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Robot Grasping by Exploiting Compliance and Environmental
Constraints

Abstract

Grasping is a crucial skill for any autonomous system that needs to alter the physical world.
The complexity of robot grasping stems from the fact that any solution comprises various
components: Hand design, control, perception, and planning all affect the success of a grasp.
Apart frompicking solutions inwell-defined industrial scenarios, general grasping in unstruc-
tured environment is still an open problem.

In this thesis, we exploit two general properties to devise grasp planning algorithms: the
compliance of robot hands and the stiffness of the environment that surrounds an object.
We view hand compliance as an enabler for local adaptability in the grasping process that
does not require explicit reasoning or planning. As a result, we study compliance-aware al-
gorithms to synthesize grasps. Exploiting hand compliance also simplifies perception, since
precise geometric object models are not needed. Complementary to hand compliance is the
idea of exploiting the stiffness of the environment. In real-world scenarios, objects never oc-
cur in isolation. They are situated in an environmental context: on a table, in a shelf, inside
a drawer, etc. Robotic grasp strategies can benefit from contact with the environment by
pulling objects to edges, pushing them against surfaces etc. We call this principle the exploita-
tion of environmental constraints. We present grasp planning algorithms which detect and
sequence environmental constraint exploitations.

We study the two ideas by focusingon the relationshipsbetween the threemain constituents
of the grasping problem: hand, object, and environment. We show that the interactions be-
tween adaptable hands and objects lend themselves to low-dimensional grasp actions. Based
on this insight, wedevise twograspplanning algorithmswhichmap compliancemodes to raw
sensor signals using minimal prior knowledge. Next, we focus on the interactions between
hand and environment. We show that contacting the environment can improve success in
motion and grasping tasks. We conclude our investigations by considering interactions be-
tween all three factors: hand, object, and environment. We extend our grasping approach to
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select the most appropriate environmental constraint exploitation based on the shape of an
object. Finally, we consider simple manipulation tasks that require individual finger move-
ments. Although compliant hands pose challenges due to the difficulty in modeling and
limitations in sensing, we propose an approach to learn feedback control strategies that solve
these tasks. We evaluate all algorithms presented in this thesis in extensive real-world experi-
ments, compare their assumptions and discuss limitations. The investigations and planning
algorithms show that exploiting compliance in hands and stiffness in the environment leads
to improved grasp performance.
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Robotisches Greifen unter Ausnutzung der Nachgiebigkeit von
Händen und der Einbeziehung der Umgebung

Zusammenfassung

Greifen ist eine fundamentale Fähigkeit, die jedes autonome System beherrschen muss, wel-
ches die physikalische Welt verändern will. Die Komplexität des robotischen Greifens ent-
springt dem Umstand, dass jede Lösung eine Vielzahl an unterschiedlichen Komponenten
enthält: den Handmechnismus, seine Regelung, die Wahrnehmung der Umwelt und Bewe-
gungsplanung. Sie alle beeinflussen den Erfolg eines Griffs. Obwohl Greiflösungen in wohl-
definierten Industrieanwendungen existieren, ist das generelle Greifproblem in unstruktu-
rierten Umgebungen noch immer ungelöst.

DieseDissertation stellt Greifplanungsalgorithmen vor, die zwei allgemeine Eigenschaften
ausnutzen: die Nachgiebigkeit vonRoboterhänden und die Einbeziehung der Umgebung ei-
nes Objekts. Wir betrachtenNachgiebigkeit als einenWegbereiter für die lokale Anpassungs-
fähigkeit der Hand im Greifprozess, die keinerlei logisches Denken oder Planung benötigt.
Darauf aufbauend präsentieren wir Greifplanungsalgorithmen, die die Nachgiebigkeit einer
Hand explizit berücksichtigen.Dies erleichtert auch dasWahrnehmungsproblem, da nun kei-
ne akkuraten geometrischenModelle des Objekts notwendig sind. Komplementär zur Nach-
giebigkeit derHand steht die Idee, die Festigkeit derUmgebung für dasGreifen auszunutzen.
In menschlichen Lebenswelten treten Objekte nie isoliert auf. Stattdessen sind sie in einem
Umgebungskontext eingebettet: Sie befinden sich auf Tischen, in Regalen, Schubladen, usw.
Robotische Greifstrategien können davon profitieren, indem sie Objekte an Kanten ziehen,
gegen Oberflächen drücken, usw. Wir nennen diese Prinzip die Ausnutzung von Beschrän-
kungen durch die Umgebung. Wir stellen Greifplanungsalgorithmen vor, die auf der Sequen-
zierung von umgebungsausnutzenden Bewegungen basieren.

Wir studieren diese beiden Ideen, indem wir uns auf die Beziehungen der Hauptbestand-
teile des Greifproblems konzentrieren: Hand, Objekt und Umwelt. Wir zeigen, dass die In-
teraktionen zwischen nachgiebigenHänden undObjekten sich für eine niedrigdimensionale
Greifbeschreibung eignen. Auf dieser Einsicht aufbauend, entwickeln wir zwei Algorithmen,
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die mit minimalem Vorwissen passende Greifstrategien auf der Basis von visuellen Sensorda-
ten auswählen. Anschließend widmen wir uns den Interaktionen zwischen Hand und Um-
welt. Wir zeigen, dass Kontakt mit der Umgebung die Erfolgsrate bei Bewegungs- und Greif-
problemen erhöhen kann. Unsere finalen Untersuchungen betreffen die Interaktionen zwi-
schen allen drei Faktoren: Hand, Objekt undUmwelt.Wir erweitern unseren Ansatz, indem
wir die beste Greifstrategie zur Ausnutzung der Umgebung aufgrund der Formeigenschaft
eines Objekts auswählen. Im letzten Abschnitt betrachten wir einfacheManipulationsaufga-
ben, die die gezielte Bewegung einzelner Fingerglieder verlangt. In diesem Fall stellen nach-
giebiege Hände eine Herausforderung dar, da ihre Effekte schwer zu modellieren sind und
ihre Sensorik eingeschränkt ist. Wir stellen eine Methode vor, die trotz dieser Hindernisse
Regler lernt, die einfache Manipulationsaufgaben lösen können. Alle vorgestellten Algorith-
men in dieser Dissertation werden ausführlich auf echten Robotersystemen evaluiert. Wir
vergleichen ihre Annahmen und diskutieren Limitierungen. Unsere Untersuchungen und
Planungsalgorithmen zeigen, dass die Ausnutzung von Nachgiebigkeit in Händen und Fe-
stigkeit in der Umgebung zu erfolgreicherem Greifen führt.
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And there ain’t nothin’ like a friend who can tell you
you’re just pissin’ in the wind.

Neil Young
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Notation and Abbrevations

v A vector

M A matrix

S A set

SE(3) The special Euclidean group SE(3) is the symmetry group of
three-dimensional Euclidean space. An element of this group is
used to describe the motion of a rigid body.

SE(2) The special Euclidean groupSE(2) describes all translations and
rotations in the plane. It is homeomorphic to IR2 × S1.

DOF Degree of freedom. The number of independent parameters that
define the configuration of a mechanical system.

EC Environmental constraint. A feature of the environment that en-
ables replacing aspects of control and/or perception with interac-
tion between hand and environment.

ECE Environmental constraint exploitation. The act of using an envi-
ronmental constraint.

SFA Sun-Flower-Annulus. Ahypothesis about grasp success as a func-
tion of object shape presented in Sec. 2.2.

CERRT Contact-exploiting rapidly-exploring random tree. A motion
planning algorithm presented in Chapter 4. It is based on the
rapidly-exploring random tree (RRT) by LaValle (1998).
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All titles in this thesis are capitalized according to the “TheNew York TimesManual of Style
and Usage”, A.M. Siegal and W.G. Connolly, Three Rivers Press, 5th edition, 2015.

I will use the first-person plural narrative “we” throughout this thesis, since a large part of the
presented work is collaborative and to keep the language consistent.
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0
Introduction

Moravec’s paradox (Moravec, 1988) is the insight that recreating higher-level rea-
soning requires much less computational resources compared to low-level sensori-

motor skills. Success stories in the field of artificial intelligence have confirmed Moravec’s
paradox: machines beat humans in chess (Campbell et al., 2002), jeopardy (Ferrucci et al.,
2010) and go (Silver et al., 2016), yet in tasks such as walking andmanipulation they are easily
outperformed by a five-year old. To put it with the words of Minsky (1986): “we’re more
aware of simple processes that don’t work well than of complex ones that work flawlessly.”
Grasping is one such unconscious process and synthesizing it is the central topic of this thesis.

Some roboticists might argue that “grasping is solved”*, so why bother writing a thesis
about it? The fact that general robot grasping might still be an open problem can be easily
verified when looking at industry. Logistics companies actively work on solutions for robust
grasping, yet no general solutions exist. Their warehouses are largely automated with con-
veyor systems moving objects from a to b. But when it comes to picking up different objects

*This controversial statement was made by roboticist Gil Pratt during a plenary talk at the International
Conference on Intelligent Robots and Systems 2012. He later went into detail saying: ”I don’t regret say-
ing that. [..] What I had meant is that the program that I ran [at DARPA] was on grasping and ma-
nipulation, where once you grasp the thing, so you can pick it up, you need to have skills to turn the
key, or to operate the tool, or to do anything else. The latter, the manipulation at that point, was still
very much not solved - all the different dynamic behaviors that you need to do with the grasper in order
to do a complete task in time. But the fundamental problem of picking this thing up had become easier,
and people had mostly figured out how to do it.” (http://spectrum.ieee.org/automaton/robotics/
artificial-intelligence/gill-pratt-on-toyota-robot-plans)
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Figure 1: Number of new publi-

cations in robotics about grasping

per year: The absolute amount

of new publications constantly in-

creases (red bars). A decline in sci-

entific interest is also not visible

when considering the relative per-

centage (black line). The numbers

are based on a keyword search in

the IEEE Xplore digital library.

and putting them into totes and parcels, humanworkers are still indispensable. Similar to in-
dustry, the scientific research community continues to actively work on the “solved problem”
of grasping since Pratt’s remark in 2012. Fig. 1 shows thatmore andmore researchers dive into
the grasping problem as the field grows.

The continued interest in the grasping problem is also due to its complexity. This com-
plexity stems from the fact that robot grasping is inherently a systemic problem: Any solution
relies on an interplay betweenmechanism design, low-level control, perception and planning
algorithms. Apart from the systemic nature of the grasping problem, we identify three main
challenges:

Graspdecisionsarehigh-dimensional: The humanhand has 23 degrees of freedom
(Napier, 1956). Grasping an object requires a coordinated movement of all these individual
DOF. A grasp decision also includes where to contact the object surface, which parts of the
hand to use, and ultimately which forces to apply. Additionally, all of these decisions might
vary on a temporal scale. Imagine picking up a coin for example: We first lift one end of the
coin using the index finger’s nail while the thumb fixates the opposite end. Once the coin is
vertical, the tip of the index slides down and forms a pinch grasp together with the thumb.
One key question is how to formulate grasp representations that are expressive enough to
cope with the large variety of grasping scenarios while at the same time enabling an effective
search of this high-dimensional space.

Contact is hard to model: Grasping inevitably involves contact as hand and object
touch each other. The impact itself is characterized by an abrupt change in the velocities of
the contacting bodies, high forces, short duration, and rapid energy dissipation. Thus, the
resulting dynamics contain non-linearities and discontinuities which are difficult to model
and which do not lend themselves to gradient-based optimization methods. After the im-
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0.1 Goal of the Thesis

pact the contact mechanics are characterized by interacting surfaces and the resulting friction
phenomena. Friction is so complex that an entire research field is devoted to its study (tribol-
ogy, e.g. Bhushan (2013)). The combination of continuous and discrete states in the physics
of grasping led Ritter et al. (2007) to even call grasping the “Rosetta Stone” for designing
cognitive robotic architectures.

Information is always incomplete: Apart from the fact that the grasping process
has a complex structure due to contact phenomena, it also depends on amultitude of param-
eters that vary from object to object. These properties include: shape, mass, inertia, friction,
stiffness, etc. They need to be known for the object, environment, and hand to make accu-
rate predictions and plan robust grasps. Gaining information about these quantities with a
robotic system is challenging, since measurements are noisy and observations are limited. Vi-
sual sensors e.g. are prone to occlusions and depend on the selected view point. Tactile or
haptic sensing relies on contact which might be difficult to achieve in the first place. Further-
more, ifwe are interested in less structured environments than factory floors (e.g. households)
the limitations due tomissing a priori knowledge and on-board sensing are evenmore severe.

0.1 Goal of the Thesis

In this thesiswe tackle the problemofplanning robust grasps for arbitrary objects. We assume
knowledge about the kinematics and dynamics of the robot. We will focus our experimental
evaluation onmulti-fingered robot hands, although the introduced concepts and insights are
often independent of the exact nature of the hand. The planned grasps do not satisfy any task
constraints. Instead they are supposed tomeet general pick-and-place demands. We focus on
scenarios with unknown objects and little prior knowledge, grasp planning will be based on
on-board sensor measurements.
We investigate two main ideas to solve the challenges associated with robot grasping:

1. How to exploit the compliance and adaptability of robotic hands?

2. How to exploit the stiffness and predictability of the environment for grasping?

In the following we will explain those two ideas in more detail.

3
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0.2 Exploiting the Compliance and Adaptability of Robot Hands

Compliance can be defined in various ways. According to Merriam Webster, compliance is
“the ability of anobject to yield elasticallywhen a force is applied” †. Inphysics, themechanical
compliance of a point is defined as the ratio of its displacement from an equilibrium state
and the force that is causing it. If a small force causes a large displacement the point is highly
compliant. The inverse of compliance is called stiffness. Compliance in robot hands can be
implemented in variousways. Passive compliance is realizedbyusing elasticmaterials for links
or adding springs to the joint actuators. Active compliance is achieved through control. In
this thesis we use the terms compliance and adaptability interchangeably and in the broadest
possible sense: Compliance describes the ability of the grasper and the object to match each
other’s shape in response to contact forces.

In robots as well as in humans, grasp success is greatly affected by the ability of the hand to
adapt to the shape of the object. This adaptation increases the contact area and thereby the
robustness of the grasp. The positive effect of shape adaptation on grasp success motivates
the design of compliant, underactuated gripper devices: The tendon-driven SDMhand (Dol-
lar and Howe, 2010) mechanically balances contact forces among its four flexible fingers. A
gripper based on the jamming of granular material (Brown et al., 2010) can conform to a
wide variety of object shapes. Deimel and Brock (2016) developed a soft pneumatic hand that
adapts to the object’s shape through inflation. All of these examples show robust grasp per-
formance through shape adaptation implemented in hardware, without explicit control or
planning.

The first core idea of this thesis is to exploit the compliance of robot hands for grasping.
The inherent low-level adaptationbetweenhand andobject can simplify perception andplan-
ning. Instead of planning precise contact locations based on high-fidelity models, it is suffi-
cient to plan rough grasping poses. This in turn reduces the burden on perception, since
only an approximate estimate of the object’s shape is needed. Ultimately, this approximation
should exploit the specific capabilities of hand adaptation. Humans also exploit their adapt-
ability during grasping as shownbyChristopoulos and Schrater (2009). In this study, human
graspers were confronted with noisy object positions. In response the subjects aligned their
hand’s approach direction with the dimension of largest variance in object position.

†https://www.merriam-webster.com/dictionary/compliance
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0.3 Exploiting the Stiffness of the Environment

The second core idea of this thesis focuses on the environment during grasping. We want to
exploit the fact that the recurring structure and properties of the environment can help to
attain a successful grasp. Objects in everyday life are situated in a context. They do not exist
in free space— they are located on tables, in shelves, drawers, boxes, bowls, etc. These planar
and curved surfaces, edges and corners are environmental structures that can be thought as
an additional finger during grasping. Their high stiffness and low friction can be used to
enable robust grasping strategies that involve pressing objects against a surface, sliding them
towards an edge etc. Throughout this thesis we will refer to such an environmental structure
as an environmental constraint (EC). In a more general sense an environmental constraint
is a feature of the environment that enables replacing aspects of control and/or perception
with interaction between hand and environment. We call the exploitation of environmental
constraints the usage of any number of ECs to replace aspects of control and/or perception
with interaction between hand and environment.

In robotic grasping the idea of exploiting ECs has not been extensively investigated, al-
though a few examples exist. Kazemi et al. (2014) describe a grasping strategy for lifting thin
and flat objects froma table. The strategy tries to keep contact between fingertips and the sup-
port surface during finger closing. In this case the environment guides the fingertips towards
the object surface, which would be more difficult using pure position control in free space.
Kappler et al. (2010) present another strategy which pulls a compact disk towards the edge
of a table to pick it up. This kind of pre-manipulation allows the thumb to create contact
forces underneath the object. For underactuated mechanisms contact with the environment
can help attain pre-grasp configurations, as shownwith the PISA/IITHandwhen grasping a
book (Bonilla et al., 2014). In contrast to exploiting the environment, a muchmore common
approach in grasping is to consider the environment as an obstacle and avoid contact with
it (Miller and Allen, 2004).

The idea of exploiting contact with the environment to simplify and solve robotic motion
tasks is not new. In the bracing strategy (Book et al., 1985) the lower part of a robot arm
(which is usually heavy and less agile) first attaches to a rigid structure in the environment.
Once attached, a lighter structure at the endof themanipulator canbe actuated and fulfill fine
motion requirements. Another common control strategy are so-called guarded moves (Will
and Grossman, 1975). These linear motions are performed until an easily detectable contact
event with the environment occurs. The combination of guardedmoves can lead to complex
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Video Figure 1: One core idea of this thesis is to simplify robot grasping by making extensive use of the environment.

We call this the exploitation of environmental constraints. Human grasping often also benefits from this effect as can be

seen in the examples above. [https://youtu.be/5w9n5xVTfTo]

motion behaviors that succeed despite significant uncertainty of the system state (Lozano-
Pérez et al., 1984). Finally, humanoidmorphologies can also increase stability and robustness
by contacting the environment. Borras and Asfour (2015) categorize body configurations in
locomotion and manipulation tasks based on multiple contacts.

The exploitation of ECs to improve grasp success can also be observed in humans and
animals. Deimel et al. (2013) analyzed humans grasping objects from a sensorized surface
when subjects are visually impaired. They showed that humans with limited visual feedback
deliberately increase contact with the support surface on which the object is positioned to
compensate uncertainty and increase grasp success. This is reflected in an increase of applied
forces, length anddurationof fingertip contact traces, and time from first contact to object lift.
In the animal kingdom exploitation of ECs is also present. Raccoons exhibit great dexterity
despite the kinematic limitations of their hands. They do not have a real opposable thumb
and as a consequence use a lot of “flat” grasps. But by exploiting environmental constraints
they increase their dexterity and grasping repertoire: “For example, a long stickwill be pushed
or pulled along the ground, constrained against a fixed object (a stone, wall, or perhaps the
raccoon’s body) before being scooped up in the fingers.” (Walker, 1995)

The idea of focusing on the environment for grasping complements our first theme in
this thesis: the exploitation of adaptability in hands. Hands that are compliant can get into
contact with the environment more easily since catastrophic outcomes are less likely. Never-
theless, the idea of environmental constraint exploitation is not limited to soft hands and we
will prove this by showing experiments with stiff end-effectors (see e.g. Chapter 5).

6
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0.4 Content and Contributions of the Thesis

Hand Object

Environment

The two main ideas of this thesis can be expressed as the re-
lationships between the different actors that are present in
grasping: hand, object, and environment. The relationship
between hand and object is governed by the hand’s adapt-
ability, while the relation between hand and environment is
dominated by the environment’s stiffness. After investigat-
ing these binary relationships, we look at the combined ef-
fects of hand, object, and environment and present a grasp
planning method that takes all of them into account. We will treat the relationship between
object and environment only briefly (introduction of Part III), since characterizing it is not a
robotic problem per se. Accordingly, we organize the thesis into three separate parts:

Part I investigates the interactions between hand and object during grasping. We start
with a series of small human grasping experiments, in which the role and importance of hand
adaptability becomes visible. We complement these experiments with a large amount of sim-
ulations in which adaptability in the face of varying object shape is evaluated. These initial
investigations show the low-dimensionality of grasping due to hand adaptability. Based on
this insight we devise two grasp planning algorithmswhich extract the necessary information
to execute robotic grasps from raw sensor input. These algorithms differ in their sensor re-
quirements (color vs. depth images), but they both exploit compliance and work without
strong assumptions about the availability of prior object models.

Part II is based on our second core idea of exploiting the stiffness of the environment.
The investigation is focused on the interactions between hand and environment, ignoring
any notion of object. We will present two methods for exploiting the environment: the first
one targets motion planning problems, while the second is more tailored to grasping scenar-
ios. We experimentally evaluate both algorithm in simulation and the real world and draw
conclusions about their advantages and limitations.

Part III extends themethods and insights derived in the previous parts by focusing on the
ternary relationship between hand, object and environment. We will present methods that
adapt grasping strategies locally to concurrently comply with the shape of the object and the
environment. Furthermore, we present a method that globally selects which environmen-
tal constraints to exploit in an unknown scene based on object properties. This approach
improves grasp performance over time by incorporating past experiences. Finally, we are

7
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looking at simple manipulations beyond the realm of grasping. The compliant hands we are
using for grasping in this thesis exhibit significant challengeswhen it comes to dexterous skills
due to their underactuation and sensing limitations. The part finishes with an approach that
tackles these challenges through a sample-efficient trial-and-error learning procedure.

In the following table we list the different conceptual, technical, and empirical contribu-
tions of this thesis in detail:

Chapter Sec. Contributions

1 1.1 An overview of hand design features that provide adaptability

1.3 A taxonomy of seven principles used by grasp planning algo-
rithms to increase adaptability

H
an

d
–
O
bj
ec
t

2 2.2 A hypothesis about the relationship between object shape and
grasp success, which we call the Sun-Flower-Annulus hypothesis

2.3 A view on the problem of grasping as a sequence of uncertainty-
reducing funnel operations

3 3.1 Amethod to synthesize grasps based on the change of contour of
an object when being viewed by an active camera

3.2 A grasp planning approach that matches arbitrary 3D measure-
ments with hand pre-shapes using geometric prototypes

H
an

d
–
En

vi
ro

nm
en

t

4 A planning method that finds motions fromA to B. It assumes a
noisy motion model, a geometric model of the environment and
access to an uncertainty-free contact signal. As a result it finds
motions that combine classical free-space paths with segments of
uncertainty-reducing contact actions (Algorithm 4.1).

5 5.1 A characterization of different grasping strategies that explicitly
exploit the environment. It is based on the concept of environ-
mental constraints (ECs).

5.2 A planning method that finds grasping motions based on se-
quences of contact exploitations (Algorithm 5.4). The method
does not assume an a priori model of the environment but builds
a model from RGB-D data.
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Chapter Sec. Contributions
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6 Two methods to adapt grasping strategies to the environment,
a model-based method for stiff hands (Sec. 6.1) and a learning-
based method for soft end-effectors (Sec. 6.2)

7 7.1 A predictive model to select the best ECEs for sensory inputs of
novel objects. It includes an evaluation of different geometric fea-
tures.

7.2 A formalization of the ECE selection problem as a contextual
multi-armed bandit problem and an extensive evaluation of mul-
tiple common exploration schemes

8 A trial-and-error-based algorithm to learn more general manipu-
lation policies for a soft hand using human demonstrations

Table 1: Contributions of this thesis

Before starting with Part I, we review hands, theory, and algorithms in Chapter 1. We will
do this from the perspective of our proposed focus on hand adaptability and environmental
stiffness.
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1
Background and Related Work

Robotic grasping is an extensively studied phenomenon that spans hardware, the-
ory, and algorithms. While computer-controlled hands were invented as early as 1962

(Ernst, 1962), the analytical origin of grasping dates back toReuleaux (1876) who studied con-
tact conditions in bearings and mechanisms. Rather than repeating a condensed version of
the existing literature we will base our review on the first core idea of this thesis: How can
adaptability and compliance help in grasping?

1.1 Robotic Hands for Grasping

Although this thesis mainly deals with the algorithmic aspects of grasp planning, we need
to look at current hand designs if we want to exploit their ability to adapt and comply. We
identified four different design features that impact adaptability and thereby grasp perfor-
mance. These features relate to the size of hands, surface properties, geometry, and actuation
method. After explaining them and giving examples, we give a quick overview of the hands
that are used in the experiments of this thesis. Finally, we will show a case where compliance
is detrimental to grasp success.

1.1.1 Hand Scale

The opportunity of a hand to adapt is strongly constrained by the size difference between
itself and the objects it is supposed to grasp. Enveloping grasps that create large contact ar-
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1.1 Robotic Hands for Grasping

eas with the object benefit from sufficiently big hands. Longer fingers also allow to capture
objects despite significant pose uncertainty. At the same time increasing size generates prob-
lems: Larger and heavier hands limit dynamic bandwidth, reduce themaximumpayload due
to the arm’s capabilities and create fewer possibilities to move the arm around obstacles.

To find the sweet spot robotic hand designs usually refer to the dimensions of the human
hand, since most objects of interest are made by humans for humans. Assuming that anthro-
pomorphism contributes to functional capabilities, how important is hand scale? Biagiotti
et al. (2004) answer this question by proposing an anthropomorphism index for robotic
hands in which size makes up one fifth of the final value. Feix et al. (2014) take a more
empirical look at the average size of objects that humans manipulate in everyday life. They
collected ∼ 9000 grasps during 32 hours of manual labor from two housekeepers and two
machinists. Most of the 306 analyzed objects fitted inside a bounding box of dimensions
15 cm × 6 cm × 5 cm. Although the largest object dimension exceeded the maximum grip
aperture of the human hand in half of the cases, the experiments also showed that the chosen
grasps opened the hand less than 10 cm in 98% of the cases (and even less than 5 cm in 83%
of the cases).

Instead of reverting to a single sized hand, Odhner et al. (2012) present the concept of a
recursively scaled-down gripper. Similar to a fractal, a two-fingered gripper is mounted on
the fingertip of another two-fingered gripper twice the size. This design is an example of
increasing shape adaptability by leveraging the right hand scale for a given object. We will
show in Sec. 2.2 the importance of hand size for adaptability and grasp success.

1.1.2 Hand Surface

Human evolution shows the importance of contact surfaces for manipulation: While the
hands of our old ancestors have only few patches of specialized skin and pulp on the pal-
mar surface these features are much more prominent in more advanced species such as chim-
panzees. In robotic hands, only fewworks have systematically investigated the effect of differ-
ent surface materials. Shimoga and Goldenberg (1992) show that soft materials are beneficial
due to three reasons: they attenuate impact forces during grasping, conform to uneven object
surfaces, and dissipate repetitive strain during manipulation. They compare six different ma-
terials and conclude that sponge and gel fingertips work best while plastic ones are the least
suitable. Cutkosky et al. (1987) argue in favor of fingerprints for robotic skin by showing
that a textured surface increases friction under moist conditions. Robotic hands are often
equipped with gloves to supply contact compliance and grip, such as the working glove with
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padded rubber surfaces used with the PISA/IIT SoftHand (Catalano et al., 2014).

1.1.3 Hand Geometry

Apart from the surface properties concerning friction and elasticity of hands the geometry
plays a fundamental role when designing adaptable hands. Rodriguez (2013) proposed an al-
gorithm that calculates the shape of a rigid finger whichmaximizes the grasp probability for a
given object with uncertain pose and size. The resulting finger deviates from the usual cylin-
drical shape – it is formed like a hook and was also empirically validated in a simple 3-DOF
gripper (Rodriguez and Mason, 2012). Morrow et al. (2016) analyzed the effect of differently
shaped fingertips for a pneumatic actuator. They compared six different shapes, showing
that the geometry of the ”fingernail” significantly affects grasp success (the best design could
grasp nearly twice as many objects as a finger without a nail). The best performing geome-
tries were a dustpan-inspired one and a wedge-shaped nail. They could get under objects and
push them onto the actuator. Another purely geometric effect can be observed when look-
ing at sensorless manipulation in the form of vibratory bowl feeders (Boothroyd, 1991) which
are often used in industrial automation pipelines. Here, parts are reoriented by passing a se-
quence of geometric features along a track specifically designed for that part. The geometry
of the “grasping mechanism” creates contacts with the object that either rotate it or eject it,
outputting an object in a desired orientation.

1.1.4 Hand Actuation

Adaptability can be easily increased by introducing more degrees of freedom (DOF) into
a hand design. Two early examples are the 6-DOF finger of the Soft Gripper (Hirose and
Umetani, 1978) and the Omnigripper (Scott, 1985) with 72 prismatic joints. These mecha-
nisms can match a large variety of object shapes. But additional motorized joints also come
at the price of increased complexity and the burden of planning and control. An alternative
solution is to use underactuation, i.e., mechanisms with fewer degrees of actuation than de-
grees of freedom. Fig. 1.1 shows that the amount of newly developed underactuated robot
hands has significantly increased in recent years. Underactuation can be implemented in
multiple non-exclusive ways. We follow the discrimination proposed by Krut (2005), who
distinguishes underactuation in differential, triggered, and compliant mechanisms.

12
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are being developed. Numbers

are based on data collected by

the author, also available at www.
robotgrasping.org/hands.

Underactuation: Differential Mechanisms “A differential mechanism is a mech-
anism in which the amount of dynamical inputs from three ports acts in balance” (Hirose,
1985) These mechanisms usually rely on pulleys and cables or linkages. Examples are the
Soft Gripper (Hirose and Umetani, 1978), the SDM Hand (Dollar and Howe, 2010) and the
Pisa/IIT SoftHand (Catalano et al., 2014).

Underactuation: TriggeredMechanisms Some hands includemechanismswhich
lock a joint once a certain threshold is exceeded and switch the torque transmission to differ-
ent joints. The Barrett Hand (Townsend, 2000) for example contains a breakaway mecha-
nism, which is activated if an external force is applied to the finger’s proximal phalanx. Once
active, the motor torque is only transmitted to the distal phalanx which continues to close
while the proximal link of the finger is locked.

Underactuation: CompliantMechanisms This class ofmechanisms includeshands
made from soft materials. They often also contain less common actuation types based on
pneumatics, hydraulics, electro-adhesion, etc. The Positive Pressure Gripper (Amend et al.,
2012) is an extremely compliant example. It is based on a balloon filled with granularmaterial
which adapts to any object shape. Once the balloon is decompressed, the material jams and
keeps its current shape. In experiments the gripper tolerates position errors of up to 72% of
the balloon radius.

1.1.5 Hands Used in This Thesis

Grasping experiments throughout this thesis are conducted with different types of hands.
They differ in the amount of adaptability they expose and how adaptability is implemented
according to the principles listed in the previous section.
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Figure 1.2: We use four different hands in the experimental evaluations of this thesis. They all expose some degree of

adaptability, although implemented by various means. A common theme is underactuation: The Barrett Hand, Meka

Hand, and RBO Hand 2 are all underactuated mechanisms. Another possible feature is scale. The Allegro Hand is 50%

bigger than a common human hand.

Barrett Hand 262 (Townsend, 2000) The 4-DOF Barrett Hand 262 consists of three
fingers and a palm, all made from aluminum. Each finger has two joints which are coupled
and driven by a single motor via a tendon. This coupling can be mechanically removed if
the closing direction of the proximal link is obstructed, in which case only the distal link
continues tomove. This type of underactuation gives the hand the ability to adapt to objects
at the mechanical level (see Sec. 1.1.4). The fourth motor allows two fingers to rotate around
the palm up to 180◦ and oppose the third finger.

Meka H2 Compliant Hand (MekaBot, 2009) The Meka H2 Hand is tendon-driven,
has three fingers andoneopposable thumb. Each finger is drivenby a singlemotor, the thumb
by two,making it fiveDOF. It is roughly the size of a humanhand. The fingers aremade from
flexible urethane. Adaptability is achieved through underactuation and compliant materials.

Allegro Hand (Bae et al., 2012) The 16-DOF Allegro Hand consists of three fingers
and an opposable thumb. Each finger contains four electrical motors. The hand is made
from aluminum, the fingertips are coated with rubber. It is approximately 50% bigger than
a human hand. Adaptability is achieved through scale, surface friction, and a high number
of DOF.

RBOHand 2 (Deimel and Brock, 2014) The RBOHand 2 is a pneumatically actuated
anthropomorphic handmadeout of silicon. It has four fingers and anopposable thumb. The
hand consists of a polyamide scaffold to which multiple pneumatic actuators are attached.

14
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Figure 1.3: The images show the adaptability of the RBO Hand 2 during grasping. In this experiment we executed the

exact same top-down grasp which simply inflates the hand multiple times. Throughout the trials we varied objects and

their positions. In the panels we visualize the different object positions that could be grasped successfully by overlaying

them (from left to right: apple, bottle brush, sponge, bell pepper).

Each of the four fingers is a single actuator, while the thumb consists of three independent
pneumatic actuators (see Fig. 1.2d). This makes the thumb the most dexterous part of the
hand, achieving seven out of eight configurations of the Kapandji test (Kapandji, 1986). Each
finger consists of a single inflatable air chamber the size of a human finger. The silicon enve-
lope is reinforcedwith textile and anX-wounded thread, such that during inflation the finger
bends in the axial direction while radial expansion is minimized. Fig. 1.3 shows that the hand
inherently adapts to different object shapes and poses during grasping.

1.1.6 Negative Effects of Hand Compliance on Grasping

Adding adaptability to robotic hands based on the four properties mentioned above not nec-
essarily enhances grasp performance. There is a trade-off since parasitic effects such as com-
pliance in unwanted directions or fingers with high friction sticking to the environment lead
to unstable or no grasps at all.

We conducted an experiment in which the negative effects of compliance in a hand de-
sign outweighed the positive ones. The grasping capabilities of the hand prototype shown in
Video Fig. 1.1 were compared to those of the Barrett Hand 262. We designed the prototype
such that it resembles the Barrett Hand 262 in terms of scale, finger arrangement and geome-
try. The main difference are the silicon-based pneumatic actuators (Deimel and Brock, 2016)
used as fingers instead of themuch stiffer two-link aluminum fingers of the BarrettHand 262.
We grasped twelve different objects with each hand, using two strategies: a top-down grasp
and a push grasp approaching the object side-ways (see Video Fig. 1.1). While the grasps were
executed open-loop, we changed the position of the objects on the table surface in each trial.
This waywe could characterize the capture region of the hands assuming that the exact object
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VideoFigure1.1:Weevaluatedgraspperformanceof theBarrettHand262 (left)with a soft versionmadeoutof silicone

and pneumatic actuators (right). This experiment showed that increasing compliance not necessarily leads to better

grasp performance. [https://youtu.be/ClYh9mAZzRQ]

position is never known. A larger capture region would mean that the hand could deal with
more uncertainty without increasing the computational burden for planning or feedback-
based control.

The plots in Fig. 1.4 show the capture regions per object for both hands and both grasp
strategies. The Barrett Hand 262 nearly always grasps more reliable than its more compliant
counterpart. The soft prototype failed due to multiple reasons. In the case of the push grasp
the torsional and lateral compliance of the fingers resulted in too small contact forces to lift the
water bottle (500 g). The upright standing tube is a rather thin object (2 cm) which is often
too small given the relatively large curvature of themaximally inflated finger. As a result only
few areas of contact between hand and object are created. Furthermore, the soft fingers are
far from being force-isotropic, i.e., the strongest contact forces are created at the tip while the
intensity of contact forces near the base are rather small. Thus, when the fingertips are not
involved in a grasp it is less stable. The top-down strategy nearly always fails because of the
high surface friction of the silicone. During inflation the fingertips get stuck in the table and
most of the energy is converted into the bending of the fingers without enveloping the object.
Once the hand is lifted from the table surface, the fingers abruptly curl, hitting the object but
not creating a stable grasp.

It is evident that some of the described problems of the soft prototype could be alleviated
by introducing or altering certain design features such as fingernails. But more importantly,
the experiment shows that adding compliance and adaptability – here by changing the ac-
tuation of a more traditional stiff hand – not necessarily leads to higher grasp success. In-
stead, beneficial compliance and adaptability result from careful, oftentimes non-intuitive
hardware designs in combination with appropriate grasping strategies.
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(a)Barrett Hand 262—Push-grasp (b) Soft Prototype— Push-grasp

(c)Barrett Hand 262—Top-down grasp (d) Soft Prototype— Top-down grasp

Figure 1.4: The plots show the capture regions of the Barrett Hand 262 (left) in comparison to the soft prototype (right).

Each imagedescribes the grasp success for a particular object under varyingpositions in the table plane. White indicates

grasp success, black failure. TheBarrettHand262graspsmore reliably, especiallywhenusing top-downgrasps. In these

cases the fingers of the soft prototype got stuck in the table due to their high surface friction.
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Figure 1.5: An example grasp of an audio tape (a), its formalization via two point contacts with friction (b) and the as-

sociated 3D polytope that represents the set of all applicable object wrenches (c). The plot includes the 2D projections

along all three dimensions to improve visibility. Since the origin of thewrench space is inside the polytope this grasp is a

force-closure grasp, i.e., it can balance external forces from any direction.

1.2 Classical Grasp and Restraint Analysis

This section serves two purposes. First, we want to introduce the most common model of
grasping, which provides a basis for many grasp planning algorithms and benchmarks. This
formalization assumes rigid bodies, point contacts, and is quasistatic, i.e., inertial forces are
ignored. At the heart of this model are the concepts of force and form closure, which we will
use in the remainder of this thesis. We will focus on a brief and comprehensible explanation,
more elaborate treatments can be found in Murray et al. (1994), Mason (2001), Prattichizzo
and Trinkle (2008) and Lynch and Park (2017).

Second, we will highlight the limitations of this formalization when it comes to real-world
grasping. This is closely related to the fact that hand adaptability and the potential role of the
environment are not adequately reflected.

1.2.1 Force Closure

In the following explanations we will assume a three-dimensional world and complement
this with illustrations of a planar 2D example. The formal analysis of robotic grasps is based
on the contact configuration between the grasping mechanism h and the object o. The con-
tacts depend on the configuration qo ∈ SE(3) of the object and the configuration of the
hand qh ∈ IRn with n being the number of DOF. Each of the m resulting contacts is char-
acterized by its location ci ∈ IR3 and surface normal vector cni

∈ IR3, ∥cni
∥2= 1. Fig. 1.5b
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1.2 Classical Grasp and Restraint Analysis

shows all the elements in a planar example grasp.
The force f i ∈ IR3 and moment mi ∈ IR3 that are imparted onto the object at each

contact i can be described as a wrenchwi = (f i,mi). An arbitrary frame of reference can
be chosen to express this wrench, but most commonly the center of mass or the geometric
center of the object o are used. All wrenches that can be transmitted at the i-th contact form
a wrench coneWCi ⊂ IR6. The wrench cones depend on the assumed friction model. The
most common friction models in grasping are:

• Frictionless Point Contact or Hard Finger. This type of contact can only
transmit forces along the contact normal:

WCi =

{[
αcni

ci × αcni

]
∈ IR6 | α ≥ 0

}
,

where the term ci × αcni
represents the resulting moment of force, which depends

on the contact location ci. The force intensity α needs to be positive since we do not
allowpulling forces at a contact. Although frictionless contacts arguablynever occur in
practice they can be a useful conservative approximation in cases where the coefficient
of friction is small or unknown.

• Point Contact with Friction. This contact can transmit any force within the
friction coneFC defined byCoulomb’s law. Aligning the axis of the friction conewith
the contact normal cni

results in the set of admissible forces

FCi =
{
f ∈ IR3 | arccos

(
f⊤cni

∥f∥

)
≤ arctan(λ), f⊤cni

> 0

}
,

where the coefficient of friction λ ∈ IR is an empirically derived constant based on the
two interactingmaterials (usually between 0.1 and 1). The friction cone can be turned
into a wrench cone at the object level, just as in the previous case of point contacts
without friction:

WCi =

{[
f

ci × f

]
∈ IR6 | f ∈ FCi

}
.
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• Soft Finger Contact. Besides transmitting tangential forces due to friction, the
soft contact additionally allows to transmit a moment m around the contact normal
due to torsional friction:

WCi =

{[
f

ci × f +mcni

]
∈ IR6 | f ∈ FCi, |m|≤ γf · cni

}
,

whereγ is the torsional coefficient of friction. In the case of planar grasps the soft finger
contact model and point contact with friction are the same.

The set of all wrenches that can be imparted on the object o through the contacts is the linear
positive span of each contact’s wrench cone:

WC = pos({WCi}) =

{
m∑
i=0

kiwi | wi ∈ WCi, ki ∈ IR≥0

}
.

This composite wrench cone contains all possible wrenches that the contacts can exert to
balance external disturbances. A special situation arises when a grasp can withstand object
disturbances in any direction, i.e., the composite wrench cone contains the entire wrench
space (IR6 in spatial or IR3 in planar grasps). Such a grasp is called a force-closure grasp. In the
spatial case, at least seven wrenches are needed to positively span the six-dimensional wrench
space, which canbe achievedwith three frictional point contacts (two are needed in the planar
case). There are certain exceptional object shapes which require more contacts or cannot be
force closed at all, such as surfaces of revolution.

The composite wrench cone assumes potentially infinitely large contact forces. But we can
easily introduce limitations imposed by the hand. Most commonly, two types of limitations
are considered: Either we assume that the total force is limited due to a single energy source
that powers the hand or we assume that each contact force is limited independently. In both
cases the composite wrench cone turns into a wrench polytope:

WP1 =

{
m∑
i=0

kiwi | wi ∈ WCi, ∥wi∥2= 1, ki ∈ IR≥0, ∥k∥1= kmax

}
,

WP∞ =

{
m∑
i=0

kiwi | wi ∈ WCi, ∥wi∥2= 1, ki ∈ IR≥0, ∥k∥∞= kmax

}
, (1.1)

where kmax is the limitingwrenchmagnitude. The composite wrench cone andwrench poly-
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tope are often interchangeably called grasp wrench space. An example of the wrench polytope
of a grasp is shown in Fig. 1.5c.

To algorithmically test the force-closure condition the set notation from above is not use-
ful. Instead we introduce the grasp matrixG ∈ IR6×(m·fc), where fc is the number of faces
of the polyhedral approximation of the friction cone. The grasp matrix is defined as

G =

w11 · · ·w1fc︸ ︷︷ ︸
contact 1

∣∣∣∣∣∣ w21 · · ·w2fc︸ ︷︷ ︸
contact 2

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣ wm1 · · ·wmfc︸ ︷︷ ︸

contactm


andmaps contact wrench intensities k to the resulting object wrench: wo = Gk. Given the
grasp matrix, the following statements are identical:

• The grasp is force closure.

• WC = IR6.

• The origin of the wrench space is inside ofWP .

• G is full rank and there is a solution to the equality

Gk = 0, s.t. k > 0. (1.2)

This also means that a force-closure grasp always generates internal forces.

We can see in Fig. 1.5c that the origin is inside ofWP , thus this grasp is a force-closure grasp.
The force-closure property plays a dominant role in modeling robot grasping. Nevertheless,
one should bear in mind its limitations and disadvantages (see Sec. 1.2.5).

1.2.2 Form Closure

In contrast to force closure, the concept of form closure is based on a purely kinematic and
geometric account of grasp mechanics which ignores forces that occur at contacts. Roughly
speaking, a grasp is in form closure if any instantaneous acceleration of the object owill create
a collision with the grasp mechanism h, or as Mason (2001) defines it: “The object is at an
isolated point in configuration space.”

We formalize form closure by introducing the gap function g(qh, qo) : IRn × SE(3)→
IRm which maps the configurations of hand and object onto the distances between them at
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them different contacts. The meaning of the i-th component of g is as follows:

g(qh, qo)i


> 0, if hand and object are separated and free to move at contact i.

= 0, if hand and object are touching each other at contact i.

< 0, if hand and object are penetrating each other at contact i.

For a general grasp (q̄h, q̄o) ∈ IRn × SE(3) the equation g(q̄h, q̄o) = 0 needs to hold,
where equality refers to an element-wise comparison between the two vectors. Additionally,
this grasp is in form closure if every infinitesimal changedqo in the object configuration leads
to a penetration with the hand:

dqo ̸= 0 =⇒ ∃i ∈ {1, . . . ,m} : g(q̄h, q̄o + dqo)i < 0.

This implication can be rewritten as its contrapositive:

∀i ∈ {1, . . . ,m} : g(q̄h, q̄o + dqo)i ≥ 0 =⇒ dqo = 0, (1.3)

which means that any non-collision between object and hand must be due to a non-moving
object. Similar to the concept of the wrench cone used in force closure we can use twist cones
to express the condition for form closure. The twist cone T Ci due to contact i is the set of
all object twists that do not create a collision with contact i:

T Ci = {dqo ∈ se(3) | g(q̄h, q̄o + dqo) ≥ 0}

In a form-closure grasp all object pose changes result in at least one collision. The union of
all feasible twist cones represents the possible twists that do not generate any collision. Thus,
we can rewrite the condition for a form-closure grasp (Eq. 1.3) as:

T C = T C1 ∩ T C2 ∩ · · · ∩ T Cm = {0} ,

where the zero twist is the only collision-free twist allowed.
It is important to note that there are different orders of form closure depending on howwe

approximate the effect of the infinitesimal change in object pose. A Taylor series expansion
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General Grasps

Force-Closure Grasps

Form-Closure Grasps

First-Order

Frictionless Force-
Form-Closure /

Closure Grasps

Figure 1.6: Diagram showing the relationship

between form and force-closure grasps. Con-

trary to intuition, form closure is not a sufficient

condition for force closure.

of the gap function g around q̄o gives:

g(q̄h, q̄o + dqo)i = g(q̄h, q̄o)i

}
0-th order

approximation

+
∂g

∂qo

(q̄h, q̄o)i · dqo


1st order

approximation

+ dq2
o

⊤ ∂2g

∂q2
o

(q̄h, q̄o)i · dq2
o +

∂g

∂qo

(q̄h, q̄o)i · dq2
o


2nd order
approx.

+ . . .



n-th
order
approx.

By truncating the Taylor series after terms of order n, we can derive form closure tests for
different orders. The most common form-closure test is the one which describes first-order
form-closure grasps. The first-order approximation of g contains two terms. The first one
(g(q̄h, q̄o)i) will be zero in case of a grasp. The second one contains the gradient vector
∂g
∂qo

(q̄h, q̄o)i which corresponds to the separation direction in qo space at the i-th contact,
i.e., the contact normal cni

. Since the contact normal points into the object and the dot prod-
uct projects the change in object configuration onto the normal, the second term always be-
comes negative if hand and object collide due to the object configuration change dqo. Thus,
the first-order form-closure condition is equivalent to the force-closure condition with fric-
tionless point contacts.

Higher orders of form-closure tests are especially relevant for concave contact surfaces. The
general relationship between force-closure and form-closure grasps is depicted in the diagram
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of Fig. 1.6. Our example grasp in Fig. 1.5 is not a form-closure grasp, since any velocity perpen-
dicular to the contact normals will allow the object to “escape”, i.e., there are non-zero object
pose changes for which the gap function is not negative (Eq. 1.3).

Closely related to the notion of form closure are cages. A grasp is a cage, if the object is
at an isolated component in configuration space (in contrast to be at an isolated point for
form-closure). This means that there exists no collision-free path from the object’s current
configuration to a configuration outside the hand. Every form-closure grasp is a cage but not
vice versa.

1.2.3 Grasp Metrics

Given two grasps we can test if they are in force or form closure. But if both fulfill e.g. the
force-closure condition, which one should we prefer (see for example the force-closure grasps
shown in Fig. 1.7a and Fig. 1.7b)? This is where grasp metrics come into play. Grasp metrics
are functions thatmap grasps to scalar values, indicating some formof quality of a grasp (Roa
andSuárez, 2015). They are a crucial tool to synthesize grasps, sincemany algorithms are based
on maximizing/minimizing a particular grasp metric.

The most popular metric was introduced by Ferrari and Canny (1992). It is based on the
characterization of the wrench polytopeWP , i.e., the set of all object wrenches a grasp can
apply (Eq. 1.1). One way to describe the wrench polytope is by looking at its volume: A larger
volume means that there a more disturbance wrenches that can be balanced. Another more
popular choice is to quantify the largest disturbance that can be balanced from any direction.
Geometrically, this corresponds to the radius of the largest sphere that is inscribed inWP
and centered at the origin. This quality measure is commonly called the ε-metric:

ε = argmax
r

Br(0) ⊂ WP ,

whereBr(p) = {x ∈ IR6 | ∥x−p∥2< r} is a six-dimensional ball. Note that ε is based on
the Euclidean distance in wrench space which mixes units of forces and torques. Thus, it is
common to scale torques with a factor that is inversely proportional to the size of the object.
Fig. 1.7 shows the comparison of two grasps of a rectangular object according to the ε-metric.
In this example grasp 1 might be intuitively more desirable and robust because the contacts
are at the center of each edge and uncertainty in their location will only minimally affect the
grasp. In contrast, the contacts of grasp 2 are close to the object’s corner. A slight deviation
of their location will lead the grasp to become unstable. Nevertheless, the ε value of grasp 2 is
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(b)Grasp 2

(c) ε = 0.46 (d) ε = 0.54

Figure1.7: Theplots showthequalityof twograspsofa rectangleaccording to theε-metric. Thefirstgrasp (left) contacts
the four sides of the rectangle at their center points. Intuitively, this might be considered more robust than the second

grasp (right) which contacts the rectangle at two opposite corners. Their respective wrench polytopes are shown in the

lower row (light red, including projections along all three dimensions). Theε-metric is the radius of the largest inscribing
ball (green) of thepolytope, centered at theorigin. Theε valueof the secondgrasp is indeedhigher becauseof thehigher
torques that can be balanced by grasping at the corners.

higher, mainly because it can withstand higher torque perturbations of the object. This can
be seen in Fig. 1.7 by comparing the grasp wrench polytopes, whose sizes differ mostly along
the τ dimension.

1.2.4 Other Desirable Grasp Properties

Although force and form closure are the most popular conditions to characterize immobi-
lized objects, there are more properties of grasps that are important and often desirable. The
different classes and their relationships are shown as a Venn diagram in Fig. 1.8 which we
adopted from Shimoga (1996). They are:

• General Grasps: This class includes all possible contact configurations between
hand and object, including non-prehensile grasps etc.
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• Equilibrium Grasps: This set contains all grasps whose contact wrenches sum up
to zero. All force-closure grasps are in equilibrium, since they require a non-trivial
solution to the equalityGk = 0 (Eq. 1.2).

• Stable Grasps: Stability is a stronger condition than force-closure. A system is con-
sidered stable if it returns to its equilibrium state in finite time once it is deflected from
it. What constitutes a stable grasp depends on the definition of the state. This can be
the pose and velocity of the object, or the positions and velocities of the contacts (Mon-
tana, 1991). In contrast to force closure, stability depends on the controller, shape of
object and fingers, and the contact impedances. The fact that force closure is too often
equated with stability is also lamented by Howard and Kumar (1996):

“Finally, we close by pointing out that in most grasping situations, sta-
bility is amuchmore important criteria [sic] than force closure, despite the
fact that force closure has received far greater attention in recent years. In-
deed, often the only reason a researcher tries to obtain a force-closed grasp
is that it is stable.”

• Grasps with Desired Dynamic Behavior: This includes all stable grasps which
in addition satisfy a desired dynamic behavior of the object.

• Dexterous Grasps: The set of grasps which are able to move the object according
to the task, under the constraints given by the contacts between hand and object. If no
task is given, a dexterous grasp needs to be capable to move the object in any direction.

In this thesis we are not concerned with the last two categories – dexterous grasps and
grasps with a desired dynamic behavior. Instead we are interested in achieving stable grasps.
Tomeasure grasp success throughout this thesis, wewill usually resort to empirical tests: shak-
ing the hand arbitrarily and checking whether the object will fall down. Only for few experi-
ments in simulation we report force-closure or ε-metric values.

*Weadded the set of form-closure grasps and corrected the set of equilibriumgrasps tobe aproper superset of
force-closure grasps. Shimoga (1996) claims that equilibrium grasps are a proper subset of force-closure grasps.
This cannot be true, since the equilibrium condition (all contact wrenches sum up to zero) is necessary for
every force-closure grasp. Furthermore, there are grasps that are in equilibrium but not force-closure (e.g. two
antipodal frictionless contacts).
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General Grasps

Force-Closure Grasps

Equilibrium Grasps

Stable Grasps

Grasps with Desired Dynamic Behavior

Form-Closure Grasps

Dexterous Grasps

Figure 1.8: Diagram of desirable grasp proper-

ties and their relationships, adapted from Shi-

moga (1996).*

1.2.5 Limitations

The classical model of grasping used for force and form closure is based on point contacts.
One might argue that this is an irrelevant approximation, since no real grasp exhibits only
point contacts but rather large patches of contact, especially in robust grasps. But the model
of point contacts is able to express also other contact geometries. A line contact is equivalent
to two point contacts located at each end of the line segment. A contact region with uniform
friction can be represented by a set of point contacts located at the vertices of its convex hull.
While this is helpful for analyzing grasps, it does not help when trying to find good grasps
in combination with the assumptions of rigid bodies and static objects. In this case, most
contacts will end up being points.

While some simplifications such as frictionless grasps seem to serve as a reasonable worst-
case approximation, form closure with its requirement to completely restrain an object and
prohibit any motion seems unrealistic. No human grasp completely immobilizes an object.
There is always a certain wiggle room left (due to finger pulp etc.) which would prevent form
closure. This compliance at the contact level has been addressed by various grasp models: Ei-
ther by using linear spring models (Howard and Kumar, 1994), Hertz contact models (Lin
et al., 1997), or discretizing contact regions into finite elements (Ciocarlie et al., 2005). The
significance of these models is hard to assess since none of them is evaluated w.r.t. the real
world phenomena they are trying to describe. And because of their computational complex-
ity and high demand for parameter identification they are not commonly used in robotic
applications to find good grasps.

Hence, the simpler models assuming rigid bodies and evaluating force closure based on
point contacts are dominant when it comes to synthesizing robotic grasps in the real world.

27



Chapter 1▼ Background and Related Work

The problems arising in such approaches are twofold. First, a lot of knowledge is required
to analyze grasps with the classical model. The object geometry needs to be known, which
requires a segmentation of the scene and integration ofmultiple views due to occlusions. The
coefficient of friction of different materials needs to be inferred, preferably only through vi-
sion. Gathering this information is usually bundled in a process that resembles object recogni-
tion– a field of research itself that is complex and still unsolved. Second, executing grasps that
were planned using the classical model will often deviate from expectations. This is because
of model inaccuracies and the uncertainty of the collected information.

We can take a look at two representatives of this approach (Morales et al., 2006, Goldfeder
et al., 2009b) to see that the classical model does not easily transfer to the real world. Both
are based on databases which store the best grasps according to the ε-metric (see Sec. 1.2.3)
for a variety of objects. After identifying and localizing objects in the scene, the looked-up
grasps are executed. Morales et al. (2006) claim that such an execution module is outside the
scope of their paper: “And finally, a module that executes the grasp using tactile and visual
feedback has to be developed too.” We can assume that they came to this conclusion after
not being able to reproduce the planned grasps successfully. Similarly, the Columbia grasp
database (Goldfeder et al., 2009b) contains grasps for several thousand objects and multiple
hands. Applying these grasps in practice often fails due to the gap between simulation and
real world. †

In Sec. 3.1.3 we compare grasps planned by one of the algorithms in this thesis to planned
grasps with known geometries based on the ε-metric. In this experiment, we found that exe-
cuting these grasps often leads to failure instead of stable contact configurations.

A final hint on the weaknesses of the classical grasp model is given by Balasubramanian
et al. (2010). They asked humans to guide a robotic hand for finding the most promising
grasps. These grasps were evaluated repeatedly and compared to grasps planned with the

†Matei Ciocarlie (co-author of the Columbia grasp database): “I believe that a direction that has received
less attention, and needs to catch up, is quantifying a grasp by robustness to execution errors. I have seen the
need for this recently in two very different settings. First, at Columbia, we had a strong effort to create a very
large database of labeled grasp information, in simulation. The goal was to use the database in order to grasp
similar (but not identical) objects in the real world. We found that some of the grasps in our database had great
quality metrics, but looked marginal to the human eye and translated poorly to other similar objects because
they were relying on detailed features of an object that were unlikely to generalize well, and difficult to execute
correctly. Second, at Willow Garage, we have been building a grasping pipeline that, on recognized objects,
executes pre-stored grasps from a database. Evenwhen recognition does its job, and the exact object is identified,
the work is far from done. Due to calibration errors, a grasp can never be executed perfectly, which introduces
errors that the database was not originally equipped to handle.” (from https://web.archive.org/web/
20100801094740/http://www.grssp.org:80/blog/?no_cache=1)
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ε-metric. It turned out that humans found much more robust grasps and that these grasps
could not be explained by the ε-metric but rather by an alignment of the hand with the ob-
ject’s principal axis.
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1.3 Algorithms for Synthesizing Grasps

In this section, we look through the lens of adaptability to classify different existing grasp
algorithms. We identify seven planning principles which implicitly or explicitly exploit the
adaptability of the hand to guide the search for good grasps or compress the underlying search
space (see Table 1.1).

Principle

I Exploiting Adaptability in Grasp Representations (Sec. 1.3.1)
II Exploiting Adaptability in Object Representations (Sec. 1.3.2)
III Assuming Object Similarity Implies Grasp Similarity (Sec. 1.3.3)
IV Exploiting Adaptability of Objects (Sec. 1.3.4)
V Exploiting the Environment to Increase Adaptability (Sec. 1.3.5)
VI AssumingUncertainty inGraspExecution andSensing (Sec. 1.3.6)
VII Learning Hand-Specific Data-Driven Grasp Models (Sec. 1.3.7)

Table 1.1: Grasp planning principles based on hand adaptability

This is a non-exclusive list. Algorithms can exploit multiple of these seven principles. In
contrast to the first six principles, the last one also addresses the problem of transferring
model-based grasps to the real world (one of themain limitations identified for classical grasp
analysis in the previous Sec. 1.2).

1.3.1 Principle I: Exploiting Adaptability in Grasp Representations

The core problem of planning grasps is the high number of parameters that is needed to
describe grasping motions. Imagine we would only consider static grasp postures, i.e., each
grasp is fully described by a single point in the configuration space of the hand. Let us as-
sume that this configuration space is defined by the intrinsic DOF of the hand and its pose
in three-dimensional space, i.e., a configuration is a point q ∈ IRDOF× SE(3). Given the
human hand with 24DOF this results in a space with 30 dimensions. Discretizing each rev-
olute DOF by 1◦ and each prismatic DOF by 1mm results in≈ 5 · 1076 different options to
grasp. Note that in this viewwe have ignored themotion of the hand or its joint impedances,
which would lead to even more dimensions. Even worse, this space does not lend itself to
gradient-based search methods since contact creates strong non-linearities and discontinu-
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ities. Consequently, there have been different attempts to either reduce this dimensionality
or to devise entirely different grasp representations by using heuristics, engineering intuition,
machine learning techniques or human studies.

Nearly all approaches to grasp planning – as we will see below – treat the extrinsic and in-
trinsic DOF of a hand differently. Their underlying assumption is that the range of motion
of a DOF affects its ability to adapt and match object shape. The DOF of a finger have a
much smaller influence on contact point locations than the extrinsic ones which depend on
the entire arm configuration. As a result, search often focuses primarily on the extrinsic DOF
while intrinsic DOF are ignored or significantly compressed. Miller and Allen (2004) repre-
sent all possible finger configurations by a few prototypical grasp pre-shapes. For the three-
fingered Barrett Hand they identify the spherical, cylindrical, precision-tip, and hook pre-
shape. Other sources often used for defining pre-shapes are human grasp taxonomies (Feix
et al., 2009). The extrinsicDOF are often parametrized inmore detail, e.g. using the approach
& squeeze grasp representation (Berenson et al., 2007): Given a pre-shape and a roll angle the
hand moves along an approach vector until contact, then the fingers close until they hit the
object surface. The approach vector can be defined by cylindrical or spherical coordinates
originating at the center of mass of the object (Miller et al., 2003), or by the surface normals
of the object (Diankov, 2010).

Another common strategy for reducing intrinsic DOF is based on synergies. The concept
of synergies originates from analyzing human movements (Bernstein, 1966) to answer the
question of how motion redundancies are resolved. Since there are more DOF in a human
limb than those required to solve a task, i.e. multiple solutions exist, the question is how
the human neural system decides which one to choose and which muscles to recruit. A sin-
gle synergy describes a coordinated motion pattern that can be observed at different levels
(neural, biomechanical) and for various modalities (kinematics, kinetics). The linear combi-
nation of a small set of synergies can be used to explain a large variety of human grasp pos-
tures (Santello et al., 1998). The simplified view of synergetic control has also inspired robot
grasp planning approaches. Grioli et al. (2012) applied different variants of synergies to grasp-
ing: geometric synergies, soft synergies, adaptive synergies. Ciocarlie andAllen (2009) use the
low-dimensional subspace defined by postural synergies to sample candidate pre-shapes. Al-
thoughmost grasping synergies are extracted using principal component analysis, non-linear
transformations are also used to find low-dimensional embeddings (Romero et al., 2010).

Applications of this principle in the thesis: We use many of the existing ideas to
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represent grasps. The planning algorithms in Chapter 3 search for the pre-grasp pose of the
hand which describes the extrinsic DOF and considers only a limited set of pre-shapes of the
hand which relates to the intrinsic DOF. The grasp parametrizations that exploit the envi-
ronment (see Chapter 5) are novel, since they take advantage of contact-events to structure
grasps.

1.3.2 Principle II: Exploiting Adaptability in Object Representations

Another recurring principle that implicitly exploits adaptability is the simplification of object
geometry. It is based on the observation that small-scale and high-frequency shape features
in general do not affect grasp success. Enveloping grasps will locally adapt; only the more
general shape features such as a planar vs. curved surfacesmatter. A variety of shape represen-
tations have been presented that approximate real object geometry, ranging from bounding
boxes and superquadrics to topological concepts such as holes. Table 1.2 lists different ap-
proximations used for grasp planning algorithms.

Publication Shape Approximation

Bard and Troccaz (1990), Sweeney
and Grupen (2007)

Axis-aligned 2D bounding ellipses

Miller and Allen (2004), Ekvall
and Kragic (2007), Nieuwen-
huisen et al. (2012)

3D primitives (box, cylinder, cone, sphere)

Przybylski et al. (2010) Medial-axis of maximum inscribing balls
Aleotti and Caselli (2012) Reeb graph based on the integral geodesic function
Dune et al. (2008) Ellipsoids
Goldfeder et al. (2007), Ücker-
mann et al. (2012)

Superquadrics

Pas and Platt (2013) Quadrics
Bone et al. (2008) Planar parallel patches
Huebner and Kragic (2008) Minimum volume bounding boxes
Kootstra et al. (2012) Edges, surface patches, contours
Pokorny et al. (2013) Holes

Table 1.2: Examples of different shape approximations used for planning grasps
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Approximations are usually used to guide the grasp sampling process or mapped directly
to pre-defined grasps. Instead of trying to approximate the shape of the object to grasp, a
more goal-directed approach is to use the gripper geometry to represent shape. Klingbeil
et al. (2011) search for complementary geometric structure of a parallel-jaw gripper in single-
shot depth maps. Grasps are found wherever a part of the depth map matches the palmar
gripper surface.

Applications of this principle in the thesis: We categorize shapes into few classes
and map them to the appropriate pre-shape configuration of the hand. Our grasp planning
algorithm in Sec. 3.1 uses the eccentricity of the object contour in the camera image to distin-
guish pre-shapes. In the algorithm presented in Sec. 3.2 we use simple geometric primitives
like spheres, boxes, cylinders, and disks to select the appropriate hand configuration. These
simplifications are done on purpose and will show that they do not affect grasp success due
to the hand’s adaptability.

1.3.3 Principle III: Assuming Object Similarity Implies Grasp Similarity

This principle is based on the intuition that small changes in object shape have small effects
on the change of a grasp. It is similar to the previous principle (Subsec. 1.3.2) in the sense that
it is enabled by local hand-driven adaptability. An approach that exploits this principle is
presented byHillenbrand and Roa (2012). They use a geometric warping between two point
sets of similar objects to transfer known contact points from a previously grasped object to a
novel one. The search for a successful grasp is then initialized with the known grasp.

Another group of approaches uses shape similarity between the unknown object and a
database of known objects and grasps. They differ in the way they measure similarity and
what kind of grasp information is transferred from the known to the unknowngeometry. E.g.
Goldfeder et al. (2009a) match 3D sensor data describing partial views of unknown objects
to find a suitable grasp. Their matching uses a codebook of SIFT features from depth images
to retrieve the k-nearest neighbors in the Columbia grasp database (Goldfeder et al., 2009b).
The associated pre-grasps that perform constantly good on all neighbors are supposed to be
good generalizations and are applied to the unknown object.

Applications of this principle in the thesis: We only implicitly exploit this prin-
ciple in the algorithms presented in this thesis. We avoid the notion of object but rather
try to extract shape features from 3D point measurements which match certain hand pre-
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shapes (Sec. 3.2). The learning approach in Chapter 8 uses shape similarity to select between
grasping strategies. In both cases, similarity in local shape will lead to similarities in grasping.

1.3.4 Principle IV: Exploiting Adaptability of Objects

Objects can adapt to the hand in case they are deformable. But also rigid bodies can adapt if
we consider their external DOF. Traditionally though, grasp planning tried to find the static
grasp configuration between hand and object. This means unintentional contact with the
object during reaching needs to be avoided. Few approaches have argued in favor of a more
dynamic approach to grasping and exploit object motion to increase grasp success.

Mason (1982) generalized a hinge grasp strategy which first makes contact between one
gripper jaw and a hinge platewhile the gripper continues tomove until the hinge plate rotates
into the palm and can be grasped. He analyzed the conditions under which such grasping
motions would completely constrain an object. The similar push-grasp strategy introduced
by Dogar and Srinivasa (2010, 2012) is defined by its capture region, i.e., all poses in the plane
from which an object can be grasped by first pushing towards it and then closing the fingers.
The capture region can be used to plan push-grasps in cluttered environments and to include
uncertainty (Koval et al., 2016).

Bin-picking scenarios which are common in industry also benefit from the adaptability of
objects, especially when a bin contains objects of the same type. Rodriguez et al. (2014) argue
to “let the fingers fall where they may” instead of “put[ting] the fingers in the right place”.
Instead of planning a priori where to grasp they favor to learn a statistical model of grasp
outcome, which they say is easier to do for simple hands with limited actuation and sensing
capabilities. The usefulness of their approach is shown by picking single items from a box
full of markers.

Apart from grasping, there are also methods that exploit object motion to re-orient them:
Chavan-Dafle et al. (2014) introduce the concept of extrinsic dexteritywhich involves a set of
manipulation strategies in which objects are pushed against surfaces or thrown into the air to
reconfigure them. Other strategies include swing-up regrasping (Sintov and Shapiro, 2016).
This repertoire substantially increases the dexterity of a simple gripper without including
additional degrees of freedom.

Applications of this principle in the thesis: The edge- and wall-constrained grasp-
ing strategies that we present in Chapter 5 are exploiting this principle. They reorient the
object by pushing and sliding the objects before picking them up.
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1.3.5 Principle V: Exploiting the Environment to Increase Adaptability

Most classical approaches to grasping donot explicitly consider the environment. They either
ignore it or include it as an obstacle that reduces the amount of possible grasping motions.
Some grasp planning approaches implicitly exploit certain environmental features. The push
grasping strategy (Dogar and Srinivasa, 2010) assumes planar support surface that can be used
to potentially slide the object while capturing it.

Few grasp planners take explicitly advantage of the environment. Kazemi et al. (2014)
present a grasp strategy for a three-fingered hand which grasps objects from the top. Dur-
ing the closing motion, the wrist pose is controlled such that the three fingertips constantly
touch the support surface. This allows them to grasp also smaller objectswhichusuallywould
require high precision. Other grasp approaches take pre-grasp manipulations with the envi-
ronment into account, e.g. sliding flat objects across the table before picking them up at the
edge (Kappler et al., 2010). But they only do this for a single object type (a CD) using man-
ually coded strategies and ignoring perception. King et al. (2013) also tackle the problem of
pushing objects towards an edge. Although their formulation is more general, they focus on
planning a pushingmotion bymodeling the objects feasible motion in the plane as a Dubins
car. In general, there have been very few works in robot grasp planning that focus on the
beneficial effects of the environment.

Applications of this principle in the thesis: Exploiting the environment during
grasping is a central principle which we extensively apply in Part II and III of the thesis. We
present a grasp planning algorithm in Chapter 5 (Algorithm 5.4) that searches for contacts
with the environment to simplify grasping. Based on this algorithm Chapter 7 introduces a
learning problemwhich selects the most successful of these strategies based on object proper-
ties.

1.3.6 Principle VI: Assuming Uncertainty in Grasp Execution and Sensing

The exploitation of adaptability can also be implicitly maximized by assuming a noisy unre-
liable action execution for grasping. Modeling the uncertainty that occurs due to imprecise
controllers can lead to choosing those grasps which are least affected by it. Similarly, if uncer-
tainty is also assumed as an inevitable part of estimation and sensing (e.g. object localization,
shape estimation) this can also be used to choose grasps that will adapt to a wider variety of
possible conditions.
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Weisz and Allen (2012) represent the effect of object pose uncertainty on grasp quality.
They calculate the probability of force-closure of a given grasp by densely sampling the ob-
ject pose in a grid around its expected pose. In comparison to the ε-metric (Sec. 1.2.3), this
produces grasps that are much more robust when being executed in the real world. Inspired
by human studies, Stulp et al. (2011) showed amethod which adapts approaching trajectories
for grasping according to the estimated object pose uncertainty. As a result, the maximum
finger span is aligned with the dimension of largest uncertainty in object position.

Uncertainty in shape usually results from a measurement process which only partially re-
veals an object. Goldfeder et al. (2009a) tackle this problem by designing a shape descriptor
which takes a specific viewing direction into account. Given depth data of an unknown ob-
ject they can match it to similar and known objects and use pre-computed grasps. Another
way to deal with partial views is to plan grasps based on the assumption of reflective sym-
metries (Bohg et al., 2011). A probabilistic shape representation (Dragiev et al., 2011) can be
used to plan information-gathering poking actions given tactile measurements vs. executing
a robust grasp once enough uncertainty is reduced.

Hsiao et al. (2007) plan in the space of all possible state distributions, formulating grasping
as a partially observable Markov decision process (POMDP). They discretize the state space
along contact-events and actions according to guarded motions. An approximate POMDP
solver is then used to find policies for planar grasping using fingertip contact sensors. Platt
et al. (2011) try to avoid the discretization of the belief space in their problem definition
of SLAG (simultaneous localization and grasping). Instead they plan using the maximum-
likelihood hypothesis and replan in case of invalidating observations.

Instead of explicitly representing uncertainties and planning in belief space, adaptability
between hand and object can also be increased by devising contact-reactive control strategies
based on heuristics. Felip and Morales (2009) present a grasp primitive for a three-fingered
handwhich aligns the hand based on force and tactile feedback and tries to detect two parallel
faces. Similarly, Hsiao et al. (2010) plan a rough approach direction and adapt the grasp pose
of a parallel-jaw gripper based on contact feedback.

Applications of this principle in the thesis: The motion planning algorithm pre-
sented in Chapter 4 (CERRT) explicitly models uncertainty in actuation. In combination
with the assumption of uncertainty-free contact sensing abilities, contact-seeking behavior
emerges. The grasp planning algorithms presented in Chapter 3 and 5 do not model uncer-
tainty but implicitly assume that hand adaptability and contact with the environment re-
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duces it.

1.3.7 Principle VII: Learning Hand-Specific Data-Driven Grasp Models

Relying on analytical models to capture the complex physics happening between hand and
object during grasping is dangerous, especially when dealing with compliant, underactuated
mechanisms. We have seen in Sec. 1.2.5 that those models often do not transfer to the real
world. Instead of analytical models, another popular way is to use statistical models based
on actual experience. These learning-based approaches can in principle achieve significantly
improved performance when provided with enough data. But in robot grasping data acqui-
sition is expensive: real-world experiments are tedious to set up, take time to run, and often
need human supervision. There are four ways to deal with this appetite for data: Use low-
dimensional hand-engineered features that require less data for training, set up a system that
allows collecting a lot of data, use active learning to gather data more efficiently or use simu-
lations to create vast amounts of data.

Hand-Engineered Features

Anearly, prominent instanceof a learning-based approach for graspingwas introducedbySax-
ena et al. (2008a). They built a grasp point detector for images based on supervised learn-
ing. Their 459-dimensional feature vector captures edges, texture, and color. A 3D grasp-
ing pose is triangulated using detected grasp points from multiple views. In an extension of
their approach, Saxena et al. (2008b) extract more global features from point cloud data to
characterize a grasp. These features include symmetry, center of mass and planarity of the
point set enveloped by a possible grasp. This supervised learning approach is shown to work
for parallel-jaw grippers, a three-fingered hand, and for cluttered scenes. Bohg and Kragic
(2010) improved over the results achieved by Saxena et al. (2008a) by using shape-context fea-
tures. Shape-contexts are histogram features based on the distances and directions of points
w.r.t. a reference frame. They capture a larger neighborhood than the 10×10 image patches
used by Saxena et al. (2008a). The hand-designed grasp descriptor by Herzog et al. (2014)
consists of a normal vector, a height map, and a tile-type map (classifying tiles into “void”,
“surface”, “occlusion”, “background”). The quality of a grasp is calculated based on their sim-
ilarity to templates acquired through kinestetic training. Fischinger et al. (2015) engineered a
similar descriptor based on the discretization of 2D space along planar surfaces that describes
the relation of heights of neighboring cells. It is well suited to describe protruding parts of ob-
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jects or object piles which can be grasped using a top-down pinch grasp. They validate their
approach in a scenario where a robot needs to empty a basket filled with unknown objects.

Large Real-World Data Sets

Deep learning architectures have outperformed state-of-the-art methods in image, speech
recognition and machine translation tasks. Consequently, they have also been applied to
learnmodels for grasping with increasing success. Instead of first extracting hand-engineered
features, these methods are based on the raw sensor input (usually RGB-D cameras). Lenz
et al. (2013) were the first to adopt a deep learning architecture for predicting robot grasps,
parametrized as oriented rectangular image regions. Their human-labeled dataset contains
a few thousand grasps. The prediction pipeline is separated into two stages: A smaller net-
workwhich extracts themost graspable rectangles, while a second larger network is trained to
re-rank those grasp candidates. This separation lowers the computational effort and slightly
increases prediction accuracy. A larger dataset of 50k robotic grasp attempts was collected
by Pinto and Gupta (2015). They use the same grasp rectangle representation but learn an
18-way binary classifier, discretizing all possible orientations of a parallel-jaw gripper in the
image plane. Their convolutional neural network benefits from weights that are pre-trained
on the object recognition task defined by ImageNet. Their planar grasps achieve 79.5% accu-
racy (66% for novel objects) while using a heuristic approach (grasping the rectangle by its
smallest side) achieves only 59.9%.

Evenmore data was collected by Levine et al. (2016) usingmultiple robots in parallel (800k
grasp attempts from cluttered bins). In contrast to previous approaches their model predicts
grasp success based on an external camera image, a displacement of the end-effector, and the
closing of the fingers. This allows them to use themodel in a feedback loop: They repeatedly
query the most promising end-effector motion and finger closing command based on the
current camera image. As a result, some learned grasping strategies include singulating an
object before picking it up, or pinching into soft objects. Their approach (82.5% success rate)
beats anopen loop version (66.3%) and ahand-designed graspingpipeline based onbounding
boxes (49.2%).

Active Learning

Theproblemof learning-based approaches being so data hungry is tackled byMontesano and
Lopes (2012). They use Gaussian, Laplacian, and Sobel filters as features for detecting grasp
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points in images. Formulating grasp attempts in an active learning setting, they show how
to select successful ones as quickly as possible; trading exploration off against exploitation.
Similarly, an active learning approach is often combined with systems that collect large-scale
data sets in the real world (Oberlin and Tellex, 2015, Pinto and Gupta, 2015).

Simulated Data

Another approach to fill the need of grasp data for learning is to use simulations. Simula-
tions provide full control over the data acquisition process, circumventing real-world prob-
lems such as resetting the environment or labeling grasp success due to partial observability.
Gualtieri et al. (2016) show how to exploit simulated data for both, sensormeasurements and
graspoutcomes. Their grasp representation is a60×60×60 voxel grid between two fingers pro-
jected onto 60×60 depth images from three directions. They simulate 215k anti-podal grasps
and transfer these grasps to the real world. Kappler et al. (2015) present a database with 300k
grasps for 700 objects. They do not transfer them to the real world but use crowdsourcing to
annotate the grasps with success labels. They show that correlationwith these labels is higher
for a prediction based onphysics simulations thanusing the classical ε-metric (Sec. 1.2.3). Dex-
Net 2.0 (Mahler et al., 2017) is a convolutional neural network trained on 6.7m simulated
depth images patches to predict the success of planar grasps with a parallel-jaw gripper. The
labels are calculated from antipodal grasps. When applied in the real world on training ob-
jects, the grasps succeed in 93% of all cases (80% with novel objects). An even larger effort is
presented by Zhou andHauser (2017). They simulate 23.3m grasps for a three-fingered hand
ofwhich≈500k are successful and robust. For each grasp, multiple synthesized depth images
of the object are generated.

Applications of this principle in the thesis: We extensively exploit the principle of
learning hand-specific models in Part III of the thesis. This is especially useful if the proper-
ties are hard to model analytically, which is often the case with very compliant hands such
as the RBO Hand 2 (Sec. 1.1.5). Algorithm 7.6 is a formulation of the active learning prob-
lem, in which the robot decides for a grasp based on its certainty of success. Furthermore,
Algorithm 8.7 learns models for simple manipulation tasks via reinforcement learning.
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Chapter 1▼ Background and Related Work

1.4 Conclusion

In this chapter we have looked at the state-of-the-art in robot grasping, focusing on three
areas which impact robotic grasping solutions the most: hardware, theory, and algorithms.

The capabilities and features of robotic hands significantly impact the design of grasp plan-
ning algorithms. Our analysis has shown that low-level adaptability in grasping mechanisms
– unlike pure mechanical compliance – can be achieved through various means. The size,
kinematic structure, surface materials, and actuation methods all affect the adaptability of
robot hands. Recently, there has been a surge of soft, passively adaptable, and underactuated
robotic hands that are contrary to traditional stiff, fully actuated grippers. This is mainly
due to the availability of novel manufacturing techniques such as 3D printing. Themechani-
cal intelligence (Ulrich, 1989) ormorphological computation (Pfeifer and Iida, 2005) that comes
with thesemechanisms should be acknowledged, characterized, and exploited by higher-level
grasp planning processes. This is one goal of this thesis.

Wehave shown that the dominating theoretical contactmodel that underlies grasp analysis
cannot adequately capture the adaptive nature of non-traditional hands during grasping. It is
based on rigid bodies, quasi-statics, point contacts, and full observability. It describes a final
grasp configuration without giving insights into the temporal evolution that is required to
actually achieve a grasp. We showed that the assumptions of the classical model often do not
match reality –making it hard to transfer grasps that areworking according to themodel onto
real robotic systems. This thesis does not advance the formalism of the classical grasp model.
Instead, we will focus on a more holistic approach, modeling the macroscopic consequences
of exploiting adaptable hands and stiff environments.

Finally, we presented an analysis of the diverse landscape of current grasp planning algo-
rithms. This analysis focused on the exploitation of hand adaptability to increase grasp suc-
cess in planning. The identified principles are general and will also guide the design of the
algorithms presented in the remainder of the thesis.
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Part I▼ Interactions Between Hand and Object

Motivation

When reviewing the state-of-the-art in the last chapter, we realized that the dominating para-
digm in robotic grasping is largely based on precise, uncertainty-free modeling of rigid point
contacts. This view seems mostly suited for stiff, fully actuated hands and requires precise
models of hand and object. In contrast, we rather want to exploit the inherent adaptability
of hands for enveloping grasps given realistic sensing requirements.

In the first part of this thesis wewill investigate a holistic approach to robotic grasping that
centers around the shape of hand and object and the idea to find a match between the two.
We explicitly avoid the factorization into perception and grasp planning, but instead tackle
the problem as a whole.

Contributions

The main contributions of this part are:

• A hypothesis about the relationship between object shape and grasp success, whichwe
call the Sun-Flower-Annulus (Sec. 2.2).

• A view on the problem of grasping as a sequence of funnel operations (Sec. 2.3).

• Amethod to synthesize grasps based on the change of contour of an objectwhen being
viewed by an active camera (Sec. 3.1).

• A grasp planning approach that matches arbitrary 3D measurements with hand pre-
shapes by using geometric prototypes (Sec. 3.2).

Outline

We start Chapter 2 with a series of small real-world experiments that investigate the role of
adaptationbetweenhand andobject during grasping. We complement thiswith amore elabo-
rate experiment in simulation to showhow adaptability helps when object geometry changes.
These results are finally accumulated in what we call the funnel view of grasping.

Based on the insights gained in Chapter 2 we will present two algorithms that synthesize
grasps inChapter 3. These algorithms do not assume a priori knowledge about objectmodels.
They calculate grasps fromsensormeasurements– the first oneusingRGB images, the second
based on depth images.
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2
Adaptability Between Hand and Object

Let us start with a thought experiment. Imagine a person wearing a blindfold
and a thick mitten. The task of that person is to grasp arbitrary objects, despite her

limitations. Since this is close to impossible, an experimenter is allowed to help. This person
holds the object and can position it close to the opened hand of the blindfolded subject (see
Fig. 2.1). She can also give the blindfolded subject a signal to close the fingers, whenever she
thinks that this would result in a stable grasp. Once the experimenter triggers the closing she
is not allowed to move. The assumption is that this protocol would lead to very successful
grasp performance.

Figure 2.1: The mitten thought

experiment includes a sensory-

deprived subject grasping unknown

objects.

But what does this thought experiment tell us about grasping? The experiment factorizes
successful grasping into two complementary processes: the sensory-deprived subject and the
experimenter providing the object. The subject does not have access to visual or haptic in-
formation (although the mitten only suppresses parts of the tactile feedback, let us assume –
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Chapter 2▼Adaptability Between Hand and Object

for the sake of the thought experiment – that all tactile and kinesthetic feedback is absent).
However, the subject is in control of a compliant closing strategy. The experimenter effec-
tively positions the subject’s hand relative to the object (by doing the inverse). She will do
this based on her internal model about the subject’s closing strategy. The communication
channel between the two only requires a very low capacity, basically 1 bit per grasp to trig-
ger the compliant closing strategy. The experiment illustrates that an appropriate perceptual
strategy (the experimenter) in conjunction with a simple compliance-based control strategy
(the subject wearing a mitten) can lead to outstanding grasping performance.

In the spirit of the mitten thought experiment we will start this chapter with a series of
small exploratory grasping experiments. Through these experiments we try to gain insights
about the structure of possible grasp representations. We will complement these real-world
experiments with a vast amount of simulations to gain more understanding about the rela-
tionship between hand and object under the influence of adaptability. This leads us to the
Sun-Flower-Anulus hypothesis (Sec. 2.2). Based on the collected insights, we will conclude
this chapter by sketching the funnel view of grasping (Sec. 2.3). This view emphasizes the holis-
tic anddynamic nature of grasping in contrast to the classical theory on grasp analysis (Sec. 1.2)
that focuses on grasping as the compound of local contact effects.

2.1 Exploratory Grasping Experiments – From the Mitten-Thought-Experi-
ment to Teleoperating Multifingered Hands

In this section we will examine the effect of different types of grasp adaptability in a series
of small exploratory experiments. Table 2.1 summarizes the different experiments. They all
use human subjects to control robotic hardware. But they differ in the control and feed-
back channels that are provided to the human user. By imposing structure on the applied
motion behaviors we hope to gain insights into potential representations for grasp planning
algorithms.

We exploit human grasping and manipulation knowledge in these experiments to gain
understanding about the grasping process. Please note that all experiments are exploratory in
nature. They usually only include a single subject and will not hold up to strict experimental
rigor (especially given the involvement of humans). We still think that they showmeaningful
trends.
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2.1 Exploratory Grasping Experiments

Experiment Adaptation through…

Robot
Hand

One-Shot
Visual

Information

Continuous
Visual

Feedback

Haptic
Feedback

Operating the RBO Hand 2 × × × ⊗
Teleoperating the Allegro Hand × × × ⃝

Mitten Thought w/ RBO Hand 2 × × ⃝ ⃝
Teleoperating the Meka Hand × × ⃝ ⃝

Table 2.1: We conduct four experiments about the effect of adaptability in grasping. Adaptability is either achieved

passively through themechanismor actively by creating feedback loopsbasedondifferentmodalities (haptics vs. vision)

and frequencies (one-shot vs. continuous). Crosses indicate the possibility of adaptation.

2.1.1 Operating the RBO Hand 2

In a first small experiment, we want to assess whether an adaptable robot hand (with few
degrees of actuation) is capable to grasp different objects and how complex the associated
motions are. Todo thatweharvest human intelligence: Instead of using a robot arm the hand
is operated by a human user. The human has time to familiarize herself with the grasping
mechanism for a few trials. One object at a time is placed in front of the user on a table.
Grasping succeeds if the user can pick up the object and place it into a box next to the table.
There is no time limit for a single grasp but the user can ask to label the current attempt as
failure at any moment.

We use the RBOHand 2mounted on a stick with two buttons to inflate or deflate it. The
user can decide between two inflation modes, one including all digits and another excluding
the thumb. Note that the user’s sensory feedback is nearly unrestricted. Only the richness of
the haptic feedback is reduced by holding the robot hand. We use 20 objects from a wooden
object set and 20 items from a set of common household products (see Fig. 2.2). Both object
sets provide a variety of shapes, sizes and materials. Each object was supposed to be grasped
five times, some of them from different initial orientations, totaling 240 trials.

Out of all trials 191 resulted in successful grasps (79%). A grasp was considered success-
ful if the object did not fall when rotating the hand and moving it up and down. The user
usually decided to inflate fingers and thumb, only 25% of all successful grasps excluded the
thumb. This mode was used for flat objects like a book, file cards, a credit card, a package of
markers, wooden disks and a board. Here, not inflating the thumb kept the palm flat and
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Chapter 2▼Adaptability Between Hand and Object

Figure 2.2: We use two complementary object sets for our human-in-the-loop grasping experiments. Left: The first

set contains simple geometric shapes such as spheres, cylinders, and prisms. Right: The second set consists of house-

hold items such as books, plastic fruits, and stationery. It contains many objects from the 2015 Amazon Picking Chal-

lenge (Correll et al., 2016).

provided a large contact area that the fingers could press the flat objects against. We also no-
ticed that the user grasped these kinds of objects after re-positioning them, e.g. sliding them
towards the table edge to be able to wrap the fingers around them. The objects that could
not be grasped were bulky ones which surpassed the hand’s maximum grip aperture (a cube
with length 10 cm) or immediately started to slip due to their weight (a wooden cylinder and
cuboid weighing 1 kg each).

The experiment shows that although the user had only limited control over the internal
DOFof the hand, awide variety of objects could be grasped. Thehand’s inherent adaptability
played a beneficial role.

2.1.2 Teleoperating the Allegro Hand

In a second experiment, we wanted to restrict the haptic feedback the human user can utilize
to make grasp decisions (similar to the Mitten thought experiment). At the same time we
wanted to verify whether the chosen hand pre-shapes would be low-dimensional even if the
user had access to a high number of controllable DOF in the hand. Finally, we wanted to
make sure that the limitations of using a robot instead of a human arm will not significantly
affect grasp success.

This lead us to a teleoperation experiment using the 16-DOF Allegro hand mounted on
a 7-DOF Barrett WAM. A human operator was equipped with a Polhemus Patriot 6-DOF
electromagnetic tracker at thewrist and a 22-DOFCyberGlove II data glove tomeasure finger
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2.1 Exploratory Grasping Experiments

joint configurations. The 6-DOF pose xwrist and velocity ẋwrist of the wrist tracker serve as an
input to a velocity-based operational space control scheme (Nakanishi et al., 2008) to produce
the joint torques τ arm:

τ arm = M (qr)q̈r +C(qr, q̇r) + g(qr) +Kq,d(q̇r − q̇) +Kq,p(qr − q)

q̇r = J+ẋr = J+(ẋwrist +Kp(xwrist − x))

q̈r =
d

dt
q̇r

qr =

∫ t

t0

q̇rdt
′ ,

whereM is themassmatrix,C describesCoriolis forces,g the gravity torque,Kq,d andKq,p

are joint-space damping and stiffness matrices, q is the current configuration of the robot, q̇
its velocity and x the current end-effector pose. The reference velocity q̇r depends on the er-
ror between the pose of the teleoperator’s wrist and the current end-effector pose of the robot,
scaled by the stiffness matrixKp. ThematrixJ+ is the pseudo-inverse of the Jacobian of the
robot end-effector. The reference velocities qr and accelerations q̈r are computed through
numerical differentiation and integration.

We map the finger joint measurements of the data glove qglove linearly onto joint angles
(viaA ∈ IR16×22) which are used as input for a joint position PD-controller to calculate the
applied torques of the Allegro hand:

τ hand = Khand
p (A qglove − qhand)−Khand

d q̇hand,

whereKhand
p ∈ IR16×16 andKhand

d ∈ IR16×16 are diagonal gain matrices.
A randomly selected object (among 35 objects of the household set (Fig. 2.2)) was placed on

a table in front of the robot. The task was to grasp this object and place it into a tote next to
the table. Once the object was placed into the tote the experimenter placed a new randomly
selected one onto the table. Thehuman teleoperatorwas standingnext to the robot having an
unoccluded view onto the robot, object, table, and tote (see Video Fig. 2.1). During a single
trial all 35 objects had to be grasped. In the beginning of each trial the operator’s current
wrist pose wasmapped onto the robot’s current wrist pose. There were no constraints on the
maximum number of attempts or the maximum time needed to grasp an object. The grasp
was counted as a success if the object ended up inside the tote. Objects that ended outside
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Chapter 2▼Adaptability Between Hand and Object

Video Figure 2.1: In the teleoperation grasping exper-

iment a human user controls the end-effector pose of

a robot arm and the 16-DOF Allegro Hand. The oper-

ator wears a data glove and his wrist pose is located

with an electromagnetic tracker. The task is to pick up

objects from a table and put them into a box. The tele-

operator can only rely on visual feedback. [https:
//youtu.be/4gdAMPVCCsY]

of the robot’s workspace were counted as failures. The operator could also ask for the next
object if she felt that no successful grasp was possible. We conducted five trials per object,
totaling 175 trials.

Results and Discussion

The results show a total success rate of 82%, which is similar to the previous human experi-
ment (79%). If we only compare the subset of 20 objects used in both experiments (exclud-
ing the wooden objects), there is a small performance decrease of 82% vs. 88%. The errors in
the hand-on-a-stick experiment were more systematic than in the case of teleoperation: The
RBO Hand 2 could not grasp certain objects at all (due to its size; box with straws, pen bas-
ket), while the Allegro Hand could grasp every object at least once but had in general more
failures due to slippage or instabilities (which could be caused by the delay and noise of the
teleoperation setup). But in general, the results show that despite the limitations induced
by using a robot arm and not having any haptic feedback, grasp success is not significantly
decreased. Note that haptic feedback was most likely replaced by the operator’s continuous
visual feedback.

The experiments also shows that there is a common temporal structure in the applied
graspingmotions. Fig. 2.3a shows three quantities plotted as a functionof time: the linear and
angular velocity of a reference frame rigidly attached to the hand and the change of the grip
aperture. The grip aperture is the distance between the tip of the thumb and the index finger
of the Allegro Hand, which we calculate using forward kinematics. The plot shows mean
and standard deviation over all successful grasps. Note that we do not use any time warping
technique to align the time series as it is usually done. Instead, we only align the trajectories
according to a labeled timestamp of the grasp itself (t = 0). Still, a common temporal struc-
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Figure 2.3: The plots show the structure of successfully teleoperated graspswith theAllegroHand. (a)When aligning all

time series a consistent temporal structure is visible. The velocity of the hand decreases until the object is reached. In

this phase thefinger joints hardlymove, as canbe seenby the constant grip aperture. Then thegrip aperture significantly

changes tomakecontactwith theobject. Interestingly, there is apeak in theangularhandvelocityduring thatphase. This

is due to the large size of the Allegro Hand. (b) The plot shows the accumulated ratio of explained variance using a prin-

cipal component analysis on the 16DOF of the Allegro Hand. We compare commanded values by the operator (dashed

lines) with actual velocities in the robot hand (continuous lines). We also compare between pre-grasp (t = −1.6 s,
red lines) and grasp (t = 0 s, yellow lines) configurations. The pre-grasp configurations are more easily explained than

the grasp configurations. But it also shows that the operators commanded configurations can be explained with fewer

Eigenvectors than the resulting AllegroHand configuration. This difference shows the effect of adaptability in the hand.

ture is visible: The grasps start with an approaching phase in which the handmoves towards
the object without changing any internal DOF (grip aperture does not change). During this
phase the hand decelerates (angular and linear velocity constantly decreases). Once the hand
is close to the object (t = −1.6 s) the fingers start to move, indicated by an decreasing grip
aperture. Interestingly, the hand pose is not static during this closing phase, especially the
changes in orientation are significant. This is most likely due to the large size of the Allegro
Hand: the contact locations are influenced significantly by the orientation of the hand in con-
junction with the configuration of the fingers. After the grasp is established, the hand lifts
the object and the internal DOF are kept constant (very small standard deviation of the grip
aperture velocity). When reaching the target location, the grip aperture increases again and
the object is placed in the tote. The observation of this temporal grasp structure is also in par
with old results by Jeannerod (1981). He distinguished a transport and a grip phase in human
grasping, although on a much smaller time scale since our teleoperation setup (without any
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Chapter 2▼Adaptability Between Hand and Object

haptic feedback) causes the human to act more cautiously.
Apart from the temporal structure, the experiment also confirms a low-dimensional struc-

ture of the used hand configurations. Although the teleoperator could control all 16 DOF of
the Allegro Hand (the rank of the mapping matrixA is 16), the successful grasping configu-
rations can be represented with a linear combination of much fewer basis vectors. Fig. 2.3b
shows the result of applying a principal component analysis to the successful grasping con-
figurations. We can see that already four eigenvectors can be used to explain 84% of all the
variance in the data. This is in line with older results by Santello et al. (1998). If we look at the
hand’s pre-grasp configurations, we can see that four eigenvectors describe even 92% of the
variance. This hints to the fact that during the closing phase the interactions between object
and hand add complexity. But interestingly, this added complexity is not fully reflected in
what the teleoperator does. If we apply principal component analysis on Aqcyberglove, the
plot shows that the grasp configuration lies on a lower-dimensional hyperplane (three eigen-
vectors of the teleoperators configurations explain the same variance as four of the Allegro
Hand). Since this difference is not present when comparing the (contact-free) pre-grasp con-
figurations, we can assume that the contact creates more varying configurations while the
teleoperator’s control input does not need to account for it. This result is in line with the
concept of adaptive synergies (Grioli et al., 2012) and the notion of prescriptive (teleoperator)
vs. descriptive (robot) synergies by Brock and Valero-Cuevas (2016).

2.1.3 Mitten Thought Experiment With the RBO Hand 2

The previous experiment showed that there is significant structure in the grasping process.
In the next experiment we wanted to enforce this structure and verify that it will not hamper
grasp success. This leads us to a robotic version of the initially explained Mitten Thought
experiment: A robotic hand is mounted on a fixed stand (resembling the glove-wearing par-
ticipant in the Mitten Thought experiment) and a human user is required to position an
object close to the hand, choose a pre-shape and give a closing command so as to maximize
grasp success. In contrast to the previous experiment the human user has no continuous
visual feedback that can be used to correct a grasp.

We used 40 different objects (Fig. 2.2) from the household item set and the wooden object
set. Grasping was done with the RBO Hand 2. The human user initiated the grasping pro-
cedure by selecting a closing strategy and pressing a button. We used the same two closing
strategies for the RBO Hand 2 as in the first experiment: a power grasp with thumb abduc-
tion and one involving thumb adduction. Each object was grasped five times, totaling 200
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2.1 Exploratory Grasping Experiments

Figure 2.4: In the teleoperation experi-

ment with the Meka M2 Hand, a human

operator selects a pre-grasp pose and a

compliance mode. We record this infor-

mation for each object and replay the

graspingmotion.

trials.
Out of all trials 149 were successful, which resembles the results from the first experiment,

in which a hand-on-a-stick was used (80% vs. 79%). It is also similar to the teleoperation re-
sults (80% vs. 82%). These results show that limiting the grasp representation by choosing a
pre-grasp pose does not hamper grasp success. The hand’s adaptability is capable of compen-
sating slight pose deviations. The failed grasps are due to heavy and large objects.

Note that in this experiment we are grasping objects out of ‘thin air’, there are no other
things to take care of (like a table) as in the first two experiments. This might be an advan-
tage. But on the downside the static pre-grasp pose limits us to strategies that do not manip-
ulate the object before grasping, something we observed in the first experiment. To relax the
assumption of grasping out of thin air, we conducted a final experiment.

2.1.4 Teleoperation Experiment With the Meka M2 Hand

In a final experiment we wanted to verify that the two limitations present in the previous
experiment (not using a real robot arm and grasping objects in free space) do not significantly
affect our insights. Therefore the robot hand is mounted on a 7-DOF Meka A2 compliant
arm and objects are placed on a table surface. A human user is asked tomove the hand in such
a position that a subsequent closing motion will grasp the object. We record the position,
replay themotion including the grasp andmeasure success. Additionally, we record the hand
configuration during pre-grasp and after grasping. We use the Meka M2 Hand, a compliant
tendon-driven underactuated hand. Note that the role of the human user is very similar to
the one of the experimentator in the Mitten Thought experiment.

A total of 20 different objectswere presented on a support surface in front of the robot. We
presented eight of the objects in a horizontal and vertical orientation. The humanusermoves
the hand while the arm is only applying the torques necessary to compensate gravity (see
Fig. 2.4). Beside choosing the grasping pose, the user also choses a grasp type. These are
inspired by Feix et al. (2009) and include: a power grasp with thumb abduction, a power
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Chapter 2▼Adaptability Between Hand and Object

grasp with thumb adduction, and a precision/pinch grasp using thumb and index finger. We
use a joint space controller to replay the user’s chosen grasping motion. A grasp is deemed
successful if the object can be lifted up to 10 cm and rotated by 60◦ without falling. We
conducted a total of 135 grasping trials, presenting each object up to five times.

Results and Discussion

Out of all trials 117 grasps were successful (87%). This shows again that only choosing a
pose and closing strategy already results in reliable grasping. Objects that failed included very
small ones (a ball with 10mm radius, a torus with a height of 13mm) and objects that were
too large to be enveloped by the hand (a disk with 100mm radius). Another failure case
involved a medium sized triangular prism. While there was no problem to grasp the upright
standing prism, it was close to impossible to be liftedwhen it was laying flat on the table. This
is even hard for a dexterous human grasper since only two of the three sides of the triangular
shape can be accessed. Here, successful grasping requires either very high contact forces, high
frictional forces, hand features such as fingernails, ormore elaborate pre-graspmanipulations.

In general, the high success rate of grasping in this experiment is again due to the adapt-
ability of the hand. The human user most often chose a power grasp with thumb abduc-
tion (85%) where the underactuated, rubber-made fingers match the shape of different ob-
jects. This compliant behavior is reflected in the hands pre-grasp and post-grasp configura-
tion for the successful power grasps (see Table 2.2).

Joint (Finger) 1 (Thumb) 2 (Thumb) 3 (Index) 4 (Middle) 5 (Little)

Initial SD [°] 2.0 4.0 4.9 3.32 2.3
Final SD [°] 5.2 53.0 66.0 51.3 73.0

Table 2.2: The standard deviation of the initial and final grasp postures of successful power grasps.

The initial standard deviation per joint is low (it is not zero due to tendon slack) while
the final configurations vary significantly. This variation happens despite applying the same
closing strategy. It shows that the hand adapts to the actual object shape without the user
having to explicitly control it. The standard deviation of the first joint is still low, since it
controls the abduction/adduction of the thumb.
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2.1 Exploratory Grasping Experiments

2.1.5 Pre-Grasps, Pre-Shapes, and Compliance Modes

Our experiments revealed a certain reoccurring structure of grasping motions. In order to
relate to this structure we now introduce some terms which describe pivotal states within the
continuous grasping process. We will use them throughout the rest of the thesis.

Pre-Shape We abstract the hand geometry into a set of pre-shapes (or pre-grasp shapes) –
configurations that define the internalDOFof thehandbefore contacting theobject. This is a
common concept, e.g. used byMiller et al. (2003) who distinguishes cylindrical and spherical
hand pre-shapes. It is also commonly used to categorize human grasps (Napier, 1956, Feix
et al., 2009).

Pre-Grasp A pre-grasp is the state of the hand before closing the fingers. It consists of the
pre-shape (which defines internal DOF) and the pre-grasp pose which specifies the external
DOF of the hand. We refer to pre-grasp manipulation when describing all non-prehensile
actions that do not represent a grasping configuration but are crucial to obtain a grasp, such
as sliding, toppling, reorienting or pushing an object.

Closing Motion A closing strategy or motion defines how the hand behaves between
pre-grasp andgrasp. This canbe as simple as closing the fingers untilmotor stallwhile keeping
the hand pose stiff. But also more compliant strategies in which the wrist is controlled based
on force-feedback to keep contact with a table surface while the fingers close are possible (see
Sec. 5.1.1).

ComplianceMode Robotic handsmay be configured to exhibit differentmodes of com-
pliance. A compliance mode specifies a pre-grasp of the hand and a closing motion. A com-
pliance mode thus captures the hand’s ability to conform to a particular object geometry in
the absence of explicit sensing and control.

2.1.6 Conclusion

We showed a series of small experiments in which human knowledge was harvested to gain
insights into the grasping process. With each new experiment we limited the human’s access
to perception and control during grasping. The imposed limitations/structure did not sig-
nificantly decrease grasp success while reducing the dimensionality of the grasping solutions.
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We conclude that successful grasping can be decomposed into a pre-grasp pose and pre-shape
of the hand combined with a compliant closing strategy. Only a few pre-shapes and closing
strategies are necessary.

In all experiments, the hand’s adaptability in the last phase of contact interactions was the
main enabler for grasp success. The specific implementation of adaptability did not play a
role. In our experiments we showed that the adaptability can be realized by different hands
in very different ways: the high number of DOF of the Allegro hand, the under-actuation of
the Meka Hand, or the mechanical compliance of the silicone used in the RBO Hand 2.
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2.2 The Sun-Flower-Annulus Hypothesis

2.2 The Sun-Flower-Annulus Hypothesis

The previous experiments revealed a simplified structure of successful grasping based on the
exploitation of adaptability. But so far we gained only partial insights into the exact workings
of shape matching between hand and object. Our object sets were limited and measuring all
contact interactions between hand and object was not possible.

Additionally, the previous experiments involved human adults, who rarely make mistakes
in grasping. This bias prohibits us to learn from those grasping strategies that do not work.
To gain insights about the latent structure of the space of possible grasps, real-world experi-
mentation is not suited. It is too slow and tedious to record large quantities of grasp attempts.
Instead we will rely on simulations in this section to validate some of the findings about the
relationship between object geometry and grasping strategies.

We introduce the Sun-Flower-Annulus hypothesis (SFA) as a characterization of the ef-
fect of shape complementarity between the hand’s compliant grasping strategy and object
shape on grasp success. It is best described as a marginal probability distribution of grasp suc-
cess over the imaginary space of all possible object geometries. The specific grasp strategy is
marginalized out. The level sets of this distribution are illustrated in a cartoon-like fashion in
Fig. 2.5. There are three regions in the space of object shapes that are indicated with different
colors and to which we attach specific semantics:

• The Annulus (red) corresponds to those objects for which caging effects dominate
grasp success. This is true for medium sized objects (w.r.t. to the hand), independent
of their shape. The particular configuration of the hand is less relevant as long as the
grasp is enveloping the object. Finding grasps for these kinds of objects is easy.

• The Sun (yellow) is characterized by its rays which represent objects of a specific
shape that can still be grasped when being scaled up in size. It is much more difficult
to find a successful grasping strategy than in the annulus, because the chosen strategy
needs to match the object geometry precisely.

• TheFlower (green) represents small objectswhich are hard to cagewith few fingers.
Thus, it is difficult to find successful grasps because they need to rely on high precision.

Fig. 2.6 visualizes example grasps from the different regions for the three-fingered Barrett
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size

shape

(a)Psuccess > 0.9

(b)Psuccess > 0.6

(c)Psuccess > 0.3

Figure 2.5: The cartoons illustrate the effect of

complementarity of compliance mode and ob-

ject shape on grasp success. Each of the three

cartoons (a)–(c) represents a level set of the

marginal probability distribution of grasp suc-

cess. The polar coordinates (r, θ) correspond
to object size and object shape. The yellow, red,

andgreen regions indicate theparts of theplane

where grasping success exceeds a given thresh-

old. The red annulus corresponds to a region

of the space in which caging effects dominate

the probability of grasp success. The radially

emanating rays of the yellow sun correspond

to a particular compliance mode of the hand.

If the shape of the object matches the compli-

ance mode, grasp success is increased radially.

As object size increases fewer pre-grasp poses

yield successful grasps. The inverted, green

flower around the origin characterizes a region
in which precision grasps dominate.

Hand. An informal survey of the literature in robotic grasping imparts the impression that
manyof the reported grasping experiments lie in the annulus of the SFAwhere grasping strate-
gies are less discriminative. This observation should impact future grasping benchmarks.
One could argue that experiments in the annulus are appropriate as most objects in the real
world lie in the annulus by design. Others may want to counter that general grasping can
only be benchmarked outside the annulus.

In the following we would like to try to validate the SFA hypothesis. We will do this first
in a large variety of 2D simulations (see Sec. 2.2.1) and afterwards on a more constrained set
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2.2 The Sun-Flower-Annulus Hypothesis

(a)Annulus

(b) Sun ray: box

(c) Sun ray: cylinder

Figure 2.6: The three subfigures show exam-

ple grasps for different regions of the SFA car-

toon. The frame colors indicate SFA regions.

Subfigure (a) showsexamplegrasps for threeob-

jects (rows) within the annulus, each object cor-

responding toadifferent angleof thepolar coor-

dinate system. For objects in the annulus, grasp

success is strongly influenced by caging effects

and less by shape complementarity. As object

size increases, the influence of shape comple-

mentarity and therefore compliance mode and

hand pose on grasp success increases, as illus-

trated for two objects with distinct shapes in

subfigure (b) and (c). In these subfigures, the

first row corresponds to object sizes in the an-

nulus. In each successive row, object size in-

creases; fewerhandposeswill lead tosuccessful

grasps, corresponding to the sun ray.

of 3D simulations (see Sec. 2.2.2).

2.2.1 Validation of SFA in 2D

We first need to define a 2D shape space based on a polar coordinate system. Each shape (r,
θ) is parametrized by the distance r and the angle θ w.r.t. the origin. According to the SFA
hypothesis the distance r is the size of the shape. We simply use r as a uniform scaling factor.
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Chapter 2▼Adaptability Between Hand and Object

Figure 2.7: To collect evidence for the SFA hypothesis, we simulate vast amounts of grasps with a two-fingered hand in

2D using the daVinci simulator (Berard et al., 2007).

The definition of the shape parameter θ is less concrete. We define θ to mark five canoni-
cal shapes (square, rectangle, circle, four-pointed star, triangle) at the coordinates (0, 2

5
π, 4

5
π,

6
5
π, 8

5
π). If θ does notmatch any of these coordinates, the resulting shape is a linear interpola-

tion between the two nearest neighbors weighted by their distance. We describe all shapes by
discretized polygons. Thus, the interpolation is defined on pairs of vertices of the polygons
that are closest in the Euclidean sense. We assume a uniform density, i.e., the center of mass
coincides with the geometric center. This way we have defined a continuous 2D shape space
in which we can evaluate grasp success.

To fully evaluate all possible grasps we choose an extremely low dimensional parametriza-
tion. Our grasp strategies are defined by a single scalar ρ that describes the approach direction
of the hand in the plane. The hand always approaches the object along the line that crosses
the object’s geometric center. It will stop as soon as it contacts the object and initiate the
closing of its fingers. Based on the shape complementarity between hand and object some
approach directions will result in better grasps than others, only for a fully symmetric object
like the circle the grasp success will not depend on ρ.

We simulate a common two-fingered gripper. Each finger consists of two joints similar
to the design of the Barrett Hand. We use the 2D simulation framework daVinci (Berard
et al., 2007) to evaluate graspingmotions. This dynamic physics engine has proved to provide
realistic outcomes, reproducing real-world manipulation results (Chakraborty et al., 2014).
Fig. 2.7 shows snapshots of an example grasp from our experiment. We calculate the quality
of each grasp by using the ε-metric (Sec. 1.2.3). A grasp is considered successful if its ε-metric
exceeds a fixed threshold.

We generate 1000 different shapes by sampling uniformly in Cartesian coordinates before
transforming the shape parameters to polar coordinates. We do not sample uniformly in
polar coordinates to avoid a low density in the outer regions. For each shape we evaluate 50
grasping directions ρ equidistantly distributed on the interval [0, 2π). This results in a total
of 50 000 simulations.
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size

shape

0.0 0.2 0.4 0.6 0.8 1.0

Probability of force closure

Figure 2.8: The plot shows the probability of the best grasp for a particular shape being in force closure. These are the

results of 50k simulations in 2D. The distribution resembles the hypothetical cartoon version in Fig. 2.5. The annulus

region is indicated by two dotted circles. In the region of the sun, a few rays can be identified where the compliance

mode of the hand matches the object shape. This is especially true for elongated objects that are approached at their

shorter side like the rectangle in the upper right.

59



Chapter 2▼Adaptability Between Hand and Object

σ = 0.1 ◦ σ = 3.0 ◦ σ = 50.0 ◦

Figure 2.9: The plots show how increasing noise levels in the approach direction of the grasp affect success. The color

codes are the same as in the previous plot (Fig. 2.8): yellow indicates zero probability of force closure and black a proba-

bility of 1. It can be seen that the annulus region (between the two dotted circles) is largely unaffected by noise. Outside

the annulus, the match between the hand’s compliance mode and the shape is much more sensitive to noise in the pre-

grasp pose.

Results and Discussion

Fig. 2.8 shows the probability of grasp success given the shape parameters (r, θ). We calculate
it by averaging the grasp success over all 50 grasp strategies ρ for each of the 1000 sampled
shapes. The visualizationuses a linear interpolationbetween those data points basedon radial
basis function kernels.

We can see the samemain components as in our hypothesized structure (Fig. 2.5): the sun,
flower, and annulus. For the medium-sized objects in the annulus the particular approach
direction ρ does not matter. All grasping strategies produce equally good results.

In contrast, small objects in the flower cannot be grasped successfully regardless of the
choice of ρ. If we would change our success criterion from the force-closure based ε-metric
to also include caging, the flower will contain only successes. But assuming that this planar
scenario represents a top-down view of a 3D tabletop setting, the caging conditionwould not
yield robust graps.

Grasp success of large objects in the sun usually depends on the approach direction. Excep-
tions are fully symmetric shapes, such as the circle. Themost clearly visible rays are those per-
taining to the rectangle (θ = 2

5
π), the four-pointed star (θ = 6

5
π), and the one closely related

with the triangle (θ ≈ 7
5
π). In these cases some grasp directions resulted in a match between

the shape of object and hand. For the rectangle, ρ needs to align with one of the two shorter
sides to grasp it. This effect extends to nearby shapes that are interpolations between the rect-
angle and the square/circle. It is indicated by the width of the associated ray (θ ∈ [1

5
π, 3

5
π]).
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2.2 The Sun-Flower-Annulus Hypothesis

(a) (b)

Figure 2.10: Plot (a) shows the force-closure probability of grasps that are force closure for low levels of noise (σ =
0.1 ◦) but not for high levels (σ = 50 ◦). As a result, we see a high probability for shapes for which a potential grasp

planner needs to find a specific pre-grasp pose. Plot (b) shows an overlay of 30 samples (red shapes) and pre-grasp

poses (black hand at the top, before the fingers close) from this distribution. We can see that there is a certain regularity:

The hand tends to be positioned at the shorter side of the different objects to grasp them.

The four-pointed star exposes some kind of singularity: A scaling transformation will not
change the local geometry of the convex corners. But since these parts are used to grasp the
star, increasing its size will not change grasp success.

We also evaluated how sensitive grasps are w.r.t. noise. We injected different amounts
of Gaussian distributed noise in the actual orientation of the objects. Fig. 2.9 shows how
grasp success is affected by different levels of noise, by increasing the standard deviation of
the Gaussian noise process. We can see that grasp success outside the annulus is affected the
most; grasps in the annulus remain successful despite significant noise. This hints to another
insight: When trying to find good grasps, objects outside the annulus are the hardest to deal
with. Grasp parameters need to be chosen carefully to ensure a shape match between hand
and object.

To get an idea about the successful grasps outside the annulus, i.e. those thatwewould like
to be able to plan, we conducted another small experiment. Fig. 2.10a shows the probability
distribution over shape parameters which have very few successful strategies. We sampled
from this distribution to analyze successful grasps for difficult object geometries. Fig. 2.10b
shows an overlay of 30 pre-grasp poses and objects of these samples. The hand is shown
at the top, before initiating the closing. All of these pre-grasps result in successful grasps.
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We can observe that the poses of the object shapes expose a regularity: surfaces are mostly
aligned vertically to allow a shape match with the hand. As a consequence, finding grasps for
these “difficult” objects,means finding local geometric regularities that allow the closing hand
to match with the object. We will exploit this insight in the next chapter when presenting
perceptual algorithms that plan grasps from sensor data.

2.2.2 Validation of SFA in 3D

We complemented the 2D experiments with experiments in 3D to provide more quantita-
tive support for the SFA characterization. We focus on validating our characterization of the
annulus and of the grasp success variations along the rays of the sun.

Similar to the experiments in 2D,we simulate a handwith two links per finger – theBarrett
Hand, a three-fingered 4-DOF hand. We employ two different pre-shapes: a spherical (the
three fingers are 120◦ apart) and a cylindrical one (the three fingers are parallel to each other).
The break-awaymechanism of the BarrettHand is simulated by keeping the pose of the prox-
imal link of each finger constant as soon as collision is detected and onlymoving the distal link
until collision or the joint limit. In contrast to the 2D experimentswe do not simulate the full
physics. Insteadwe rely on a large number of quasi-static grasps usingOpenRAVE (Diankov,
2010). For each grasp we calculate the commonly used ε-grasp quality metric (Sec. 1.2.3),
which indicates the minimum magnitude force required to break the grasp. Grasping ex-
periments were conducted with three prototypical geometries: spheres, cubes, and cylinders.
The results for sphere and cylindermatch closely andwewill only discuss results for cylinders.

Object shapes are deliberately kept simple to make a near-optimal grasping strategy obvi-
ous. Such a strategy is required to drawmeaningful conclusions about the SFA, as it captures
intuition about optimal strategies. For spheres, the robot employs the spherical hand pre-
shape, approaches the center of the sphere with the center of the palm until contact is made,
and then closes the fingers. For cubes (and cylinders), the robot employs the cylindrical hand
pre-shape; during the approach the hand is aligned with the major axes of the object.

Results and Discussion

The top graph in each of the four panels in Fig. 2.11 shows grasp quality as a function of
object size and hand pose error along either the x or y direction. The graph below the image
plot shows the mean grasp quality εmean (red solid line) and the maximum grasp quality εmax

(green dotted line) across all pose errors as a function of object size. The blue dashed line
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(d)Cube: pose error in y

Figure2.11: Graspqualityasa functionofobject sizeandposeerror; thecolorscale indicates thegraspqualitymeasureε;
in the plots the red solid line corresponds to εmean, the green dotted line shows εmax, and the blue dashed line ε0.

shows the grasp quality ε0 in the absence of a pose error. For the cylindrical grasp experiments
with cubes, the fingers close along the y-axis.

The close match between εmax and ε0 in all graphs provides a sanity check for the chosen
grasp strategies. All graphs show peak grasp qualities for medium object size, providing evi-
dence for the existence of the annulus, where grasp quality is high. The data also shows that
grasp quality, indicative of the probability of grasp success, decreases as object size increases
beyond the annulus. The sudden drop in grasp quality in Fig. 2.11d is the result of only two
fingers making contact with the cube. Inside the flower, grasp quality is poor, indicating that
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different compliance modes might be required for robust grasping.
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2.3 The Funnel View of Grasping

2.3 The Funnel View of Grasping

Our goal is to leverage hand adaptability and compliance in the development of novel grasp-
ing algorithms. The underlying hypothesis is as follows: compliance in the hand, irrespective
ofwhether it is achieved passively or actively, can be viewed as a funnel that transforms config-
urations in a large region of the configuration space into a configuration in the smaller region
of successful grasps (see Fig. 2.12, the bottom part of the funnel captures the compliance of
the hand). Compliance therefore introduces robustness to uncertainty and reduces sensing
requirements. Given this hypothesis, a compliance-centric grasping algorithm must

1. characterize the entrance to the bottom part of the funnel and

2. transfer initial configuration into those that lie at its entrance.

This is illustrated by the top part of the funnel in Fig. 2.12. We will show in the next chap-
ter that compliance-centric grasping algorithms exhibit robust grasping performance, signif-
icantly reduce the requirements on perception, and eliminate the need for explicit planning
of contact points.

We can view our grasp experiments from the previous two sections also through the lens of
funnel transformations. The SFA hypothesis (Sec. 2.2) revealed some structure in the space
of object geometries and grasping. In the case of the annulus, the entrance to the funnel
inducedby thehand’s adaptability iswide, uncertainty canbe compensated easily. In contrast,
the funnel entrance becomes more and more narrow as we consider objects in the sun. For
large objects, a wide entrance only exists along the rays of the sun, where the compliance
mode of the hand matches the object shape. Our initial experiments (Sec. 2.1) also explored
the benefits of wide funnel entries through hand compliance. They showed that very few
pre-shapes and closing strategies are necessary to grasp a wide variety of objects. In these
experiments, humans (instead of algorithms) were used to find funnel entries.

Adaptability and compliance play a critical role in any real-world grasping experiment. Hu-
mans extensively rely on compliance to achieve robust grasping. Experiments performed by
Santello et al. (1998) showed that humans use a small set of pre-grasp hand postures when
grasping objects of widely varying shapes. Robust grasping then seems to be the result of
“simply closing the hand”, leveraging the compliance of the skeletal hand structure, muscles,
tendons, and skin to achieve complementarity of hand and object geometry. We showed
that adaptability is implemented in many different ways in a lot of recent robotic hand de-
signs (Sec. 1.1). The funnel view of grasping tries to emphasize the centrality of adaptabil-
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hand adapts to
object shape

Initiation of
hand closure

force feedback
through compliance

visual feedback
to identify object

shape

hand is positioned
so as to maximally

leverage hand compliance

Initial conditions

Successful grasps

Figure 2.12: We visualize grasping algorithms

as two consecutive funnels, transforming initial

configurations into successful grasps through

the use of feedback. The first funnel leverages

visual feedback to transformthestartingconfor-

mation into a configuration that lies inside the

entrance of the second funnel. The second fun-

nel relies on the force interaction between the

hand and the object and the hand’s compliance

to obtain a successful grasp.

ity/compliance for grasping. Although this focus is not entirely new, we think it is an impor-
tant step towards robust grasping.

The concept of relating motion to a sequential application of funnels has been explored
by multiple authors in the past. Mason (1985) gives a humorous analogy to cleaning:

“Sweeping a floor is perhaps the most dramatic funnel operation. A sensor-
based, pick-and-place approach to the dirty floor problem would require that
the robot locate each dust mote visually, grasp it between the fingers, and place
it in the dust–bin. This is rather tedious compared to sweeping the floor with a
broom. It is simplymore efficient to notworry about the locations of individual
motes of dust.”

Lozano-Pérez et al. (1984) describe fine-motion plans as a sequence of funnel operations.
Their notion of pre-image defines a set of states from which the same action will result in
achieving a goal. These pre-images are what we refer to as “funnel entrance”. The calculation
of pre-images requires to know whether the goal is reachable and recognizable. To relax this
assumption, Erdmann (1986) introduced the notion of back-projection. The calculation of
back-projections only relies on goal reachability and was used to compute plans for orienting
parts via a tilting tray without the help of any sensors (Erdmann andMason, 1988). Burridge
et al. (1999) partition the obstacle-free state space using local funnels for batting maneuvers.
Tedrake et al. (2010) computes Lyapunov functions to evaluate the basins of attraction of a
randomized tree stabilized with LQR feedback that represent feedback motion plans. The
tree can be viewed as combination of funnels.

The classical literature on grasp and restraint analysis predominantly considered static or
quasi-static scenarios (Sec. 1.2). Although more complex models that include compliance ex-
ist, they are built on top of existing formulations, and are hardly used in practice due to their
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complexity. Instead we want to shift the central focus towards adaptability and uncertainty,
which is encompassed by the funnel view of grasping. Rather then taking a bottom-up ap-
proach inwhich local contact phenomena give rise to higher-level behavior, the funnel view is
a top-down view which approximates global interaction behavior based on realistic assump-
tions about available sensor data. The underlying idea of this thesis is to see grasping as the
problem of generating, sequencing, and characterizing such funnels; with a focus on consid-
ering compliance and adaptability as an enabler for more powerful funnels.

We think that classical grasp analysis does not oppose the funnel view. It rather emphasizes
different aspects of the grasping problem. Ultimately, both views are compatible and should
be unified.
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2.4 Conclusion

In this chapter we developed a first understanding about the interactions between hand and
object during grasping. Our exploratory experiments using humans showed that the seem-
ingly high-dimensional grasping motions are based on low-dimensional building blocks that
exploit the low-level adaptability of the hand. This underlying structure was shown through
successful grasps based on very restrictive motion protocols with various compliant hands.
Even when allowing the human operator to control finger motions, the successful grasping
motions lie on amuch lower dimensional manifold which can be represented by a few proto-
types.

We provided a cartoon-ish characterization of the influence of shape complementarity be-
tween a hand’s adaptive grasp strategy and the object’s shape. Through experimental valida-
tion in simulation we showed that this characterization captures some interesting aspects of
compliant grasping. In the subsequent chapter, wewill validate this characterization on a real
robotic platform.

The explicit consideration of hand compliance in robotic grasping improves performance
and robustness. We argued that grasp algorithms should be compliance-centric, i.e. they
should deliberately take advantage of hand compliance to improve performance. This lead
us to the funnel view of grasping. A funnel represents an uncertainty-reducing action which
collapses a large set of initial states into a specified region of desired states. During finger
closing hand compliance acts as such a funnel and grasping can be viewed as finding and se-
quencing funnels with particularly large basins of attraction. Based on this insight, the next
chapterwill present grasp planning algorithms that try tomaximally exploit adaptiveness and
compliance.
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3
Planning Grasps That Exploit Hand

Adaptability

We have shown in the previous chapter that the SFA characterization of compliance
in grasping provides interesting insights that can guide the design of grasping algo-

rithms. To fully take advantage of hand compliance in grasping, wemust find the compliance
mode of the hand that best matches the object shape. Doing so does not require an exact rep-
resentation of the shape. Instead, we must obtain some estimate of how well the hand can
accommodate an object’s shape in a particular compliance mode—we call this shape resem-
blance. We believe that the identification of a compliance mode is a much simpler perception
problem than the one required for compliance-agnostic planning, namely, the acquisition
of accurate three-dimensional geometric models. Furthermore, the need for the planning of
contact states is completely eliminated.

We consider the problem of robust grasping with hands in the absence of a priori object
models. We focus on aspects of object capture and grasp stability under variations of object
shape for a given robotic hand.

To evaluate the algorithms in this chapter we use the Barrett Hand 262, a three-fingered
hand with four degrees of freedom. We define its compliance modes as shown in Fig. 3.1:
a cylindrical and a spherical pre-shape in conjunction with a simple finger closing motion.
Adaptability is ensured due to the break-away mechanism of the Barrett Hand (Sec. 1.1.5).
The idea is that these compliance modes match a large variety of possibly occurring object
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Figure 3.1: The motion of two different compliance modes of the Barrett Hand 262. To find suitable grasps we search

for structure that is shaped complementarily.

shapes.
In the following sections we will present and analyze two types of visual features that try

to match the hand’s compliance modes to object shapes. The first one is a differential con-
tour feature which requires a moving camera but is not affected by the drawbacks of using
depth sensors. In contrast, the second type of feature represents the 3D structure of depth
measurements by the similarity to a few canonical shapes. Each feature is explained, similar
work is shown, and strengths and weaknesses are derived via experimental evaluation.

3.1 Features Based on Active Vision

O’Regan andNoë (2001) state “that the visual quality of shape is precisely the set of all poten-
tial distortions that the shape undergoes when it is moved relative to us, or when we move
relative to it.” They refer to these sets as sensorimotor contingencies. This active vision-based
characterizationof shape seemswell suited for our purposes. Weobserve the changes of object
silhouettes under object motion and represent different object shapes by different qualitative
changes. How this can be done will be described in this section. Our hope, confirmed in the
experimental evaluation in the next sections, is that the resulting visual primitives will be ro-
bust and yield good entrances to grasping funnels, as they only capture the overall shape of
the object, ignoring less important details.

We will describe five visual primitives based on active vision sensorimotor contingencies.
Three of these visual primitives determine shape resemblance for a specific object: sphere,
box, and cylinder. The shape resemblance will be used to select the appropriate compliance
mode. In addition, the visual primitives must acquire information needed for determining
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the hand’s pre-grasp pose. Together, this information is sufficient to execute themost promis-
ing grasp strategy.

The simplicity and effectiveness of all active visual primitives is based on the concept of
active vision: the motion of the camera is controlled to maximize the visual information ob-
tained from the image stream. The advantage of active vision over dynamic vision (just know-
ing how the camera moves) when estimating the parameters of simple geometric objects was
shown by Chaumette et al. (1996). Our visual primitives are similar in spirit to the ones pre-
sented there.

We evaluate our approach to perception in real-world experiments in Sec. 3.1.2. These ex-
periments will show that the output of our visual primitives correlates with grasp success,
which implies that they are able to identify the entrance to the funnel induced by hand com-
pliance. We then show in Sec. 3.1.3 that compliance-centric grasping outperforms compliance-
agnostic planning in real-world grasping experiments, evenwhenwe grant the latter access to
a priori world models.

