gT

1 (·), . . . , gT
N(·))T, y(x, t) � (yT

1
(x, t), . . . , yT

N(x, t))T, and y(x, t) � (yT
1 (x, t) . . . , yT

N

(x, t))T.
Assume that the master-slave networks (equations (1)

and (3)) with Dirichlet boundary conditions have unique
continuous solutions zi(x, t) and z(x, t), respectively.

Remark 1. +e authors [17] considered the reaction-diffu-
sion term and output matrix. +e mathematical model in
[38] included memristive parameters and reaction-diffusion
terms without complex-valued state and output matrix. +e
authors [31] investigated complex-valued states, memristive
parameters, and reaction-diffusion term without consider-
ing output matrix. Different from literatures [17, 31, 38], this
study introduces complex value states, memristive param-
eters, reaction-diffusion terms, and output matrices into the
mathematical model, which are more general and practical
in applications.

Our goal is to synchronize the master system (equation
(1)) and the slave system (equation (3)). +en, we naturally
need to derivate the error model of the master-slave system.
However, many assumptions about real-valued functions
cannot be utilized in the complexed-valued domain.
Meanwhile, the existence of memristive parameters leads to

parameter mismatch of the master networks system and the
slave one. Obviously, there are some difficulties in deriving
the error model directly. +us, the model should be con-
verted. First, the complex-valued model is converted into
two real-valued models by using some assumptions. Second,
the real-valued synchronization error model can be obtained
by using different techniques.

Assumption 1. z(x, t), C(z(x, t)), and f(z(x, t)) can be
divided into real and imaginary parts, respectively.

z(x, t) � z
R
(x, t) + ιzI

(x, t),

C(z(x, t)) � C
R
(z(x, t)) + ιCI

(z(x, t)),

f(z(x, t)) � f
R
(z(x, t)) + ιfI

(z(x, t)),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

where zR(x, t), CR(z(x, t)), and fR(z(x, t)) are the real
parts; zI(x, t), CI(z(x, t)), and fI(z(x, t)) are the imaginary
parts.

Lemma 1 see ([39]). For any function υ(ξ)|ξ ∈ [a, b],{

υ(ξ) ∈H1
n(a, b)}. If x(a) � 0 or x(b) � 0, then


b

a
υT

(ξ)υ(ξ)dξ ≤
4(b − a)

2

π2


b

a

zυ(ξ)

zξ
 

T
zυ(ξ)

zξ
dξ. (8)

Corollary 1 see ([40, 41]). For any function x(ξ)|ξ ∈{

[a, b], x(ξ) ∈H1
n(a, b)}, c � a or b. If r0, r1, r2, r3 > 0, then

the following integral inequalities hold,
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− r0 
b

a

zx(ξ)

zξ
 

2

dξ − r1 
b

a
x
2
(c)dξ ≤ − r2 

b

a
x
2
(ξ)dξ,

(9)

where r2 � π2r0r1/(π2r0 + 4(b − a)2r1).
Similarly, we can get

− r0 
b

a

zx(ξ)

zξ
 

2

dξ + r1x
2
(c)≤ r3 

b

a
x
2
(ξ)dξ, (10)

where r3 � π2r0r1/(π2r0 − 4(b − a)2r1).

Lemma 2 see ([25, 42]). Assume that the function W(t)≥ 0
for all t ∈ (− ∞, +∞),

dW(t)

dt
≤ α(t)W(t) + β(t) sup

t− τ(t)≤s≤t
W(s) + c(t), t≥ t0,

W(t) � |ψ(t)|, t≤ t0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

where ψ(t) is bounded and continuous and three functions
− α(t), β(t), and c(t) are continuous and positive. If there
exists σ > 0 and α(t) + β(t)≤ − σ for t≥ t0, then we have
W(t)≤ (c/σ) + supt− τ(t)≤s≤tW(s)exp(− η(t − t0)), where c �

supt0 ≤ tc(t) and η � inf t0 ≤ t η(t): η(t) + α(t) + β(t)exp

(η(t)τ(t)) � 0}.
Under Assumption 1, equation (6) can be divided into

two real-valued mathematical models as

zz
R
(x, t)

zt
� − IN ⊗A( z

R
(x, t) + IN ⊗B( 

z
2z

R
(x, t)

zx
2 + C

R
(z(x, t))f

R
(z(x, t)),

− C
I
(z(x, t))f

I
(z(x, t)) + D⊗ΓgR

(z(x, t − τ(t))),

y
R
(x, t) � IN ⊗ β( z

R
(x, t),

zz
I
(x, t)

zt
� − IN ⊗A( z

I
(x, t) + IN ⊗B( 

z
2z

I
(x, t)

zx
2 + C

R
(z(x, t))f

I
(z(x, t)),

+C
I
(z(x, t))f

R
(z(x, t)) + D⊗ ΓgI

(z(x, t − τ(t))),

y
I
(x, t) � IN ⊗ β( z

I
(x, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

zz
R
(x, t)

zt
� − IN ⊗A( z

R
(x, t) + IN ⊗B( 

z
2z

R
(x, t)

zx
2 + C

R
(z(x, t))f

R
(z(x, t)),

− C
I
(z(x, t))f

I
(z(x, t)) + D⊗ΓgR

(z(x, t − τ(t))) + u
R
(x, t),

y
R
(x, t) � IN ⊗ β( z

R
(x, t),

zz
I
(x, t)

zt
� − IN ⊗A( z

I
(x, t) + IN ⊗B( 

z
2z

I
(x, t)

zx
2 + C

R
(z(x, t))f

I
(z(x, t)),

+C
I
(z(x, t))f

R
(z(x, t)) + D⊗ ΓgI

(z(x, t − τ(t))) + u
I
(x, t),

y
I
(x, t) � IN ⊗ β( z

I
(x, t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)
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Let Ci � diag c1, . . . , cn , Ci � diag c1, . . . , cn ,
C � diag Ci N×N ∈ C

nN×nN, C � diag Ci N×N ∈ C
nN×nN,

and C(υ(x, t)) ∈ co C, C . Using some properties of set-

valued mapping [43], equations (12) and (13) can be
expressed as the differential inclusions:

zz
R
(x, t)

zt
∈ − IN ⊗A( z

R
(x, t) + IN ⊗B( 

z
2z

R
(x, t)

zx
2 + co C

R

, C
R

 f
R
(z(x, t))

− co C
I

, C
I

 f
I
(z(x, t)) + D⊗ ΓgR

(z(x, t − τ(t))),

zz
I
(x, t)

zt
∈ − IN ⊗A( z

I
(x, t) + IN ⊗B( 

z
2z

I
(x, t)

zx
2 + co C

R

, C
R

 f
I
(z(x, t))

+co C
I

, C
I

 f
R
(z(x, t)) + D⊗ΓgI

(z(x, t − τ(t))),

zz
R
(x, t)

zt
∈ − IN ⊗A( z

R
(x, t) + IN ⊗B( 

z
2z

R
(x, t)

zx
2 + co C

R

, C
R

 f
R
(z(x, t))

− co C
I

, C
I

 f
I
(z(x, t)) + D⊗ ΓgR

(z(x, t − τ(t))) + u
R
(x, t),

zz
I
(x, t)

zt
∈ − IN ⊗A( z

I
(x, t) + IN ⊗B( 

z
2z

I
(x, t)

zx
2 + co C

R

, C
R

 f
I
(z(x, t))

+co C
I

, C
I

 f
R
(z(x, t)) + D⊗ΓgI

(z(x, t − τ(t))) + u
I
(x, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where CR
i � diag cR

1 , . . . , cR
n }, C

R

i � diag cR
1 , . . . , cR

n  , CI
i �

diag cI
1, . . . , cI

n}, C
I

i � diag cI
1, . . . , cI

n  , CR � diag CR
i }N×N ,

C
R

� diag C
R

i 
N×N

, CI � diag CI
i }N×N , C

I
� diag C

I

i 
N×N

,

CR, C
R
, CI, C

I ∈ CnN×nN, CR(z(x, t)) ∈ co CR, C
R

 , andCI

(z(x, t)) ∈ co CI, C
I

 .

Assumption 2. fR(·), fI(·), gR(·), and gI(·) are the bounded
activation functions and are Lipschitz continuous. +ere
exist positive values hR

f,, hI
f, hR

g, hI
g as

f
R ξ1(  − f

R ξ2( 
����

����
2
≤ h

R
f ξ1 − ξ2

����
����
2
,

f
I ξ1(  − f

I
(z(x, t))

����
����
2
≤ h

I
f ξ1 − ξ2

����
����
2
,

g
R ξ1(  − g

R ξ2( 
����

����
2
≤ h

R
g ξ1 − ξ2
����

����
2
,

g
I ξ1(  − g

I
(z(x, t))

����
����
2
≤ h

I
g ξ1 − ξ2
����

����
2
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

that hold for any ξ1, ξ2 ∈H
1
n(a, b).

Remark 2. Assumption 2 is more relaxed than the one in the
literatures [36, 38] and does not need to know the bounds of
the state.
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Assumption 3. +e activation function term in equation (14)
satisfies the following conditions:

co C
R

, C
R

 f
R
(z(x, t)) − co C

R

, C
R

 f
R
(z(x, t))⊆co C

R

, C
R

  f
R
(z(x, t)) − f

R
(z(x, t)) ,

co C
I

, C
I

 f
I
(z(x, t)) − co C

I

, C
I

 f
I
(z(x, t))⊆co C

I

, C
I

  f
I
(z(x, t)) − f

I
(z(x, t)) ,

co C
R

, C
R

 f
I
(z(x, t)) − co C

R

, C
R

 f
I
(z(x, t))⊆co C

R

, C
R

  f
I
(z(x, t)) − f

I
(z(x, t)) ,

co C
I

, C
I

 f
R
(z(x, t)) − co C

I

, C
I

 f
R
(z(x, t))⊆co C

I

, C
I

  f
R
(z(x, t)) − f

R
(z(x, t)) ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

where z(x, t), z(x, t) are the solutions of equation (6) with
the Dirichlet boundary condition.

Denote the error state, the error output, and the error
activation function as zR(x, t) � zR(x, t) − zR

(x, t), zI(x, t) � zI(x, t) − zI (x, t), yR(x, t) � yR(x, t)−

yR(x, t), yI(x, t) � yI(x, t) − yI(x, t), HR
f(z(x, t)− z

(x, t)) � fR(z (x, t)) − fR(z(x, t)), HI
f(z(x, t) − z(x, t)) �

fI(z(x, t)) − fI(z(x, t)), and HR
g (z(x, t) − z(x, t)) � gR

(z(x, t))− gR(z(x, t)), HI
g(z(x, t) − z(x, t)) � gI(z(x, t))−

gI(z(x, t)).
Under Assumption 3, the error system of equation (14)

can be rephrased as

zz
R
(x, t)

zt
∈ − IN ⊗A( z

R
(x, t) + IN ⊗B( 

z
2
z

R
(x, t)

zx
2 + co C

R

, C
R

 H
R
f(z(x, t))

− co C
I

, C
I

 H
I
f(z(x, t)) + D⊗ ΓHR

g(z(x, t − τ(t))) + u
R
(x, t),

y
R
(x, t) � IN ⊗ β( z

R
(x, t),

zz
I
(x, t)

zt
∈ − IN ⊗A( z

I
(x, t) + IN ⊗B( 

z
2
z

I
(x, t)

zx
2 + co C

R

, C
R

 H
I
f(z(x, t))

+co C
I

, C
I

 H
R
f(z(x, t)) + D⊗ ΓHR

g(z(x, t − τ(t))) + u
I
(x, t),

y
I
(x, t) � IN ⊗ β( z

I
(x, t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)
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+ere exist measurable matrices
C

R
(x, t) ∈ co CR, C

R
 , C

I
(x, t) ∈ co CI, C

I
 , and one has

zz
R
(x, t)

zt
� − IN ⊗A( z

R
(x, t) + IN ⊗B( 

z
2
z

R
(x, t)

zx
2 + C

R
(x, t)H

R
f(z(x, t))

− C
I
(x, t)H

I
f(z(x, t)) + D⊗ΓHR

g(z(x, t − τ(t))) + u
R
(x, t),

y
R
(x, t) � IN ⊗ β( z

R
(x, t),

zz
I
(x, t)

zt
� − IN ⊗A( z

I
(x, t) + IN ⊗B( 

z
2
z

I
(x, t)

zx
2 + C

R
(x, t)H

I
f(z(x, t))

+C
I
(x, t)H

R
f(z(x, t)) + D⊗ΓHR

g(z(x, t − τ(t))) + u
I
(x, t),

y
I
(x, t) � IN ⊗ β( z

I
(x, t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

with the initial values and the boundary values of networks
as

z(0, t) � z(l, t) � 0, t ∈ t0 − τ, +∞ ,

z(x, t) � ](x, t),

](x, t) � ](x, t) − ](x, t),

(x, t) ∈ Ω × t0 − τ, t0 .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

Because the time-varying parameter is known, upper and
lower bounds can be converted into a general semi-un-
certain parameter by using the intermediate value theorem.
+ere exists any ςi(x, t) satisfied 0≤ ςi(x, t)≤ 1, and
cR

i (x, t) � cR
i + (cR

i − cR
i )ςR

i (x, t), cI
i (x, t) � cI

i + (cI
i − cI

i )ς
I
i

(x, t). +en, C(x, t) varies over time and can be expressed as
semi-uncertain parameters:

C
R
(x, t) � C

R

+ C
R

− C
R

 F
R
(x, t),

C
I
(x, t) � C

I

+ C
I

− C
I

 F
I
(x, t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

where FT(x, t)F(x, t)≤ InN, FR(x, t) � diag(FR
1

(x, t), . . . , FR
N(x, t)), FR

i (x, t) � diag(ςR
1 (x, t), . . . , ςR

n (x, t)),
FI(x, t) � diag(FI

1(x, t), . . . , FI
N(x, t)), FI

i (x, t) � diag
(ςI

1(x, t), . . . , ςI
n(x, t)), and OR � (C

R
− CR),OI � (C

I
− CI).

