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This chapter presents a reliability study for an offshore jacket structure with emphasis on the features of nonconventional modeling.
Firstly, a random set model is formulated for modeling the random waves in an ocean site. Then, a jacket structure is investigated
in a pushover analysis to identify the critical wave direction and key structural elements. This is based on the ultimate base shear
strength. The selected probabilistic models are adopted for the important structural members and the wave direction is specified in
the weakest direction of the structure for a conservative safety analysis. The wave height model is processed in a P-box format when
it is used in the numerical analysis. The models are applied to find the bounds of the failure probabilities for the jacket structure.
The propagation of this wave model to the uncertainty in results is investigated in both an interval analysis and Monte Carlo
simulation. The results are compared in context of information content and numerical accuracy. Further, the failure probability
bounds are compared with the conventional probabilistic approach.

1. Introduction

Reliable estimation of extreme values of wave height is an
important prerequisite to the design of coastal and off-
shore structures [1, 2]. Many estimation methods have been
adopted by the researchers and they are summarized in Muir
and El-Shaarawi [3], Goda [4], Guedes Soares [5], and Zhang
and Lam [6]. These covered a wide range of statistical models
in the fitting to the measured data of ocean parameters,
like lognormal [7], Weibull [8], Generalized Gamma [9],
and Beta [10] probability distribution models. Besides these,
the Peak over Threshold (POT) method is considered to
be quite powerful in the modeling of extreme wave height
[11-15] (Zhang and Cao 2015). But the main problem in
POT method is the choice of a suitable threshold, a matter
that is currently investigated by many researchers [16]. Since
the threshold is used to determine a specific group of data

named as “extremes,” the prediction of long term extreme
values is not reliable. A generic methodology for selecting
the accurate threshold is still lacking. The review summarizes
that traditional statistical methods which rely on assumptions
are not suitable in handling such uncertainty. Thus, this
study explores nontraditional models as an alternative in the
modeling of extreme wave height.

The analysis and design of offshore structures includes
the consideration of waves as the decisive loads. A realistic
modeling of the wave loads is particularly important to ensure
a sufficiently reliable performance of these structures [17, 18].
Unfortunately, there are large variations in the wave load.
The wave height, which is a major factor in the wave load, is
believed to be time-varying and can be significantly different
under different climate conditions [19]. These variations can
be caused by a wide range of factors such as interseasonal
changes, interannual changes, and interdecadal changes [20].
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This has been noticed by many climatologists in recent times
[21-24]. The impact of these variations in marine applications
is also mentioned in [25].

Meanwhile, it is realized that the engineering safety
assessment may always involve various types of uncertainty
models. In practical problems, different forms of model
may be needed in the same system [26]. This requires new
developments in the modeling which could combine different
types of information. One of these models is the random set
modeling, which is a type of imprecise probability (Walley
1990). The random set, or sometimes known as P-box, is an
extension from the traditional probability theory allowing
for intervals or sets of probabilities [27]. It can represent
not only distributions with unknown parameters, but also
distributions with unknown modes or unknown dependency
parameters. The use of P-box has shown significant advan-
tages in many engineering case studies investigated by the
previous researchers [28-30]. The computational techniques
associated with imprecise probability in structural analysis
have also been developed simultaneously. Ferson and Donald
[31] have developed a formal probability bounds analysis
that facilitates computation. Other similar methods can be
seen from Berleant[32]. These were shown to be quite useful
in engineering design works [33]. The algorithms in these
methods are mainly belonging to interval arithmetic or
Monte Carlo simulations.

The main focus of this study is to investigate the uncer-
tainties in wave height modeling and its application in
offshore engineering. In this study, time series measured
data, which is from a buoy located in the west coast of US,
is selected for extreme value modeling. The original data
is first analyzed in form of parametric models to estimate
the extremes. The Peak over Threshold (POT) method is
then applied to different data set. For the consideration
of information uncertainty, a nonstationary Poisson point
process is used in the characterization of the occurrence
rate for the extremes. The stability of the Pareto family
used in extreme value modeling is investigated from several
statistical points of view to obtain a feasible range for the
threshold. The random sets theory is emphasized to formulate
an imprecise probability model for the extremes by using
a set of thresholds. The constructed uncertainty model was
then introduced to represent the extreme wave height. The
main focus of this study is to investigate the handling of the
imprecise probabilistic information and also to show that
imprecise probability can provide a framework for processing
incomplete information in engineering analysis. Therefore,
the handling of this uncertainty model is conducted through
a reliability analysis with considerations of several uncer-
tainties in mechanical properties. Finally the conclusions are
emphasized.

2. Data Used

The data used in this study is downloaded from National Data
Buoy Center (NDBC) for buoy 46029 (http://www.ndbc.noaa
.gov/; accessed Nov 2010), which is located in the west of
Columbia River Mouth. The exact measured location is at
46°8'37""N 124°30'37""W. The water depth is 135.3m and
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FIGURE 1: Plot of the September-April Hs time series of 01-02.
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FIGURE 2: Plot of the September-April Hs time series of 02-03.

watch circle radius is 48.3km (281 yards). The recorded
significant wave height (Hs) data dates back to 1984 and is
available for recent times.

The collected data of Hs in each year contains 8766
observations which are based on hourly record. It shows
clearly that the winter period which is from September to
April is the roughest time throughout the year. This dominant
season of strongest storms can cause the Hs to be significantly
different from the other times and is considered as a different
data set. Thus, the data corresponding to this period which
has a total sample size of 5088 is chosen for the investigation.
For a more accurate analysis, only parts of the data which have
high degree of data completeness are extracted for this study.
This corresponds to the years of 01-02, 02-03, 03-04, 05-06,
06-07, and 09-10 which have percentages of missing data of
2.79%, 0.33%, 0.94%, 3.01%, 2.14%, and 1.10%, respectively.
The time series data can be seen from the plot in Figures
1-6. The next section will conduct the statistical modeling of
extreme values in the wave height record.

3. Application of POT in Modeling the
Extreme Wave Height

Compared to the traditional extreme statistical models,
POT does not need the data to have stringent statistical
similarities [34]. As long as the data is stationary having
a weak dependencies structure during its reference period,
POT method is appropriate to model the extremes. In this
case, since the original data is selected from a specified
sample period, the winter, the statistical property of the
time series data is assumed to be stationary. Therefore, the
uncertainties resulting from different populations could be
largely eliminated.

Before the POT method is applied to the time series data,
the declustering scheme is carried out first. This includes
selections of appropriate threshold u and time span At to
separate the “extreme events” out from the original data (see
Figure 7). Both parameters are time dependent because of the
nature’s variability. For the selection of a suitable time span At,
a wide range of values have been suggested by the researchers
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FIGURE 6: Plot of the September-April Hs time series of 09-10.
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FIGURE 7: Illustration of declustering process in a time series data.

(see [26, 35-37]). It was suggested to choose a time span in
such an optimal way which is a minimum value to guarantee a
persistent Poisson process for the extremes in the time series.
In this study, the intensity function is modeled as a constant
implying that the occurrence rate throughout the reference
time remains unchanged. Here, three At have been selected in
the testing of temporal dependencies between extremes, 1 day,

3 days, and 10 days. The threshold used in this declustering is
4.0. The case where there is no separating, zero time span,
is also included to assess the effect of dependencies in the
modeling. While the At is increased, the number of extreme
events is reduced and thus leads to a large estimate in return
value. This is quite the same situation when the threshold is
increasing. As shown in Figure 8, by incorporating a time
span in the separating of extremes, the fitting of the theo-
retical Poisson model is highly improved. It turns out that
the dependencies are high when the time span is not applied.
However, the fitting turns to be poor once the time span is
increased to 10 days. The reason is the shortage of data for an
efficient learning of the methodology. Therefore, a time span
At of 1 day or 3 days is considered as an appropriate value for
the Poisson model. In this study, a time span At = 1 day is
adopted.

The selection of an appropriate threshold is determined
by the stability of Pareto distribution in the modeling. The
crucial aspects of generalized Pareto distribution (GPD)
model are tested by increasing the threshold. The change of
extreme occurrence rate for the thresholds is summarized in
Table 1. It is clear that the stability of GPD model is highly
maintained within the range of threshold from 2.4 to 6.4,
except for some small deviation of 2.6 and 2.8. In fact, the
threshold is not considered suitable when it has a value below
3.5. As a result, a lower limit of 3.5 for the threshold should
be required.

Finally, after inspection at these plots, it can be concluded
that a range of [3.6, 6.4] for the threshold is adequate for the
Pareto model. The uncertainties still exist in the selection of
the threshold in this region.

4. Proposed Random Set and P-Box Modeling

The GPD models are found to be valid for a set of threshold
values. The Poisson’s process cannot make certain judgment
to the use of a specific threshold. This imprecise information
in the threshold could not be eliminated in a traditional
statistical way as the threshold is not consistent along the time
series data. Therefore, a single value in the threshold is not
recommended for an accurate consideration.

In contrast to the traditional statistical method, random
set could provide a good combination in the POT model to
quantify the uncertainties associated with the threshold.
From this point of view, by taking the advantages of random
set, a nonconventional model is proposed. Different thresh-
olds are considered as various information sources. Each of
these information sources is represented by a random set
(S;, m;). These are combined in such a way that the averaging
procedure is applied to the probability mass assignment:

mA) =Y m(a). B
i=1

Here, the feasible range for the threshold [3.6,6.4] is
divided into 14 intervals and 15 thresholds are obtained from
these intervals. Table 2 shows the focal sets for the 25-
year return value obtained from each threshold and also the
probability mass assignment.
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FIGURE 8: Comparison of several time spans in the fitting to stationary and nonstationary Poisson model.

Based on the Demspter-Shafer theory, the bounds for
the cumulative probabilities can be obtained from these
random sets (see Figure 9). The models are also calculated
for 50- and 100-year return value and presented in the figure.
It can be seen that, by increasing the return period, the
bounds for the estimation values become more imprecise. The
belief function in this case shows larger variations than the
plausibility function and thus gives a more imprecise upper
bound for the return value. Figure 9 presents a comprehensive
way to represent the uncertainties within the GPD model. The
sensitivity of the estimated return level value with respect to
the threshold can be easily seen from the plot. This also
gives an indication whether further information is needed
to reduce the uncertainties in the model formulation. It
provides enough flexibility to the engineering decisions.
Random sets approach here provides a general combination
rule which quantifies the statistical uncertainties met in the

POT model. The imprecise bounds could capture the full
scope of uncertainty in the selection of the threshold. The
analysis suggests the possibility and advantages of using
the proposed nonconventional model for the prediction of
extreme significant wave height.

5. Reliability Analysis of Offshore Structures:
P-Box Approach

In practical problems, the random set model needs to be
used in a structural numerical analysis. This requires new
developments in the management of uncertainty information
from engineering perspectives. This section presents a P-
box reliability study for an offshore jacket structure with
an emphasis on the features of nonconventional random set
modeling.
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TABLE 1: Summary of exceedances for various thresholds in POT.
Number of Exceedances
Threshold 01-02 02-03 03-04 05-06 06-07 09-10 Total
u=24 31 18 31 28 31 31 170
u=27 30 17 28 28 27 28 158
u=3.0 26 17 27 28 23 30 151
u=33 26 16 25 30 22 30 149
u=23.6 24 14 23 25 21 27 134
u=3.9 21 14 23 27 20 26 131
u=42 20 13 23 26 19 21 122
u=4.5 20 16 22 27 19 19 123
u=4.38 18 15 18 27 17 17 112
u=>5.1 17 12 16 23 15 16 99
u=>54 16 12 14 21 14 18 95
u=>57 16 10 13 19 13 16 87
u==6.0 15 10 12 16 16 13 82
u==6.3 12 8 11 13 13 16 73
u==6.6 10 8 9 11 11 11 60
u=7.0 10 7 8 11 10 8 54

TaBLE 2: Random sets and mass assignment for different threshold.

Sources Focal set Mass
3.6 [11.94,16.15] 0.067
3.8 [11.90,16.01] 0.067
4 [11.89,16.03] 0.067
4.2 [11.89,15.83] 0.067
4.4 [11.92,15.63] 0.067
4.6 [11.89,15.55] 0.067
4.8 [11.98,15.34] 0.067
5 [11.93,15.35] 0.067
52 [11.90,15.32] 0.067
54 [11.83,15.31] 0.067
5.6 [11.88,15.20] 0.067
58 [11.91,15.24] 0.067
6 [11.83,15.25] 0.067
6.2 [11.76,15.29] 0.067
6.4 [11.66,15.46] 0.067

5.1. Structure Description. A realistic North Sea jacket struc-
ture taken from the USFOS example model is analyzed [24].
The structure is shown in Figure 10.

The structure is an 8-leg jacket, designed for a water
depth of 110 meters. The legs are arranged in a two by four
rectangular grid with the central pair of legs on the platform.
Overall, the dimensions at top elevation are 27 x 54m,
with launch legs twenty meters apart, and the dimensions at
the bottom line are 56 x 70 m. Total height is 142 m, with
horizontal bracings at 5 levels (see Figure 11). More detailed
structural descriptions can be found in USFOS Manual [38].

5.2. Static Pushover Analysis. The ultimate strength of the
jacket structure is determined through a static pushover
analysis in USFOS. For this example, the wave and current are

considered as the only external loads and other environmen-
tal factors are ignored. The base shear strength is considered
as the resistance in the reliability analysis.

A particular attention was paid to the effects of phase and
direction of the coming wave. Here, the jacket structure is first
analyzed with various wave directions and phases to identify
the critical response in the base shear. The investigation is
carried out in all wave directions with full considerations of
the wave phases (Figure 12). It concludes that a direction of
180°, which has the smallest ultimate base shear strength,
is found to have the most critical state and is used in the
following analysis for a conservative consideration.

Besides the modeling of variations in the wave character-
istics, several uncertainties associated with the key structure’s
mechanical properties are also considered. Based on the ulti-
mate strength analysis of the platform, the diagonal members
below the sea level showed high degree of plasticity utilization
before the base shear failure of the jacket (see Figure 13).
It indicates the importance of the diagonal members over
the other members in the ultimate strength of the whole
structure. Thus, in present study, selected uncertainties asso-
ciated with manufacturing and corrosion effect (reduction in
thickness) are applied to the key elements of the jacket
structure. The yield strength of the steel BS 968 for high
strength tubes is described with a lognormal distribution
with a coefficient of variation of 0.05~0.08 (Baker 1969). The
uncertainty in the thickness associated with corrosion effect is
modeled in a normal distribution with a coefficient of
variation of 0.17. This is based on an experimental study [24].
Detailed summary of the data is given in Table 3.

The ultimate base shear resistance is determined by
the environmental design load multiplied by the Reserve
Strength Ratio (RSR), which is defined as

ultimate resistance of intact structure
RSR = , . )
design environmental load
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TABLE 3: Summary of random variables in reliability analysis.

Variable Type of distribution Mean Standard deviation
Yield stress F, (N/mm?) Lognormal 360 18 (c.0.v. = 0.08)
Thickness ¢ (mm) Normal 48 8
Wave height H (m) P-box — —
54 m 27m
pNZe -F
1
Conductors
I =
g g
2 —
Z
L
X
70 m | 56 m

FIGURE 10: Jacket structure overview.

In this example, a design environmental wave load which
corresponds to a wave height of 25 m and period of 16 seconds
is used. A constant current of 2m/s is also included in the
design of environmental load. The response surface method
is utilized to approximate this response value while taking the
yield strength and thickness as inputs [39]. A quadratic poly-
nomial with cross terms is selected in the approximation of
the relationship between RSR and F, t:

RSR = —1.65 + 1.40F,, + 0.238t — 0.163Fj - 0.0253¢%
3)
+ 0.118Fyt,

where the yield strength F), is in unit 10® N/mm?; the

thickness ¢ is in unit 1072 m. The adequacy of the selected
model can be checked by the residual plots (see Figure 14).

The response base shear can be approximated by (4)
related to wave height and current in the form [40]

S=¢ (H+gv)?, (4)

where v is the speed of the current and ¢, ¢,, and ¢; are
constants. As the speed of current is assumed to be fixed,

—x | | .
|
|

Longitudinal direction Transverse direction

FIGURE 11: Jacket structure framing.
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FIGURE 12: Comparison of jacket structure’s ultimate strength with
various directional wave loads (direction angle is from x-axis to y-
axis).

the factors related to the current speed can be considered as
constants. The determination of these constants can be
obtained by a curve fitting procedure (Figure 15). This gives
the approximated equation for the response base shear as

S =0.04143 (H + 8.6745)>%7%¢ | (5)

where S is the response base shear with unit in MN; H is
the wave height with unit in meters. The wave period is
taken to be 16 seconds which is assumed consistent in the
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analysis. However, we should realize that there are many other
methods that could be used to predict the extreme wave load
[41-49]. For example, a NewWave profile [50] will give the
most probable shape of a large linear crest elevation.

The quality of the curve fitting is examined by investi-
gating the residuals between the real and fitted ones. The
residual plots are presented in Figure 16. It can be seen that
the residuals can follow a very strict normal distribution. The
variance is generally quite small which indicates a well fitted
model in the equation. However, we should realize that the
errors contained in this formulation consist of not only the
error from (3) but also the error from (5). Both equations
approximating the load and strength contain the errors. The
discussion in the later part of this paper must realize this error
propagation scheme in advance.

Finally, the performance function can be expressed as:

G = 63.307 (—1.65 + 1.40F, +0.238¢ - 0.163FJ2,

— 0.0253t” + 0.118F,t) — 0.04143 (H (6)

+ 8.6745)>0786

Consequently, the ultimate base shear failure probability
can be obtained by giving p; = Pr(G < 0). As both
probabilistic model and P-box model exist in the system, the
failure probability investigation may involve interval prob-
ability analysis. This could be viewed as a general mapping
from the input interval X; to the failure probability:

Xy — Py = {P; | Py € [P Py} @)
where X; = {x | x € [x;, x,]}. The main difference in this case

is that the upper and lower bounding values are not precisely
determined (P-box approach).

Complexity

P-box is characterized by a mixed case which specifies
the bounds of probability for an uncertain quantity with
underlying randomness that is not known in detail. Suppose
F and F are nondecreasing functions mapping the real line
R onto [0,1] and F(x) < F(x) for all x € R. Let [F,F]
denote the set of all nondecreasing functions F from the
reals into [0, 1] such that F(x) < F(x) < F(x). When the
functions F and F circumscribe an imprecisely known
probability distribution, the model of [F, F], specified by the
pair of functions, is called a “probability box” or imprecise
probability (Ferson 1998) for that distribution. This means
that, if [F, Flisa “probability box” for a random variable X
whose distribution F is unknown except that it is within the
“probability box”, then F(x) is alower bound on F(x) which is
the (imprecisely known) probability that the random variable
X is smaller than x. Likewise, F(x) is an upper bound on
the same probability. From a lower probability measure P for
a random variable X, one can compute upper and lower
bounds on distribution functions using the following [27]:

Fx(x)=1-P (X>x),
(8)
Fx()=P (X<x).

As shown in Figure 17, the left bound F is an upper bound
on probabilities and a lower bound on quantiles (that is, the
x-values). The right bound F is a lower bound on probabilities
and an upper bound on quantiles.

Therefore, the results cannot be simply calculated based
on one interval analysis. The P-box model for the wave height
obtained in Section 4 is in a discrete form. The calculation of
the final results could thus be conducted by the arithmetic of
P-box structures discussed in the work of Tucker and Ferson
[51]. The interval analysis is carried out to find the failure
probability bound P}'I (n=1,...,15) corresponding to each
of the discretized 15 intervals X7 (n = 1,...,15) in the P-
box. Equal probabilities are assigned to the results P}’I (n =
1,...,15) without the consideration of dependence within
the system. The results are then accomplished by grouping
the 15 response intervals in a stacked P-box (Figure 18).

The maximum and minimum value of the P-box, which
correspond to 112 x 107" and 2.77 x 10%, could represent
an envelope for the failure probability P;. This is basically
a constraint in the failure probability while the wave height
probability is specified in an imprecise form. The general
aggregation formulation for the envelope in this case can be
expressed as

envelope (P}, ... ,P}’)

= [min(P_},...,P_}),max(?},...,?}’)].

It should be noted that this aggregation rule may not
always be true if the mapping function is changed. Alter-
natively, the failure probability bounds can be computed by
an interval Monte Carlo method. This procedure is based
on repeated calculations for a series of probability functions
within the bounded P-box region. It is quite efficient for

€
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the P-box model which is established from some parameter
uncertainties, for example, the mean or variance, but not
feasible for the P-box model which is constructed by the
random sets. However, the Monte Carlo simulation can still
be carried out by the aid of parametric model fittings to
the bounded functions. Here, three typical probability dis-
tribution functions, Gamma, Lognormal, and Weibull, are
utilized. Although these distributions may be debatable, they
are needed for the evaluation of the performance function by
means of Monte Carlo simulation. The failure probabilities

obtained in these parametric models are comparable. These
are summarized in Table 4. The results obtained from Monte
Carlo simulations are in good agreement with the results
calculated from the interval analysis. A general comparison
between these two approaches in the approximated bounds is
also illustrated in Figure 19. The good agreement in the results
further proves the applicability of proposed P-box approach.
The random set approach proposed in this study provides
a general characterization rule in quantifying the statistical
uncertainties associated with the POT model. The imprecise
bounds could capture the full scope of uncertainty in the
extreme value modeling [52]. These suggest the possibility
and advantages of using the random set model for the uncer-
tainty information management in offshore engineering.

6. Conclusion

In this study, a nonconventional random set model with
the consideration of nonstationarity is established for the
prediction of extreme wave height. The random sets are
introduced to combine a set of threshold estimations which
resulted from the threshold uncertainty. The applicability of
the nonconventional model is investigated in view of the
probability bounds for the return values. This is justified by
the study in an offshore structural reliability analysis which is
carried out by using various wave height models. The impact
of the nonstationarity in the extreme wave height distribu-
tion is investigated in the failure probability bounds which
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FIGURE 17: P-box model.

are obtained through the computational procedures in the
structural analysis. The key findings are as follows.

(i) The P-box model possesses significant advantages

over the traditional probability. It provides a conve-
nient and comprehensive way to represent the non-
stationary distribution model. The estimated bounds
for the return level are found to have enough con-
servatism compared to the estimates from traditional
probabilistic models.

(ii) The propagation of P-box model is performed in an

interval analysis and Monte Carlo simulations for
the structural analysis. The result obtained in this
reliability analysis is also represented in a P-box
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FIGURE 18: P-box for the response failure probability.

format. Compared with the traditional probabilistic
approach, the P-box failure probability gives a more
flexible answer while the certain nonstationary effects
are revealed by the imprecise bounds. This provides
more information for engineers to make decisions
especially for an existing structure which is exposed
to a changing environment.

To the best of our knowledge, the uncertainty information
problem in the offshore engineering is realized through
the random set theory. Further, the findings from the case
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TABLE 4: Failure probability obtained from selected models.
Fitted models Minimum P, Maximum P; K-S test p value
o . o I
Lower bound Upper bound 1% quantile in lower 99% quantile in upper Lower bound Upper bound
bound bound
Gamma Gamma 1124 x 107" 3.840 x 107 0.8133 0.4391
Lognormal Lognormal L2 x10™" 4.351x10°° 0.5627 0.2841
Weibull Weibull 1.070 x 107" 3.666 x10°° 0.9828 0.3545

“The K-S test is conducted between the Monte Carlo simulated results (sample size = 100000) and the interval analysis results. The hypothesis is that they are

from different continuous distributions. Significance level is at 5%.
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FIGURE 19: Comparison of Monte Carlo simulated P-box (solid line) and interval analysis P-box (dotted line) (a) Gamma model. (b)

Lognormal model. (c) Weibull model.

analysis show its benefits for practical use in reliability
engineering. Many other applications related to reliability and
uncertainty analyses instead of only the offshore engineering
applications can be conducted in future research.
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