3.1.1 Visual Primitives for Planning Grasps

The basic idea underlying the visual shape primitives is as follows: When a camera moves on
an imagined sphere around the object of interest while pointing the optical axis towards the
center of the object (sphere), the changes in the silhouette of the object reveal information
about the object’s shape. We take advantage of this effect to discriminate between shapes. To
extract the object’s contour in the camera image we use a simple blob detection (Suzuki et al.,
1985).

To control the camera motion to remain on this imagined sphere around an object, we
need to estimate spatial information. This is accomplished by the depth primitive and the
principal axis primitive.

Depth Primitive

Aswe are using an eye-in-hand settingwith amonocular camera, we are lacking instantaneous
depth information. To retrieve depth, we designed an active vision controller that converges
to a concentric trajectory around the object’s center (a geodesic on the imagined sphere). The
controller moves the camera to keep the center of the object’s projection in the center of the
image. In each time step, the controller commands the camera according to its current depth
estimate. Motion of the object’s center in the image leads to a correction of the depth estimate.
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When the controller converges, the camera moves on a sphere around the object center. The
sphere’s radius is equal to the estimated depth.

Principal Axis Primitive

Similar to the estimation of depth we actively estimate the main axis of an object. We derive
the principal axis of the detected blob in the image plane via its second order centralmoments.
A visual servoing loop keeps this axes aligned w.r.t. the image border. We are using the ex-
pected invariance of the axis’ orientation during camera motion to update an estimate of the
axis orientation in space. The camera motion describes again an arc around the object’s prin-
cipal axis. Chaumette et al. (1996) showed that this motion results in optimal information
gain for the estimation of lines in space.

The visual primitives for estimating depth and the principal axis are executed in parallel, as
their desired exploratory motions lie in the nullspace of each other. After their convergence,
we invoke the shape resemblance primitives, all of which execute in parallel.

Shape Resemblance Primitives

To assess the shape resemblance of the object to a box, a sphere, or a cylinder, we determine
two simple visual properties of the object’s silhouette: its contour area and eccentricity. The
resemblancewith a particular shape class depends only on the variance of these twoproperties
during the camera motion around the object. To calculate the contour area we count image
pixels inside the contour. The eccentricity (or elongation) is the ratio of the lengths of the
contour’s shortest and longest chords.

A constant projected size and an eccentricity close to 1 indicate a sphere-like object. A con-
stant contour area but an eccentricity≫ 1 suggest an object that is rotationally symmetric
along its principal axis. We refer to this as the cylindrical shape resemblance primitive. A
box shape resemblance is detected when the eccentricity≫ 1 and the projected size varies
throughout the camera’s motion around the object. Our experiments will show that the re-
sulting shape information is sufficient for robust grasping of unmodeled objects.

The feature we present here to decide between different grasp strategies is very similar to
spin-images Johnson (1997) which are used for 3D surface matching. Spin-images are his-
tograms calculated by rotating a virtual image plane around the surface normal of a specific
pivot point. By counting the 3D points that fall within the same pixel of the image, a char-
acteristic signature of the surrounding surface of the pivot point is created. The area and
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eccentricity that we calculate are statistics of these histograms. But while spin-images are gen-
erated virtually from point clouds or meshes we generate our features using an eye-in-hand
manipulation system and taking images with an actual camera sensor. Thus, our features
could also be termed “eye-in-hand spin-images”.

3.1.2 ValidationofRelationshipBetweenShapeResemblanceandGrasp Suc-
cess

Our compliance-centric grasping algorithm rests on the assumption that the shape resem-
blance values determined by visual strategies are indicative of the width of the entrance to
the bottom funnel in Fig. 2.12. The width of the funnel should lead to robustness in the
grasping process. Hence, shape resemblance values should correspond to grasp success for
the corresponding compliance-based grasp. We will now test this assumption in real-world
experiments.

Experimental Setup

For our real-world grasping experiments, we use a 7-DOFBarrettWAM in combinationwith
a Barrett Hand BH-262 and a PointGrey Firefly cameramounted on the wrist. Fig. 3.2 shows
the objects we used: a banana, apple, pepper, sponge, spectacle case, toy bridge, soccer ball,
game box, and a cylindrical bottle case. To simplify the segmentation problem for the visual
primitives, the game box and bottle case were wrapped in yellow paper.

We employed three grasp types: spherical grasp, cylindrical grasp, and box grasp, each cor-
responding to one of the visual strategies described in Sec. 3.1.1. The cylindrical grasp and the
box grasp both share the cylindrical compliance mode of the hand but differ in the way they
select the appropriate hand pose and approach direction.

Our experimental procedure is as follows: One object at a time is placed inside the robot’s
workspace on a white table in a specified pose. In each grasping trial, the visual primitives are
used to determine the shape resemblance. Subsequently, the corresponding grasp strategy is
executed. For each of the nine objects and three grasp types we conducted 10 trials, for a total
of 270 grasping trials. A grasp was deemed successful if after lifting the object 10 cm off the
table no obvious slippage occurred within 10 s.
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Chapter 3▼ Planning Grasps That Exploit Hand Adaptability

Figure3.2:Objects used in the grasping experiments (from left to right): banana, apple, bell pepper, toy bridge, spectacle

case, sponge, soccer ball, bottle case, and game box.

Results and Discussion

The outcome of this experiment is shown as a scatter plot in Fig. 3.3. The color of the circles
represents the visual primitive/compliant grasp (box is red, spherical is blue, cylindrical is
yellow). Each circle’s size represents the grasp success rate. The circle center’s y-coordinates
indicates the shape resemblance value determined by the corresponding visual strategy. The
circle with the highest y-coordinate for each object represents the compliant grasp selected
by our grasp algorithm; its diameter therefore represents the algorithm’s success rate for that
object. The averaged success rate over all objects is 95.6% (86 out of 90 trials, two failures
with the soccer ball, one with the spectacle case and the bell pepper).

We can interpret the results in light of the SFA characterization from the previous chap-
ter (Sec. 2.2): Given our knowledge of the hand’s grasping volume, the first six objects were
chosen to lie in the annulus. Inside the annulus the three grasping strategies do not differ sig-
nificantly in their grasp success. The minor variations in the case of apple, banana, and bell
pepper are correctly detected by the visual strategies: they select the compliant grasp with the
highest success rate. This indicates that even in the annulus there is a good match between
shape resemblance value and predicted grasp success of the corresponding compliant grasp.
For the spectacle case, however, we select the weakest strategy, even though it fails only once
out of ten trials and we still achieve a success rate of 90%.

The size of the remaining three objects (soccer ball, game box, bottle case) places them
outside of the annulus. Each represents a different class of object shapes, thus representing a
different ray of the sun. As expected, grasp success varies widely in the rays of the sun. The
visual resemblance detected by the visual primitives strongly correlates with grasping success
of the corresponding compliant grasp. For each of the objects, a different compliance mode
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Figure 3.3: Shape resemblance determined by the visual primitives: box (red circles), spherical (blue), and cylindrical

(yellow); the diameter of the spheres indicates the success of the corresponding compliant grasp.

is most appropriate, showing that the rays of the sun are separate, shape- and mode-specific
regions of high grasp success probability. In the case of the soccer ball, only the spherical
compliant grasp is successful at all.

The results show that visual resemblance is a goodmeasure for selecting compliancemodes
and a goodpredictor of grasp success. The results also show that our spherical visual primitive
is too selective, as it results in a visual resemblance value of less than 0.5 for a perfect sphere.

3.1.3 Comparison of Compliance-Centric and Compliance-Agnostic Grasp-
ing

In our final set of experiments, we compare the proposed compliance-centric grasp algorithm
to a specific compliance-agnostic grasp planner. We show that our algorithmoutperforms the
compliance-agnostic planner, even after we provide the latter with accurate a priori object
models, which could be considered an important advantage over our method.
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Chapter 3▼ Planning Grasps That Exploit Hand Adaptability

Video Figure 3.1: The images show exam-

ple grasps of our compliance-centric algorithm.

[https://youtu.be/Pm1A5AMBH_0]

Video Figure 3.2: The images show example

grasps of the Eigengrasp planner. [https://
youtu.be/a9IIB87wZ9w]

Experimental Setup

For the experimental comparisonwe chose theEigengraspplanner (Ciocarlie andAllen, 2009),
implemented inside theGraspIt! framework (Miller andAllen, 2004). Our reason for choos-
ing this planner were its relative recency, its popularity in terms of citations, and the availabil-
ity of the source code.

We took great care in creating geometric models of six of the objects shown in Fig. 3.2 (all
except the fruits and vegetable), performing several independent measurements for each. We
included object-specific, conservative estimates of surface friction in the models.

To generate candidate grasps with the Eigengrasp planner, we used 70 000 iterations of
simulated annealing, setting the energy formulation as “hand+object”. We eliminated candi-
date grasps for which no inverse kinematic solution for the arm existed (this only happened
for two of the six objects and did not affect the two highest-quality grasps). We then selected
the three best grasps, performing ten trials for each, for a total of 180 grasp attempts. The
exact pose of the object was an input to the grasp attempt. Grasp success was measured as
before.

For comparison, we calculated two measures of success for the Eigengrasp planner. The
average success rate includes all 30 grasps per object, while the best success rate only represents
the most successful of the three planned grasps. Note that the second metric selects the best
grasp in hindsight, after all experiments are performed.

Results and Discussion

Fig. 3.4 compares the grasp success obtained with the Eigengrasp planner to our compliance-
centric algorithm. Among the objects inside the annulus, only the spectacle case shows sig-
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Figure 3.4: We compare our presented

compliance-centric grasp planning algo-

rithm with the Eigengrasp planner (Cio-

carlie and Allen, 2009).

nificant difference in grasp success. Our algorithm outperforms the Eigengrasp planner in
either metric. In the rays of the sun (bottle case and soccer ball), the Eigengrasp planner fails
in all grasp attempts. This could be an indication that the advantage of compliance-centric
grasping increase as we reach the boundary of the SFA. In the case of the box, however, both
grasp methods achieve 100% success.

Overall, our compliance-centric grasp algorithm always performs better or as good as the
Eigengrasp planner. The grasp results demonstrate that the proposed visual primitives suc-
cessfully identify configurations in the entrance to the bottom part of the funnel. These
visual primitives are simple and effective. They eliminate the need for explicit contact plan-
ning, supporting the claim that hand compliance should become a central consideration in
robot grasping.

3.1.4 Limitations

There are two main shortcomings of the presented algorithm:

• Motionrequirement: It is not practical tomove the camera around anobject prior
to each grasp. However, we view this algorithm as a proof of concept. In the future,
the need for active cameramotion can be significantly reduced inmost cases by first de-
riving a shape hypothesis from 2Dvision and then confirming this hypothesis through
minimal cameramotion. If the 2Dhypothesis cannot be confirmed, the robot uses the
procedure above to recover.
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Chapter 3▼ Planning Grasps That Exploit Hand Adaptability

• Segmentation effort: We used a very simple color-based blob detection to seg-
ment the object from the background. This limits the application to uniformly col-
ored objects. Although graph-based methods (Felzenszwalb andHuttenlocher, 2004)
could solvemore general scenarios, theywill inevitably createmore potential segments
which need to be verified. This ties back to the motion requirement which will apply
to every segment (given that some feature values require the camera to center the seg-
ment). The only alternative is to use a richer user input that specifies the appearance
of the object to grasp.

The algorithm presented next will eliminate both of these shortcomings. It does not re-
quire excessive motions by using a depth sensor. It also generates multiple grasp hypothesis
based on different segmentation algorithms.
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3.2 Features Based on 3D Shape Fitting

In this section, we present shape-adaptation-aware grasping strategies for unknown objects.
These strategies exploit adaptation between hand and object and allows us to simplify percep-
tion. The shape adaptability of the hand adjusts to variations in object shape. Consequently,
perception only needs to determine object shape to the level of detail not compensated by
shape adaptation. The loss in geometric accuracy of the acquired object model is compen-
sated by the shape adaptability of the hand.

We introduce four different shape descriptors: a spherical, cylindrical, box, and disk one.
Each one is supposed to recognize a different subset of all possible object shapes. We now
explain how the four descriptors work, based on depth image measurements taken by any
time-of-flight, stereo or structured-light sensor.

3.2.1 Calculating 3D Shape Features

We avoid the highly non-convex parameter space that occurs when fitting geometric mod-
els to raw sensor data by first segmenting it. In general there is no single-best segmentation
method for the variety of scenes we will face. Thus, we apply multiple segmentation meth-
ods (Malisiewicz and Efros, 2007). A flood fill algorithm similar to Holz and Behnke (2012)
segments the depth image into coherent regions. This segmentation groups neighboring
points o and p according to a boolean predicate, which we define as follows:

|odepth − pdepth| < tdepth ∧
⟨onormal , pnormal⟩ < tangle ∧

ocurvature < tcurvature,

where odepth is the depth of point o, onormal its surface normal, ocurvature its mean curvature,
and (tdepth, tangle, tcurvature) a set of thresholds. Small-sized segments are filtered out. We use
segmentations with low tcurvature and tangle which favor edge boundaries and high values of
tdepth that result in larger regions even in the presence of noise. The resulting segment soup
builds the basis for our different shape descriptors. They all fit geometric models to the seg-
ments using the method of Random Sample Consensus (RANSAC by Fischler and Bolles
(1981)). A large threshold in the inlier criterion allows for considerable shape variation which
we assume can be compensated by the hand’s closing motion. In the following we describe
the goodness of fit for each geometric descriptor.
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Video Figure 3.3: To improve clarity the depth values are plotted on top of the camera image, although ourmethod only

uses range data. The center image shows the result of one flood fill segmentation that separates the geometry at depth

discontinuities and sharp edges. The segments are then described by different shape descriptors to match the hand

geometry. The right image depicts the confidence of the cylindrical shape descriptor ranging from red (very cylindrical)

to blue (hardly cylindrical). [https://youtu.be/XboHUM6Y5Ps]

Spherical Shape Descriptor: A sphere is fit with a radius bounded to the range gras-
pable by the Barrett Hand’s spherical pre-shape. The goodness of fit is based on the ratio of
inliers and segment size in combination with the visibility of the hypothesized sphere. The
visibility criterion is the ratio of the segment size and the expected size of the sphere backpro-
jected into the sensor frame:

confspherical =
inliers

size(segment)
· size(segment)
size(expected projection)

.

Cylindrical Shape Descriptor: An infinitely tall cylinder is fitted which is bounded
by the extreme inliers along the cylinder’s axis. The height and radius are again constrained
by the hand geometry. A goodness of fit value is given by the ratio of inliers and segment size
in combination with the expected visibility analog to the spherical shape descriptor. Video
Fig. 3.3 shows an example application of the cylindrical shape descriptor.

Box ShapeDescriptor: A plane fit is bounded by projecting its inliers orthogonal onto
the plane and calculating the 2D minimum enclosing rectangle. If the rectangle size exceeds
the graspable volume of the cylindrical pre-shape it is discarded. The goodness of fit is a
combination of the inlier ratio and the rectangularity of the contour of the projected points.
This rectangularity is defined as the ratio of the area of the convex hull and the fitted rectangle.
The final confidence value is a weighted sum of both terms:

confbox = w · inliers
size(segment)

+ (1− w) · area(convexHull(projection))
area(minRect(projection))

.
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apple metal sphere massage ball wizard pharao coffee tin toilet paper

bell pepper pentagonal prism paper cup prism toy bridge small box banana

remote prison horse spectacle case tape 500ml bottle hollow cylinder

Figure 3.5:Weused 21 different test objects to empirically evaluate our grasp planning algorithm.

Disk Shape Descriptor The disk descriptor works similar to the box descriptor with
the exception that it uses the minimum enclosing circle of the projected points to define the
goodness of fit instead of a rectangle:

confdisk = w · inliers
size(segment)

+ (1− w) · area(convexHull(projection))
area(minEnclosingCircle(projection))

.

3.2.2 Experimental Evaluation

The goal of our experiments is to examine how well our perceptual grasping strategies can
predict their success, based on the match between object and hand.

Experimental Setup

We equipped a 6-DOF Unimation PUMA 560 with a Barrett Hand BH8-262 and an Asus
Xtion Live depth sensor. The sensor was mounted on the wrist as can be seen in Fig. 3.1.
During each grasping trial the robot was observing an object for 3 s from a single view point.
During that time it chose the most promising pre-grasp strategy. If no pre-grasp confidence
exceeded a pre-defined threshold, no grasp was executed and the next view point was consid-
ered. Otherwise, a force-based operational space control law was executed to approach the
planned pre-grasp pose from an intermediate pose located 10 cm in the negative direction
of the approach vector. After reaching the pre-grasp pose, the hand was pre-shaped and a
closing motion executed. We considered a grasp to be successful if the robot could lift the
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Figure 3.6: Grasping performance for each of the four compliance modes and a strategy which approached the objects

towards the perceived centroid from the current view point with a spherical pre-shaped hand. The light-colored bar

indicates a predicted grasp by the algorithm. The dark-colored one is the resulting grasp success.

object 30 cm and the object did not fall out of the hand within 10 s.
To measure the predictability of hand/object match of our pre-grasp strategies, we con-

ducted a simplified experiment that excluded any environmental effects. The 21 objects
shown in Fig. 3.5 were placed onto a sticky tripod. This resembled a quasi-static scenario
free of any effects induced by interactions between hand and environment. Each object was
placed five times in different orientations in front of the robot.

Additionally, we executed a baseline strategy that approached the object’s centroid along
the ray originating from the camera’s view point. It always used the spherical pre-shape, ig-
noring any object shape information (apart from calculating the centroid of the point cloud
segment).

Results and Discussion

For each strategy we measured the rate of pre-grasp detection and grasp success as defined
above. The results shown in Fig. 3.6 largely confirm our intuition: Whenever a promising
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grasp was predicted by one of the descriptors, the likelihood that the corresponding grasp
also succeeded was high. The worst mismatch between grasp detection and grasp success
occured with the pharao and the disk pre-shape. The top of the pharao sculpture is indeed
disk shaped. But due to the low surface friction the heavy object (≈800 g) slipped out of the
hand.

Among all pre-shapes the cylindrical onewas the onemost often applied. Thismatches the
statistics collected by Zheng et al. (2011). Among the 1280 grasps done by a house maid they
categorized 29% as being cylindrical. Note that although there are partial overlaps between
strategies no strategy is dominated by another one and thereby obsolete.

All the analyzed objectswere grasped by at least one of the strategies, showing that together
they cover a significant amount of naturally occurring object shapes. This can be observed in
the graph showing themax strategy, which selects the most promising of the four pre-shapes
given their confidence values. Precision and recall of the max strategy are high with 94% and
92% respectively.

The results shown in the last row of Fig. 3.6 indicate that the simple baseline strategy al-
ready exploits enough information to grasp successfully, with a slightly lower success rate of
87% (vs. 94% of the max strategy). But notice that there are a lot of cases in which such a sim-
ple strategy (grasping the centroid)will eventually fail. Wewill look atmore realistic scenarios
that include the environment in Part III.
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3.3 Related Work

We presented two grasp planning algorithms which do not rely on a priori object knowledge.
Instead they leverage the adaptability and compliance of the hand to match the shape of an
object. We focus on related approaches to robotic grasping that are similar because they either
exploit hand compliance (implicitly or explicitly) or they tightly integrate perception and
action.

3.3.1 Leveraging Adaptability During Shape Match Between Hand and Ob-
ject

Both presented grasp algorithms factorize the graspingmotion into a pre-shaping of the hand
followed by a closing motion. This is an application of Principle I: “Exploiting Adaptability
in Grasp Representations” (Sec. 1.3.1). Similarly, Ciocarlie and Allen (2009) synthesize grasps
based on the idea that the intrinsic DOF of a hand can be mapped into a lower dimensional
sub-space, without losing much expressiveness. This way they can search the space of pos-
sible pre-grasps much faster. In executing grasps, they implicitly rely on compliance when
closing the fingers. We compared our algorithmwith this approach and showed that we find
much more reliable grasps by taking the global shape properties into account. Miller et al.
(2003) present a planner that uses heuristics which describe how to grasp basic shapes, such
as boxes, cones, spheres and cylinders. Their pre-grasps and approach strategies resemble our
grasp strategies. However, they rely on a known decomposition of the object, ignoring this
non-trivial perceptionproblem. Balasubramanian et al. (2010) showed that humans prefer or-
thogonal approach directions when controlling robotic hardware to produce robust grasps.
Our algorithms also create orthogonal approach directions w.r.t. the estimated principal axis
of the objects.

Both presented features simplify the shape of unknown objects: the active vision features
describe shape as an expected visual change in response to observer motion while the 3D fea-
tures compress any geometry to a set of a few canonical shapes. This kind of exploitation of
hand compliance is an application of Principle II: “Exploiting Adaptability in Object Rep-
resentations” (Sec. 1.3.2). Similar approaches in grasping are: Huebner and Kragic (2008)
who use boxes to approximate shapes, Przybylski et al. (2010) who propose inscribing balls,
Goldfeder et al. (2007) who decompose shapes into superquadrics, andNieuwenhuisen et al.
(2012) who recognize CADmodels. But a clear distinction to us is that all of these approaches
require complete object models. The problem of perception, which is an integral part of the
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algorithms in this chapter, is ignored.

3.3.2 Tight Integration of Perception and Grasp Planning

This category of related approaches exploits aspects of shape adaptability between hand and
object and also addresses the perception problem. However, each of these methods has lim-
itations overcome by our approach. In one of the earliest approaches that exploit shape
matching, the authorsmap bounding ellipses extracted from an image to three different hand
pre-shapes of a two-fingered gripper (Bard and Troccaz, 1990). This method is restricted to
top-down grasping. Kootstra et al. (2012) extract contour and surface features from visual in-
put. The features are mapped to grasping actions: enveloping grasps for surfaces and pinch
grasps for contours. Amethod proposed by Klingbeil et al. (2011) searches for protrusions in
range scans as candidate locations for graspingwith a parallel-jaw gripper, but notwithmulti-
fingered hands. Herzog et al. (2012) learns graspable 3-D features in the environment from
human demonstration. They side-step the perception problem with human input. Maldon-
ado et al. (2010) assume that all objects are placed on top of a table. Each point cluster above
the table surface is interpreted as an object. The pre-grasp pose is optimized to bring the
center of the palm as close to the object while maximizing the distance between object and
fingers.

Similar to our active vision features, Calli et al. (2011) use an eye-in-hand system and apply
a visual servoing scheme that maximizes the curvature of the object silhouette, thus leading
the hand to concave parts of the object. Dune et al. (2008) also use active vision to acquire
information about object shape but then rely on shape approximation with quadrics to rep-
resent this information. Again, by relying on a shape approximation, the approach implicitly
depends on hand compliance.
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3.4 Conclusion

In this chapter, we presented two shape-adaptation-aware approaches that grasp unknown
objects. There is much evidence in the human and robot grasping literature that shape adap-
tation significantly increases grasp success. We therefore explicitly account for the effects of
shape adaptation in the designof grasping algorithms. Theproposedmethods consider shape
adaptation between the hand and the grasped object to simplify perception. Rather than at-
tempting to perceive the exact shape of the object to perform grasp planning, we assume that
the shape must only be known to the level of detail necessary to decide which pre-grasp is
most appropriate. The pre-grasp then invokes a particular mode of shape adaptation of the
hand by closing the fingers, compensating for any infidelities in the perceived object model.
Our experiments demonstrate that the explicit consideration of shape adaptability reduces
the perceptual requirements of grasping and enables robust grasp performance without ex-
plicit planning of contact points.
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Part II▼ Interactions Between Hand and Environment

Motivation

Robot motion planning (LaValle, 2006) tackles the problem of finding a collision-free path
from A to B. This is closely related to the grasping problem, in which we also try to find a
collision-free motion from a starting configuration to the configuration that establishes con-
tact with the object. In both cases collision-free is referring to the obstacles in the environ-
ment. Intuitively this is a reasonable problem formulation, a colliding robot will most likely
not achieve its goals.

But as soon as we consider uncertainty due to sensors, models, and actuators a different
view emerges. Creating collisions and contact-exploiting motions such as sliding along a sur-
face can be used to reduce uncertainty about the spatial state of a system. And indeed, it
has been shown that this also happens in human behavior. Deimel et al. (2013) showed that
visually impaired subjects contact the environment more intensively when grasping objects
compared to their unimpaired counterparts. This brings us to the second core idea of this
thesis: The environment is your friend, embrace and use it whenever possible!

Contributions

The main contributions of the second part are the following:

• A planningmethod that finds motions fromA to B. It assumes a noisy motionmodel,
a geometric model of the environment and access to an uncertainty-free contact signal.
As a result it finds motions that combine classical free-space paths with segments of
uncertainty-reducing contact actions (Algorithm 4.1).

• A characterization of different grasping strategies that explicitly exploit the environ-
ment. To do this we introduce the concept of environmental constraints (ECs).

• A planning method that finds grasping motions based on sequences of contact ex-
ploitations (Algorithm 5.4). The method does not assume an a priori model of the
environment but builds a representation from RGB-D data.

Outline

This part presents twoplanningmethodswhich exploit contactwith the environment. Chap-
ter 5 deals with motion planning problems. This leads to motions that explicitly exploit con-
tact whenever position uncertainty of the end-effector is too high. We evaluate this algorithm
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in different motion planning problems under uncertainty but do not have a particular focus
on grasping.

In contrast, Chapter 6 introduces a planning algorithm with a focus on grasping actions.
Here, we do not model position uncertainty as before but rather assume that contact with
the environment is always beneficial for grasp success. As a result, graspingmotions are gener-
ated that successively exploit different environmental features. Finally, we compare the two
algorithms on a theoretical and practical level.

It is important to note that themain focus in this part is on the relationship between hand
and environment; the effects of intrinsic object properties are ignored and will be resolved in
Part III.
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4
Planning Motions That Exploit Contact

With the Environment

Robot motions always suffer from uncertainties.Uncertainties originate from
various sources: sensormeasurements are noisy, themodels which are used to interpret

these signals or plan ahead are uncertain and also actuators are prone to noise. As an exam-
ple of the serious problems caused by uncertainty consider the Barrett WAM, which is used
frequently in this thesis. When estimating the pose of its end-effector based on themotor en-
coder readings the error can be up to 8 cm (Krainin et al., 2011). This is enough to grasp thin
air instead of the intended object. The error is due to the non-rigid cables that connect the
motor shaft with the link. Modeling the actual length of such a cable is close to impossible. It
depends on a variety of variables such as the temperature, payload, robot configuration, etc.

We propose to exploit contact to tackle the problem of uncertainty. Assuming that con-
tact is a discrete event that can be reliably sensed, we argue for purposeful collisions with
the environment in order to gain information, reaching motion targets more robustly. The
advantages of exploiting motion in contact is not new. For example, strategies that inter-
leave motion in contact and in free space have been the key to success in the DARPA ARM
challenge 2011, where robots deliberately bumped into a door before pushing down the han-
dle (see Fig. 4.1). But so far there has been little research on how to plan such strategies from
a description of the scene geometry.

In this chapter we present a planner called Contact-Exploiting RRT (CERRT), based on

90



4.1 An Algorithm for Interleaving Motion in Contact and in Free Space:
Contact-Exploiting RRT (CERRT)
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Figure 4.1: Contact can efficiently reduce the uncertainty about the robot’s state. Left: An example fromamanipulation

challenge, where the robot first touches the door to localize the handle before attempting a grasp (Righetti et al., 2014).

Right: A similar strategy, generated by our planner CERRT. Shown in green are several executions of the motion under

uncertainty, which all first contact the door and then slide down to the handle.

the rapidly-exploring random tree (RRT) by LaValle (1998). Our planner finds robust mo-
tion plans under uncertainty in robot position, actuation, and world model. The planner
scales to high-dimensional configuration spaces. The resulting motions make and break con-
tact with the environment, slide along surfaces, but also avoid collisions with links that have
no contact sensing capability.

The main difficulty of planning under a partially observable robot state is the high dimen-
sionality of the associated belief space. Our planner overcomes this problem by exploiting
the insight that sensing contact is reliable and can be assumed to be fully observable. This
factors the problem into a tractable reasoning over the robot’s position.

We evaluate theplanner’s capability to reason efficiently about highuncertainty on abench-
mark manipulation planning problem from the literature of partially observableMarkov de-
cision processes (POMDPs). We show how the planner generalizes to more complex prob-
lems by increasing the complexity and the dimensionality of the configuration space. Wewill
validate our planning results with simulation and real world experiments for a motion task
under significant uncertainty.

4.1 An Algorithm for Interleaving Motion in Contact and in Free Space:
Contact-Exploiting RRT (CERRT)

CERRT plans with a combined state of belief over configuration and fully-observable con-
tact x = (Q, C). We represent the belief over the configuration with a set of particlesQ =
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{q1, . . . qN}, where each element q is an n-dimensional robot configuration. We will denote
the sample mean and variance ofQwith µx andΣx. Each belief state is also associated with a
fully observable set of contacts C = {c1, . . . , cm}. Each contact c is a pair of surfaces in con-
tact (srobot, senv). srobot is a surface on the robot that has contact sensing capabilities and senv
a surface of the environment. The most important quantities are summarized in Table 4.1.

Symbol Meaning

G = (V,E) the search tree with nodes V and edgesE
q a configuration
x a state
Q a set of configurations (particles)
µQ the sample mean ofQ
ΣQ the sample variance ofQ
σstart the variance of the initial error
δ(q̇) the motion error
ϵ the resolution of the planner
γ the contact exploration bias
T = (p,R) a frame pose described by homogeneous transform or position and

orientation
ξ a velocity twist

Table 4.1: Symbols used in this chapter

Theplanner finds strategies that combine free-space and contactmotion. Weassume that free-
space motion always increases uncertainty. This is represented by a noisy motionmodel δ(q̇)
which is detailed in Sec. 4.1.3. Because free space motions increase uncertainty, the planner
must sequence themwith contactmotions that reduceuncertainty. Fig. 4.2 shows an example
of a decision the planner must take. The robot cannot directly enter the narrow passage but
must first contact the wall to reduce uncertainty.

To find such strategies, we grow a tree in the combined space of contact state and belief
over configuration. The key to the planners efficiency is a tailored exploration strategy of this
space. To adjust the search behavior of the planner, we introduce the parameter γ ∈ [0, 1]

that describes the ratewithwhich the planner attempts free-space or contactmoves. If γ = 0,
the planner only explores free space, and behaves like a vanilla RRT-Connect (Kuffner and
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Figure4.2: Left: Toenter the narrowpassage, the robot cannot directly take actionu1 because the resulting uncertainty

would lead to collision. Right: By sequencing a contact move u1 and a free space move u2, the robot reduces position

uncertainty sufficiently to enter the narrow passage. CERRT finds such sequences of contact and free-spacemotions.

(a)γ = 0 explores free-space (b)γ = 1 explores contact configurations©
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Figure 4.3: The search behavior of CERRT is governed by a free-space/contact exploration bias γ . We show two search

trees of the CERRT planner exploring the inside of a cube for different values of γ . For γ = 0, the behavior matches
that of a standard RRT (a). For γ = 1, the planner searches the space of configuration in contact with the walls of the
cube (b). The CERRT planner interleaves both behaviors.

LaValle, 2000) with goal bias. If γ = 1, the planner’s only objective is to reduce uncertainty.
Thus it will favormoves that get the robot into contact. Values between 0 and 1 balance both
objectives. Fig. 4.3 shows how the tree grows in a hollow cube based on different values of γ.

Our Contact-Exploiting RRT (CERRT) is closely related to the kinodynamic RRT devel-
oped by LaValle (1998). Its structure (Alg. 4.1) is identical to the RRT. However, CERRT
differs substantially in the implementation of the subroutines which we will explain in detail
in the rest of this section, following the order of the pseudocode in Algorithm 4.1.
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Algorithm 4.1 CERRT
Input: xstart,xgoal, ϵgoal, γ
Output: G = (V,E)

V ← {xstart} ▷ initialize tree with start state
E ← ∅
while true do ▷ search until goal reached

qrand ← RANDOM_CONFIG()
xnear ← NEAREST_NEIGHBOUR(qrand, T, γ) ▷ Sec. 4.1.1
u← SELECT_INPUT(qrand,xnear, γ) ▷ Sec. 4.1.2
xnew ← NEW_STATE(xnear,u, qrand) ▷ Sec. 4.1.3
if IS_VALID(xnew) then ▷ Sec. 4.1.4

V ← V ∪ {xnew}
E ← E ∪ {(xnear,xnew)}
xconnect ← NEW_STATE(xnew, connect, µxgoal)
if ∥xconnect − xgoal∥ < ϵgoal then

returnG

4.1.1 Node Selection: NEAREST_NEIGHBOUR

Like the RRT, our planner selects the next node to extend xnear with minimal distance to a
randomly sampled configuration qrand. Because the node is a belief state, we need to define
a suitable metric for states x. The choice of metric strongly influences the planning perfor-
mance (Littlefield et al., 2015). For CERRT, we use a metric that takes the parameter γ into
account and can balance the search towards free space or contact motion.

For γ = 0 we want the tree to expand into free-space quickly, just like the RRT. We
achieve this by choosing the node xn whose mean is closest to qrand. To do so we compute
the Euclidean distance dµ(xn) := ∥µxn − qrand∥.

For γ = 1 we want to reduce uncertainty by exploring contact space. We achieve this by
picking a node with low uncertainty. More specifically, we compute a norm of Σpn , which
is the covariance matrix of the robot’s end-effector position pn at configuration qn. We then
compute the trace norm, leading to: dΣ(xn) :=

√
tr(Σpn). We use this norm mainly be-

cause it does not become 0 if the distribution loses support in one dimension (which happens
in contact), and also because it is inexpensive to compute.

For 0 < γ < 1, we balance the two aforementioned metrics with a convex combination:

xnear = argminxn

(
γd̂Σ(xn) + (1− γ)d̂µ(xn)

)
.

Both distance terms are normalized to the interval [0, 1] by dividing them by the maximum
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Figure 4.4: A free-space move (a), a move into contact (b), and two sliding actions (c),(d). x1 and x2 are the initial and

final particle distributions before and after applying actionu.

observed value over all samples.

4.1.2 Action Selection: SELECT_INPUT

After choosing a node for extension the planner needs to pick the next action. CERRTmust
have enough options to move in free space, along contact surfaces, or to switch from free
space to contact and vice versa. We implement these options with three different action types.
We will briefly introduce them here and give their implementation details later in Sec. 4.1.3.

• connect: This action attempts to directly connect the sample qrand via a straight line
in configuration space. It explores the free space and usually increases position uncer-
tainty (Fig. 4.4a).

• guarded: This action moves in the direction of qrand until it establishes contact with
the environment. The guarded move is required to switch from free space to contact
and always reduces uncertainty in one dimension (Fig. 4.4b).

• slide: This action slides along a surface until the contact state changes, either bymov-
ing into another contact (Fig. 4.4c) or by leaving the sliding surface (Fig. 4.4d). It
explores the space of all contacts, always keeps uncertainty low in one dimension, and
can reduce uncertainty in a second dimension.

Our planner selects one of the three actions randomly, biased by γ in the following way:
if xnear is not in contact, it performs a connect move or a guarded move. If xnear is in con-
tact, it slides or leaves the contact with a connect move. We choose actions based on these
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Algorithm 4.2 CERRT – NEW_STATE
Input: x1, u, qrand
Output: x2

for i ∈ Nparticle do
qnear ← SAMPLE(Qx1) ▷ sample particle from node
α← SAMPLE(N (0, σδ)) ▷ sample motion error
qtarget ← qrand + (qnear − µx1) ▷ add the initial error
qsample ← LOCAL_PLANNER(a, qnear, qtarget, δα) ▷ simulate action with one of

the local planners (Sec. 4.1.3)
Qx2 ← Qx2 ∪ {qsample}

return x2

distributions:

p(connect|Cx = ∅) = 1− γ

p(guarded|Cx = ∅) = γ

p(connect|Cx ̸= ∅) = 1− γ

p(slide|Cx ̸= ∅) = γ

We chose these distributions so that the planner is an RRT-Connect for γ = 0.

4.1.3 Forward Simulation: NEW_STATE

For each of these actions, the planner must be able to reason about the change of uncertainty.
We approximate this with a simulation of N noisy actions. The input to the simulation is
a motion model δα(q̇) with parameter vector α. Examples for the motion model δ are the
classical angular and translational motion error for mobile robots or independent error for
all joints of the robot.

To extend a node x1, CERRT samples a particle from Qx1 and also samples a vector α
of parameters of the motion model δ. The extension step then is an invocation of the local
planner that executes action u with the motion error δα, which we will describe in detail in
the next section. The target of the local planner is qrand with the initial error of the particle
added. The extension step is repeated for all particles so that the outcome of the simulation
is a new set of particlesQx2 which is added to the new state x2.

Each of the three action types invokes a different local planner. We implement them in the
following way:
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• connect: A connectmove is identical to theRRTversion. A connect-particlemoves
on a straight line in configuration space towards the sample qrand, checking for col-
lisions with a fixed resolution of ϵ. If the particle reaches the sample or moves into
contact the motion ends.

• guarded: A guarded motion is a connect move in the direction of qrand. A guarded
move always ends in contact so it might end before qrand or move beyond qrand.

• slide: Sliding motions start with particles in contact and move them along the sur-
face, always maintaining contact. We implement sliding motions as task-space force-
feedback controllers with constant orientation. To simulate sliding actions we first
choose a random sliding surface (because the node might be in contact with two sur-
faces at the same time) and then project the end-effector position of the robot in config-
uration qtarget onto the sliding surface. The algorithm then alternates between 1) taking
a step towards the projected goal, 2) applying the motion error for this step 3) project-
ing the configuration back on the surface (see Algorithm 4.3). In this way, the effect
of the joint-spacemotion error can be projected onto the lower-dimensional manifold
of configurations in contact with the environment. The slide ends if the robot reaches
the projected goal, if there is another contact, or if the robot looses contact with the
sliding surface (see Fig. 4.4). For all projections we use a damped pseudo-inverse. If
the robot is close to a singularity at any step (

√
det(JJT ) < 0.001 (Yoshikawa, 1985))

the slide method returns failure.

4.1.4 Node Validation: IS_VALID

All nodes in CERRTmust have a uniquely defined contact state. To ensure this, we only add
those simulation outcomes to the tree that fulfill two requirements:

1. All q ∈ Qx2 must either end up in free space or in contact with the same pair of
surfaces.

2. IfQx2 contains configurations in contact, the contact must occur with a link that has
a contact-sensor.

97



Chapter 4▼ Planning Motions That Exploit Contact With the Environment

Algorithm 4.3 CERRT – SLIDE
Input: qnear, qsample
Output: qreal

(psample, Rsample)← TEE(qsample)
(psurf,nsurf)← RANDCONTACT(qnear) ▷ sample random contact point

and surface normal of qnear
p′
sample ← psample − ((psample − psurf) · nsurf)nsurf ▷ project psample on surface

ξ ← T near − T sample
while ∥TEE(qrobot)− T sample∥> 0 do

∆q ← J†(qrobot) ξ ▷move along surface towards sample
qrobot ← qrobot + ϵ ·∆q̂ ▷ the particles most likely position
qreal ← qrobot + δ(ϵ ·∆q̂) ▷ the particles actual position
while qreal ∈ Cfree do

∆qn ← −J†(qnew)nsurf ▷move towards surface
qreal ← qreal + ϵ ·∆q̂n

The first condition is crucial for our planner’s performance because it ensures that the
robots contact state is always fully observable. It prevents all actions that end in separate,
indistinguishable contacts. Other Particle-RRT planners (Melchior and Simmons, 2007,
Phillips-Grafflin and Berenson, 2016) do not restrict these actions because they introduce a
clustering method and insert multiple nodes for different action outcomes. The second con-
dition allows to treat measurable contact separate from undesired non-observable contact.

After inserting a valid node, the planner attempts to reach the goal state from the newly
inserted node, also using forward simulation. If the resulting distribution is close to the de-
sired goal distribution, the planner returns success. Otherwise it moves to the next iteration
and picks another sample.

4.1.5 Policy Generation

Given a sequence of actions and nodes from start to goal (u1, x1), . . . , (un, xn), we need
to generate a policy that can be executed on a robot. This policy is a sequence that alter-
nates between controllers and contact-based jump conditions. We instantiate one controller
followed by one jump condition for each tuple of action and node (ut, xt). The type of con-
troller depends on ut: from connect and guarded we generate a joint-space velocity controller
and from slide we generate a compliant operational-space controller. The type of jump con-
dition depends on the contact state Cxt : If there is contact, the control switch is based on
the magnitude of the measured force while for non-contact states, it is based on the covered
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distance ∥µxt − µxt−1∥. We execute all controllers with low gains to safely make and break
contact. This leads to weak tracking performance on the real robot but, as the policy is inher-
ently robust, does not critically affect the outcome.
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4.2 Experiments

In this sectionwewill first showpolicies generatedbyCERRTforproblems fromthePOMDP
literature but also for a high-dimensionalmanipulation problem. Second, wewill analyze the
effect of the planner’s parameters quantitatively.

Ourplanner is implemented in theRoboticsLibrary (Rickert andGaschler, 2017) using the
Bullet physics library (Coumans, 2015) for collision detection. We executed all experiments
on an office PCwith a 3.3 GHz Intel Core i5 CPU running the Linux operating system. In all
experiments we use a constant number of particlesN = 20 and a goal bias in the sampler of
10%. We always initialize the start belief state xstart by samplingN particles from the distribu-
tionN (qstart, σstart). All experiments use an independent linear motion error for all joints of
δi(q̇) = N (0, σδ q̇i).

4.2.1 Quantitative Analysis of Planner Parameters

We will now present the results of quantitative experiments that suggest sensible values for
the two parameters of the planner: the free-space/contact-space exploration bias γ, and the
number of particlesN .

The Influence of γ

We executed the planner on two different scenarios: 1) a 2D scenario with narrow passages
2) the 7D manipulation problem from Video Fig. 4.2. In our analysis we varied γ and the
standard deviation of themotion uncertainty σδ. We set σstart = 0. In both scenarios, we ran
the planner ten times each for 66 different combinations of γ and σδ. We show the average
planning time for each combination in Fig. 4.5. The results show a strong influence of γ on
the planning time, depending on the uncertainty.

The border case γ = 0 corresponds to pure free space search or pure contact motion.
For the 2D scenario this is only reliable for problems without uncertainty. The case γ = 1

corresponds to a pure contact-space exploration. This strategy succeeds in both scenarios
because they canbe solvedby a sequence of slidingmotions. For values between0 and1 in the
2D scenario the planner always solves the problem. In 2D, free-space exploration is effective
as long as uncertainties are low. A value of γ = 0.3 has the best performance. For high
uncertainties more contact must be made and a value of γ = 0.7 performs best. In the 7D
scenario fromVideo Fig. 4.2, the planner starts failing for uncertainties higher than 0.02 (we
stop the search after 180 s) and free-space exploration is far less effective. We achieved the

100



4.2 Experiments

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

γ

0.0

0.05

0.1

0.15

0.2

0.25

0.3

σ

6

12

18

24

30

36

42

48

54

60

(a)Grasping in 2D

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

γ

0.0

0.01

0.02

0.03

0.04

0.05

σ

20

40

60

80

100

120

140

160

180

av
ge

ra
ge

tim
e

[s
]

(b) 7-DOF Robot Arm

Figure4.5: Theplots showtheaverageplanning time fordifferent combinationsofγ andσδ . (a)For the2Dscenario from

Fig. 4.6b theoptimal value ofγ depends on theuncertainty. (b)For the7Dmanipulation scenario fromVideoFig. 4.2, the

planner performs best for high values of γ , which lead to a contact-seeking behavior.

best results with γ = 0.95. Our results show that for best planning performance, γ should
be tuned to the problem at hand, as some problem require more free-space search and some
require more contact.

The Number of Particles

The second important parameter is the number of particles to consider for planning. Too
few particles will approximate the belief insufficiently which can lead to a policy with unex-
pected collisions. Too many particles will increase planning time since it depends on it in
a linear fashion. To find a reasonable number, we run the manipulator experiment (Video
Fig. 4.2) 21 times varying the numbers of particles. We execute the resulting plans in a dy-
namic simulation implemented in the RoboticsLab framework (Wonik Robotics Co., 2010)
and execute each plan ten times with different motion error.

Number of Particles 1 2 4 8 16 32 64

SD [m] 0.3 0.27 0.275 0.24 0.3 0.1 0.06

Table 4.2: The standard deviation of the final position error drops significantly with 32 particles.

Fig. 4.2 shows the results of these experiments. While the average error of the robot’s fi-
nal position is about constant for different runs the standard deviation of the error drops
at 32 particles. This suggests that the generated plans are not reliable below 16 particles. A
similar number of particles was reported in Phillips-Grafflin and Berenson (2016).
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(a) Grasping POMDPs

(Hsiao et al., 2007)

(b) T-Shape (c)Maze (d)SE(2)
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Figure 4.6: The subfigures show solutions of the CERRT planner for different grasping scenario. The gripper shows the

final configuration of the path. The lines show20 sampled trajectories, free-spacemotions are shown in green and slides

in blue. The beginning of the paths is always in free space and the end is before grasping. CERRT outperforms POMDP

planners on the benchmark (a) and scales tomore complex problems.

4.2.2 Performance on Manipulation Problems

Pre-Grasping in 2D

This problemmodels a gripper picking up a square block at unknown location and is inspired
by the POMDP literature (Hsiao et al., 2007, Bai et al., 2010). The gripper has contact sensors
at each jaw and can translate in two dimensions. Because of a large initial uncertainty the
gripper must contact the object or the walls first and then, after uncertainty is sufficiently
reduced, attempt the grasp from the top.

Fig. 4.6a shows one of the solution paths CERRT found on the simple grasping scenario.
All policies first establish contact with wall or object and then slide along the ground until
contact with the object is perceived. The planning time for this problem averaged over ten
runs is 6.8 s (±5.1 s). A POMDP version of the problem with discrete state and actions re-
quired an average planning time of 8 s (Kurniawati et al., 2008) and 160 s with continuous
state and discrete actions (Bai et al., 2010). Our approach easily scales to more complex sce-
narios. Fig. 4.6b shows the result for a multi-step piece (8.2 s ± 6.9 s), Fig. 4.6c a version
where the gripper must first navigate through a simple maze (23.4 s ± 19.3 s), Fig. 4.6d a
SE(2) version of the problem with translation and rotation of the gripper.

Pre-Grasping With a 7-DOF Robot Arm

CERRT is efficient enough to be directly applied to the seven-dimensional configuration
space. We pose the problem of finding a path of a 7-DOF Barrett WAM to a pre-grasp po-
sition of a wall-constrained grasp. A wall-constrained grasp (5.1.3) is a grasping motion that
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Video Figure 4.1: The images show different solutions found by CERRT for attaining a pre-grasp pose inside a container.

Red lines indicate the end-effector path of five particles. The quality of the resulting plans vary, as some exhibit quite

largemotions (right). Note that the collision geometry for the green container is composed of five boxes and the hand is

represented by a simple sphere. [https://youtu.be/WCMOISZPZ5s]

pushes an object towards a vertical structure to scoop it. The scenario is depicted in Video
Fig. 4.1. It contains a box in which the potential object is located. The robot can make con-
tact with the four sides of the box and its bottom surface to reduce uncertainty. We model
the end-effector as a simple sphere. The goal configuration is inside the box close to one end
with the palm facing up. The start configuration is above the box.

Out of 20 attempts the algorithm fails two times to find a solution within 300 s. The
average planning time for the successful runs is 50.4 s (STD 77.6 s) on a standard desktop
computer at 2.2GHz using a single-threaded implementation. Video Fig. 4.1 shows three
different solution paths. The plans are either directmotions that only contact the box slightly
at the edges and then at the bottom, or they take a long detour to reduce uncertainty as shown
in the solution on the right in Video Fig. 4.1. Note that none of the paths exhibit the sliding
motion at the bottomof the box that onemight expect. This is due to the constrained interior
of the boxwhichmakes it difficult to find slidingmotions such that the upper links of the arm
do not collide (sliding on the bottom of the box emerged when we removed two of the four
sides of the collision model of the box). In the conclusion of this part (see Sec.5.8), we will
contrast the CERRT plans found for this problem with those computed with an alternative
method presented in the next chapter.

Real-World Motion With a 7-DOF Robot Arm

We conducted a final experiment, to show that the robustmotion plans of CERRTalso trans-
fer to the real world. We place a 7-DOF Barrett WAM robot in front of the wall depicted
in Video Fig. 4.2, similar to the scenario from Phillips-Grafflin and Berenson (2016). The
goal configuration requires the arm to place its spherical end-effector into a cavity of the wall.
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Video Figure 4.2: Themanipulatormust touch the target in the square opening of thewall. (a) The planner output. Gray

lines show all exploredmotions. The green line indicates the found path. Our planner finds a strategy that moves to the

cyan box, slides down until it loses contact, does a guarded move to the top of the red box, and moves to the target. (b)

The outcome of executing the strategy on the real robot without uncertainty. The robot reaches the goal precisely. (c)

We now raise the obstacles by 7cm (the white overlay shows the wall position from (b)) and execute the policy from

(b) again. The robot uses the contact to reduce uncertainty and reaches the target with an error of 2cm. [https:
//youtu.be/CXaN8ZWRMT0]

The robot model has an initial uncertainty and a motion uncertainty of σstart = σδ = 0.02.
Motion-dependent position error occurs in the real BarrettWAM robot due to stretch of the
cables thatmove the joints. The robot uses awrist-mountedATIGamma force-torque sensor
to perceive contact with the end-effector but cannot perceive contact with any other part.

The outcome of the planner can be seen in Video Fig. 4.2. From ten attempts, the planner
solved this problem six times within 180 s. The six successful searches required an average
time of 23.8 s ± 29.3 s. To validate the robustness of the plan, we introduce an unexpected
disturbance. We raise the wall including all obstacles by 7 cm and execute the same policy as
before. The contact with the cyan and red boxes reduces uncertainty and the robot reaches
the target with an error of 2 cm which is an effective reduction of 5 cm.
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4.3 Related Work

4.3 Related Work

Planning free-space motion and planning contact are two well-established research areas and
we will briefly outline our planner’s connection to related work in both fields. Our planner
balances free-space motion and contact by reasoning about uncertainty, for which we will
review related work in the second half of this section.

4.3.1 Free-Space Motion

Sampling-based motion planners like the Probabilistic Roadmap (PRM) by Kavraki et al.
(1996) or the RRT (LaValle, 1998) search the collision-free configuration space efficiently and
without any fixed discretization. These planners assume no uncertainty and explicitly avoid
contact. In this paper we modified RRTs to include contact and an explicit reasoning about
uncertainty. In our planner, we exploit a handful of useful strategies from the motion plan-
ning literature: we utilize the Voronoi-bias (LaValle, 1998) to quickly explore configuration
and contact spaces, we use the goal-connect strategy (Kuffner and LaValle, 2000) to balance
exploration and exploitation (Rickert et al., 2014), and we use a projection strategy similar to
task-constrainedmotion planning (Stilman, 2007, Berenson et al., 2011) to implement sliding
along surfaces.

4.3.2 Contact-Space Motion

Classic work inmanipulation planning showed how a sequence of compliantmotions can be
robust to uncertainty. So called pre-images (Lozano-Pérez et al., 1984) characterize the regions
from which compliant actions reach a desired goal state. Chaining them gives uncertainty-
tolerant plans. In certain cases robustmanipulation canbe achievedwithout any sensors (Erd-
mann and Mason, 1988). Sampling-based motion planning can explore the space of configu-
rations in contact (Ji and Xiao, 2001, Siméon et al., 2004) but does not reason about the un-
certainty reducing capability. Our planner searches the space of all configurations in contact
to exploit its uncertainty-reducing capability. Instead of backwards-chaining, it uses forward
simulation to approximate pre-images.

4.3.3 Reasoning About Uncertainty

To decide whether to exploit contact or to move in free space, our planner reasons explicitly
about uncertainty. This distinguishes it from all previously mentioned methods. We will
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now review methods that reason about uncertainty explicitly.

Planning With Uncertain Actions

Markov Decision Processes (MDP)model actions with uncertain outcome. This framework
allows robots to reason about the collision probability of actions and balance short and safe
paths (Alterovitz et al., 2007). Very related to our method are particle-RRTs (Melchior and
Simmons, 2007, Phillips-Grafflin and Berenson, 2016) which represent the outcome of ac-
tions as a set of particles, just like our planner. Such a representation is suited to reason about
the uncertainty-reducing capability of contact because the belief over configurations in con-
tact is non-gaussian (Phillips-Grafflin and Berenson, 2016). There are three important differ-
ences of particle-RRTs to our work:

1. The particle-RRT assumes perfect knowledge about the robot state which CERRT
does not. This allows our planner to solve a broader class of problems.

2. Ourmethod explicitly seeks contact to reduce uncertainty, while the particle-RRT just
achieves contact randomly. We believe this is the reason for our planner’s efficiency.

3. CERRT only generates one sequence of free-space and contact-motions. In contrast,
the particle-RRT has actions with multiple outcomes. This makes the particle-RRT’s
behavior more robust to failure.

Planning With Uncertain Actions and Observations

Once uncertainty exists in action outcome and the robot cannot fully observe its own state,
the planning problem can be modeled as a Partially-Observable MDP (POMDP). The so-
lution to a POMDP is a global sensing-action strategy that balances uncertainty reduction
optimally with goal achievement. Unfortunately POMDPs of realistic sizes are intractable to
solve optimally and hard to approximate due to the combinatorial explosion of belief space.
To tackle the high complexity, further assumptions must be made. Assuming Gaussian state
uncertainty is effective (Prentice and Roy, 2010, Platt Jr et al., 2010, Platt et al., 2011, Van
Den Berg et al., 2012, Bry and Roy, 2011, Agha-Mohammadi et al., 2014) but does not ade-
quately represent thebelief state of configurations in contact. Sampling-based solvers (Thrun,
1999, Porta et al., 2006, Kurniawati et al., 2008) can approximate POMDP solutions in rea-
sonable time but are limited to low-dimensional problems, often with discrete states and ac-
tions.
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4.3 Related Work

Touch-based localization of the robot relative to a known environment can be cast as an
optimization of a submodularmetric (Javdani et al., 2013, Vien andToussaint, 2015), which is
efficiently solved by a greedy algorithm. However, submodularity does not hold if motions
in free-space increase uncertainty.

Our method tackles the high complexity by planning with a belief over the robot con-
figuration but a fully observable contact-state. This moves our problem in the domain of
Mixed-observability MDPs (Ong et al., 2010) which are easier to solve.

POMDPs for Manipulation

POMDP solvers were applied to low-dimensional versions of manipulation tasks such as in-
handmanipulation to localize an object (Koval et al., 2016) or pre-graspmanipulation (Hsiao
et al., 2007, Bai et al., 2010, Horowitz and Burdick, 2013). The latter application is relevant to
ourmethod andwe showed the uncertainty-reducing capabilities of our planner on the same
problem in Sec. 4.2, but with two important differences:

1. Unlike the POMDP-approaches (Hsiao et al., 2007, Bai et al., 2010, Horowitz and
Burdick, 2013) ourmethoddoes not assume any a priori discretization of state or action
space. It can be directly applied just using the geometric model of world and robot as
input.

2. We donot assumeuncertain contact sensorswhile in the POMDP scenario sensors can
return false measurements, which makes up a large part of the complexity. We think
that our noise-free assumption is justified for undirected, binary contact-sensing.

Toussaint et al. (2014) optimizes trajectories for contact-exploiting motion by adding un-
certainty reduction as an objective. This method does not do a global search like our method
but might be used to post-process the paths found by our planner.
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4.4 Conclusion

We presented a planner to generate robust motion strategies under significant uncertainty in
robot state, action, and world model. The planner achieves robustness by interleaving mo-
tion in free spacewithmotion in contact. The key to theplanner’s efficiency is the assumption
of a fully observable contact state and a search strategy tailored to the combined contact space
and free space. Our experiments showed that the same planner can solve challenging bench-
marks from the POMDP literature in continuous state and action spaces but also scales to
realistic motion planning problems in configuration space.

We believe there is room for runtime improvement in our planner and most extensions
from themotion planning literature such as bidirectional search (Kuffner andLaValle, 2000),
guided sampling, and balancing of exploration and exploitation (Rickert et al., 2014) will be
just as useful for planning interleaved free-space and contact motion.
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5
Planning Grasp Strategies That Exploit the

Environment

The previous chapter showed the benefits of contactwhenplanning robust
motions. It was based on the insight that making and breaking contact are easily mea-

surable events that can be used to reduce uncertainty about the robot’s configuration. As a
result, contact-seeking motions emerged from a model of the belief about the system state
and the desire to attain a goal with certainty. In this chapter we take a slightly different route.
Rather than modeling uncertainty, we directly assume that contact motions should be fa-
vored over free-spacemotions. This allows us to focus on grasping strategies thatmake exten-
sive use of contact.

Many recent advances in robot grasping andmanipulation can be explained by a simple in-
sight: contact with the environment can improve performance! For example, underactuated,
soft hands greatly benefit from the interactions that occur naturally between hand, object,
and environment (Dollar and Howe, 2010, Deimel and Brock, 2016, Catalano et al., 2014).
Furthermore, the robustness of grasping can be increased through the use of contact with
support surfaces (Kazemi et al., 2014). And the dexterity of simple, rigid hands is increased
drastically through deliberate contact with the environment (Chavan-Dafle et al., 2014). In
addition, human graspers routinely and amply employ environmental contact, especially in
difficult grasping problems (Deimel et al., 2013). Given this broad support for the importance
of contact in grasping and manipulation, it is surprising that recent grasp and manipulation
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Figure 5.1: Our planner generates grasping strategies

that make extensive use of contact with the environ-

ment. Thus, control and perception can be simplified.

In this example, three different grasping strategies for

a banana are shown. They exploit the table surface,

edge, and the side panel of an object sitting on top of

the table.

planners generally regard the environment as an obstacle, rather than as an opportunity.
In this chapter, we introduce a graspplanner that generates robust grasping strategies based

on the exploitation of contact constraints available in the environment (see Fig. 5.1). We de-
fine an environmental constraint (EC) as a feature of the environment that enables replacing
aspects of control and/or perception with interaction between hand and environment. To
plan the exploitation of EC we must eliminate the existing separation between perception,
planning, and control. Instead, we tightly integrate perception and action by realizing each
to satisfy the others’ requirements and to account for its limitations.

We will start by describing different types of grasping strategies that are based on the ex-
ploitation of ECs. This allows us to identify commonalities and substructures which we can
use to describe a planning algorithm (Sec. 5.2). The details of this algorithm – extracting ECs
from RGB-D measurements and sequencing exploitations – are described in the following
sections (Sec. 5.3 to Sec. 5.5). Finally, we extensively evaluate different aspects of grasping
strategies based on EC exploitation in simulation and on a real robotic platform.

5.1 Grasp Strategies That Exploit the Environment

In the followingwe describe the structure of three different families of grasping strategies that
rely on an explicit exploitation of environmental contact. For each strategy we will explain
which ECs are exploited, what their constituting sensor events are, how they vary for different
hand designs and what similar strategies are part of each family.

110



5.1 Grasp Strategies That Exploit the Environment

The object is used as a visual environmental con-

straint to position thehand relative to it. A visual ser-

voing controller terminates when hand and object

are horizontally aligned.

The surface is used as an environmental constraint

to position the hand. A compliant position controller

moves the hand downwards until it touches the sur-

face.

The surface is used as a constraint to fingertip mo-

tion by keeping thewrist compliantwhile closing the

fingers. The fingertips follow the surface, bringing

them in contact with the object at the best (lowest)

possible position for the subsequent closing step.

The fingers then may slide under the object to re-

place the surface, caging, and finally, grasping the ob-

ject without the surface.

Figure 5.2: Temporal evolution of the surface-constrained grasp strategy (environmental constraints are shown in red)

5.1.1 Surface-Constrained Grasps

The surface-constrained grasp assumes that the object is placed on a planar and stiff support
surface. Due to the omnipresence of such surfaces it is probably the grasp strategy that is ap-
pliedmost often. The hand uses the surface to partly cage the object before closing its fingers.
Fig. 5.2 describes the different phases of the motion in detail. Kazemi et al. (2012) present a
similar strategy which they call “force-constrained closing strategy”. Their focus is on con-
trolling the position and orientation of the wrist such that the fingertips maintain contact at
all times.

Hand-Specific Variations: The strategy’s main challenge is to create the cage with the
surface as early as possible and not to break it while the fingers close. The parts of the hand
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that are used to create the cage can vary significantly, although the palm will nearly always be
involved. To avoid breaking the cage the hand (usually the fingertips) needs to retain contact
with the surface at all times. This contact-keeping behavior can be achieved through active
compliance in the wrist (as done in the case of the Barrett Hand) or by passive compliance,
e.g. through deformable material (as done in the case of the RBO Hand 2).

Sensor Events: The most important sensor events during the surface-constrained grasp
are recognizing when the hand is aligned correctly above the object and when the hand con-
tacts the object or surface. Aligning the hand in free-space can be achieved visually. Recog-
nizing the state in which the finger closing can be initiated is more challenging. Depending
on the object height the palm or the fingers might first touch the object or support surface
respectively. Force-feedback in the wrist is most appropriate to detect this event. For using
tactile feedback the hand needs to be equipped abundantly with sensor patches at all possible
contact surfaces.

Related Strategies: Odhner et al. (2013) present a two-fingered grasping strategy for
picking up coins or other small, flat objects. Here, the surface constraint is used to press
down on one side of the object such that the opposite end is lifted and the second finger can
slide underneath.

5.1.2 Edge-Constrained Grasps

The edge-constrained grasping strategy exploits a surface and an edge feature in the environ-
ment. It contacts the object using the surface, slides it towards an edge, and wraps a finger
around the protruding part of the object to establish a grasp. Edge constraints are often ex-
plicitly introduced in human environments to simplify grasping flat objects, e.g. coins from
a coin tray. The different phases of the edge-constrained grasping strategy are illustrated in
Fig. 5.3. This strategy can also be seen as a distinct pre-grasp interaction which reconfigures
the object enabling contact with faces that were previously inaccessible. A similar strategy
was presented by Kappler et al. (2012) and King et al. (2013), but with a strong focus on the
planning of a feasible sliding motion towards a table edge.

Hand-Specific Variations The most common variation is the orientation of the wrist
during the sliding motion. This affects whether the fingers, the thumb or even other DOF
are used to wrap around the exposed part of the object as soon as it is located at the edge.
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Another variation is whether to reorient the hand between sliding and finger closing. If
this is done, the object’s center of mass should not leave the support surface at the end of the
sliding motion. Alternatively, the hand needs to constantly apply a force onto the object as it
is done with the palm of the RBO Hand 2. In both scenarios the object is statically stable at
all times.

Sensor Events The event that the object overhangs the edge and can be grasped can be
detected through visual, haptic, tactile or even proprioceptive feedback. A combination of
multiple modalities might be the most robust.

RelatedStrategies Instead of exploiting an edge orthogonal to the direction of gravity,
the same can be done with edges that are vertical, e.g. at shelves.

5.1.3 Wall-Constrained Grasps

Walls are another common environmental feature that can be exploited, and can be found
on bowls, drawers, shelves and boxes. A wall-constrained grasp pushes the object against a
vertical structure (the “wall”) to either slide the fingers underneath or constrain the object
between fingertips and wall. The grasp is completed by closing the fingers. Fig. 5.4 shows the
phases in detail.

Hand-Specific Variations Pushing the object can be done in a variety of hand orienta-
tions. As a result the object is either moved through contact with the fingertips, finger pads,
or even the palm. The number of fingers used also plays a role. Using fewer fingers or even
only the thumb will allow an easier entrance between object and support surface. However,
fewer fingers will also serve as weaker support during closing and object lift.

Sensor Events To push the object the same events need to be detected as with the edge-
constrained grasp. The impact of the hand on the object can be recognized through haptic or
tactile feedback or by optical flow. The main challenge of this grasping strategy is to reliably
measure when to close the fingers. Since there are twomodes (fingers slide underneath object
or not) whichmight require different closing motions, haptic feedbackmight not be enough
in some cases. It could be complemented by visual measurements.
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The object is used as a visual environmental con-

straint to position thehand relative to it. A visual ser-

voing controller terminates when hand and object

are horizontally aligned.

The surface is used as an environmental constraint

to position the hand. A compliant position controller

moves the hand downwards until it touches the sur-

face. Upon termination, the fingertips are aligned

vertically w.r.t. the object.

The surface in conjunction with the edge are used

as environmental constraints to slide the object

to the edge. A compliant position controller drags

the fingertips across the surface. The motion is

terminated when the object partially protrudes

over the edge. This can be detected by using the

edge either as a visual or as a haptic environmental

constraint.

The vertical surface is used as an environmental con-

straint to position the right finger. A compliant po-

sition controller closes the finger until contact with

the surface. Upon termination the object is caged.

By compliantlymoving the end effector horizontally,

the right finger slides along the vertical surface, con-

tacting theobject, andresulting in forceclosurewith-

out the table surface.

Figure 5.3: Temporal evolution of the edge-constrained grasping strategy (environmental constraints are shown in red)

Related Strategies A similar strategy is used when grasping items from a fully stacked
box. Pushing the fingers between the items resembles thewall-constrainedmotion. The only
difference being that it occurs along the direction of gravity.
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The surface is used as an environmental constraint

to position the hand. A compliant position controller

moves the hand downwards until it touches the sur-

face. Upon termination, the fingertips are aligned

vertically w.r.t. the object.

The surface in conjunctionwith the corner is used as

an environmental constraint. A compliant position

controller moves the hand horizontally to slide fin-

gers across the surface, exploiting it as a constraint

tofingertipposition. Thevertical surface constraints

the horizontal motion.

The corner surfaces are used as an environmental

constraint to slide the fingers under the object.

The wall is used as an environmental constraint to

close the fingers of the hand and attain force closure.

Figure 5.4: Temporal evolution of the wall-constrained grasp strategy (environmental constraints are shown in red)

Xu et al. (2009) introduce a picking device similar to a dustpan to pick up objects from
the floor. The effect of the wall constraint is achieved by using an additional actuator which
pushes the objects onto the dustpan.

Morales et al. (2007) present a controller for grasping a book from a rowof books in a shelf.
The strategy pivots the book around the lower end of the back of the book before wrapping
the fingers around its exposed parts. The surrounding books act like walls that constrain the
book during the first part of the motion. Alternatively, one could argue that this strategy is
closer related to the edge-constrained grasp since it is based on incrementally exposing faces
of an object that are otherwise inaccessible.
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(a) Example scene (b) EC exploitations (c)Connectivity (d) Final plan

Figure5.5: Thepanels illustrate the ideaofplanningenvironmental constraintexploitations forgrasping. (a)Theexample

scene contains a red object on flat support surface. (b)We divide the state space into regions, each representing the

exploitation of a specific environmental constraint. (c) Intersections between those regions define a transition graph, in

which a grasp plan can be determined. (d) The resulting plan is a sequence of environmental exploitations that end in a

grasp.

5.2 Planning Environmental-Constrained Grasps

We have seen that the previously described strategies are composed of re-occurring motion
primitives such as sliding across or bumping into surfaces. The key challenge is to search this
vocabulary to find sequences of these primitives instead of exact planning in the combined
state space of hand, object, and environment which is too difficult. To follow the rest of this
section, please refer to Fig. 5.5.

Environmental constraints implicitly divide the state space into separate regions, i.e. re-
gions that correspond to one particular type of EC exploitation. Samples from these regions
projected into the workspace are shown in Fig. 5.5b. As we will see later, rather than comput-
ing these regions explicitly, which would be computationally challenging, we determine an
approximate representation of these regions directly from sensor data. By determining inter-
sections of these approximated state space regions in a graph (Fig. 5.5c), we obtain a represen-
tation of possible transitions between different EC. Given this information, we can search
for a feasible sequence of EC exploitations that leads from the current state to a successful
grasp (Fig. 5.5d).

We define a single EC exploitation XECE as a contiguous subset of all possible hand and
object poses and the exerted forces onto the hand:

XECE ⊂ Chand × Cobject ×Whand,
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5.2 Planning Environmental-Constrained Grasps

Algorithm 5.4 Grasp Planning based on EC exploitation
Input: PRGB−D,xhand,xobject
Output: HA ▷ return a hybrid automaton

P ← {free, slide, surface, edge, wall} ▷ all environmental constraint ex-
ploitation types

ECEs← ∅
for p ∈ P do ▷ find all possible motions (Sec. 5.3)

ECEs← ECEs ∪DETECTp(PRGB−D)

S ← SOLVE_PDDL(xhand,xobject, ECEs) ▷ find sequence of ECEs (Sec. 5.4)
HA← CONVERT(S) ▷ convert sequence to hybrid automaton (Sec. 5.5)

where Chand = Cobject = SE(3) andWhand is the 6D wrench space. To plan among EC
exploitations we need to look at their connectivity. This is defined by their intersections, i.e.
we can transit between two arbitrary EC exploitationsXECEi andXECEj ifXECEi ∩XECEj ̸=
∅.

Due to its high complexity, we approximate XECE by using multiple assumptions. First,
we assume that during a single exploitation the state of the object Cobject will not be used as
a continuous feedback signal, i.e., we can ignore it. Second, we assume that Chand within an
ECE is very structured and can be expressed by a low-dimensional manifold. Therefore, we
represent the hand poses as an oriented bounding box and orientations by discretizing all
possible rotations. Finally, we use only a single 6D vector to represent the contact wrench
exerted onto the hand, since this contact property is constant within a single EC exploitation.
The resulting parametrization used by the planner is:

X̃ECEi(obb
hand, Rhand, whand) =


(

chand

whand

)∣∣∣∣∣∣∣
chandposition ∈ obbhand

chandrotation ∈ Rhand

whand ∈ R6

 , (5.1)

where obbhand is the 3D oriented bounding box and Rhand is the set of orientations. The
wrenchwhand describes the forces and torques acting onto the handwithin that particular EC
exploitation.

The planning algorithm is summarized in Algorithm 5.4. Its main steps are the extraction
of ECEs from raw sensor data and the sequencing of them to find a suitable grasping strategy.
We will now explain the different steps in more detail.
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5.3 Identifying Environmental Constraints From RGB-D Measurements

In the following, we will explain how we perceive parts in the environment which afford
three types of grasping strategies and three non-prehensile manipulations that make explicit
use of ECs. For each of the six actions, we will devise a sensor model that is used to visually
recognize the EC exploitation according to the parametrization given previously (see Eq. 5.1):
X̃ECE(obb

hand, Rhand, whand).
Sensory input is assumed to be in the form of a depth image of the scene. The object to

be grasped is represented as a bounding box whose parameters are assumed to be known.
Alternatively, the object can be given in a heuristic fashion such as: “the largest point cloud
segment on the largest surface in the scene”. In this case the bounding box parameters are
estimated.

We implement all functionality described below as a single computational graph (Rublee
and Straszheim, 2011). This allows us to re-use computation and quickly adopt changes.

Surface-Constrained Grasps: DETECTsurface

Wedetect surface-constrained grasps by checkingwhether the immediate surroundings of the
object are planar. To do this we crop the point cloud based on the object bounding box and
size of the hand and fit a plane to the points. If the quality of the fit exceeds a given threshold
wedefine the regionobbhand of the surface-constrained graspby the object boundingbox. The
orientationsRhand are based on the orientation of the fitted plane. Thewrenchwhand consists
of a force component directed towards the palm of the hand. Fig. 5.6b shows an example of
a detected surface-constrained grasp from sensor data.

Wall-Constrained Grasps: DETECTwall

Thewall-constrained grasp exploits two surfaces that form a concavity. We detect such grasps
by finding concave edges in the environment. We segment the point cloud using a variety of
differently parametrized flood fill segmentations. From the resulting segmentation soup we
extract planes using a least-square fittingmethod based on point-to-plane distances. For each
plane we calculate a corresponding polygon by projecting the points onto the plane comput-
ing their convex hull (Sklansky, 1982). We find concave edges by testing all pairs of polygons
for intersections if their normals differ by less than 180◦. The region obbhand is set along the
edge and orientations Rhand are normal to the wall surface. The wrench whand consists only
of a force component directed towards the palm of the hand.
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5.3 Identifying Environmental Constraints From RGB-D Measurements

(a)DETECTfree (b)DETECTsurface (c)DETECTwall

(d)DETECTedge (e)DETECTslide

Figure 5.6: The subfigures visualize the results of detecting different environmental constraints in anRGB-D image. The

green boxes represent the possible hand poses obbhand, while orientationsRhand are shown as RGB axes. Subfigures (d)

and (e) also show an intermediate segmentation result.

Edge-Constrained Grasps: DETECTedge

The spatial parameters obbhand and Rhand are computed based on the presence of convex
edges in the scene. We extract edges by searching along the boundaries of planar segments
in the depth image, see Fig. 5.6d. First, we segment, fit, and extract polygons as done in
DETECTwall. We iterate over the edges of each polygon and calculate their local curvature
by selecting all points in the neighborhood of the edge and averaging their Gaussian curva-
tures (which is the product of the two principal curvatures at that point). Convexity is as-
sumed if the average Gaussian curvature is positive. The wrench parameterwhand represents
the torque components that is exerted onto the hand due to the fact that some fingers still
touch the surface while half of the hand already passed the edge.
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Visually-Constrained Positioning: DETECTfree

Inside the visible workspace, the hand can be constraint visually, i.e. by visual servoing. This
strategy is helpful whenever positioning the hand in free space is hard due tomissing external
calibrations or poor sensormodels (e.g. encoders that ignore cable stretch). Althoughwe con-
strain the hand by model-based tracking in 3D using a depth sensor, more complex schemes
are possible that use lower-level features like edges (Fox and Hutchinson, 1995). To compute
the spatial extent obbhand, we expand a box in visible free space starting from the current hand
pose until collision with a depth measurement. The set Rhand includes all possible orienta-
tions. Since we do not expect any contact, the wrench parameter is set to zero (whand = 0).
Fig. 5.6a shows an example of the detected free space.

Surface-Constrained Sliding: DETECTslide

During sliding the hand and object’s motion are restricted by a support surface exposing only
three DOF. We extract sliding constraints by segmenting the depth image with a flood-fill
algorithm and multiple parametrizations of the segmentation criteria. The method clusters
regions with low curvature and small changes of surface normals (see Fig. 5.6e). We fit planes
to the points of each segment in a least-square sense. If the mean squared error of the fit is
below a fixed threshold we assume that the surface can be used for sliding.

To generate the corresponding region obbhand the points are projected onto the plane and
the minimum enclosing rectangle is computed. The orientationsRhand include all rotations
around the surface normal of the segment. The wrench whand is set with a force that points
inside the hand’s palm.

5.4 Sequencing Environmental Constraint Exploitations

To find sequential exploitations of environmental constraints we need to define the afore-
mentioned connectivity check between two arbitrary EC exploitations. We use their spatial
and contact properties to decide this:

ẼCEi 7→ ẼCEj ⇐⇒ obbi ∩ obbj ̸= ∅ ∧ Ri ∩Rj ̸= ∅

This means that the hand poses described by both EC exploitations need to overlap in po-
sition and orientation. We implement the overlap of the hand positions by intersecting the

120



5.4 Sequencing Environmental Constraint Exploitations

two corresponding oriented boxes. Since the orientations are discretized, we can simply use
a set intersection.

Based on the connectivity operator “ 7→” we can define our simple search problem using
the planning domain definition language (PDDL, McDermott et al. (1998)). PDDL is a less
restricted version of the STRIPS planning language (Fikes andNilsson, 1971). A PDDLprob-
lem is defined by an initial and goal state, actions and the result of applying them. A sin-
gle state is represented as a logical formula which is a conjunction of ground, functionless
atoms. This factored representation is ideally suited for our problem, since our world can be
described as a collection of (a few) entities – the ECEs.

We introduce the two simple predicates Hand( · ) and Object( · )which are true if hand
or object are currently exploiting a specific EC. We define the initial and goal state as follows:

Init(Hand(EChand) ∧ Object(ECobject) ∧
∧

EC1,EC2∈ECs,
EC1 7→EC2

Connected(EC1, EC2) ∧

∧
EC∈ECs,

EC=surface,wall,edge

IsGraspingECE(EC) )

Goal(ObjectGrasped)

whereEChand andECobject are the initially exploited ECs given by the robot’s starting con-
figuration xhand and the location of the object in the scene xobject. The set ECs contains
all detected environmental constraints from the point cloud. In PDDL the closed-world as-
sumption is usedwhichmeans that all atoms that are notmentioned in a state are supposed to
be false (e.g. ObjectGrasped is not part of the initial state). We define three action schemas
that affect the search state:

Action(MoveHand(ecefrom, eceto),

Precond: Hand(ecefrom) ∧ Connected(ecefrom, eceto)
Effect: ¬Hand(ecefrom) ∧ Hand(eceto))

Action(MoveObject(ecefrom, eceto),

Precond: Hand(ecefrom) ∧ Object(ecefrom) ∧ Connected(ecefrom, eceto)
Effect: ¬Hand(ecefrom) ∧ ¬Object(ecefrom) ∧ Hand(eceto)∧

Object(eceto))
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Action(GraspObject,

Precond: Hand(ece) ∧ Object(ece) ∧ IsGraspingECE(ece)
Effect: ObjectGrasped)

Action schemas are universally quantified and apply to any state in which the precondi-
tion holds. The effect describes the result of applying a particular action schema. Our ac-
tions ensure that environmental constraint exploitations can only be sequenced if they are
connected, and that any sequence needs to end in a surface-constrained, wall-constrained or
edge-constrained grasp.

Although we use A∗ to search for solutions we found that due to the small search tree
size in practice the null heuristic can be applied, which results in Dijkstra’s algorithm. The
average planning time is ≈80ms. A heuristic search procedure (e.g. Hoffmann and Nebel
(2001)) would only marginally improve search times.

5.5 From ECE Sequences to Hybrid Automata

We are finally looking for controllers to execute the sequence on a real robotic platform. Simi-
lar to the conversion of the configuration-space path foundbyCERRT into a hybrid automa-
ton (Sec. 4.1.5), we will turn the ECE sequence into a hybrid automaton (Egerstedt, 2000).
Each EC exploitation can be seen as a controller with desired spatial and contact profiles and
a termination predicate defining the switching condition.

Given a planned sequence of EC exploitations (ẼCE1 7→ ẼCE2 7→ . . . 7→ ẼCEn), we
construct a hybrid automaton by using hybrid position/force controllers. Their termina-
tion predicates are defined as the poses given by (obbhandi , Rhand

i ) ∩ (obbhandj , Rhand
j ) and the

wrenches given by whand
j − whand

i . Note that here we use simple linear interpolation of the
end-effector pose to generate trajectories. This might create trajectories that are infeasible to
execute due to the kinematic constraints imposed by the robot or obstacles in the environ-
ment. In the following we briefly explain how to generate trajectories which exploit the same
ECs and satisfy kinematic and collision constraints.

We formulate this problem as constrained optimization problem. Our objective is to find
the shortest path of robot configurations q1, . . . , qT that exploits a given sequence of ECs
(ẼCE1 7→ . . . 7→ ẼCEn). At the same time we want to avoid collisions between the robot
and the environment. We exclude the end-effector from the collision geometry since we only
want to avoid collisions with non-compliant parts of the robot, e.g. its elbow or upper arm.
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5.5 From ECE Sequences to Hybrid Automata

The resulting constrained optimization problem is given by:

minimize
q1:T

T−1∑
t=1

∥qt − qt+1∥2

subject to sd(convexhull(qt, qt+1))− dsafe ≥ 0, t = 1, . . . , T − 1

d(ẼCEi, qt(i)) = 0, i = 1, . . . , n and t(i) = 1 + (i− 1)
T

n
, . . . , i

T

n
.

TheT equality constraints d(ẼCEi, qt) are defined as the shortest distance between the hand
pose in configurationqt (givenby forwardkinematics) and all thepossible handposes of ẼCEi,
which are specified by the bounding box obbhandi and the orientation setRhand

i . We partition
the trajectoryq1:T inton equal parts and assign T

n
configurations to eachECE.The (T−1) in-

equality constraints sd ensure collision avoidance with the environment. They are defined
through the signed distance function which is negative in case of a penetration between rigid
bodies and positive otherwise. The convex hull of the volume swept by the robot between
successive configurations is used to check for collisionswith static objects. We set theminimal
possible distance dsafe to be 3 cm.

We solve forq1:T using the sequential convex optimization schemepresented by Schulman
et al. (2013). Themethod optimizes amerit functionwhich is the sumof the original objective
and constraints scaled by a coefficient. This coefficient is increased until a feasible solution
is found. During each iteration the merit function is turned into a convex approximation
around the current iterate and optimized with a quadratic program solver.

The resulting path will satisfy the robot’s kinematic capabilities and avoid obstacles. If no
solution can be found, this might be due to the a local minimum or the non-existence of a
solution path. To reduce the likelihood of a local minimum, we restart the sequential opti-
mization with randomized initial values q1:T . If no solution can be found after 10 attempts,
we return to the ECE graph and choose the next sequence.

123



Chapter 5▼ Planning Grasp Strategies That Exploit the Environment

5.6 Experiments

Our experiments need to answer multiple questions:

1. Are grasping strategies that exploit the environment in fact more robust than those
that do not? (Sec. 5.6.1)

2. Are strategies needed that exploit different environmental constraints? (Sec. 5.6.2)

3. Are the strategies sensitive to variations in the properties of a particular environmental
constraint? (Sec. 5.6.3)

4. Does the planner find exploitable constraints in everyday scenes or are these specific
cases? (Sec. 5.6.4)

5. Can the presented planner generate motion that can be executed successfully on a real
robotic platform? (Sec. 5.6.5)

The following five experiments try to answer each of these questions. We will show the ben-
efits of using environmental contact during grasping and the capabilities of the presented
planner to find these types of strategies.

5.6.1 Comparison of ECE Strategy With EC-agnostic Strategy

We compare an EC-agnostic with an ECE grasping strategy. The EC in this experiment is pro-
vided by the supporting table surface. As the height of objects decreases, grasping becomes
more difficult. We expect grasp success to be higher if the constraint provided by the table
surface to guide finger placement on the object is exploited.

The EC-agnostic strategy treats the table surface as an obstacle and avoids any collisions
with it. Grasp poses are generated by fitting geometric primitives like cylinders, spheres, and
boxes to depth measurements of the scene. For this strategy, the palm of the hand is aligned
with the support surface. The hand is then positioned as low as possible above the support
surface so that the fingers do not contact the surface during closing. During execution, the
wrist pose is position controlled and does not change while the fingers are closed.

The second strategy is a surface-constrained grasp (Sec. 5.1.1). It uses force control to estab-
lish contact of the fingertips with the support surface and proceeds to slide the fingers along
the surface during closing, maintaining constant contact force by compliantly repositioning
the wrist.
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Figure 5.7: The plots compare a surface-constrained, edge-constrained, and EC-agnostic grasp strategy. The left plot

shows that exploiting an environmental constraint improves success rate for grasping cylindrical objects in comparison

to an EC-agnostic strategy. The right plot demonstrates that having a repertoire of different EC strategies is beneficial.

Themain difference between the two compared strategies is that the first only attempts to
come as close as possible to the surface using RGB-D information about the scene, whereas
the second maintains physical contact with the surface throughout the whole grasp.

To evaluate the strategies we placed seven different sized cylinders (Fig. 5.7a) on a table in
front of a 7-DOF WAM equipped with a force-torque sensor and a Barrett Hand BH-262.
For each strategy-object pair we conducted five trials, resulting in a total of 70 grasps.

The left plot in Fig. 5.7b shows grasp success as a function of cylinder diameter. While big
cylinders could be grasped reliably with both strategies, the grasp of smaller cylinders only
succeeded with the surface-constrained strategy. The constant-wrist-pose strategy causes the
finger tips to hover slightly above the surface when contact with the object is made, due to
their circular trajectory during hand closure. This insufficient exploitation of the surface
constraint leads to a reduced success rate for small-sized objects. In contrast, the surface-
constrained grasp uses the surface at all times to position fingertips as close to the table as
possible. Grasp success is not perfect though, as the cylinders can easily roll off the finger-
tips. This experiment shows that EC exploitation can lead to more robust grasping than
EC-agnostic behaviors.

5.6.2 Complementarity of Different ECE Strategies

We want to show that there are multiple environmental constraints that can be exploited.
To achieve good grasping performance in a variety of settings and for diverse objects, it is
necessary to employ the most appropriate strategy. The multitude of available constraints
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Chapter 5▼ Planning Grasp Strategies That Exploit the Environment

also necessitates perceptual capabilities to distinguish situations in which one strategy should
be preferred over the other. To demonstrate this point, we compared the surface-constrained
grasp to the edge-constrained grasping strategy.

