Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Inferences About Coupling from Ecological Surveillance Monitoring: Approaches Based on Nonlinear Dynamics and Information Theory

  • Chapter
  • First Online:
Towards an Information Theory of Complex Networks
  • 1623 Accesses

Abstract

Some monitoring programs for ecological resources are developed as components of larger science or management programs and are thus guided by a priori hypotheses. More commonly, ecological monitoring programs are initiated for the purpose of surveillance with no a priori hypotheses in mind. No conceptual framework currently exists to guide the development of surveillance monitoring programs, resulting in substantial debate about program design. We view surveillance monitoring programs as providing information about system dynamics and focus on methods for extracting such information from time series of monitoring data. We briefly describe methods from the general field of nonlinear dynamics that we believe may be useful in extracting information about system dynamics. In looking at the system as a network of locations or components, we emphasize methods for assessing coupling between system components for use in understanding system dynamics and interactions and in detecting changes in system dynamics. More specifically, these methods hold promise for such ecological problems as identifying indicator species, developing informative spatial monitoring designs, detecting ecosystem change and damage, and investigating such topics as population synchrony, species interactions, and environmental drivers. We believe that these ideas and methods provide a useful conceptual framework for surveillance monitoring and can be used with model systems to draw inferences about the design of surveillance monitoring programs. In addition, some of the current methods should be useful with some actual ecological monitoring data, and methodological extensions and modifications should increase the applicability of these approaches to additional sources of actual ecological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allesina, S., Bodini, A., Bondavalli, C.: Ecological subsystems via graph theory: the role of strongly connected components. Oikos 110, 164–176 (2005)

    Article  Google Scholar 

  2. Bauer B., Jordan, F., Podani, J.: Node centrality indices in food webs: rank orders versus distributions. Ecol. Complexity (in press)

    Google Scholar 

  3. Bjornstad, O.N., Ims, A.R., Lambin, X.: Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol. Evol. 14, 427–432 (1999)

    Article  Google Scholar 

  4. Boudjema, G., Cazelles, B.: Extraction of nonlinear dynamics for short and noisy time series. Chaos Solutions Fractals 12, 2051–2069 (2001)

    Article  MATH  Google Scholar 

  5. Boudjema, G., Chau, N.P.: Revealing dynamics of ecological systems from natural recordings. Ecol. Model. 91, 15–23 (1996)

    Article  Google Scholar 

  6. Cartozo, C.C., Garlaschelli, D., Caldarelli, G.: Graph theory and food webs, In: Pascual, M, Dunne, J.A. (eds.) Ecological Networks, SFI Studies in the Sciences of Complexity. Oxford University Press, Oxford, UK (2006)

    Google Scholar 

  7. Casdagli, M.: A dynamical systems approach to modeling input-output systems, In: Casdagli, M., Eubank. S, (eds.) Nonlinear Modeling and Forecasting, SFI Studies in the Sciences of Complexity, vol. 12, pp. 265–281. Addison-Wesley, Reading, Massachusetts (1992)

    Google Scholar 

  8. Cazelles, B.: Symbolic dynamics for identifying similarity between rhythms of ecological time series. Ecol. Lett. 7, 755–763 (2004)

    Article  Google Scholar 

  9. Cazelles, B, Stone, L.: Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003)

    Article  Google Scholar 

  10. Cheng, B., Tong, H.: On consistent nonparametric order determination and chaos. J. Roy. Stat. Soc. B 54, 427–449 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Constantino, R.F., Cushing, J.M., Dennis, B., Desharnais, R.A.: Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375, 227–230 (1995)

    Article  Google Scholar 

  12. Constantino, R.F., Desharnais, R.A., Cushing, J.M., Dennis, B.: Chaotic dynamics in an insect population. Science 275, 389–391 (1997)

    Article  MATH  Google Scholar 

  13. Cushing, J.M., Constantino, R.F., Dennis, B., Desharnais, R.A., Henson, S.M.: Chaos in ecology: experimental nonlinear dynamics. Academic Press, San Diego (2003)

    Google Scholar 

  14. Dennis, B., Desharnais, R.A., Cushing, J.M., Constantino, R.F.: Nonlinear demographic dynamics: mathematical models, statistical methods, and biological experiments. Ecol. Monogr. 65, 261–281 (1995)

    Article  Google Scholar 

  15. Dennis, B., Desharnais, R.A., Cushing, J.M., Constantino, R.F.: Transitions in population dynamics: equilibria to periodic cycles to aperiodic cycles. J. Anim. Ecol. 66, 704–729 (1997)

    Article  Google Scholar 

  16. Domokos, G., Scheuring, I.: Discrete and continuous state population models in a noisy world. J. Theor. Biol. 227, 535–545 (2004)

    Article  MathSciNet  Google Scholar 

  17. Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamic systems. Europhys. Lett. 4, 973–977 (1987)

    Article  Google Scholar 

  18. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ellner, S, Turchin, P.: Chaos in a noisy world: new methods and evidence from time-series analysis. Am. Natur. 145, 343–375 (1995)

    Article  Google Scholar 

  20. Fisher, R.A., The Design of Experiments, 4th edn. Hafner, New York (1947)

    Google Scholar 

  21. Fisher, R.A.. Statistical Methods for Research Workers, 13th edn. Oliver and Boyd, London (1958)

    MATH  Google Scholar 

  22. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, J., Cai, H.: On the structures and quantification of recurrence plots. Phys. Lett. A 270, 75–87 (2000)

    Article  Google Scholar 

  24. Hastings, A., Hom, C.L., Ellner, S., Turchin, P., Godfray, H.C.J.: Chaos in ecology: is mother nature a strange attractor? Ann. Rev. Ecol. Syst. 24, 1–33 (1993)

    Article  Google Scholar 

  25. Hilborn, R., Mangel, M.: The Ecological Detective. Confronting Models with Data. Princeton University Press, Princeton (1997)

    Google Scholar 

  26. Hurlburt, S.H.: Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984)

    Article  Google Scholar 

  27. Ives, A.R., Dennis, B., Cottingham, K., Carpenter, S.R.: Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003)

    Article  Google Scholar 

  28. Iwanski, J.S., Bradley, E.: Recurrence plots of experimental data: to embed or not to embed. Chaos 8, 861–871 (1998)

    Article  Google Scholar 

  29. Jonzen, N., Rhodes, J.R., Possingham, H.P.: Trend detection in source-sink systems: when should sink habitats be monitored? Ecol. Appl. 15, 326–334 (2005)

    Article  Google Scholar 

  30. Jordan, F.: Keystone species and food webs. Phil. Trans. Soc. B 364, 1733–1741(2009)

    Article  Google Scholar 

  31. Jordan, F., Okey, T.A., Bauer, B., Libralato, S.: Identifying important species: lining structure and function in ecological networks. Ecol Model. 216, 75–80 (2008)

    Article  Google Scholar 

  32. Kaiser, A., Schreiber, T.: Information transfer in continuous processes. Phys. D 166, 43–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Keeling, M.J., Rohani, P.: Estimating spatial coupling in epidemiological systems: a mechanistic approach. Ecol. Lett. 5, 20–29 (2002)

    Article  Google Scholar 

  34. Kocak, K., Saylan, L., Eitzinger, J.: Nonlinear prediction of near-surface temperature via univariate and multivariate time series embedding. Ecol. Model. 173, 1–7 (2004)

    Article  Google Scholar 

  35. Koenig, W.: Spatial autocorrelation of ecological phenomena. Trends Ecol. Evol. 14, 22–26 (1999)

    Article  Google Scholar 

  36. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

    MATH  Google Scholar 

  37. Landres, P.B., Verner, J., Thomas, J.W.: Ecological uses of vertebrate indicator species: a critique. Con. Biol. 2, 316–328 (1988)

    Article  Google Scholar 

  38. Little, S., Ellner, S., Pascual, M., Neubert, M., Kaplan, D., Sauer, T., Caswell, H., Solow, A.: Detecting nonlinear dynamics in spatio-temporal systems, example from ecological models. Phys. D 96, 321–333 (1996)

    Article  Google Scholar 

  39. Manley, P.N., Zielinski, W.J., Schlesinger, M.D., Mori, S.R.: Evaluation of a multiple-species approach to monitoring species at the ecoregional scale. Ecol. Appl. 14, 296–310 (2004)

    Article  Google Scholar 

  40. Marschinski, R., Kantz, H.: Analysing the information flow between financial time series: An improved estimator for transfer entropy. Eur. Phys. J. 30, 275–281 (2002)

    Article  MathSciNet  Google Scholar 

  41. Marwan, N., Wessel, N., Schirdewan, A., Kurths, J.: Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66, Article Number 026702 (2002)

    Google Scholar 

  42. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University press, Princeton, NJ (1973)

    Google Scholar 

  43. Milnor, J.: On the concept of attractor. Comm. Math. Phys. 99, 177–195 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Moniz, L.J., Cooch, E.G., Ellner, S.P., Nichols, J.D., Nichols, J.M.: Application of information theory methods to food web reconstruction. Ecol. Model. 208, 145–158 (2007)

    Article  Google Scholar 

  45. Moniz, L.J., Nichols, J.D., Nichols, J.M.: Mapping the information landscape: discerning peaks and valleys for ecological monitoring. J. Biol. Phys. 33, 171–181 (2007)

    Article  Google Scholar 

  46. Moniz, L., Pecora, L., Nichols, J., Todd, M., Wait, J.R.: Dynamical assessment of structural damage using the continuity statistic. Int. J. Struct. Health Monit. 3, 199–212 (2004)

    Article  Google Scholar 

  47. Moniz, L., Peter, W.: Application of Nonlinear Data Analysis to Locating Disease Clusters. Proceedings of the 10th Experimental Chaos Conference Catania, Italy (2008) (to appear)

    Google Scholar 

  48. Moran, P.A.P.: The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology. Aust. J. Zool. 1, 291–298 (1953)

    Article  Google Scholar 

  49. Nichols, J.D.: Monitoring is not enough: on the need for a model-based approach to migratory bird management. In: Bonney, R., Pashley, D.N., Cooper, R., Niles, L. (eds.) Strategies for Bird Conservation: The Partners in Flight Planning Process, pp. 121–123. Proceedings RMRS-P-16. U.S.D.A., Forest Service, Rocky Mountain Research Station, Ogden, Utah (2000)

    Google Scholar 

  50. Nichols, J.D., Williams, B.K.: Monitoring for conservation. Trends Ecol. Evol. 21, 668–673 (2006)

    Article  Google Scholar 

  51. Nichols, J.M.: Inferences about information flow and dispersal for spatially extended population systems using time-series data. Proc. Roy. Soc. B 272, 871–876 (2005)

    Article  Google Scholar 

  52. Nichols, J.M., Moniz, L., Nichols, J.D., Pecora, L.M., Cooch, E.: Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics. Theor. Pop. Biol. 67, 9–21 (2005)

    Article  MATH  Google Scholar 

  53. Nichols, J.M., Nichols, C.J., Todd, M.D., Seaver, M., Trickey, S.T., Virgin, L.N.: Use of data-driven phase space models in assessing the strength of a bolted connection in a composite beam. Smart Materials Structures 13, 241–250 (2004)

    Article  Google Scholar 

  54. Nichols, J.M., Seaver, M., Trickey, S.T., Salvino, L.W., Pecora, D.L.: Detecting impact damage in experimental composite structures: an information-theoretic approach. J. Smart Materials Structures 15, 424–434 (2006)

    Article  Google Scholar 

  55. Nichols, J.M., Trickey, S.T., Seaver, M.: Damage detection using multivariaterecurrence quantification analysis. Mech. Syst. Signal Process. 20, 421–437 (2006)

    Article  Google Scholar 

  56. Noon, B.R.: Conceptual issues in monitoring ecological resources. In: Busch, D.E., Trexler, J.C. (eds.) Monitoring Ecosystems, pp. 27–71. Island Press, Washington, DC (2003)

    Google Scholar 

  57. Noss, R.F.: Indicators for monitoring biodiversity: a hierarchical approach. Con. Biol. 4, 355–364 (1990)

    Article  Google Scholar 

  58. Odum, E.P.: Fundamentals of Ecology, 3rd edn. Saunders, W.B., Philadelphia (1971)

    Google Scholar 

  59. Ott, W., Yorke, J.A.: Learning about reality from observation. SIAM J. Appl. Dyn. Syst. 2, 297–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. Packard, N.H., Cruchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1987)

    Article  Google Scholar 

  61. Pascual, M.: Diffusion-induced chaos in a spatial predator–prey system. Proc. Roy. Soc. London B 251, 1–7 (1993)

    Article  Google Scholar 

  62. Pascual, M., Ellner, S.P.: Linking ecological patterns to environmental forcing via nonlinear time series models. Ecology 81, 2767–2780 (2000)

    Article  Google Scholar 

  63. Patten, B.C.: Ecosystem linearization: an evolutionary design problem. Am. Natur. 109, 529–539 (1975)

    Article  Google Scholar 

  64. Pecora, L.M., Carroll, T.L., Heagy, J.F.: Statistics for mathematical properties of maps between time series embeddings. Phys. Rev. E 52, 3420–3439 (1995)

    Article  Google Scholar 

  65. Pecora, L.M., Carroll, T.L., Heagy, J.F.: Statistics for continuity and differentiability: an application to attractor reconstruction from time series. Fields Inst. Comm. 11, 49–62 (1997)

    MathSciNet  MATH  Google Scholar 

  66. Pecora, L.M., Moniz, M., Nichols, J.M., Carroll, T.L.: A unified approach to attractor reconstruction. Chaos 17, 013110–013110–9 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. Perry, J.N., Smith, R.H., Woiwood, I.P., Morse, D.R. (eds.): Chaos in Real Data. Kluwer, Boston (2000)

    Google Scholar 

  68. Post, E., Forchammer, M.C.: Synchronization of animal population dynamics by large-scale climate. Nature 420, 168–171 (2002)

    Article  Google Scholar 

  69. Prichard, D., Theiler, J.: Generalized redundancies for time series analysis. Phys. D 84, 476–493 (1995)

    Article  MATH  Google Scholar 

  70. Pulliam, H.R.: Sources, sinks and population regulation. Am. Natur. 132, 652–661 (1988)

    Article  Google Scholar 

  71. Ranta, E., Kaitala, V., Lundberg, P.: Population variability in space and time: the dynamics of synchronous population fluctuations. Oikos 83, 376–382 (1998)

    Article  Google Scholar 

  72. Rohde, G.K, Nichols, J.M., Dissinger, B.M., Bucholtz, F.: Stochastic analysis of recurrence plots with applications to the detection of deterministic signals. Phys. D 237, 619–629 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sauer, T.: Reconstruction of shared nonlinear dynamics in a network. Phys. Rev. Lett. 93, 198701 (2004)

    Article  Google Scholar 

  74. Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1991)

    Article  Google Scholar 

  75. Schaffer, W.M.: Ecological abstraction: the consequences of reduced dimensionality in ecological models. Ecol. Monogr. 51, 383–401 (1981)

    Article  Google Scholar 

  76. Schaffer, W., Ellner, S., Kot, M.: Effects of noise on some dynamical models of ecology. J. Math. Biol. 24, 479–523 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  77. Scheiner, S.M., Gurevitz, J. (eds.): Design and Analysis of Ecological Experiments. Chapman and Hall, New York (1993)

    Google Scholar 

  78. Schiff, S.J., So, P., Chang, T., Burke, R.E., Sauer, T.: Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E 54, 6708–6724 (1996)

    Article  Google Scholar 

  79. Schreiber, T.: Interdisciplinary application of nonlinear time series methods. Phys. Rep. 308, 1–64 (1999)

    Article  MathSciNet  Google Scholar 

  80. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)

    Article  Google Scholar 

  81. Schreiber, T., Schmitz, A.: Surrogate time series. Phys. D 142, 346–382 (2000)

    Google Scholar 

  82. Simberloff, D.: Flagships, umbrellas, and keystones: is single-species management pass in the landscape era? Biol. Cons. 83, 247–57 (1998)

    Article  Google Scholar 

  83. Skalski, J.R., Robson, D.S.: Techniques for Wildlife Investigations. Academic Press, San Diego (1992)

    Google Scholar 

  84. Stark, J., Broomhead, D.S., Davies, M.E., Huke, J.: Takens embedding theorem for forced and stochastic systems. Nonlinear Anal. 30, 5303–5314 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  85. Stark, J.: Delay embeddings of forced systems I: Deterministic forcing. J. Nonlinear Sci. 9, 255–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  86. Stark, J., Broomhead, D.S., Davies, M.E., Huke, J.: Delay embeddings of forced systems II: Stochastic forcing. J. Nonlinear Sci. 13, 519–577 (2003)

    Article  MathSciNet  Google Scholar 

  87. Strogatz, S.H.: Nonlinear Dynamics and Chaos, with Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, Reading Massachusetts (1994)

    MATH  Google Scholar 

  88. Takens, F.: Detecting strange attractors in turbulence, In: Rand, D.A., Young L.S. (eds.) Dynamical Systems and Turbulence, vol. 898, pp. 366–381. Lecture Notes in Mathematics Springer, Berlin (1981)

    Google Scholar 

  89. Thompson, S.K.: Sampling. Wiley, New York (2002)

    MATH  Google Scholar 

  90. Trulla, L.L., Giuliani, A., Zbilut, J.P., Webber, C.L., Jr.: Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 223, 255–260 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  91. Turchin, P.: Complex population dynamics. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  92. Turchin, P., Ellner, S.P.: Modelling time series data. In: Perry, J.N., Smith, R.H., Woiwood, I.P., Morse, D. (eds.) Chaos in Real Data, pp. 33–48. Kluwer, Dordrecht, The Netherlands (2000)

    Google Scholar 

  93. Vastano, J.A., Swinney, H.L.: Information transport in spatiotemporal systems. Phys. Rev. Lett. 60, 1773–1776 (1988)

    Article  MathSciNet  Google Scholar 

  94. Vazquez, D.P., Simberloff, D.: Ecological specialization and susceptibility to disturbance: conjectures and refutations. Am. Natur. 159, 606–623 (2002)

    Article  Google Scholar 

  95. Webber, C.L., Jr., Zbilut, J.P.: Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973 (1994)

    Article  Google Scholar 

  96. Whitney, H.: Differentiable manifolds. Ann. Math. 37, 645–680 (1936)

    Article  Google Scholar 

  97. Wikle, C.K., Royle, J.A.: Space-time dynamic design of environmental monitoring networks. J. Agric. Biol. Environ. Stat. 4, 489–507 (1999)

    Article  MathSciNet  Google Scholar 

  98. Wikle, C.K., Royle, J.A.: Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data. Environmetrics 16, 507–522 (2005)

    Article  MathSciNet  Google Scholar 

  99. Williams, B.K.: Optimal stochastic control in natural resource management: framework and examples. Ecol. Model. 16, 275–297 (1982)

    Article  Google Scholar 

  100. Williams, B.K.: Review of dynamic optimization methods in renewable natural resource management. Natur. Resour. Model. 3, 137–216 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  101. Williams, B.K.: Adaptive optimization and the harvest of biological populations. Math. Biosci. 136, 1–20 (1996)

    Article  MATH  Google Scholar 

  102. Williams, B.K., Nichols, J.D., Conroy, M.J.: Analysis and Management of Animal Populations. Academic Press, San Diego (2002)

    Google Scholar 

  103. Williams, G.P.: Chaos Theory Tamed. Joseph Henry Press, Washington, D.C (1997)

    MATH  Google Scholar 

  104. Yoccoz, N.G., Nichols, J.D., Boulinier, T.: Monitoring of biological diversity in space and time. Trends Ecol. Evol. 16, 446–453 (2001)

    Article  Google Scholar 

  105. Yule, G.U.: On a method of investigating periodicities in disturbed series, with special reference to Wolfes sunspot numbers. Phil. Trans. Roy. Soc. London A 226, 267–298 (1927)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of Paul Dresler and US Geological Survey inventory and monitoring program for research on these topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Moniz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moniz, L.J., Nichols, J.D., Nichols, J.M., Cooch, E.G., Pecora, L.M. (2011). Inferences About Coupling from Ecological Surveillance Monitoring: Approaches Based on Nonlinear Dynamics and Information Theory. In: Dehmer, M., Emmert-Streib, F., Mehler, A. (eds) Towards an Information Theory of Complex Networks. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4904-3_8

Download citation

Publish with us

Policies and ethics