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Abstract: The I-vector approach to speaker recognition has become the prevalent
paradigm over the past 2 years, showing top performance in NIST evaluations. This
success is due mainly to the capability of the I-vector to capture and compress the
speaker characteristics at low dimension and the subsequent channel compensation
techniques that minimize channel variability. The Linear Discriminative Analysis
(LDA) followed by Within-Class Covariance Normalization (WCCN ) and Cosine
Similarity Scoring (CSS) represents the best compromise between performance and
computational complexity. In this paper, we propose to use Conformal Embedding
Analysis (CEA ); a recently proposed manifold leaning technique; to tackle the main
limitations of LDA which are: the Gaussian assumption on the classes distribution,
the inability to preserve the local geometric relationships of the data-space and its re-
liance on the Euclidean distance for characterizing the relationships between feature
vectors. Experimental results on the challenging MOBIO-voice database show that
CEA+WCCN outperforms LDA+WCCN for both male and female speakers at all op-
erating points.

1 Introduction

The Gaussian Mixture Model-Universal Background Model (GMM-UBM) framework
[RQDOO0] forms the core of the state-of-the art speaker recognition systems. Starting from
the Joint Factor Analysis (JFA), proposed by Kenny et al [KBODO04] to model jointly
speaker and session components to the recently proposed total variability paradigm dubbed
I- vector [DKD™11] . The experiences performed by Dehak et al [DKD™ 11] demonstrated
that the space of channel component in the JFA method contains information which can be
used to discriminate between speakers. Consequently, they proposed a new representation
called Identity vector or Intermediate vector (I-vector), in which the speaker and the chan-
nel sub-spaces are represented by a single total variability space. Unlike the JFA method
which models the channel variability during the training stage, I-vector takes into account
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the channel compensation during the scoring stage.

In the original I-vector system [DKD™ 11], the channel compensation is done by using Lin-
ear Discriminant Analysis (LDA) projection followed by Within-Class Covariance Nor-
malization (WCCN). The motivation for using LDA is to maximize the inter-speakers
variability and minimize the intra-speaker variability, which is an important point in the
speaker recognition. The LDA projection measures the euclidean distance between the
input vectors and assumes that each class vectors have a Gaussian distribution. In general,
this approach suppose that the testing data drawn from the same underlying distribution
as the training data. Unfortunately, it is usually hard to guarantee this assumption. There-
fore, recent studies reveal that the local features and intrinsic geometric structures [SR03]
[WHOO] in the input data can further improve the discriminative power. Such techniques
suppose that the targeted space is a sub-manifold of low dimension embedded in a high
dimensional ambient space.

The representative non-linear manifold learning such as Local Linear Embedding (LLE)
[RSO0], Isometric feature mapping (ISOMAP) [TSLOO], Laplacian Eigenmaps (LE) [BNO3],
etc. aims to map data into a low dimensional manifold which preserves the local topologi-
cal structure of neighbors connections. These embedding methods are designed to describe
a fixed set of data and not to generalize to novel data (test data). To cover the new data
some techniques suggest to use the linear approximation of the non-linear method such
as Locality Preserving Projections (LPP) [HYH'05], Locally Embedded Analysis (LEA)
[FHOS] and Neighborhood Preserving Embedding (NPE) [HCYZ05]. In these techniques
the projection from a high dimensional space to a low dimensional space is described by a
transformation matrix instead of using a nonlinear mapping method defined on the training
set. Hence, it is easy to apply the transformation to unseen data. However, these transfor-
mations focus on preserving data localities and similarities so the discrimination between
classes can not be sufficiently guaranteed. To deal with this problem, some methods such
as Local Discriminant Embedding(LDE) [CCLOS5] and Locality Sensitive Discriminant
Analysis (LSDA) [CHZ " 07] propose to use Fisher criterion and Kernel transformation to
boost the discrimination power. Furthermore, and starting from the fact that the Euclidean
metric is incapable of capturing the intrinsic similarities. Some recent researches have
suggested to use the cosine distance for better discrimination and robustness [FLHO7].

In this work, we propose the use of Conformal Embedding Analysis (CEA ) [FLHO07]; a
recently proposed manifold leaning technique; as an alternative of LDA. The main motiva-
tions for using this dimensionality reduction technique are: 1) The CEA has no assumption
about the distribution of the input data. 2) The CEA preserves the local geometric rela-
tionships of the data-space and increase the inter-class discrimination using the cosine
distance for characterizing the relationships between feature vectors projected on a unit
sphere. Knowing that the cosine similarity scoring is found to be the most appropriate for
I-vector, we could expect that CEA will boost the system performance.

The rest of this paper is organized as follows. In Section 2 we present the I-vector system.
The CEA approach is described in Section 3. Section 4 is dedicated to experimental results
while the main conclusions and possible research perspectives will be presented in section
5.
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2 Overview of the I-vector system

Inspired by the earlier use of JFA speaker factors directly as features for SVM classifica-
tion, Dehak et al [DKD™ 11] have recently proposed a new approach of speaker modeling
called I-vector. Unlike the JFA, the I-vector method represents the speaker and the channel
subspaces with a single total variability space (equation 1). This representation is moti-
vated by the fact that the channel space of JFA system contains information which can be
used to discriminate between speakers.

m(s) = M + Tw(s) (D

where M is the UBM supervector (a supervector is constructed by concatenating all the
mean vectors of the GMM model), w is a latent variable with a standard normal distribution
and 7' is a low rank variability matrix

As the total variability space represented by 7' contains both speaker and channel informa-
tion, the I-vector method requires additional techniques to attenuate the effect of session
variability. Using the Linear Discriminant Analysis (LDA) followed by the Within Class
Covariance Normalization (WCNN) in [DKD™11] ; has given the best performances.

2.1 Scoring

In i-vector system, we use a simple method of similarity measure, which calculates the
Cosine Similarity Score (CSS) between the enrollment speaker I-vector (wg) and the test
I-vector (w7 ). With the use of the LDA and WCCN projection matrices (A and S respec-
tively) the cosine similarity will be given by:

(A'wg)* o1 (A'wr)
\/(Ath)tsfl(Ath) \/(Ath)tsfl(Ath)

The use of the angle between the two vectors make this scoring method more robust to the
channel and the session effects.

score(wg, wr) =

@

3 Conformal Embedding Analysis CEA

Given a data set of I-vectors X = [x,x3,....,2,] with a high dimensionality and the
corresponding class labels L = [l1,ls,....,1,], where each x; belongs to a class I;. The
CEA objectives are:

1. Preserve the same-class conformal affinity while keeping away the diff-class con-
formal affinity after the embedding.

2. If two original high dimensional i-vectors are close (large conformal affinity), then
the embedded low-dimensional points are close as well.
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3. The embedded sub-manifold can better reflect the class relations with respect to the
labeling information.

To achieve these objectives the computation of the CEA projection matrix P passes by the
following steps:

e Scale each i-vector x; to be a norm-one:

Ly

3

xXr, = ——
b Ml

e Construct intrinsic graph G5 and penalty graph G4 both with n nodes (each node
corresponds to an i-vector). For G, we only consider each pair of data x; and z;
from the same class (I; = ;). An edge is constructed between nodes 7 and j if
x; is among the k, largest conformal neighbors of x; and vice versa. For G, we
only consider each pair of data «; and x; from different classes (I; # [;). An edge is
constructed between nodes ¢ and j if x; is among the kg largest conformal neighbors
of x; and vice versa.

o Define the conformal affinity weight matrices W and Wy for G5 and G, respec-
tively. If the two nodes ¢ and j are connected then the weight of the edge between
¢ and j is set by: w; ; = wy, Otherwise, if 7 and j are not connected the weight
Wj,; = Wa2.

In [FLHO7], the authors present tree types of weight: Balanced Rigid Weights, Un-
balanced Soft Weights and Balanced Soft Weights. The last one is used in our study
and it is described by:

wi; = { exp((cos(f(; ;) —1)/t)) if nodes i and j are connected @

0 Otherwise

where ¢ is a constant and 6, ;) is the angle between the vectors i and j

e Compute the CEA projection matrix P = [p1, ps, ..., pn] by finding the N eigen-
vectors corresponding to the N largest eigenvalues of the matrix:

B = ((X(D; = W) X)) H(X(D, — W,)X"). )

where D is a diagonal matrix: D(i,i) = > ; w; ;.

4 Experiments

In this section, we give a brief description of the database and the associated benchmarking
protocol, followed by the feature extraction module. Finally, we present and discuss the
obtained results.
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4.1 Database description

The MOBIO database [MMH™ 12] contains audiovisual recordings of 152 people (100
males and 52 females) from five European countries. These recordings were registered
through two phases, each one consists of 6 sessions. In the first phase data, the speakers
were asked to answer a set of 21 questions with the question types ranging from: Short Re-
sponse Questions, Short Response Free Speech, Set Speech, and Free Speech wherein the
second phase data the speakers were asked to answer a set 11 questions with the question
types ranging from: Short Response Questions, Set Speech, and Free Speech.

The MOBIO database was recorded using two mobile devices: NOKIA N93i mobile
phone and MacBook (2008) laptop computer. Since this database was acquired with mo-
bile devices, it had a significant amount of noise [SCP* 10]. About 10% of utterances had
an SNR less than 5 dB, while 60% had SNR between 5 to 10 dB. Also the utterances had
limited amount of speech. About 25% of utterances had less than 2 seconds of speech
while 35% had between 2 to 3 seconds of speech.

The MOBIO database was partitioned in three sets: the training set, the development
set and the evaluation set. the training set utterances were used to learn the background
parameters such as the UBM model and the subspace matrices. The development set
data are used to tune the meta-parameters such as number of Gaussians and the subspace
dimensions, this data set is divided into two parts, the enrollment set which is used to
generate the client models (5 utterances for each speaker) and the probe set which is used
in scoring. The evaluation set has the same structure as the the development and it is used
for compute the final evaluation performance.

4.2 Experimental Setup

In our experiments, we use 19 MFCC coefficients extracted using 20 ms Hamming window
taken every 10 ms. These features were augmented with the log energy, delta and double
delta coefficients to produce 60 dimensional feature vector. To reduce the channel effect,
we apply the Cepstral Mean Subtraction (CMS) normalization [Ata74] to the features.
We eliminated the no speech segments using the voice activity detection (VAD) algorithm
described in [RSB104].

In our case, the UBM is gender independent. It was trained using 100 utterances from
each speaker, and it is composed with 256 Gaussian components with diagonal covariance
matrice. For the i-vector experiments, the dimension of the total variability subspace is 400
while the dimensions of the CEA projection matrix is 200. In the Balanced Soft Weights
described in section 4, the constant ¢ = 0.1 yields the best performance.

System performance is assessed using both equal error rate (EER) of the development set
and the half total error rate (HTER) of the evaluation set. The EER corresponds to the point
defined by some threshold 6, where false acceptance rate (FAR) is equal to false rejection
rate (FRR). HTER is the mean of FAR and FRR of the evaluation set, at the threshold 6
previously tuned in the development set. Further more we plot DET curves which allow
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Table 1: EER and HTER of CEA+WCCN and LDA+WCCN compensation techniques on MOBIO
database.

Male Female
Method EER [ HTER EER [ HTER

[ CEA+WCCN | 10.992% [ 20.651% | 12.474% | 25.298% |
[ LDA+WCCN | 12.337% | 20.982% | 14.402% | 28.614% |

the comparison of many systems at different operating points.

4.3 Results and discussion

In this section we present the results of the verification system using the two techniques of
channel compensation: LDA +WCCN and CEA+ WCCN. The performances are given by
the EER and HTER values (table 1) and represented by the DET curves (figures 1 and 2).

We notice from tablel that in the development set the EER value of the male gender de-
creases from 12.337% with the LDA+ WCCN technique to 10.992% with the CEA+WCCN
technique. Thus, the CEA+WCCN yields a relative error reduction rate of 10.90% com-
pared to the baseline LDA+WCCN. For female speakers, the reduction is more pronounced
(13.38% ), where the EER decreases from 14.402% with LDA+WCCN to 12.474 % with
CEA+WCCN. The same in the evaluation set the HTER of the male gender decreases
from 20.982% with LDA+WCCN technique to 20.651% with CEA+WCN technique (re-
duction of 1.57%) and for the female gender the HTER decreases from 28.614% with
LDA+WCCN to 25.298% with CEA+WCCN (reduction of 11.58%).

The comparison of the two systems at different operating points are illustrated through the
DET curves in figures 1 and 2 for the male and female cases respectively. We notice that
the CEA+WCCN outperforms the LDA+WCCN at all operating points.

5 Conclusion

In this work we investigated the use of the CEA sub-manifold learning method to com-
pensate the channel variability in the i-vectors based speaker verification systems. Unlike
LDA, CEA has no assumption about the distribution of the input data and it uses both
Conformal embedding nature and discriminating criterion to compute the projection ma-
trix. Experiments on the MOBIO-voice database shows that the CEA+WCCN technique
performs better than the LDA+WCCN technique. Future work includes further experi-
mental analysis on other databases to confirm obtained results.
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Figure 1: DET curves of CEA+WCCN and LDA+WCCN techniques of male and female for the
development set.
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Figure 2: DET curves of CEA+WCCN and LDA+WCCN techniques of male and female for the
evaluation set.
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