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ABSTRACT
The development of self-driving vehicles is often regarded as adding a layer of intelligence on top of classic vehicle platforms.
However, the amount of software needed to reach autonomy will exceed the software deployed for operation of normal vehicles.
As complexity increases, the demand for proper structure also increases. Moreover, the shift from open, deterministic compo-
nents to more opaque, probabilistic software components raises new challenges for system designers. In this paper we introduce
a functional software architecture for fully autonomous vehicles aimed to standardise and ease the development process. Exist-
ing literature presents past experiments with autonomous driving or implementations specific to limited domains (e.g. winning
a competition). The architectural solutions are often an after-math of building or evolving an autonomous vehicle and not the
result of a clear software development life-cycle. Amajor issue of this approach is that requirements cannot be traced with respect
to functional components and several components group most functionality. Therefore, it is often difficult to adopt the propos-
als. In this paper we take a prescriptive approach starting with requirements from a widely adopted automotive standard. We
follow a clear software engineering process, specific to the automotive industry. During the design process, we make extensive
use of robotic architectures – which seem to be often ignored by automotive software engineers – to support standard driven
requirements.

© 2020 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Autonomous driving is no longer a lab experiment. Asmanufactur-
ers compete to raise the level of vehicle automation, cars become
highly complex systems. Driving task automation is often regarded
as adding a layer of cognitive intelligence on top of basic vehicle
platforms [1]. While traditional mechanical components become
a commodity [2] and planning algorithms become responsible for
critical decisions, software emerges as the lead innovation driver.
Recent trends forecast an increase in traffic safety and efficiency
by minimising human involvement and error. The transfer of total
control from humans to machines is classified by the Society of
Automotive Engineers (SAE) as a stepwise process on a scale from 0
to 5, where 0 involves no automation and 5 means full-time perfor-
mance by an automated driving system of all driving aspects, under
all roadway and environmental conditions [3]. Since the amount of
software grows, there is a need to use advanced software engineer-
ing methods and tools to handle its complexity, size and criticality.
Software systems are difficult to understand because of their non-
linear nature – a one bit error can bring an entire system down, or
a much larger error may do nothing. Moreover, many errors come
from design flaws or requirements (mis-) specifications [4].
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Basic vehicles already run large amounts of software with tight con-
straints concerning real-time processing, failure rate, maintainabil-
ity and safety. In order to avoid design flaws or an unbalanced
representation of requirements in the final product, the software’s
evolution towards autonomy must be well managed. Since adding
cognitive intelligence to vehicles leads to new software components
deployed on existing platforms, a clearmapping between functional
goals and software components is needed.

Software architecture was introduced as a means to manage com-
plexity in software systems and help assess functional and non-
functional attributes, before the build phase. A good architecture
is known to help ensure that a system satisfies key requirements
in areas such as functional suitability, performance, reliability or
interoperability [5].

The goal of this paper is to design a functional software architecture
for fully autonomous vehicles. Existing literature takes a descrip-
tive approach andpresents past experimentswith autonomous driv-
ing or implementations specific to limited domains (e.g. winning
a competition). The architectural solutions are therefore an after-
math of building or evolving an autonomous vehicle and not the
result of a clear software development life-cycle. A major issue of
this approach is that requirements cannot be traced with respect
to functional components and several components group most
functionality. Therefore, without inside knowledge, it is often not
straight forward to adopt the proposals.
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In this paper we take a prescriptive approach driven by standard
requirements. We use requirements from the SAE J3016 standard,
which defines multiple levels of driving automation and includes
functional definitions for each level. The goal of SAE J3016 is to
provide a complete taxonomy for driving automation features and
the underlying principles used to evolve from none to full driving
automation. At themoment of writing this paper, it is the only stan-
dard recommended practice for building autonomous vehicles. We
provide an extensive discussion on the design decisions in the form
of trade-off analysis, which naturally leads to a body of easily acces-
sible distilled knowledge. The current proposal is an extension of
our prior work [6].

The term functional architecture is used analogous to the term func-
tional concept described in the ISO 26262 automotive standard
[1,7]: a specification of intended functions and necessary interac-
tions in order to achieve desired behaviours. Moreover, it is equiva-
lent to functional views in software architecture descriptions; which
provide the architects with the possibility to cluster functions and
distribute them to the right teams to develop and to reason about
them [4]. Functional architecture design corresponds to the second
step in theV-model [7,8], a software development life cycle imposed
by the mandatory compliance to ISO 26262 automotive standard.

We follow themethodology described byWieringa [9] as the design
cycle; a subset of the engineering cycle which precedes the solution
implementation and implementation evaluation. The design cycle
includes designing and validating a solution for given requirements.

The rest of the paper is organised as follows. In Section 2 we intro-
duce background information. In Section 3 we infer the require-
ments from the SAE J3016 standard. In Section 4 we present the
reasoning process that lead to a solution domain. The functional
components are introduced in Section 5, followed by component
interaction patterns in Section 6 and a general trade-off analysis
in Section 7. A discussion follows in Section 8. In Section 9 we
compare the proposal with related work and conclude with future
research in Section 10.

2. BACKGROUND

The development of automotive systems is distributed between
vehicle manufacturers, called Original Equipment Manufacturers
(OEM), and various component suppliers – leading to a distributed
software development life cycle where the OEM play the role of
technology integrators. This development process allows OEM
to delegate responsibility for development, standardisation and
certification to their component suppliers. The same distributed
paradigm preserves, at the moment, for component distribution
and deployment inside a vehicle; where no central exists.

Instead, embedded systems called Electronic Control Units (ECU)
are deployed on vehicles in order to enforce digital control of func-
tional aspects such as steering or brakes. Many features require
interactions and communications across several ECUs. For exam-
ple, cruise control needs to command both the breaking and
the steering system based on the presence of other traffic par-
ticipants. In order to increase component reuse across systems,
manufacturers and vendors developed a number of standardised
communication buses (e.g. CAN, FlexRay) and software tech-
nology platforms (e.g. AUTOSAR) that ease communication and

deployment between distributed components. We are hereby con-
cerned with designing functional software components which are
deployed on ECU and are required to exchange information over
one or many communication buses. Standardised interfaces (such
as the ones defined in AUTOSAR) help ease the development and
communication between software components, however, they do
not have a big impact on their core functionality.

As mentioned in Section 1, SAE J3016 is a standard that defines
multiple levels of automation, sketching an incremental evolution
from no automation to fully autonomous vehicles. The purpose of
the standard is to be descriptive and broad about this evolution,
but it does not provide strict requirements for it. However, at the
moment, it is the most comprehensive, widely adopted, document
that drives this evolution. Given its wide adoption, we use it as a
baseline for our approach: vehicles should satisfy at least the func-
tions described by this standard in order to qualify for automation
levels. With the goal of understanding the vehicle automation pro-
cess, we first introduce themost important terms as defined by SAE
J3016 [3]:

• Dynamic Driving Task (DDT) – real-time operational and
tactical functions required to operate a vehicle, excluding
strategic functions such as trip scheduling or route planning.
DDT is analogous to driving a car on a predefined route and
includes actuator control (e.g. steering or braking) and tactical
planning such as generating and following a trajectory, keeping
the vehicle within the lanes, maintaining distance from other
vehicles, etc.

• Driving automation system – hardware and software systems
collectively capable of performing some parts or all of the DDT
on a sustained basis. Driving automation systems are usually
composed of design-specific functionality called features (e.g.
automated parking, lane keep assistance, etc.). The interplay
between hardware and software was described earlier. We are
currently interested in the interplay between software
components in order to design driving automation systems
capable to achieve full autonomy.

• Operational Design Domains (ODD) – the specific conditions
under which a given driving automation system or feature is
designed to function. Defining an operational domain is an
important task during the design phase, as the requirements
change in relation to it. For example, a vehicle which should
operate in sunny weather in a limited area of a city has different
requirements than a vehicle which should operate in winter
conditions, on mountain roads. As will be discussed later, full
autonomy requires a vehicle to operate without intervention in
all weather and traffic conditions.

• DDT fall-back – the response by the user or by an Automated
Driving System (ADS) to either perform the DDT task or
achieve a safety state after occurrence of a DDT
performance-relevant system failure or upon leaving the
designated ODD.

• DDT fall-back-ready user – the user of a vehicle equipped with
an engaged ADS feature who is able to operate the vehicle and
is receptive to ADS-issued requests to intervene and to perform
any if not all of the DDT tasks during a system failure or when
an automated vehicle requests it.
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• DDT feature – a design-specific functionality at a specific level
of driving automation with a particular ODD. A feature can be
seen as a specific hardware or software component that is
performs a driving automation task in a predefined domain. We
may think of lane assistance in sunny weather as a DDT feature.

Besides hardware constraints, full vehicle automation involves the
automation of the DDT in all ODD, by developing a driving
automation system. Recursively, driving automation systems are
composed of design-specific features. In this sense, complete vehi-
cle automation is seen as developing, deploying and orchestrating
enough DDT features in order to satisfy all conditions (ODDs) in
which a human driver can operate a vehicle (safely).

The SAE classification of driving automation for on-road vehicles,
showcased in Figure 1, ismeant to clarify the role of a human driver,
if any, during vehicle operation. The first discriminant condition is
the environmental monitoring agent. In the case of no automation
up to partial automation (levels 0-2), the environment is monitored
by a human driver, while for higher degrees of automation (levels
3-5), the vehicle becomes responsible for environmental
monitoring.

Another discriminant criteria is the responsibility for DDT fall-
back mechanisms. Intelligent driving automation systems (levels
4-5) embed the responsibility for automation fall-back constrained
or not by operational domains, while for low levels of automation
(levels 0-3) a human driver is fully responsible.

According to SAE:

• If the driving automation system performs the longitudinal
and/or lateral vehicle control, while the driver is expected to
complete the DDT, the division of roles corresponds to levels
1 and 2.

• If the driving automation system performs the entire DDT, but a
DDT fall-back ready user is expected to take over when a system
failure occurs, then the division of roles corresponds to level 3.

Figure 1 SAE J3016 levels of driving automation.

• If a driving automation system can perform the entire DDT
and fall-back within a prescribed ODD or in all
driver-manageable driving situation (unlimited ODD), then
the division of roles corresponds to levels 4 and 5.

3. REQUIREMENTS INFERENCE

The process of functional architecture design starts by developing a
list of functional components and their dependencies [4]. Towards
this end, SAE J3016 defines three classes of components:

• Operational – basic vehicle control,

• Tactical – planning and execution for event or object avoidance
and expedited route following and

• Strategic – destination and general route planning.

Each class of components has an incremental role in a hierarchical
control structure which starts from low level control, through the
operational class and finisheswith a high level overview through the
strategic class of components. In between, the tactical components
handle trajectory planning and response to traffic events. This hier-
archical view upon increasing the level of vehicle automation is an
important decision driver in architecture design.

Later, the SAE definition for DDT specifies, for each class, the func-
tionality that must be automated in order to reach full autonomy
(level 5):

• Lateral vehicle motion control via steering (operational).

• Longitudinal vehicle control via acceleration and deceleration
(operational).

• Monitoring of the driving environment via object and event
detection, recognition, classification and response preparation
(operational and tactical).

• Object and event response execution (operational and tactical).

• Manoeuvre planning (tactical).

• Enhanced conspicuity via lighting, signalling and gesturing,
etc. (tactical).

Moreover, a level 5 vehicle must ensure DDT fall-back and must
implement strategic functions, not specified in the DDT definition.
The latter consists of destination planning between two points pro-
vided by a human user or received from an operational centre.

An overview of the hierarchical class of components defined is illus-
trated in Figure 2. The level of complexity increases from left to
right – from operational to strategic functions.

Although not exhaustive, the list of components and their intended
behaviour, as specified by SAE J3016, represents a good set of ini-
tial requirements. It is the choice of each OEM how any of the
intended functionality will be implemented. For example, different
algorithms or software systems could be used to implement object
detection, recognition and classification. This choice can impact the
final set of functional components because one OEM can choose
to use multiple sensors and powerful sensor fusion algorithms,
while other OEM can build a single component that can handle all
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Figure 2 Functional component classification according to SAE
J3016 [3].

tasks. In this paper, we strive to divide each function into atomic
components. If any of these pieces will be combined in higher level
components, it won’t have any impact on this proposal. An in-depth
analysis of such trade-offs, often driven by the distributed software
development life-cycle, is presented in Section 7.

We briefly remind that the automation of any task is a control loop
which receives input from sensors, performs some reasoning and
acts upon the environment (possibly through actuators) [10]. The
automation of complex tasks requires a deeper (semantic) under-
standing of sensor data in order to generate higher order decisions
or plans. However, the loop behaviour is preserved. This analogy
holds for the SAE classification of functional components illus-
trated in Figure 2. Each class of components can be implemented as
a control loop which receives input from sensors and acts accord-
ingly. From left to right – from operational to strategic functions –
the level of semantic knowledge needed in order to make a decision
increases. Moreover, as wemove further from left to right, the com-
ponents do not control actuators anymore, but other components.
For example, tactical components will send commands to oper-
ational components. Similarly, strategic functions cannot directly
act upon actuators, but communicate with tactical functions, which
will later command operational functions.

Thus we can regard each class of components as a big loop – illus-
trated in Figure 2 – and each component in each class as a smaller
loop because each component will require certain semantic infor-
mation and not all the information available at class level. We will
exploit this behaviour in the following section.

4. RATIONALE

Software architecture design for autonomous vehicles is analogous
to the design of a real-time, intelligent, control system – or a robot.
Although we can find considerably literature concerning soft-
ware architecture in the field of robotics and artificial intelligence
[11–17], these proposals seem to be overlooked by automotive
software engineers. Therefore, many reference architectures for
autonomous vehicles miss developments and trade-offs explored in
the field of robotics – as we will shall see in Section 9. We aim to
bridge this gap in this section, by discussing the most important
developments in the field of robotics and select the best choices for
the automotive domain.

For a long time, the dominant view in the AI community was that a
control system for autonomous robots should be composed of three
functional elements: a sensing system, a planning system and an

execution system [18]. This view led to the ubiquitous sense-plan-
act (SPA) paradigm. For planning, a system typically maintains an
internal state representation, which allows it to position itself in the
environment and plan next actions. Because this model has to be
up-to-date and accurately reflect the environment in which a robot
operates, it might require a lot of information. As the operational
environment becomes more complex, the complexity of the inter-
nal representation also increases, increasing the time needed to plan
the next steps. Therefore, in fast changing environments, new plans
may be obsolete before they are deployed. Moreover, unexpected
outcomes from the execution of a plan stemmay cause the next plan
steps to be executed in an appropriate context and lead to unex-
pected outcomes.

One question that naturally stood up from these shortcomings is
“how important is the internal state modelling?” In order to answer
this question, several definitions meant to achieve similar goals
were proposed.Maes [11] first distinguishes between behaviour and
knowledge based systems – where knowledge-based systems main-
tain an internal state of the environment, while behaviour-based
systems do not [11]. Similarly, the literature distinguishes between
deliberative and reactive systems, where deliberative systems rea-
son upon an internal representation of the environment and reac-
tive system fulfil goals through reflexive reactions to environment
changes [13–16]. Reactive or behaviour based systems are able to
react faster to a changing environment, but reason less about it.

We find both definitions to answer the same questions – “howwill a
system plan its decisions?” Through reasoning on complex seman-
tic information extracted from its sensors or by simple reactions to
simple inputs? Deciding on this is an initial trade-off between speed
of computation and the amount of environmental understanding a
system can have.

When considering the development of autonomous vehicles
through these lenses, we can see that vehicles require both reactive
and deliberative components. Maintaining a pre-defined trajectory
and distance from the objects around a vehicle is an example of a
reactive system, which should operate with high frequency and be
as fast as possible in order to overcome any environmental change.
In this case, maintaining a complex representation of the surround-
ing environment is futile.

However, a decision making mechanism responsible, for example,
to overtake the vehicle in front is an example of a deliberative sys-
tem. In this case maintaining a complex world model can help the
system to take a better decision.

For example, one can not only judge the distances to the surround-
ing objects, but also the relevance of the decision in achieving the
goal. Is it worth to overtake the car in front if the vehicle must
turn right in a relatively short distance after the overtake? In order
to answer this question a complex world model that must com-
bine semantic information about the overall goal, future states and
nearby objects is needed. Processing this amount of information
will naturally take a longer time. However, since the result can only
impact the passengers comfort (assuming that driving behind a
slow car for a long time is un-comfortable) the system can assume
this processing time.

Gat and Bonnasso [13] first debate the role of internal state and
establish a balance between reactive and deliberative components
inside a system. In their proposal, the functional components are
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classified based on their memory and knowledge about the inter-
nal state in: no knowledge, knowledge of the past, or knowledge of
the future – thus resulting in three layers of functional components.
However, their model does not specify how, or if, the knowledge
can be shared between the layers. Moreover, it is not clear how and
if any components incorporate knowledge about past, future and
other static data.

A better proposal, that bridges the gap between reactive and delib-
erative components, is the NIST Real Time Control Systems (RCS)
reference architecture introduced by Albus [12]. This architecture
does not separate components based on memory, but builds a hier-
archy based on semantical knowledge.

Thus, components lower in the hierarchy have limited semantic
understanding and can generate inputs for higher components,
deepening their semantic knowledge and understanding. More-
over, RCS has no temporal limitations for a component’s knowl-
edge. One can hold static or dynamic information about past,
present or future. Although all componentsmaintain a woldmodel,
this can be as simple as reference values, to which the input must be
compared.

We find this proposal a good fit for automotive requirements and
for the functional classification presented in Section 3 because it
allows a balanced representation of reactive and deliberative com-
ponents and it allows hierarchical semantic processing – one of the
requirements given by the classification of functional components
proposed earlier. Further on, we introducemore details about it and
illustrate it in Figure 3.

At the heart of the control loop for an RCS node is a representa-
tion of the external world – the world model – which provides a site
for data fusion, acts as a buffer between perception and behaviour,
and supports both sensory processing and behaviour generation.
Depending on the complexity of the task a node is responsible
for, the complexity of the world model increases. For the simplest
tasks, the world model can be very simple, such as in the case of a
throttle system which only has knowledge about the velocity of
the car and the inputs it receives from the acceleration pedal. For
complex tasks, such as destination planning, the world model must
include complex information such as the maps for an operational
domain, real-time traffic information, etc.

Figure 3 Real time intelligent control systems reference
architecture [19].

Sensory processing performs the functions of windowing,
grouping, computation, estimation and classification on input
from sensors. World modelling can also maintain static knowl-
edge in the form of images, maps, events or relationships between
them. Value judgment provides criteria for decision making, while
behaviour generation is responsible for planning and execution of
behaviours [12].

Albus proposed the design for a node in a hierarchical control struc-
ture, where lower level nodes can generate inputs for higher level
nodes, thus increasing the level of abstraction and cognition. There-
fore, nodes lower in a hierarchy can have a very simplistic world
model and behaviour generation functions and can easily imple-
ment reactive components. In order to keep in linewith the example
above, we consider the case ofmaintaining a distance froman object
in front. A node implementing this functionality will only have to
keep in theworldmodel block the distance from the vehicle in front,
the reference distance and the vehicle’s velocity. The behaviour gen-
eration block will decide to issue a braking command whenever the
distance will be too close or whenever it predicts (using the velocity
of the vehicle) that the distance will decrease.

Higher nodes, representing deliberative components, can easily be
described with the same architecture. Their world model block will
process more semantic information and generate more complex
behaviours (such as the decision to overtake the vehicle in front in
order to increase the overall ride comfort and optimise the goal).

In this hierarchy, higher nodes consume semantic information
extracted by lower nodes. However, this may not always the case
with autonomous vehicles where several nodes, at different hierar-
chical levels, can consume the same information. For example, the
distance from the vehicle in front can be used by both the reac-
tive and the deliberative components introduced earlier. Moreover,
several components at the same hierarchical layer can interact, as a
sequential process.

From an architectural point of view, a sequential processing stream
which follows different, individual, processing steps is represented
through a pipes and filterspattern [20]. The pattern divides a process
in several sequential steps, connected by the data flow – the output
data of a step is the input to the subsequent step. Each processing
step is implemented by a filter component [20].

In its pure form, the pipes and filters pattern can only represent
sequential processes. For hierarchical structures, a variant of the
pattern called tee and join pipeline systems is used [20]. In this
paradigm, the input from sensors is passed either to a low level
pipeline corresponding to a low level control loop, to a higher level
pipeline or both.

An example is shown in Figure 4: the input from sensors is fed to
different processing pipes. At a low level of abstraction, pipeline 1
only executes simple operations and sends the result to actuators.

At higher levels of abstraction, pipeline 2 processes more sen-
sor data and generates manoeuvre plans which are translated to
actuator language. A priority condition will decide which input to
send to the actuators. Alternatives to this patterns will be further
discussed in Sections 6 and 7. At the moment, we concentrate on
the functional decomposition, which will suggest the nodes in the
future architecture.
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Figure 4 Tee and join pipelines architectural pattern.

5. FUNCTIONAL DECOMPOSITION

We start by introducing the functional components and, in
Section 6, discuss interaction patterns. Figure 5 depicts the func-
tional components that satisfy SAE J3016 requirements for fully
autonomous vehicles. The data flows from left to right; from the
sensors abstraction to actuator interfaces, simulating a closed con-
trol loop. The figure represents three types of entities: functional
components (blue boxes), classes of components (light grey boxes)
and sub-classes of components (dark grey boxes).

The proposal maps onto the SAE classification of functional com-
ponents, introduced in Section 2, in the following way: vehicle
control and actuators interface class of components correspond
to SAE operational functions, the planning class of components
corresponds to SAE tactical functions, and the behaviour generation
class maps to both strategic and planning class of functions.

Two orthogonal classes, corresponding to data management and
system and safety management, are depicted because they repre-
sent cross-cutting concerns: data management components imple-
ment long term data storage and retrieval, while system and safety
management components act in parallel of normal control loops
and represent DDT fall-back mechanisms or other safety concerns.

In the following subsections each class of filters is discussed together
with its components. The last sub-section discusses the relation
with middle-ware solutions and AUTOSAR.

5.1. Sensor Abstractions

Sensor abstractions provide software interfaces to hardware sen-
sors, possible adapters and conversion functionality needed to
interpret the data.We distinguish two classes of sensors and, respec-
tively, of abstractions: (1) sensors that monitor the internal vehicle
state or dynamic attributes (e.g. inertial measurements, speed, etc.)
and (2) sensors that monitor the external environment as required
by the SAE requirements.

Environmental monitoring can be based on RADAR, LIDAR and
camera technologies. In the case of cooperative driving, communi-
cation with other traffic participants is realised through vehicle-to-
everything (V2X). Global positioning (GPS) is required to localise
the vehicle in a map environment or to generate global routes and
is therefore represented as a separated functional component.

All abstractions concerning the internal vehicle state are grouped
into one functional component, because the choice is specific to
each OEM.

5.2. Sensor Fusion

Multi-sensor environments generate large volumes of data with
different resolutions. These are often corrupted by a variety of

noise and clutter conditions which continually change because of
temporal changes in the environment. Sensor fusion combines
data from different, heterogeneous, sources to increase accuracy of
measurements.

The functional components are chosenwith respect to SAE require-
ments for object and event detection, recognition and classification.
We distinguish between static and dynamic objects (e.g. a barrier,
pedestrians) and road objects (e.g. traffic lights) because they have
different semantic meaning. Moreover, local positioning is needed
to position the vehicle relative to the identified objects and GPS is
needed for strategic functionality.

Through sensor fusion, a processing pipeline gathering information
from various sensors such as RADAR and camera can be defined in
order to classify an object, determine its speed, and add other prop-
erties to its description. The distinction mentioned earlier between
the external environment and the internal state of a vehicle is pre-
served in Figure 5: the first four components process data related to
the external environment, while the internal state is represented by
the last functional component.

5.3. World Model

The world model represents the complete picture of the external
environment as perceived by the vehicle, together with its internal
state. Data coming from sensor fusion is used together with stored
data (e.g. maps) in order to create a complete representation of the
world.

As in RCS architecture, the world model acts as a buffer between
sensor processing and behaviour generation. Components in this
class maintain knowledge about images, maps, entities and events,
but also relationships between them. World modelling stores and
uses historical information (from past processing loops) and pro-
vides interfaces to query and filter its content for other components.
These interfaces, called data sinks, filter content or group data for
different consumers in order to reveal different insights. One exam-
ple heavily used in the automotive industry is the bird’s eye view.
However, the deployed data sinks remain OEM-specific.

5.4. Behaviour Generation

Behaviour generation is the highest cognitive class of functions in
the architecture. Here, the system generates predictions about the
environment and the vehicle’s behaviour. According to the vehicle’s
goals, it develops multiple behaviour options (through behaviour
generation) and selects the best one (behaviour selection). Often, the
vehicle’s behaviour is analogously to a Finite StateMachine (FSM) or
aMarkov Decision Process (MDP). The behaviour generation mod-
ule develops a number of possible state sequences from the current
state and the behaviour reasoning module selects the best alterna-
tive. Complex algorithms from Reinforcement Learning (RL) use
driving policies stored in the knowledge database to reason and gen-
erate a sequence of future states. Nevertheless, the functional loop
is consistent: at first a number of alternative behaviours are gener-
ated, then one is selected using an objective function (or policy).

A vehicle’s goal is to reach a given destination without any inci-
dent. When the destination changes (through a Human Machine
Interaction (HMI) input), the global routing component will change
the goal and trigger new behaviour generation. These components
correspond to the SAE strategic functions.
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Figure 5 Proposed functional architecture, part I: functional components.

5.5. Planning

The planning class determines each manoeuvre an autonomous
vehicle must execute in order to satisfy a chosen behaviour. The
path planning and monitoring component generates an obstacle
free trajectory and composes the trajectory implementation plan
from composition functions deployed on the vehicle. It acts like a
supervisor which decomposes tasks, chooses alternative methods
for achieving them, and monitors the execution. The need to re-use
components across vehicles or outsource the development leads the
path to compositional functions. These functions can be thought as
DDT features, described in Section 2. Examples of such functions
are: lane keeping systems or automated parking systems (all, com-
mercial of-the-shelf deployed products).

Compositional functions represent an instantiation of the RCS
architecture; they receive data input from sensor fusion or world
modelling through data sinks, judge its value and act accordingly,
sending the outputs to vehicle control. Path planning and monitor-
ing acts as an orchestrator which decide which functions are needed
to complete the trajectory and coordinate them until the goal is
fulfilled or a new objective arrives. For vehicles up and including

level 4, which cannot satisfy full autonomous driving in all driving
conditions, the control of the vehicle must be handed to a trained
driver in case a goal cannot be fulfilled. Therefore, this class includes
a driving alert HMI component.

5.6. Vehicle Control

Vehicle control is essential for guiding a car along the planned tra-
jectory. The general control task is divided into lateral and lon-
gitudinal control, reflecting the SAE requirements for operational
functions. This allows the control system to independently deal
with vehicle characteristics (such asmaximum allowable tire forces,
maximum steering angles, etc.) and with safety-comfort trade-off
analysis. The trajectory control block takes a trajectory (generated
at the path planning and monitoring level) as input and controls
the lateral and longitudinal modules. The trajectory represents a
future desired state given by one of the path planning compositional
functions. For example, if a lane-change is needed, the trajectory
will represent the desired position in terms of coordinates and
orientation, without any information about how the acceleration,
steering or braking will be performed. The longitudinal control
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algorithm receives the target longitudinal state (such as brake until
40 km/h) and decides if the action will be performed by acceler-
ating, braking, reducing throttle or using the transmission mod-
ule (i.e. engine braking). The lateral control algorithm computes
the target steering angle given the dynamic properties of a vehicle
and the target trajectory. If the trajectory includes a change that
requires signalling, the communication mechanisms will be trig-
gered through the intention communication module.

5.7. Actuator Interfaces

The actuator interface modules transform data coming from vehi-
cle control layer to actuator commands. The blocks in Figure 5 rep-
resent the basic interfaces for longitudinal and lateral control.

5.8. Data Management

Data will at the centre of autonomous vehicles [21]. In spite of
the fact that most data requires real-time processing, persistence is
also needed. These concerns are represented using the data man-
agement class of components. Global localisation features require
internal maps storage; intelligent decision and pattern recogni-
tion algorithms require trainedmodels (knowledge database); inter-
nal state reporting requires advanced logging mechanisms (logging
database). The logging-report databases are also used to store data
needed to later tune and improve intelligent algorithms. Moreover,
an audit database keeps authoritative logs (similar to black boxes in
planes) that can be used to solve liability issues. In order to allow
dynamic deployable configurations and any change in reference
variables (e.g. a calibration or a decisional variable) a value reference
database is included.

5.9. System and Safety Management

The system and safety management block handles functional safety
mechanisms (fault detection and management) and traffic safety
concerns. It is an instantiation of the separated safety pattern
[22] where the division criteria split the control system from the
safety operations. Figure 5 only depicts components that spot
malfunctions and trigger safety behaviour (internal state monitor,
equivalent to a watch dog), but not redundancy mechanisms. The
latter implement partial or full replication of functional compo-
nents. Moreover, safety specific functions deployed by the OEM to
increase traffic safety are distinctly represented. At this moment
they are an independent choice of each OEM.

As the level of automation increases, it is necessary to take com-
plex safety decisions. Starting with level 3, the vehicle becomes
fully responsible for traffic safety. Therefore, algorithms capable of
full safety reasoning and casualty minimisation are expected to be
deployed. While it is not yet clear how safety reasoning will be stan-
dardised and implemented in future vehicles, such components will
soon be mandatory [23]. An overview of future safety challenges
autonomous vehicles face is illustrated in [24]. With respect to the
separated safety pattern, in Figure 5 safety reasoning components
are separated from behaviour generation.

5.10. AUTOSAR Context

AUTOSAR is a consortium between OEM and component suppli-
ers which supports standardisation of the software infrastructure

needed to integrate and run automotive software. This paper does
not advocate for or against AUTOSAR. The adoption and use of this
standard is the choice of each OEM. However, due to its popular-
ity, we consider mandatory to position the work in the standard’s
context. Given AUTOSAR, the functional components in Figure 5
represent AUTOSAR software components. The interfaces between
components can be specified through AUTOSAR’s standardised
interface definitions. At the moment, the level of abstraction pre-
sented in this paper does not include software interface.

6. INTERACTIONS BETWEEN
COMPONENTS

Asmentioned in Section 4, the components in Figure 5 act as a hier-
archical control structure, where the level of abstraction and cog-
nition increases with the hierarchical level, mapping on the SAE
classification of functional components. Components lower in the
hierarchy handle less complex tasks such as operational functions,
while higher components handle planning and strategic objectives
(e.g. global routing or trajectory planning).

