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Abstract. For table tennis robots, it is a signi�cant challenge to under-
stand the opponent's movements and return the ball accordingly with
high performance. One has to cope with various ball speeds and spins
resulting from di�erent stroke types. In this paper, we propose a real-time
6D racket pose detection method and classify racket movements into �ve
stroke categories with a neural network. By using two monocular cam-
eras, we can extract the racket's contours and choose some special points
as feature points in image coordinates. With the 3D geometrical infor-
mation of a racket, a wide baseline stereo matching method is proposed
to �nd the corresponding feature points and compute the 3D position
and orientation of the racket by triangulation and plane �tting. Then, a
Kalman �lter is adopted to track the racket pose, and a multilayer per-
ceptron (MLP) neural network is used to classify the pose movements.
We conduct two experiments to evaluate the accuracy of racket pose
detection and classi�cation, in which the average error in position and
orientation is around 7.8 mm and 7.2◦ by comparing with the ground
truth from a KUKA robot. The classi�cation accuracy is 98%, the same
as the human pose estimation method with Convolutional Pose Machines
(CPMs).

Keywords: racket pose detection; pose classi�cation; stereo matching; table
tennis robot.

1 Introduction

Racket sports such as tennis, table tennis and badminton are popular worldwide.
From a robotic point of view these sports pose several challenges, which should be
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addressed in real-time, for example, human motion analysis [15], racket 3D pose
detection [21], �ying ball position estimation [11] and robot trajectory planning
[10]. With motion tracking technology for players or rackets, the robots can
achieve an anticipatory action predicted from the human's movements, so that
there is more execution time left for hitting movements. Tracking human motions
or racket motions also allows robots to imitate the human motion to learn how to
play human-like table tennis. When a ball �ying towards the robot is recognized,
a precise hitting position will be estimated by combing ball position and spin
together using a curve �tting algorithm [13] or an extend Kalman �lter [22].
Finally, the robot will strike the ball back with an optimal human-like action
determined by large amounts of training data.

Fig. 1. Table tennis robot system with KUKA Agilus robot. There are four PointGrey
Chameleon3 cameras mounted on the ceiling corners far away from each other to occupy
more scenario, where two cameras opposite to human are used to detect the racket and
another pair is for table tennis ball detection. A table tennis racket is rigidly �xed at
the end e�ector of robot in a type of penhold grip. The robot coordinate is set as the
world coordinate and the center of racket is de�ned as the tool coordinate center.

With various racket movements generating di�erent spin categories, racket
sports are full of fun and challenges. To detect the 3D racket pose (position and
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orientation), much research has been done with sensors and markers. Ohya et al.
[8] positioned four stationary cameras in order to cover a large �eld of view. By
assuming the tennis racket to be modeled as ellipse shape, they estimated the 3D
racket position with the fundamental matrix, which had ten to forty percent more
success rate than only using one camera. Elliott et al. [6] employed a markerless
approach with a master camera �xed and a slave camera dynamically located
at 21 di�erent positions to detect a set of tennis racket silhouette views. With
single view �tting techniques, the 3D racket position was estimated with a spatial
accuracy of 1.9 ± 0.14 mm. Chen et al. [4] established a high-speed monocular
vision system to track a table tennis racket labeled with some special marker
lines in the form of a black rectangle in the middle and a white line parallel
to one of the black lines. They can be extracted into several corners as feature
points and the pose is computed based on perspective-n-point and orthogonal
iteration algorithms. Blank et al. [2] attached inertial sensors into table tennis
rackets to detect and classify 8 di�erent stroke types from 10 amateur players.
The success rates for detection and classi�cation did reach 95.7% and 96.7%,
respectively. Zhang et al. [21] fused inertial measurement unit (IMU) data with
the method [4] based on an extended Kalman Filter for obtaining an accurate
and robust racket pose. The racket position was computed from cameras and its
orientation was estimated from both cameras and IMU resulting in an average
angle error of 1.1◦.

In this paper, we present a novel approach for table tennis racket pose de-
tection without markers or IMU based on stereo vision in a table tennis robot
system [18]. The system is shown in Figure 1. As the black side of a table tennis
racket is nearly invisible against our very dark �eld enclosure, the current system
is restricted to detect the red side only. It can be extracted as a binary contour
using a color thresholding method similar to the table tennis ball detection in
[18]. To accelerate the detection process, we use bucket �ll to �nd a connected
component starting from the estimated point with the speci�ed color thresh-
old that determines the amount of connectivity. By ellipse �tting this contour,
we can extract isolated point features located at the intersection area of ellipse
and contour. Combing the epipolar constraint with the 3D geometrical size of
the racket, we can match the corresponding feature points from two cameras.
Triangulation results in 3D points, which are used for �tting the orientation of
the plane going through the racket center. A Kalman �lter is used to track the
3D pose and smooth the trajectories. Next, we classify these trajectories into
�ve categories using a neural network in order to determine with which kind of
spin the ball is played back. In the experimental results, we evaluate the poses
against ground truth from a KUKA robot and compare our classi�cation with a
di�erent method using human pose estimation.

The subsequent part of this paper has the following structure: Section II
introduces related work. The proposed method is presented in Section III. The
evaluation and comparison are examined in Section IV. This paper is concluded
in Section V.
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2 Related Work

2.1 Feature Extraction

Feature extraction involves a detector in the form of points, lines, blobs, or
shapes, and a descriptor to generate a unique vector representing these features.
ORB (oriented FAST and rotated BRIEF) is one such descriptor [12], which is
currently popular. It incorporates the FAST key point detector with modi�ed
BRIEF descriptor to provide a fast and e�cient alternative for SIFT, SURF,
KAZE and BRISK. However, there is an inherent disadvantage in the point-based
method in low-textured scenarios in that it will fail due to the lack of reliable
feature points. Consequently, line based methods are a possible solution since
there are many surfaces like desks, doors and walls in low-textured scenarios,
which are rich in line features. In [14], a proposed method with line segments for
indoor visual localization is employed to handle low-texture images with a wide
baseline, which is far better than other point based methods. In our case, the
racket lacks both texture and lines, so that the above methods are not suitable
to extract features from the racket face.

2.2 Stereo Matching

Stereo matching de�nes the correspondence problem, in which we �nd the corre-
sponding points in two camera images. It is is divided into feature based stereo
and area based stereo [12] . Following the feature extraction, feature based stereo
utilizes the L1 norm or L2 norm for string based descriptors (SIFT, SURF,
KAZE etc.) or Hamming distance for binary descriptors (ORB, BRISK etc.)
to di�erentiate features in corresponding pairs [17]. Area based algorithms de-
pend on the epipolar constraint for recti�ed images to search the corresponding
points in the same image rows including local (NCC, SAD) and global meth-
ods (dynamic programming, graph cuts). A well known approach for real-time
stereo vision is Semi-Global Matching (SGM) [9], which approximates a global
2D matching cost aggregation by minimizing the energy function from 8 or 16
di�erent directions through the image. It can obtain the same accuracy as global
matching but with lower runtime. Recently, end-to-end deep stereo gas become
very popular to solve the stereo matching problem with CNNs models, consisting
of embedding, matching, regularization and re�nement modules [19]. However,
they currently cannot yet ful�ll real-time requirements.

2.3 Pose Classi�cation

Player motion analysis is bene�cial because the motion of the player determines
the motion of the racket, and consequently the speed and spin of the ball. Chu et
al. [5] extracted histogram of oriented gradient (HOG) features from badminton
videos and employed a support vector machine (SVM) to classify a player's stroke
into six types (clear, drive, drop, lob, smash), which resulted in 83.33% average
accuracy. Srivastava et al. [16] developed a sports analytics engine based on an
IMU to detect the tennis shot with a modi�ed Pan-Tompkins algorithm, and
proposed a time-warping based hierarchical shot classi�er by using Dynamic
Time Warping (DTW) at the �rst level (forehand, backhand and serve) and
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Quaternion Dynamic Time Warping (QDTW) at the second level (slice and non-
slice). The accuracy at DTW and QDTW were 99.6% and 90.7% for professional
players, 99.3% and 86.2% for novice players. With CNNs, Bearman et al. [1]
addressed the human joint location as a regression problem and used weight
initialization from a trained AlexNet to classify human activity into 20 categories
with the accuracy of 80.51%. In our work, a neural network including two hidden
layers is utilized to train the racket pose trajectories and classify them into �ve
types to achieve an accuracy of 98.7% on strokes of the same player.

3 Approach

3.1 Racket Detection

Fig. 2. Racket detection process with dynamic window from the right camera. Motion

detection: subtract the background from current frame. Color Threshold : compute the
binary image from RGB space. Racket Contour : bitwise AND operation from previous
step. Re�nement : bucket �ll results.

To lower the impact on lighting variations, we choose the HSV color space
instead of RGB and adopt the color thresholding algorithm similar to [18] with
di�erent boundary values to detect the red side of the racket. Multiple features
of the racket are fused to extract the whole racket contour, like area and aspect
ratio. Fig. 2 illustrates the pipeline of racket detection in the right camera, which
includes four steps.

We primarily �nd the moving objects using a static frame di�erence method
by subtract the background from current frame. The lighting between current
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frame and background is slightly di�erent because we use the auto-exposure
mode that dynamically adjusts parameters including gain, shutter time and
white balance. Performing thresholding and morphology operations , we can get
the binary images in the Color Threshold step resulting in the racket contour
processed by bitwise AND operation.

Considering the property of the racket contour, we can determine it based
on the following conditions:

200px ≤ Area ≤ 3000px (1)

1/3 ≤ AspectRatio ≤ 3 (2)

0.3 ≤ AreaExtent ≤ 1 (3)

where Area is the contour area in pixels. AspectRatio is the contour aspect ratio
of the minimal containing up-right bounding box. AreaExtent is the ratio of Area
to the bounding box. The contour with the largest area satisfying the condictions
is chosen. Its center is used to triangulate the racket's center 3D position.

Once the racket is recognized in both current and previous frames, we �rst
predict the position of the racket in the next frame by adding the current po-
sition with the position di�erence of the last two frames. Then, we exploit a
region of interest (ROI) around the predicted position to crop the full image
into a dynamic window in order to accelerate the detection process. Secondly, a
multithreading technique supplied by C++ is used to execute image processing
concurrently for the left and right camera images. The third acceleration method
called bucket �ll is applied to �nd a connected component spreading from the
seed point until the color value is out of speci�ed range computed as follows:

C(x, y)H − LH ≤ C ′(x, y)H ≤ C(x, y)H + UH (4)

C(x, y)S − LS ≤ C ′(x, y)S ≤ C(x, y)S + US (5)

C(x, y)V − LV ≤ C ′(x, y)V ≤ C(x, y)V + UV (6)

where H,S, V are the components from HSV model. C(x, y)H is the H com-
ponent value at the seed point (x, y). C ′(x, y)H is the repainted H component
domain presenting the new racket contour. L or U is maximal lower or upper
color di�erence between the seed point and one of its neighbours. Fig. 2 shows
that bucket �ll yields better results than color thresholding with a runtime de-
creasing from 6.5 ms to 2 ms.

3.2 Racket Matching

When the 2D pixel coordinates of the racket's center are available from the two
cameras, we can reconstruct these points as the racket 3D position by triangula-
tion. The 3D orientation can be de�ned as the unit normal vector of the racket
plane. Matching the left and right contours directly is di�cult because of their
random and uncertain shapes.Therefore, we want to �nd some corresponding
feature points on the edge of the racket to recover the 3D plane in point-normal
form.
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(a) Contour (b) Ellipse (c) Features

Fig. 3. Features (c) extraction from the intersection area between contour (a) and
ellipse (b).

Features Extraction Since the racket plane is low-textured and the two
cameras are far away from each other, features detection and description is dif-
�cult. The strong edge around the racket contour is used to extract the feature
points in the undistorted images, which will not be recti�ed due to wide baseline
and large rotation angle.

We approximate the edge by three ellipse �tting methods supported by [3]
including normal least squares (LS), Approximate Mean Square (AMS) and Di-
rect least square (Direct) aimed at �nding the best one which has the largest
degree of overlapping D between the edge and ellipse formulated as following:

D =
Noverlapping

Nedge
(7)

where Noverlapping and Nedge are the pixel numbers of the intersection area and
the edge. We calculate D for a sequence of images and show the comparison in
Table 1. The direct method is adopted for ellipse �tting because of its perfor-
mance. Then, we choose the points on the intersection area as feature points,
shown in Fig. 3.

Table 1. Comparison of ellipse �tting models.

Methods LS AMS Direct

Degree 53.77% 56.60% 58.33%

Stereo Matching Next, we do not intend to match the two sets of feature
points to each other, but �nd the corresponding points in another contour's
edge. Depending on the epipolar geometry, we can narrow down the choice of
candidates of corresponding points on the epipolar line. The points lying on both
edge and epiline are the potential corresponding points of the feature points. Fig.
4 gives an example where PR and P ′R are the intersection of edge and epiline
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related to the left point PL. By means of the racket size, we can �nd the correct
corresponding point from these two candidates described as:

P1 = Triangulate(PL, PR) (8)

P2 = Triangulate(PL, P
′
R) (9)

75 ≤ |Pos− Center| ≤ 90 Pos ∈ [P1, P2]. (10)

Here 75mm and 90mm are the length of the minor and major semi-axes. Center
is the 3D position of the racket. Therefore the inequality should be satis�ed for a
correct edge point. The algorithm chooses the point having the shortest distance
by ( ||Pos− Center| − 75+90

2 | ).

Fig. 4. Finding the potential candidates PR and P ′R in the right camera corresponding
to PL. OL and OR are the optical centers of the cameras lenses. The epipolar line in
the right camera passes through the epipole ER, the image points PR and P ′R.

Outliers Removal The feature matching method aforementioned can pro-
duce many corresponding pairs consisting of inliers and outliers. Because of these
pairs on same surface, a homography matrix H for removing outliers can be de-
rived as a 3x3 matrix but with 8 DoF estimated by:

s

xi′yi′
1

 = H

xiyi
1

 =

h11 h12 h13h21 h22 h23
h31 h32 1

xiyi
1

 (11)

where s is a scale factor. [xi, yi] and [x′i, y
′
i] are the ith pixel coordinates from

left and right cameras. According to this transformation, we can minimize the
re-projection error function after projecting points from one image into another
given by: ∑

i

(x′i − x̂i)
2
+ (y′i − ŷi)

2
(12)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Feature matching results including six examples in the left and right cameras.
The grip type in (a)-(c) is penhold grip. (d)-(f) use the shakehand grip. The corre-
sponding pairs are labeled with same color in order to distinguish the correct pairs.

where x̂i =
h11xi+h12yi+h13

h31xi+h32yi+1 , and ŷi =
h21xi+h22yi+h23

h31xi+h32yi+1 . They are the reprojected
image coodinates.

However, using the whole pairs for matrix estimation will lead to a poor
result. We utilize the Random SAmple Consensus (RANSAC) [7] to estimate the
homography matrix by randomly selecting di�erent subsets of the corresponding
pairs and select the subset with the minimal re-projection error. Here, the outliers
will be removed if the reprojection error is more than 3 pixels.

The �nal matching results are shown in Fig. 5 including 3 penhole and 3
shakehand types. Each corresponding features pair in the left and right cameras
is labeled with the same color to be distinguished clearly.

Plane Fitting Reconstructing the corresponding pairs by triangulation, we
can get a series of 3D points [xi, yi, zi]

T that can be used to estimate the equation
of the racket plane ax + by + c = z. The centroid of these points is de�ned by
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the 3D racket center. The normal vector [a, b, c]T is described as:
x0 y0 1
y1 y1 1

...
xn yn 1


ab
c

 =


z0
z1
...
zn

 (13)

This can be written in the form AX = B. A common method to solve X is
Singular Value Decomposition (SVD) by which A is decomposed as:

An×3 = Un×nSn×3V
T
3×3 (14)

where U and V are orthogonal matrices, S is a diagonal matrix, and n is the
number of corresponding pairs. Then, the last column of V indicates the value of
normal vector [a, b, c]T . Normalizing this vector, we can get the unit norm vector
representing the racket's orientation. We measure the processing time for racket
detection and matching shown in Fig. 6. The stereo matching needs around 8
ms. The total time for racket pose estimation needs about 10 ms, which means
we can estimation the racket 6D pose at 100 FPS.

Fig. 6. Processing time for racket detection and matching.

3.3 Tracking

Tracking the racket pose o�ers two advantages. We can use the estimated pose
when there is an occlusion or the racket is disappearing. Also it can provide
a much smoother estimation of the racket pose. In this paper, we employ a
discrete Kalman �lter that is very e�cient and powerful for estimating the pose
[x, y, z, a, b, c]T . We de�ne the racket state Xt with 15 variables:

Xt = [xt, yt, zt, ẋt, ẏt, żt, ẍt, ÿt, z̈t, at, bt, ct, ȧt, ḃt, ċt] (15)
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A simple motion model is used to compute the next expected state Xt+1:

pt+1 = pt + ṗt ∗∆t+
1

2
p̈t ∗∆t2 (16)

ṗt+1 = ṗt + p̈t ∗∆t (17)

θt+1 = θt + θ̇t ∗∆t (18)

where p ∈ [x, y, z] and θ ∈ [a, b, c]. Then, we can project the next state and error
covariance ahead from current time and update them with current measurement.
From Fig. 7, we note that in 30 frames, the estimated pose appears considerably
smoother than the original one without Kalman �lter.

3.4 Classi�cation

Realizing the exact pose trajectory is not possible for humans, but people can
still play table tennis really well due to their ability to recognize di�erent stroke
types. For robots, it is important to know not only what the exact pose is, but
also which strike type is generated. There are many di�erent types of stroke,
but we can divide them into �ve basic categories: 1) Counter Hit. It is used to
stop an aggressive, attacking stroke from your opponent by moving the racket
and keeping it at the same angle. 2) Left Spin. It will be imparted when the
racket moves to the left, which make the ball to bounce o� in the same direction.
3) Right Spin. It is the opposite of left spin. 4) Top Spin. It is produced by
starting the racket below the ball and hitting the ball in an upward and forward
direction, which causes the ball to jump forwards after bouncing o� the table
and the opponent need to return with the racket face closed. 5) Back Spin. It is
the opposite of top spin, with a downward stroke of the racket. If the opponent
does not reply with a back spin or a strong top spin himself, the ball will drop
down and into the net.

We stored the previous 30 frames to extract the trajectories of the racket pose
once the ball �ying towards robot is detected. To distinguish which spin type
these trajectories belong to, we created a classi�er based on a neural network
containing two operations and two hidden layers able to predict in testing set:

Flatten operation The input shape is 30× 6, which means each frame from
the previous 30 frames includes six values (x, y, z, a, b, c). This layer converts the
30×6 matrix into a 1D feature vector 1×180 used in the arti�cial neural network
(ANN) classi�er. To simplify the dataset and make training more robust, we use
the relative position to the last position in the 30th frame instead of the absolute
value, and normalize them into unit vectors.

Dense layer It is also called fully connected layer and �rst performs a linear
operation in which every neuron from the previous layer is fully connected to
this layer by a weight matrix kernel as following equation:

output = ReLU(input · kernel + bias) (19)

where the shape of output adopted in this paper is 128-dimensional. As activation
function ReLU (Recti�ed Linear Unit) is used to introduce non-linearity. bias
is a bias vector created by this layer.



34 Y. Gao et al.

Fig. 7. Kalman �lter tracking in 30 frames for racket position (x, y, z) and orientation
(a, b, c).

Dropout operation By randomly setting a rate of input units to zero during
the training phase of this set of units, we can reduce the over-�tting of training
data. Here, rate is assigned to 20%.
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Dense layer This layer performs classi�cation on input units into �ve cate-
gories. We choose the softmax function to activate the Dropout layer.

For each spin type, we recorded 200 videos to generate the racket trajecto-
ries and human pose, respectively. Among them, 80% of the dataset are used to
learn the classi�cation model, and the remaining 20% are used as test dataset. In
training, we use the Adam optimizer and a loss function with sparse categorical
cross-entropy. Then we can train the model for a speci�ed number of epochs. To
compare the classi�cation di�erence of pose, position and orientation, we exper-
iment with them, respectively. From Table 2, we can �nd the best performing
is the 6D pose. The accuracy with 3D orientation is much better than the 3D
position

Table 2. Classi�cation accuracy comparison.

6D Pose 3D Position 3D Orientation

Training Set 98.7% 51.58% 94.8%
Testing Set 98.2% 50.63% 93.6%

4 Experiments

In this section, we conduct two experiments to evaluate the performance of our
proposed methods. All processes are executed on one host PC with an Intel
i5-4590 CPU, 16GB RAM and a GeForce GTX 1050 Ti GPU.

We �rst use a pair of cameras facing the robot to detect the pose of the
racket mounted at the robot end e�ector shown in Fig. 1, and compare it with
the ground truth data read from the robot controller. Then, we adopt an existing
2D human pose estimation model, Convolutional Pose Machine [20], to extract
human joints as feature points. We compare this deep neural network with the
classi�ed network presented before. The comparison results are shown in the
following subsections.

4.1 Evaluation on the KUKA robot

We have already transferred the 3D coordinates from camera to robot by em-
ploying a least-squares �tting method with two 3D point sets in our table tennis
robot system [18]. The tool coordinate system in the robot was moved from the
end e�ector to the racket center. In our work, the unit norm vector uT of the
red side on the racket in tool coordinates is always [−1, 0, 0]T by the negative
direction of the x axis shown in Fig. 8. Next, we transform this vector to robot
coordinates (namely, world coordinates).

The values [X,Y, Z,A,B,C] can be read from the KUKA controller, where
X,Y, Z are the racket's 3D position and A,B,C are the Z-Y -X Euler angles.
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Fig. 8. The tool coordinate system.

The 3× 3 rotation matrices about X,Y, Z axes are written as: RX , RY , RZ .

RX =

1 0 0
0 cosC − sinC
0 sinC cosC

 (20)

RY =

 cosB 0 sinB
0 1 0

− sinB 0 cosB

 (21)

RZ =

cosA − sinA 0
sinA cosA 0
0 0 1

 (22)

Then, the norm vector uW in world coordinate is derived by:

uW = RZRYRX ∗ uT (23)

Now, the [X,Y, Z] and uW are the ground truth data from the robot. To
know the exact racket pose error, we manually control the robot to achieve 50
di�erent poses with various position or Euler angles, and compute the racket
pose from robot and cameras. Those angle between two norm vectors from the
robot and cameras are de�ned as the orientation error. As shown from Fig. 9 ,
the position error is below 13 mm with an average of 7.8 mm and the orientation
error is under 15◦ with 7.2◦ average value.

4.2 Comparison with human pose estimation

We directly apply the Convolutional Pose Machines (CPMs) to extract the hu-
man body keypoints including ear, eye, nose, neck, shoulder, elbow, wrist and
hip (14 keypoints in total) in the left camera. A Kalman �lter is used to track
these keypoints. Human poses are calculated and stored as matrices to express
which parts of the body are connected to each other. The visualization is shown
in Fig. 10.

By means of the same dataset and classi�cation approach with di�erent input
shape 30 frames × 14 keypoints, we can obtain the test accuracy of 98.4% , which
is similar to the proposed method 98.7%.
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Fig. 9. Racket pose evaluation.

Fig. 10. Human pose estimation in image sequences.

However, CPMs has a crucial issue of hardware consumption. It can not
satisfy the real-time requirement in table tennis. Meanwhile, it just provides the
approximate pose information that can not be used to calculate the exact 3D
position or orientation. In contrast, our proposed method can be run in 10 ms
(100 FPS) and give the opportunities to train the robot having a human-like
movement.

5 Conclusions

In this paper, we have presented a novel table tennis racket pose detection
method based on stereo vision. Through the color and motion segmentation, we
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can extract the racket contours, then feed them into the proposed wide baseline
stereo matching method to generate the 6D pose. With a multilayer perceptron
(MLP) neural network, the pose trajectories can be classi�ed into �ve kinds of
spin types. Finally, two experiments are performed to evaluate the accuracy of
pose detection and classi�cation. In the future, we will teach the KUKA robot to
mimic a human-like movement by imitation learning aiming to cope with various
spin.
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