Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Being Automated or Not? Risk Identification of Occupations with Graph Neural Networks

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13725))

Included in the following conference series:

Abstract

The rapid advances in automation technologies, such as artificial intelligence (AI) and robotics, pose an increasing risk of automation for occupations, with a likely significant impact on the labour market. Recent social-economic studies suggest that nearly 50% of occupations are at high risk of being automated in the next decade. However, the lack of granular data and empirically informed models have limited the accuracy of these studies and made it challenging to predict which jobs will be automated. In this paper, we study the automation risk of occupations by performing a classification task between automated and non-automated occupations. The available information is 910 occupations’ task statements, skills and interactions categorised by Standard Occupational Classification (SOC). To fully utilize this information, we propose a graph-based semi-supervised classification method named Automated Occupation Classification based on Graph Convolutional Networks (AOC-GCN) to identify the automated risk for occupations. This model integrates a heterogeneous graph to capture occupations’ local and global contexts. The results show that our proposed method outperforms the baseline models by considering the information of both internal features of occupations and their external interactions. This study could help policymakers identify potential automated occupations and support individuals’ decision-making before entering the job market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahadi, A., Kitto, K., Rizoiu, M.A., Musial, K.: Skills taught vs skills sought: using skills analytics to identify the gaps between curriculum and job markets. In: International Conference on Educational Data Mining, pp. 538–542. Durham, UK (2022). https://doi.org/10.5281/zenodo.6853121

  2. Frey, C., Osborne, M.: The future of employment: how susceptible are jobs to computerisation? Oxford Martin. 114 (2013). https://doi.org/10.1016/j.techfore.2016.08.019

  3. Arntz, M., Gregory, T., Zierahn, U.: Revisiting the risk of automation. Econ. Lett. 159, 157–160 (2017). https://doi.org/10.1016/j.econlet.2017.07.001

    Article  Google Scholar 

  4. Frank, M., et al.: Toward understanding the impact of artificial intelligence on labor. Proc. Natl. Acad. Sci. U.S.A. 116, 6531–6539 (2019). https://doi.org/10.1073/pnas.1900949116

    Article  Google Scholar 

  5. Cortes, M., Jaimovich, N., Siu, H.: Disappearing routine jobs: who, how, and why? J. Monetary Econ. 91 (2017). https://doi.org/10.1016/j.jmoneco.2017.09.006

  6. Vermeulen, B., Pyka, A., Saviotti, P.-P., Kesselhut, J.: The impact of automation on employment: just the usual structural change? Sustainability 10 (2018). https://doi.org/10.3390/su10051661

  7. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). https://doi.org/10.48550/arXiv.1609.02907

  8. Nakamura, A.O., Shaw, K.L., Freeman, R.B., Nakamura, E., Pyman, A.: Jobs online. In: Studies of Labor Market Intermediation, pp. 27–65. University of Chicago Press (2009). https://doi.org/10.7208/chicago/9780226032900.003.0002

  9. Brzeski, C., Burk, C.: Die Roboter kommen: Folgen der Automatisierung für den deutschen Arbeitsmarkt [The Robots are coming: Consequences of Automation for the German Labor Market]. INGDiBa Econ Res 30, 1–7 (2015). German

    Google Scholar 

  10. Pajarinen, M., Rouvinen, P., Ekeland, A.: Computerization threatens one-third of Finnish and Norwegian employment. ETLA Brief 34 (2015). https://www.etla.fi/wp-content/uploads/ETLA-Muistio-Brief-34.pdf

  11. Bowles, J.: The computerisation of European jobs. Bruegel Blog, 24 July 2014. https://www.bruegel.org/2014/07/the-computerisation-of-european-jobs

  12. Arntz, M., Gregory, T., Zierahn, U.: The risk of automation for jobs in OECD countries: a comparative analysis; OECD social, employment and migration working papers. OECD Publishing, Paris (2016). https://doi.org/10.1787/1815199X

  13. Yang, H., Chen, H., Pan, S., Li, L., Yu, P. S., Xu, G.: Dual space graph contrastive learning. In: Proceedings of the ACM Web Conference 2022 (2022). https://doi.org/10.1145/3485447.3512211

  14. Li, A., Qin, Z., Liu, R., Yang, Y., Li, D.: Spam review detection with graph convolutional networks, pp. 2703–2711 (2019). https://doi.org/10.1145/3357384.3357820

  15. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM International Conference on Knowledge Discovery and Data Mining, SIGKDD, pp. 855–864. ACM (2014). 1607.00653

    Google Scholar 

  16. Dawson, N., Molitorisz, S., Rizoiu, M.A., Fray, P.: Layoffs, inequity and COVID-19: a longitudinal study of the journalism jobs crisis in Australia from 2012 to 2020. J., 146488492199628 (2021). https://doi.org/10.1177/1464884921996286

  17. Dawson, N., Rizoiu, M.A., Johnston, B., Williams, M.A.: Adaptively selecting occupations to detect skill shortages from online job ads. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 1637–1643. IEEE, Los Angeles, December 2019. https://doi.org/10.1109/BigData47090.2019.9005967

  18. Wang, X., Li, Q., Yu, D., Wang, Z., Chen, H., Xu, G.: MGPolicy. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (2022). https://doi.org/10.1145/3477495.3532021

  19. Dawson, N., Williams, M.A., Rizoiu, M.A.: Skill-driven recommendations for job transition pathways. PLOS ONE 16(8), e0254722 (2021). https://doi.org/10.1371/journal.pone.0254722

  20. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM International Conference on Knowledge Discovery and Data Mining, SIGKDD, pp. 701–710. ACM (2014). 1403.6652

    Google Scholar 

  21. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, NIPS, pp. 1024–1034 (2017)

    Google Scholar 

  22. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision. LNCS, vol. 1681, pp. 319–345. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46805-6_19. https://yann.lecun.com/exdb/publis/pdf/lecun-99.pdf

  23. Mihaita, A.S., Li, H., He, Z., Rizoiu, M.A.: Motorway traffic flow prediction using advanced deep learning. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 1683–1690. IEEE, Auckland, October 2019. https://doi.org/10.1109/ITSC.2019.8916852

  24. Mihaita, A.S., Liu, Z., Cai, C., Rizoiu, M.A.: Arterial incident duration prediction using a bi-level framework of extreme gradient-tree boosting. In: Proceedings of the 26th ITS World Congress, pp. 1–12, Singapore, May 2019

    Google Scholar 

  25. Mihaita, A.S., Papachatgis, Z., Rizoiu, M.A.: Graph modelling approaches for motorway traffic flow prediction. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8. IEEE, Rhodes, September 2020. https://doi.org/10.1109/ITSC45102.2020.9294744

  26. Veličković, P., Cucurull, G., Casanova, A., Romero, A.,Lió, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations, ICLR (2018). 1710.10903

    Google Scholar 

  27. Mikolov, T., et al.: Efficient estimation of word representations in vector space (2013). 1301.3781

    Google Scholar 

  28. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: 31st International Conference on Machine Learning, ICML 2014 (2014). 1405.4053

    Google Scholar 

  29. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML (1996). https://dl.acm.org/doi/10.5555/3091696.3091715

  30. Ho, T.K.: Random decision forests (PDF). In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, 14–16 August 1995, pp. 278–282. Archived from the original (PDF) on 17 April 2016 (1995). https://doi.org/10.1109/ICDAR.1995.598994. Accessed 5 June 2016

  31. Meng, Q.: LightGBM: a highly efficient gradient boosting decision tree (2018). https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

  32. Quinlan, J.R.: “Induction of decision trees” (PDF). Mach. Learn. 1, 81–106 (1986). https://doi.org/10.1007/BF00116251.S2CID189902138

  33. Roweis, S.: Hinton, Geoffrey (January 2002). Stochastic neighbor embedding (PDF). Neural Information Processing Systems (2018). https://www.cs.toronto.edu/~hinton/absps/sne.pdf

  34. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(417–441), 498–520 (1933). https://doi.org/10.1037/h0071325

    Article  MATH  Google Scholar 

  35. Beaudry, P., Green, D.A., Sand, B.M.: The great reversal in the demand for skill and cognitive tasks. J. Labor Econ. 34, S199–S247 (2016)

    Article  Google Scholar 

  36. Chen, H., Yin, H., Wang, W., Wang, H., Nguyen, Q.V.H., Li, X.: PME. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018). https://doi.org/10.1145/3219819.3219986

  37. Chen, H., YIN, H., Sun, X., Chen, T., Gabrys, B., Musial, K.: Multi-level graph convolutional networks for cross-platform anchor link prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020). https://doi.org/10.1145/3394486.3403201

  38. Chen, H., Yin, H., Chen, T., Nguyen, Q.V.H., Peng, W.-C., Li, X.: Exploiting centrality information with graph convolutions for network representation learning. IEEE Xplore (2019). https://doi.org/10.1109/ICDE.2019.00059

Download references

Acknowledgement

This work is supported by the Australian Research Council (ARC) under Grant No. DP220103717, and LE220100078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guandong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, D., Yang, H., Rizoiu, MA., Xu, G. (2022). Being Automated or Not? Risk Identification of Occupations with Graph Neural Networks. In: Chen, W., Yao, L., Cai, T., Pan, S., Shen, T., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13725. Springer, Cham. https://doi.org/10.1007/978-3-031-22064-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22064-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22063-0

  • Online ISBN: 978-3-031-22064-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics