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Abstract—It is important to detect cerebral microbleed voxels
from the brain image of cerebral autosomal-dominant
arteriopathy with subcortical infarcts and Leukoencephalopathy
(CADASIL) patients. Methods developed by other researchers
before have a high variablity of intra-observer and inter-observer.
In our study, we collect our dataset from the 20 brain volumetric
images, 10 for CADASIL patients and 10 for healthy controls. And
we used naive baysian classifier to get the results. We use cross
validation to improve the performance of naive Baysian classifier.
The results show that the average sensitivity is 74.5340.96%, the
average specificity is 74.51+1.05%, and the average accuracy is
74.52+1.00%.
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I.  INTRODUCTION

The cerebral autosomal-dominant arteriopathy with
subcortical infarcts and Leukoencephalopathy (CADASIL)
syndrome is the most common hereditary stroke diseases which
can never be ignored.

The subclinical sign of cerebral microbleed (CMB) [1] of
CADASIL patients can be detected years prior to clinical
manifestation by magnetic resonance imaging (MRI).
Susceptibility weighted imaging (SWI) is a 3D flow-
compensated T2* imaging technique. Compared to standard
MRI protocol, the SWI scans the patient at high resolution (less
than 1 mm). It uses the phase image to enhance the contrast,
providing 2 to 6 times increased sensitivity in CMB detection.

Manual detection results of CMB location of CADASIL
patients were regarded as the ground truth. However, it takes
too much time to detect with a high variablity of intra-observer
and inter-observer. A large amount of advanced methods based
on computer vision and digital image processing were proposed
to help manual CMB evaluation. Hou (2017) [2] used leaky
rectified linear unit (ReLU). Chen (2016) [3] utilized sparse
deep neural network. Hou (2018) [4] employed autoencoder.
Jiang (2017) [5] used rank-based average pooling. Lu (2017) [6]

presented to use deep convolutional neural network.

Though methods mentioned above are very important
attempts in the past, they are not acceptable for 2 reasons: (1)
The complexity of these methods are very high. (2) Their
detection do not reach voxel-wise resolution.

Our method used naive Bayesian theory to perform the
classification task. For general classification tasks, if we have

enough training data and the features are well designed, then
the accuracy will be high enough to accept. It estimates the
posterior probability by priori probability collected for training.
And the mathematical foundations for Bayesian theory provides
solid explain ability without much complexity. Besides, our
purpose it to identify CMB at voxel resolution. In all, our
methods is a new computer vision [7-10] and image processing

[11-14] approaches.

Il. METHODOLOGY

Naive Bayesian classifiers are classifiers based on statistical
analysis [15]. They can predict class membership probabilities
i.e. the probability that the sample with given values of its
features belongs to a specific category [16]. Naive Bayesian
classifiers assume that the effect of an attribute value on a given
category is independent of the values of the other attributes.
This assumption is called class conditional independence. It is
made to simplify the computations involved and, in this sense,
is considered “naive.”

Nawe Bayesian classifier can present a comparable
performance to state-of-the-art classifiers, such as support
vector machine [17-21], shallow neural network [22-27], etc.

Let X be a sample which is described by measurements
made on a set of n attributes. Let H be some hypothesis such as
that the data sample X belongs to a specified category C. For
classification problems, we want to determine P(H|X), the
probability that the hypothesis H holds given the observed
sample X. In other words, we are looking for the probability that
sample X belongs to category C, given that we know the
attribute description of X.

P(H|X) is the posterior probability of H conditioned on X.
P(H) is the prior probability. Similarly, P(X|H) is the priori
probability of X conditioned on H, and P(X) is the prior
probability of X. Bayes’ theorem is useful in that it provides a
way to calculate the posterior probability, P(H|X), from P(H),
P(X|H), and P(X). Bayes’ theorem is [28]:

P(X|H)*P(H)

P(HIX) = "

(1)

Let D be a training set of samples and their associated class
labels. each sample is represented by an n-dimensional attribute
vector, X = (X1, Xz, ..., Xn), depicting n measurements made on
the sample from n attributes, respectively, A1, Az, ..., An.
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Suppose that there are m categories, C1, Co, ..., Cm. Given a
sample X, the classifier will predict that X belongs to the
category having the highest posterior probability [29],
conditioned on X. That is, the naive Bayesian classifier predicts
that sample X belongs to the class C; if and only if

P(C|1X) > P(C)|X) for1<j<m,j#i )
By Bayes’ theorem, we have
P(X|Cj)*P(C;
P(C/|1X) = PXIC)+P(C) 3)

P(X)
Since P(X) is a constant for all categories, only P(X|C;)*P(C;)

needs to be determined. Note that the class prior probabilities
may be estimated by

P(c) =122 )
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where |Cip| is the number of training samples of class Ci in D
and |D] is the total number of training samples of D.

Given data sets with many attributes, it would be extremely
computationally expensive to compute P(X|Ci). To reduce
computation in evaluating P(X|Ci), the naive assumption of
class-conditional independence is made. This presumes that the
attributes’ values are conditionally independent of one another,
given the class label of the sample (i.e., that there are no
dependence relationships among the attributes). Thus, we can
obtain P(X|C;) by following formula:

P(XIC)) = [Ti=1 P(x|CD. (5)

To predict the class label of X, P(X|Ci)*P(C;) is evaluated
for each class Ci. The classifier predicts that the class label of
sample X is the class C; by formula (2) mentioned above.

AC) > Aoy — A6 | PG || Predicted Label

FIGURE I. ILLUSTRATION OF NAWE BAYESIAN CLASSIFIER

Figure 1 shows the illustration of na'we Bayesian classifier.
We did not use deep learning methods, because this dataset is
relatively small, and the convolution operation [30-35] is
difficult to handle on an 7x7-size input.

I11. MATERIAL AND PREPROCESSING

Figure 2 shows a portion of generated dataset. It can be
regarded as a matrix with width of 50 and height of 50. Each
row of this matrix represents a sample, the first 49 columns
represent input data and the 50-th column represents the target.
Input data were generated by vectorizing sliding neighborhood
with size of 7*7.

FIGURE Il. GENERATED DATASET (COLUMN 1-49 ARE INPUTS,
COLUMN 50 IS THE TARGET)

All the pixels in the 7x7 neighbor were regarded as features,
and submitted to the na'We Bayesian classifier. We collected in
total 20 subjects, and obtained 69,356 CMB voxels, and
124,063,981 non-CMB voxels. For class imbalance problem,

we selected randomly 69,327 non-CMB voxels from those
124,063,981 samples. Now we have a dataset as listed in Table
1.

TABLEI. OUR DATASET

Type Number of samples
CMB 69,365

Non-CMB 69,327

Total 138,692

A 10-fold cross validation was used to segment the dataset
into 10 folds, and report the out-of-sample error. For avoiding
the effect of randomness, we run the 10-fold cross validation
ten times, and report the average and standard deviation of
sensitivity, specificity, and accuracy. The definition of those
three measures are depicted by following three equations:

Sensitivity = TPT:)FN ©
. TN
Sepcifity = ——— @)
TP+TN
Accuracy = ®

where TP represents true positive, TN represents true negative,
FP represents false positive, and FN represents false negative.

Figure 3 shows the illustration of one run of cross validation.
Figure 3(a) shows the index, where the x-axis is the
combination of both CMB and non-CMB voxels, in total
138,692. Figure 3(b) shows the legend
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FIGURE I1l. ONE RUN OF CROSS VALIDATION

IV. RESULTS

The sensitivities, specificities, and accuracies of this 10x10-
fold cross validation were shown below in Table 2, The average
sensitivity is 74.534).96%, the average specificity is
74.51+1.05%, and the average accuracy is 74.5241.00%. Figure
4 shows the box plot of our algorithm, from which we can
observe the three measures can similar results, indicating the
effectiveness of our technique to handle the imbalance problem.

TABLEIl. PERFORMANCE OF OUR NBC METHOD

Sen FL F2 F3 F4 F5 F6 F/ F8 F9 F10 Total
RL 774 743 759 763 78.7 763 755 753 751 790 76.4
5 1 1 8 1 3 7 5 2 9 2
R2 709 773 755 758 761 694 763 754 734 728 74.3
2 5 8 9 3 5 8 8 0 3 4
R3 739 772 704 746 711 753 738 734 712 748 73.6
4 5 3 7 8 7 5 6 1 0 2
R4 738 731 756 745 731 720 738 707 724 712 73.0
5 8 3 1 4 5 3 5 7 8 7
R5 754 742 716 769 750 743 764 745 751 753 74.9
3 5 1 4 8 5 3 6 2 0 1
R6 744 753 730 748 718 753 758 77.2 763 755 74.9
1 2 9 6 1 1 4 9 0 5 8
R7 756 766 70.8 769 735 742 782 745 782 721 751
2 4 8 5 9 1 3 4 9 6 1
RS 716 738 741 722 744 724 762 718 736 750 735
7 6 7 5 8 7 7 1 6 0 6
RO 732 750 730 774 77.2 732 749 738 726 778 74.8
3 1 7 1 2 0 2 3 8 4 4
R1 706 739 761 733 738 759 722 76.8 765 745 74.4
05 2 1 3 6 2 6 9 5 2 0
Spc FL_ F2 F3 F4 F5 F6 F/ F8 F9 FI10 Totl
R1L 753 766 758 766 78.7 774 7162 748 746 764 76.2
5 5 4 5 5 0 3 7 4 5 8
R2 753 746 754 726 749 749 747 752 753 701 74.3
8 1 9 2 9 3 3 1 5 1 4
R3 740 725 743 737 730 69.8 712 782 719 746 73.3
5 9 4 0 1 5 4 8 8 1 7
R4 757 748 710 702 753 740 678 722 737 725 727
2 7 3 0 2 1 9 8 6 1 7
R5 764 774 722 746 76.7 768 729 747 724 776 752
3 4 1 3 9 9 4 0 8 0 1
R6 742 738 737 758 731 776 747 750 742 783 75.0
7 2 7 8 0 3 9 8 0 2 8
R7 736 761 750 758 76.6 77.3 705 758 752 737 75.0
9 7 6 7 3 7 9 0 1 6 1

FIGURE IV. BOX PLOT OF OUR ALGORITHM
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R8 716 735 758 739 734 722 70.7 747 747 764 73.7
0 3 5 8 0 3 5 7 3 7 3
R9 76.2 750 708 76.4 73.0 773 739 764 748 780 752
7 5 5 0 1 4 7 2 4 9 2
R1 710 736 742 748 735 725 759 76.6 748 735 74.0
0 2 6 7 4 9 2 0 7 7 6 9
Ac F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Total
C
R1 76.4 754 758 765 78.7 768 759 751 748 77.7 76.3
0 8 8 2 3 6 0 1 8 7 5
R2 731 759 755 742 755 721 755 753 743 714 743
5 8 4 6 6 9 6 4 7 7 4
R3 739 749 723 741 721 726 725 758 716 747 734
9 2 9 9 0 2 4 7 0 1 9
R4 747 740 733 723 742 730 708 715 731 719 729
9 3 3 5 3 3 6 1 1 3 2
R5 759 758 719 757 759 756 746 746 738 764 750
3 5 1 8 3 2 8 3 0 5 6
R6 743 745 734 753 724 764 753 76.1 752 76.9 75.0
4 7 3 7 5 7 1 8 5 4 3
R7 746 76.4 729 76.4 751 757 744 751 76.7 729 75.0
6 1 7 1 1 9 1 7 5 6 6
R8 716 737 750 731 739 723 735 732 741 757 73.6
3 0 1 1 4 5 1 9 9 4 5
R9 747 750 719 769 751 752 744 751 737 77.9 750
5 3 6 0 2 7 4 2 6 7 3
R1 708 737 751 740 737 742 740 76.7 757 740 742
0 3 9 9 9 3 2 8 8 1 4 5
80
79+
78+
Tt
s 1 T T
é 75 ,—t—“ ! !
“g 74
& ! T
731 —4 L i

In the next experiment, we compared NBC with decision
tree using 1D3 algorithm [36]. The results were shown in Figure
5. Here ID3 obtained a lower performance, with an overall
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accuracy of 72.19%. We can observe that our native Bayesian
classifier can get 2.33% more performance in terms of accuracy.
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FIGURE V. COMPARISON BETWEEN OUR METHOD WITH ID3
ALGORITHM

V. CONCLUSION

In this study, we proposed a new voxelwise CMB detection
system using naive baysian classifier for CADASIL patients.
The results showed better result than ID3.

In the future, we will collect more brain images and test
other advanced techniques for classification and image
preprocessing, to see if we can achieve better accuracy which
can meet the requirement of real applications.

We shall test using optimization algorithm [37, 38] to
improve the performance of our NBC classifier. In addition, we
shall collect more data, and try deep learning methods.
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