Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

OD-Enhanced Dynamic Spatial-Temporal Graph Convolutional Network for Metro Passenger Flow Prediction

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14452))

Included in the following conference series:

  • 507 Accesses

Abstract

Metro passenger flow prediction is crucial for efficient urban transportation planning and resource allocation. However, it faces two challenges. The first challenge is extracting the diverse passenger flow patterns at different stations, e.g., stations near residential areas and stations near commercial areas, while the second one is to model the complex dynamic spatial-temporal correlations caused by Origin-Destination (OD) flows. Existing studies often overlook the above two aspects, especially the impact of OD flows. In conclusion, we propose an OD-enhanced dynamic spatial-temporal graph convolutional network (DSTGCN) for metro passenger flow prediction. First, we propose a static spatial module to extract the flow patterns of different stations. Second, we utilize a dynamic spatial module to capture the dynamic spatial correlations between stations with OD matrices. Finally, we employ a multi-resolution temporal dependency module to learn the delayed temporal features. We also conduct experiments based on two real-world datasets in Shanghai and Hangzhou. The results show the superiority of our model compared to the state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gong, Y., Li, Z., Zhang, J., Liu, W., Zheng, Y.: Online spatio-temporal crowd flow distribution prediction for complex metro system. IEEE Trans. Knowl. Data Eng. 34(2), 865–880 (2020)

    Article  Google Scholar 

  2. Yu, H., Liu, A., Wang, B., Li, R., Zhang, G., Lu, J.: Real-time decision making for train carriage load prediction via multi-stream learning. In: Gallagher, M., Moustafa, N., Lakshika, E. (eds.) AI 2020. LNCS (LNAI), vol. 12576, pp. 29–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64984-5_3

    Chapter  Google Scholar 

  3. Ma, X., Zhang, J., Du, B., Ding, C., Sun, L.: Parallel architecture of convolutional bi-directional LSTM neural networks for network-wide metro ridership prediction. IEEE Trans. Intell. Transp. Syst. 20(6), 2278–2288 (2018)

    Article  Google Scholar 

  4. Lv, M., Hong, Z., Chen, L., Chen, T., Zhu, T., Ji, S.: Temporal multi-graph convolutional network for traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 22(6), 3337–3348 (2020)

    Article  Google Scholar 

  5. Gao, A., Zheng, L., Wang, Z., Luo, X., Xie, C., Luo, Y.: Attention based short-term metro passenger flow prediction. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, S.-Y. (eds.) KSEM 2021. LNCS (LNAI), vol. 12817, pp. 598–609. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82153-1_49

    Chapter  Google Scholar 

  6. Yang, X., Xue, Q., Ding, M., Wu, J., Gao, Z.: Short-term prediction of passenger volume for urban rail systems: a deep learning approach based on smart-card data. Int. J. Prod. Econ. 231, 107920 (2021)

    Article  Google Scholar 

  7. Yu, H., Lu, J., Liu, A., Wang, B., Li, R., Zhang, G.: Real-time prediction system of train carriage load based on multi-stream fuzzy learning. IEEE Trans. Intell. Transp. Syst. 23(9), 15155–15165 (2022)

    Article  Google Scholar 

  8. Zhang, J., Chen, F., Cui, Z., Guo, Y., Zhu, Y.: Deep learning architecture for short-term passenger flow forecasting in urban rail transit. IEEE Trans. Intell. Transp. Syst. 22(11), 7004–7014 (2020)

    Article  Google Scholar 

  9. Jing, Y., Hu, H., Guo, S., Wang, X., Chen, F.: Short-term prediction of urban rail transit passenger flow in external passenger transport hub based on LSTM-LGB-DRS. IEEE Trans. Intell. Transp. Syst. 22(7), 4611–4621 (2020)

    Article  Google Scholar 

  10. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

    Article  Google Scholar 

  11. Sun, Y., Leng, B., Guan, W.: A novel wavelet-SVM short-time passenger flow prediction in Beijing subway system. Neurocomputing 166, 109–121 (2015)

    Article  Google Scholar 

  12. Zhang, W.: Graph based approach to real-time metro passenger flow anomaly detection. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 2744–2749. IEEE (2021)

    Google Scholar 

  13. Li, B., Guo, T., Li, R., Wang, Y., Gandomi, A.H., Chen, F.: A two-stage self-adaptive model for passenger flow prediction on schedule-based railway system. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds.) Advances in Knowledge Discovery and Data Mining, PAKDD 2022. LNCS, vol. 13282, pp. 147–160. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05981-0_12

  14. Wang, J., Zhang, Y., Wei, Y., Hu, Y., Piao, X., Yin, B.: Metro passenger flow prediction via dynamic hypergraph convolution networks. IEEE Trans. Intell. Transp. Syst. 22(12), 7891–7903 (2021)

    Article  Google Scholar 

  15. He, C., Wang, H., Jiang, X., Ma, M., Wang, P.: Dyna-PTM: OD-enhanced GCN for metro passenger flow prediction. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2021)

    Google Scholar 

  16. Noursalehi, P., Koutsopoulos, H.N., Zhao, J.: Dynamic origin-destination prediction in urban rail systems: a multi-resolution spatio-temporal deep learning approach. IEEE Trans. Intell. Transp. Syst. 23, 5106–5115 (2021)

    Article  Google Scholar 

  17. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  18. Rakthanmanon, T., et al.: Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 262–270 (2012)

    Google Scholar 

  19. Martineau, J., Finin, T.: Delta TFIDF: an improved feature space for sentiment analysis. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 3, pp. 258–261 (2009)

    Google Scholar 

  20. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  21. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph WaveNet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

  22. Fang, S., Zhang, Q., Meng, G., Xiang, S., Pan, C.: GSTNet: global spatial-temporal network for traffic flow prediction. In: IJCAI, pp. 2286–2293 (2019)

    Google Scholar 

  23. Huber, P.J.: Robust estimation of a location parameter. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics. Springer Series in Statistics, pp. 492–518. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_35

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  25. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  26. Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5668–5675 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, L., Chen, J., Liu, T., Yu, H. (2024). OD-Enhanced Dynamic Spatial-Temporal Graph Convolutional Network for Metro Passenger Flow Prediction. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14452. Springer, Singapore. https://doi.org/10.1007/978-981-99-8076-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8076-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8075-8

  • Online ISBN: 978-981-99-8076-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics