Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DyHGCN: A Dynamic Heterogeneous Graph Convolutional Network to Learn Users’ Dynamic Preferences for Information Diffusion Prediction

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12459))

Abstract

Information diffusion prediction is a fundamental task for understanding the information propagation process. It has wide applications in such as misinformation spreading prediction and malicious account detection. Previous works either concentrate on utilizing the context of a single diffusion sequence or using the social network among users for information diffusion prediction. However, the diffusion paths of different messages naturally constitute a dynamic diffusion graph. For one thing, previous works cannot jointly utilize both the social network and diffusion graph for prediction, which is insufficient to model the complexity of the diffusion process and results in unsatisfactory prediction performance. For another, they cannot learn users’ dynamic preferences. Intuitively, users’ preferences are changing as time goes on and users’ personal preference determines whether the user will repost the information. Thus, it is beneficial to consider users’ dynamic preferences in information diffusion prediction.

In this paper, we propose a novel dynamic heterogeneous graph convolutional network (DyHGCN) to jointly learn the structural characteristics of the social graph and dynamic diffusion graph. Then, we encode the temporal information into the heterogeneous graph to learn the users’ dynamic preferences. Finally, we apply multi-head attention to capture the context-dependency of the current diffusion path to facilitate the information diffusion prediction task. Experimental results show that DyHGCN significantly outperforms the state-of-the-art models on three public datasets, which shows the effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.twitter.com.

  2. 2.

    http://www.douban.com.

References

  1. Bourigault, S., Lamprier, S., Gallinari, P.: Representation learning for information diffusion through social networks: an embedded cascade model. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pp. 573–582 (2016)

    Google Scholar 

  2. Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recurrent marked temporal point processes: embedding event history to vector. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1555–1564 (2016)

    Google Scholar 

  3. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  4. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. ACM Trans. Knowl. Discovery Data (TKDD) 5(4), 1–37 (2012)

    Article  Google Scholar 

  5. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  6. Guille, A., Hacid, H.: A predictive model for the temporal dynamics of information diffusion in online social networks. In: Proceedings of the 21st International Conference on World Wide Web, pp. 1145–1152 (2012)

    Google Scholar 

  7. Hodas, N.O., Lerman, K.: The simple rules of social contagion. Scientific Reports 4, 4343 (2014)

    Article  Google Scholar 

  8. Islam, M.R., Muthiah, S., Adhikari, B., Prakash, B.A., Ramakrishnan, N.: Deepdiffuse: Predicting the ‘who’ and ‘when’ in cascades. In: IEEE International Conference on Data Mining (ICDM), pp. 1055–1060. IEEE (2018)

    Google Scholar 

  9. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR 2017 (2017)

    Google Scholar 

  12. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 497–506 (2009)

    Google Scholar 

  13. Li, D., Zhang, S., Sun, X., Zhou, H., Li, S., Li, X.: Modeling information diffusion over social networks for temporal dynamic prediction. IEEE Trans. Knowl. Data Eng. 29(9), 1985–1997 (2017)

    Article  Google Scholar 

  14. Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., Song, L.: Heterogeneous graph neural networks for malicious account detection. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 2077–2085. ACM (2018)

    Google Scholar 

  15. Mou, L., et al.: Natural language inference by tree-based convolution and heuristic matching. In: ACL’16, pp. 130–136 (2016)

    Google Scholar 

  16. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS-W (2017)

    Google Scholar 

  17. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: Deepinf: social influence prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2110–2119 (2018)

    Google Scholar 

  18. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time information diffusion model for social behavioral data analysis. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS (LNAI), vol. 5828, pp. 322–337. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05224-8_25

    Chapter  Google Scholar 

  19. Saito, K., Ohara, K., Yamagishi, Y., Kimura, M., Motoda, H.: Learning diffusion probability based on node attributes in social networks. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 153–162. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21916-0_18

    Chapter  Google Scholar 

  20. Tambuscio, M., Ruffo, G., Flammini, A., Menczer, F.: Fact-checking effect on viral hoaxes: a model of misinformation spread in social networks. In: Proceedings of the 24th international conference on World Wide Web, pp. 977–982 (2015)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  22. Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.C.: Topological recurrent neural network for diffusion prediction. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 475–484. IEEE (2017)

    Google Scholar 

  23. Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with attention-based recurrent neural network. In: IJCAI. pp. 2985–2991 (2017)

    Google Scholar 

  24. Wang, Z., Chen, C., Li, W.: Attention network for information diffusion prediction. In: Companion Proceedings of the The Web Conference 2018, pp. 65–66 (2018)

    Google Scholar 

  25. Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with structure attention. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1795–1798 (2018)

    Google Scholar 

  26. Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural diffusion model for microscopic cascade prediction. arXiv preprint arXiv:1812.08933 (2018)

  27. Yang, C., Tang, J., Sun, M., Cui, G., Liu, Z.: Multi-scale information diffusion prediction with reinforced recurrent networks. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 4033–4039. AAAI (2019)

    Google Scholar 

  28. Yang, J., Leskovec, J.: Modeling information diffusion in implicit networks. In: IEEE International Conference on Data Mining, pp. 599–608. IEEE (2010)

    Google Scholar 

  29. Yang, Y., et al.: Rain: social role-aware information diffusion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 367–373 (2015)

    Google Scholar 

  30. Yuan, C., Ma, Q., Zhou, W., Han, J., Hu, S.: Jointly embedding the local and global relations of heterogeneous graph for rumor detection. In: IEEE International Conference on Data Mining (ICDM), pp. 796–805. IEEE (2019)

    Google Scholar 

  31. Yuan, C., Zhou, W., Ma, Q., Lv, S., Han, J., Hu, S.: Learning review representations from user and product level information for spam detection. In: The 19th IEEE International Conference on Data Mining, pp. 1444–1449. IEEE (2019)

    Google Scholar 

  32. Zhang, Y., Lyu, T., Zhang, Y.: Cosine: community-preserving social network embedding from information diffusion cascades. In: Thirty-Second AAAI Conference on Artificial Intelligence, pp. 2620–2627 (2018)

    Google Scholar 

  33. Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: Comsoc: adaptive transfer of user behaviors over composite social network. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 696–704 (2012)

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the anonymous reviewers for their insightful comments. This research is supported in part by the National Key Research and Development Program of China under Grant 2018YFC0806900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S. (2021). DyHGCN: A Dynamic Heterogeneous Graph Convolutional Network to Learn Users’ Dynamic Preferences for Information Diffusion Prediction. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12459. Springer, Cham. https://doi.org/10.1007/978-3-030-67664-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67664-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67663-6

  • Online ISBN: 978-3-030-67664-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics