Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Benchmarking the Robustness of Deep Neural Networks to Common Corruptions in Digital Pathology

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13432))

Abstract

When designing a diagnostic model for a clinical application, it is crucial to guarantee the robustness of the model with respect to a wide range of image corruptions. Herein, an easy-to-use benchmark is established to evaluate how deep neural networks perform on corrupted pathology images. Specifically, corrupted images are generated by injecting nine types of common corruptions into validation images. Besides, two classification and one ranking metrics are designed to evaluate the prediction and confidence performance under corruption. Evaluated on two resulting benchmark datasets, we find that (1) a variety of deep neural network models suffer from a significant accuracy decrease (double the error on clean images) and the unreliable confidence estimation on corrupted images; (2) A low correlation between the validation and test errors while replacing the validation set with our benchmark can increase the correlation. Our codes are available on https://github.com/superjamessyx/robustness_benchmark.

Y. Zhang and Y. Sun—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azulay, A., Weiss, Y.: Why do deep convolutional networks generalize so poorly to small image transformations? arXiv preprint arXiv:1805.12177 (2018)

  2. Bai, Y., Mei, J., Yuille, A.L., Xie, C.: Are transformers more robust than CNNs? Adv. Neural Inf. Process. Syst. 34 (2021)

    Google Scholar 

  3. Barisoni, L., Lafata, K.J., Hewitt, S.M., Madabhushi, A., Balis, U.G.: Digital pathology and computational image analysis in nephropathology. Nat. Rev. Nephrol. 16(11), 669–685 (2020)

    Article  Google Scholar 

  4. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Google Scholar 

  5. Chen, M., Wang, Z., Zheng, F.: Benchmarks for corruption invariant person re-identification. arXiv preprint arXiv:2111.00880 (2021)

  6. Clarke, E.L., Treanor, D.: Colour in digital pathology: a review. Histopathology 70(2), 153–163 (2017)

    Article  Google Scholar 

  7. Dodge, S., Karam, L.: Understanding how image quality affects deep neural networks. In: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2016)

    Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete Math. 17(1), 134–160 (2003)

    Article  MathSciNet  Google Scholar 

  10. Farahani, N., Parwani, A.V., Pantanowitz, L., et al.: Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol. Lab. Med. Int. 7(23–33), 4321 (2015)

    Google Scholar 

  11. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  12. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261 (2019)

  15. Jiang, X., Osl, M., Kim, J., Ohno-Machado, L.: Calibrating predictive model estimates to support personalized medicine. J. Am. Med. Inf. Assoc. 19(2), 263–274 (2012)

    Article  Google Scholar 

  16. Kamann, C., Rother, C.: Benchmarking the robustness of semantic segmentation models with respect to common corruptions. Int. J. Comput. Vis. 129(2), 462–483 (2021)

    Article  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (2012)

    Google Scholar 

  18. Liu, F., Hernandez-Cabronero, M., Sanchez, V., Marcellin, M.W., Bilgin, A.: The current role of image compression standards in medical imaging. Information 8(4), 131 (2017)

    Article  Google Scholar 

  19. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  20. Michaelis, C., et al.: Benchmarking robustness in object detection: Autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2019)

  21. Rohde, G.K., Ozolek, J.A., Parwani, A.V., Pantanowitz, L.: Carnegie mellon university bioimaging day 2014: challenges and opportunities in digital pathology. J. Pathol. Inf. 5 (2014)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  25. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  26. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  27. Taqi, S.A., Sami, S.A., Sami, L.B., Zaki, S.A.: A review of artifacts in histopathology. J. Oral Maxillof. Pathol. 22(2), 279 (2018)

    Article  Google Scholar 

  28. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  29. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24

  30. Wang, J., Jin, S., Liu, W., Liu, W., Qian, C., Luo, P.: When human pose estimation meets robustness: adversarial algorithms and benchmarks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11855–11864 (2021)

    Google Scholar 

  31. Wang, N.C., Kaplan, J., Lee, J., Hodgin, J., Udager, A., Rao, A.: Stress testing pathology models with generated artifacts. J. Pathol. Inf. 12 (2021)

    Google Scholar 

  32. Yamashita, R., Long, J., Banda, S., Shen, J., Rubin, D.L.: Learning domain-agnostic visual representation for computational pathology using medically-irrelevant style transfer augmentation. IEEE Trans. Med. Imaging 40(12), 3945–3954 (2021)

    Article  Google Scholar 

  33. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was funded by China Postdoctoral Science Foundation (2021M702922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 115 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Sun, Y., Li, H., Zheng, S., Zhu, C., Yang, L. (2022). Benchmarking the Robustness of Deep Neural Networks to Common Corruptions in Digital Pathology. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics