Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Detection of Drug-Drug Interactions Through Knowledge Graph Integrating Multi-attention with Capsule Network

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

  • 1495 Accesses

Abstract

Drug-drug interaction (DDI) prediction is a challenging problem in drug development and disease treatment. Current computational studies mainly solve this problem by designing features and extracting features from multi-sources. They have limitations in accuracy, knowledge and universality. In this paper, a universal computational method for DDI prediction is proposed. The model is made up of several identical layers. Each layer is composed by a multi-attention unit and a capsule unit. Multi-attention is responsibility for extracting neighborhood features and capturing representation under various semantic relation. Capsule unit is responsibility for features aggregating. Each layer can be viewed as first-order representation. High-order representation is obtained by increasing layers. The structure of whole method is easily understood and implemented. Experiment results show that proposed method can achieve a promising predicting performance and stands out when compared with several popular network embedding methods. Proposed method is a reliable model for DDI prediction and is suitable for other interaction predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, W.E., McLeod, H.L.: Pharmacogenomics—drug disposition, drug targets, and side effects. N. Engl. J. Med. 348, 538–549 (2003)

    Article  Google Scholar 

  2. Edwards, I.R., Aronson, J.K.: Adverse drug reactions: definitions, diagnosis, and management. Lancet 356, 1255–1259 (2000)

    Article  Google Scholar 

  3. Meyer, U.A.: Pharmacogenetics and adverse drug reactions. Lancet 356, 1667–1671 (2000)

    Article  Google Scholar 

  4. Jia, J., Zhu, F., Ma, X., Cao, Z.W., Li, Y.X., Chen, Y.Z.: Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 8, 111–128 (2009)

    Article  Google Scholar 

  5. Palleria, C., Paolo, A.D., Giofrè, C., Caglioti, C., Gallelli, L.: Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med. Sci. 18, 601–610 (2013)

    Google Scholar 

  6. Vilar, S., et al.: Similarity-based modeling in large-scale prediction of drug-drug interactions. Nat. Protoc. 9, 2147–2163 (2014)

    Article  Google Scholar 

  7. Rohani, N., Eslahchi, C.: Drug-drug interaction predicting by neural network using integrated Similarity. Sci. Rep. 9, 1–11 (2019)

    Article  Google Scholar 

  8. Sridhar, D., Fakhraei, S., Getoor, L.: A probabilistic approach for collective similarity-based drug–drug interaction prediction. Bioinformatics 32, 3175–3182 (2016)

    Article  Google Scholar 

  9. Guo, Z.-H., You, Z.-H., Li, L.-P., Chen, Z.-H., Yi, H.-C., Wang, Y.-B.: Inferring drug-miRNA associations by integrating drug SMILES and MiRNA sequence information. In: Huang, D.-S., Jo, K.-H. (eds.) Intelligent Computing Theories and Application. LNCS, vol. 12464, pp. 279–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60802-6_25

    Chapter  Google Scholar 

  10. Wang, T., et al.: A gated recurrent unit model for drug repositioning by combining comprehensive similarity measures and Gaussian interaction profile kernel. In: Huang, D.-S., Jo, K.-H., Huang, Z.-K. (eds.) Intelligent Computing Theories and Application. LNCS, vol. 11644, pp. 344–353. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26969-2_33

    Chapter  Google Scholar 

  11. Guo, Z.-H., Yi, H.-C., You, Z.-H.: Construction and comprehensive analysis of a molecular association network via lncRNA–miRNA –disease–drug–protein graph. Cells 8(8), 866 (2019)

    Article  Google Scholar 

  12. Vilar, S., Hripcsak, G.: The role of drug profiles as similarity metrics: Applications to repurposing, adverse effects detection and drug-drug interactions. Briefings Bioinf. 18, bbw048 (2016)

    Article  Google Scholar 

  13. Ji, Z., Su, J., Liu, C., Wang, H., Huang, D., Zhou, X.: Integrating genomics and proteomics data to predict drug effects using binary linear programming. PLoS ONE 9, e102798 (2014)

    Article  Google Scholar 

  14. Wang, Y.-B., You, Z.-H., Yang, S., Yi, H.-C., Chen, Z.-H., Zheng, K.: A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med. Inform. Decis. Mak. 20, 1–9 (2020)

    Article  Google Scholar 

  15. Wang, L., You, Z.-H., Li, L.-P., Yan, X.: RFDTI: using rotation forest with feature weighted for drug-target interaction prediction from drug molecular structure and protein sequence. bioRxiv (2020)

    Google Scholar 

  16. Li, Y., Liu, X.-Z., You, Z.-H., Li, L.-P., Guo, J.-X., Wang, Z.: A computational approach for predicting drug–target interactions from protein sequence and drug substructure fingerprint information. Int. J. Intell. Syst. 36(1), 593–609 (2021)

    Article  Google Scholar 

  17. Zhan, X., et al.: Prediction of drug-target interactions by ensemble learning method from protein sequence and drug fingerprint. IEEE Access 8, 185465–185476 (2020)

    Article  Google Scholar 

  18. Huang, Y.-A., Hu, P., Chan, K.C., You, Z.-H.: Graph convolution for predicting associations between miRNA and drug resistance. Bioinformatics 36, 851–858 (2020)

    Google Scholar 

  19. Huang, Y.-A., You, Z.-H., Chen, X.: A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Curr. Protein Pept. Sci. 19(5), 468–478 (2018)

    Article  Google Scholar 

  20. Wang, L., et al.: A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network. J. Comput. Biol. 25, 361–373 (2018)

    Article  MathSciNet  Google Scholar 

  21. Dai, Y., Guo, C., Guo, W., Eickhoff, C.: Drug–drug interaction prediction with Wasserstein adversarial autoencoder-based knowledge graph embeddings. Brief. Bioinf. (2020)

    Google Scholar 

  22. Karim, M.R., Cochez, M., Jares, J.B., Uddin, M., Beyan, O., Decker, S.: Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network (2019)

    Google Scholar 

  23. Lin, X., Quan, Z., Wang, Z.J., Ma, T., Zeng, X.: KGNN: knowledge graph neural network for drug-drug interaction prediction. In: 29th International Joint Conference on Artificial Intelligence and 17th Pacific Rim International Conference on Artificial Intelligence, IJCAI-PRICAI-20 (2020)

    Google Scholar 

  24. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119. Citeseer (2014)

    Google Scholar 

  25. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  26. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Australia, pp. 891–900. Association for Computing Machinery (2015)

    Google Scholar 

  27. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, New York, USA, pp. 701–710. Association for Computing Machinery (2014)

    Google Scholar 

  28. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2016)

    Google Scholar 

  29. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  30. Zhang, Q.C., et al.: Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature 490, 556 (2012)

    Article  Google Scholar 

  31. Su, X.-R., You, Z.-H., Zhou, J.-R., Yi, H.-C., Li, X.: A novel computational approach for predicting drug-target interactions via network representation learning. In: Huang, D.-S., Jo, K.-H. (eds.) Intelligent Computing Theories and Application. LNCS, vol. 12464, pp. 481–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60802-6_42

    Chapter  Google Scholar 

  32. Chen, Z.-H., You, Z.-H., Guo, Z.-H., Yi, H.-C., Luo, G.-X., Wang, Y.-B.: Predicting drug-target interactions by Node2vec node embedding in molecular associations network. In: Huang, D.-S., Jo, K.-H. (eds.) Intelligent Computing Theories and Application. LNCS, vol. 12464, pp. 348–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60802-6_31

    Chapter  Google Scholar 

  33. Hu, P., et al.: Learning from deep representations of multiple networks for predicting drug–target interactions. In: Huang, D.-S., Jo, K.-H., Huang, Z.-K. (eds.) Intelligent Computing Theories and Application. LNCS, vol. 11644, pp. 151–161. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26969-2_14

    Chapter  Google Scholar 

  34. Yi, H.-C., You, Z.-H., Huang, D.-S., Guo, Z.-H., Chan, K.C., Li, Y.: Learning representations to predict intermolecular interactions on large-scale heterogeneous molecular association network. iScience 23, 101261 (2020)

    Article  Google Scholar 

  35. Chen, Z.-H., Yi, H.-C., Guo, Z.-H., Luo, G.-X., Wang, Y.-B.: Prediction of drug-target interactions from multi-molecular network based on deep walk embedding model. Front. Bioeng. Biotechnol. 8, 338 (2020)

    Article  Google Scholar 

  36. Vilar, S., Uriarte, E., Santana, L., Tatonetti, N.P., Friedman, C.: Detection of drug-drug interactions by modeling interaction profile fingerprints. PLOS ONE 8, e58321 (2013)

    Article  Google Scholar 

  37. Peng, L., et al.: Large-scale exploration and analysis of drug combinations. Bioinformatics 31, 2007–2016 (2015)

    Article  Google Scholar 

  38. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs (2020)

    Google Scholar 

Download references

Funding

This work was supported in part by Awardee of the NSFC Excellent Young Scholars Program, under Grant 61722212, in part by the National Natural Science Foundation of China, under Grants 61702444, in part by the Chinese Postdoctoral Science Foundation, under Grant 2019M653804, in part by the West Light Foundation of The Chinese Academy of Sciences, under Grant 2018-XBQNXZ-B-008.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, XR., You, ZH., Yi, HC., Zhao, BW. (2021). Detection of Drug-Drug Interactions Through Knowledge Graph Integrating Multi-attention with Capsule Network. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics