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Evaluating the resiliency of power systems against abnormal operational conditions is crucial for adapting effective actions in
planning and operation. )is paper introduces the level-of-resilience (LoR) measure to assess power system resiliency in terms of
the minimum number of faults needed to produce a system outage (blackout) under sequential topology attacks. Four deep
reinforcement learning (DRL)-based agents: deep Q-network (DQN), double DQN, the REINFORCE (Monte-Carlo policy
gradient), and REINFORCEwith baseline are used to determine the LoR. In this paper, three case studies based on IEEE 6-bus test
system are investigated. )e results demonstrate that the double DQN network agent achieved the highest success rate, and it was
the fastest among the other agents. )us, it can be an efficient agent for resiliency evaluation.

1. Introduction

)e deployment of recent technologies in communication,
computing, and control of smart grids can be suitable for
clients and electrical facilities. Energy infrastructures are
natively connected to other areas of demanding infra-
structures, and their supply breaking can have disastrous
cascading results [1]. One of the important features that is
essential in today’s smart grids is to run resiliently when
attacks/faults and other contingencies occur.

Determining the resilience of power systems (PSs) has
been a subject of concern in latest years. Stochastic and
statistical analysis techniques are used to evaluate power
system resilience [2]. While these techniques can aid un-
derstanding the system resilience to large-scale contin-
gencies, however, they are not always appropriate when
evaluating resilience in the presence of malicious sources.
)ese methods are based on the comparably simple DC
model, which does not consider effects like voltage break-
down that may happen during a cascade. Also, there is a
need to enhance their data, sampling ways, and the extent of
models and effects represented [3]. Accordingly, it is

essential to investigate new approaches to evaluate the
resilience of the grid using the more realistic and scalable AC
models.

)e applications of machine learning (ML) algorithms
are identified by Olowononi et al. [4] in the field of security
and resiliency of the power grid. )eir target is to effectively
survey the interactions among resilient grid using ML and
resilient ML when used in the grid. )e power system’s
cybersecurity and ML have a wide range of interdisciplinary
crossways between them. For instance, reinforcement and
deep learning (DL) can be used to build smart models for
applying malware classification, observing the use of the
intrusion detection and prevention systems (IDS/IPS), and
implementing threat intelligence sensing [5].

Reinforcement learning (RL) is one of the established
ML approaches [6]. RL does not depend directly on data sets
but has an agent that is placed in an anonymous environ-
ment and can receive feedbacks in form of rewards by
making actions that can result in maximizing cumulative
rewards, so the agent learns from its own experience. )e
agent focuses on finding an optimal policy rather than
analyzing data as compared to supervised and unsupervised
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learning. )e environment usually has dynamics that are
unknown to the agent.

)e DL approaches grant computational models that are
created of numerous processing layers to learn represen-
tations of data with various levels of abstraction. )ese
approaches have effectively enhanced the visual object
recognition, speech recognition, and numerous realms [7].
)e combination of RL with DL techniques (DRL) is most
useful in problems with a high dimensional state-space
which makes it suitable for evaluating the resilience of power
systems. Classical RL techniques has a complex design issue
in the decision of features. Nonetheless, DRL has been re-
warding in difficult assignments with a lower prior
knowledge [8]. )e recent advancement in DL techniques is
summarized by Dick et al. [1] for creating machine vision
models. )e current applications of this technology are also
investigated to improve the resiliency of critical infra-
structure protection (CIP).

Several works investigated the cybersecurity of power
grids using RL and DRL. For instance, Dibaji et al. [9]
considered cyber physical systems’ security from systems
and control perspectives in general, and shortly discussed
the possibilities of using RL and DRL to this purpose. Q-
learning was proposed by Yan et al. [10] to interpret the
transmission grid vulnerability against sequential topology
attacks and determine critical attack sequences taking into
account physical system behaviors. A modified Q-learning
(termed the nearest sequence memory Q-learning) was
adopted by Wang et al. [11] to evaluate threats imposed by
false data injection attack on voltage control of a power
system. Test results revealed that even if a few substations are
attacked, a voltage collapse with its consequences can
happen in the system.

Secure state estimation using multiagent reinforcement
learning was dealt by He et al. [12] with the assumption that
measurements are sent over a wireless network under
jamming attacks. )e antijamming game framework was
used to determine the optimal path against an intelligent
attacker. He et al. [13] considered secure-state estimation
with risk-averse transmission path selection method that is
based on RL concept. )ey demonstrated how the proposed
approach can improve secure-state estimation robustness.

)e use of RL was discussed by Oozeer et al. [14] in a
general framework of cognitive risk control for cyber-attacks
in smart grids. RL was presented by Chen et al. [15] to
evaluate false data injection attacks against automatic
voltage control of power systems (in normal operating
states). A Q-learning algorithm with the nearest sequence
memory was employed for online learning of attacking
strategy. )e optimal attack strategy was modelled as a
partially observable Markov decision process. Based on
kernel density estimation, a bad data detection and cor-
rection technique was presented to reduce the disruptive
influence of the attacks. Table 1 shows some recent studies
that were performed on smart grid system security using RL
and DRL.

)e novelty of this work lies in evaluating power system’s
resiliency level (LoR) under sequential topological attacks/
faults using DRL techniques. )e framework design

methodology is based on using four DRL agents which are
trained and optimized with the aim of determining the
minimum number of faults required to black out the system.
)is number is used to determine the LoR for three different
topologies of IEEE 6-bus system case study under single and
three-phase attack scenarios. )e performance of the tested
DRL agents was compared. )e double DQN agent was
stable and achieved the highest success rate among all agents.
)us, it can be used for resilience studies that investigate the
system’s ability to withstand attacks/faults by aiding system
designers to select the most resilient system’s topology. )e
rest of the paper is straightened out as follows: Section 2
illustrates power system’s topologies along with the attack/
faults scenarios. Section 3 presents the resiliency measure
formulation and the DRL techniques. Experimental results
are shown in Section 4. Section 5 summarizes and presents
certain future directions.

1.1. Acronyms and Notations. Table 2 illustrates the acro-
nyms and notations used through the paper.

2. Preliminaries

2.1. Electric Power Grid Topology. An electrical power grid is
a complementary network for carrying electricity from
producers to consumers. Electrical grids differ in size from
serving whole countries through national grids to cross-
continents through transnational grids [21]. )ree power
system topologies were considered in this paper. )ese are
PS1, PS2, and PS3, respectively, as shown in Figures 1 to 3.
)ey have identical buses, generation, and load units. Each
system is a three-phase electric power system that consists of
three loads (each has an active power of 70 Mw), three
generators (two photovoltaic (PV) generators and one
swing) with active power of 50Mw for each, six buses and 36
transmission lines. )e power system PS1 is an IEEE 6-bus
system introduced by Kennedy [22]. PS2 was generated by
altering PS1’s topology, while PS3 can be described as a fully
connected system where all the RLC circuits are connected
to each other.

In PS1, PS2, and PS3, the loads L1, L2, and L3 are
connected to buses 4, 5, and 6, respectively. Nonetheless, the
generators Swing, PV1, and PV2 are connected to buses 1, 2,
and 3, respectively. )e values of RLC of lines are also equal
in all the three grids. )e topology differences can be shown
in the transmission line connections which resulted in al-
tering the potential paths of current flow.

2.2. Faults Scenarios. Typically, a power system performs
well under balanced conditions. However, the system might
become unbalanced due to several reasons, such as natural
disturbances (e.g., earthquakes, lightning, and high-speed
winds), tree falling on the lines, and insulation failure. )ese
reasons can lead to short-circuits or a fault in the lines [22].
)e most harming faults in power systems are short-circuit
faults because their occurrence can result into a significant
increase in the electrical current. Nonetheless, there exists
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two types of short-circuit faults: symmetric and asymmetric
[23].

In a symmetric fault, all the phases are short-circuited to
each other and often to earth. Such a fault is balanced in the
sense that the system remains symmetrical, or in other
words, the lines are displaced by an equal angle. It is the most
relentless type of faults, including the largest current. Yet, it
rarely materializes [24], such as a three-phase line to the
ground fault (L–L–L–G) where the fault occurs between the
three phases and the ground of the system.)e asymmetrical
fault gives rise to asymmetrical current, that is, the current is
differing in magnitude and phase in the three phases of the
power system. When a short-circuit occurs, the current
comes into its peak value rapidly, and then it reduces ex-
ponentially with time through three different states: sub-
transient, transient, and permanent states [25]. Examples of
asymmetrical faults are single line-to-ground (L–G) fault,
line-to-line fault (L–L), and double line-to-ground (L–L–G)

fault. In this work, the asymmetric (L–L–G) and symmetric
(L–L–L–G) faults were considered against the three
topologies.

3. Resiliency Measure and DRL Techniques

3.1. ResiliencyMeasure Formulation. LoR is the factor that is
employed to hold the evolution of system’s features through
the variations of system’s modes of operation under a se-
quence of fault and recovery actions. For a number of PSs
under a sequence of faults/attacks (an attack scenario),
suppose the resulting system modes are represented by
Z0⟶Z1⟶. . .⟶Zm, where Z0 is the initial mode, while Zh
is the mode after the hth fault and reconfiguration (h� 1,. . .,
m). A power system is more resilient if it needed a larger
number of faults/attacks N over all possible attack scenarios
M before its outage.)is factor can be determined by using a
reinforcement agent who finds the optimal number of faults

Table 1: Recent studies on smart grid system security using RL and DRL.

Reference System Method Attack Recovery action Aim Limitations

[16] Modified 9-bus
system

Deep deterministic
policy gradient

(DDPG)

Multiswitch
attacks and false
data injection
(FDI) attacks

Reclose the
transmission lines
lost in the cyber-

attack by optimizing
the reclosing time.

Reach the
asynchrony in the
power system by
applying power

blocking which will
accelerate/decelerate
the rotors of the

generators

Owing to its
continuous action
space, it will not be

suitable for
topological resilience

studies

[17] IEEE 9, 14 and
30-bus systems

Deep Q-network
(DQN)

Data integrity
attacks No recovery action

Evaluate the delay-
alarm error rates,
false-alarm error
rates, and detect-
failure rates for the

systems DQN suffers from
overestimation

[18] IEEE 30-bus
system

Deep Q-network
(DQN)

Coordinated
cyber physical

topology (CCPT)
attacks

Control center can
detect the line
outage by using

phasor
measurement units

(PMU) data

Investigate the
coordinated topology
attacks in smart grid
which combine a
physical topology
attack and a cyber-
topology attack

[19]

Wood &
Wollenberg 6-
bus system and
IEEE 30-bus

system

Q-learning Sequential
attacks

Automatic
generation control

(AGC)

Identify the
minimum number of
attacks/actions to
reach blackout

threshold Q-learning and
SARSA techniques

are limited to systems
with small state-
action space[20] IEEE 14-bus

system SARSA

False data
injection (FDI),
jamming, and
denial of service
(DoS) attacks

No recovery action

Formulation an
online cyber-attack

detection as a
POMDP problem
and propose a

solution based on the
model-free RL for

POMDPs

Our work IEEE 6-bus
system

Deep Q-network
(DQN), double

DQN,
REINFORCE, and
REINFORCE with

baseline

Sequential
attacks

Disconnecting the
faulted transmission

lines

Evaluating the
resiliency of power
systems against

faults/attacks using
DRL

Needs to investigate
tabular methods such
as Q-learning and
SARSA to compare
their performance
with DRL methods
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(by trial and failure) needed to produce a blackout. )is is
called an optimal policy.

Definition 1. Given a set of power systems with identical
buses, generation, and load units, but with different to-
pologies: PS ≡ ∪ PSk; k ∈ {1, . . ., y}, where y is the number of

the power systems, and a set of attack scenarios M, we say
that the LoR(PSi)> LoR(PS-PSi) if:

NPSi >NPS−PSi

3.2. DRL Algorithms. When the agent begins to learn, the
agent will be in a state S of the environment, by selecting an
action A, the agent can switch from one state to another.
)e transition probability between states, that is, P, denotes
the probability of the state to which the agent will arrive to.
When the agent conducts an action, the environment
delivers a reward R as feedback. )e model describes the
reward function and transition probabilities. )e agent’s
policy π(S) provides the strategy on which is the best/
optimal action to be taken in a specific state with the aim of
maximizing the cumulative rewards. Every state is iden-
tified with a value function V(S) predicting the expected
number of future rewards that the agent will obtain in this
state by choosing an optimal action under the current/
other policy. )e future reward (also called return) Gt is the
total sum of discounted rewards in the future as repre-
sented by:

Gt � Rt+1 + cRt+2 + · · · � 
∞

k�0
c

k
Rt+k+1, (1)

Table 2: Acronyms and notations used.

Category Items/
symbols Description

Acronyms

LoR Level-of-resilience
PS Power system
DRL Deep reinforcement learning
DQN Deep Q-network
ML Machine learning
CIP Critical infrastructure protection
PV Photovoltaic generator

DDPG Deep deterministic policy gradient
FDA False data injection

Q value State-action value
(L–G) Single line-to-ground fault
(L–L) Line-to-line fault

(L–L–G) Double line-to-ground

Notations

π(S) Agent’s policy
V(S) Value function
R Reward
Gt Return
c )e discounting factor
S State
A Action
ϵ Probability of selecting an action

θ, θ− Weights
yj )e value function target
∇θJ(θ) Gradient

πθ(A|S)
Parameterized function with respect to

θ
δ(S, A) )e advantage function
μ(S) Actor policy
ST Terminal state
α, β )e learning rates

Zh
)e mode after hth fault and

reconfiguration
M A set of attack scenarios
N Number of faults/attacks

Swing
Bus1 Bus2 Bus3

Bus4 Bus5 Bus6

L1 L2 L3

PV1
PV2

Figure 1: Power system PS1.

Swing Bus1 Bus2 Bus3

Bus4 Bus5 Bus6

L1 L2 L3

PV1

PV2

Figure 2: Power system PS2.

Swing
Bus1

Bus2

Bus3

Bus4

Bus5

Bus6

L1

L2

L3

PV1

PV2

Figure 3: Power system PS3.
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where c ∈ [0, 1] is the discounting factor which penalizes the
rewards in the future, so an agent can focus on the future
reward rather than the immediate reward. Both policy and
value functions are what the agent tries to learn in RL. )e
cooperation among the agent and the environment includes
a sequence of actions and rewards evolving in time t� 1, 2,
. . ., T, where T is time step at which the termination state is
reached. During this process, the agent gathers information
about the environment and gives decisions on which action
to take next to precisely learn the best policy. )e state,
action, and reward at time step t can be represented as St, At,
and Rt, respectively.)erefore, the full cooperation sequence
is represented by one episode (trajectory) and the sequence
terminates at the terminal state: S1, A1, R1, S2, A2, R2,. . ., ST.

DQN was introduced by Mnih et al. [26] through a
combination of Q-learning with a function approximator
(neural network) to overcome the tabular limit of Q-
learning. )e algorithm was tested on Atari games and the
agent was able to achieve the human level in Atari games.
)e inputs were raw pixels of the game so that the same
agent can learn multiple games with no need for a special
processing of the inputs. )e past trials of combining Q-
learning with function approximators in the past were not
successful due to the deadly triad issue [27], where the model
suffered from instability and divergence. )is issue was
solved by improving and stabilizing the training procedure
of Q-learning using two methods of experience replay and
periodically updated target. Here, DQN is a neural network
model that receives states as inputs and produces action
values Q(S; θ) for network parameters θ. )e episode step
et � (St, At, Rt, St+1) is stored in one replay memory
Dt � e1, . . . , et , where Dt has experienced et tuples over
many episodes. During Q-learning updates, samples are
drawn randomly from the replay memory (called experience
replay). )us, one sample could be used many times. )is
was useful in reducing the correlation between samples,
which resulted in a network that can learn without any
overfitting. Moreover, the experience replay could reuse old
experience, which resulted in a smooth learning and more
efficient tuples samples.

In periodically updated target, DQN keeps a copy of the
network with an identical architecture and initializes with the
same parameters (weights values). )e predicted Q from the
target network will be used to update the main Q-network.
)e target network’s parameters are not trained like the main
network, instead they are periodically synchronized with the
parameters of the main Q-network. )e idea behind this is to
serve the same goal as the experience buffer by reducing the
correlation between samples using different parameters in the
main Q-network with θ and θ− for the target network. )us,
optimizing the Q values towards the target values. )is has
shown to stabilize the learning. Here, the target network with
parameters θ− is the same as the main Q-network except that
its parameters are copied every C time steps.)e C steps were
chosen to be two steps so that θ−

t � θt and are kept fixed in all
other steps. )e main Q-network goal is to produce an es-
timation of theQ values for each action that can be taken from
that state, but the objective is to find an optimal Q value that
satisfy the Bellman optimality equation:

q∗(S, A) � Ε Rt+1 + cmaxA′q∗ S′, A′(  . (2)

For any state-action pair (S, A) at time t, the expected
return from starting in state S selecting action A and fol-
lowing the optimal policy q∗ thereafter is going to be the
expected reward we get from taking an action A in state S,
which is Rt+1 plus the maximum expected discounted return
that can be achieved from any possible next state-action pair.
Also, since the agent is following an optimal policy, the
following state S′ will be the state from which the best
possible next action A′ can be taken at time t + 1 and the
maxA′q∗(S′, A′) is outputted from the target network. )is
will be used eventually to calculate the loss from the mainQ-
network which is calculated by comparing the generated Q
values from the main Q-network to the target Q values from
the right-hand side of the Bellman equation, where the
objective here is to minimize this loss. After the loss is
calculated, the parameters θ within the main Q-network are
updated via Stochastic Gradient Descent (SGD) and back-
propagation.)is process is done repeatedly for each state in
the environment until minimizing the loss and arriving to an
approximate optimal Q value as follows:

Loss � q∗ − q,

Loss � Ε Rt+1 + cmaxA′q∗ S′, A′(   − Ε 
∞

k�0
c

k
Rt+k+1

⎡⎣ ⎤⎦,
(3)

which can be rewritten into the following equation:

Loss � yj − Q Si, Ai|θ( ,

yj � Rj + cmaxA′Q
−

S′, A′|θ−
( .

(4)

However, DQN has the drawback of overestimation in
most cases. Normally, the overestimation is caused by Q
value update rule of taking the maximum Q value of the new
state. )erefore, a double DQN was proposed by Hado et al.
[28] to overcome the overestimation of the DQN. Double
DQN improved Q value update rule by selecting the action
corresponding to the maximum Q value of the current Q-
network rather than using the maximum Q value of the
target Q-network.

To make sure that the selected action for the next state is
the action with the highest value function (highest Q value),
the currentQ network is used to find the best action with the
highest Q value (Amax), then the target network is used to
calculate the target Q value (Q− ) of taking this action at the
next state:

Loss � yj − Q Si, Ai|θ( ,

yj � Rj + c Q
−

S′, Amax|θ
−

( ,
(5)

where

Amax � argmaxA′Q S′, A′|θ( ( . (6)

DQN and double DQN are concerned with learning a
state-action value (Q value) function and then selecting
actions based on this value, where the Q value indirectly
evaluates the policy that the agent follows. On the other
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hand, policy gradient methods instead learn the policy π
directly by a parameterized function πθ(A|S) with respect to
θ, where the objective function value relies on the policy.
)us, the algorithm goal is to optimize θ to determine the
optimal value of the function πθ(A|S).

)e REINFORCE [29] (Monte-Carlo policy gradient) is
a model-free, online, on-policy reinforcement learning
technique. REINFORCE depends on an estimated return by
Monte-Carlo methods using episode samples to update the
policy parameter θ. )e policy gradient methods learn a
policy function directly (instead of a Q function). On-policy,
means that REINFORCE learns from trajectories generated
by the current policy. )e objective function for policy
gradients is defined as follows:

J(θ) � E 
T−1

t�1
Rt+1

⎡⎣ ⎤⎦. (7)

A useful way to learn an approximation policy is by
directly maximizing the expected reward using a gradient
method (i.e., policy gradient). It describes the gradient of the
expected reward with respect to the parameters, where the
objective function J is calculated to learn a policy that
maximizes the cumulative future reward R to be received
starting from any given time t until the terminal time T. )e
policy optimization process uses a gradient ascent with the
partial derivative of the objective with respect to the policy
parameter θ to maximize the objective function:

θ←θ +
δJ(θ)

δθ
. (8)

REINFORCE works because the expectation of the
sample gradient is equal to the actual gradient as shown in
the consecutive equation:

∇θJ(θ) � Eπ Q
π
(s, a)ln πθ(A|S) ,

� Eπ Gt∇θ ln πθ At|St(  .
(9)

Here, one can measure Gt from real sample full trajec-
tories and employ it to update the policy gradient. A com-
monly used modification of REINFORCE is to subtract a
baseline value from the return Gt to decrease the variance of
gradient estimation, while keeping the bias unchanged. For
example, a common baseline is to subtract state-value from
action-value, and if adapted, one could use the advantage
δ(S, A) � Q(S,A) − V(S) in the gradient ascent update.
While training the agent for each training episode, the agent
generates episode experience by following actor policy μ(S).
)e agent conducts actions until it arrives at the terminal state
ST. )e episode experience includes the sequence S1, A1, R2,
S2,. . ., ST−1, AT−1, RT, ST. )en, the agent calculates the return
Gt each time step. In case a baseline was used, then the
advantage function δt is calculated employing the baseline
value function estimated from the critic as given by:

δ(s, a) � Gt − V St|θv( . (10)

In fact, the REINFOR.
CE-with-baseline technique learns both a policy and a

state-value function, but according to Sutton et al. [29], it

will not be considered as an actor-critic method because the
state-value function is used only as a baseline, not as a critic.
)is means that the critic will not be used for bootstrapping
that illustrates updating the value estimate for a state from
the estimated values of subsequent states. However, RE-
INFORCE applies the state-value function only as a baseline
for the state whose estimate is being updated. Afterwards, in
reinforce with baseline, the agent accumulates the gradients
for the actor network and critic network as represented by
Wang et al. (11) and He et al. (12):

dθμ � 

T−1

t�1
δt∇θμ ln μ St|θμ , (11)

dθv � 
T−1

t�1
δt∇θv

V St|θv( . (12)

Finally, the agent will update the actor parameter θμ, and
the state-value θv in case of a baseline, as shown by He et al.
(13) andOozeer andHaykin (14), respectively, where α and β
are the learning rates.

θμ � θμ + αdθμ, (13)

θv � θv + βdθv. (14)

3.3. Agents Features. To train the agents, the topological line
states were given as inputs (also called observations). )e
distribution of the faults for the three topologies PS1, PS2, and
PS3 has resulted in 12 faults in L–L–L–G case and 36 faults for
L–L–G case. Each fault is placed at each possible line where
the current can flow through. )erefore, let I � {1, 2, . . ., 12}
and K � {1, 2, . . ., 36}. For every time step t, an agent is given
an observation st(I) � st(1), st(2), . . . , st(12)  (for L–L
– L–G case) or st(K) � st(1), st(2), . . . , st(36)  (for L–L–G
case). )e initial state of each observation is s(I∨K) � 1
which means that the line is not faulted (in service), the
current is available and can flow through the line. However,
when a line is faulted (out of service), the line’s state is
switched to s(I∨K) � 0, whichmeans that the line is faulted,
and the current cannot flow through this line as illustrated by:

st(I∨K) �
1, if line(I∨K)is in service at time t,

0, if line(I∨K)is out of service at time t.


(15)

Likewise, in every time step t, the agent selects to defect one
line out of the I orK possible faults, whereAt (I∨K) � 1. Once
a fault is selected, the faulted line is disconnected, and the
current is rerouted into other possible paths (if exists) toward
loads. In addition, the reward function R is defined as follows:

Rt+1 St, At(  �

−10, each t step,

−10, if At ∈Wet,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(16)
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Each time step the agent selects a line to attack, the agent
receives a negative reward. )erefore, the number of faults
that is needed to cause an outage of the system equals to the
time steps in this episode. Also, during an episode, the
actions that are taken by the agent will be stored in a buffer
Wet � (A1, A2, . . . , AT−1). )e current action At taken by
the agent at time t is compared to Wet to prevent the agent
from repeating an action that was taken previously in the
episode. By doing so, the agent can be trained with the aim of
determining the minimum number of faults required to
black out the system.

3.4. Networks Parameters. )e DQN and double DQN
agents were implemented by first defining the critic net-
works that get the observations as inputs. A critic network
has two hidden layers each with 24 hidden neurons, and each
hidden layer is connected with a rectified linear activation
function (RELU) and passed to the output layer to find theQ
value for each defined action. )e optimizer for the critic
network is ADAM, with a learning rate of 0.001. )e gra-
dient threshold parameter was set up and defined to be 1 to
prevent any gradient explosion when the network back
propagates to update the network weights. )is usually
happens when the gradients increase in magnitude expo-
nentially, which results in an unstable training and can
diverge within a few iterations. Gradient clipping can pre-
vent gradient explosion by stabilizing the training at higher
learning rates and in the presence of outliers. Gradient
clipping enables networks to be trained faster and does not
often affect the accuracy of the learned task [30].

Adding a regularization (L2 regularization factor) term
for the weights to the loss function is one way to reduce
overfitting [31]. Another parameter that is needed to train
the agent is the experience buffer that is assigned with size of
3000 since the model is relatively small. )e agent computes
updates using amini batch of experiences randomly sampled
from the buffer with size of 64 which is large enough to
reduce the variance when computing gradients, but it in-
creases the computational effort. )e discount factor that
applies to future rewards during training is 0.9.

)e REINFORCE agent is composed of an actor that has
two hidden layers with 24 hidden neurons, and each hidden
layer is connected with an RELU activation function.
Likewise, the REINFORCE with baseline agent, was con-
structed of an actor and a baseline network. )e baseline has
two hidden layers with 24 hidden neurons with a RELU
function. Similar to DQN agent, the gradient threshold was
set to 1. Alongside an ADAM optimizer with a learning rate
of 0.005 and a discount factor of 0.9, the learning rates for the
two REINFORCE agents were optimized with different
values until 0.005 was found to produce better results.

4. Experimental Results

)e four agents were implemented using Simulink (Sim-
scape Electrical) environment for the three topologies for the
two cases of L–L–L–G and L–L–G fault scenarios, respec-
tively. )ese agents are DQN, double DQN, REINFORCE,

and REINFORCE with baseline. )e results for the case of
symmetrical L–L–L–G fault scenarios are shown in Figure 4.

)e figure shows the training progress of the four agents,
where it points out the success rate with the number of
episodes. Each episode describes a scenario of lines outages
the agent applies to cause a complete system blackout. It can
be observed that the DQN agent successfully found a policy
that is able to outage the three topologies with a high success
rate. It shows also that the DQN agent learned faster than the
other agents and was stable during the learning. )e double
DQN agent was slightly slower at the start of the training but
later was stable and achieved a higher success rate than the
DQN agent in the three topologies. However, the REIN-
FORCE and the REINFORCE with baseline were slower in
learning. )e REINFORCE failed in the three topologies to
converge and had lots of spikes, which explains that the
agent was not stable during the training process. )e RE-
INFORCE with baseline succeeded to stabilize in PS3. But in
PS1 and PS2, it was improving slowly, which means that by
letting the agent train inmore episodes, it will converge to an
optimal policy. )e agent cannot explore the action-state
space efficiently. )us, it takes longer time to find a good
policy. It is worth mentioning that all the attempts to op-
timize the REINFORCE agent by adjusting the learning rate
and the number of hidden neurons in the actor network
were not sufficient to stabilize the learning procedure and to
find an optimal sequence of actions. Table 3 shows the
minimum possible number of faults to outage the three
systems PS1, PS2, and PS3, respectively, determined by the
four agents. It can be shown that the double DQNwas able to
find a solution or a sequence of actions that results in system
outage with a smaller number of faults as compared to the
other agents in PS2.

Following Definition 1, the results illustrate that the third
topology PS3 is the most resilient topology, as it needed 7
faults to black out the system. )is is because PS3 has more
redundant paths, so even if a line is faulted, the current can
still flow through other paths towards the intended load.

For the second case of single-phase L–L–G fault sce-
narios, the results are illustrated in Figure 5. )e results
demonstrate that the double DQN network agent achieved a
higher success rate, and it was faster than the other agents.
Also, the agent was capable of finding the optimal number of
faults for PS1, while the other agents could not find them.
)e results also illustrate that the REINFORCE agent failed
once again to determine the optimal number of faults for the
three topologies. Besides that, the agent was not stable, and
the success rates were declining in PS1 and PS2, respectively.
)e REINFORCE with baseline was improving similar to
symmetrical fault scenarios but needed longer training
episodes to converge. )e DQN agent had a similar be-
haviour to the double DQN agent but could not find the
optimal number of faults in PS1.

Table 4 shows the minimum number of faults under
single-phase L–L–G fault scenarios. It can be noted that the
double DQN found a sequence of faults that was sufficient to
outage PS1 with the minimum number of faults as compared
to the other agents. )e DQN, double DQN, and REIN-
FORCE with baseline agents found the optimal solutions for

Computational Intelligence and Neuroscience 7



PS2 and PS3, respectively. However, the REINFORCE agent
could not find the solution for the three topologies. Fol-
lowing Definition 1, the results show that the third topology
PS3 is the most resilient topology.

)ese results demonstrate that the double DQN agent is
a powerful tool for resilience studies that investigate the
system’s ability to withstand attacks/faults. )e double DQN
was used to avoid the DQN’s overestimation issue, by
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Figure 5: Results of DRL agents for the case of asymmetrical L–L–G fault scenarios.

Table 3: Minimum number of faults under three-phase L–L–L–G fault scenarios.

PS/agent DQN Double DQN REINFORCE REINFORCE with baseline
PS1 6 6 6 6
PS2 6 5 6 6
PS3 7 7 7 7
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Figure 4: Results of DRL agents for the case of symmetrical L–L–L–G fault scenarios.

Table 4: Minimum number of faults under single-phase L–L–G fault scenarios.

PS/agent DQN Double DQN REINFORCE REINFORCE with baseline
PS1 8 7 10 8
PS2 7 7 8 7
PS3 10 10 11 10
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improving Q value updating rule when selecting the action
corresponding to the maximum Q value of the current Q-
network rather than using the maximum Q value of the
target Q-network. In addition, the results illustrate for the
REINFORCE agent how subtracting a baseline can help
reduce the variance and stabilizing the agent. Yet, it needs
more training episodes to converge.

5. Conclusion

A new measure for comparing the LoR was proposed for
PSs) under attacks/faults. )is measure is based on com-
paring the minimum number of faults that causes system
outage by employing reinforcement learning approaches.
)e reinforcement learning agents were DQN, double DQN,
the REINFORCE (Monte-Carlo policy gradient), and RE-
INFORCE with baseline. )e LoR of three different PS
topologies under symmetrical and asymmetrical fault sce-
narios were compared. Experimental results showed that
while the three PSs have the exact set of generators and have
enclosed the same set of loads, yet, they had distinct resil-
iency levels due to their topological dissimilarity. )e
multipaths presented in PS3 topology supported the load’s
demands by the generation side.)e results also showed that
the double DQN agent was stable and achieved the highest
success rate among all agents, as opposed to the REIN-
FORCE agent that failed to determine theminimum number
of faults for the three topologies under both symmetrical and
asymmetrical faults. In this work, the agents were trained for
a certain number of observations (current flow paths and
lines availability states) and possible attacks/faults actions
for three IEEE 6-bus topologies. However, investigating the
LoR for other PSs topologies requires defining and training
new agents properties with new observations and actions. As
a future work, other factors need to be investigated like
recovery time, stability, as well as checking the LoR of more
topologies to determine the most resilient PS design. In
addition to that further development on the resiliency en-
hancement can be obtained through the adaptation of DL
and decision-making techniques.

Data Availability

)e IEEE 6-Bus system load flow Simulink model was used
from Mathworks (https://www.mathworks.com/
matlabcentral/fileexchange/74690-ieee-6-bus-load-flow-
simulink-model). It is provided free for academic research.
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