Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rec2Real: Semantics-Guided Photo-Realistic Image Synthesis Using Rough Urban Reconstruction Models

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Included in the following conference series:

  • 1239 Accesses

Abstract

We present a novel and effective photo-realistic image generation pipeline using the rough 3D reconstruction models from the Google Earth 3D map. Our goal is to transfer the images (rendered from the 3D models) from the reconstruction style (rec-style) to the photo-realistic style (real-style). To achieve this, we propose a bidirectional transferring approach that takes semantics as guidance. Specifically, we first design an unpaired patch-to-patch image translation method to transfer the images from real-style to rec-style, which can generate paired training data and introduce supervised information. Then, we fine-tune an auto-encoder network to transfer the images from rec-style to real-style. Our approach can generate arbitrary camera-view images with ground-truth annotations automatically, which can be used in AD perception tasks such as 2D detection and instance segmentation. Experiments show the effectiveness of our approach, which can generate diverse and photo-realistic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

  2. Chen, D., Yuan, L., Liao, J., Yu, N., Hua, G.: StyleBank: an explicit representation for neural image style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1897–1906 (2017)

    Google Scholar 

  3. Chen, Y., et al.: GeoSim: realistic video simulation via geometry-aware composition for self-driving. In: CVPR, pp. 7230–7240 (2021)

    Google Scholar 

  4. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: IEEE International Conference on Computer Vision, vol. 3, pp. 1403–1403. IEEE Computer Society (2003)

    Google Scholar 

  5. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR (2017)

    Google Scholar 

  6. Fuhrmann, S., Langguth, F., Moehrle, N., Waechter, M., Goesele, M.: MVE-an image-based reconstruction environment. Comput. Graph 53, 44–53 (2015)

    Article  Google Scholar 

  7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  8. Guo, H., Sheng, B., Li, P., Chen, C.P.: Multiview high dynamic range image synthesis using fuzzy broad learning system. IEEE Trans. Cybernet. 51(5), 2735–2747 (2019)

    Article  Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)

    Google Scholar 

  10. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  11. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  12. Liao, Y., Xie, J., Geiger, A.: Kitti-360: a novel dataset and benchmarks for urban scene understanding in 2D and 3D. arXiv preprint arXiv:2109.13410 (2021)

  13. Liu, Z., et al.: 3D part guided image editing for fine-grained object understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11336–11345 (2020)

    Google Scholar 

  14. Lu, F., et al.: PerMO: perceiving more at once from a single image for autonomous driving. arXiv preprint arXiv:2007.08116 (2020)

  15. Lu, P., Zhu, F., Li, P., Kim, J., Sheng, B., Mao, L.: Hierarchical rendering system based on viewpoint prediction in virtual reality. In: Magnenat-Thalmann, N., et al. (eds.) CGI 2020. LNCS, vol. 12221, pp. 24–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61864-3_3

    Chapter  Google Scholar 

  16. Manivasagam, S., et al.: LiDARsim: realistic lidar simulation by leveraging the real world. In: CVPR, pp. 11167–11176 (2020)

    Google Scholar 

  17. Miao, H., Lu, F., Liu, Z., Zhang, L., Manocha, D., Zhou, B.: Robust 2D/3D vehicle parsing in arbitrary camera views for CVIS. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15631–15640 (2021)

    Google Scholar 

  18. Moulon, P., Monasse, P., Marlet, R.: Global fusion of relative motions for robust, accurate and scalable structure from motion. In: ICCV, pp. 3248–3255 (2013)

    Google Scholar 

  19. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2,: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  20. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  21. Park, T., Zhu, J.Y., Wang, O., Lu, J., Shechtman, E., Efros, A., Zhang, R.: Swapping autoencoder for deep image manipulation. Adv. Neural. Inf. Process. Syst. 33, 7198–7211 (2020)

    Google Scholar 

  22. Rong, G., et al.: LGSVL simulator: a high fidelity simulator for autonomous driving. arXiv preprint arXiv:2005.03778 (2020)

  23. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  24. Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M.: Pixelwise view selection for unstructured multi-view stereo. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 501–518. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_31

    Chapter  Google Scholar 

  25. Song, X. ,et al.: Apollocar3d: a large 3D car instance understanding benchmark for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5452–5462 (2019)

    Google Scholar 

  26. Ullman, S.: The interpretation of structure from motion. Proc. R. Soc. Lond. Ser. B Biol. Sci. 203(1153), 405–426 (1979)

    Google Scholar 

  27. Van, N.D., Sualeh, M., Kim, D., Kim, G.W.: A hierarchical control system for autonomous driving towards urban challenges. Appl. Sci. 10(10) (2020)

    Google Scholar 

  28. Yang, Z., et al.: SurfelGan: synthesizing realistic sensor data for autonomous driving. In: CVPR, pp. 11118–11127 (2020)

    Google Scholar 

  29. Zhang, B., Sheng, B., Li, P., Lee, T.Y.: Depth of field rendering using multilayer-neighborhood optimization. IEEE Trans. Visual Comput. Graphics 26(8), 2546–2559 (2019)

    Article  Google Scholar 

  30. Zhang, Y.: LILO: a novel lidar-IMU SLAM system with loop optimization. IEEE Trans. Aerosp. Electr. Syst. 58 (2021)

    Google Scholar 

  31. Zhu, F., Lu, P., Li, P., Sheng, B., Mao, L.: Gaze-contingent rendering in virtual reality. In: 37th Computer Graphics International Conference on Advances in Computer Graphics CGI 2020, pp. 16–23 (2020)

    Google Scholar 

  32. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgement

We thank reviewers for their comments to improve the paper. And we thank Yuexin Ma for her suggestions for this paper. This work was supported in part by National Key Research and Development Program of China (2019YFF0302902), and National Natural Science Foundation of China (61932003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miao, H., Lu, F., Xu, T., Zhang, L., Zhou, B. (2022). Rec2Real: Semantics-Guided Photo-Realistic Image Synthesis Using Rough Urban Reconstruction Models. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics