
Proceedings of the Fourth European Conference on Computer-Supported Cooperative Work, 
September 10-14, Stockholm, Sweden 
H. Marmolin, Y. Sundblad, and K. Schmidt (Editors) 

Medium versus mechanism: Supporting 
collaboration through customisation 
Richard Bentley 
German National Research Centre for Computer Science (GMD FIT.CSCW) 

Paul Dourish 
Rank Xerox Research Centre, Camhndge Laboratory (EuroPARC) and Department 
of Computer Science, University College, London 

Abstract The study of cooperative work as a socially-situated activity has led to a focus 
on providing 'mechanisms' that more closely resonate with existing work practice. In this 
paper we challenge this approach and suggest the flexibly organised nature of work is 
better supported when systems provide a 'medium' which can be tailored to suit each 
participant's needs and organised around the detail of their work. This orientation towards 
'medium' rather than 'mechanism' has consequences for cooperative system design, 
highlighting a need to allow participants to adapt details of policy currently embedded in 
the heart of the systems we build We describe an approach which allows users to perform 
such 'deep customisation' through direct manipulation of user interface representations 

Introduction 

A principal tenet of CSCW is that systems intended to support cooperative work 
should be sensitive to the context in which they will be used. A number of recent 
studies of cooperative work have highlighted a disparity between descriptions of the 
working context as given in job description manuals, process-oriented accounts, 
and so on, and the actual pattern of use, which is often far more flexible and 
contingent on particular knowledge, skills and local decision making (see Anderson 
et al. 1989, for example). These observations have led to general agreement across 
the CSCW community on the desirability of a better understanding of the way in 

133 



134 

which work is carried out in groups, in order to inform the development of more 
effective cooperative systems. 

One interpretation of this is a need for better representations and models of group 
work to enable development of systems that resonate more closely with actual work 
practice. Models such as the Milan Conversation Model (De Michelis and Grasso 
1994), for example, are intended to provide representations of cooperation at a level 
of detail suitable for the needs of system design. However there are a number of 
problems with this approach, as a gulf exists between the kinds of information 
required by system designers and that provided by methods of analysis that purport 
to capture actual working context (Sommerville et al. 1994). It has been suggested 
that this gulf can be overcome by adapting methods of analysis such as ethnography 
to better meet the needs of designers (Hughes et al. 1994); however others contend 
that by adapting methods in this way, many of the benefits in terms of provision of 
contextualised, situated accounts are lost in the compromise (Anderson 1994). 

We believe that these modelling problems, and the resulting debates, are artefacts 
of an inappropriate focus of design activity and reflect a narrow interpretation of the 
notion of 'computer support' for cooperative work. In this paper we are concerned 
with an alternative approach; one which does not regard the creation of ever more 
intricate and more detailed representations of group work as the main route towards 
more effective cooperative systems. Rather, our approach promotes the view of a 
cooperative system as one whose behaviour can be adapted through high-level 
customisation to meet the needs of its users, and that effective 'support' arises from 
precisely this openness and flexibility. We characterise this distinction as a contrast 
between systems which provide 'mechanisms' to structure collaboration, and those 
that provide a 'medium' which can be shaped by the users rather than the 
technology, in and through which collaboration occurs. 

The context for this discussion is a project at GMD which is developing a simple 
shared workspace system to provide basic facilities for cooperative work across the 
Internet. Our focus in this paper is the development of the client interface which 
allows users to cooperate through a representation of a shared space, and more 
specifically on the general issues which underpin its design. Motivated by the 
different requirements that users may have for interacting with a shared workspace, 
we have developed a client prototype which supports customisation of underlying 
system behaviour through high-level user interface manipulation. 

The rest of the paper is structured as follows. The next section presents in more 
detail our distinction between a system-as-medium and system-as-mechanism, and 
suggests a need for participants to configure systems to meet their requirements for 
support. We then show how this configuration requires a much 'deeper' notion of 
customisation than is evident with most tailorable systems, and the problems that 
this poses in terms of the 'language' with which customisation requirements are 
expressed. We describe a possible solution that allows participants to express their 
requirements incrementally using high-level customisation operations, and illustrate 
this approach with examples from our shared workspace client. We conclude by 



135 

highlighting the general implications of our approach for the development of CSCW 
system architectures. 

Medium versus mechanism 

The distinction between medium and mechanism is concerned with the notion of 
'support' a system provides for cooperative work, and specifically how the support 
required for individual participants and activities is derived. Although the concept of 
a system-as-mechanism has previously been equated with systems that are built 
around some social model of interaction (Greenberg 1991), we argue that the 
distinction is rather concerned with how such models structure the activities of the 
users, both within and around the system. This is reflected in the extent to which 
systems can be 're-purposed' to support activities that they were not designed for, 
and to provide support in a manner not envisaged by their designers. 

System-as-medium and system-as-mechanism 

A good example of a system that provides a medium for cooperation rather than a 
mechanism is electronic mail. Email applications are (by far) the most successful 
CSCW technologies developed to date, despite (or perhaps because of) the fact that 
they are amongst the simplest to design and implement. A characteristic of email use 
reported in a number of studies is the extent to which email supports different 
users' requirements, including the kind of information sent and received, frequency 
of reading email, different methods of notification of new mail and so on. Sproull 
and Kiesler (1991), for example, discussing the introduction of email systems into 
large organisations, show how users adapted the technology to their particular 
needs and exploited the opportunities which it introduced in ways not envisaged by 
management. So how does an email system provide support for such a wide range 
of potential activities and behaviours'' 

Consider the ways that email systems can be configured to save copies of your 
mail. For incoming mail, most mail programs provide options for saving mail in a 
special folder or file, storing in a default file for mail which has been read, leaving it 
in the 'spool' file and dumping it to the printer. In the same way most mailers offer 
a number of options for saving copies of outgoing mail, such as storing in a file, 
carbon copying to your spool file and so on. The decision to file a copy of a mail 
message, and which method to use, is contingent on many factors including (and 
this is just a small sample), who the mail is from (or to), what it is about, your 
attitude to email communication - whether it is communication 'in writing' or more 
'verbal' - and even such issues as the trust you have in the system's reliability. 

Email provides a medium for action because it can be adapted to support 
participants' specific requirements, contingent on any of the above factors and more 
besides. It provides a framework within which activity can take place, rather than 



136 

structuring activities themselves. Whether to save a copy of a mail and which option 
to use are decisions for the user alone; the system does not attempt to determine 
what should be done with each mail message, but simply does what it is told. It is 
hard to imagine how another arrangement could be successful—after all, how could 
an email program know that I will find a particular message humorous and save it to 
my 'funnies' folder? 

This may not seem so startling an observation, but it highlights a key issue to do 
with the extent and use of representations in computer systems in general and in 
cooperative systems in particular. An electronic mail system has no representation 
of the activities it is supporting, how the users' interactions relate to those activities, 
or what the requirements of those activities might be, but provides a service which 
can be adapted to the needs of each participant. We will return to this question of 
computational representations later in this section. 

The alternative to providing an adaptable medium is characterised by a focus on 
providing mechanisms which directly regulate and manage participants' activity. In 
theory, participants are then free to concentrate on aspects of the task which require 
their attention, and the responsibility for the accomplishment of work is shared by 
the participants and the computer system. The key to this division of labour is the 
formalised description of 'regularities' in participants' activity; regularities which 
provide opportunities for automation of elements of work that would otherwise be 
performed by participants themselves. 

An example of this approach is given by the class of Workflow systems1 which 
aim to separate task performance from task coordination. Regularisations in the 
patterns of participants' activities are encoded in 'working processes', allowing the 
system to take over elements of coordination so that participants can concentrate on 
aspects of the activity, the performance of individual tasks, requiring their particular 
attention. This approach, then, is characterised by the mechanisms embodied in the 
system for the achievement of aspects (specifically, coordination aspects) of the 
supported activity. The problems arise when users wish to step outside the 
regularised patterns of behaviour which the mechanisms prescribe. 

Structure, representation and 'support' for cooperative work 

On the surface this distinction between medium and mechanism might be seen as 
one of structure, or the extent to which interaction is guided and/or constrained by 
policies embedded within the system. In this sense, email systems provide little in 
the way of structure, while for Workflow applications this structure is implicit in 
the goals of the technology. However, interaction with any computer system is 
structured in some sense, and it is not the existence of such structure which is at 
issue here, but rather the methods by which it is derived, employed, and how it can 
be manipulated to support different user requirements. 

1 "Workflow" is a wide-iangmg term, we use it here only in the broadest sense 



137 

Mackay (1990) reports on a study of the Information Lens system (Malone et al. 
1987), which supports filtering of semi-structured email messages on the basis of 
user-specified rules. She describes how some users working with a version of the 
system exploited a little-used debugging feature to allow them to filter their mail for 
archiving purposes after they had read it—a use of the system not envisaged by its 
designers, who assumed that the value of the system lay in filtering messages 
before they got to the user. It is interesting to note that after this 'feature' was made 
more explicit in the following release of the software, a number of users who had 
rejected the technology as unsuitable for their methods of working then adopted the 
system and found it useful (Mackay, 1990). 

This example shows that even highly-structured systems can be re-purposed to 
support activities not considered by their designers. A system's ability to adapt to 
different user requirements is determined by the ease with which the structures and 
policies embedded in the system can be customised. Customisation in this sense 
implies not only the ability to mould and manipulate structures within the system, 
but also the ability to appropriate them and use them in new ways; support for 
customisation is support for innovation. This position echoes the arguments of 
Greenberg (1991) who suggests that we should be developing 'personalizable' 
groupware, which can be adapted to the needs of individual users. Contrast this 
with the idea of a system which governs its behaviour according to some model or 
representation of its users' working contexts, where the objective of the 
representation is to enforce roles and commitments to ensure the group is 'efficient 
and effective'(Greenberg 1991). 

The modelling of working context and its representation to govern the behaviour 
of cooperative systems is a central focus in current CSCW research. There are a 
number of reasons to doubt that this approach, which we have referred to as an 
attempt to provide 'mechanism' rather than 'medium', will be successful. We have 
already alluded to the problem of describing contextualised cooperative activities at 
a level of abstraction suitable for system design. In addition, a focus on existing 
work context would seem to inhibit the exploration of more innovative approaches 
to supporting cooperation, and also preclude innovation in the way that users 
employ systems to support their activities (as was seen to be a factor that influenced 
the successful adoption of the Information Lens system). 

It is crucial to recognise that the forms of group support which are embodied in a 
cooperative system affect not only the establishment of working behaviour within 
the system (those defined within the systems' terms), but also those around it. It is 
frequently the behaviours around rather than within the system which are important 
determinants of its acceptability. In a study of a collaborative text editor, Dourish 
and Bellotti (1992) emphasise the way in which 'shared feedback' within a shared 
workspace—essentially a 'non-structure' in comparison to more formalised models 
of collaborative writing—is key to the emergence of a range of coordinating 
mechanisms by writing groups. Not only do the coordination activities of these 
groups arise around, rather than within, the shared system, but, arguably, it would 



138 

have been much more difficult for such naturalistic coordination to occur had 
mechanisms been directly embodied in the tool. 

The question of medium and mechanism is really one of representation—what is 
to be represented in the system, and how are the representations going to be used. 
We have tned to show that it is not necessary that a cooperative system has access 
to a representation of the activities it is supporting in order to provide 'support'. 
This should be obvious from the non-computational domain. For example, a piece 
of paper does not have access to a model of the writing process yet it still supports 
that activity. Not only does it support writing, with the requirements of different 
styles, smooth transition between writing and drawing, concurrent and serial access 
and so on, but it can also be used to soak up spilt coffee. As with the email example 
discussed earlier, the lack of embedded representations allows great flexibility in 
supporting different styles and behaviours. 

This should by no means be interpreted as an argument against representation. 
After all, representation and formalisation he at the heart of computational design. 
There is however a great deal of variability in how computational representations 
are interpreted in supporting human activity. The danger is that we may be seduced 
by the representational qualities of software systems and begin to confuse the 
representations for the activities they represent. This confusion between reality and 
representation lies at the heart of debates in the CSCW community such as that 
highlighted by Suchman and Winograd (Suchman 1993, Winograd 1993). Our 
proposal here embodies an attempt to view computational representations in CSCW 
systems as objects of, rather than proxies for, user activity. 

So one motivation behind the call for a better understanding of the way that 
group work is actually carried out is to allow development of systems that more 
closely resonate with existing work practice. We agree that such an understanding 
is indeed essential for the development of more effective systems, but that the value 
of this understanding is in revealing the flexibility required by groups of 
participants with different individual requirements for support, rather than in 
yielding up ever-more-detailed fare for representation. This position places the 
emphasis on developing systems which users can adapt to meet their requirements, 
rather than systems that constrain interaction to some model of how they perform 
their work—manipulating representations instead of being manipulated by them. 

Customising system behaviour 

Our focus on medium rather than mechanism has suggested an approach to the 
design of cooperative systems that places the emphasis on customisation rather than 
rigid structures and policies governing system behaviour. Details of individuals' 
working contexts, which determine their requirements for system support, are so 
contingent on factors like individual, local and organisational knowledge, as well as 
the tasks being supported and personal preferences, that trying to model these 



139 

factors at a level suitable for system design is unlikely to be successful. Indeed, the 
very variability of these factors, and their highly individual nature, suggests that we 
should take an alternative approach rooted in the recognition of open-ended 
variation, rather than an attempt to close it'under some fixed representation. 

Customisation is often advocated for systems which must support users with 
different working practices, levels of expertise and personal preferences. However, 
although many systems provide facilities for tailoring of surface interface features, 
few allow aspects of deeper system behaviour to be customised at the point of use. 
The conventional wisdom is that this separation of surface and deep—interface and 
application—is a good thing, both for developers and users. In particular, details of 
implementation decisions made within a system—the policies which determine how 
distributed data is managed in a collaborative application, or how information 
regarding user activities is made public—should be hidden from users who are 
focused on carrying out their work. The realities are that such 'low-level' policy 
decisions have important consequences for how users do their work—Greenherg 
and Marwood (1994), for example, show how different methods of concurrency 
control have a major impact on the interaction that can be supported by a system. 

It is these details of system policy or behaviour that we have argued should be 
flexible and open to customisation, rather than hidden under some representation of 
the activities the system is supporting. In traditional systems however there is a gulf 
between the ability to customise aspects of process and functionality as opposed to 
interface and presentation. If possible at all, the former usually requires much more 
knowledge of system internals and the ability to express customisation requirements 
in a programming language. We examine the characteristics of this 'customisation 
gulf below, before discussing an approach which attempts to bridge this gulf and 
provide support for both surface and deep system customisation. 

The customisation gulf 

The gulf between surface and deep customisation in most current systems reflects 
the separation in system architectures between interface and application functionality 
(Dourish 1995a). This gulf is an artefact of software engineering practice which 
does not reflect the customisation requirements of systems' users. An example of 
surface or interface customisation is the option provided by some word processors 
to switch between menus with an abridged and the full command set, where the list 
of commands available with each option is pre-defined by the system developer. An 
example of deep customisation is the ability to integrate the word processor with a 
foreign language translation program, when this operation was not pre-programmed 
by the system developer. 

Although many systems are advertised as being highly-customisable, veiy few 
support flexible mechanisms for deep customisation. For example, some systems 
extend the idea of selection from different menu sets to allow users to change menu 
labels, key bindings, menu composition and even to create 'macros', so that one 



140 

keystroke or menu selection causes execution of multiple commands. In all these 
cases however the user is constrained to using the functions the system developer 
has provided, and cannot customise the actual behaviour of the system. Indeed, in a 
study of word processor and spreadsheet packages, Oppermann (1994) states "few 
packages offer options for redefining their current functionality in such a way that a 
task- and user-specific adaptation can be achieved" (page 18). 

A deeper model of customisation is provided by systems whose functionality is 
parameterised; that is, users can configure system behaviour by selecting from lists 
of alternative functions. However, rather than a smooth progression in the level of 
complexity and the degree of expertise required to perform customisation operations 
with such systems, there is often a 'steep incline' to be climbed before the user can 
isolate the functions that should be modified and appropriate values for parameters 
(Maclean et al. 1990). The 'parameters of interaction' provided by a version of the 
PREP collaborative editor (Neuwirth et al. 1994), for example, allow users to set 
parameters to control frequency of update propagation, granularity of updates and 
so on. This greater flexibility is however bought at the cost of increased expertise 
required of the user in knowing how these functions relate to the system behaviour, 
and how to set them to serve the requirements of the current working context. 

This increased expertise is partly explained by the shift in the language through 
which customisation is performed. Basic macros begin to form such a language by 
providing the facility to compose or combine existing operations to form new ones, 
and more complex extension facilities add other linguistic features such as 
conditional operations and iterators. To customise surface features, users can often 
use techniques such as demonstration or menu selection that are part of the usual 
operating language for the system. Deeper customisation, however, must typically 
be performed in a different language which is oriented more towards the system 
developer than the application user, and a step function is often involved in 
acquiring the skills to begin to express customisation requirements in this language. 
This is particularly true for systems which allow users to extend system behaviour 
by creating new functions or modifying existing ones, often via an Application 
Programmer Interface (API), which open up the levels of customisation involved at 
the cost of the reusability of existing system components. 

The customisation gulf is therefore characterised by two inter-related problems. 
The first one is the level of customisation possible, and with most systems this lies 
above the functionality of the application, rather than within it. The second problem 
is the language of customisation, and traditional systems provide limited facilities to 
express customisation requirements using the skills users already have, requiring 
the learning of new languages to describe new system behaviours. Both of these 
problems combine to give users no way to reach into the system and customise the 
way in which functionality (and not simply the interface to the functionality) relates 
to their accomplishment of work. 



141 

Incremental customisation 

Issues of level and language of customisation form a barrier to users wishing to 
customise the behaviour of their systems. Studies carried out in the HCI community 
have shown that users are often unwilling to invest the time and effort required to 
surmount this barrier and acquire customisation knowledge, even if acquiring such 
skills would allow them to accomplish their work more easily (Carroll and Rosson 
1987, for example). These observations have led some to suggest that users should 
be guided and encouraged in adopting a more exploratory approach (Oppermann 
1994), and a 'tailoring culture' should be established which encourages users to 
share their expertise and results of customisation operations (Maclean et al. 1990). 
Trigg and B0dker (1994) observe that in some organisations such a tailoring culture 
is actively promoted by assigning responsibilities for customisation and establishing 
procedures to discuss proposed modifications. 

The establishment of a tailoring culture does not require users to become skilled 
system designers, as there will inevitably be differences in users' willingness and 
abilities to acquire new skills. However it is important that users are aware of the 
possibilities for change which exist with their systems, to allow them to express 
their needs to more skilled customisers (Maclean et al. 1990). The barrier formed 
by separation of surface and deep system details, and use of different languages to 
customise features of each, inhibits users from even envisaging what can be done to 
tailor their environments, regardless of whether or not they themselves perform the 
customisation. This suggests that an approach is required that explicitly recognises 
that users need to customise, or envisage customisation of, both surface and deep 
system details, and that the separation currently enforced by different customisation 
languages is not a useful one. 

In effect this calls for a more incremental approach to customisation, where users 
can express their requirements for support as much as possible using the skills they 
already possess. This is a similar technique to the support in more advanced word 
processors which allow customisation of menu contents using direct manipulation 
techniques, but here we are discussing its application to details of deeper system 
behaviour and not just the surface user interface. More complex customisations 
which cannot be performed using the same language should require a minimal 
increase in the level of expertise required. This should then reduce the size of the 
customisation gulf, both in terms of the language and level of customisation, and 
equate increases in tailoring power with proportionate increases in knowledge and 
skill required. 

At the lowest level it may be possible to support customisation of some aspects 
of system behaviour through high-level user interface tailoring. An example of this 
is provided by the MEAD system (Bentley et al. 1993) which supports construction 
of different User Displays (UDs) of information from a shared space. With MEAD 
it is possible to develop a multi-user interface for a shared information system that 
allows users to select the UD representations which suit their requirements, and to 



142 

switch between UDs as these requirements change. Although MEAD only supports 
selection of UDs from a developer-specified list, the customisation possibilities go 
beyond surface tailoring to aspects of system behaviour. 

Underlying MEAD is an event service which distributes notifications of changes 
in the shared information space to interface clients. It maintains a list of the kinds of 
updates each client is interested in, and uses this list to selectively propagate updates 
to clients that should be informed. When users select alternative UDs to represent 
information from the shared space, the client automatically informs the notification 
service of the change in its interests to ensure it can maintain consistency between 
UDs and shared information. Thus MEAD supports limited customisation of the 
notification policy embedded in the system, but without requiring users to do extra 
work or learn a new customisation language. 

So this approach begins to address issues of deeper customisation, and does not 
make the usual distinction between user interface adaptation and changes in system 
behaviour. Customisation is not a separate activity from normal interaction with the 
system, but rather users express their requirements for support from the system in 
terms of the information displays they require, and in doing so adapt the details of 
deep system policy with regard to update notification. What MEAD doesn't support 
is the ability to go beyond adapting the kinds of event notifications that users are 
interested in to more flexible strategies for configuring event granulanty, different 
representations of events, event importance and so on. 

To support incremental customisation requires techniques which allow users to 
move up the 'customisation curve', gaining more customisation power at the cost of 
a minimal increase in complexity. The next section describes a system to illustrate 
this incremental approach, showing how the basic language of system interaction is 
enhanced with facilities to customise details of system behaviour. 

Incremental customisation in the BSCW client 

The Basic Support for Cooperative Work (BSCW) project at GMD is concerned 
with the development of a simple shared workspace system that runs on top of the 
Internet. Our target user population is the academic research community as a whole, 
and specifically academics involved in large research projects. Such projects often 
consist of a number of project partners who have different organisational concerns, 
computing infrastructures and so on, but have a requirement to share information 
and work collaboratively. 

The BSCW client is an application program which allows users to interact with a 
shared workspace. It provides basic functionality such as browsing the contents of 
a workspace, adding and removing documents, examining change histories and so 
on. The volume of information that can be stored in a shared workspace is large, for 
example, each document in the workspace can have associated annotations, version 
information, creator/modifier details, current status and so on. It is not practical to 



143 

display all this information at the same time to every user; moreover, it is not useful 
to do so, as each user may have different reasons for interacting with the workspace 
at any point in time, and much of the information it contains may not be relevant to 
the current working context. 

To address this problem the client prototype supports incremental customisation 
of the policies which determine the visualisation, interaction and change notification 
properties of the shared workspace. Thus, rather than using some representation of 
users' activities (such as 'roles') to determine their requirements for support, the 
client provides facilities which allow users to adapt system behaviour to reflect the 
requirements of their current working contexts. The aim is to provide a medium for 
cooperation which can be customised as much as possible using skills users already 
possess. This approach is illustrated below. 

Customising system policy with Attachments 

User customisation of the workspace is performed by associating Attachments with 
basic representations of workspace artefacts (figure 1). An Attachment carries with 
it (customisable) methods which adapt the visualisation, interaction and notification 
policies associated with items in the workspace for an individual user. In figure 1, 
for example, two users have tailored their representations of a simple workspace by 
associating different Attachments with a document called ECSCWpaper. User Paul 
is currently responsible for editing the next draft of the document, and Dik wants to 
proof-read it when Paul has finished editing. The different Attachments associated 
with the document reflect the different orientations of the users to the workspace. 
Paul, possibly trying to locate text from an old draft, has placed an Attachment over 
the document allowing him to open previous versions by clicking on their names, 
while Dik has added an Attachment to show who is currently editing the document. 

In this example, the system reveals information to the users in response to their 
customisation operations, and allows them to perform different actions (such as 
opening a previous version). The system does not have a representation of the two 
users' activities, which they have negotiated externally and can re-negotiate at any 
time (if the authors decide a further draft is needed, for example). The piocess of 
customisation through addition, removal and tailoring of Attachments is therefore 
an ongoing one, reflecting the fluid and highly dynamic manner in which roles and 
responsibilities are negotiated in group work (Anderson et al. 1989). 

In addition to visualisation and interaction details, associating Attachments with 
workspace artefacts may customise the underlying notification service. This service 
uses an expression of each users' interests in a similar manner to the MEAD system 
discussed above to select the events to be propagated, the method of propagation to 
use, and how events are represented at the user interface. In figure 1 the addition of 
the current editors Attachment registers an interest for Dik in changes to the set of 
editors for ECSCWpaper. When Paul finishes editing, his name will be removed 
from the Attachment, providing feedback on his activities. This feedback is 



144 

generated within the context of the workspace and the context of users' activities, as 
the interests users hold are derived from the adaptations they make to suit their 
individual situations. Thus Attachments are not just 'views' but carry with them 
relevant interest patterns and behaviours. 

Figure 1 Alternate representations of a shared workspace using Attachments 

The basic customisation of a shared workspace offered by adding and removing 
Attachments does not enforce a separation between surface interface features and 
deeper aspects of system behaviour. In addition to addressing some issues of level 
at which customisation is supported, users customise their workspaces using the 
same language of customisation, as association and removal of Attachments are part 
of the ordinary language for interacting with the client. However, interacting with a 
workspace using only pre-specified Attachments has limitations. For example, the 
indication of an interest in a workspace artefact may not be enough; users may hold 
many such interests at any one time, but their requirements for event notification 
may vary, depending on the relevance and importance of events for their working 
contexts. Thus there is a need to support customisation of details of the Attachments 
themselves. 

Moving up the customisation curve: Customising Attachments 

The bottom of the customisation curve is characterised by association of pre-defined 
Attachments with representations of workspace artefacts. A number of Attachments 
have been developed in the first version of the workspace client like those described 
above. In addition, the client provides a range of facilities for customising details of 
the basic Attachments to give users more flexibility in expressing their requirements 



145 

for support from the system. Each of these methods requires slightly more skill on 
the part of the customiser, but brings with it a proportionate increase in the power 
available to perform customisation operations. 

The emphasis here is on providing facilities for flexible customisation of system 
behaviour at the point of use that build incrementally oh knowledge and skills that 
users already have. The techniques that have been implemented are descnbed below 
in order of increasing customisation power. 

• Sharing Attachments: The importance of customisation as a cooperative activity 
has been highlighted by a number of studies (Mackay 1990, Trigg and B0dker 
1994). To support cooperative customisation it is possible to add Attachments to 
the shared workspace for others to retrieve and use Thus users can share the 
expertise they have acquired with the system, and others become familiar with 
the possibilities for customisation offered. This is similar to the strategy used by 
Maclean et al. (1990) to exchange 'Buttons' by email, but here the Attachments 
are treated just like other information in the workspace, and can be added and 
retrieved in just the same way as other documents. Therefore users do not have 
to acquire new skills in order to share the Attachments developed by others. 

• Tuning Attachment properties: To customise exisung Attachments requires a slight 
increase in knowledge about their construction. Attachments consist of a number 
of methods that comprise the visualisation, interaction and notification properties 
of each Attachment component. Each component is similar to the concept of an 
Icon Region in Iconographer (Gray et al. 1990), but unlike Iconographer each 
property can be configured without programming. In figure 1, for example, it is 
possible to customise the notification properties of the current editors Attachment 
to provide audio feedback, put up a dialogue box, send an email and so on when 
someone finishes editing a workspace item. These can be combined—a 'finish 
editing' event might remove the editor's name and sound a chime, to bring the 
event to a user's attention even if the current orientation is not to the workspace. 
This example of event notification emphasises our focus on medium rather than 
mechanism. Rather than derive 'importance' or 'relevance' of events from some 
representation of activity, users can configure the system to provide notifications 
that are suitable. This is similar to the approach of Khronika (Lovslrand 1991), 
which supports a range of flexible practices by a focus on information rather 
than action (Dourish etal. 1993). 

• Composing Attachments: Attachments can be associated with other Attachments to 
create composites. The model we use is that each Attachment has an empty slot 
which will represent the workspace artefact it is associated with. In figure 1 for 
example the slots of both the Attachments shown are occupied by the workspace 
artefact called ECSCWpaper. As Attachments are workspace artefacts just like 



146 

any other (can be added and retrieved from the workspace and so on), they can 
occupy slots in the same way as representations of documents.2 

• Editing Attachments and creating new events: It is possible to create new kinds of 
Attachments or re-configure properties of existing Attachments using a graphical 
Attachment editor. This supports definition of simple components which present 
information from a workspace, perform actions when sequences of interactions 
are recognised, and can re-configure when represented information changes. We 
are currently developing this tool to support more powerful visualisations and 
interaction techniques, one of which is the ability to create new kinds of events, 
more descriptive and oriented towards the activities users are'performing. Most 
notification services tend to propagate events oriented more towards the system, 
as information such as 'file added', 'user logged in' and so on is easy to capture. 
However, if users can define new events, conditions under which they are 
generated, and means to represent them in the user interface, it is not necessary 
that these are described in system-oriented terms (as with, for example, the 'pub-
call' event provided by the Khronika system—Lovstrand 1991). This approach 
is consistent with our emphasis on the system as a medium to support activities 
without representations of what those activities might be. 

Thus the shared workspace client supports incremental customisation of surface and 
deep system features with a range of techniques. These techniques provide greater 
flexibility and power without the common 'step function' in terms of the expertise 
required to perform more complex customisation operations. The techniques show 
one way in which a deeper model of customisation can be provided which utilises 
existing skills and integrates customisation behaviour as part of normal interaction 
with the system. 

Conclusions i 

Much effort in CSCW development has been aimed at creating detailed models of 
collaborative activity which can be used as the basis for computational design. The 
application of such models, however, has often been highly problematic. In this 
paper we have outlined an alternative approach which emphasises a CSCW system 
as a medium through which collaborative work occurs, rather than an embodiment 
of mechanisms representing perceived regularities in collaborative activity. This 
perspective, recognising the emergence of patterns of collaborative behaviour both 

It is not possible or appropriate to go into detail in this paper In bnet, we use standard ob|ect-
onented techniques to send messages to repiesentations of workspace objects, which either ignore 
the messages or re-configure their presentation, interaction and/or dynamic properties As the 
Attachments are also workspace ob|ects. they can icspond to these messages, allowing them to be 
occupants of slots in othei Attachments 



147 

within and around technology, necessitates an examination of the ways in which 
customisation and adaptation are supported in CSCW systems. 

We have pointed to a gulf in many current systems between the customisation of 
surface features and deeper functionality. This 'customisation gulf forms a barrier 
to the forms of emergent, adaptive behaviour which we advocate. However, the use 
of incremental techniques provide a means for effective deep customisation through 
the manipulation of high-level interface components, as illustrated by the prototype 
client for the BSCW system currently under development at GMD. 

Customisation is not simply a method for individuals to adapt technology to meet 
their own needs; it is, fundamentally, a means by which users can construct their 
working patterns, individually or as groups, from the basic materials provided. We 
believe that facilities of this sort are critical in CSCW, and motivate re-consideration 
of how systems are developed. In particular, this focus highlights a need for more 
open system architectures (Dourish 1995b), where details of deep system policy are 
'visible, accessible and tailorable' at the point of use (Bentley 1994). One approach 
to providing such architectures which builds on the use of reflective, 'meta-level' 
architectures for CSCW system construction is described by Dourish (1995b). In 
general, however, we look towards the use of customisation techniques as more 
effective than explicit representation in bridging between the expertise of social 
science and the needs of computational design. 

Acknowledgements 

The prototype of the BSCW client wns implemented by Marku.s Wasserschiitf The authors would 
also like to thank David England and Thilo Horstmann for truittul discussions about many of the 
issues dealt with in this paper. 

References 

Anderson, R., Hughes, J. and Sharrock, W. (1989): Working for Profit' The Social Organisation 
ofCalculabihty in an Entrepreneurial Firm, Aldershot, Avebury, 1989. 

Anderson, R. (1994). Representations and requirements: The value ot ethnography in system 
design, in Human-Computer Interaction, 9, 1994, pp 151-182. 

Bentley, R, Rodden, T , Sawyer, I and Sommerville, I. (1993)' Architectural support tor 
coopeiative multi-user interfaces, in IEEE Computer, 27(5), May 1994, pp 37-46. 

Bentley, R (1994) Supporting Multi-user Interface Development for Cooperative Systems, PhD 
thesis, Computing Department, Lancaster University, June 1994 Available by anonymous 
FTP from Lancaster University at "itp://ttp.comp lanes ac.uk/pub/report.s/ThesisRB.ps.Z" 

Carroll, J. and Rosson, M (1987). Paradox ot the active user, in J M Carroll (ed), Interfacing 
Thought, MIT Press, 1987, pp 80-111 

De Michehs, G and Grasso, M A (1994)- Situating conversations within the Language/Action 
perspective: The Milan Conversation Model, in Proceedings of CSCW94, Chapel Hill, 
ACM Press, 22-26 Oct 1994, pp 89-100 



148 

Dounsh, P (1995a): Accounting for system behaviour: Representation, reflection and resourceful 
action, lo appear in Proceedings of Computers in Context (CIC'95), Aarhus, Denmark, 14-
18 Aug. 1995. 

Dourish, P. (1995b): Developing a reflective model of collaborative systems, to appear in ACM 
Transactions on Computer-Human Interaction, 1995 (in press) 

Dourish, P and Bellotti, V. (1992). Awareness and coordination in shared workspaces, in 
Proceedings ofCSCW'92, Toronto, ACM Press, 31 Oct.-4 Nov. 1992, pp 107-114 

Dounsh, P., Bellotti, V., Mackay, W and Ma, C. (1993): Information and context: Lessons from 
a study of two shared information systems, in Proceedings of COOCSV3, Milpetas, 
California, 1-4 Nov. 1993, pp 42-51 

Gray, P , Waite, K. and Draper, S. (1990): Do-it-yourself iconic displays' Reconfigurable iconic 
representations of application objects, in Proceedings of INTERACT'90, 1990, pp 639-644 

Greenberg, S (1991): Personalizable groupware: Accommodating individual roles and group 
dilterences, in Proceedings of ECSCW'91, Amsterd;un, Kluwer Academic Publishers, Sept 
1991, pp 17-31. 

Greenberg, S. and Marwood, D (1994). Real time groupware as a distributed system. Concurrency 
control and its effect on the interlace, in Proceedings of CSCW'94, Chapel Hill, ACM Press, 
22-26 Oct 1994, pp 207-217 

Hughes, J., King, V , Rodden, T. mid Andersen, H. (1994): Moving out from the control room: 
Ethnography in system design, in Proceedings of CSCW'94, Chapel Hill, ACM Press, 22-
26 Oct 1994, pp 429-439 

Lovstrand, L (1991): Being selectively aware with the Khroiuka system, in Proceedings of 
ECSCW'91, Amsterdam, Kluwer Academic Publishers, Sept. 1991, pp 17-31 

Mackay, W. (1990): Patterns ot sharing customizable software, in Proceedings of CSCW'90, Los 
Angeles, ACM Press, 7-10 Oct 1990, pp 209-221. 

Maclean, A., Carter, K., Lovstrand, L. and Moran, T. (1990): User-tailorable systems. Pressing 
the issues with Buttons, in Proceedings of CHIVO, Seattle, ACM Press, 1-5 April 1990, pp 
175-182 

Malone, T, Grant, K , Turbak, R., Brobst, S and Cohen, M. (1987)- Intelligent information-
sharing systems, in Communications of the ACM, 30, 1987, pp 484-497 

Neuwirth, C, Kauter, D , Chandhok, R. and Morris, I (1994) Computer support tor distributed 
collaborative writing: Defining parameters ot interaction, in Proceedings of CSCW'94, 
Chapel Hill, ACM Press, 22-26 Oct 1994, pp 145-152. 

Opperman, R and Simm, H (1994): Adaptability: User-initiated individualization, in R 
Oppermann (ed), Adaptive User Support, Lawrence Earlbaum, 1994. 

Sommerville, I., Bentley, R , Rodden, T. and Sawyer, P (1994) Cooperative systems design, in 
The Computer Journal, 37(5), 1994 

Sproull, L and Kiesler, S. (1991): Connections- New Ways of Working in the Networked 
Organisation, MIT Press, Cambridge, Mass , 1991. 

Suchman, L (1993): Do categories have politics? The language/action perspective reconsidered, m 
Computer-Supported Cooperative Work, 2(3), 1993, pp 177-90. 

Trigg, R. and B0dker, S (1994)' From implementation to design. Tailoring and the emergence ot 
systematization in CSCW, m Proceedings of CSCW'94, Chapel Hill, ACM Press, 22-26 
Oct. 1994, pp 45-54 

Winograd, T. (1993). Categories, disciplines and social coordination, m Computer-Supported 
Cooperative Work, 2(3), 1993, pp 191-198 