Remark 3. Equations (18) and (20) can be seen as real-
valued error models with semi-uncertainty parameters.

3. Output Event-Triggered
Synchronization of CMRDNNs

3.1. Piecewise Event-Triggered Control Strategy. +e state
feedback input controller of the slave networks system can
be designed as follows.

ui(x, t) � − 

Q

q�1
ui xq, t  � − 

Q

q�1
α xq Liβ

Tβzi xq, t
i
k , (21)

where Li � diag Li1, Li2, . . . , Lin , i ∈Nn; α(xq) denotes a
spatial distributed operator with Ωz(x, t)α(xq)

dx � z(xq, t), and Q represents the number of the spatial
sampled-data. For simplicity, α(xq) can be replaced by α.

Remark 4. ui(xq, t) only uses the output state in the partial
spatial domain xq and at some discrete time instantstk. +us,
ui(xq, t) can be seen as a distributed spatiotemporal sam-
pled-data controller. Different from the spatial sampled-data
controller designed in [17], this controller designed in
equation (21) is a spatial and temporal sampling control.

Let u(x, t) � [uT
1 (x, t), uT

2 (x, t), . . . , uT
N(x, t) ]T,

L � diag L1, L2, . . . , LN , and u(x, t) can be formulated into
the real-valued compact matrix form:

u
R
(x, t)� − 

Q

q�1
αL

R
IN ⊗ β

Tβ z
R

xq, tk ,

u
I
(x, t) � − 

Q

q�1
αL

I
IN ⊗ β

Tβ z
I

xq, tk ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(22)
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where zR(xq, tk) � (zRT
1 (xq, t1k), . . . , zRT

N (xq, tN
k ))T, and

zI(xq, tk) � (zIT
1 (xq, t1k), . . . , zIT

N (xq, tN
k ))T.

+e transmission time sequence of the input controller
can be determined by event-triggered conditions.

+e information flow diagram of the distributed event-
triggered control mechanism corresponding to the ith slave

system is shown in Figure 1, where the event trigger is used
to determine whether the controller updates with the current
spatial sampling signal. +at is, an update event is deter-
mined by the event-triggered condition [44]:

+e distributed output event-triggered condition is
designed as

t
i
k+1 � inf t: t≥ t

i
k, 

Q

q�1
βei xq, t  

T
βei xq, t  − 

Q

q�1
ci βzi xq, t  

T
βzi xq, t  − ηi(t)> 0

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (23)

where ei(xq, t) � zi(xq, ti
k) − zi(xq, t); ti

k+1 denotes the next
event-triggered time instants of the ith networks; and
ci, ηi(t)> 0 represent parts of the event trigger which can be
adaptive derived later.

+e condition of equation (23) can generate a triggering
time sequence ti

0, · · · , ti
k, ti

k+1, · · ·  for the ith networks
control.

Let e(x, t) � (eT
1 (x, t), . . . , eT

N(x, t))T,

Υ � diag c1, . . . c,N , and the real-valued compact form of
event-triggered condition can be expressed as



Q

q�1
e

RT
xq, t  IN ⊗ β

Tβ e
R

xq, t >

Q

q�1
z

RT
xq, t  Υ⊗ βTβ z

R
xq, t  + ηR

(t),



Q

q�1
e

IT
xq, t  IN ⊗ β( e

I
xq, t >

Q

q�1
z

IT
xq, t (Υ⊗ β)z

I
xq, t  + ηI

(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

where η(t) � ηR(t) + ιηI(t), ηR(t) � 
N
i�1 η

R
i (t), and ηI

(t) � 
N
i�1 η

I
i (t).

Assume ηi(t) is a piecewise function as

ηi(t) � ηR
i0 + ιηI

i0ff(t), ff(t) �
exp − κ1 t − t0( ( , t0 < t< tf,

exp − κ1 tf − t0  , t≥ tf,

⎧⎪⎨

⎪⎩
⎛⎜⎝ (25)

where four parameters ηR
i0, η

I
i0, η

R
i0, and ηI

i0 are the positives,
ηR
0 � 

N
i�1 η

R
i (t0), and ηI

0 � 
N
i�1 η

I
i (t0).

From equation (25), we find that ti
k+1 > ti

k is always
satisfied. +erefore, the Zeno behaviour can be naturally
excluded.

Remark 5. +e distributed event-triggered method in [38]
defined an event trigger for each neural network, and each
event trigger required the entire state information of the
corresponding neural networks. Different from the defi-
nition in [38], the distributed event trigger defined in
equation (14) uses spatial sampled-data, which reduces
the communication load and decreases the measurement
cost.

Remark 6. Because the semi-uncertain error system always
has a certain range of error [25], quasisynchronization is a
more realistic goal. Meanwhile, to better solving the Zeno
problem, the function ηi(t) in the event-triggered condition

must be positive. +erefore, the piecewise function ηi(t) in
equation (25) is a good selection which is different from the
exponential function in literatures [45, 46].

Using the above distributed output piecewise event-
triggered control strategy (equations (24) and (25)), the
quasisynchronization conditions are obtained, and a theo-
rem is constructed for the master-slave networks system in
Section 3.2.

3.2. Synchronization Analysis

Theorem 1. Under Assumptions 1, 2, and 3, using the
distributed piecewise event-triggered mechanism (equation
(23)) and the sampling controller (equation (21)), the
master-slave networks systems (equations (1) and (3)) can be
output quasisynchronized within the error Θ, and the error
system (equation (18)) converges exponentially to the error
level Θ with the convergence index κ2 > 0, if the criteria are
satisfied:

Complexity 9



1
ε2

(2ε − 1)>Υ,

λ1 > λ2 exp κ2(t)τ(t)( > 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

where

Θ �
ε

λ1 − λ2
λmax L

R
 ηR

0 + λmax L
I

 ηI
0  sup

t≥t0
ff(t),

ff(t) �

exp − κ1 t − t0( ( , t0 < t< tf,

exp − κ1 tf − t0  , t≥ tf,

⎧⎪⎨

⎪⎩

κ2 � inf
t0 ≤ t

κ2(t): κ2(t) − λ1 + λ2 exp κ2(t)τ(t)(  � 0 ,

λ1 � λmin 2 IN ⊗A(  + R1R −
3
ε
INn − εhR

f P1R + P1I(  , 2 IN ⊗A(  + R1I −
3
ε
INn − εhI

f P1R + P1I(  ,

λ2 � λmax IN ⊗ β
Tβ εhR

gP2, IN ⊗ β
Tβ εhI

gP2 

R1R � M1M2L
R

M1 + 2ξ1M2L
R

 
− 1

,

R1I � M1M2L
I

M1 + 2ξ1M2L
I

 
− 1

,

P1R � C
RT

C
R

+ O
RT

O
R
,

P1I � C
IT

C
I

+ O
IT

O
I
,

P2 � D
T
D⊗ ΓTΓ 

M1 � 2 IN ⊗B( ,

M2 � 2 −
1
ε

 IN − εΥ ⊗ In,

ξ1 �
1
π2

max
2≤q≤Q

xq − xq− 1, x1, l − xQ   

2

,

(27)

where λmin and λmax mean the minimum and maximum
eigenvalues, respectively.

Proof. Construct the following Lyapunov functional for the
system (equation (18)) as

V(t) � 
Ω

z
RT

(x, t) IN ⊗ β
T

  IN ⊗ β( z
R
(x, t)dx

+ 
Ω

z
IT

(x, t) IN ⊗ β
T

  IN ⊗ β( z
I
(x, t)dx.

(28)

Master NNs i

Slave NNs i

−

Measurement

Measurement

Event trigger

Transmission networkControllerZOHActuator

z
i
 (x,t)

z
i
 (x,t)

u
i
 (x,t)

u
i
 (x

q
,t

k
)

z
i
 (x

q
,t)

z
i
 (x

q
,t

k
)

Figure 1: +e ith event-triggered controller structure of the ith master-slave system.
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By using integral formula of division and equation (18),
we can derive


Ω

z
RT

(x, t)2 IN ⊗ β
TβB 

z
2
z

R
(x, t)

zx
2 dx≤ − 

Ω

zz
RT

(x, t)

zx
2 IN ⊗ β

TβB 
zz

R
(x, t)

zx
dx,


Ω

z
IT

(x, t)2 IN ⊗ β
TβB 

z
2
z

I
(x, t)

zx
2 dx≤ − 

Ω

zz
IT

(x, t)

zx
2 IN ⊗ β

TβB 
zz

I
(x, t)

zx
dx.

(29)

According to equation (24) and by using Cauchy in-
equality yields

− 2
Ω

z
RT

(x, t) IN ⊗ β
Tβ 

Q

q�1
α IN ⊗ β

Tβ L
R
z

R
xq, tk dx

� − 2

Q

q�1
z

RT
xq, t  IN ⊗ β

Tβ L
R

e
R

xq, t  + z
R

xq, t  

≤

Q

q�1

1
ε

− 2 z
RT

xq, t  IN ⊗ β
Tβ L

R
z

R
xq, t  + εeRT

xq, t  IN ⊗ β
Tβ L

R
e

R
xq, t  

� − 

Q

q�1
z

RT
xq, t  2 −

1
ε

 IN − εΥ ⊗ βTβ L
R
z

R
xq, t  + ηR

(t).

(30)

Similarly,

− 2

Q

q�1
z

IT
xq, t  IN ⊗ β

Tβ L
I
z

I
xq, tk 

≤ − 

Q

q�1
z

IT
xq, t  2 −

1
ε

 IN − εΥ 

⊗ βTβ L
I
z

I
xq, t  + ηI

(t).

(31)

where ηR(t) � ελm(LR)ηR(t) and ηI(t) � ελm(LI)ηI(t).
According to Lemma 1, Corollary 1, and the boundary

condition of equation (18),

− 
Ω

zz
RT

(x, t)

zx
2 IN ⊗ β

TβB 
zz

R
(x, t)

zx
dx

− 

Q

q�1
z

RT
xq, t  2 −

1
ε

 IN − εΥ ⊗ βTβ L
R
z

R
xq, t 

≤ − 
Ω

z
RT

(x, t) IN ⊗ β
Tβ R1Rz

R
(x, t)dx.

(32)

Similarly,

− 
Ω

zz
IT

(x, t)

zx
2 IN ⊗ β

TβB 
zz

I
(x, t)

zx
dx − 

Q

q�1
z

IT
xq, t  2 −

1
ε

 IN − εΥ ⊗ βTβ L
I
z

I
xq, t 

≤ − 
Ω

z
IT

(x, t) IN ⊗ β
Tβ R1Iz

I
(x, t)dx,

(33)

where R1R � M1M2L
R(M1 + 2ξ1M2L

R)− 1, R1I � M1M2
LI(M1 + 2ξ1M2L

I)− 1, M1 � 2(IN ⊗B), Υ< (1/ε2)(2ε − 1)

IN, M2 � ((2 − (1/ε))IN − εΥ)⊗ In, andξ1 � (1/π2)
(max2≤q≤Q xq − xq− 1, x1, (l − xQ) )2.
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According to Assumption 2 and Cauchy inequality, the
real part and imaginary part of the activation function can be
derived:

2
Ω

z
RT

(x, t) IN ⊗ β
Tβ C

R
(x, t)ΗR

f(z(x, t))dx − 2
Ω

z
RT

(x, t) IN ⊗ β
Tβ C

I
(x, t)ΗI

f(z(x, t))dx

≤
Ω

z
RT

(x, t) IN ⊗ β
Tβ 

2
ε
INn + εhR

fP1R z
R
(x, t)dx + 

Ω
z

IT
(x, t) IN ⊗ β

Tβ  εhI
fP1I z

I
(x, t)dx,

2
Ω

z
IT

(x, t) IN ⊗ β
Tβ  C

R
(x, t)ΗI

f(z(x, t)) + C
I
(x, t)ΗR

f(z(x, t)) dx

≤
Ω

z
IT

(x, t) IN ⊗ β
Tβ 

2
ε
INn + εhI

fP1R z
I
(x, t)dx + 

Ω
z

RT
(x, t) IN ⊗ β

Tβ  εhR
fP1I z

R
(x, t)dx,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

whereP1R � CRTCR + ORTOR and P1I � CITCI + OITOI. Real part and imaginary part of the state-coupling part
can be processed as follows:

2
Ω

z
RT

(x, t) IN ⊗ β
Tβ (D⊗ Γ)ΗR

g(z(x, t − τ(t)))dx

≤
Ω

z
RT

(x, t)
1
ε

IN ⊗ β
Tβ z

R
(x, t)dx + 

Ω
z

RT
(x, t − τ(t)) IN ⊗ β

Tβ εhR
gP2z

R
(x, t − τ(t))dx,

2
Ω

z
IT

(x, t) IN ⊗ β
Tβ (D⊗Γ)ΗI

g(z(x, t − τ(t)))dx

≤
Ω

z
IT

(x, t)
1
ε

IN ⊗ β
Tβ z

I
(x, t)dx + 

Ω
z

IT
(x, t − τ(t)) IN ⊗ β

Tβ εhI
gP2z

I
(x, t − τ(t))dx.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

where P2 � (DTD⊗ ΓTΓ). According to equation (28) to equation (35),

_V(t) � 2
Ω

z
RT

(x, t) IN ⊗ β
Tβ 

zz
R
(x, t)

zt
dx + 2

Ω
z

IT
(x, t) IN ⊗ β

Tβ 
zz

I
(x, t)

zt
dx

≤
Ω

z
RT

(x, t) IN ⊗ β
Tβ  − 2 IN ⊗A(  − R1R +

3
ε
INn + εhR

f P1R + P1I(  z
R
(x, t)

+ 
Ω

z
IT

(x, t) IN ⊗ β
Tβ  − 2 IN ⊗A(  − R1I +

3
ε
INn + εhI

f P1R + P1I(  z
I
(x, t)dx

+ 
Ω

z
RT

(x, t − τ(t)) IN ⊗ β
Tβ εhR

gP2z
R
(x, t − τ(t))dx

+ 
Ω

z
IT

(x, t − τ(t)) IN ⊗ β
Tβ εhI

gP2z
I
(x, t − τ(t))dx

+ ε λm L
R

 ηR
(t) + λm L

I
 ηI

(t) 

≤ − λ1V(t) + λ2V(t − τ(t)) + ε λmax L
R

 ηR
(t) + λmax L

I
 ηI

(t) ,

(36)
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with λ0, λ1, λ2 defined in +eorem 1.
From Lemma 2, we can obtain

V(t)≤Θ + sup
t− τ(t)≤s≤t

V(s)exp − κ2 t − t0( ( , (37)

where Θ � (ε/(λ1 − λ2))(λmax(LR) ηR
0 + λmax(LI)ηI

0) supt≥t0
ff(t), κ2 � inf t0 ≤ t κ2(t): κ2(t) − λ1 + λ2 exp (κ2(t)τ
(t)) � 0}, and λ1 > λ2 exp(κ2(t)τ(t)).

If ff(t) is set as equation (25) and κ1 ≥ κ2, then the error
system in equations (18) and (20) converges exponentially to
Θ with the exponential index κ2. +at is, the master-slave
system (equations (1) and (3)) achieves quasisynchroniza-
tion within the error levelΘ. □

4. Numerical Examples

+is section mainly completes multiple numerical simula-
tions to testify the theoretical results.

Consider the master-slave error networks system as

zzi(x, t)

zt
� − Azi(x, t) + B

z
2
zi(x, t)

zx
2

+ ci zi(x, t)( fi zi(x, t)(  + 
N

j�1
dijΓgj

· zj x, t − τj(t)    − 

Q

q�1
α xq Liβ

Tβzi xq, tk ,

(38)

where i � 1, 2, N � 2, n � 3, gi(·) � fi(·) � tan h(·);

c1(v(·, s)) �

− 0.5 − 1.2ι, v(·, s)↓,

− 0.4 − 1.1ι v(·, s)↑,

lim
s⟶t−

(v(·, s)) v(·, s) unchange,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

c2(v(·, s)) �

− 1 − 1ι, v(·, s)↓,

− 0.9 − 0.9ι, v(·, s)↑,

lim
s⟶t−

(v(·, s)), v(·, s) unchange,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

A �

0.1 0 0

0 0.1 0

0 0 0.1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B �

0.5 0 0

0 0.5 0

0 0 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

D �
− 0.3 0.3

0.3 − 0.3
 ,

Γ �

0.5 0 0

0 0.5 0

0 0 0.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(39)

+epositions of two spatial point measurements are x1 �

0.25l, x2 � 0.75l. +e initial conditions of the master system
are

z1(x, 0) �

(2 − 2 cos(3πx)) + i(1 − cos(4πx))

(1 − 3 sin(5πx)) + i(2 − 3 sin(4πx))

(− 1.5 + 0.5 sin(4πx)) + i(− 0.5 + sin(3πx))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

z2(x, 0) �

cos(5πx) + i(1 + 2 cos(6πx))

(3 − 3 sin(3πx)) + i(4 − sin(2πx))

(1.5 + 2 sin(2πx)) + i(3 + 3 sin(2πx))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(40)

+e initial conditions of the slave system are

z1(x, 0) �((3 cos(2πx) − 2) +(4 cos(πx) − 3)ι, 3 + 1.5ι, 1 + 1ι)T
,

z2(x, 0) �(5 cos(7πx) − 3 +(5 cos(7πx) − 3)ι, 1 + 1ι, 1 + 1ι)T
.

⎧⎨

⎩

(41)

4.1. Output Static Event-Triggered Control (OSETC) with
β � (100; 010). Event trigger’s parameters satisfied with
equation (26) are set as ci � 0.02,, ηi(t) � 0.01, and Lij � 10.
And the simulation results are shown in Figures 2–4. Fig-
ure 2 represents the jth dimensional state norm evolution of
the ith error networks over time. +e real-valued state norm
evolution and the imaginary-valued one can be formulated
as

z
R
ij(x, t)

�����

�����
2

� 
Ω

z
RT
ij (x, t), z

R
ij(x, t)dx,

z
I
ij(x, t)

�����

�����
2

� 
Ω

z
IT
ij (x, t), z

I
ij(x, t)dx, i � 1, 2, j � 1, 2, 3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(42)

Figures 2–4 show that the first dimension and the second
dimension of the error state converge over time, while the
third dimension does not converge. +at is, the output
synchronization has been realized which matches the output
matrix. Figure 5 shows that the four triggered time series are
different which are consistent with their distribution
characteristics of the four event triggers.

4.2. Output Piecewise Event-Triggered Control (OPETC) with
β � (100; 010; 001). +e output matrix β is a unit matrix, and
the output states are common full-dimensional states. Event
trigger’s parameters are set as ci � 0.02,
ηi(t) � 0.01 exp(− 0.5t) for (t≤ 7), ηi(t) � 0.01 exp(− 3.5)

for (t> 7), and the input control gain is Lij � 10. +ese pa-
rameters are satisfied with equation (26), and the simulation
results are shown in Figures 6 and 7. Figure 6 indicates that the
real part (Figure 6(a)) and the imaginary part (Figure 6(b)) of
the error state converge over time. While, Figure 7 denotes that
the four triggered time series that are independent of each other.

4.3. Multistrategy Comparison. +e simulations of output
static event-triggered control (OSETC), output dynamic
event-triggered control (ODETC), and output time-
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Figure 3: Real part of state error evolution under the output static event-triggered control. net11, net12, and net13 represent 3-dimensional
real-valued state evolution of the 1sterror network. net21, net22, and net23 represent 3-dimensional real-valued state evolution of the 2nd
error network. “real” denotes real part. (a) net11-real. (b) net12-real. (c) net13-real. (d) net21-real. (e) net22-real. (f ) net23-real.
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Figure 2: Real part and imaginary part of state error norm evolution under the output static event-triggered control. net11, net12, and net13
represent three-dimensional state norm evolution of the 1st error network. net21, net22, and net23 represent three-dimensional state norm
evolution of the 2nd error network. (a) Real part of state error evolution. (b) Imaginary part of state error evolution.
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Figure 4: Imaginary part of state error evolution under the output static event-triggered control. net11, net12, and net13 represent 3-
dimensional state evolution of the 1st error network. net21, net22, and net23 represent 3-dimensional state evolution of the 2nd error
network. “im” denotes imaginary part. (a) net11-im. (b) net12-im. (c) net13-im. (d) net21-im. (e) net22-im. (f ) net23-im.
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Figure 5: +e event-triggered time instants ti
k in the error networks (17) under the output static event-triggered control. net1r and net2r

mean the real-valued parts of the slave networks 1 and 2. net1i and net2i represent the imaginary parts of the slave networks 1 and 2,
respectively.
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triggered control (OTTC) have been realized where the scale
parameter of event trigger is ci � 0.02; the function pa-
rameter of the static event trigger is ηi(t) � 0.01; the
function parameter of the dynamic event trigger is
ηi(t) � 0.01 exp(− 0.5t); the output matrix is
β � (100; 010; 001); and the time trigger interval is 88ms.
Some results have been achieved and given in Table 1. To
compare the update numbers of the controller with different
control strategies, the data in Table 1 can be analysed. +e
data in column 2 and column 3 of Table 1 show that the
update rate of OTTC is greater than that of OSETC and
ODETC with similar error decreased. +e simulation results
in columns 4 and 5 imply that the number of controller

update increases over time even if the error norm is small
enough. +us, the simulation results demonstrate the first
hint; output event-triggered control (OETC) is more ef-
fective than output time-triggered control (OTTC), and the
similar conclusion can be referred from [36].

+e OSETC strategy and ODETC strategy can be further
compared using the information in Table 1. +e number of
controller update in OSETC shown in column 2 is greater
than that of ODETC when state norm is below 0.1. More-
over, the growth rate of controller update in OSETC shown
in columns 2 and 4 is lower than that of ODETC. +en, the
second hint can be drawn; ODETC is more effective than
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Figure 6: Real part and imaginary part of state error evolution under the piecewise event-triggered control. (a) Real part of state error
evolution. (b) Imaginary part of state error evolution.
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Figure 7: +e event-triggered time instants ti
kin the error networks (17) under the piecewise event-triggered control.
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OSETC at the first stage, and OSETC is better than ODETC
at the following stage.

Based the above analysis, the distributed output piece-
wise event-triggered control (OPETC) which combines
OSETC and ODETC has been realized, and the results are
given in Table 2. Comparing the data in column 2 and
column 3 of Table 2, we can find that OPETC has better
performance than ODETC and OSETC. +is simulation
validates the similar theoretical analysis of +eorem 1.

5. Conclusions

+e research model in this study is complex and general,
including complex-valued states, memristive parameters,
state coupling, reaction-diffusion term, and output matrix.
First, by combining differential inclusion and nonfragile
techniques, a general method is developed to overcome the
difficulty of the master-slave system parameter mismatch
caused by memristor. Second, an efficient distributed
piecewise event-triggered control strategy using incomplete
measurement has been designed to achieve output syn-
chronization which not only reduces the update rate of the
controller but also decreases the measurement cost. Finally,
it is verified that the new distributed piecewise event trigger
can achieve better quasisynchronous performance through
theoretical analysis and experimental simulation. What is
more, the distributed output piecewise event-triggered
control strategy can be used for the synchronization control
of general one-order reaction-diffusion neural networks
without adding any other conditions. To verify wide effec-
tiveness of this control strategy, the OPETC strategy will be
extended to two-order or even higher-order neural net-
works, which is one of our future works.
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