We propose the use of pipe-and-filter pattern for component inter-
actions in flat control structures (same hierarchical level) and the
use of tee-and-join pipelines to represent the hierarchy. In a hier-
archical design, lower level components offer services to adjacent
upper level components. However, the data inputs are often the
same. A high level representation of the system, through the tee-
and-join pipelines pattern is illustrated in Figure 6. The grey boxes
represent processing pipelines and the blue ones represent compo-
nents classes.

For each component class, a process is analogous to a pipeline.
As example, once a user communicates a final destination, the
behaviour generation process starts. This example is illustrated in
Figure 7, where upon receiving a destination at the HMI input

Figure 6 Proposed functional architecture, part II:
hierarchical control structure using tee-and-join
pipelines pattern.
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Figure 7 Proposed functional architecture, part III:
component interaction at class level. The behaviour generation
process.

filter, the global routing filter forwards a route to the behaviour
generation filter. This filter breaks down the route in actions that
have to be taken by the vehicle in order to reach the destination.
The actions are analogous to states in a FSM. Often, there are sev-
eral paths between two states. Further on, the behaviour selection
component will select the best path between two states and forward
it to the planning process.

Moreover, messages received at component level have to be pri-
oritised. For example, an actuator interface can receive commands
from the longitudinal control component or a safety specific func-
tion (e.g. emergency braking). In order to decide which command
to execute first, the messages must contain a priority flag. Since this
functionality is dependent on the component’s interface and spe-
cific to OEM, this discussion is limited.

Various alternatives to the chosen interaction patterns will be dis-
cussed in the next section.

7. TRADE-OFF ANALYSIS

Software architecture design is often not deterministic. Given a set
of requirements, different architectsmight come to different results.
The process of weighting alternatives and selecting the most appro-
priate decisions is called trade-off analysis. Several decisions in
this paper could be taken differently. Therefore, in this section we
present several alternatives to our decisions andweight their advan-
tages and disadvantages.

Wewill start from the underlying assumption of this paper – that we
can derive a set of valid requirements from the SAE J3016 automo-
tive standard. As mentioned in Section 2, the purpose of this stan-
dard is not to provide a complete definition of autonomy, but rather
a minimal illustration of the functions needed in order to achieve
it. It is meant to guide the process, and not exhaustively describe it.
However, we find this information sufficient for our goals, because
any functionality on top of the minimal requirements remains the
choice of each OEM.

The second decision to be questioned is the use of NIST RCS archi-
tecture as a reference architecture for our work. An in-depth com-
parison with other works was presented in Section 4, however, we
hereby present the trade-offs that come with choosing this refer-
ence architecture. Although it has the power to clearly discriminate
between reactive and deductive components and is general enough
to represent both types of components, this reference architecture
can be sometimes too complex for simple nodes.

In order to properly represent simple functions, from the opera-
tional class, one does not need a complex worldmodel or behaviour
generator modules. In some components they might miss alto-
gether. However, the architecture does not impose any constraints
on the complexity of the world model. Thus, with limited world
modelling or behaviour generation module the architecture can
easily represent very simple control loops such as value compara-
tors. Moreover, when compared to other proposals, this reference
model allows each individual nodes to have a level of reasoning –
while in other only components higher in a hierarchy are respon-
sible for planning. This comes as a benefit for the automotive
software development life-cycle and for the compositional func-
tions we represented in the architecture.

We expect OEM to maintain their status of technology integrators
and outsource more complex functionality to their suppliers – such
as complete lane keeping or collision avoidance systems. These sys-
tems can easily be implemented as RCS nodes and integrated in the
overall architecture.

We find the RCS model broad enough to allow the development of
complex functionality, but sometimes too complex for simple func-
tions – a trade-off that can be easily overcome by simplifying each
block of the architecture in the latter case. A more expressive alter-
native would be to propose RCS nodes of different complexity –
with lower level nodes that can replace world modelling only with
value judgement. This decision must be weighted independently, as
it might add clutter and other trade-offs when deciding which type
of node should one choose for each component.

A third trade-off clearly regards the functional decomposition.
Although we aim to atomically decompose every function and rep-
resent each sub-component individually, there is no way to prove
this is the correct way. New market trends foresee the adoption
of system-on-a-chip circuits that integrate more and more com-
ponents. Technologies such as MobilEye [25] aim to group several
functions on a dedicated chip. In such scenarios, sensor abstrac-
tions and fusion layers could be merged. However, the functions
implemented by such circuits will still resemble our proposal. For
example, even though the sensor abstraction layer compresses to
one component, all the functionality at the sensor fusion layer still
have to be implemented because static, dynamic or road objects
detection is absolutely mandatory for autonomous driving. There-
fore, our atomic decomposition is able to represent these evolutions.

A fourth trade-off to be considered concerns the choice for com-
ponent interaction patterns. Several alternatives to the tee and join
pipelines pattern have been considered. One clear alternative is to
use a layered architecture – where the functional components are
grouped in a hierarchy and function calls can be made from higher
layers to lower ones [4]. However, this choice will constrain the pos-
sible interactions between components, thus limiting the design. At
first, because each layer will encapsulate some components, it will
be impossible to re-use or re-orchestrate them in other processes.
Secondly, because the function calls at lower layers are required to
come from upper layers, thus limiting even more the design.

Another alternative is to use a component based architecture, where
all the components rest at the same hierarchical layer and any com-
ponent can communicate with all others. This pattern seems a
better fit for the automotive domain, where different components
are deployed on various ECU and they communicate through a bus.
However, it is unable to represent hierarchical reasoning.
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We argue that the tee and join pattern is equivalent to the compo-
nent based architecture, but has the ability to represent hierarchical
processes. This is because from a component, one can easily begin
a new pipeline with any other components. If only the pipes and fil-
ter pattern was considered, than the design would be much limited.
However, by giving the ability to re-orchestrate filters in different
pipelines, the tee and join pipelines pattern can easily represent any
kind of processes, either flat or hierarchical.

In this scenario one can define flat processes, similar to component
based orchestration, but also hierarchical processes (similar to the
hierarchical functional classes introduced in Section 3). The only
thing to consider is a processing priority – which defines which
pipelines should execute first.

8. DISCUSSION

Software architects evaluate both the functional suitability of an
architecture and non-functional properties such as performance
or maintainability [26]. In this paper we are only interested in
functional suitability and completeness with respect to SAE J3016
requirements. However, we find of interest to discuss two other
important aspects: the position of the proposed architecture with
respect to (1) the automotive software development life cycle and
(2) the ISO 26262 standard that regulates functional safety. Later,
in Section 9, we provide a comparison with existing literature.

8.1. Incremental Development and
Component Reuse

The SAE classification presented in Section 2 shows an incre-
mental transition from partially automated to fully autonomous
vehicles. The functional division of software components should
respect this incremental transition. Moreover, the OEM software
development life-cycle and preference for outsourcing must be
taken into account.

As mentioned in Section 2, DDT automation is analogous to
deploying and orchestrating enough driving automation features in
order to satisfy all driving conditions (ODD) in which a human can
drive. This assumption employs two development paths:

1. The deployment of new software components specific to new
DDT features or

2. Updating a driving feature with enhanced functionality.

In Figure 5, new DDT features represent new compositional func-
tions specific to path planning. The use of composition functions
enables incremental and distributed development at the cost of
increased complexity for path planning and monitor. These com-
ponents can be commercial-of-the-shelf products that can easily be
outsourced to tier one suppliers.

Behaviour generation improvements are solved through knowledge
database updates. The V2X component interfaces with the external
world, therefore, updates can be pushed through this component. In
most cases, the updates will target the knowledge or value reference
databases.

8.2. Functional Safety

The automotive industry has high functional safety constraints
imposed by the mandatory adherence to ISO 26262 [7]. The objec-
tive of functional safety is to avoid any injuries or malfunctions
of components in response to inputs, hardware or environmental
changes. Error detection and duplication of safety critical compo-
nents are mechanisms suggested by ISO 26262. In this proposal,
we represent the functional component specific to error detec-
tion, however, omit to represent any redundancy or duplicated
components.

We also aim to fulfil a gap in the ISO 26262 standard, with regards
to autonomous vehicles: safety reasoning [24]. To this moment it
is not clear how autonomous vehicles will behave in case an acci-
dent cannot be avoided and which risk to minimise. However, it
is expected for future safety standards to include specification for
safety behaviour.

9. RELATED WORK

As mentioned in Section 4, the transition to automated and
autonomous vehicles lies at the intersection between two research
fields with a rich history in software engineering and architecture:
autonomous systems and automotive. The basis of the first field
were laid in Section 4, although we expect many aspects of its evo-
lution to influence the autonomous vehicles field. The pervasive-
ness of cloud computing and communication that inspired cloud
robotics [27] is highly relevant for the automotive field. As vehi-
cles begin to communicate and even distributively organise [28,29],
software architecture plays an important role in satisfying quality
constraints. New architectural paradigms, such as service orienta-
tion [30] are already explored for some aspects in automotive [31],
with little ties to the field of robotics. Moreover, recent trends in
robotic architecture adaptation [32] are expected to follow in the
field of automotive.

Communication brings new constraints related to security and
trustworthiness, which have a direct impact on automotive software
architecture [33]. Although security is well studied in computer
science, specialised techniques have been proposed in the field of
robotics [34–37], which can be further extended to autonomous
vehicles.

On a different tack, the field of automotive engineering benefits
from a rich history in designing, developing and deploying safety
critical systems able to operate for a long period of time with-
out major interventions. Software engineering in the automotive
domain has been recognised very early as playing an important
role [2,38,39]. From there on, each stage of the software develop-
ment life-cycle has been studied and naturally supported the evolu-
tion of automotive systems; ranging from requirements engineering
[40–42] to software assurance [43,44] or software testing [45].

Software architecture design and system modelling plays a cen-
tral role in the development process. Research in this direction
focused on developing tools to support architecture design,
such as architectural description languages [46,47], architecture
views [48,49], architectural standards [50] and even standard-
isation of architectural styles and interfaces, as in the case of
AUTOSAR [51].
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Moreover, automotive engineering has strong ties with model-
driven engineering [52]; in developing [53], maintaining [54] and
testing models [55–57]. The impact of tight safety requirements on
software architecture has also been analysed in literature [58,59].

However, the software needed to increase the level of autonomy is
expected to have a big impact on all disciplines of automotive soft-
ware engineering. At first, the shift from purely deterministic soft-
ware components to probabilistic ones where classical verification
methods do not scale will have a big impact in the way software
is designed [60]. Moreover, well known vulnerabilities of machine
learning algorithms have to be considered early in the design
phase [61,62]. Next generation automotive architectures take into
consideration moving to more centralised models, with high
band Ethernet communication and networks closer to computer
networks [63].

We further focus on literature proposing functional and reference
architectures starting with level 3, since level 2 vehicles only auto-
mate lateral and longitudinal control. A historical review of level 2
systems is presented in [64].

Behere et al. introduce a functional reference architecture intended
to level 5 vehicles [1]. In this proposal, the authors make a clear
distinction between cognitive and vehicle platform functionality,
similar to the classification in tactical and operational SAE classes.
However, the functional representation groups several different
functions in common components. For example, longitudinal and
latitudinal control of the vehicle, equivalent to acceleration, break-
ing and steering are grouped in only one component, although they
represent different concerns and are typically deployed differently.

The decision and control block [1] responsible for trajectory rea-
soning, selection and implementation is equivalent to the behaviour
generation and planning class of components from Figure 5. How-
ever, the authors only define trajectory generation as a separate
component, leading to a rough representation of functional com-
ponents. It is not clear how this block handles all functionality and
what type of decisions it makes; strategic or tactic. For example,
will the same component be responsible for deciding if a vehicle
should turn left at the first road-cross, over-take the car up front
and generate a trajectory for executing all manoeuvers? These hier-
archical decisions correspond to a transition from strategic to tacti-
cal functions (as indicated by SAE) and should be awarded separate
components. Moreover, important components responsible for
interactions, such as HMI, or for environmental understanding,
such as object detection, are ignored from the proposal [1].

A proliferation of competitions in constrained or unconstrained
environments resulted in different designs of autonomous vehi-
cles. The most popular one, the DARPA Grand Challenge, started
with autonomous vehicles operating in desert conditions and later
evolved to urban environments (through the DARPA Urban Chal-
lenge). During the first competition, although the environment was
challenging, the behaviour of the vehicle was relatively simple and
could be modelled as a simple state machine [65]. This is in con-
trast to challenges posed by real life traffic scenarios, in which
the environment has higher variability and requires more complex
behaviours.

Nevertheless, the initial architectures used in the competition bear
similarities with modern architectures for autonomous vehicles.
The winning vehicle used a layer-based architecture as described in

Section 4 [13], with hierarchical increasing complexity from sen-
sor interfaces to perception (understanding the environment) and
planning [66]. We find a good representation of the SAE J3016
classes of components mentioned in Section 2, although there is a
large overlap between strategic and tactical components (a normal
consequence of the low complexity of the environment).

An interesting (and unique) architectural choice is to explicitly rep-
resent the components responsible for data logging and storage, to
emphasise the need to think about data and treat data and software
as themain innovation driver. This early choice recognises the need
to separate the constraints related to data storage from the func-
tional components thatmay log the data; a perspective oftenmissed
in later architectures.

Given the constrained environment, the proposal was not con-
cerned with destination routing or any driving assistance or safety
features, such as lane assist or emergency braking. Therefore, the
DDT features presented are limited, constraining the architecture’s
suitability to more complex environments. Nonetheless, the work
shows a high level of maturity when reasoning about processing
pipelines and task distribution.

The second competition, the DARPA Urban Challenge, saw
increased interest in computer vision based perception algorithms,
but also a better representation of behaviour generation functions
[67–70]. Moreover, an increase in computing power and centrali-
sation can be observed in all proposals.

Building on the same architecture from the grand challenge [66],
Montemerlo et al. [69] increased the abstraction of the perception
layer to a fusion layer similar to the one represented in Figure 5.
Static and dynamic obstacle tracking (although constrained to a list
by the complexity of the operational domain) are now first class
citizens of the architecture. Similarly, since the vehicle operates in
normal road environments, the importance of local positioning is
recognised.

Several teams focused heavily on computer vision and threat such
algorithms at a different layer [70,71], although use fusion as an
intermediary layer between perception and reasoning. The archi-
tecture presented by Patz et al. [70] provide a clear distinction
between strategic and functional components (through the intelli-
gence and planning layers) and represents a good fit for the SAE
class of components. Other architectures, such as [68] or [71] have
an entangled representation between strategic and tactical compo-
nents because they focus on task-specific components. However, if
we abstract from task-specific components, we can find a balanced
representation of the components suggested by the SAE standard.
What misses is a clear distinction between the hierarchical levels of
abstractions, corresponding to the semantic understanding of the
environment needed to perform a task.

For another autonomous vehicles competition held in Korea, Jo
et al. [72,73] introduce a more complex architecture. The pro-
posal comes one step closer to a general architecture, given broader
competition goals. The model contains sensor abstractions, fusion,
behaviour and path planning, vehicle control and actuator inter-
faces. In this regard, it represents similar concerns to Figure 5, with-
out world modelling and HMI route inputs. Instead, the behaviour
planning component integrates data coming from sensors in order
to generate an execution plan. Since the goal of the competition was
limited, both localisation and behaviour reasoning components are
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restricted (an FSM with only eight possible states that can stop for a
barrier, detect split road, etc.). The artefact successfully represents
operational and tactical functions. Moreover, Jo et al. divide, for the
first time, the concerns from behaviour and from path planning,
thus obtaining several levels of cognition and control. The study
also reveals important details for in-vehicle ECU deployment and a
mapping to AUTOSAR.

In a different competition, called the Grand Cooperative Driving
Challenge, teams raced to develop vehicles that can successfully
exchange information and form platoons [74–78]. Although the
environmental monitoring requires less semantic understanding,
the representation of tactical and operational function across the
proposed architectures is similar to the divisionmade by SAE J3016.
In particular, the architecture presented in [78] uses the tee-and-
join pipelines patter introduced above.

An important contribution from industry research is the work of
Ziegler et al. [79] at Mercedes Benz, later evolved to cooperative
driving [77]. Although it has a descriptive purpose, the system
overview is themost similar to the SAE suggestion and the proposal
introduced in this paper. It features a clear distinction between
object recognition, localisation, motion planning and vehicle con-
trol, analogous to sensor fusion, behaviour generation, planning
and vehicle control in Figure 5. Another important contribution is
the representation of data storage functionality for digital maps and
reactive components such as emergency braking.

Overall, we observe two approaches in the literature: (1) a high
level overview of system components where the functionality is
not clearly divided and (2) proofs-of-concept from experiments
with autonomous features or competition with limited operational
domain. The lessons learned from participating in different com-
petitions are very valuable. Most architectures considered here
have a large overlap with the SAE J3016 description and classes of
functions, with the current proposal and between themselves. The
overlap between themselves reveals an intrinsic set of components
without which autonomy will not be possible. They represent the
least can be done to automate some functions. The disadvantage
of developing with concrete scenarios in mind is the lower level of
abstraction needed to develop a reference architecture.

In this paper we try to overcome this advantage using a standard
driven and more fine-grained functional decomposition. Several
other constraints, such as the automotive software development
life-cycle or the role of the OEMs are taken into account, leading
to a more general proposal. Moreover, since the ultimate goal is to
achieve level 5 autonomy, the functional decomposition takes into
account the semantics of the information consumed, which natu-
rally leads to incremental, hierarchical, abstractions.

10. CONCLUSIONS AND FUTURE
RESEARCH

We introduce a functional software architecture for fully auto-
nomous vehicles. Since the automotive industry is highly standard-
ised, we follow the functional requirements from an automotive
standard which defines multiple levels of driving automation and
includes functional definitions for each level.

During the architecture design, we aim to respect the incremental
development process of autonomous vehicles and the distributed

software development process specific to the automotive industry.
The final artefact represents an automotive specific instantiation of
the NIST RCS reference architecture for real-time, intelligent, con-
trol systems. We use the pipe-and-filter architectural pattern for
component interaction and the tee-and-join pipeline pattern to rep-
resent a hierarchical control structure. Several trade-offs and alter-
native decisions are discussed within the paper.

Future work might include refinement through expert opinion.
Later steps consider component interface design, a choice for hard-
ware architecture, functional component distribution across ECUs
and component distribution inside local networks in order to sat-
isfy security requirements.
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