We evaluated both strategies for five different sized blocks (see Fig. 5.7c) placed on a table
in front of the robot. For all blocks, the edge-constrained grasp achieves reliable performance
(see Fig. 5.7b), whereas the surface-constrained strategy is only successful for flat blocks.

The edge-constrained strategy is less sensitive to variations in the size and weight of the
blocks. The flat and wide shape of the blocks enables the robot to move parts of them over
the edge, creating the opportunity to perform a more reliable grasp on the shorter side of
the block. Failure cases for the edge-constrained strategy included wrong tracking during the
visual servoing, missing object contact during sliding, and premature thumb closing.

The surface-constrained grasp succeeds when the fingernails jam against one of the block’s
sharp edges. This is achieved consistently for the smaller blocks. For taller blocks, the finger-
nails do not contact the object, leading to slip and grasp failure. In a few cases, however, the
nails caught the object just before slipping out of the hand. While these cases are counted as
grasp success in our experiments, one should note that the intended grasp was not achieved.
Success must be attributed to coincidence and the design of the finger nails.

The experiment demonstrates that different ways of exploiting environmental constraints
succeed under different conditions. It also shows that the success of exploiting environmen-
tal constraints depends on object characteristics in non-trivial ways. It is therefore desirable
to employ a variety of grasp strategies for which the conditions of success have been character-
ized. Perceptual skills then must classify environments according to which of the strategies’
conditions of success are met best.

5.6.3 Robustness w.r.t. Variations of Environmental Constraint

To be able to robustly execute a constraint exploiting action, it is also necessary for the action
to tolerate uncertainties in the placement of constraints. In the third experiment, we varied
the angle between the two surfaces exploited as environmental constraints during the slide-
to-wall grasp. While most walls are vertical, some are not, such as the walls of a bowl. The
grasp sequence was constructed using a wall at 60◦ angle. During the experiment, the wall
angle was varied betweenα = 40◦ andα = 90◦, in 10 degree increments. After that, the two
interesting border regions were identified and two additional angles were tested to increase
resolution. The results are shown in Fig. 5.8.
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Figure 5.8: The plot shows the success rate of awall-constrained grasp under varyingwall angles relative to the horizon-

tal table surface. Success rate is constantly high between 50◦ and 85◦, showing the generality of the wall-constrained
grasp strategy.

The grasp can be successfully executed without any adaptation of the actuation, in a large
range of wall orientations, from approx. 45◦ to 90◦. Larger angles could not be tested, be-
cause the wrist collided with the wall constraint during the slide motion. Therefore, angles
larger than α = 90◦ can be considered completely unsuccessful.

5.6.4 Evaluation of Various Real-World Scenes

We use 30 indoor scenes from a clutter data set (Karpathy et al., 2013) to evaluate the applica-
bility of our planner. They depict office desks, book shelves, and kitchen environments and
contain a significant amount of clutter. The scenes are encoded as polygonal meshes but we
feed our algorithm with a ray-traced depth image of a single viewpoint in which most of the
mesh is visible. For each scene, we position a box-like object at a random location that we
assume to be statically stable. In total, our planner generated 218 grasping sequences, with
at least one sequence per scene (average of∼ 3.6 per scene). Among the planned strategies
most ended in an edge-constrained grasp (64%), followed by surface-constrained (27%), and
wall-constrained (9%) ones. The most prominent problems the planner encountered were
wrongly recognized edge-constraint grasps. To assess the quality of the generated plans, they
were visually inspected and categorized according to their feasibility. In total, 62% of the
plans were deemed feasible. The majority of the infeasible plans ended in edge-constrained
grasps (92%). This had two reasons: Because of the nature of the data set, point clouds were
often incomplete, increasing the occurrence of shadow edges (see Fig. 5.9). The data set also
contains a significant amount of cluttermaking support surfaces unnavigable. Example plans
showing the different failure cases and successes can be seen in Fig. 5.9. The results indicate
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Figure 5.9: We evaluated the ECE planning algorithm in human environments from a clutter dataset (Karpathy et al.,

2013). The resulting grasp plans are overlaid in color. Lines connect consecutive exploitations. The final prehensile

exploitation foreach sequence isplottedwithahandmodel (orange: surface-constrained, cyan: edge-constrained,purple:
wall-constrained grasp). The data set revealed a lot of shadow edges which produced false positives among the edge-

constrained grasps.

that the environmental constraints are general features that can be exploited for grasping in
a wide variety of human environments.

5.6.5 Execution of Plans on a Real Robot

To further evaluate the feasibility of the plans, we executed some of them on a real robotic
platform. We used a Barrett WAM, an ATI Industrial Automation multi-axis force-torque
sensor, and a Barrett Hand BH-262 with four DOF. We chose a scenario in which multiple
grasping strategies would be possible. It contained a banana placed onto a table surface with
a big electronic amplifier next to it (Fig. 5.10a). The scene was measured with an Asus Xtion
Live depth sensor at QVGA resolution from a single static viewpoint. Color information is
not used at any stage of the algorithm. Location and dimensions of a bounding box describ-
ing the banana were given to the algorithm.

Fig. 5.10b-5.10d show the extracted EC exploitations for the non-prehensile actions. Slid-
able surfaces were found on the table, at the side panels of the electronic amplifier, at the
curtain and on top of the robot base. Fig. 5.10e-5.10g display the detected EC exploitations
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Figure 5.10: Experimental banana scene: For each of the six EC exploitations, the extracted spatial properties obbhand

andRhand are shown. The final planned grasping sequences are shown in panel (h).

that refer to grasping actions. Two possible wall-constrained grasps were found between the
table and the electronic amplifier 5.10g. Muchmore false positiveswere among the recognized
edge-constrained grasps 5.10f: E.g. the lower part of the curtain was shadowed by the table
and not a real edge due to depth discontinuities. In total, 28 EC exploitations were found.
Their connectivity is depicted in the graph in Fig. 5.11. The graph also shows the four paths
the algorithm finally found from the current unconstrained hand pose to one of the three
types of prehensile EC exploitations. Fig. 5.10h visualizes the four sequences in the scene.
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Figure 5.11: Graph showing the extracted EC ex-

ploitationsandconnectivity in theexamplescene5.10.

Nodes are color-coded according to EC exploita-

tion (seeFig. 5.10). Framednodesaregoal nodes, start

node is double-framed.
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Video Figure 5.1: The three rows show sequences of executing three plans that were found in the banana scene shown

in Fig. 5.10. First to last row: surface-constrained, edge-constrained, andwall-constrained grasping strategies executed

with the Barrett Hand 262. [https://youtu.be/Va0O0JS9bx0]

For execution, the sequences are converted to multiple hybrid position/force controllers.
Switching between them is governed by contact with a surface. Instances of the executed
sequences are shown in Video Fig. 5.1.

5.6.6 Limitations

Though our method proves to be a powerful way of generating robust grasping behavior,
there are limitations that require futurework. Asmentioned earlier, a planned sequence does
never contain multiple contact-making/breaking events between hand and object contact es-
tablishing phases. For most grasping strategies this is a reasonable assumption. Additionally,
the shape of the object is only represented by a bounding box, more complex kinematic re-
lations between object and environment such as rolling contacts are missing. Presently, the
algorithm does not use any intrinsic object properties during planning (e.g. friction, mass).
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5.7 Related Work

The idea of exploiting the environment andusing contact via compliance can at least be traced
back to the influential approach by Lozano-Pérez et al. (1984). This work introduced the
central concept of the pre-image—a description of all positions that reach the goal given the
same action—to enable the generation of fine-motion plans. Later, this idea was extended
to the concept of backprojections, representing a weaker form of a pre-image, by separating
goal reachability from goal recognizability (Erdmann, 1986). By restricting plans to tempo-
ral termination predicates of motion primitives, manipulation tasks can even be solved in an
open-loop, sensorless fashion (Erdmann and Mason, 1988). Subsequently, the binary rep-
resentation of a backprojection was given a probabilistic upgrade (Brost and Christiansen,
1996). These approaches depend on exact geometric models of the environment.

The geometric reasoning we apply is similar to classical work in assembly planning (Wil-
son and Latombe, 1994). The way we define pose constraints is similar to the task space re-
gions (Berenson et al., 2011) used for motion planning. And the concept of contact-state
graphs (Ji and Xiao, 1999) is reflected in our representation of environmental constraint tran-
sitions. However, in addition to contact states, our algorithm requires spatial information
derived from sensor data. And again, in contrast to the mentioned approaches, we do so
entirely based on sensor information.

Closely related to environmental constraint exploitations are guarded moves. A guarded
move is “amove until some expected sensory event occurs” (Will andGrossman, 1975). Plans
of guardedmoves can include branches based on sensor events to compensate for uncertainty
in worldmodeling (Finkemeyer et al., 2005). Our work includes this concept but in addition
is concerned with the automated generation of such plans from sensor data.

Pre-grasp manipulation refers to the contact-driven modification of the environment to
facilitate a subsequent manipulation action. These actions involve, for example, rotations
due to payload limits (Chang et al., 2010), or sliding flat objects on table surfaces (King et al.,
2013, Kappler et al., 2010). All these works realized specific, pre-programmed actions. In
addition, pushing or sweeping can be considered as pre-grasp action (Dogar and Srinivasa,
2012). There, the environment is designed to present challenges to the planner, rather than
opportunities.

Toussaint et al. provide an interesting approach to formalize the advantages of contact ex-
ploitation (Toussaint et al., 2014). They optimize plans so that theyminimize uncertainty by
contact with the environment. In our approach, the assumption that contact during manip-
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ulation is beneficial is directly encoded by focusing on contact-based actions.
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5.8 Conclusion

We presented a grasp planning algorithm to synthesize and execute grasping strategies that
exploit environmental constraints. Recent results from the grasping literature lead to the
conclusion that such exploitation plays an important role in achieving robust grasping per-
formance. Our grasp planner leverages this insight and sequences constraint exploitations
into versatile and robust grasp plans.

The algorithm tightly couples planning, perception, and control, thereby enabling grasp
planning from real-world sensor data in the absence of prior information about the world.
We demonstrated the effectiveness of the planner in experiments on a real robot platform
and illustrated the generality of the planner by generating grasp plans in a great variety of
environments. We believe that the exploitation of environmental constraints is a promising
route leading towards robust grasping andmanipulationwithweak a priori object andworld
models.*

Contact-Exploiting RRT vs. ECE Planning

Both algorithms presented in Chapter 4 and 5 generate behaviors that make explicit use of
the environment. But they differ in multiple regards.

In CERRT contact-rich motions implicitly emerge as a result of assuming that contact
sensing is muchmore reliable than position sensing. Choosing actions such as bumping into
things will reduce uncertainty about the state of the system. In contrast, ECE planning does
not represent uncertainty. Instead it assumes that contact-based motions are in general bene-
ficial and sequences them explicitly. Although the uncertainty-driven exploitation of contact
done byCERRT seems favorable (contact only needs to happenwhen necessary), can all cases
of environmental contact exploitation easily be modeled by a reduction of uncertainty?

This seems especially tricky when looking at object manipulation and grasping. The edge-
constrained grasp for example allows the hand to generate contact forces underneath the ob-
ject, as soon as it protrudes the edge. These contact locations were inaccessible before. Mod-
eling this behavior through reduction of object pose or hand pose uncertainty is not possible.
Another example is the wall-constrained grasp. The reaction force created by the contact be-
tween wall and object is used to push the object onto the palm. Again, the goal of generating
forces to attain force-closure cannot be modeled as a reduction of uncertainty in the configu-

*The code of the planner is available at https://github.com/SoMa-Project/ec_grasp_planner.
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Figure 5.12: The images show the solutions found by CERRT (left) and the ECE planning algorithm (right) for reaching

into the green box. ECE planning times are shorter and less variable compared to CERRT.

ration of object or robot. It is therefore not trivial to extend CERRT to the scenarios which
ECE planning focuses on.

TheECEplanning algorithmdiscretizes the sensor input to find contact surfaces, edges, etc.
which constitute the state and action space. Depending on the parameters that any discretiza-
tion depends on, it might fail to identify certain contact opportunities or overestimates them.
CERRT does not rely on any a priori discretization of the state space and therefore does not
suffer from any wrong discretization.

The search space that CERRT needs to explore is continuous and grows with the dimen-
sionality of the system state. Due to the discretization into contact opportunities, ECE plan-
ning has to deal with a much smaller search space. It scales quadratically in the number of
contact exploitations extracted from sensor input. The difference in planning time can also
be observed when applying both algorithms to the problem presented in Sec. 4.2.2. In this
problem, a path to a goal configuration inside a box needs to be found for a 7-DOF robot
arm (see Fig. 5.12). Planning on a standard desktop computer (2.2GHz) requires on average
50.4 s with CERRT and 2.75 s using the ECE algorithm (20 trials). More importantly, the
standard deviation of the planning time is 77.6 s in case of CERRT and 0.3 s for ECE plan-
ning. Note that the shorter planning times for the ECE algorithm are paid with a lack of
probabilistic completeness.

Finally, the algorithms differ in the assumed inputs. CERRTuses a geometricworldmodel
without making any statements about the feasibility of acquiring such a model. On the
other hand, ECE planning is based on depth sensor measurements and focuses on the entire
pipeline from sensing to acting.

134



Part III
Hand Object

Environment

Interactions Between
Hand, Object and Environment

135



Part III▼ Interactions Between Hand, Object and Environment

Motivation

In the first two parts of this thesis we investigated how hand adaptability and the stiffness
of the environment can be exploited for grasping. These investigations focused exclusively
either on the relationship between hand and object or between hand and environment. But
ultimately we would like to know how the triad – hand, object, and environment – can be
taken into account to create robust grasping. What kinds of objects require which type of EC
exploiting strategy?

We get a hint at what type of objects benefit from exploiting the environment when recon-
sidering the teleoperation experiment with the Allegro Hand from Sec. 2.1.2. In this experi-
ment 35 different objects were grasped from a table. Due to the large and clunky fingertips of
the AllegroHand the operator had often difficulties picking up small objects. We introduced
a second condition in which the robot’s workspace also included the edge of the table which
was unreachable in the first condition. Again, we conducted 175 grasping trials (five per ob-
ject). This time the operator used the table edge to apply an edge-constrained grasps. As a
result grasp success increased w.r.t. to the first condition. This was true for flat objects such
as the credit card (0/5 successes→ 2/5), a small book (1/5→ 2/5) and a CD (0/5→ 2/5).

This shows that object heightmight alreadybe apowerful indicator of selecting aparticular
ECE strategy. We will confirm this insight with a learning method presented in Chapter 7.

Intermezzo: Interactions Between Object and Environment

Hand Object

Environment

Before we get into detail about the relationship between
hand, object, and environment we would like to briefly
study some aspects about the interactions that only relate
to object and environment. Since this is only a short investi-
gation, we do not devote an entire Part of the thesis to this
topic. However, we think it further strengthens the case
for ECE because it shows how geometric variety is reduced
through contact between object and environment.

Objects in the real-world do not occur in arbitrary places and configurations. They are
embedded into a task-specific and physical context. A mug is usually standing upright to
keep the liquid it is containing. The mug also has to obey the law of gravity, so it will usually
be located on a support surface instead of hovering in free space. These kinds of biases reduce
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Video Figure 5.2: Simulation of the stable poses of a

mug w.r.t. a surface constraint. [https://youtu.
be/8VNIOqsyXj4]

the variance of problem scenarios we have to face and be capable to solve. In the same spirit,
our planner of EC-based grasping strategies exploits and benefits from such regularities.

It has been shown that humans exploit visual biases constantly. Kaiser et al. (2014) showed
that identifying an object in a cluttered display is simplified if the distracting items are ar-
ranged in commonly experienced configurations, e.g. a lamp above a table vs. below the table.
A study by Stansbury et al. (2013) hints to the possibility that natural scene representations
in the human brain are guided by the co-occurrence statistics of objects in the world.

We conduct a small simulation experiment to quantify the effect of environmental con-
straints on the configuration and geometry of objects. Weuse 132 objectmodels from theKIT
dataset (Kasper et al., 2012), sample uniform random orientations and simulate the effect of
gravity using a physics engine (Coumans, 2015). The objects are initialized slightly above a
static plane. Video Fig. 5.2 shows an example of 100 simulated mugs. We collect the equi-
librium poses in 13200 trials (100 per object). To evaluate the potential reduction in pose
diversity, we first compare the entropy between the distribution of initial and final/stable
orientations. We calculate the discrete entropy by first discretizing SO(3) into a uniform
grid with 576 bins. Therefore, the entropy of the uniformly distributed initial orientations
is log2 576 = 9.12 bit. In contrast, the entropy of the distribution of stable orientations is
between 4.3 bit (for cylindrical objects like a can of sauerkraut or a wine glass) and 3.1 bit (for
objects with fewer stable orientations like a tube of toothpaste). To compare the effect over
all different object geometries, we need a coordinate-free measure. Fig. 5.13a shows the dis-
tribution of angles that describe the shortest path between two random samples from each
distribution of orientations. We can see that the histograms of surface-constrained and wall-
constrained object poses exhibit strongermodeswhich reflect the fact that object orientations
cluster in both conditions.

For grasping it is reasonable not to look only at the orientations but also at the actual ge-
ometry of the objects, since this affects the resulting contacts. The equilibrium orientations
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Figure 5.13: Effect of interactions betweeen objects and environment on object pose and geometry.

of a sphere are not reduced due to contact with surfaces. However, since the sphere is fully
symmetric grasping performance is not affected by the sphere’s orientation. To include the
geometry, we compare the object orientations based on the Hausdorff distance between the
oriented triangularmeshes (Cignoni et al., 1998). TheHausdorff distance is a common tool to
measure the difference between two shapes and depends on the largest distance of all short-
est distances between the two sets of points that represent the shapes. Fig. 5.13b shows the
distribution of Hausdorff distances in each condition: unconstrained, surface-constrained,
and wall-constrained object orientations. Again, we observe a reduction in diversity: shapes
become more similar and thus grasping becomes easier.

Note that our study only focuses on the interactions due to the geometry of object and
environment. A further reduction in the variability of problem scenarios can be expected
when considering the object’s function (e.g. a mug will most often stand upright to contain
a liquid).

Contributions

In this part we examine how the benefits of hand adaptability and environmental stiffness
can be tied together to improve grasping. Based on the planning methods of the previous
chapters we will devise new algorithms to grasp arbitrary objects. The main contributions in
this part are:

• Twomethods to adapt grasping strategies to the environment, a model-based method
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for stiff hands (Sec. 6.1) and a learning-based method for soft end-effectors (Sec. 6.2).

• A predictive model to select the best ECEs for sensory inputs of novel objects. This
includes an evaluation of different geometric features and more than 600 collected
ECEs in the real world (Sec. 7.1).

• A formalization of the ECE selection problem as a contextual multi-armed bandit
problem and an evaluation of multiple common exploration schemes (Sec. 7.2).

• A trial-and-error-based algorithm to learn more general manipulation policies for a
soft hand using human demonstrations (Chapter 8).

Outline

Wewill start by first looking intoways of adapting our previously presented grasp planners to
different environments and objects (Chapter 6). Rather than locally adapting strategies, we
pursue the idea of globally selecting between different EC-based grasping strategies in Chap-
ter 7. This is done by learning a classifier of grasp success given object features.

Finally, we will go beyond grasping and take a look at manipulation tasks for soft hands in
Chapter 8. This requires less structured motion descriptions and poses challenges for model-
ing the soft hand’s adaptability.
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6
Combining Properties of Object and

Environment to Adapt Grasp Strategies

Think about a bottle lying flat on a table. Even if you see it from the front, your palm
will most likely approach it from above, parallel to the table surface, with the fingers

touching the table while they bend around the object. This grasping strategy clearly takes the
specific geometry of both object and environment into account.

In this chapter we will examine the complex interactions between hand, object and envi-
ronment by making only local changes to the previously introduced grasp strategies. These
local changes are derived to improve grasp success. In terms of our funnel view (Sec. 2.3) it
means that we are searching for grasp parameters such as the pre-grasp pose which create a
wide entrance of the final funnel represented by the hand’s compliance mode.

We will focus on the surface-constrained and wall-constrained grasp. But as we will show,
the proposed algorithms can be extended to other EC-based grasp types. Wewill present two
algorithms that accomplish the adaptation by following two very different paradigms:

1. A model-based approach which balances perceived information and exploitation of
the environment (based on the algorithm presented in chapter 4).

2. A learning-based approach using black-box optimization and trial-and-error.

Wewill evaluate both algorithms inmultiple real-world experiments and assess their strengths
and weaknesses.
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Figure 6.1: The four different pre-shapes and their associated curvilinear coordinates (red arrows) that make up the

pre-grasp manifolds. Cylindrical and spherical manifolds are represented by cylindrical and spherical coordinates; the

box manifold exhibits one translational degree of freedomwhile the disk manifold is defined about one axis of rotation.

Thesemanifolds are used to further refine the pose of a pre-grasp.

6.1 Model-Based Adaptation of Surface-Constrained Grasps

The surface-constrained grasp is probably the one that is most often applicable in the real
world, since objects are usually placed on a planar support surface. In this section we present
an algorithm that combines object shape properties with environmental properties to plan
surface-constrained grasps. The environment constraints the grasp strategy in a few dimen-
sions but not all, while the object geometry does the same. The key idea is to find a grasp that
satisfies as many constraints imposed by the geometry of environment and object.

We will base our method on the shape features that exploit hand adaptability (see Sec. 3.2).
The importance of satisfying constraints depends on the visibility of the object shape. If
large parts are occluded our method relies more on satisfying the geometric constraints of
the object than the environment. We demonstrate the beneficial effect of considering ob-
ject/environment shape match in 460 real-world grasping trials with 23 objects.

6.1.1 From Single Pre-Grasps to Pre-Grasp Manifolds

In Chapter 3 we introduced the notion of a pre-grasp which defines the hand pose before
closing the fingers. We calculated the pre-grasp based on a simplification of object geometry.
The simplification was based on a fitting scheme that was trying to match the object shape
with cylinders, spheres, boxes and disks (see Sec. 3.2). The cylinder gives rise to twopre-grasps,
both parallel to the cylinder’s axis with the thumb pointing left or right. The box results in
four possible poses, two along each pair of parallel edges. Disk and sphere create pre-grasps
whose approach vector points towards their centers.

Instead of single poses we define bounded manifolds by exploiting the symmetry of the
shape descriptors. A pre-graspmanifold is defined by a curvilinear coordinate systemdepend-
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Figure 6.2: A 2D explanation of the environmen-

tal adaptation scheme is shown. Assume we have

given range sensor readings (bold dots), a segmen-

tation (dot’s colors), a pre-grasp (grey two-fingered

hand model with approach vector gapproach and posi-

tion gposition) and its associated 1D manifold (orange

half circle). The mean surface normal esurface of the
environment is the average over all measured sur-

face normals that fall within the expected closing re-

gion (black dashed rectangle) and are not part of the

segment tobegrasped. Wechoose thepre-grasp from

the region that minimizes a cost which includes the

difference between−gapproach and esurface and the dis-
tance of gposition to the region’s origin. See text for de-
tails.

ing on the grasp’s pre-shape. In the cylindrical case the pre-grasp region is given by cylindrical
coordinates with a fixed radius. The analogs for all other strategies are depicted in Fig. 6.1.
Going from single pre-grasp poses to whole manifolds allows us to satisfy environmental
constraints as we will show next.

6.1.2 A SimpleGraspModel for theAdaptation BetweenHand and Environ-
ment

We anticipate the interactions between the hand’s closing motion and its immediate environ-
ment by refining the pre-grasp posewithin its respective pre-graspmanifold. The surface con-
straint is extracted by analyzing the depth measurements that fall within the closing volume
of the hand: The number of points intersecting this volume gpoints, the maximum possible
number gmaxpoints, and their mean surface normal esurface are computed.

We refine the pre-grasp pose by casting it as an bounded optimization problem. The objec-
tive function is given as the weighted sum of the orientation error (between grasp approach
and surface normal) and the distance to the origin of the pre-grasp region. We are trying to
find a minimizer of this function:

argmin
(gposition,gapproach)

(
w

gpoints

gmaxpoints
⟨−gapproach, esurface⟩+ (1− w)d(gposition, 0)

)
,

where d(·, ·) is a distance measure depending on the curvilinear coordinates used, and w is
a weight that balances the amount of constraint satisfaction with the environment versus
preferring known zones inside the pre-grasp manifold. If w = 0 the surface constraint (if
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Video Figure 6.1: These image sequences show how our grasp adaptation includes sensor data about the environment.

Upper row: Shape match with the environment is ignored. The cylinder is always grasped from the front. Lower row:

The closer the cylinder is to the table surface the more the pre-grasp pose tries to match with it. [https://youtu.
be/9fDFCaQ8WYE]

present) is ignored and grasps only depend on the object shape. In contrast, if w = 1 the
pre-grasp will be aligned with the surface, ignoring the shape of the object. Note that the
value of w does not only reflect our intuition about whether the grasp dynamics are more
strongly influenced by contact with the environment or the object. It also reflects howmuch
we believe in the symmetry of the object, sincewe usually do not see the back part of an object.

To model the accessibility of a pre-grasp pose we add an additional term which depends
on the free space along the approach vector. Therefore we sweep the hand volume through
the depth image and count the colliding points. Apart from penalizing hard to reach grasps,
it also rejects false positives due to concave shapes. Fig. 6.2 depicts a graphical explanation
of the optimization problem. Video Fig. 6.1 shows an example for a cylindrical pre-grasp
optimization on real sensor data. Note that optimization is done in real-time.

Finally, we track grasp hypotheses over time by associating the most similar ones in succes-
sive time steps. Similarity is based on pre-grasp configuration and pose. During tracking we
filter out hypothesis that do not appear with a frequency of at least∼ 3Hz. This eliminates
unstable hypotheses caused by sensor noise.

All pre-grasp descriptors canbe computed inparallel since they donot influence each other.
Becausewe are not interested in subtle geometric features we can rely on a rather coarse depth
image resolutionof320× 240. This additionally speeds upourprocessingpipeline, resulting
in∼ 5.3Hz on a standard desktop computer at 2.2GHz using a single-threaded implementa-
tion. Roughly 70% of the load is produced by fitting the primitives and normal estimation.
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Figure 6.3: The test objects (left) and the small cluttered scene (right) used in the experiments.

6.1.3 Experimental Evaluation

The goal of our experiments is to examine how well our adaptation scheme works to find
surface-constrained grasps for a variety of different objects. Although it might sound rea-
sonable to compare our adaptation scheme against the same approach without adapting the
pre-grasp pose, we found that the results differ significantly and the baseline is unfair. A base-
line that completely ignores the surroundings will often collide with the table, failing to grasp
the object.

Instead we test our approach in two other experiments: In the first one objects are pre-
sented in isolation on a table surface and we focus on precision and recall performance. The
second experiment contains a small cluttered scene, where environmental constrains aremore
complex than a simple surface due tomultiple objects. Wewould like to test howwell the sur-
face assumption generalizes to less structured surroundings.

Inboth experimentsweused a6-DOFUnimationPUMA560with a 4-DOFBarrettHand
BH8-262. The robot was equipped with an Asus Xtion Live depth sensor, mounted on the
wrist of the manipulator.

Grasping Objects Under Surface Constraints

We placed 23 different objects (Fig. 6.3) on a table in front of the robot. A grasping trial con-
sisted of one object being observed from (maximally) five different pre-recorded viewpoints
as shown in Fig. 6.4. The robot observed the object for 3 s from a single view point. During
that time it chose the most promising surface-constrained grasp strategy. If no pre-grasp con-
fidence exceeded a pre-defined threshold, no grasp was executed and the next view point was
considered. For each object the four different surface-constrained strategies were evaluated
independently, resulting in a total of 460 trials.
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Figure 6.4: The experimental setup for the simple environmental constraints: The sensor observes the object from the

five different perspectives shown.

0
1
2
3
4
5

C
yl

in
dr

ic
al

0
1
2
3
4
5

B
ox

0
1
2
3
4
5

S
ph

er
e

ap
pl

e

be
ll

pe
pp

er

le
m

on

m
et

al
sp

he
re

ba
na

na

re
d

th
in

g
la

yi
ng

sm
al

lb
ot

tle

to
ile

tp
ap

er
la

yi
ng

pr
is

m
la

yi
ng

te
dd

y
be

ar

gl
ob

e

ph
ar

ao

to
y

br
id

ge

sp
ec

ta
cl

e
ca

se

ta
pe

la
yi

ng

co
ffe

e
tin

w
iz

ar
d

ca
bl

e
ca

se

ho
rs

e

sh
oe

bo
x

sp
ra

y
ca

n

pr
is

on

he
xa

go
na

lp
ris

m

0
1
2
3
4
5

D
is

k

S
uc

ce
ss

fu
lT

ria
ls

Figure 6.5: Surface-constrained grasping performance for each of the four pre-grasp strategies. The light-colored bar

indicates a predicted grasp by the algorithm. The dark-colored one is the resulting grasp success.

The resulting detection and success rates are depicted in 6.5. Looking at the max strategy,
our method detects a grasp in 88% of all cases. If we look at the recall performances for each
pre-shape strategy separately, it matches our intuition that most objects are cylindrical while
the disk strategy is detected seldom (recall of cylindrical strategy: 69%, box: 36%, sphere: 28%,
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Figure6.6: Someexamplesofplannedsurface-constrainedgrasps: Thefirst rowshowsthefittedgeometricmodels (from

left to right: two cylinders, disk, sphere, box) within the point cloud perceived by the robot. The second and third row

show the resulting pre-grasps and final grasps executed by the robot.

disk: 12%). More importantly, the success of the chosen strategy can be predictedmost of the
time. The precision of the max strategy is 72%. Among the individual strategies the box
pre-grasp is the most reliable (precision: 88%), while the spherical one performs worst (33%).

The reason for the bad performance of the spherical pre-grasp is the following: The globe
and wizard are close to prototypical spheres, but they exhibit low frictional surfaces which in
combination with the aluminum cover of the Barrett Hand require very high contact forces
to be grasped successfully. Another problem – especially with the spherical pre-shapes – was
a pre-mature activation of the breakaway mechanism. Fingers stopped even when not in
contact with object. Note though that only few objects cannot be detected by any of the
proposed strategies: One such case is the flat laying tape which exhibits a disk-shaped top
face which was not detected because of the low resolution of the sensor and the minimum
distance it needs to maintain during sensing.

Some example grasps can be seen in Fig. 6.6. They show that the proposed strategies can
successfully balance the exploitation of the environmental surface constraint with the shape
match between hand and object.

We can also compare the results of this experiment directlywith those obtained in Sec. 3.2.2:
while recall is similar (88% vs. 92%), the precision of the grasps is now worse (72% vs. 94%).
But remember that in this previous experiment we applied the same strategies to the scenario
of objects in free space, without any environmental obstruction. Given the more realistic
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Figure 6.7: The five different decisions to empty the table are shown from left to right. The upper row shows the view of

the sensor with the possible pre-grasp poses (green = box, blue = sphere, red = cylinder). Each time the robot chose the

most promising pre-grasp (displayed in golden color) based on shapematchwith the object and environment. The lower

row shows the grasps executed by the robot. All except the last were successful.

setting we are testing, this decrease in overall grasping performance could be expected.

Shape Match Under Complex Environmental Constraints

In a final experiment, we wanted to test how well our methods scales with more complex
scenes, in which multiple objects can also constrain each other. The promising result of an
example with five objects is shown in Fig. 6.7. The robot observed the scene five times from
the same view point, each time selecting the most promising grasp.

Note that our method has no notion of gravity or whether two grasps belong to the same
object. Still, the accessibility criterion implicitly favors most of the time shape matches that
are on top of each other. In this qualitative experiment the robot only failed grasping the last
object, a bottle which was located close to the edge of the table. Overall the results for the
cluttered scene are pointing in a promising direction.
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6.2 Adapting Strategies Through Learning

The approach presented in the previous section hinges on a hand-crafted model. It requires
knowledge about the physics and detailed features of the used end-effector. If this knowledge
is unavailable or the kinematics and dynamics are less intuitive and a model cannot easily be
hand-crafted (as in the case of a soft hand like the RBO Hand 2) we need a more general
approach.

In this sectionwe present an alternativemethod to adapt the parameters of a grasp strategy
to increase grasp success. Thismethod does not require any knowledge about the physics that
happen due to interactions between hand, object and environment. It is based on the cross-
entropy method (CEM by Rubinstein (1999)), a black box optimization approach. It might
sound like an exaggeration to ignore all the insights we gained about the contact events that
occur (even with a less intuitive/soft mechanism) and treat grasps as a completely unknown
function. But remember that we will apply this optimization on a constrained parametriza-
tion, namely the grasp strategies provided by the ECE planner (Algorithm 5.4). Thus, wewill
effectively search the space of EC grasps only locally. We will show the impact of our method
in experiments in simulation and in the real-world.

6.2.1 Cross-Entropy Method for EC Grasping

CEMis an evolutionary algorithm that is used to find themaximizer of anunknown function.
It does not need access to the function’s gradient, which allows it to be used for functions
that are not differentiable or even continuous. We would like to maximize grasp success as
a function of the parameters of a grasp strategy. Since grasp success is binary, our unknown
function contains a lot of discontinuities. Hence, CEM is well suited for our problem.

We parameterize our EC-based grasping strategies the following way:

• Surface-Constrained Grasp: The parameter vector θsurface ∈ IR5 contains: the
initial finger inflation, the force that is used to press against the surface, the angle of
attack of the hand relative to the surface, and the offsets in x and y on the surface
relative to the object’s centroid.

• Edge-Constrained Grasp: The parameter vector θedge ∈ IR6 contains: the initial
finger inflation, the force that is used during sliding to press against the surface, the
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angle of attack of the hand relative to the surface, the offsets in x and y relative to the
object’s centroid before starting to slide, and the distance offset from the edge to start
closing the fingers.

• Wall-Constrained Grasp: The parameter vector θwall ∈ IR6 contains: the initial
finger inflation, the force that is used during sliding to press against the surface, the
angle of attack of the hand relative to the surface, the distance offset parallel to the wall
and relative to the object’s centroid, the velocity during sliding, and the force threshold
that is used to start finger closing when reaching the wall.

Remember that all strategies are represented as hybrid automata (see Sec. 5.5). Theparameters
listed above influence not only the control modes but also the switch conditions connecting
them.

CEM is an iterative process. In each iteration new potential maximizers are generated and
evaluated. Only the best performing parameters survive and are used in the subsequent it-
eration to generate new candidates. This process is repeated until convergence or for a pre-
defined number of iterations. We represent the grasp parameters θ with a Gaussian distribu-
tion: θ ∼ N (θµ, diag(θσ2)), where diag(θσ2) is a diagonalmatrix representing the variance.
Initially, we set the variances to high values indicating that we are not certain about those val-
ues. CEM draws N samples from this distribution and evaluates the associated grasp. The
evaluation is either done in simulation or on a real robotic platform, labeling a grasp as suc-
cess or failure. We keep the best ⌊0.5N⌋ parameters and fit a new Gaussian before initiating
the next iteration. Algorithm 6.5 summarizes our approach.

Szita and Lörincz (2006) have shown that a noisy version of CEMoutperforms the vanilla
one. They inject noise into the sampling process but decrease itwith every iteration. Thisway
the exploratory behavior of the algorithm is intensified, avoiding pre-mature convergence to
a local minimum. We do the same by adding the term max(5 − t

10
, 0) to the variance when

fitting the Gaussian in iteration t.

6.2.2 Experiments

In our experiments we want to show that our approach converges and grasping performance
improves. We will show this first in simulation, and later in a real world scenario. The exper-
imental results also suggest that the parameters learned in simulation can be transferred to
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Algorithm 6.5 Cross-Entropy Method for EC-based grasping strategies
Input: xhand,xobject
Output: θ

θ ∼ N (θµ, diag(θσ2)) ▷ Initialize parameters
for t = 1, 2, . . . do

Take point cloud measurement PRGB−D
Sθ ← ECE_PLANNING(PRGB−D,xhand,xobject) ▷Algorithm 5.4
DrawN samples θi ∼ N (θµ, diag(θσ2))
Evaluate corresponding grasps and record success ri ∈ {0, 1}
B ← Select the ⌊0.5N⌋ top samples of θi

θµ ← 1
|B|
∑

b∈B b

θσ2 ← 1
|B|
∑

b∈B(b− θµ)
T (b− θµ) + max(5− t

10 , 0)

(a) Iteration 0: Initial and final visualizations of four exem-

plary wall grasps. Not all wrist orientations turn out to be

successful when grasping using a wall constraint.

(b) Iteration 6: After a few iterations the wrist orientation

converges and∼ 96% of all grasps are successful.

Video Figure 6.2: Cross-entropy method for optimizing the angle of attack of a wall-constrained grasp in simulation.

[https://youtu.be/zmsS0Bx-6x8]

a real robotic system. We will focus on the wall-constrained grasping strategy, although our
method is not limited to a specific type of grasp.

Simulation

We optimized the wall-constrained grasp strategy for the RBO Hand 2 (Deimel and Brock,
2016) in the SOFA simulation framework (Allard et al., 2007). Each finger is modeled as a
Cosserat beam with empirically identified stiffnesses. We use dynamic skinning to calculate
the collision geometry of the hand. The resulting collisions are resolved with a compliance-
based constraint solver (Tournier et al., 2015). The simulation environment contained a verti-
cal and horizontal surface. Instead of optimizing the entire six-dimensional parameter vector
we started using only the angle of attack of the hand while sliding towards the wall.

During each iteration N = 10 wrist angles were sampled. Grasp success was defined by
moving the hand on a pre-defined trajectory in simulation and checking whether afterwards
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(b) The angle of attack of the ten sampledmotions per iter-

ation. The optimal parameter value converges to approxi-

mately 72◦.

Figure 6.8: Results of the cross-entropymethod in simulation.

the object was still positioned close to the hand’s palm. We evaluated every parameter sample
in scenarios with a sphere and a cylinder each located at eight different initial poses. This
ensures that the strategy will be invariant to small uncertainties in object position and shape.
In this case the success ri was not binary but averaged over all 16 simulations. This resulted
in a total of 160 simulations per iteration. We continued the process for 7 iterations.

Fig. 6.8a shows that the success rate steadily increased to∼ 96%. It is also visible that the
success rate was already considerably high in the very first iteration (∼ 84%). This is due to
the reasonable initial parameter values that were set manually from prior experiences. Apart
from the increasing success rate, Fig. 6.8b shows the convergence of the wrist angle over time.
Video Fig. 6.2 shows sample executions during the first and last iteration.

Real World

Our simulation experiment showed that the proposed method increases grasp success and
the learning process converges. We complimented this experiment with a real-world grasp-
ing experiment. This time we optimized all parameters of the wall-constrained strategy. We
used a 7-DOF Barrett WAM equipped with a Asus Xtion Live camera sensor at the elbow
and the RBO Hand 2 as end-effector. The robot was placed in front of a table with an apple
and a vertical structure. We executed ten samples per iteration, with a total of nine itera-
tions (see Fig. 6.9).

Fig. 6.10a shows that grasp success increases over time although it is muchmore noisy than
in simulation and already plateaus at∼ 60%. This is probably due to small number of sam-
ples per evaluation in combination with an increased parameter space. While in simulation
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Figure 6.9: Setup of the cross-entropymethod for optimizingmultiple parameters of thewall grasp. The task is to grasp

anapplewhose initial positionandorientationvaries. Parameters included in theoptimizationare: initial fingerpressure,

force downwards, sliding speed, angle of attack, and force threshold in wall direction.
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(a)Average success over 10 grasps per iterationduring exe-

cution of the cross-entropy method on the real robot. The

success rate increases up to∼60%.
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(b) The angle of attack of the ten sampledmotions per iter-

ation. The optimal parameter value converges to∼ 69, a
similar value compared to the simulation (∼72◦).

Figure 6.10: Results of the cross-entropymethod in the real-world experiment.

we used 16 evaluations per parameter value θ ∈ IR, here we rely on a single one per parameter
value θ ∈ IR5. Still, Fig. 6.10b shows that the wrist angle converges over time. Interestingly,
the final angle is similar to the one optimized in simulation. This hints at the possibility to
transfer policies learned in simulation to the real world.
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6.3 Related Work

We presented two methods that locally adapt parameters of grasping strategies based on the
object and environment. For each of the two algorithms we present similar approaches from
the literature. Since this is a very specific topic, our related work is quite compact.

6.3.1 Model-Based Adaptation of Surface-Constrained Grasps

Our first method (Sec. 6.1) used a hand-crafted model to adapt the approach vector of a
surface-constrained grasp. Maldonado et al. (2010) also refine the pre-grasp pose based on
sensor data. They assume that all objects are placed on top of a table and each point cluster
above the table surface is interpreted as an object. In contrast to our approach, the pre-grasp
pose is optimized to bring the center of the palm as close to the object while maximizing the
distance between object and fingers. Similarly to our approach, Ekvall andKragic (2007) find
grasping approach vectors based on geometric simplifications of object shape and hand pre-
shape. But instead of using a hand-crafted model they use human demonstrations to derive
good approach directions.

Berenson et al. (2011) introduce the concept of task space regions which are manifolds that
describe pose constraints. Task space regions are similar in spirit to the bounded manifolds
we use in pre-grasp optimization. But while they are used in more general motion planning
problems (not only as goals), the idea of balancing the influence of object shape and environ-
ment geometry is unique to our method. Another way to represent regions of successful pre-
grasp poses are grasp densities (Detry et al., 2011). They can be generated from visual input or
human demonstrations and can represent also disconnected and less structured topological
spaces. But again, the model used by Detry et al. (2011) does not distinguish between effects
induced by contact with the environment or object.

Finally, our small clutter experiment (Sec. 6.1.3) resembles the problem tackled by Kitaev
et al. (2015). In contrast to our method, they optimize an entire approach trajectory and also
include terms in the objective that penalize toppling over objects that are not supposed to
be grasped but need to be pushed to the side to reach the target. Since their model is based
on a physics simulation, it is computationally muchmore expensive than ours and cannot be
evaluated in real-time.
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6.3.2 Adapting Strategies Through Learning

Our second approach (Sec. 6.2) improves a planned grasping strategy by adapting its parame-
ters through trial-and-error. Webenefit froma structured action representation that is already
tied to the task by requiring rather few data. In contrast, more general reinforcement learn-
ing approaches to grasping are characterized by a high demand in data from thousands to
millions grasp examples (Pinto and Gupta, 2015, Levine et al., 2016). In terms of structured
action representations, dynamic movement primitives (Schaal, 2006) are equally beneficial.
Stulp et al. (2011) used them to learn the approach direction for grasping upright standing
objects based on a model of pose uncertainty. Interactions with the environment were not
part of the grasps.

For somemanipulation tasks action representations are inherently low-dimensional. Thus,
they lend themselves to learning methods. Antonova et al. (2017) learn a policy for pivoting
a stick grasped by a parallel jaw-gripper into a desired configuration. They use a task-specific
simulation model for learning with fewer real-world samples.

Finally, a common theme is to exploit humandemonstrations to adapt graspparameters (Ek-
vall and Kragic, 2004, Sweeney and Grupen, 2007). We do this implicitly, since the structure
of our EC-based grasping strategies are heavily influenced by human experience.
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6.4 Conclusion

In this chapter we presented twomethods which can be used to plan grasps that incorporate
properties of objects and the environment. The first approach was creating a small optimiza-
tion problem based on a simple model of surface-constrained grasps and the geometric sim-
plification of object shape. It was a continuation of the planning algorithm based on shape
fitting from the first part of the thesis. In contrast, the second method was based on a black-
box optimization and parametrizations of the EC-based strategies that the planner from the
second part produced.

We showed in various experiments the helpful effect of either incorporating the environ-
ment into an approach that focuses on the relationbetweenhandandobject, or by incorporat-
ing the object into an approach that focuses on the relation between hand and environment.

Comparison Between Both Adaptation Strategies

Both methods locally adapt grasping strategies. In the following we point out their funda-
mental differences and implications for grasping. We will refer to our first approach (Sec. 6.1)
as method A and to the second one (Sec. 6.2) as method B.

Hand-engineeredvs. Data-driven: MethodAuses ahand-craftedmodelwhilemethod
B uses actual grasp experiences. A hand-engineered model might be easier to derive for classi-
cal stiff grasping mechanisms such as the Barrett Hand, since hard contacts with low friction
match physical intuition. The complex and less intuitive contact interactions of less conven-
tional hands such as the RBO Hand 2 are harder to describe manually. In these cases the
data-driven method B is certainly more suited. Method A is also less general than method
B. For every new type of mechanism and grasp, new models need to be created. In contrast,
it is much easier to use different mechanisms and grasps with method B but it requires a te-
dious data collection effort. Bothmethods can suffer frombias. WhilemethodAdepends on
the (potentially biased) engineer’s knowledge, the bias of method B depends on the objects
selected during the learning process.

Closed vs. Open-Loop: On the planning-level method A can be considered closed-loop:
the depth sensor measurement affects the planned approach direction. In contrast, method
B finds good parameters during training time, which are then fixed for every grasp and in-
dependent of the actual sensor measurement. At first sight this seems reasonable: After all
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(a) Failure due to object’s inertia (b)Chance success (c) Failure due to slip
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Figure 6.11: Exemplary failure cases for the surface-constrained grasping strategy

EC-based grasping strategies are dominated by the dynamics between hand and environment.
But as we will see in the next section, there are important cases which cannot be captured in
this case and even method A would fail.

Limitations

Although both methods adapt grasps by considering object knowledge (method A through
shape fitting, method B through the selection of training objects), there are shortcomings.
Certain object properties that are not captured by the methods can lead to grasp failure as
shown in Fig. 6.11. These include geometric details or non-visible properties such as mass,
friction or inertia. Consider a surface-constrained grasp of differently sized blocks with the
Barrett Hand. For smaller blocks the grasp succeeds when the fingernails jam against one of
the block’s sharp edges, as can be seen in Fig. 6.11b. For taller blocks, the fingernails do not
contact the object, leading to slip and grasp failure, as seen inFig. 6.11c. In a few cases, however,
the nails catch the object just before slipping out of the hand, leading to grasp success.

Here, local grasp adaptation (such as the approach direction) does not help and it is impos-
sible to model those effects with simplified geometries. But instead of making local adapta-
tions of the same grasp strategy it might be beneficial to take more global decisions of which
ECE strategy to apply, based on object geometry. This will be the topic of the next chapter.
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7
Selecting Environment-Constrained Grasp

Strategies Based on Object Properties

We have shown in the previous chapter how environmental and object proper-
ties can be combined to create more successful grasp strategies. In one case the envi-

ronment influenced the planning of object-centric grasps, in another case an environment-
centric strategy was adapted to apply to certain object features. But this kind of adaptation is
limited. Imagine a credit card lying in the middle of a table. We can try to adapt the parame-
ters of a surface-constrained grasp as much as we want, for a lot of hands it will be impossible
to pick up such a flat object. In such a case an edge-constrained grasping strategy is much
more likely to succeed. To tackle this problem it is not enough to locally adapt grasps. In-
stead we need to answer a more general question: Which environmental constraints should
be exploited when being confronted with a particular object (see Fig. 7.1)?

In this chapter we are trying to answer this decision-making problem. It will be based on
the ECE planner presented in Chapter 5 (Algorithm 5.4) that produces a set of feasible EC-
based grasps. We will predict the success of each grasp using a supervised learning setting
based on object features and select the most promising strategy.

We are choosing a data-driven approach since the interactions between hand, object and
environment and the resulting effects are complex to model. The ECEs are actions over long
time horizons involving a lot of contact. Since we are also interested in exploiting the advan-
tages of soft mechanisms more modeling challenges arise: unobservable deformations and
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Figure 7.1: The main focus of this chapter is the de-

cision of the most promising EC-based grasping strat-

egy given a depth sensor measurement of the scene

including an object. To solve this decision problem in

andata-efficientway,weuseamulti-armedbandit for-

mulation that trades off exploration and exploitation.

surface stiction and friction phenomena. Hand-engineering a model that captures all of this
is infeasible.

We start our data-driven modeling investigation by looking at different representations of
object geometry. Those representations should allowus to capture properties such as size and
curvature, which we know will affect the decision of which ECE to chose. We will evaluate
multiple possible representations in Sec. 7.1.

Additionally, we formulate grasp strategy selection as amulti-armed bandit problem (Rob-
bins, 1985). This allows us to learn outcome models for each strategy from scratch while also
finding the most promising strategy for each novel problem scenario as quickly as possible
based on prior experience. We show how the model continuously improves throughout the
robot’s life time without an explicit training and test phase (Sec. 7.2).

7.1 Features for Selecting the Right EC Exploitation

We consider three different grasping strategies: surface-constrained, edge-constrained and
wall-constrained grasps (Sec. 5.1). The candidate grasp strategies are planned based on the ge-
ometryof the environment and the rough locationof theobject tobe grasped (Algorithm5.4);
object knowledge apart from the approximate location of the target object is ignored. To in-
clude object knowledge we extract a feature vector from a depth sensor measurement, given
the approximate location of the object and the environmental constraints that the grasp will
exploit. We learn one binary classifier for each type of grasping strategy that maps the feature
vector to success or failure. Weprefer this learning setting to a singlemulticlass classifierwhich
would predict the best grasp strategy for a given object. Using multiple binary classifiers al-
lows us to easily extend our framework with new types of grasping strategies without any
retraining. Additionally, it might be the case that more than a single strategy can be executed
to grasp a particular object.
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(a)Raw sensor input (b) Three ECEs (wall-constrained, surface-constrained, and edge-constrained grasp)

and the extracted 3D point cloud data to calculate features

VideoFigure7.1:Weformulate the selectionofECEasa supervised learningproblem. Foreachof theplannedstrategies

we calculate features (b) and predict grasp success using a binary classifier. [https://youtu.be/I_RXzIcxc6M]

Whether our supervised learning problem will work, depends mostly on the chosen fea-
ture representation. We focus on shape features and ignore color information. Color only
implicitly hints atmaterial properties that influence grasp success. But since wewill deal with
a rather limited set of real-world grasping data, including color will eventually lead the learn-
ing algorithm to exploit spurious correlations which lead to poor generalization.

We use different local grasp frames to compute the feature vectors. The grasp frame for the
wall-constrained strategy is aligned with the normals of the wall and support surface. The
surface-constrained grasp’s frame is aligned with the normal of the support surface and the
orientation of the hand. Finally, the frame for the edge-constrained strategy is aligned with
the direction of the edge and the normal of the adjacent plane.

These choices of grasp frames reflect the insight that the success of the strategies is mostly
invariant in the direction of the contact normal of the environmental contact that is being
exploited. We crop the 3D points in the local neighborhood of the candidate grasp frame and
analyze three geometric descriptors to characterize the associated grasp strategy whichwewill
present next. Video Fig. 7.1 summarizes the computational pipeline of our approach.

7.1.1 Grasp Descriptors

We present three different types of geometric features. Most of them have shown to be effi-
cient at object recognition or shape retrieval problems (Tangelder and Veltkamp, 2004). But
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since object identity is often not informative for grasp success (e.g. it is not affected by rota-
tion, in contrast to grasp success), it is hard to anticipate their usefulness for predicting the
outcome of EC grasps. Thus, wewill compare these features by applying them to a grasp data
set in Sec. 7.1.3.

Shape Distributions

Shape distributions (Osada et al., 2002) are signatures that are based on samples from a shape
function, such as the distance between two random surface points or the angle between three
points. We use the distance measure and sample it 2000 times within the grasp region. Dis-
tances are discretized into a histogram of 128 bins, each representing a space of 3mm.

Shape Histograms

Shape histograms (Ankerst et al., 1999) decompose the 3D space into bins, which can have the
shape of shells, sectors or combinations of them. We use 128 slices of 2mm length along the
height axis with the intention of capturing geometric properties that influence grasp success.
A wall grasp succeeds only if the fingers can slip underneath the object which depends on its
flushness with the support surface. Since a depth sensor will not measure points in case of
these cavities, our shape histogram should capture this property.

Point Feature Histograms

Point feature histograms (Rusu et al., 2009) are a popular feature descriptor for 3D object
detection and recognition. They calculate a signature based on the relation of 3D points and
their normal information. We use these histograms to characterize the local neighborhood of
the grasp frame.

7.1.2 Training

We assume that similarity in these feature spaces also translates to similarity in the resulting
physics of the grasps. This is an oversimplification, since effects ofmass and friction, for exam-
ple, cannot be estimated from those features. Still, when casting the problem of predicting
grasp success as a binary classification problem based on the geometric descriptors, we can
show that a substantial amount of grasp outcomes can be predicted correctly (Sec. 7.1.3).

We compared the different grasp features presented in Sec. 7.1.1 based on the accuracy and
F0.5 measure of the trained classifiers. We include the F0.5 measure because it weighs recall
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lower than precision. In grasp detection it is favorable to find at least one robust grasp rather
than finding all possible grasps.

The data sets for simulation contain 1340 samples for each grasp strategy while the real-
world sets contain 220 samples each. They were split into training and test set 4 : 1 using
stratified sampling. The ensemble classifiers are trained via Auto-sklearn (Feurer et al.,
2015) which searches a structured hypothesis space including multiple types of classifiers and
preprocessing methods.

7.1.3 Experiments

We perform grasping experiments in simulation and on a real robot to show that…

1. …the limited set of the three presented grasping strategies captures a wide variety of
objects.

2. …selecting the best strategy can be learned from data (additionally we will evaluate a
variety of feature representations to find the most suitable one).

3. …the learned classifiers give reasonable and consistent results on novel data.

Real-World Setup

All strategies extensively exploit the environment during grasping, which soft manipulators
are especially suited for. We use the RBOHand 2 (Deimel and Brock, 2016), a pneumatically
actuated anthropomorphic hand made out of silicone that inherently adapts to the shape of
a variety of objects when being inflated. In contrast to traditional, stiff hands, unplanned
contacts do not necessarily lead to catastrophic outcomes.

The real-world experiments are conducted on a 7-DOF BarrettWAMplatform, including
an Asus XTion Pro RGB-D camera on the robot’s forearm, a six-axis ATI Gamma force-
torque sensor on the wrist, and the RBOHand 2 as an end-effector. The experimental setup
is shown in Fig. 7.3. It contains a table with a vertical structure that can be used as a wall
constraint. In each trial the robot first moves to a pre-defined viewing configuration and uses
the RGB-D input to plan a grasp. The object set, shown in Fig. 7.3, contains 22 items that
differ widely in shape, rigidity, surface friction andmass. For each of the three strategies every
object was randomly placed on the table ten times, totaling a number of 630 grasp attempts.
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Figure 7.2: Simulation setup for the grasping experiment. Left: Simulated RBO Hand 2 in the SOFA simulation frame-

work. Right: 45 objects from the KITmodels database (Kasper et al., 2012). The data set contains a total of 134 objects.

The majority of the objects are supermarket products. Since those objects are usually optimized for efficient storage,

their geometries do not varymuch. Most shapes are cuboids or cylinders.
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Figure 7.3: Real-world setup for the grasping experiment. Left: Barrett WAM with RGB-D sensor and RBO Hand 2 in

front of a table and a vertical structure (transparent). The setup is chosen such that it offers opportunities to do all three

types of EC-based grasp strategies. Right: We use 22 different objects in the real-world experiment.

Simulation Setup

Our simulation experiments are based on SOFA (Allard et al., 2007). To simulate the RBO
Hand 2 (Deimel and Brock, 2016), we use a compliance-based constraint solver (Tournier
et al., 2015). Each finger is modeled as a Cosserat beam with empirically identified stiffnesses.
Skinning is used to determine the collision geometry. Fig. 7.2 shows the simulation setup. It
includes the hand, an object, and environmental constraints such as a table surface, wall, or
edge. Objectmeshes are used from theKITobjectmodels database (Kasper et al., 2012)which
contains mainly supermarket products. To find random initial object poses that are in static
equilibriumwe run a separate simulation inwhich the randomly oriented objects fall on a pla-
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Video Figure 7.2: The

surface-constrained

grasp with a box

[https://youtu.
be/HsD2yBxxWpg]

Video Figure 7.3: The

edge-constrained

grasp with a CD

[https://youtu.
be/I3f63Ve2b9U]

Video Figure 7.4:

The wall-constrained

grasp with a lemon

[https://youtu.
be/hz3My08I5P0]

nar surface until they come to rest. A depth sensor is simulated using the intrinsic calibration
parameters derived from an Asus XTion Pro with added Gaussian noise whose standard de-
viation scales quadratically with measured depth (Khoshelham and Elberink, 2012). We run
all three grasping strategies for ten poses of each object, resulting in 4020 simulated grasps.

Coverage of Detected Grasping Strategies

Before focusing on the high-level decision between different grasping strategies, we need to
show that those options actually solve a significant amount of problem settings. This is done
by looking at the performance of the most successful grasping strategy for each problem sce-
nario. We would like to ensure that there are only very few objects/poses that cannot be
grasped by any of the three strategies.

The real-world results (see Fig. 7.5) show that for each object there is at least one strategy
that is able to grasp it. The most problematic objects are the gamepad and the marker. The
geometry of the gamepad makes it most suitable for a surface-constrained grasp. But since
this grasp type can only exert moderate forces that counteract gravity, the relatively heavy
gamepad is lost 6/10 times. The thin long-shaped marker is most suited for a wall grasp, but
half the times the fingertips fail to slip underneath it.

The simulated data shows a different picture, here the strategies only cover 41 % of all prob-
lem scenarios (see Fig. 7.4). This is due to multiple reasons. The KIT object set contains a
lot of cuboid-shaped supermarket objects which are relatively large w.r.t. the hand. Twenty
large objects could not be grasped by any strategy. The contribution of the edge-constrained
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Figure 7.4: Each dot represents a successful grasp in simulation. Along the x-axis are the 134 objects and the y-axis

depicts ten different poses. The last row named ’max’ is the maximum over all strategies per object (and pose). It is an

upper performance bound given the robot would choose the optimal grasp in each situation.

grasp strategy is extremely low (39/1340 successes) because of the lack of thin, easy to slide
objects that do not topple over (the most successful one was a can of fish). Another problem
was that the simulation framework did not allow to differentiate between friction coefficients
of table, hand and object, which affected mostly the sliding phase of the edge grasp (objects
would stick to the table surface).

We have shown that on a real-world object set all objects can be grasped by at least one
strategy. But the data also shows that the best strategy differs from object to object. Being
able to predict the match between strategy and object is the focus of the next experiment.

Grasp Features to Predict Grasp Outcome

In this experimentwe evaluated the different feature representations (Sec. 7.1.1) for predicting
successful grasps. The results of the performance on the test set are listed in Table 7.1. In
general, the point feature histograms are the most suitable feature descriptor to predict grasp
success for all strategies in simulation and in the real-world. The high scores for the edge
strategy in simulation are not representative, since it is a highly unbalanced data set with very
few successful grasps.

Transfer and Generalization of Classifiers

Finally, we want to analyze in more detail what the grasp classifiers learned. To visualize
their decision boundaries we will chose a continuous 2D shape space. We will sample shapes
densely, simulate point cloudmeasurements, plan grasps, and classify their success according

164



7.1 Features for Selecting the Right EC Exploitation

0.0
0.2
0.4
0.6
0.8
1.0

su
rfa

ce

0.0
0.2
0.4
0.6
0.8
1.0

w
al

l

0.0
0.2
0.4
0.6
0.8
1.0

ed
ge

ap
pl

e

ba
na

na

ba
se

ba
ll

ca
ss

et
te cd

ch
ew

in
gg

um

cr
ed

itc
ar

d

eg
g

el
m

er

ex
po

ga
m

ep
ad

gl
as

se
s

ki
w

i

m
ar

ke
r

m
ea

d

pr
in

gl
es

sc
re

w
dr

iv
er

sq
ue

ak

te
nn

is
ba

ll

tis
su

es

to
ot

hp
as

te

w
al

le
t0.0

0.2
0.4
0.6
0.8
1.0

m
ax

S
uc

ce
ss

pr
ob

ab
ili

ty

©
20
17
IE
EE

Figure 7.5: The plot shows the success rate of the three different grasping strategies for 22 different objects on a real
robotic platform. The success rate is based on ten grasp attempts per object and strategy. The last row named ’max’ is

the maximum over all strategies per object (and pose). It is an upper performance bound given the robot would choose

the optimal grasp in each situation. It also shows that the real-world data set ismuch better covered than theKIT object

set used in simulation (see Fig. 7.4).

to the three grasp types. Since these simulated shapes are different to the real ones seen by the
classifiers during training, we will also test their ability to generalize and transfer knowledge
between the real and simulated world.

As a continuous shape parametrization we chose superellipsoids (Barr, 1992). Superellip-
soids are simple to define but still include a lot of different basic geometries. They can be
defined implicitly by having all 3D surface points (x, y, z) satisfy the equation

(∣∣∣∣ xsx
∣∣∣∣ 2e + ∣∣∣∣ ysy

∣∣∣∣ 2e
) e

n

+

∣∣∣∣ zsz
∣∣∣∣ 2n = 1,

where e > 0 and n > 0 are shape parameters that specify the shape along the horizontal and
vertical sections and sx, sy, and sz are size parameters in all three dimensions. The family of
superellipsoids contains basic shapes such as the cube (e → 0, n → 0), cylinder (e = 1,
n→ 0), or sphere (e = 1, n = 1) as special cases.

To generate superellipsoids we make use of a parametric equation rather than the implicit
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Data Set

Feature Shape
Distributions

Shape
Histograms

Point Feature
Histograms

Simulation (surface) 0.78 (0.56) 0.85 (0.70) 0.88 (0.76)

Simulation (edge) 0.97 (0.94) 0.97 (0.94) 0.97 (0.94)

Simulation (wall) 0.77 (0.53) 0.79 (0.58) 0.86 (0.64)

Real-World (surface) 0.72 (0.44) 0.81 (0.62) 0.86 (0.72)

Real-World (edge) 0.71 (0.42) 0.78 (0.57) 0.78 (0.57)

Real-World (wall) 0.62 (0.25) 0.65 (0.30) 0.79 (0.58)

Table 7.1: Accuracy (F0.5-scores) for different grasp features. Thebold numbers represent the best results for eachdata

set.

one above. It describes each surface point (x, y, z) as a function of longitude θ ∈ [−π, π[
and latitude ϕ ∈ [−π

2
, π
2
[:

x(θ, ϕ) = sx sgn(cosϕ)|cosϕ|n sgn(cos θ)|cos θ|e

y(θ, ϕ) = sy sgn(cosϕ)|cosϕ|n sgn(sin θ)|sin θ|e

z(θ, ϕ) = sz sgn(sinϕ)|sinϕ|n

We are interested in varying only two shape parameters to visualize the results in 2D. From
our experiments it seems that the flatness of objects plays an important rolewhendeciding for
a surface-constrained or an edge-constrained grasp. The flushness with the support surface
is another important feature. Objects that are flush with the table cannot be grasped by a
wall-constrained strategy. Thus, we focus on the roundness r and height h of an object. In
the context of superellipsoids, we define roundness as r = n = e and height as h = sz . The
sizes sx = sy = 0.05 are kept constant. The resulting implicit equation for this shape family
is ∣∣∣ x

0.05

∣∣∣ 2r + ∣∣∣ y

0.05

∣∣∣ 2r + ∣∣∣z
h

∣∣∣ 2r = 1.

Thus, we have a 2D shape space which ranges from cubes to spheres, from flattened to raised
objects. Fig. 7.6 shows equidistant samples in this 2D space.

For our experiment we generate 34 × 24 = 816 shape instances (roundness × height).
Each shape is simulatedon aplanar surface, next to verticalwall and close to an edge. We create
point cloud sensor readings using the same method as before (Khoshelham and Elberink,
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Figure 7.6: We use a 2D space of superellipsoids to test our grasp classifiers for surface-constrained, wall-constrained,

and edge-constrained grasps. Our shapes are parametrized by their height and roundness, including spheres (upper

right), boxes (upper left), and disks(lower right). See text for details.

2012). Based on the planned grasps we apply the binary classifier for all three types of grasps.
Note that we use the classifiers that were trained on the real-world data set (Sec. 7.1.3).

The results are shown in Fig. 7.7. Each colored box denotes a positive classifier result, while
a white one means a negative prediction. Although all three classifiers produce independent
results, we plot the wall-constrained and edge-constrained classifier results in the same graph
to emphasize how they complement each other and to facilitate comparison.

Overall, the results are promising, given the fact that the training and test data originate
from two very different sources – real-world observations and simulated ones. The edge-
constrained classifier predicts success for objects up to 2 cm in height independent of how
the contour is shaped. This matches our experience for the CD and the audio tape. At an
increased height the fingers have problems wrapping around the object at the edge.

In contrast, the wall-contrast grasp classifiers predicts failure for flat objects. We have seen
that this is true even for non-flush objects, such as a marker lying on a table. Our assumption
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Wall-constrained grasp classifier Edge-constrained grasp classifier Surface-constrained grasp classifier

Figure 7.7: The plots show the results of applying the trained classifiers on simulated sensor data of the superellipsoids.

A colored square indicates a positive classification, while awhite one is a negative result. We plot the results of thewall-

constrained and edge-constrained classifier into the same graph to show that they complement each other. See text for

details.

that flushness affects wall-grasp success was partly learned by the classifier. We can see that
shapes with low roundness values generally produce less positive classifications. But it is also
visible that there is no clear decision boundary; the results seem noisy.

The surface-constrained grasp classifier produces a clear band of positive predictions. It
matches our experience that flat objects (<3 cm) cannotbe graspedwith a surface-constrained
grasp. The negative classification for low roundness and high height values also seems plau-
sible: The RBO Hand 2 has problems enveloping large objects, while more spherical shapes
with the same dimensions facilitate wrapping fingers around.
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7.2 Improving the Learning Process

7.2 Improving the Learning Process

Instead of using the classifiers trained in the previous section to decide between the three
grasping strategies, wewould like to continuously learn about their value andmake decisions
that maximize the expected long-term grasp success. This would allow us to apply the algo-
rithm in a life-long-learning setting, where it can improve beyond a pre-determined training
phase.

We can formulate such a learning process as a multi-armed bandit (MAB) problem (Rob-
bins, 1985). A MAB problem is a repeated game in which an agent chooses one of multiple
arms in each round and the environment returns a scalar reward (or payoff) based on this
action. The goal of the agent is to maximize the expected total reward. Since the underlying
reward structure is unknown a MAB algorithm needs to balance exploration (selecting an
action whose payoff is uncertain) and exploitation (choosing the action that performed best
so far). Algorithms that solve the MAB problem find the highest rewarding arm as quickly
as possible.

In our case, each arm corresponds to one grasping strategy and the reward signal is binary,
indicating grasp success. But in contrast to the vanilla MAB problem, there is no single best
grasping strategy. Instead the best performing grasp depends on the object features. Thus,
a more suitable formalization is the contextual multi-armed bandit problem (Langford and
Zhang, 2008).

In the contextual MAB setting, the agent receives a context vector before taking an ac-
tion. This information can be used to guide the decision. We use the features calculated
from the RGB-D input as context and estimate the expected grasp success for each strategy.
Algorithm 7.6 shows the iterative learning process. In each round, the robot is confronted
with a random object. It uses the planning algorithm presented in Chapter 5 (Algorithm 5.4)
to generate all potential grasping strategies. For each candidate grasp, we calculate a grasp
feature (as shown in the previous section) which is used to select one of them. Finally, the
outcome is used to update the robot’s internal model of the expected grasp success and the
robot is confronted with another random object.

A variety of algorithms have been presented for tackling contextualMAB problems. They
differ in the way they model the estimated reward, how they are updated when facing new
information (UPDATE_MODEL), and how actions are chosen based on the estimated re-
ward (SELECT_ACTION). Exploration strategies range from simple ϵ-greedy algorithms to
Thompson sampling or using confidence bounds (Zhou, 2015).
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Algorithm 7.6 Contextual Multi-Armed Bandits for EC Grasping
Input: xhand,xobject
Output: R ▷ total reward (number of successful grasps)

for t = 1, 2, . . . T do
Take point cloud measurement PRGB−D
A← ECE_PLANNING(PRGB−D,xhand,xobject) ▷ Plan all candidate grasps (Alg. 5.4)
C ← ∅ ▷ Set of context vectors
for a ∈ A do

C ← C ∪ GRASP_FEATURE(a) ▷ Calculate context vectors (Sec. 7.1)
at ← SELECT_ACTION(A,C) ▷ Select action (Sec. 7.2.1)
Execute at and receive reward rt ∈ {0, 1}
UPDATE_MODEL(at, rt) ▷Update the internal model (Sec. 7.2.1)
R← R+ rt

In the following we present five such methods for selecting grasps in more detail. We will
evaluate them in the grasping scenario based on EC exploitation and also analyze their sensi-
tivity to disturbed reward signals.

7.2.1 Action Selection Strategies

For each exploration-exploitation strategy wewill explain how itmodels the expected reward
andwhat it does in the subroutines SELECT_ACTIONandUPDATE_MODEL according
to Algorithm 7.6. We will refer to the context vector for grasp strategy g in round t as cgt ,
the chosen action/grasp as at, and the obtained reward as rt. In case a strategy models the
expected reward/payoff, this is done separately for all three types of grasp strategies. Amodel
parameter x in round t for grasp strategy g is written as xg

t .

Thompson Sampling Without Context (TS)

Thompson sampling (Thompson, 1933) is a heuristic that chooses actions by sampling a belief
and acting optimally with respect to it. We represent the belief of the payoff with a beta
distribution for each action. The beta distribution is parametrized by two scalars α ∈ IR> 0

andβ ∈ IR> 0. To start with a uniformbelief over the expected payoff, we initially setαg
0 = 1

andβg
0 = 1. After drawing samples for each action typewe choose the actionwith the highest

expected payoff:

at = argmax
g

zgt , with zgt ∼ Beta(αg
t , β

g
t ).
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At the end of each iteration the belief is updated according to:

αg
t+1 = αg

t + rt and

βg
t+1 = βg

t + (1− rt).

Note that this decision strategy does not take the context into account. Thus, it cannot
distinguish between objects and will make decisions only based on the average reward per
action. We still include it in our evaluation as indication for a lower performance bound –
to see how much the selection process ultimately benefits from taking object features into
account.

Thompson Sampling With Linear Payoffs (LinTS)

Thompson sampling with linear payoffs (Agrawal andGoyal, 2013) is similar to the sampling
scheme described above, with the exception that it models the expected payoff as a linear
function of the context vector ct. The prior distribution over this linear function is given by
theGaussianN (bt, v

2A−1
t ), wherebt ∈ IRdim(c) is themean vector,At ∈ IRdim(c)×dim(c) the

covariance matrix, and v = 0.5 the standard deviation of the likelihood of observing reward
rt at time t. The linear model is initialized with the zero vector b0 = 0 and the identity
matrix A0 = I . We draw samples for each action from this distribution and choose the
maximum:

at = argmax
g

zgt , with zgt ∼ N (bgt , v
2(Ag

t )
−1).

The model is updated according to:

Ag
t+1 = Ag

t + cgt (c
g
t )

⊤ and

bgt+1 = (Ag
t )

−1

t∑
s=0

rsc
g
s.

Upper-Confidence Bounds With Linear Payoffs (LinUCB)

Just as with the previous method, we use a linear model to estimate the expected rewards,
parametrized byA and b and initialized withA0 = I and b0 = 0. But now we use upper
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confidence bounds (Chu et al., 2011) of our estimates to select an action:

at = argmax
g

(
((Ag

t )
−1bgt )

⊤cgt + α
√

(cgt )
⊤(Ag

t )
−1cgt

)
,

whereα = 1.8 is an empirically chosen constant. If there aremultiple best actions, we choose
randomly among them.

Upper-Confidence Bounds With Gaussian Processes (GP-UCB)

The Gaussian process upper confidence bound rule (Srinivas et al., 2009) uses Gaussian pro-
cess regression to model the reward as a function of the context. A Gaussian process (GP)
is fully defined by its mean function µ(c) and kernel function k(c, c′). We choose a radial
basis function kernel: k(c, c′) = exp (−1

2
∥c− c′∥22). We initialize with zero mean. Given

N past experiences of contexts {c0, . . . , cN−1}, corresponding rewards {r0, . . . , rN−1} and
a new grasp experience (cgt , rt), the posterior is a GP with the following mean and variance:

µg
t+1 = k(cgt )

⊤(Kg
t + σ2I)−1rt and

(σg
t+1)

2 = k(cgt , c
g
t )− kg

t (c
g
t )

⊤(Kg
t + σ2I)−1kg

t (c
g
t ),

where

Kg
t =


k(c0, c0) k(c0, c1) . . . k(c0, cN−1)

k(c1, c0) k(c1, c1) . . . k(c0, cN−1)
...

... . . . ...
k(cN−1, c0) k(cN−1, c1) . . . k(cN−1, cN−1)

 and

kg
t (c) =


k(c0, c)

k(c1, c)
...

k(cN−1, c)

 .

We chose the action that maximizes the upper confidence bound of the expected payoff:

at = argmax
g

(µg
t (c

g
t ) + α σt(c

g
t )) ,
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whereα ∈ IR is a problem-specific constant andwe choose it to be equivalent to the LinUCB
method.

ϵ-Greedy With k-Nearest-Neighbors (ϵ-greedy k-NN)

We use a k-nearest-neighbor classifier to model the rewards (Yang et al., 2002). Let

Rg
t (c) = (ri | ∀i : ∥c− cgi ∥2≤ ∥c− cgi+1∥2, ai = g, 0 < i ≤ t)

be the sequence of rewards which are ordered increasingly according to the distance of their
context vectors. The estimated expected reward for an action a and context c at time step t

is given by the k nearest experienced rewards:

r̂gt (c) =
1

k

i<k∑
i=0, r∈Rg

t (c)

r.

Wechoosek = 3basedon an empirical validation. To select an actionwe chose themaximum
in an ϵ-greedy fashion:

at =

random(A) , if x < ϵ

argmaxg r̂
g
t (c

g
t ) , otherwise

,

where x ∈ [0, 1] is a uniformly distributed random variable. We set ϵ = 0.1. During
UPDATE_MODEL we simply store the chosen action and observed reward.

Oracle

The Oracle strategy is able to look into future and will always choose the grasp with the best
outcome:

at = argmax
g

(rt(g))

Although this decision strategy is not applicable in any practical scenario, we use it as a com-
parison. Its performance constitutes an upper bound to our grasping problem. Since there
are situations in which none of the candidate grasps succeed, the accumulated long term re-
ward will be below T .

Note that the regret of a decision strategy – a performance measure usually used in bandit
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Figure 7.8: The plot shows the success rate of five different exploration strategies for grasping the 22 objects of the

real-world data set, averaged over 2000 trials.

problems – is the accumulated difference between the reward secured by the Oracle and its
own one: regret =

∑
t(maxg(rt(g)− rat).

7.2.2 Experiments

The goal of our experiments is to evaluatewhichof the action selection strategies performbest
and what are the trade-offs that need to be taken into account. We will apply Algorithm 7.6
to the data collected in the previous section. To compare the different selection schemes we
define the subroutines SELECT_ACTION and UPDATE_MODEL accordingly. Since the
experiment in the last section also showed that point feature histograms are the most suited
features to describe our grasp strategies, we will use them going forward.

In each turn the robot faces a random object in a random pose. The ECE planning al-
gorithm outputs three types of candidate grasps and their feature descriptors are calculated.
One of the presented exploration schemes is used to choose one of the three actions and gets
a reward of 1 if it succeeds, or 0 otherwise. The goal is to find a working grasp for any object
and pose as quickly as possible, i.e., maximizing the accumulated reward. Note that the robot
does not know which object it is facing, only a point cloud measurement is available.

Evaluation of Action Selection Strategies

We evaluated the six strategies from Sec. 7.2.1 for T = 500 iterations. Since the order of
objects and poses are random and some sequences might be easier than others, we evaluate
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Figure 7.9: The plot compares the success rate of GP-UCB and ϵ-greedy k-NN with varying degrees of noise in the ob-

served rewards, averaged over 2000 trials. The advantage of GP-UCB already vanishes with only 10% noise.

each strategy 2000 times and report mean success values for each iteration.
The results are shown in Fig. 7.8. As expected the omniscient Oracle performs best, aver-

aging 85% success rate. The Thompson sampling scheme without context performs worst.
This was also expected since ignoring object features will lead to choosing always the grasp
that is performing best on average over all objects and poses. This scheme nearly does not
learn anything, averaging a success rate of 42%.

All other selection strategies show an increase in grasp performance over all iterations. The
convergence rate of the Thompson sampling with linear payoffs (LinTS) seems to be the
lowest. Although initially LinUCB converges similarly to LinTS, it significantly outperforms
LinTS from the 200th iteration onward. Since the data provides 210 different object/pose
scenarios, this hints at a better exploitation of past experiences. On average the 211th iteration
is the first iteration when an object/pose combination appears that has been tried before.

In contrast to the linear models, the strategies based on approximations using k-nearest
neighbors and Gaussian Processes perform very well. Although very simple, the ϵ-greedy k-
NN is the second best and performs as good as LinUCB. The GP-UCB outperforms every
other strategy, achieving 76% success rate. This is due to the extrapolating qualities of the
GP whose predictions of grasp success in the point feature histogram space seem to be the
most reliable.
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Sensitivity to Disturbances

In a second experiment, wewanted to test how sensitive the action selection schemes are w.r.t.
false reward signals. It is a common problem in grasping to robustly determine whether a
grasp on a real physical platform was indeed successful. We circumvented this problem by
using human labeled data. For a fully autonomous system this is not an option. Commonly,
estimators for grasp success are based on force-torque readings at the wrist (assuming the ob-
jects have a significant mass) or image differencing of the workspace below the hand before
and after the grasp (assuming that objects fall down if they are not in force-closure). Never-
theless, such estimators will inevitably report false positives and false negatives.

To analyze how the selection strategies behave in these cases, we disturbed the reward
signal that is observed by the robot. We randomly used UPDATE_MODEL(at, 1 − rt)

in Algorithm 7.6 instead of UPDATE_MODEL(at, rt) in a pre-defined ratio of iterations,
while still counting the actual achieved reward. We tested the two best performing methods
from the previous experiment: ϵ-greedy k-NNandGP-UCB.Bothmethodswere confronted
with 0%, 10% and 30% disturbed reward signals; again running for 2000 trials.

The comparison in Fig. 7.9 shows that the ϵ-greedy k-NN is better at dealing with noise.
Their performance is already on par with only 10 % injected noise. With the highest level of
noise the ϵ-greedy k-NN method even performs slightly better than GP-UCB. This is due to
the relative high amount of constant exploration that the ϵ-greedy strategy conducts.

7.3 Limitations

The simulation data set has shown that, especially for larger objects, the proposed set of strate-
gies might be too limited. Another strong assumption is the presence of environmental op-
portunities such as edges and walls to detect the proposed strategies.

Both drawbacks can be mitigated by expanding the set of grasp types and exploitable con-
tact structures. Additionally, the algorithm only modifies a few grasp parameters such as the
approach direction based on its extracted representation of the environment; the geometric
description of the grasp itself has no influence (apart from rejecting it). Allowing modifica-
tions of grasp parameters would increase the strategies’ applicability. Finally, the proposed
geometric features only depend on depth measurements. They do not capture all relevant
physical properties needed to predict grasp success, e.g. the baseball was rolling away during
a wall grasp while the tennis ball succeeded (see Fig. 7.5). Color features could correlate with
such properties (Levine et al., 2016) and allow more accurate predictions.
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7.4 Related Work

According to our contributions, we decompose the relevant related work into two categories:
prior work that represents grasps based on sensor input to deal with novel scenarios, and
approaches that look at how to improve grasp performance based on accumulated experience.
For each category we emphasize similarities and differences concerning the problem at hand
and the proposed solution.

7.4.1 Descriptors for Modeling Grasp Success

Since general models based on contact forces require a lot of prior knowledge, a variety of
grasp representations have been proposed that describe the object’s local geometry in a grasp-
variant frame (Bohg et al., 2014). The advantage of the majority of these representations is
that they can be used with raw sensor data, thus, allowing grasp planning for unknown ob-
jects. Additionally, they can be learned fromdifferent data sources including real-world trials,
which circumvents the problems that occur when relying on realistic physics-based simula-
tions (Kappler et al., 2015). Examples are matching depth templates (Herzog et al., 2014),
histogram-like features (Fischinger et al., 2015), or image-based descriptors derived with con-
volutional architectures (Pinto andGupta, 2015), (Levine et al., 2016). Ourmethod is similar,
but differs w.r.t. the fact that our features exploit information of the relationship between
object and environment by aligning the depth data to the main axis of the exploited EC. An-
other difference is that our proposed solution must predict the outcome of a time-extended
contact interaction.

7.4.2 Grasp Selection as Exploration vs. Exploitation

The data-driven techniques cited above usually consider a training phase, requiring a large set
of grasp examples, followed by a test phase in which the learned grasp model is applied. We
focus on the problem of acquiring grasp experiences to make more informed decisions while
concurrently trying to grasp as successful as possible. Active learning approaches to grasping
favor grasps that have a high probability of success or large uncertainty. Salganicoff et al.
(1996) learn approach directions based on object dimensions, while Montesano and Lopes
(2012) use expected improvement as exploration criteria to find the most promising grasping
point based on image features. Kroemer et al. (2010) were the first to use a contextual bandit
setting to find grasps. They estimate the reward and its uncertainty of grasps in SE(3) via
Gaussianprocess regression and apply a variant ofUCB (Auer, 2002) to choose a grasp. Given
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a grasp model that is expensive to evaluate, the bandit setting can also be used to find good
grasps with as few samples as possible. Laskey et al. (2015) present a 2D graspingmodel based
on uncertainty in shape, pose, friction coefficient, and gripper approach and explore grasps
using a Bayesian MAB algorithm. A similar model was extended to 3D (Mahler et al., 2016).
Here, grasps are represented as local depth maps along the approach direction. In both of
thesemodels the gapbetween simulation and realitywasnot considered. Bandit formulations
are also used for large-scale grasp acquisition on real robotic systems (Oberlin andTellex, 2015,
Pinto and Gupta, 2015).

7.5 Conclusion

We presented a grasp planner for unknown environments capable of exploiting contact with
the environment. To develop our method, we relied on three contact-exploiting grasping
strategies. We showed that it is possible to learn perceptual models that predict the success of
these strategies based on a single depth image alone. We formulated the problem of deciding
among this small number of grasping strategies while improving the perceptual models’ pre-
dictive power from experience as a contextual multi-armed bandit problem. The quality of
the decision improves by incorporating context in the form of perceptual information.
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8
Beyond Grasping: Learning Dexterous

Manipulation for Soft Hands

We have shown in this thesis that compliant hands can be effectively used for grasp-
ing. But what about more dexterous manipulation tasks? In the context of grasping,

adaptability between hand and object – passive or active – is a beneficial effect. It allows us to
derivemore contact-rich strategies that take advantage of the environment. But for dexterous
manipulation, i.e., the deliberate control of the DOF of an object, passive adaptability might
be an insurmountable obstacle. Additionally, soft grippers usually lack sensing and precise
actuation. In this final chapter we want to tackle the challenges posed by soft mechanisms in
the context of manipulation. We will present an approach based on learning from demon-
strations (LfD) and reinforcement learning (RL) to solve simplemanipulation tasks with the
RBO Hand 2.

In LfD, the robot observes a human teacher solving a task and learns how to perform the
demonstrated task and apply it to new situations. Many manipulation tasks can be fully de-
fined by demonstrating the motion of one or multiple objects. These kinds of object-centric
demonstrations are intuitive and easy to provide. But because the robot does not directly
control the DOF of objects in the world, they cannot be imitated directly. One crucial chal-
lenge that we must address is to account for the mismatch between the morphology of the
human expert and the robot. We propose a reinforcement learning method to reproduce
object-centric demonstrations. Our algorithm automatically selects and blends demonstra-
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tions that the robot can follow most closely, while ignoring infeasible ones.
Our goal is to find a unified control policy that can generalize to a variety of initial states.

To achieve generalization, we train a single nonlinear neural network policy to reproduce the
behavior of multiple object-centric demonstrations. This approach follows the framework
of guided policy search (GPS) by Levine andAbbeel (2014) which is effective in learning high
dimensional control policies for robots using a very small number of samples. However, un-
like standard GPS, our approach requires only a set of object-centric demonstrations from
a human expert to learn a new skill, rather than hand-specified cost functions. We demon-
strate our approach on the RBO Hand 2, with learned motor skills for turning a valve and
manipulating an abacus.

8.1 Overview of the Algorithm

We take advantage of two general concepts to find manipulation strategies for soft robotic
hands: imitating human demonstrations and reinforcement learning. In order to learn from
human demonstrations, we exploit task-specific information offered by human demonstra-
tors using object-centric demonstrations, i.e., we only capture themotion of the object being
manipulated, not hand-specific information. We use reinforcement learning to learn a policy
which imitates these object-centric demonstrations. However, due to kinematic and dynamic
differences between the human hand and the RBOHand 2, it might be impossible to follow
some of these demonstrations. Hence, trying to imitate them closely is undesirable. We de-
scribe a novel demonstration selection algorithm that selectswhich demonstration to imitate,
and uses a reinforcement learning method to solve the problem of how to imitate.

We define our learning problem as optimizing a policy πθ to perform the demonstrated
task by learning from demonstrations. The policy maps observations to actions and is fully
parametrized by θ.

In order to learn this policy, we first train multiple different local controllers to imitate
the most closely achievable demonstration from their respective initial states. This involves
solving the joint problem of selecting the appropriate demonstration for each controller, and
using reinforcement learning to train each controller to actually follow its chosen demonstra-
tion. By modeling the objective as a minimization of KL divergence between a distribution
of controllers and a mixture of demonstrations modeled as Gaussians (see Sec. 8.2), this joint
problem reduces to an alternating optimization between computing correspondenceweights
that assign a demonstration to each controller, and optimizing each controller using an opti-
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Algorithm 8.7 Guided Policy Search with Demonstration Selection
for iteration k = 1 toK do

Generate samples {τ̄j} from each controller pj(τ̄) by running it on the soft hand.
Compute soft correspondence weights aij
Estimate system dynamics p(xt+1|xt, ut) from {τj}
for iteration inner = 1 to n do

Perform optimal control to optimize objective defined in Section 8.2
Perform supervised learning to match πθ with the samples {τ̄j}

return θ ▷ the optimized policy parameters

mal control algorithm. This algorithm can be usedwithin the BADMM-based guided policy
search framework (Levine et al., 2015), to train a neural network policy πθ to generalize over
the learned controllers. Thus, the three phases of our algorithm are (Alg. 8.7):

1. Perform a weight assignment which computes soft correspondences between demon-
strations and individual controllers (Sec. 8.2).

2. With the soft correspondences fixed, solve an optimal control problem based on the
correspondences and deviations from individual demonstrations (Sec. 8.3).

3. Perform supervised learning over the trajectory distributions from the optimal control
phase, using the framework of BADMM-based GPS (Sec. 8.4).

8.2 Learning Controllers From Multiple Demonstrations

As the first step to generalizing dexterous manipulation skills, we learn a collection of con-
trollers starting fromdifferent initial conditions, such that each controller imitates thedemon-
stration which is most closely achievable from its initial condition. This problem can be cast
as minimizing the divergence between two distributions: one corresponding to the demon-
strated trajectories, and the other related to the controllers.

For our given dynamical system, we define the states to be xt, and the actions to be ut

at every time step t. The system dynamics are specified by the model p(xt+1|xt, ut). Each
controller j is defined in terms of a conditional distribution pj(ut|xt). Together with the
dynamics model p(xt+1|xt, ut) the controller induces a distribution

pj(τ) = pj(x0)
∏

p(xt+1|xt, ut)pj(ut|xt)

181



Chapter 8▼ Beyond Grasping: Learning Dexterous Manipulation for Soft Hands

over trajectories τ = x1, u1, ..., xT , uT , where T is the length of an episode. We define

p(τ) =
C∑

j=1

1

C
pj(τ)

to be the uniform mixture of C individual controllers pj(τ). Our state xt can be expressed
as xt = [x̄t, x

′
t], where x̄t denotes the object-centric parts tracking the manipulated objects

and x′
t is the rest of the state. In our experiments, x̄t consists of positions and velocities of

motion capture markers placed on manipulated objects. Our objective is to match the con-
trollerswith the demonstrations but only over the object-centric elements (x̄) of the state. We
marginalize p(τ) to obtain p(τ̄), which is a uniform mixture of C distributions pj(τ̄), such
that

p(τ̄) =
C∑

j=1

wj pj(τ̄),

where wj = 1
C

and τ̄ = {x̄1, x̄2, ...., x̄T}. This distribution is over just the object-centric
trajectories τ̄ .

The distribution of D demonstrations over the trajectories τ̄ is modeled as a mixture of
multivariate Gaussians. It is given by

d(τ̄) =
D∑
i

vi di(τ̄) =
D∑
i

vi N (µi,Σi),

where µi = {x̄1, x̄2, ..., x̄T} is the trajectory of the objects recorded in each demonstration,
and the covarianceΣi is a parameter that decides how closely the demonstration needs to be
tracked by the controller. The number of demonstrations and controllers do not have to be
the same.

Our goal is to match the distribution of demonstrations with the distribution of con-
trollers, which we formalize as a KL divergence objective:

min
p(τ)

DKL(p(τ̄)||d(τ̄)).

Although the objective is defined with respect to the object-centric distributions p(τ̄), the
optimization is done with respect to the entire controller mixture p(τ)which includes other
parts of the state, and actions.
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Due to the mode seeking behavior of the KL divergence, this objective encourages each
pj(τ̄) to match the closest achievable demonstration. However, the KL divergence between
mixtures cannot be evaluated analytically. Methods such as MCMC sampling can be used
to estimate it, but we find a variational upper bound (Hershey and Olsen, 2007) to be most
suitable for our formulation. In order to simplify our objective, we decompose each mixture
weightwj and vi into individual variational parameters aij and bij , such that:∑

i

aij = wj and
∑
j

bij = vi .

We can rewrite

DKL (p(τ̄)||d(τ̄)) =
∫

p(τ̄) log
p(τ̄)

d(τ̄)

=

∫
−p(τ̄) log

∑
i,j bij di(τ̄)

p(τ̄)

= −
∫

p(τ̄) log
∑
i,j

bij di(τ̄) aij pj(τ̄)

aij pj(τ̄) p(τ̄)
.

From Jensen’s inequality we get an upper bound as follows:

DKL (p(τ̄)||d(τ̄)) ≤ −
∫

p(τ̄)
∑
i,j

aij pj(τ̄)

p(τ̄)
log

bij di(τ̄)

aij pj(τ̄)

= −
∑
i,j

∫
pj(τ̄)aij log

bij di(τ̄)

aij pj(τ̄)

=

[∑
i,j

aij

∫
pj(τ̄) log

pj(τ̄)

di(τ̄)

]
−

[∑
i,j

aij log
bij
aij

]
=
∑
i,j

aijDKL (pj(τ̄)||di(τ̄)) +DKL (a||b) .

Thus, our optimization problem becomes

min
p(τ),a,b

∑
i,j

aijDKL (pj(τ̄)||di(τ̄)) +DKL (a||b) . (8.1)

While the first term
∑

i,j aijDKL(pj(τ̄)||di(τ̄)) depends on the distribution p(τ), the sec-
ond term DKL(a||b) depends on the mixing components aij and bij but is independent
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of the distribution p(τ). Hence, we can perform the optimization in two alternating steps.
We first optimize DKL(p(τ̄)||d(τ̄)) with respect to a and b, followed by an optimization
of DKL(p(τ̄)||d(τ̄)) with respect to p(τ). This gives us a block coordinate descent algo-
rithm in {a, b} and p. The convergence of the algorithm is guaranteed by the convergence of
the block coordinate descent method on a quasiconvex function and the fact that KL diver-
gence is quasiconvex. The convergence properties of the weight assignment phase are shown
by Hershey and Olsen (2007).

Intuitively, the first optimization with respect to a, b is a weight assignment with the cor-
respondence weight aij representing the probability of assigning demonstration i to con-
troller j. The second optimization with respect to p(τ), keeps the correspondence param-
eters a, b fixed, and finds optimal controllers using an optimal control algorithm tominimize
a weighted objective specified in Eq. 8.2.

Weight Assignment Phase

The objective functionDKL(p(τ̄)||d(τ̄)) is convex in both a and b. Thus, we can optimize it
by keeping one variable fixed, and vice versa. This yields the following closed form solutions:

bij =
vi aij∑
j′ aij′

and aij =
wj bij e

−DKL(pj(τ̄)||di(τ̄))∑
i′ bi′j e

−DKL(pj(τ̄)||di′ (τ̄))
.

In order to compute the optimal a and b, we alternate between these updates for a and b until
convergence.

Controller Optimization Phase

Once the optimal values for a and b have been computed, we fix these as correspondences
between demonstrations and controllers and optimize Eq. 8.1 to recover the optimal p(τ).
As a and b are fixed,DKL(a||b) is independent of p. Hence, our optimization becomes:

min
p(τ)

∑
i,j

aijDKL(pj(τ̄)||di(τ̄)) =
∑
i,j

aij
(
−Epj(τ̄) [log di(τ̄)]−H (pj(τ̄))

)
=
∑
j

−wjH(pj(τ̄))−
∑
i,j

aijEpj(τ̄) [log di(τ̄)] .
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Factorizing the optimization independently over each of the controller distributions, we op-
timize the following objective for each controller pj(τ):

− wjH(pj(τ̄))−
∑
i

aijEpj(τ̄)[log di(τ̄)]=−wj

(
H(pj(τ̄))+

∑
i

aij
wj

Epj(τ̄)[log di(τ̄)]

)
.

(8.2)

In practice, the weight assignment is performed independently per time step, as the con-
trollers we consider are time varying.

8.3 Controller Optimization With an LfD Objective

While the controller optimization phase could be performed with a variety of optimal con-
trol and reinforcement learningmethods,we choose a simple trajectory-centric reinforcement
learning algorithm that allows us to control systems with unknown dynamics, such as soft
hands. Building on prior work, we learn time-varying linear Gaussian controllers by using
iteratively refitted time-varying local linear models (Levine and Abbeel, 2014). This assumes
Gaussian system noise and has been shown towork well in practice for robotic manipulation
systems. Action-conditionals for the time-varying linear-Gaussian controllers are given by

pj(ut|xt) = N (Kjtxt + kjt, Cjt) ,

whereKjt is a feedback term and kjt is an open loop term. Given this form, themaximum en-
tropy objective (Eq. 8.2) canbe optimizedusing differential dynamic programming (Jacobson
andMayne, 1970, Levine andKoltun, 2013). Sincedi(τ̄) is amultivariateGaussianN (µi,Σi),
we can rewrite the optimization problem in Eq. 8.2 as

min
pj(τ)

∑
t,i

aijt∑
i′ ai′jt

Ex̄t∼pj(τ̄)

[
1

2
(x̄t−µit)

TΣ−1
i (x̄t−µit)

]
−H(pj(τ̄)),

where we express the objective as a sum over individual time steps. In this maximum entropy
objective, the cost function is defined as the expectation of a sum of l2 distances of trajectory
samples to each demonstration, weighted by the normalized correspondence weights aij∑

i′ ai′j
.

The trajectory samples denote the trajectories of the objects which we recover through object
markers, and we compute the l2 distance of these samples to the object-centric demonstra-
tions.
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Under linearized dynamics, this objective can be locally optimized using iLQG (Li and
Todorov, 2004). However, for robots like the RBO Hand 2, the dynamics are complex and
difficult to model analytically. Instead, we can fit a time-varying locally linear model of the
dynamics to samples obtained by running the physical system in the real world:

p(xt+1|xt, ut) = N (Fxtxt + Futut | Cd).

The dynamics matrices Fxt and Fut can then be used in place of the system linearization to
optimize the controller objective using iLQG. It is important to note here that the iLQG op-
timization learnsKjt, kjt andCjt, while the term aij∑

i′ ai′j
is learned in the weight assignment

phase and kept fixed for the iLQG optimization.
One issuewith optimizing a controller using fitted local dynamicsmodels is that themodel

is only valid close to the previous controller. The new controller might visit very different
states where the fitted dynamics are no longer valid, potentially causing the algorithm to di-
verge. To avoid this, we bound the maximum amount the controller changes between itera-
tions. This can be expressed as an additional constraint on the optimization:

DKL (pj (τ) ||p̂j (τ)) < ϵ, (8.3)

where p̂j(τ) is the previous trajectory-controller and pj(τ) the new one. As shown by Levine
et al. (2015), this constrained optimization problem can be formulated in the samemaximum
entropy form as Eq. 8.2 using Lagrange multipliers. It is solved via dual gradient descent (for
details and a full derivation see Levine andAbbeel (2014) and Levine et al. (2015)). In practice,
each iteration of this controller optimization algorithm involves

1. generatingN samples on the real physical system by running the previous controller,

2. fitting a time-varying linear dynamics model to these samples,

3. and optimizing a new controller pj(τ) by solving the constrained optimization using
dual gradient descent, with iLQGused to optimizewith respect to the primal variables
Kjt, kjt, andCjt.

This can be viewed as an instance of model-based reinforcement learning.
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8.4 Supervised Learning Using Guided Policy Search

The multiple controllers defined in the previous section learn to imitate the most closely im-
itable demonstration from their individual starting positions. However, given an unseen
initial state, it is not clear which controller pj(τ) should be used. For effective generalization,
we need to obtain a single policy πθ(ut | xt) that will succeed under various conditions. To
do this, we extend the framework of guided policy search (Levine et al., 2015) to combine
controllers into a single nonlinear neural network policy.

We learn the parameters θ of a neural network πθ to match the behavior shown by the
individual controllers by regressing from the statext to the actionsut taken by the controllers
at each of the N samples generated on the physical system. In general, a simple supervised
learning setting is not in guaranteed toproduce a policywith good long-horizonperformance.
In fact, supervised learning is effective only when the state distribution of πθ matches that of
the controllers pj(τ).

To ensure this, we use the BADMM-based variant of GPS (Levine et al., 2015), which
modifies the cost function for the controllers to include a KL-divergence term to penalize
deviation of the controllers from the latest policy πθ at each iteration. This is illustrated in
Algorithm (8.7), by first assigning correspondences between demonstrations and controllers,
then alternating between trajectory optimization and supervised learning at every iteration,
eventually leading to a good neural network policy πθ.

8.5 An Illustrative Example

In order to illustrate our method, we will apply it to a simple low-dimensional control prob-
lem: moving a unit mass particle on a line to a target position. This example allows us to gain
a better understanding of the iterative learning process by visualizing the resulting policies,
sampled trajectories, and weight assignments.

The state of the one-dimensional system is described by the particle’s position x ∈ IR and
velocity ẋ. The action u ∈ IR is a force that can be applied (or acceleration since the particle
has a unit mass). We provideD = 2 demonstrations of our positioning task: xd1(t) = −10
and xd2(t) = 10. All demonstrations are constant over all time steps of an episode. We
learn C = 2 controllers, parametrized over 50 time steps. The initial state of the particle is
always zero. We initialize the correspondence weights that associate each controller with each
demonstration uniformly. The network policy πθ is a fully connected neural net with two
inputs (position x and velocity ẋ), two hidden layers and a single output (the force to apply).
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Figure 8.1: The plots illustrate the learning progress. We depict the point-mass system at three different iterations. For

each iteration we show the phase portraits of the sampled roll-outs using the two local controllers. See text for details.
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8.6 Controlling the RBO Hand 2

We run our learning algorithm for five iterations, each controller collects three samples per
iteration.

Fig. 8.1 visualizes the learning progress by emphasizing the state of the network policy and
the local Gaussian feedback controllers after one, two, and nine iterations (displayed in three
columns). We can see that the cost is reduced rapidly. Remember that the cost is the distance
of the controller samples to the demonstrations, weighted by the learned correspondence
weights. The samples which are roll-outs of the two controllers are shown in the second row
as phase portraits. Notice that they are quickly getting closer to the desired demonstrations
marked by dashed vertical lines. Since we do not penalize the control magnitude with an
additional cost term, we can see that the sample runs increase in velocity with each iteration
to arrive faster at the goal locations. The correspondence weights (shown in the third row)
also converge quickly to reasonable values. The weight aij indicates how much controller i
imitates demonstration j. Initially, these weights are all the same (0.5). Already after the first
learning iteration, they converge to a11 = a22 = 0 and a12 = a21 = 1. This means that
controller 1 decides to always imitate demonstration 2, while controller 2 imitates demonstra-
tion 1.

The last three rows visualize the two controllers which are optimized with iLQG and
the final neural network policy. Since they are time-variant, we depict them for the time
step t = 25. The color of the phase portraits indicate the action u that would be taken
in the state (x, ẋ). We can observe that the actions of controller 1 are positive (u > 0) to
reach the target position xd2(t) = 10. Controller 2 shows the opposite behavior to reach tar-
getxd1(t) = −10. The network policyπθ generalizes the behavior of both controllers. If the
position x > 0 it drives the particle towards xd2 and vice versa. Overall, the fast convergence
is due to the simple nature of the problem.

8.6 Controlling the RBO Hand 2

The RBO Hand 2 (see Sec. 1.1.5) is an inexpensive, compliant, underactuated robotic hand
which has been shown to be effective for a variety of grasping tasks. It consists of seven actua-
tors which are controlled via external air valves and a separate air supply. Control is challeng-
ing since the air valves can only be either fully closed or fully open and have a switching time
of∼0.02 s. Each actuator has a pressure sensor located close to the air valve.

The hand is controlled by specifying valve opening durations to either inflate or deflate a
single actuator. We turn the discrete valve actions into a continuous control signal using pulse
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width modulation. Given a constant frequency of 5Hz, the control signal is interpreted as
the duration the inflation (if it is positive) or deflation (if it is negative) valve is opened during
a single time step. To ensure that the control signal does not exceed the duration of a single
time step we apply a sigmoid function to the commands from the learning algorithm.

The positions and velocities of the manipulated objects are captured in real time with a
PhaseSpace Impulse system, which relies on active LED markers. The state xt of our system
is the concatenation of the seven pressure readings of the hand, their time derivatives, the 3D
positions and velocities of markers attached to the object, and joint angles of the robot arm
(depending on the task). We placed no LED markers on the hand itself, only the object was
equipped to record object-centric demonstrations, and the positions and velocities of these
markers constitute the object-centric state x̄t.

8.7 Experiments

We evaluated our algorithm on a variety of manipulation and grasping tasks. Our experi-
ments aim to show that:

1. It is possible to perform fine manipulation with the RBO Hand 2.

2. Our algorithm can learn feedback policies fromdemonstrations that performnearly as
well as an oracle with the correct demonstrations (depending on the context)manually
assigned to controllers.

3. A single neural network policy learned from demonstrations with our method is able
to generalize to different initial states.

We will evaluate our learning approach on three different tasks: turning a valve, pushing
beads on an abacus, and grasping a bottle (see Video Fig. 8.1). For the first two tasks, we com-
pare our method to the following baselines:

• Hand designed baseline: A controller with a hand-designed open loop policy. In
the case of the abacus task, we evaluate the performance of two different strategies for
simple hand-designed baselines.
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Video Figure 8.1: The three manipulation tasks used in our experiments: Turning a valve, pushing beads on an abacus,

and grasping a bottle from a table. [https://youtu.be/XyZFkJWu0Q0]

• Singledemobaseline: A single controller trained to imitate a single demonstration.
We use two separate baselines which are trained to follow different demonstrations.

• Oracle: Depending on the contextwemanually assign the correct achievable demon-
stration to controllers. This comparison is useful to test whether the correspondence
assignments are accurate.

8.7.1 Turning a Valve

Rotating a gas valve is a challenging task since it involves coordinating multiple fingers. Our
valve consists of a blue horizontal lever that increases its range of motion (Video Fig. 8.1).
Varying wrist positions along the lever require different finger motions to rotate it.

We mount the RBO Hand 2 on a PR2 robot arm, with the objective to rotate the valve
away from the initial center position in either direction, using just its fingers. The arm is
kept stationary for each episode, but changes positions between the training of different con-
trollers. The joint angles are part of the state to determine the relative position of the hand
with respect to the valve.

A human demonstrated three different valve rotations with their own hand, while two
LED markers tracked the motion of the lever. Two demonstrations were of the valve rotat-
ing clockwise and anti-clockwise at the same position, and a third demonstration with the
valve placed at a different position and rotated anticlockwise. All three demonstrations are
valid for the task, but not all of them are achievable from every training position. Our al-
gorithm trained three individual controllers and a single neural network policy to generalize
over them.
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Figure8.2: Comparisonofdifferentpolicies for thevalve task: thedashedblack line indicates thedemonstrated rotation

of the valve by approximately 35◦. On average ourmethod learns themost general feedback strategy. The box plot com-

pares fivemethods for four different test positions. Although the baselines do well in some positions, the only methods

which do consistently well across all positions are ourmethod and the oracle.

Results and Discussion

During evaluation, the policy learnedby eachmethodwas sampled ten times at four positions
of the hand relative to the valve. The results in Fig. 8.2 show that our method generates the
most robust policy compared to the baselines, which each fail to turn the valve significantly in
at least one position. Ourmethod does nearly as well as the oracle, for which demonstrations
are assigned to controllersmanually. While learning the correspondenceweights and the indi-
vidual controller policies, our method determines which of the demonstration it can actually
perform from its initial positions, and disregards distant unachievable demonstrations.

Our method is able to learn distinctly different behavior at various test positions. At posi-
tion 1, the policy pushes the lever using its last two fingers, with support given by the thumb.
At position 2, the policy uses the thumb to rotate the valve by pushing the lever as the fingers
are blocked. At position 3, our policy extends the thumb out of the way and pushes strongly
with the index finger to rotate the valve. Simple open loop hand-designed strategies and the
baselines learned from a single demonstration fail to learn this distinctly different behavior
needed to generalize to different positions along the valve lever. By learning that different
joint angles of the arm require different behaviors to be performed, our method is able to
perform the task in various initial conditions.
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Bead Target Ours SingleDemo1 SingleDemo2 Oracle HandDesign1 HandDesign2

1 8.4 7.49± 0.47 7.02± 0.50 6.33± 2.15 7.66± 0.23 8.38± 0.04 0± 0

2 0 0.14± 0.18 0.60± 0.69 7.08± 1.04 0.27± 0.42 0± 0 6.5± 0

3 0 0.89± 1.00 0.28± 0.18 1.23± 2.20 1.08± 0.72 0± 0 8.43± 0.29

Bead Target Ours SingleDemo1 SingleDemo2 Oracle HandDesign1 HandDesign2

1 8.4 7.95± 0.19 1.04± 2.15 7.27± 0.65 7.52± 0.66 0.00± 0.00 8.38± 0.08

2 0 0.10± 0.10 0.85± 1.21 0.19± 0.14 0.09± 0.11 0.00± 0.00 8.40± 0.00

3 0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Bead Target Ours SingleDemo1 SingleDemo2 Oracle HandDesign1 HandDesign2

1 8.4 7.21± 0.69 2.47± 2.22 3.39± 1.98 7.74± 0.23 0.00± 0.00 8.38± 0.05

2 0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

3 0 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 8.1: Comparison of the distance moved by the various beads in cm using different policies for the abacus task,

at 3 different positions, namely Positions 1, 2 and 3 going downwards. The target column in each table indicates the

demonstrated movement of the three beads, and the other columns indicate the mean and standard deviation of other

methods. On average ourmethod learns themost general feedback strategy besides the oracle

8.7.2 Pushing the Beads of an Abacus

TheRBOHand 2 is required to push particular beads on an abacus while leaving other beads
stationary. This task is challenging due to the precise individual finger motions needed to
move only the desired beads. The hand is mounted on a stationary PR2 arm (Video Fig. 8.1),
while the abacus is moved to several positions. The beads of relevance here are the central
yellow, orange and red ones. Markers were attached to each of the three beads to capture
theirmotion. As the position of the abacuswith respect to the hand changes, different fingers
need to be used. During demonstrations a human pushed only the yellow beads along their
spindle at each of the three positions shown in Fig. 8.1.

Results and Discussion

We evaluated ten samples of each policy at each of the three positions and recorded the dis-
tances that each bead moved. The results are shown in Fig. 8.1. Our method moves the bead
closer to the target position than the single demonstration and hand designed baselines for
all the test positions. Only the oracle policy produces equally good performance. By inter-
leaving selection of the right demonstration to imitate, with optimal control and supervised
learning, our algorithm is able to learn a policy which uses discretely different fingers depend-
ing on the positions of the abacus relative to the hand. On the other hand, the hand-designed
baselines being open loop can never learn different behaviors for different fingers. The con-
troller trained at a single position fails because it has no notion of generalization.

193



Chapter 8▼ Beyond Grasping: Learning Dexterous Manipulation for Soft Hands

©
20
16
IE
EE

Figure 8.3: Execution of a learned policy to grasp a bottle. Ourmethod learns to grasp the bottle tightly and performs as

well as the hand designed baseline.

8.7.3 Grasping a Bottle

This task involves using the soft handmounted on amoving arm, to grasp a deodorant bottle
placed on a table. The arm has a scripted motion of moving up after 8 seconds, and we use
reinforcement learning to learn the behavior of the fingers to go with this arm motion. The
objective of the task is to grasp the bottle before the arm starts moving and keep it grasped
until the end of the episode at the final arm location.

As grasping tasks for several objects largely succeed in open loop, our aim is to demonstrate
that we can match the performance of a hand-designed baseline with a controller learned
from a human demonstration through optimal control. This experiment is challenging for
reinforcement learning algorithms due to the delayed nature of the reward signal in grasping.

We provide a demonstration of the bottle being lifted by a human, and use it to define
the cost function for trajectory optimization as the l2 distance of trajectory samples from
the provided demonstration. We also apply a Gaussian filter to the noise generated in the
controllers to be more temporally coherent, allowing tight grasping. The resulting learned
control policy is then tested on 10 sample trajectories in order to evaluatewhether a successful
grasp has occurred where the objected is lifted and kept at the maximum arm height.

Results and Discussion

We find that on the grasping task, the control policy learned through optimal control does
just as well as a hand-designed policy on ten samples of grasping the bottle. Both the hand-
designed policy and the learned policy were able to grasp the bottle for all 10 test samples.
This indicates that the learning has comparable results to a hand-designed baseline, despite
not having prior information besides a human-provided demonstration.
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8.7.4 Limitations

Although theLfDalgorithmshowsgoodperformanceon several tasks using theRBOHand2,
there aremany directions for futurework. Instead of using amotion capture system,we hope
to use better computer vision techniques such as deep convolutional nets to track trajectories
of relevant feature points in future work. Extending the neural network policy to learn poli-
cies dependent on just the pressure sensors in the fingers and/or additional tactile sensors,
would be an exciting future direction.

8.8 Related Work

8.8.1 Dexterous Manipulation Using Planning

A variety of methods for generating manipulation behaviors with multi-fingered hands are
based on planning. These approaches assume that a detailed model of the hand and object is
available a priori. They generate open-loop trajectories that can be executed on real hardware.
There exist planners that integrate contact kinematics, non-holonomic motion constraints,
and grasp stability to come up with manipulation plans based on finger gaits (Han and Trin-
kle, 1998), rolling and sliding fingertip motions (Cherif and Gupta, 1999), or nonprehensile
actions involving only the palm (Bai and Liu, 2014). Optimization-based techniques (Mor-
datch et al., 2012) have also been used for in-handmanipulation tasks. All of these approaches
rely on detailed models, or make simplifying assumptions about the system. Modeling and
simulating the behavior of a soft hand like the RBO Hand 2 is computationally expensive,
since it requires finite-element method models (Polygerinos et al., 2015) to achieve accuracy.
Moreover, it is extremely hard to do accurate system identification on such systems. In order
to tackle this problem, our approach does not rely on detailed apriori models but learns the
task-specific consequences of actions from interactions of the real hardware with the environ-
ment, during a task. Li et al. (2013) present a reactive control strategy to locally manipulate
objects in a bi-manual setup. The method does not require rich object models but it is based
on rich sensor feedback. In contrast, our method needs to deal with noisy, ambiguous pres-
sure readings.

8.8.2 Reinforcement Learning for Manipulation

In order to avoid planning with fixed handcrafted models, control policies that solve con-
tinuous manipulation problems can be found using reinforcement learning. A widely used
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approach is to learn the parameters of a dynamicmotor primitive (Ijspeert et al., 2003) (DMP)
with relative entropy policy search (Peters et al., 2010) or PI2 (Theodorou et al., 2010). This
has beenused to learn strikingmovements (Mülling et al., 2013) andbi-manual transportation
tasks (Kroemer et al., 2015). Although DMPs are often used to describe the kinematic state
of a system, they can be used to generate compliant behavior for picking up small objects or
opening doors (Kalakrishnan et al., 2011). However, DMP’s typically require either a model
of the system or the ability to control kinematic state, neither of which is straightforward on
a soft hand that lacks position sensing.

Controllers for reaching and grasping have been learned by approximating theQ-function
with a multilayer perceptron (Lampe and Riedmiller, 2013). Policy search methods have suc-
ceeded in trainingneural network controllers to solve contact-richpeg-in-hole-like tasks (Levine
and Abbeel, 2014) based on positional or visual feedback (Levine et al., 2015).

Some RL methods for manipulation have been applied to in-hand manipulation. van
Hoof et al. (2015) learn a policy based on tactile feedback which lets an underactuated hand
slide cylindrical objects horizontally while being rolled between two fingers. Similar to our
work is the learningmethod for an in-hand rotation tasks by Kumar et al. (2016). In contrast,
we learn global policies that aim to generalize local solutions.

8.8.3 ExploitingHumanDemonstrationsforLearningManipulationSkills

Learning fromdemonstrations has been effective in teaching robots toperformmanipulation
tasks with a limited amount of human supervision. By building statistical models of human
demonstrations, gestures (Calinon and Billard, 2007) and dual-arm manipulations (Asfour
et al., 2008) have been reproduced on robotic systems. Pure LfD can lead to suboptimal be-
havior when demonstrator and imitator do not share the same embodiment. To circumvent
this problem the learning objective is often extended with additional feedback. This can be
provided by a human, e.g. in the case of iteratively improving grasp adaptation (Sauser et al.,
2012). Alternatively, demonstrations can provide the coarse structure of a solution, while the
details are iteratively refined and learned by the imitator itself. This has been shown for dex-
terousmanipulation (Prieur et al., 2012)where an in-handmanipulation is broken down into
a sequence of canonical grasps.

In combination with reinforcement learning, demonstrations often serve as an initial pol-
icy rollout or they constrain the search space by providing building blocks. This has been
applied to reaching motions (Guenter et al., 2007) and dynamic manipulation tasks.
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8.9 Conclusions

We presented an algorithm for learning dexterous manipulation skills with a soft hand from
object-centric demonstrations. Unlike standard LfD methods, our approach only requires
the human expert to demonstrate the desired behaviors with their own hand. Our method
automatically determines the most relevant demonstrations to track, using reinforcement
learning to optimize a collection of controllers together with controller to demonstration
correspondences. To generalize the demonstrations to new initial conditions, we utilize the
GPS framework to train nonlinear neural network policies that combine the capabilities of
all of the controllers.

We evaluated our method on the RBO Hand 2 and showed that it is capable of learning
a variety of dexterous manipulation skills, including valve turning and moving beads of an
abacus. Although these tasks are rather simple, the results are promising. They show that
despite the challenges associated with adaptable hands (lack of sensing, hard to model, noisy
actuation) more elaborate manipulation skills beyond the common grope and hope (Mason,
2015) paradigm are possible.
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9
Conclusion

In this thesis, we have tackled the problem of planning robotic grasps by focusing on
two ideas: howcanwe effectively use the adaptability of hands andhowcanwe exploit the

environmental features surrounding the target object. We now summarize our main insights
and revisit the core challenges of robot grasping from the introduction. We will finish this
chapter by reflectingon the limitations of our approach and fruitful future researchdirections
revolving around our view on grasping.

We restricted our investigations in Part I towards the interactions betweenhand andobject.
We initially observed and analyzed human grasp performance using robotic hardware. By in-
creasingly limiting the feedback and grasp decisions the human could take, we could show
that grasp success is not severely hampered. Thus, the underlying temporal and spatial struc-
ture of the grasps must be much lower-dimensional than the observed behavior. This effect
is amplified when considering compliance and adaptability in the graspingmechanism. Even
when initial conditions such as object geometry and pose are varied, the same commanded
actions lead to a successful grasp, because fingers passively comply andwrap around different
shapes or they pull the object towards the palm. The human operators often used only two
different pre-shapes to configure the hand’s internal DOF and selected a specific pre-grasp
pose of the hand to grasp many different objects successfully. We called the closing motion
of the fingers in conjunction with a certain pre-shape a compliance mode. We further in-
vestigated the relation between a compliance mode and the pre-grasp pose, resulting in the
Sun-Flower-Annulus hypothesis (SFA, Sec. 2.2). SFA showed that the size of an object (rel-
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ative to the hand) significantly affects the sensitivity of grasp success w.r.t. to a specific pre-
grasp pose. The larger an object the more important it is to correctly match the compliance
mode with the object’s shape. We could also show that e.g. for a compliance mode with a
cylindrical pre-shape the pre-grasp pose should be orthogonal to the largest principal axis of
elongated objects (something that was also shown in human reaching actions byWentworth
et al. (2000)). Based on this grasp representation we derived two grasp planning algorithms.
The first one used active vision to extract the information for the appropriate compliance
mode and pre-grasp pose of unknown objects. The second method used a depth image and
did not depend on excessive motions to extract this information. The experiments showed
that the algorithms choose the most appropriate compliance mode for different objects and
achieved significant grasp success.

In Part II, we ignored objects, but rather focused on the effects between hand and environ-
ment. We derived two methods that exploit contact with the environment to increase task
success. The first one is based on searching through a continuous state and action space and
explicitly represents uncertainty due to noisy motion execution. Since we encoded the fact
that contact observations are uncertainty-free, the resulting motion policies are concatena-
tions of free-space movements and guarded moves or slides across surfaces. We showed that
the resulting search space is still feasible for motion problems with a 7-DOF arm and that the
policies are also robust when artificially adding noise. Our second method did not represent
uncertainty but was based on a discretization of the sensed environment. We matched envi-
ronmental features with contact exploiting actions such as sliding, wall-constrained, surface-
constrained, or edge-constrained grasping. Due to this discretization the resulting search
space is much smaller compared to the first method. We called these types of actions envi-
ronmental constraint exploitations (ECE). Sequences of ECEs can be used to grasp objects in
a variety of environments. We also showed that these environmental-constrained grasps are
more powerful than those that ignore or avoid the environment.

Part III finally included all components: the hand, object, and environment. We showed
that we can extend our grasp planner to include object properties. This was done locally by
adapting grasp parameters to account for object properties. But we also showed how to do
this globally, be selecting the most promising EC grasp. Our presented approach, learned
from experience that flat objects should preferably be grasped by first pulling them to an
edge. It was also learned that non-flush objects are successfully picked up by using a wall-
constrained grasp. We then investigated a scenario in which learning is an incremental, never-
ending process. The robot repeatedly has to decide whether to chose a known grasp or ex-
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Initial conditions

Successful grasps
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Figure 9.1: We visualize

grasping algorithms as

consecutive funnels, trans-

forming initial configurations

into successful grasps

through the use of hand com-

pliance and environmental

constraints.

plore a new grasp which might work better. Our results showed that it is best to take the
uncertainty of the expected result into account. But it also showed that a simpler model is
less prone to disturbances of the detected grasp success. We finally investigated how a soft
hand such as the RBO Hand 2 could be used in manipulation problems that do not exhibit
the low-dimensional structure like grasping. Although models for such soft mechanisms are
hard to derive manually and sensing capabilities are limited, we presented an approach that
could learn simple manipulations based on trial-and-error.

9.1 Discussion of Grasping Challenges

We defined three main challenges as part of the grasping problem in the introduction (see
Chapter 0). We will now revisit them and discuss how our thesis approached them.

Graspdecisionsarehigh-dimensional: Any approach that synthesizes robot grasps
needs to deal with the high dimensionality of grasping motions. In this thesis, we used two
ideas to guide the process of reducing this dimensionality: exploiting hand compliance and
environmental stiffness. We extracted a reduced set of compliance modes based on the regu-
larities found in interactions between hand and object. Furthermore, we used prototypical
interactions between hand and environment to enhance the grasping repertoire. As a result,
this discretized action space can be searched effectively while still being expressive enough to
allow for general and robust grasping behavior.

We can now revisit and extend our funnel view of grasping (Sec. 2.3). Originally, this view
included funnel transformations that were due to hand compliance. By incorporating the
idea of contact with the environment during grasping, additional funnel transformations
can be exploited. Fig. 9.1 is an updated version of Fig. 2.12. It shows grasp planning as the
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sequencing and selection of appropriate funnel transformations which are due to compliant
interactions between hand, object, and environment.

Contact ishardtomodel: Contact phenomenadependon amultitude of parameters
and are computationally expensive to evaluate from first principles. Simulating the effects
of contact in the context of grasping does not easily scale to large time horizons and many
number of contacts. Thus, many grasp approaches resort to static models or approximations
and do not include seemingly irrelevant aspects such as the environment. We also heavily
simplify the evaluation of interactions between hand and object by reducing them to a few
hand-specific compliance modes. But instead of completely ignoring the environment we
identify reoccurring high-level contact interactions between hand and environment. These
include the surface-constrained, edge-constrained, and wall-constrained grasps.

In summary, we do not model contact at the level of local small-scale interactions between
rigid bodies. Insteadwe heavily discretize the effect on the object level and extract few reliable
interaction phenomena. By doing so, we can also incorporate interactions between hand,
object, and environment rather than focusing only on interactions between hand and object.

Information is always incomplete: We exploit hand adaptability to reduce the
amount of information required. We do this bymatching compliancemodes to prototypical
shapes which do not need to perfectly represent the object geometry as shown in Sec. 3.2. Fur-
thermore, we extract only grasp-relevant information as shown in the algorithm presented in
Sec. 3.1. The compliant hands which create large contact patches when enveloping the object
also limit the required knowledge. These grasps are robust to significant variations in mass,
center of mass, and inertia tensor of the object. Finally, our grasp strategies that exploit the
environment succeed for a variety of different objects as was shown in Sec. 7.1.3. By exploiting
the regularities in the environment we can further reduce the need to extract detailed object
knowledge for grasping.

9.2 Limitations and Directions for Future Research

We already emphasized the technical limitations of the presented algorithms in each chapter.
In the following we list a number of more general limitations of the approach presented in
this thesis. These limitations also serve as a starting point for possible future work.
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Strong theoretical background missing: We explained the most prominent as-
pects of the classical model of grasp analysis in Sec. 1.2. This theory has evolved over years
and is characterized by a sound and powerful mathematical language. In contrast, our fun-
nel view of grasping sketched in Sec. 2.3 is muchmore vague and described through analogies.
It still lacks a mathematical foundation which allows it to be used in a generative manner.

Our intentionwith this viewwas to emphasize the importance of low-level hand adaptabil-
ity in high-level grasp planning. In the past, the classical view on grasping has not been able to
transfer its insights from theory to robot grasping in the real world, dealing with realistic sen-
sor measurements and limited prior object knowledge (see Sec. 1.2.5). We do not think that
our funnel view contradicts the classical theory. Ultimately, both views should be merged. A
mathematical formalization would simplify this process. There are formal frameworks that
investigate this direction such as the theory of soft synergies (Bicchi et al., 2011). We think that
it will be beneficial go further in this direction.

Too specific for certain hand designs: Although we showed our grasping strate-
gies on different robotic hands, the different actions were always hand-engineered based on
the specificmorphology and actuation. This processmight be tediouswhen trying to use our
approach with novel hands and knowledge about their particular behavior is missing. Algo-
rithm 6.5 can be used to automatically adapt grasp parameters and it will also take the hand
design into account. But this search is uninformed and thus only suited to search a rather
restricted volume of parameter values locally.

Discretization of grasp actions is too restrictive: Similar to the previous lim-
itation is the fact that the set of discretized grasp actions that was presented might be too
limited and again, requires human engineering intuition to be found. Our strategies were
usually structured by moving the wrist and finishing a grasp by closing all finger simultane-
ously. In some cases, a richer low-level action vocabulary might be useful.

The Barrett Hand is able clamp objects between its fingers (called the “abduction grip”
according to the taxonomybyFeix et al. (2009)). This is useful for small objects that cannotbe
enveloped and pressed against the palm. It is oftenmore stable than using the fingertips, since
the side of the fingers provide a larger homogeneous contact area. Another potentially useful
grasp is the precision grasp with the RBO Hand 2 which brings index finger and thumb nail
into contact. In this case the thumb actuator needs to be inflated first, followed by the index
actuator. In general, an appropriate grasp vocabulary needs to find the sweet spot between
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expressiveness and feasibility of the resulting search space.

Discretization of environment is too restrictive: The planning of ECEs de-
pends not only on the internal DOF of the hand but also an what the environment affords.
Although our experiments showed that the environment could often be discretized into ECs,
there might be cases in which it fails. A bowl is an example, since objects can be slid along its
surface but it might not be detected as slidable at a certain curvature. This problem can be
circumvented by introducing new ECs. A similar problem occurs when we are dealing with
more cluttered scenarios.

Limitations due to problem factorization: We clearly suggest to break down the
boundaries between hand design, control and planning in robot grasping. Still, our attempt
to overcome these boundaries relies on human intuition: We observe and analyze effects in
one of the original factors and try to transfer these insights. This process was facilitated by
closely working together with hand designers in the context of the SOMA * project.

A less biased way to achieve this is to formulate problems such that they spanmultiple fac-
tors, i.e., the factorization is part of the solution. Deimel et al. (2017) search in the combined
space of hand designs and grasping strategies. Although their approach is still limited in the
amount of design andmotion parameters, it is a promising direction to pursue. The same dis-
tinction holds for representations used in planning, control and perception. In this case the
field of deep reinforcement learning with its “pixel-to-torque” mantra offers valuable future
research directions.

Solving optimization problems that span hand design, grasp planning, control and per-
ception might still be far-fetched. But it is ultimately needed to overcome the local minima
imposed by wrong problem factorizations.

▼

We believe that mastering the exploitation of compliance in robot hands and stiffness in the
environment are core competencies on the path to general grasping and manual dexterity.
The investigations, algorithms, and results presented in this thesis all revolved around these
two principles. We hope that they will inspire and guide future research in grasping and
manipulation.

*http://soma-project.eu/
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