Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Localization-Aware Active Learning for Object Detection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

Abstract

Active learning—a class of algorithms that iteratively searches for the most informative samples to include in a training dataset—has been shown to be effective at annotating data for image classification. However, the use of active learning for object detection is still largely unexplored as determining informativeness of an object-location hypothesis is more difficult. In this paper, we address this issue and present two metrics for measuring the informativeness of an object hypothesis, which allow us to leverage active learning to reduce the amount of annotated data needed to achieve a target object detection performance. Our first metric measures “localization tightness” of an object hypothesis, which is based on the overlapping ratio between the region proposal and the final prediction. Our second metric measures “localization stability” of an object hypothesis, which is based on the variation of predicted object locations when input images are corrupted by noise. Our experimental results show that by augmenting a conventional active-learning algorithm designed for classification with the proposed metrics, the amount of labeled training data required can be reduced up to 25%. Moreover, on PASCAL 2007 and 2012 datasets our localization-stability method has an average relative improvement of 96.5% and 81.9% over the baseline method using classification only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bietti, A.: Active learning for object detection on satellite images. Technical report, California Institute of Technology, January 2012

    Google Scholar 

  2. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR (2016)

    Google Scholar 

  3. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NIPS (2016)

    Google Scholar 

  4. Dutt Jain, S., Grauman, K.: Active image segmentation propagation. In: CVPR (2016)

    Google Scholar 

  5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  6. Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: active learning with expected model output changes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 562–577. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_37

    Chapter  Google Scholar 

  7. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  8. Hasan, M., Roy-Chowdhury, A.K.: Continuous learning of human activity models using deep nets. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 705–720. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_46

    Chapter  Google Scholar 

  9. Hasan, M., Roy-Chowdhury, A.K.: Context aware active learning of activity recognition models. In: ICCV (2015)

    Google Scholar 

  10. Hoffman, J., et al.: LSDA: large scale detection through adaptation. In: NIPS (2014)

    Google Scholar 

  11. Huijser, M., van Gemert, J.C.: Active decision boundary annotation with deep generative models. In: ICCV (2017)

    Google Scholar 

  12. Islam, R.: Active learning for high dimensional inputs using Bayesian convolutional neural networks. Master’s thesis, Department of Engineering, University of Cambridge, August 2016

    Google Scholar 

  13. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Active learning with Gaussian processes for object categorization. In: ICCV (2007)

    Google Scholar 

  14. Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Gaussian processes for object categorization. Int. J. Comput. Vis. 88(2), 169–188 (2010). https://doi.org/10.1007/s11263-009-0268-3

    Article  Google Scholar 

  15. Karasev, V., Ravichandran, A., Soatto, S.: Active frame, location, and detector selection for automated and manual video annotation. In: CVPR (2014)

    Google Scholar 

  16. Konyushkova, K., Sznitman, R., Fua, P.: Introducing geometry in active learning for image segmentation. In: ICCV (2015)

    Google Scholar 

  17. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: ICML (1994)

    Google Scholar 

  18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  19. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  21. Najibi, M., Rastegari, M., Davis, L.S.: G-CNN: an iterative grid based object detector. In: CVPR (2016)

    Google Scholar 

  22. Papadopoulos, D.P., Uijlings, J.R.R., Keller, F., Ferrari, V.: We don’t need no bounding-boxes: training object class detectors using only human verification. In: CVPR (2016)

    Google Scholar 

  23. Prest, A., Leistner, C., Civera, J., Schmid, C., Ferrari, V.: Learning object class detectors from weakly annotated video. In: CVPR (2012)

    Google Scholar 

  24. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: CVPR (2017)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  27. Russakovsky, O., Li, L.J., Fei-Fei, L.: Best of both worlds: human-machine collaboration for object annotation. In: CVPR (2015)

    Google Scholar 

  28. Settles, B.: Active learning literature survey. Univ. Wis. Madison 52(55–66), 11 (2010)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Sivaraman, S., Trivedi, M.M.: Active learning for on-road vehicle detection: a comparative study. Mach. Vis. Appl. 25(3), 599–611 (2014). https://doi.org/10.1007/s00138-011-0388-y

    Article  Google Scholar 

  31. Stark, F., Hazirbas, C., Triebel, R., Cremers, D.: Captcha recognition with active deep learning. In: GCPR Workshop on New Challenges in Neural Computation, Aachen, Germany (2015)

    Google Scholar 

  32. Su, H., Deng, J., Fei-Fei, L.: Crowdsourcing annotations for visual object detection. In: Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  33. Miyato, T., Maeda, S.I., Koyama, M., Nakae, K., Ishii, S.: Distributional smoothing with virtual adversarial training. In: ICLR (2016)

    Google Scholar 

  34. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2002)

    MATH  Google Scholar 

  35. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  36. Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: training object detectors with crawled data and crowds. Int. J. Comput. Vis. 108(1–2), 97–114 (2014)

    Article  MathSciNet  Google Scholar 

  37. Yoo, D., Park, S., Lee, J., Paek, A.S., Kweon, I.: AttentionNet: aggregating weak directions for accurate object detection. In: ICCV, pp. 2659–2667 (2015)

    Google Scholar 

  38. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgments

This work was conducted during the first author’s internship in Mitsubishi Electric Research Laboratories. This work was sponsored in part by National Science Foundation grant #13-21168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng-Yok Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8936 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kao, CC., Lee, TY., Sen, P., Liu, MY. (2019). Localization-Aware Active Learning for Object Detection. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics