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Abstract: Despite the high performance of current presentation attack detection (PAD) methods, the
robustness to unseen attacks is still an under addressed challenge. This work approaches the problem
by enforcing the learning of the bona fide presentations while making the model less dependent on
the presentation attack instrument species (PAIS). The proposed model comprises an encoder, map-
ping from input features to latent representations, and two classifiers operating on these underlying
representations: (i) the task-classifier, for predicting the class labels (as bona fide or attack); and (ii)
the species-classifier, for predicting the PAIS. In the learning stage, the encoder is trained to help
the task-classifier while trying to fool the species-classifier. Plus, an additional training objective
enforcing the similarity of the latent distributions of different species is added leading to a ‘PAI-
species’-independent model. The experimental results demonstrated that the proposed regularisation
strategies equipped the neural network with increased PAD robustness. The adversarial model ob-
tained better loss and accuracy as well as improved error rates in the detection of attack and bona
fide presentations.
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1 Introduction

Biometric recognition systems are considered reliable enough to be deployed in govern-
ment and civilian applications. The shift from controlled samples acquisition to a more au-
tonomous one increased the vulnerabilities of these systems. Unfortunately, presentation
attack detection (PAD) measures had not grown robustly along with this quick evolution
and several weak points can be exploited when performing unsupervised biometric iden-
tification as such in mobile biometrics, for example. Successful spoofing attempts have
been made public in a matter of days, or even hours, after the release of high-tech de-
vices equipped with biometric recognition. The iris recognition sensor of Samsung S8 was
reportedly spoofed by German researchers by simply printing a photo of the authorised
user and placing a contact lens in it [Ch17]. More recently, the quick hack of Samsung
Galaxy S10 ultrasonic fingerprint sensor suggests no presentation attack detection mea-
sures of any kind. It is fair to conclude that industry does not share the same enthusiasm as
academic community on anti-spoofing measures denoted by the good amount of research
continuously produced [RB15, CB18, GFC19, Sc19].
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Fortunately, exceptions are starting to show in commercial products, like the recent case of
the Apple iPhone ‘Face ID” case 5 or the FaceTec ZoOm technology [Fa19]. Undoubtedly
this change is motivated and supported by initiatives that encourage the development and
‘open testing’ of spoofing coutermeasures such as ‘The National Voluntary Laboratory
Accreditation Program” (NVLAP) from NIST 6.

Nevertheless, research-wise there are still open problems to address. This work focus on
the fact that most PAD techniques are based on falsely optimistic evaluation methodolo-
gies [Se16]: traditionally, the classification models are designed and then evaluated using
datasets comprising bona fide presentations and a specific species of presentation attack
instruments (PAI). The case when a PAI in the test set is significantly different from the
ones used for training is overlooked. What if such sample has a higher probability to cir-
cumvent the system than the ones drawn from the original training dataset? To solve this
research question it is necessary to develop robust methods to cope with sophisticated and
unseen attacks as our eventual intruders become more capable and successfully develop
new spoofing techniques.

The aforementioned problem has in fact been addressed before regarding iris, fingerprint
and face (often targeted under the open-set or anomaly detection contexts). However, it
still remains a challenging topic. Despite the importance of iris as a biometric trait for
recognition purposes, in our view, the study of iris PAD generalization problem to unseen
PAI species (PAIS) has not been yet fully studied in literature.

In this work, it is proposed an artificial neural network (ANN) along with an adversarial
training (AT) objective which are specifically designed to improve the robustness and gen-
eralisation capacity of the PAD method to new presentation attacks. The idea behind this
approach is to enforce the model to learn latent representations that preserve the liveness
properties of the bona fide presentations while discarding the PAIS variability between
different types of species. The use of invariant representations that capture the PAIS in-
variance and disregard the intra-PAIS variance will force the PAIS representations to be
‘closer’ and ‘further away’ from the bona fide representations. Thus, the influence of the
‘PAI-species’-specific aspects that may hamper the PAD classification task will be mi-
nored and the model will be more robust to differentiate an attack presentations, even new
unseen ones, from the bona fide presentations.

The proposed adversarial training objective combines representation learning and artificial
neural networks and is specifically designed to address the generalisation capacity to an
unseen attack problem. In an innovative approach, the proposed model jointly learns the
representation and the classifier from the data, while explicitly imposing ‘PAI-species’-
invariance in the high-level representations for a robust presentation attack classification.

5www.biometricupdate.com/201812/android-devices-facial-recognition-fooled-by-3d-printed-head-but-
not-face-id

6The NVLAP provides third-party accreditation to testing and calibration laboratories in response to legisla-
tive actions or requests from government agencies or private-sector organizations. NVLAP-accredited laborato-
ries are assessed against the management and technical requirements from ISO/IEC 17025:2017
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Concretely speaking, the proposed model consists of an encoder, mapping from input
features to latent representations, and two classifiers operating on these underlying rep-
resentations: (i) the task-classifier, for predicting the class labels (as bona-fide or attack),
and (ii) the species-classifier, for predicting the type of species of the PAI. During the
learning stage, the encoder is simultaneously trained to help the task-classifier as much
as possible while trying to fool the species-classifier. To further discourage the latent rep-
resentations of retaining any ‘PAI-species’-specific traits, an additional training objective
is introduced that enforces the latent distributions of different species to be as similar as
possible. The result is a truly ‘PAI-species’-independent model robust to detect unseen PAI
species presented in the testing step.

The proposed adversarial training framework builds on those initially introduced by Ganin et
al [GL15] and Ferreira et al [Fe19] in the context of domain adaptation; and of Feutry et
al [Fe18] to learn learn anonymized representations. This work adds the following main
contributions:
• The application of the adversarial training concept to the generalisation to unseen

attacks problem in iris PAD;
• A training objective that is minimum if and only if the adversarial classifier - the

species-classifier, produces a uniform distribution over the PAI species, meaning
that our model is invariant to the PAI species seen in the training data.

• The introduction of an additional term to the adversarial training objective that fur-
ther discourages the learned representations of retaining any species-specific infor-
mation, by explicitly imposing similarity in their latent distributions.

The main definitions related to PAD concepts which will be used throughout this paper are
the ones stated in the International Standard ISO/IEC 30107-3 Information Technology
Biometric presentation attack detection Part 3: Testing and reporting [IS17].

This paper is organised as follows. This section summarises the proposed work and how
it addresses the research question posed. Section 2 summarizes the related work. In sec-
tion 3 the proposed methodology is detailed. Section 4 contains all the experimental setup
including the results and discussion. Finally, the work is concluded in section 5.

2 Related work

Recent PAD methods in general, and iris-focused ones in particular, have demonstrated
remarkable performances. However, a methodological limitation can be pointed as it is
recurrently found that these results are obtained when training and test data comprise the
same type of attacks - same PAIS. This problem has been addressed and proved that the
performance rates of these PAD methods typically decrease significantly when the PAIS is
new to the system [MS11, BD14, Se16]. This performance drop may be result of the large
inter-‘PAI-species’ variability. A practical PAD system must operate in a ‘PAI-species’-
independent scenario, which means that the type of PAIS of the test set must not be seen
during the training routine of the models. This problem is one of the crucial problems for
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the development of real-world PAD systems and it has frequently been tackled in literature
as an open-set or anomaly detection problem.

The pioneer work that raised the evaluation of PAD methods across different types and
unseen PAIS appeared in the fingerprint domain with the work of Marasco and San-
sone [MS11]. The works of Rattani & Ross [RSR15] and Sequeira & Cardoso [SC15],
despite using different approaches, both relied on the idea of enforcing the knowledge
of the bona fide presentations over the attacks to better deal with unseen PAIS. Bowyer
and Doyle [BD14] studied the evaluation of a binary classification on contact lenses iris
spoofing attacks. By using an unseen type on the test set the authors showed that using
the same lens types in both the training and testing data can give a very misleading idea
of the accuracy of the method. A step forward was made by combining methodologies
designed for print and contact lenses attack [SMC14]. Eventually, the construction of a
new database comprising several types of iris PAIS [RB15] allowed new evaluation sce-
narios. In [Se16] it is stated that whenever a new PAIS is presented in the test step, the
performance of the classifier drops significantly and that an improvement can be obtained
when a one-class classifier is trained only with bona fide presentations. One-class classifi-
cation was also used for face in [AKC17]. With the rise of deep learning (DL) techniques,
PAD methods have been proposed applying deep representations for iris, face and fin-
gerprint [Me15, Pi18], following the same binary approach. Recent works investigate the
robustness of DL fingerprint PAD methods to deal with unseen PAI species [To18].

Until recently, most of the proposed approaches, either assume overly optimistic assump-
tions about the attacker - binary classification approaches - or only use part of the data
(and therefore, of the knowledge) available at training time to design the models - one-
class approaches. Therefore, the goal of this work is to present an iris PAD method that
uses the information of both bona fide and available attack presentations and is robust to
unseen PAI species. This objective will be achieved by enforcing the learning of the task of
distinguishing the bona fide from the attack presentations while at the same time ensuring
the invariance between the different type of the PAI species.

3 Proposed Methodology
The proposed methodology combines an artificial neural network (ANN) with an adver-
sarial training (AT) scheme. Specifically, the network is a Multilayer Perceptron that uses
as input features extracted with a state of the art method [Se16], detailed in section 4.

The ultimate goal of our model is to learn latent ‘PAI-species’-invariant representations,
that preserve relevant information about the liveness properties and discard the ‘PAI-
species’-specific aspects - which may hamper the PAD classification task. To accomplish
this purpose, we introduce a deep neural network along with an adversarial training scheme
that is able to learn feature representations that combine both liveness discriminativeness
and ‘PAI-species’-invariance.

General description

Let X = {XXX i,yi,si}N
i=1 denote a labeled dataset of N samples, where XXX i represents the i-

th feature vector, and yi and si denote the corresponding class label and the PAI species,
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respectively. X comprises elements from two classes: bona fide or attack. Let Xb f and Xa

be these partitions and Nb f and Na their cardinality, respectively.

With the aim at learning ‘PAI-species’-invariant representations, the architecture of the
proposed model is composed, as illustrated in Figure 1, by three main sub-networks or
blocks, i.e. an encoder, a task-classifier and a ‘PAI-species’-classifier:

• an encoder network, which aims at learning an encoding function h(X;θh), param-
eterized by θh, that maps an input feature vector X to a latent representation hhh;

• a task-classifier network to learn a task-specific function f (hhh;θ f ), parameterized by
θ f , that maps from hhh to the predicted probabilities p(y|hhh;θ f ) of the two classes;

• a species-classifier network to learn a ‘PAI-species’-specific function g(hhh;θg), pa-
rameterized by θg, that maps the same hidden representation hhh to the predicted prob-
abilities p(s|hhh;θg) of each PAI species.

During the learning stage, the parameters of both classifiers are optimized to minimize
their specific errors on the training set. In addition, the parameters of the encoder network
are optimized in order to minimize the loss of the task-classifier network while forcing the
species-classifier to be a random guessing predictor. In the course of this AT procedure, the
learned latent representations hhh are encouraged to be ‘PAI-species’-invariant and highly
discriminative for the PAD classification. To further discourage the latent representations
of retaining any ‘PAI-species’-specific traits, an additional training objective is introduced
that enforces the latent distributions of different species to be as similar as possible. The
result is a truly ‘PAI-species’-independent model robust to new test PAI species.

XXXb
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.
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Fig. 1: The architecture of the proposed species-invariant neural network.

Adversarial training

By definition, the ‘PAI-species’-invariant representations discard all ‘PAI-species’-specific
information and, as such, no function exists that maps such representations into the correct
species. This naturally leads to an adversarial problem, in which: (i) a species-classifier
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network g(···;θg) receives latent representations hhh = h(X;θh) from an encoder network
h(···;θh) and tries to predict the species s corresponding to feature vector X and (ii) the
encoder network tries to fool the species-classifier network while still providing good
representations for the task-classifier network f (···;θ f ), which in turn receives the same
representations hhh and aims to predict the task label y of X. Therefore, the species-classifier
network shall be trained to minimize the negative log-likelihood of correct task predic-
tions:

min
θg

Lspecies(θh,θg) = min
θg

{
− 1

Na

Na

∑
i=1

log p(si|h(XXX i;θh);θg)

}
,∀i : XXX i ∈ Xa (1)

So, in the perspective of the encoder, the predictions of the task-classifier should be as ac-
curate as possible and the predictions of the species-classifier should be kept close to uni-
form, meaning that this latter classifier is not capable of doing better than random guessing
the species type. Formally, this may be translated into the following constrained objective:

min
θh,θ f

Ltask(θh,θ f ) = min
θh,θ f

{
− 1

N

N

∑
i=1

log p(yi|h(XXX i;θh);θ f )

}
, (2)

subject to
1

Na

Na

∑
i=1

DKL(US(s)||p(s|h(XXX i;θh);θg)≤ ε,∀i : XXX i ∈ Xa (3)

where DKL is the Kullback-Leibler (KL) divergence and US(s) denotes the discrete uni-
form distribution on the random variable s, defined over the set of PAI species in the
training set (S). Here, ε ≥ 0 determines how far from uniform the species-classifier pre-
dictions are allowed to be (as measured by the KL divergence). The choice of the uniform
distribution implies the underlying assumption that the training set is balanced relatively
to the number of examples per species (which should be true for most practical datasets).

The constraint inequality (3) may be rewritten as the equation (4)

Ladv(θh,θg) =−
1

Na|S|

Na

∑
i=1

∑
s∈S

log p(s|h(XXX i;θh);θg)≤ ε + log |S|, (4)

Then, the constrained optimization problem may be equivalently formulated as in (5).

min
θh,θ f

L (θh,θ f ,θg) = min
θh,θ f

{
Ltask(θh,θ f )+λLadv(θh,θg)

}
, (5)

where λ ≥ 0 depends on the value ε and Ladv plays the role of an adversarial loss with
respect to the species classification loss Lspecies.

‘Species’-transfer training objective

In addition to the adversarial training, a species-transfer training objective is added to
further encourage the latent representations hhh to be species-invariant. Thus, an additional
term is introduced in objective (5), the so-called species-transfer loss Ltransfer. The core
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idea of Ltransfer is to enforce the latent distributions of different species to be as similar
as possible. In practise, this is achieved by minimizing the difference between the hidden
representations of different species, at each layer of the encoder network.

To measure the species distribution difference at the m-th layer, m = 1, ...,M, we compute
a distance D (m) between the hidden representations h(m)(···;θh) of two species s and t at the
output of that layer, such that:

D (m)(s, t;θh) =
∣∣∣∣∣∣ 1

Ns
∑

i: si=s
h(m)(XXX i;θh)−

1
Nt

∑
j: s j=t

h(m)(XXX j;θh)
∣∣∣∣∣∣2

2
, (6)

where || ··· ||2 is the `2-norm, and Ns and Nt denote the number of training examples of
species s and t, respectively.

The overall species-transfer loss Ltransfer is then a weighted sum of the losses computed at
each layer of the encoder network, such that:

Ltransfer(θh) =
M

∑
m=1

β
(m) L

(m)
transfer(θh) =

M

∑
m=1

β
(m)

∑
s∈S

∑
t∈S,
t 6=s

D (m)(s, t;θh), (7)

where β (m) ≥ 0 is a hyperparameter that controls the relative importance of the loss ob-
tained at the m-th layer and the species-transfer loss at the m-th layer is the sum of the
pairwise distances between all species.

By combining (5) and (7), the encoder and task-classifier networks are trained to minimize
the following loss function:

min
θh,θ f

L (θh,θ f ,θg) = min
θh,θ f

{
Ltask(θh,θ f )+λLadv(θh,θg)+ γLtransfer(θh)

}
, (8)

where γ ≥ 0 is the weight that controls the relative importance of the species-transfer term.

Summing up, the adversarial training is done by alternatively training both the encoder
and the task-classifier to minimize (8) or training the species-classifier to minimize (2).

4 Experimental setup
PAD Performance Evaluation Metrics:
Bona-fide Presentation Classification Error Rate (BPCER) and Attack Presentation Clas-
sification Error Rate” (APCER) as defined in the ISO/IEC 30107-3 [IS17]. The Average
Classification Error Rate (ACER), given by their mean, though deprecated, is used to allow
comparison with the literature.

Dataset and Evaluation protocol:
Visible Spectrum Iris Artefact (VSIA) Database [RB15] which comprises five different
presentations combining print and electronic screen attacks: (i) Print Attack (PA); (ii) iPad
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Tab. 1: Hyperparameters sets.

Hyperparameters Acronym Set

Leaning rate - {1e−04,1e−03}
`2-norm coefficient - {1e−05,1e−04}

encoder dense layers Le {3,4}
Ladv weight λ 10 values n ∈ {n : n = log10C∧n ∈ [1e−03,1] }

Ltransfer weight γ 10 values n ∈ {n : n = log10C∧n ∈ [1e−03,1] }

Electronic Screen Attack (ESA); (iii) Samsung Galaxy Tab ESA; (iv) combined PA & ESA
using iPad; and (v) combined PA & ESA using Samsung Pad. The methods are evaluated
by leaving out one PAI species for testing. The training set is therefore divided in one
specie for validation and the remaining used for training. Also the same set of samples are
used for testing across the different experiments to allow precise comparison of the results.

Feature Extraction and Classifiers:
Weighted Local Binary Patterns (wLBP) [ZST10] method combines LBP with a Scale
Invariant Feature Transform (SIFT). The wLBP was chosen to allow comparison with the
literature, the work [Se16] used several handcrafted feature extraction methods combined
with a Support Vector Machine (SVM) to study the generalisation capability in face of
an unseen PAI specie (wLBP provided the best results). In the proposed work, the SVM
classifier was replaced by an artificial neural network - a Multilayer Perceptron (MLP). It
is worth mentioning that, for a fair comparison, the MLP in the baseline method has the
same architecture as the task-classifier module of the proposed model.

Implementation details:
All deep models were implemented in PyTorch and trained with the Adam optimization al-
gorithm with batch size equal to 64. For reproducibility purposes, the source code as well
as the weights of the trained models and the features used will be made publicly avail-
able online7. The hyperparameters common to all the implemented models (i.e., learning
rate and `2 regularization weight) as well as some hyperparameters specific to the pro-
posed model (i.e., λ and γ) were optimized by means of a grid search approach and cross-
validation on the training set (see Table 1 for more details). The species-transfer penalty
Ltransfer is applied to the last two layers of the encoder network with a relative weight
of 1. Regarding the architecture of the proposed model, the encoder simply consists of a
sequence of Le fully-connected layers with 128 neurons, followed by a Rectified Linear
Unit (ReLU) activation function. As depicted in Table 1, Le was also optimized by means
of a grid search approach and cross-validation on the training set. Both classifiers, i.e. the
task-classifier and the species-classifier, follow the same network topology. In particular,
it comprises a total of 3 hidden layers with 256 neurons, also with a ReLU, along with a
softmax output layer. The number of nodes of the output layer of the species-classifier is
defined accordingly to the number of species in the training set.

Results and discussion:

7github.com/pmmf/DeepAdvNN-IrisPAD.



Adversarial learning for a robust iris presentation attack detection method 9

The experimental results were obtained for: i) baseline method (wLBP+MLP); and ii) pro-
posed method (wLBP+MLPreg) - that adds the adversarial training and transfer learning
objective to the MLP.

In Table 2 the Baseline (wLBP+MLP) and the Proposed (wLBP+MLPreg) methods are
compared with the state-of-the-art results [Se16] obtained with a similar evaluation (train-
ing a SVM leaving-one-out PAIS for testing). Despite the differences between the works,
this comparison is, to the best of our knowledge, the possible one to make of the proposed
method with the literature as no other works in iris PAD perform a similar evaluation.

Tab. 2: Results of one state-of-art and the evaluated approaches. (ACER in % was used for compari-
son with state of the art method.)

Method ACER (%)
Attack1 Attack2 Attack3 Attack4 Attack5 Average

wLBP+SV M [Se16] 21.15 9.61 1.92 4.32 2.88 7.98
Baseline wLBP+MLP 22.00 7.00 5.50 10.00 4.50 9.80

Proposed wLBP+MLPreg 18.00 7.00 2.00 5.50 2.50 7.00

Comparing the ACER for each attack and their Average values in Table 2, it can be claimed
that uniquely the replacement of the SVM for a MLP does not result in an improvement.
This can be explained by the fact that the dataset has a very limited size and therefore
the MLP method tends to overfit due to the lack of training samples. It was not for no
reason that SVMs ruled for a long time in the pattern recognition domain. However, the
regularization methods added to the MLP lead to an improvement of the average error
providing the best value of 7.00%.

The PAD error rates of the baseline and the proposed methods are compared in Table 3. It
is clear that the adversarial learning added to the MLP lead to a significant improvement in
the PAD robustness of the method as it decreased the APCER and BPCER in most cases.
These results clearly enforce the idea that the application of deep learning techniques with
additional strategies will provide breakthroughs in this challenge.

Tab. 3: PAD error rates of the baseline and the proposed approaches. (APCER and BPCER are in
%.)

Method
PAD metrics (%)

Attack1 Attack2 Attack3 Attack4 Attack5 Average
APCER BPCER APCER BPCER APCER BPCER APCER BPCER APCER BPCER APCER BPCER

Baseline wLBP+MLP 39.00 5.00 9.00 5.00 0.00 11.00 12.00 8.00 3.00 6.00 12.60 7.00
Proposed wLBP+MLPreg 33.00 3.00 6.00 8.00 0.00 4.00 6.00 5.00 0.00 5.00 9.00 5.00

Table 4 compares the loss (Ltask) and accuracy of the baseline (wLBP+MLP) and the
proposed (wLBP+MLPreg) methods. Again, there is a clear gain when the regularization
methods are applied as the later provides the best values in every case.

Tab. 4: Loss (Ltask) and Accuracy of the baseline and the proposed methods.

Method
Model performance metrics (%)

Attack1 Attack2 Attack3 Attack4 Attack5 Average
Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc

Baseline wLBP+MLP 0.50 78.00 0.27 93.00 0.10 94.50 0.25 90.00 0.12 95.50 0.25 90.20
Proposed wLBP+MLPreg 0.42 82.00 0.27 93.00 0.07 98.00 0.18 94.50 0.10 97.50 0.21 93.00
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‘PAI-species’-invariant latent space visualization:
To further demonstrate the effectiveness of the proposed model, the t-distributed stochastic
neighbor embedding (t-SNE) [vdMH08] was used to perform a visual inspection of the
latent representations. Figure 2 is presented to further demonstrate the effectiveness of the
proposed model in promoting species-invariant latent representation spaces.

The t-SNE plots clearly demonstrate how the proposed model is more capable of impos-
ing species-independence in the latent representations. In the latent representations space
derived from the proposed model, representations of the same PAD class - bona fide or
attack - are close to each other and well mixed, while it keeps latent representations of
different classes far apart. In particular, samples belonging to the attack class are still close
disregarding the fact that they may be originated from different types of PAI-species. Very
relevant is the fact that the unseen species present in the test are better mixed with the
other species (from the training) in the proposed model. By analyzing these plots, it is also
possible to observe that the latent representations of the different species (belonging to the
attack class) tend to be closer to each other in the latent space for the proposed model.
In addition, there is some overlapping between clusters of different classes in the baseline
model, whereas the proposed model achieved by far a better species-invariance and class
separability.

(a) Baseline 1 (b) Proposed model
Fig. 2: Two-dimensional projection of the latent representation space with t-distributed stochastic
neighbor embedding (t-SNE) (colored • denote different PAI species;× are bona fide presentations).

5 Conclusions
This work proposed a method to improve the robustness and generalisation capacity of an
iris PAD method to new attacks. The goal of the proposed model is to learn latent repre-
sentations invariant to the PAI species that preserve relevant information about the PAD
properties while discarding the ‘PAI-species’-specific aspects that may hamper the PAD
classification task. The proposed regularisation strategies made the PAD method ‘PAI-
species’-independent and robust to new test PAIS. The experiments were based in com-
paring a baseline MLP and a MLP trained with adversarial strategies using as input highly
discriminative features (wLBP) extracted from the images. When comparing the baseline
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MLP to a SVM classifier the results are quite similar or even worse. This can be explained
simply by the fact that the dataset has a very limited size and the MLP method will overfit.
However, applying the regularisation strategies significantly improved the PAD robustness
of the method. The obtained results clearly enforce the idea that the application of deep
learning techniques with additional strategies will provide breakthroughs in this challenge.
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