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Chapter 1

Introduction

Networks play a vital role in our world. We exchange messages through communication
networks, enormous flows of material are shipped through world-wide logistics networks,
and even our society is organized in social networks on various levels, both professionally
and privately. These are only a few examples from a seemingly infinite list of networks
affecting our daily lives.

In all these examples, networks represent the central infrastructure. The task of plan-
ning and modifying this infrastructure is known as network design. On an abstract level,
a network consists of a set of nodes and a set of links that connect these nodes. Using this
terminology, network design problems ask for a set of links to be installed in the network
in order to fulfill certain problem-specific requirements, often related to connectivity of
the nodes. The first application of optimization algorithms for network design dates back
at least to the 1920s, when Borůvka [Bor26] studied the classic minimum spanning tree
problem in the context of planning the electrification of south-western Moravia [NN12].
Since then, the field has evolved rapidly from simple connectivity problems to ever more
general network design models that are studied in literature and applied in practice, e.g.,
in logistics [MW84, Cra00] and telecommunication [GMS95, SS98].

One of the most important features of networks is their ability of modeling the trans-
portation of objects or information. A network flow assigns values to the links of the
network indicating quantities moving from one node to another. Historically, network
flows were first studied in the context of transport logistics [Sch02], starting with Tol-
stŏı’s study of transportation problems in the Soviet railway network [Tol30]. Network
flow theory also has proven useful as a device for obtaining important structural insights,
many of them related to Ford and Fulkerson’s seminal max flow/min cut theorem [FF56],
which establishes that the maximum value of a flow between two nodes equals the min-
imum capacity of a cut separating the nodes. Today, network flows are a pervasive
concept in combinatorial optimization and its application areas, such as production plan-
ning [Eva77, Sha93], traffic modeling [DS69, Mag84], evacuation management [DGK+10],
and many others, as, e.g., described in [AMO93].

Network design and network flow theory each constitute interesting fields of research
on their own, but they are also closely connected. In fact, several of the above applications
are based on capacitated network design models, combinations of network design and
network flow. While these models are extremely flexible and can be adjusted to fit many
real-world applications, they also impose considerable computational challenges.

In this thesis, we investigate several network design and network flow problems and
devise algorithms for their solution, aiming both for theoretical insights and practical
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2 Chapter 1: Introduction

applicability. Our results cover structural theorems on the properties of networks and
their generalizations (Chapters 2 and 5) as well as models and algorithms for concrete
optimization problems in logistics and telecommunication (Chapters 3 and 4).

Outline

The thesis consists of five chapters, covering different topics from the theory and practice
of network flows and network design. We shortly outline the contents here.

Chapter 1: Introduction. In the remainder of this chapter, we provide the preliminary
concepts and notions this thesis is based on. In particular, we give short introductions
to network flows and network design, the two central themes of this thesis. Literature
concerned with more specific topics is covered within the respective chapters.

Chapter 2: Abstract flows over time. In Chapter 2, we introduce and investigate
abstract flows over time, which are based on a generalization of classic network flows
proposed by Hoffman [Hof74]. In this generalization, the underlying network is replaced
by an abstract system of ‘paths’ that only fulfills a certain switching axiom—an abstrac-
tion of the behavior of crossing paths in the network. We show that the presence of this
axiom alone suffices to ensure max flow/min cut properties in the time expansion of the
system. This yields the max flow/min cut theorem for abstract flows over time as our
main result in this chapter. Besides gaining new insight into the structural properties
of networks, our research is motivated by an interest in solving general dynamic packing
problems, i.e., packing problems with a component of time.

Chapter 3: An integrated approach to tactical transportation planning in logistics
networks. In Chapter 3, we propose a new model for transportation planning, i.e., the
optimization of freight transportation in logistics networks. The model is based on a
multi-dimensional capacitated network design formulation that precisely captures the
structure of transportation tariffs offered by logistics carriers in practice. It employs a
cyclic expansion of the network in order to integrate inventory decisions and frequencies of
shipments, two important aspects of transportation planning. In addition to the model,
we propose various heuristic methods for solving the resulting optimization problem,
most notably a local search procedure based on path decomposition of network flows
and an aggregated mixed integer programming formulation. Our algorithms rely on
subroutines that optimize the tariff selection on individual links in the network—a task
that constitutes an optimization problem of own interest. The model has been developed
in close collaboration with logistics experts at 4flow AG, a logistics consultancy company.
We evaluate the model and our algorithms on a broad set of instances based on real-
world logistics networks from ongoing and recent customer projects of 4flow AG. The
computational study shows that most of our solutions are within 10% of optimality.

Chapter 4: Approximating combined location and network design problems. In
Chapter 4, we discuss problems that combine location decisions, as known from the
classic facility location problem, with network design. We investigate an algorithmic
framework for combining multiple lower bounds into approximation algorithms for such
integrated problems. We use this framework to derive approximation algorithms for two
practically relevant optimization problems. The first is capacitated location routing, an
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important problem in transport logistics that combines facility location and capacitated
vehicle routing. We obtain constant factor approximation guarantees for several variants
of this problem, and we also evaluate our algorithm in a computational study on instances
from the literature and additional large-scale randomly generated instances. It turns out
that the performance of our algorithm in practice exceeds the theoretical worst-case
approximation guarantee by far. The second problem we study in this chapter is facility
location with capacitated and length-bounded trees. It is motivated by the design of optical
access networks in telecommunication. We derive bifactor approximation algorithms for
the problem that provide different approximation factors for length bound and solution
cost, with improved factors for two important special cases.

Chapter 5: Degree-constrained orientations of embedded graphs. In Chapter 5, we
study the problem of orienting the edges of an embedded graph in such a way that
the resulting digraph fulfills given in-degree specifications both for the vertices and for
the faces of the embedding. This primal-dual orientation problem was first proposed
by Frank [Fra10] for the case of planar graphs, in conjunction with the question for a
good characterization of the existence of such orientations. We answer this question by
showing that a planar embedding has a feasible orientation if and only if the primal and
dual in-degree specifications induce a partition of the edges into two sets and the resulting
orientations of these sets are compatible. This implies that the solution is unique if it
exists and that it can be constructed by combining a primally feasible orientation and
a dually feasible orientation. For the general case of arbitrary embeddings, we show
that the number of feasible orientations is bounded by 22g, where g is the genus of the
embedding. Our proof also yields a fixed-parameter algorithm for determining all feasible
orientations in time O(22g|E|2 + |E|3). In contrast to these positive results, however, we
also show that the problem becomes NP -complete even for a fixed genus if only upper
and lower bounds on the in-degrees are specified instead of exact values.

1.1 Preliminaries
In this section, we introduce some of the general concepts and notations used throughout
this thesis, e.g., concerning algorithms and graphs. While we assume the reader to
be familiar with these subjects, we give pointers to textbooks and standard literature
introducing the corresponding topics. More specific notions that are only relevant for
a particular topic are introduced in the corresponding chapter. An introduction to all
topics discussed in this section can be found in the book by Korte and Vygen [KV12];
for more comprehensive information also see the book by Schrijver [Sch03].

Notation index. Most of the notation used in this thesis is standard in combinatorial
optimization literature. A concise list of the occurring symbols and references to their
definitions can be found in the notation index at the end of this thesis.

1.1.1 Algorithms and complexity theory

The design and analysis of algorithms constitutes a central part of research in combina-
torial optimization. We give a short overview of the different concepts of optimization
algorithms occurring in this thesis.
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Polynomial time algorithms and complexity theory

Since algorithms are supposed to efficiently solve problems, the notion of running time
plays a crucial role. Closely related is the concept of complexity theory, which aims
at classifying problems according to their computational tractability. We sketch the
basic definitions and refer the unfamiliar reader to the book by Wegener [Weg05] for a
comprehensive introduction.

Encoding size and running time. Let 〈I〉 denote the encoding size of an instance I of a
problem, i.e., the number of bits needed to store the information defining that instance.
The running time of an algorithm is typically measured as the worst-case performance
depending on the size of the input, i.e., as the function f(n) specifying the maximum
number of elementary operations it needs to solve any given instance I of the problem
with 〈I〉 ≤ n. In theoretical computer science literature, polynomial running time is the
commonly accepted threshold to efficiency. When stating a more precise bound on the
running time, constant factors are often ignored, using the O-notation: For two functions
f, g : R+ → R+, we write f = O(g) if there is a c ∈ R+ with f(n) ≤ cg(n) for all n ∈ R+.

Complexity classes and hardness. Unfortunately, for many fundamental problems no
exact polynomial time algorithm has been found to this point despite intense efforts.
While it also appears to be very hard to rigorously rule out the existence of such algo-
rithms, complexity theory gives a tool for classifying the hardness of a problem by linking
the existence of a polynomial time algorithm for the problem to the collapse of certain
complexity classes. Two basic complexity classes are P , the set of decision problems that
allow for a polynomial time algorithm, and NP , the set of decision problems that have
a polynomial size certificate for ’yes’-instances. An optimization problem is NP -hard,
if any problem in NP can be reduced to this problem. In this case, a polynomial time
algorithm for the problem implies P = NP , a condition which is commonly considered
unlikely to be fulfilled. Other typical implications of this type occurring throughout this
thesis areNP ⊆ DTIME(npolylog(n)) orNP ⊆ ZTIME(npolylog(n)), implying the existence
of an algorithm with deterministic or expected quasi-polynomial time, respectively, for
every problem in NP . An extensive list of NP -hardness results can be found in the book
by Garey and Johnson [GJ79].

Minimum weighted set cover. As an example for an NP -hard optimization problem,
we introduce the minimum weighted set cover problem, which will appear several times
throughout this thesis.

Problem: Minimum weighted set cover

Input: A ground set E, a family of sets S ⊆ 2E , and weights w ∈ QS+.

Task: Find a subset S ′ ⊆ S such that E =
⋃
S∈S′ S, minimizing the

cost
∑

S∈S′ c(S).

This problem is already NP -hard when every element appears in at most two sets—
a special case that is known as vertex cover problem; see Karp’s list of NP -complete
problems [Kar72].
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Other algorithmic concepts

While hardness results as described above make the existence of exact polynomial time
algorithms for some problems unlikely, there are several other concepts that allow us
to achieve both theoretically meaningful results and practical solution methods for such
problems.

Approximation algorithms. An α-approximation algorithm for a minimization1 prob-
lem is a polynomial time algorithm that, given instance I of the problem, returns a
feasible solution SI of I such that

c(SI) ≤ αOPT(I)

where c(SI) is the cost of solution SI and OPT(I) is the cost of an optimal solution of I.
The approximation factor α can be a constant or a function depending on a parameter
of the instance. A polynomial time approximation scheme (PTAS) is an algorithm that
computes for any given ε > 0 a (1 + ε)-approximate solution in time polynomial in
the input size for fixed values of ε. The approximation scheme is a fully polynomially
time approximation scheme (FPTAS), if its running time is polynomial in the input
size and 1

ε . As for exact algorithms, hardness results can also relate to the existence
of approximation algorithms. For example, the set cover problem introduced above
does not allow for an approximation algorithm with a factor better than ln |E|, unless
NP ⊆ DTIME(npolylog(n)), as shown by Feige [Fei98]. For a detailed introduction to
approximation algorithms see the books by Hochbaum [Hoc96], Vazirani [Vaz01], and
Williamson and Shmoys [WS11].

Fixed-parameter algorithms. In many applications, it is a valid assumption that certain
parameters of the input stay small, e.g., the number of different cable types installed in a
communication network will typically be very limited even while the size of the network
itself might be enormous. A problem is fixed-parameter tractable (FPT) in a param-
eter p depending on the instance, if there is an algorithm that solves the problem in
time f(p(I)) · φ(〈I〉), where f : R+ → R+ is a function and φ is a polynomial func-
tion. There also is a whole hierarchy of complexity classes related to fixed-parameter
tractability and a concept for formalizing data reductions in preprocessing, called ker-
nelization—however, we will not make use of these in this thesis. For an introduction to
the topic see the book by Niedermeier [Nie06].

Heuristics. Not every practically successful algorithm can be cast into a rigorous the-
oretical framework. Heuristics are algorithms without proven polynomial running time
or a priori approximation guarantee. Besides specialized heuristics designed to solve a
particular problem, meta-heuristics, in particular local search and its generalizations like
tabu search and genetic algorithms, have been devised to solve general optimization prob-
lems without deeper knowledge of the particular problem structure. Instead of deriving
mathematical proofs on the performance of the algorithm, the suitability of a heuristic
for a practical application is verified by extensive computational studies. Examples for

1The definition for maximization problems is analogous. However, we will only encounter approxi-
mation algorithms for minimization problems throughout this thesis.
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very successful specialized heuristics include Dantzig’s simplex method for linear pro-
gramming2 [Dan51b] and the Lin-Kernighan heuristic for TSP [Hel00]. See the book by
Aarts and Lenstra [AL97] for an introduction to local search techniques.

1.1.2 Linear and integer programming

Linear and integer programming are very general techniques for modeling and solving
optimization problems. They ask for maximizing or minimizing a linear objective subject
to a system of linear inequalities, where the solution is required to be integral in the case
of integer programming.

Problem: Linear programming (LP)

Input: A matrix A ∈ Qm×n, vectors b ∈ Qm and c ∈ Qn.

Task: Find x∗ ∈ P := {x ∈ Qn : Ax ≤ b, x ≥ 0} maximizing cTx∗, or
decide that the maximum is infinite, or that P = ∅.

An integer program (IP) additionally requires x to be integral. If only some
of the variables are required to be integral, the problem is a mixed integer
program (MIP).

Both linear and integer programming take a central place in combinatorial optimiza-
tion and they are also closely tied to polyhedral combinatorics. Thanks to their ver-
satility and the availability of advanced and efficient solvers, they are widely spread
in practice. Many theoretical insights obtained in the study of linear and integer pro-
gramming are now central parts of solver packages like CPLEX [IBM], Gurobi [Gur],
or SCIP [Ach09]. For a comprehensive overview of the theoretic foundations see the
textbook by Schrijver [Sch98]. We will shortly introduce those concepts used within this
thesis.

Algorithms. Several polynomial time algorithms for linear programming have been de-
veloped, the first being the ellipsoid method by Khachiyan [Kha80]. Still, the most widely
used algorithm for solving linear programs in practice remains the simplex method by
Dantzig [Dan51b], despite the fact that instances with exponential running time are
known for all variants in use. Besides this, interior point methods provide a way to
efficiently solve linear programs in practice while maintaining theoretically proven poly-
nomial running time as first shown by Karmarkar [Kar84]. In contrast, integer program-
ming is known to be NP -hard. In practice, branch and bound algorithms, combined with
cutting plane methods are able to solve even large mixed integer programs in reason-
able time; see, e.g., the historical survey by Bixby [Bix12]. In many cases, this can be
further improved by exploiting problem-specific structures, e.g., for setting up column
generation [FF58a, DW60, LD05] or employing decomposition techniques like Benders
decomposition [Ben62], which is particularly useful for capacitated network design prob-
lems; also see Section 3.1.2.

2While the simplex method is both an exact algorithm providing many additional benefits such as the
computation of a basic solution and a useful tool for obtaining structural insights in linear programming
and polyhedral theory, it also falls under the general definition of a heuristic as an algorithm without
polynomial running time.
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LP duality. One of the most fundamental concepts in linear programming is duality ;
see, e.g., [Sch98]. The duality theorem of linear programming, which was first proven by
von Neumann [vN47], states that

max {cTx : Ax ≤ b, x ≥ 0} = min {bT y : AT y ≥ c, y ≥ 0}

where the two LPs occurring in the equation are known as primal and dual program.
LP duality can be used to prove various other duality theorems such as the max flow/min
cut theorem in network flow theory, it is useful in the design of approximation algorithms—
so-called primal-dual schemes—and it also enables decomposition techniques such as
Benders decomposition mentioned above.

The equivalence of optimization and separation. The separation problem correspond-
ing to an LP asks whether a given vector x is a feasible solution to this LP or, if this is
not the case, for a constraint violated by x. Based on Khachiyan’s work on the ellipsoid
method [Kha80], Grötschel, Lovasz, and Schrijver [GLS88] showed that the optimal so-
lution of an LP can be found by solving the separation problem for the same LP for a
polynomial number of input vectors and vice versa. As a consequence, LPs can be solved
in time polynomial in the number of variables, even when there are exponentially many
contraints, as long as these constraints can be separated efficiently.

LP relaxation. Many hard optimization problems can be formulated as integer or mixed
integer programs. While no polynomial time algorithm is known for finding optimal so-
lutions to these formulations, one can obtain a lower bound (in the case of minimization)
on the value of the optimal solution by relaxing the integrality condition and solving
the resulting LP. Such lower bounds can be used for obtaining a priori guarantees for
approximation algorithms, for pruning the tree of a branch and bound procedure, or for
giving a posteriori guarantees for heuristic solutions.

Total dual integrality. A system of linear inequalities Ax ≤ b, x ≥ 0 with A ∈ Qm×n

and b ∈ Zm is totally dual integral (TDI), if the dual program min{bT y : AT y ≥ c, y ≥ 0}
has an integral optimal solution for every c ∈ Zn for which an optimal solution exists, im-
plying that also the primal program max{cTx : Ax ≤ b, x ≥ 0} has an integral optimal
solution for every c ∈ Zn; see [Sch98] for details. Such classes of LPs are particularly in-
teresting, as solving the linear program is equivalent to solving the corresponding integer
program in this case. The concept of total dual integrality goes back to Hoffman [Hof74]
and was later formalized by Edmonds and Giles [EG77]. An important special case of
the concept is the max flow/min cut theorem of Ford and Fulkerson [FF56].

1.1.3 Graphs

Networks are the central structure occurring in this thesis. Their representation relies
on the standard notions of graphs and digraphs introduced in this section.

Undirected graphs. A graph G = (V,E) consists of a set of vertices V and a set of
edges E. Each edge e ∈ E is associated with an unordered pair of vertices ψ(e) = {v, w},
called the end points of e. If there is no ambiguity, we identify e with ψ(e). An edge e is
a loop, if its endpoints are identical, i.e., ψ(e) = {v, v}. Two edges e, f are parallel
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if ψ(e) = ψ(f). An edge e and a vertex v are incident, if v ∈ ψ(e). For a set of edges F ,
we define V (F ) :=

⋃
e∈F ψ(e) to be the set of vertices incident to the edges in F .

Directed graphs. A directed graph (also known as digraph) D = (V,A) consists of
a set of vertices V , which are also referred to as nodes in this context, and a set of
arcs A. Every arc a ∈ A has a start node tail(a) ∈ V and an end node head(a) ∈ V .
If there is no ambiguity, we identify a with the tuple (tail(a),head(a)). An arc a ∈ A
is a loop if tail(a) = head(a). Two arcs a, b ∈ A are parallel, if tail(a) = tail(b) and
head(a) = head(b). They are anti-parallel, if tail(a) = head(b) and head(a) = tail(b).

Subgraphs. Let G = (V,E) be a graph. For a set of vertices S ⊆ V , we define the
set of edges E[S] := {e ∈ E : ψ(e) ⊆ S} with both endpoints in S. A subgraph of G is
graph G′ = (S, F ) with S ⊆ V and F ⊆ E[V ′]. In particular, we define G[S] := (S,E[S])
to be the subgraph induced by S. The notions of subgraph and induced subgraph for a
digraph are defined in analogy to the undirected case.

From directed to undirected graphs and vice versa. The underlying undirected graph
of a digraph D = (V,A) is the graph U(D) = (V,U(A)), where U(A) = {ea : a ∈ A}
with ψ(ea) = {tail(a),head(a)}. Conversely, for an undirected graph G = (V,E), the
corresponding bidirected digraph B(G) = (V,B(E)) is constructed by replacing each
edge e with two oppositely directed arcs a+

e and a−e , i.e., B(E) = {a+
e , a

−
e : e ∈ E}

with tail(a+
e ) = head(a−e ), head(a+

e ) = tail(a−e ), and ψ(e) = {tail(a+
e ), head(a+

e )} for
all e ∈ E.

Walks, paths, and cycles. Let G = (V,E) be a graph and let s, t ∈ V . A sequence
of edges (e0, . . . , ek) is an s-t-walk, if there is a sequence of vertices (v0, . . . , vk+1) such
that ψ(ei) = {vi, vi+1} for i ∈ [k]. An s-t-walk is an s-t-path, if the edges e0, . . . , ek
are pairwise distinct. An s-t-walk is closed, if s = t. A closed walk is a cycle, if
the edges e0, . . . , ek are pairwise distinct. An s-t-path or cycle is simple, if the ver-
tices v0, . . . , vk are pairwise distinct.

A sequence of arcs (a0, . . . , ak) in a digraph D = (V,A) is an s-t-walk, s-t-path,
or cycle, if it corresponds to an s-t-walk, s-t-path or cycle in U(D), respectively. It is
directed, if head(ai) = tail(ai+1) for all i ∈ [k − 1].

Connected components. A graph G = (V,E) is connected if there is a v-w-walk for all
v, w ∈ V . A digraph D = (V,E) is strongly connected if there is a directed v-w-walk and
a directed w-v-walk for all v, w ∈ V . A (strongly) connected component of a (di-)graph
is a maximal (strongly) connected subgraph.

Cuts and degrees. Let G = (V,E) be a graph and S ⊆ V . The cut induced by S is the
set

δG(S) := {e ∈ E : ψ(e) ∩ S 6= ∅ and ψ(e) ∩ V \ S 6= ∅}.
A cut is simple, if both G[S] and G[V \ S] are connected. Let D = (V,A) be a digraph
and S ⊆ V . We define

δ+
D(S) := {a ∈ A : tail(a) ∈ S and head(a) ∈ V \ S}



1.2 Network flows 9

and
δ−D(S) := {a ∈ A : tail(a) ∈ V \ S and head(a) ∈ S} .

The cut induced by S is δD(S) = δ+
D(S) ∪ δ−D(S). The cut is directed, if δ+

D(S) = ∅
or δ−D(S) = ∅. We omit the subscript G and D, respectively, if there is no ambiguity.
For v ∈ V , we will also write δ(v), δ+(v), and δ−(v) for δ({v}), δ+({v}), and δ−({v}),
respectively. The degree of a vertex v ∈ V is |δ(v)|, its out-degree is |δ+(v)|, and its
in-degree is |δ−(v)|.

Trees. Let G = (V,E) be a graph. A tree is a set of edges T ⊆ E such that the
subgraph (V (T ), T ) is connected and contains no cycles. A tree T spans a set of ver-
tices S if S ⊆ V (T ). A spanning tree of G is a tree T such V (T ) = V . Let D = (V,A)
be a digraph. An out-tree in D rooted at r is a set of arcs T ⊆ A such that the
subgraph (V (T ), T ) is connected, |δ−(r) ∩ T | = 0, and |δ−(v) ∩ T | = 1 for every ver-
tex v ∈ V (T ) \ {r}.

1.2 Network flows
Network flows are one of the two main themes of this thesis. We give a short introduction
to the topic, with a focus on those definitions and results that are used throughout the
thesis, specifically the max flow/min cut theorem, minimum cost flows, and flows over
time. Besides the concepts that are introduced here, there are of course many more
variants of network flows, such as generalized flows or abstract flows. The latter will play
a central role in Chapter 2 of this thesis and will be discussed extensively in that chapter.
For more details on network flows, see the comprehensive textbook by Ahuja, Magnanti,
and Orlin [AMO93].

1.2.1 Basic definitions

Flow conservation. Let D = (V,A) be a digraph. For v ∈ V and x ∈ QA
+ define the

excess of v with respect to x by

ex(x, v) :=
∑

a∈δ−(v)

x(a)−
∑

a∈δ+(v)

x(a).

For sets S, T ⊂ V , an S-T -flow is a vector x ∈ QA
+ such that ex(x, v) ≥ 0 for all v ∈ V \ S

and ex(x, v) ≤ 0 for all v ∈ V \ T . The vertices in S are called sources, the vertices
in T are called sinks. If S = {s} and T = {t} for some vertices s, t ∈ V , we call x
an s-t-flow. Note that all vertices that are neither sources nor sinks have to fulfill flow
conservation, i.e., their excess must be 0. For b ∈ QV

+, a b-flow is a vector x ∈ QA
+ such

that ex(x, v) + b(v) = 0 for all v ∈ V .

Flow decomposition. Any S-T -flow x ∈ QA
+ can be alternatively represented by a

decomposition into flow on paths from S to T and flow on cycles. Let P be the set of
simple directed s-t-paths in D for vertices s ∈ S and t ∈ T , and let C be the set of simple
cycles in D. A decomposition of x is a vector x̃ ∈ QP∪C+ with

∑
P∈P∪C : a∈P x̃(P ) = x(a).

It is a well-known fact that for every flow x a decomposition of size at most |A| can be
found in time O(|V ||A|).
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1.2.2 The maximum flow problem and max flow/min cut

One of the most fundamental problems in network flow theory is the maximum flow
problem. It asks for a flow of maximum value from a source to a sink without violating
given capacities on the arcs. The problem was extensively studied by Ford and Fulk-
erson [FF56, FF57, FF62], who contributed many important concepts such as residual
networks, augmenting paths, and the famous max flow/min cut theorem—results that
now build the fundaments of network flow theory.

Problem: Maximum flow

Input: A digraph D = (V,A), a source s ∈ V , a sink t ∈ V , and
capacities u ∈ QA

+.

Task: Find an s-t-flow x ∈ QA
+ such that x(a) ≤ u(a) for all a ∈ A,

maximizing the flow value ex(x, t).

Path formulation and minimum cuts. Using flow decomposition, the maximum flow
problem can alternatively be stated in terms of a path formulation—note that flow on
cycles does not contribute to the value of the flow and can therefore be ignored. The
resulting linear program reads

max
∑
P∈P

x(P )

s.t.
∑

P∈P : a∈P
x(P ) ≤ u(a) ∀ a ∈ A

x(P ) ≥ 0 ∀ P ∈ P

where P is the set of simple directed s-t-paths in D. The dual of this program is

min
∑
A∈A

u(a)y(a)

s.t.
∑
a∈P

y(a) ≥ 1 ∀ P ∈ P

y(a) ≥ 0 ∀ a ∈ A.

Note that every binary solution y ∈ {0, 1}A of the dual corresponds to a set C ⊆ A such
that C ∩ P 6= ∅ for every s-t-path P ∈ P. Such a set C separating s from t is called
an s-t-cut and

∑
a∈C u(a) is called the capacity of C. Note that every inclusionwise

minimal s-t-cut corresponds to a cut δ+(S) induced by a set of vertices S ⊆ V \ {t}
with s ∈ S as introduced in the previous section.

Max flow/min cut. Ford and Fulkerson’s [FF56, FF57] famous max flow/min cut theo-
rem states that the maximum value of an s-t-flow is equal to the minimum capacity of an
s-t-cut, i.e., the dual LP described above always has an integral optimal solution—note
that this also implies the existence of an integral maximum s-t-flow in case of integral ca-
pacities. Ford and Fulkerson’s proof of the theorem is constructive, yielding an algorithm
for constructing both a maximum flow and a minimum cut. The theorem establishes a
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connection between network flows and structural results in graph theory, e.g., by gen-
eralizing Menger’s theorem [Men27] and the König-Egerváry theorem [Kőn31]. It also
enables modeling connectivity requirements in network design problems both by using
flow formulations as well as cut constraints.

The residual network. Many flow algorithms use the so-called residual network. The
residual network of a flow x with respect to capacities u is the network Du,x = (V,Au,x)
that contains an arc a+ ∈ Au,x for every arc a ∈ A with x(a) < u(a) and an arc a− ∈ Au,x
for every arc a ∈ A with x(a) > 0. The arc a+ is parallel to a, the arc a− is anti-
parallel to a. Note that both a+ and a− might exist for the same arc a ∈ A. Ford and
Fulkerson [FF57] established the following optimality criterion for the maximum flow
problem: An s-t-flow x has maximum value if and only if there is no directed s-t-path
in Du,x.

Efficient algorithms for the maximum flow problem. Ford and Fulkerson [FF56, FF57]
proposed an augmenting path algorithm for solving the maximum flow problem. This
algorithm iteratively increases the value of the flow by sending flow along an s-t-path
in the residual network until no such path exists anymore. While this algorithm in its
most basic form does not run in polynomial time, several polynomial time algorithms
have been developed from the idea of augmenting flow along paths, e.g., by Dinic [Din70]
and Edmonds and Karp [EK72]. Other notable solution techniques include the preflow-
push algorithm by Goldberg and Tarjan [GT88] and the capacity scaling algorithm by
Fujishige [Fuj03]. Recently, Orlin [Orl13] showed that the maximum flow problem can
be solved in time O(|V ||E|). There are more efficient algorithms for special cases. For
example, Borradaile and Klein [BK09] showed that a maximum flow in a planar graph
can be found in time O(|E| log |E|). Another example are networks with unit capacities,
where Dinic’s algorithm achieves a running time of O(min{|V | 23 |E|, |E| 32 }), as shown by
Even and Tarjan [ET75].

1.2.3 Minimum cost flow and transportation problems

As already pointed out earlier, network flows were first considered in the context of
transport logistics. Of course, the main goal of optimization in logistics is to minimize
cost. A simple and well-studied model that considers network flows with linear costs is
the minimum cost flow problem.

Problem: Minimum cost flow

Input: A digraph D = (V,A), node balances b ∈ QV , capacities u ∈ QA
+,

and costs c ∈ QA.

Task: Find a b-flow x ∈ QA
+ with x(a) ≤ u(a) for all a ∈ A, minimizing

the cost
∑

a∈A c(a)x(a), or state that there is no such flow.

The special case of the minimum cost flow problem where u =∞ and D is
a bipartite graph with the sources on one side and the sinks on the other is
known as the transportation problem.
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It can be shown that any instance of the minimum cost flow problem can be trans-
formed into an equivalent instance of the transportation problem. The transportation
problem was formally introduced by Hitchcock [Hit41], but already appeared in a study
by Tolstŏı [Tol30], who investigated freight transportation in the Soviet railway system;
also see the historical notes by Schrijver [Sch02].

Algorithms. Tolstŏı [Tol30] already made use of the following optimality criterion—
although he did not prove it formally: A b-flow x is an optimal solution if and only if
there is no directed cycle of negative cost in the residual network induced by x. This
motivates the negative cycle canceling algorithm, wich, starting at some b-flow, iteratively
sends flow along a cycle of negative weight in the residual network, until no such cycle
exists anymore. Goldberg and Tarjan [GT89] showed that choosing a cycle of minimum
mean weight in every iteration yields a strongly polynomial time algorithm for solving the
minimum cost flow problem. Another approach for finding a minimum cost flow is the
successive shortest path algorithm, which was independently discovered by Jewell [Jew58],
Iri [Iri60], and Busaker and Gowen [BG61]. Starting at a flow with arbitrary excess that
does not induce any negative residual cycles, it iteratively sends flow along a shortest path
from a source to a sink in the residual network. While this method only runs in pseudo-
polynomial time, it is interesting because of its simplicity and practical efficiency. It also
inspires our heuristics for the tactical transportation planning problem in Chapter 3.
Probably the most popular algorithm for solving minimum cost flow problems in practice
is the network simplex method, a specialization of the simplex method for network flows
suggested by Dantzig [Dan51a].

Non-linear costs. Of course, non-linear cost functions also occur very frequently in
practice, prominently including convex, concave, and fixed costs. Convex cost functions
can be approximately modeled using parallel arcs of increasing cost; see Chapter 14
of [AMO93] for details. Models and algorithms for flows with concave cost functions are
discussed, e.g., by Guisewite and Pardalos [GP90]. Concave costs are also closely related
to fixed costs. These in turn are commonly modeled using capacitated network design
formulations. We therefore discuss flow problems with fixed charges in Section 1.3.

1.2.4 Multi-commodity flows

In the flow problems discussed above, all flow was of the same type, i.e., the demand of
any sink could be satisfied using the supply of any source. We now consider the case
that several flows of different commodities move through the same network sharing the
same capacities. We will restrict ourselves to the minimum cost multi-commodity flow
problem, as this most closely resembles our usage of the multi-commodity flows in the
transportation planning model in Chapter 3 and in the LP relaxation for location routing
in Chapter 4.

Minimum cost multi-commodity flows. Let D = (V,A) be a digraph. Given a setK of
commodities and a vector b ∈ QK×V , amulti-commodity b-flow inD is a vector x ∈ QK×A

+

such that xi ∈ QA
+ is a bi-flow for all i ∈ K.
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Problem: Minimum cost multi-commodity flow

Input: A digraph D = (V,A), a set of commodities K, node bal-
ances b ∈ QK×V , capacities u ∈ QA

+, and costs c ∈ QK×A.

Task: Find a multi-commodity b-flow x ∈ QK×A
+ fulfilling the con-

straint
∑

i∈K xi(a) ≤ u(a) for all a ∈ A, minimizing the
cost

∑
i∈K

∑
a∈A ci(a)xi(a), or state that there is no such flow.

Unfortunately, many of the results known for single-commodity flows fail to hold for the
case of multiple commodities. In particular, there is no equivalent to the max flow/min
cut theorem (beyond standard LP duality) or to the negative cycle criterion, and the
existence of an integral optimal flow in case of integral capacities is no longer guaranteed.

Algorithms. Clearly, the minimum cost multi-commodity flow problem can be formu-
lated as an LP and thus it can be solved in polynomial time. However, no exact com-
binatorial algorithm is known for the problem. Garg and Könemann [GK07] proposed
an FPTAS based on the path formulation of the problem and its dual, which due to its
efficiency is also used as a subroutine in many software packages in practice, e.g., in the
context of VLSI design [Vyg04].

1.2.5 Flows over time

In many applications of network flows, time plays a crucial role. The concept of flows
over time was already investigated by Ford and Fulkerson [FF58b], who showed how
to model transit times and time-dependent flow rates within a so-called time-expanded
network and how to construct a maximum flow over time by temporally repeating a
static minimum cost flow. Since then, numerous results on different variants of flow over
time problems have emerged. For a comprehensive overview, we refer the reader to the
introductary article by Skutella [Sku09].

Flows over time and the related concept of time-expanded networks, which is de-
scribed in detail below, will play an important role at several places throughout this
thesis. In Chapter 2, we will generalize Ford and Fulkerson’s max flow/min cut over time
theorem and the corresponding algorithmic techniques to the setting of abstract flows,
showing that all their results in fact rely on a very simple switching axiom fulfilled by the
system of s-t-paths in a network. In Chapter 3, we propose a model for tactical trans-
portation planning, using cyclic holdover arcs for modeling the frequency of shipments.
In Chapter 4, we use a condensed layered graph, similar to a time-expanded network,
to reduce a depth-bounded tree problem to a directed Steiner tree problem. We give a
short overview of these concepts in the following.

Time horizon, transit times and flow conservation. As in the static network flow
problems discussed before, we are given a network consisting of a digraph D = (V,A)
with capacities u ∈ QA

+ on the arcs. Different from the above, however, we now consider
a period of time, starting at time 0 and ending at the time horizon T ∈ Z+. We discretize
the time from 0 to T into intervals [0, 1), . . . , [T −1, T ) and identify each interval with its
starting time, yielding the set T = {0, . . . , T−1}. In addition, every arc is given a transit
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time τ(a) ∈ Z+, specifying how long it takes for flow to traverse the arc. Similar to static
flows, we define the excess of node v ∈ V at time θ ∈ T with respect to x ∈ QA×T

+ by

ex(x, v, θ) :=
θ∑
ξ=0

∑
a∈δ−(v) : τ(a)≤ξ

x(a, ξ − τ(a))−
∑
a∈δ+(v)

x(a, ξ)

 .

An s-t-flow over time is a vector x ∈ QA×T
+ such that ex(x, v, θ) ≤ 0 for all v ∈ V \ {s},

and ex(x, v, θ) ≥ 0 for all v ∈ V \ {t} at any point in time θ ∈ T .

Problem: Maximum flow over time

Input: A digraph D = (V,A), a source s ∈ V , a sink t ∈ V , capaci-
ties u ∈ QA

+, transit times τ ∈ ZA+, and a time horizon T ∈ Z+.

Task: Find an s-t-flow over time x of maximum value ex(x, t, T − 1).

Temporally repeated flows. Ford and Fulkerson [FF58b] showed that the maximum
flow over time problem can be solved in polynomial time by reducing it to a minimum
cost flow problem in the underlying static network. The resulting static s-t-flow can be
transformed into an s-t-flow over time by computing a path decomposition and tempo-
rally repeating the flow on each path as long as possible within the time horizon. They
also showed how to construct a corresponding cut over time from the residual network
induced by the static flow, proving the max flow/min cut theorem for flows over time.

The time-expanded network. Ford and Fulkerson [FF58b] also observed that flows over
time can be modeled by so-called time-expanded networks which are constructed from
multiple copies of the underlying static network D as follows. For every node v ∈ V of the
static network, the time-expanded network DT = (VT , AT ) contains T copies of the node,
labeled by v0, . . . , vT−1 ∈ VT . For every arc a ∈ A of the static network with tail(a) = v
and head(a) = w, the time-expanded network contains the arcs a0, . . . , aT−1−τ(a) ∈ AT
with tail(ai) = vi, head(ai) = wi+τ(a) and capacities u(ai) = u(a). The time-expanded
network can be used to reduce flow over time problems to static network flow prob-
lems. For example, it is easy to see that every s-t-flow over time in D corresponds to a
static {s0, . . . , sT−1}-{t0, . . . , tT−1}-flow in DT and vice versa. Note, however, that the
size of the time-expanded network is linear in T and thus exponential in the input size.

Storage at intermediate nodes and holdover arcs. In some contexts, it may be possible
to store flow at intermediate nodes, i.e., we allow ex(x, v, θ) > 0 for some or all vertices
v ∈ V and θ ∈ [T − 2]. This can also be modeled in the time-expanded network by
introducing additional holdover arcs from vi to vi+1 for the corresponding vertices and
all i ∈ [T − 2]. The optimality of the temporally repeated flow for the maximum flow
over time problem implies that adding the possibility of storage at intermediate nodes
does not have any effect on the value of an optimal solution in this case. However, this is
not true for all flow over time problems; see the discussion in Section 2.2 for more details.



1.3 Network design 15

Further results. After Ford and Fulkerson’s seminal work on the maximum flow over
time problem, many other concepts, such as arc costs and multiple commodities have
been transferred to flows over time, and the corresponding problems have been studied
extensively. Both the min-cost flow over time and the multi-commodity flow over time
problem have been shown to be NP -hard by Klinz and Woeginger [KW04] and Hall
Hippler, and Skutella [HHS07], respectively. Remarkable results in the area of flows over
time also include the polynomial-time algorithm for the transshipment over time problem
by Hoppe and Tardos [HT00], the condensed time-expanded networks by Fleischer and
Skutella [FS07, FS03], and the recent approximation results for earliest arrival flows
by Groß et al. [GKSS12].

Discrete vs. continuous model. The model of flows over time discussed above uses a
discrete notion of time. Alternatively, flows over time can also be modeled in a continuous
time setting. In this setting, the flow rate on each arc a ∈ A is specified as a Lebesgue-
integrable function of the time x(a, ·) : [0, T ) → R+. The excess of a node v at time θ
then is defined to be the integral of the flow rates

ex(x, v, θ) :=

∫ θ

ξ=0

∑
a∈δ−(v) : τ(a)≤ξ

x(a, ξ − τ(a))−
∑
a∈δ+(v)

x(a, ξ)

 dξ.

The definitions of s-t-flows and other concepts are then based on this notion of excess, in
analogy to the discrete model. Discrete and continuous versions of many flow over time
problems were shown to be equivalent by Fleischer and Tardos [FT98]. Throughout this
thesis, we will restrict to the discrete model of time.

1.3 Network design
The second main theme of this thesis is network design. In general, a network design
problem asks for a minimum cost subgraph of a given graph fulfilling certain constraints—
usually specifying connectivity requirements. Network design problems typically differ
in the type of connectivity constraints they impose, whether the graph is directed or
undirected, whether the edges or arcs are capacitated, and whether multiple copies of
the same edge or arc are allowed or not. Each of these criteria has a significant impact on
the algorithmic tractability of the corresponding problem. Accordingly, network design
has been approached with a very broad set of algorithmic techniques, ranging from
approximation algorithms to mixed integer programming formulations and combinatorial
heuristics. There is little unifying literature that covers all of these approaches and all
classes of network design problems. We refer the reader to the surveys by Magnanti and
Wong [MW84] and Crainic [Cra00] for applications of network design, by Kortsarz and
Nutov [KN07] and Chuzhoy et al. [CGNS08] for approximability results, by Grötschel,
Monma, and Stoer [GMS95] and Gendron, Crainic, and Frangioni [GCF99] for MIP
formulations, polyhedral results, and heuristics—the latter topic will also be covered in
more detail in Section 3.1.2.

In this section, we discuss two problems that play an important role at various points
in this thesis, the Steiner tree problem and the fixed-charge network flow problem. They
are canonical examples for two large and important problem classes: uncapacitated and
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capacitated network design problems. In practice, most uncapacitated problems—at
least in undirected graphs—are considered to be manageable, while capacitated problems
earned a reputation of being a great computational challenge [GCF99]. This is also
reflected by the theoretical hardness results that we review in this section.

1.3.1 Uncapacitated network design: Steiner trees and networks

The Steiner tree problem is one of the most fundamental network design problems. It asks
for a minimum cost tree connecting a certain set of vertices, called terminals, possibly
spanning some additional vertices, called Steiner vertices.

Problem: Steiner tree

Input: A graphG = (V,E), costs c ∈ QE
+, and a set of terminals S ⊆ V .

Task: Find a tree T ⊆ E with S ⊆ V (T ), minimizing c(T ).

The special case of the Steiner tree problem with S = V is known as mini-
mum spanning tree problem.

The problem is named after the Swiss mathematician Jakob Steiner, who investigated
the problem of connecting three points in the plane with straight lines by adding an
additional point, so as to minimize the total length of the lines; see, e.g., [GP68]. Despite
their relatively simple structure, Steiner tree problems play an important role in many
applications such as infrastructure planning [Bor26] or chip design [KV08]. In this thesis,
they will occur as an important subproblem in Chapter 4. For more details on the topic,
we refer to Chapters 6 and 20 of [KV12] and the book by Prömel and Steger [PS02].

Minimum spanning trees. Spanning trees, i.e., trees spanning all vertices of a graph,
are a fundamental structure in graph theory. A minimum spanning tree of a weighted
graph can be found in time O(|E|+ |V | log |V |) using a simple greedy algorithm that goes
back to Borůvka [Bor26], Jarník [Jar30], and Prim [Pri57]. The Steiner ratio denotes the
ratio between the minimum cost of a spanning tree on a set of terminals and the minimum
cost of a Steiner tree on the same terminals, assuming a complete graph with metric edge
costs. Gilbert and Pollak [GP68] showed a tight upper bound of 2 for the Steiner ratio.

Algorithms for the Steiner tree problem. The Steiner tree problem is known to be NP -
hard [Kar72]. However, several approximation algorithms exist. Kou, Markowsky, and
Berman [KMB81] proposed to compute a tree in the metric closure of the graph spanning
exactly the terminals, which by the result from [GP68] yields a 2-approximation. A
considerably more involved algorithm by Byrka et al. [BGRS10] achieves the currently
best known approximation ratio of ln 4. The problem is also fixed-parameter tractable
in the number of terminals, as shown by Dreyfus and Wagner [DW71]. Several heuristic
approaches for solving Steiner tree problems in practice are reviewed by Winter [Win87]
and Voß [Voß92].

Steiner trees in directed graphs. The Steiner tree problem can also be formulated in
directed graphs, with an additional node specified as root of the tree.
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Problem: Directed Steiner tree problem

Input: A digraph D = (V,A), costs c ∈ QA
+, a root r ∈ V , and a set of

nodes S ⊆ V .

Task: Find an out-tree T ⊆ A rooted at r with S ⊆ V (T ), minimiz-
ing c(T ).

The special case of the directed Steiner tree problem with S = V is known
as minimum cost arborescence problem.

The minimum cost arborescence problem can be solved in polynomial time using Ed-
monds’ branching algorithm [Edm67]. However, there is a considerable jump in complex-
ity when turning to the directed Steiner tree problem: Halperin and Krauthgamer [HK03]
showed that the problem does not allow for a log2−ε |S|-approximation for any ε > 0, un-
less NP ⊆ ZTIME(npolylog(n)). On the positive side, Charikar et al. [CCC+99] devised a
quasi-polynomial time algorithm with an approximation guarantee ofO(log2 |S|). We will
make use of their result in the context of shallow-light trees, which are closely related to
the directed Steiner tree problem in a so-called layered graph; see Section 4.3.1 for details.
As in the undirected case, the directed Steiner tree problem is fixed-parameter tractable in
the number of terminals; also see the article by Guo, Niedermeier and Suchỳ [GNS11] for
further results on the fixed-parameter tractability of directed Steiner tree problems. For
solving the problem in practice, a dual-ascent method was proposed by Wong [Won84].

Steiner forests and networks. A straightforward generalization of the Steiner tree
problem is the Steiner forest problem, which asks for a minimum cost forest connect-
ing specified pairs of terminals. The Steiner network problem generalizes this further by
imposing the requirement of connecting each pair of terminals with a given number of
edge-disjoint paths. This latter problem—also known under the name survivable network
design—is motivated by the construction of reliable networks in telecommunication that
are robust against individual link failures. This application and many polyhedral and
heuristic results are discussed by Grötschel, Monma, and Stoer [GMS95]. With respect
to approximability, the primal-dual algorithm by Goemans and Williamson [GW95] for
the Steiner forest problem and the iterative rounding approach by Jain [Jai01] for the
Steiner network problem both achieve an approximation factor of 2 in undirected graphs.
In contrast, the directed version of the Steiner forest problem is very hard to approximate.

Problem: Directed Steiner forest problem

Input: A digraph D = (V,A), costs c ∈ QA
+, and a set of node pairs

{(s0, t0), . . . , (sk, tk)}.
Task: Find a set of edges T ⊆ A such that T contains a directed si-ti-

path for every i ∈ [k], minimizing c(T ).

Dodis and Khanna [DK99] showed that there is no 2log1−ε k-approximation for the directed
Steiner forest problem for any ε > 0, unless NP ⊆ DTIME(npolylog(n)). Feldmann and
Ruhl [FR99] derived an exact O(|E||V |4k−2 + |V |4k−1 log |V |)-time algorithm for the
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problem. Note, however, that this is not a fixed-parameter algorithm in the sense of
the definition given in Section 1.1.1. In fact, Guo, Niedermeier, and Suchỳ [GNS11]
established W [1]-hardness for the directed Steiner forest problem parameterized both
by the number of terminals and the arc costs, making the existence of fixed-parameter
algorithms for the problem unlikely.

1.3.2 Capacitated network design: Fixed-charge network flows

The Steiner tree problem and its generalizations impose simple connectivity requirements
for the terminals. Every link installed in the network contributes the same unit capacity,
and the connecting paths of different node pairs can use this capacity independently
from one another. This is different in capacitated network design, where the flow running
between the terminals has to share the capacity of the installed links, and the capacities
provided by each link can be different. A fundamental version of capacitated network
design is the fixed-charge network flow problem.

Problem: Fixed-charge network flow

Input: A digraph D = (V,A), a set of commodities K, node bal-
ances b ∈ QK×V , fixed costs c ∈ QA

+, linear costs ci ∈ QA for
each i ∈ K, and capacities u ∈ QA

+.

Task: Find numbers y ∈ ZA+ and a multi-commodity b-flow x ∈ QK×A
+

such that
∑

i∈K xi(a) ≤ u(a)y(a) for all a ∈ A, minimizing the
cost

∑
a∈A c(a)y(a) +

∑
i∈K ci(a)xi(a).

The fixed-charge network flow problem generalizes the minimum cost multi-commodity
flow problem by adding fixed costs. This can also be used to model piecewise linear con-
cave cost functions; see Section 3.2.4. There are numerous closely related variants of
capacitated network design problems, e.g., with upper bounds on the number of copies
of each arc installed in the network.

Fixed-charge network flows and other capacitated network design problems are a ver-
satile tool in the planning of communication and transportation networks. Due to their
great significance for practical applications, most generic mixed integer programming
solvers include specialized methods for detecting and capacitated network design struc-
tures strengthening the corresponding formulations; see the thesis of Raack [Raa12] for
recent progress in this direction. In Chapter 3, we will devise a new model for trans-
portation planning that is based on a generalized version of the fixed-charge network flow
problem. We will therefore discuss mixed integer programming formulations and heuristic
methods for solving capacitated network design problems in detail in that chapter.

Complexity. Clearly, the fixed-charge network flow problem generalizes the directed
Steiner forest problem and thus inherits all hardness results mentioned above. When each
arc may only be installed once in the network, the 2log1−ε |V |-hardness of approximation
even holds for the single-commodity case [CCKK11]. Also in undirected graphs, fixed-
charge network flow remains hard to approximate: Chuzoy et al. [CGNS08] showed that
there is no approximation better than Ω(log log |V |) even for the single-commodity case
of the problem, unless NP ⊆ DTIME(nlog log logn).
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Abstract flows over time

In this chapter, we study a generalization of network flows called abstract flows. This
model replaces the underlying network structure by an abstract system of linearly
ordered sets fulfilling a simple switching axiom. Abstract flows were introduced by
Hoffman [Hof74] to investigate minimal structural requirements for obtaining max
flow/min cut results. We extend his results by introducing a notion of time, general-
izing Ford and Fulkerson’s concept of flows over time [FF58b]. Using the maximum
abstract flow algorithm of McCormick [McC96], we show how maximum flows and
minimum cuts over time can still be computed in the abstract setting.

Publication remark: The results presented in this chapter are joint work with
Jan-Philipp W. Kappmeier and Britta Peis [KMP12].

Ford and Fulkerson’s max flow/min cut theorem [FF56] is among the most influential
results in combinatorial optimization. Understanding the driving forces behind this result
is of great interest, not only for its fundamental importance to network flow theory
itself but also due to the implied structural connection between cuts and connectivity in
networks. Hoffman [Hof74] observed that the original proof of the theorem does not use
the underlying network structure directly but only exploits one particular property of the
path system, the so-called switching axiom: Whenever two paths P and Q intersect, there
must be another path that is contained in the beginning of P and the end of Q. Hoffman
succeeded in showing that a generalized version of the maximum flow problem defined
on any set system fulfilling the switching axiom, called abstract network, still is totally
dual integral (TDI). His structural results were later complemented by the combinatorial
primal-dual algorithms of McCormick [McC96] and Martens and McCormick [MM08].

The high level of abstraction in Hoffman’s model leads to the question whether his
results are restricted to the classic maximum flow problem or whether they extend to
other variants of network flows. In this chapter, we introduce and investigate abstract
flows over time and show how a temporally repeated abstract flow and a corresponding
minimum cut can be computed by solving a single static weighted abstract flow problem—
which in our case can be done even when accessing the abstract network through a very
limited oracle. This immediately leads to the max flow/min cut theorem for abstract
flows over time as our main result in this chapter.

Although our construction resembles that of Ford and Fulkerson’s original result
on (non-abstract) flows over time [FF58b], the proof turns out to be considerably more
involved and we will need to take a detour via a relaxed version of abstract flows over time

19
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that also considers storage of flow at intermediate elements. However, our results also
imply that this relaxation is not necessary and that there always is an optimal solution
that does not make use of storage at intermediate nodes. In the course of our proof, we
also establish some interesting structural properties of abstract networks, showing that
the relatively modest switching axiom of abstract path systems already captures many
essential properties of classic networks.

Dynamic packing problems. Besides yielding new insights into the mechanics behind
max flow/min cut for flows over time and the generality of Hoffman’s model, our research
on abstract flows over time is also motivated by a second perspective. Network flows
comprise a special class of packing problems: We try to pack the capacitated arcs of
the graph by assigning flow values to the source-sink-paths. Accordingly, flows over
time can be seen as a dynamic packing problem, i.e., a packing problem with a temporal
component, where solutions may vary over time and a decision taken at some point in time
may impact the state of the solution at later points as well. Considering the importance
of time in many applications of combinatorial optimization and the large impact of Ford
and Fulkerson’s initial results on flows over time, which spawned a whole new theory
in this area, one now might ask how the concept of time can be extended to other
packing problems. Abstract flows appear to be an ideal first candidate for investigating
this question. This impression is amplified by further abstractions based on uncrossing
axioms that have been inspired by the concept of abstract flows—corresponding TDI
results have been established, e.g., for lattice polyhedra by Hoffman and Schwartz [HS78],
Gröflin and Hoffman [GH82], and Hoffman [Hof78], as well as for switchdec polyhedra
by Gaillard [Gai97]; also see the survey by Schrijver [Sch84].

Chapter outline

Section 2.1 introduces Hoffman’s model of abstract flows in detail and discusses the
related literature. In Section 2.2, we extend this model by conducting a time expansion.
We point out differences from the time-expanded network for classic network flows by
Ford and Fulkerson [FF58b]. Section 2.3 then explains how to construct a maximum
temporally repeated abstract flow and a corresponding minimum abstract cut of the
same value. We argue how to compute both the flow and the cut using a standard oracle
for accessing abstract networks. In order to validate the feasibility of the abstract cut over
time, we prove some interesting structural properties of abstract networks in Section 2.4.
Using these results, we can finally show in Section 2.5 that the cut actually intersects
all temporal paths, completing the proof of the abstract max flow/min cut over time
theorem.

2.1 Introduction to abstract flows

In this section we give a short introduction to Hoffman’s model of abstract flows and the
corresponding structural and algorithmic results.

Abstract networks. An abstract path system consists of a ground set E of elements and
a family of paths P ⊆ 2E . For every P ∈ P there is a linear order <P of the elements in
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P . We introduce the following notation for P ∈ P and e ∈ P :

[P, e] := {p ∈ P : p ≤P e} [e, P ] := {p ∈ P : p ≥P e}
(P, e) := {p ∈ P : p <P e} (e, P ) := {p ∈ P : p >P e}

An abstract path system is an abstract network, if the switching axiom is fulfilled: For
every P,Q ∈ P and every e ∈ P ∩Q, there is a path

P ×e Q ⊆ [P, e] ∪ [e,Q].

Weighted abstract flows and cuts. An abstract flow is an assignment x ∈ QP+ of flow
values to the paths of the abstract network. Given an abstract network with capacities
for all elements, the abstract flow problem asks for an abstract flow such as to maximize
the total flow value while not violating the capacity of any element. This problem can
be generalized further by introducing a weight function that specifies the “reward” per
unit of flow sent along each path.

Problem: Weighted abstract flow

Input: An abstract network (E,P) with capacities u ∈ QE
+ and

weights r ∈ QP+.

Task: Find an abstract flow x ∈ QP+ with
∑

P∈P : e∈P x(P ) ≤ u(e) for
all e ∈ E, maximizing

∑
P∈P r(P )x(P ).

The special case of r ≡ 1 is called (unweighted) abstract flow problem.

The weighted abstract flow problem corresponds to the following packing LP.

[WAF] max
∑
P∈P

r(P )x(P )

s.t.
∑

P∈P: e∈P
x(P ) ≤ u(e) ∀e ∈ E

x(P ) ≥ 0 ∀P ∈ P

The dual of this LP is the weighted abstract cut problem, a covering problem that assigns
a value to every element so as to cover every path according to its weight.

[WAC] min
∑
e∈E

u(e)y(e)

s.t.
∑
e∈P

y(e) ≥ r(P ) ∀P ∈ P

y(e) ≥ 0 ∀e ∈ E.

Oracles. From the viewpoint of complexity theory, we are interested in algorithms
whose running times are polynomial in the size of the ground set. We will thus assume E
to be given explicitly while the abstract network can be accessed by the following oracle.
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Oracle Opath: Given Q ⊆ E, return (P,<P ) for some path P ∈ P with P ⊆ Q, or
verify that no path is contained in Q.1

Note that using Opath, we can also determine a possible choice for P ×e Q for in-
tersecting paths P,Q ∈ P by asking the oracle for a path in [P, e] ∪ [e,Q]. In general,
also the weight function r is given by an oracle. The weights occurring in this thesis
however will always be of the form r(P ) = T −∑e∈P τ(e) for some constant T and a
vector τ ∈ ZE and are thus easily computable.

Supermodularity. It is easy to check that both [WAF] and [WAC] can have fractional
optimal solutions, even if all capacities and weights are integral. In fact, when allowing
arbitrary weight functions, any packing problem on an arbitrary set system can be mod-
eled as a maximum abstract flow problem by setting the weight of undesired paths to zero.
We therefore turn our attention to supermodular weight functions. A function r : P → Q
is supermodular if

r(P ×e Q) + r(Q×e P ) ≥ r(P ) + r(Q)

for every P,Q ∈ P and e ∈ P ∩ Q. An especially interesting class of supermodular
functions are functions of the type r(P ) = T −∑e∈P τ(e) for some T ∈ Q+ and τ ∈ QE

+.
We will encounter functions of this type in Section 2.3.

Previous results. Hoffman [Hof74] showed that for every integral supermodular weight
function, the abstract cut LP [WAC] is totally dual integral. This implies the max
flow/min cut theorem for abstract flows, which generalizes Ford and Fulkerson’s original
result in two ways: On the one hand, the switching axiom represents a significant ab-
straction of the underlying structure, allowing for more general settings than only classic
networks. On the other hand, supermodular weight functions lead to weighted cuts, i.e.,
elements can appear multiple times in the cut. We will later see an example for the
usefulness of such weights in the context of temporally repeated flows, which also yields
an intuitive interpretation of the cut values as the times each element is part of the
cut. Hoffman’s structural result was extended by McCormick [McC96], who presented a
combinatorial algorithm that solves the unweighted version (r ≡ 1) of the abstract flow
problem in time polynomial in |E| and the encoding size of the capacities using the oracle
Opath. Later, Martens and McCormick [MM08] presented a combinatorial primal-dual
algorithm for the case of general supermodular weights using a separation oracle for the
weighted abstract cut LP [WAC].

Abstract networks vs. classic networks. While these results indicate that the switching
axiom is the essential force behind max flow/min cut and similar total dual integrality
results for flow problems in networks, we want to close this section by pointing out an
example that shows how abstract networks actually may differ from classic networks. In
classic networks, if two paths P and Q both intersect a third path R, then there also
must be a path from the beginning of P to the end of Q or the other way around. The
following example shows that this is not true in abstract networks, even in cases where
the switching axiom preserves the order of intersecting abstract paths.

1The oracle Opath is equivalent to the one used by McCormick [McC96], who states that the idea for
this oracle actually goes back to Hoffman.
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Example 2.1 Consider the abstract network (E,P) with E = {1, 2, 3, 4, a, b, c, d} and
paths P = {(1, 2, 3, 4), (a, 2, c), (b, 3, d), (1, c), (1, d), (a, 4), (b, 4)}. Although both (a, 2, c)
and (b, 3, d) intersect the path (1, 2, 3, 4), there is neither a path that starts with a and
ends with d nor one that starts with b and ends with c.

2.2 Time expansion of abstract networks

Time plays an important role in many application areas of network flows. Flow rates
can vary over time, and flow also takes time to travel within the network. One concept
to capture these temporal effects is the time-expanded network introduced by Ford and
Fulkerson [FF62] as described in Section 1.2.5. Recall that a time-expanded network
contains multiple copies of the nodes of the underlying static network, one for each point
in time, with arcs connecting copies of nodes according to their travel time. We extend
this concept to the world of abstract flows by introducing the time expansion of an
abstract network. In the spirit of Ford and Fulkerson’s idea, we will introduce multiple
copies of the abstract network. In contrast to the classic model however, instead of copies
of individual arcs, whole paths will be introduced.

The time expansion of an abstract network consists of a (static) abstract network
with capacities u ∈ RE+, transit times τ ∈ ZE+ and a time horizon T ∈ Z+. The time
from 0 to T is discretized into T intervals [0, 1), . . . , [T −1, T ) which we identify with the
set of their starting times T := {0, . . . , T − 1}. For each interval, a copy of the ground
set E is introduced, i.e., the time-expanded ground set is ET := E×T . A temporal path
is denoted by Pt, where P is a path of the underlying static abstract network and t ∈ T
specifies the starting time of the path. Flow sent along the temporal path Pt enters
element e at time

γ(Pt, e) := t+
∑

p∈(P,e)

τ(p)

which is the time it needs for traversing all preceding elements plus the initial offset of
the path. Accordingly, we identify Pt with the set of its temporal elements by defining

Pt := {(e, γ(Pt, e)) ∈ ET : e ∈ P} .

The arrival time of the temporal path Pt is t +
∑

e∈P τ(e), i.e., the time at which the
flow arrives at the end of the path. Since all flow is supposed to arrive at its destination
within the time horizon, we only allow copies of paths with a maximum arrival time
of T − 1, which is the final element of T . Thus, the set of temporal paths is defined by

PT :=
{
Pt : P ∈ P, t ∈ T , t+

∑
p∈P τ(p) < T

}
.

Abstract flows and cuts over time. An abstract flow over time is an assignment x ∈ QPT+

of flow values to the temporal paths such that∑
Pt∈PT : (e,θ)∈Pt

x(Pt) ≤ u(e)

for all (e, θ) ∈ ET , i.e., the capacity of every element at every point in time is respected.
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Problem: Maximum abstract flow over time

Input: An abstract network (E,P), capacities u ∈ QE
+, transit

times τ ∈ ZE+, a time horizon T ∈ Z+.

Task: Find an abstract flow over time x of maximum flow
value

∑
Pt∈PT x(Pt).

An abstract cut over time is a subset C ⊆ ET of the time-expanded ground set that
covers every temporal path, i.e., Pt ∩ C 6= ∅ for all Pt ∈ PT . The capacity of such a cut
is
∑

(e,θ)∈C u(e). In analogy to the static case, the maximum value of an abstract flow
over time is bounded by the capacity of an abstract cut over time.

Lemma 2.2 Let x be an abstract flow over time and let C be an abstract cut over time.
Then

∑
Pt∈PT x(Pt) ≤

∑
(e,θ)∈C u(e).

Proof. As the cut contains an element of every temporal path and the capacity constraints
are respected at every point in time, we get∑

Pt∈PT
x(Pt) ≤

∑
(e,θ)∈C

∑
Pt : (e,θ)∈Pt

x(Pt) ≤
∑

(e,θ)∈C
u(e).

Time expansion of an abstract network vs. time-expanded network. While the time
expansion of abstract networks as defined above is similar to the notion of a time-expanded
network as defined by Ford and Fulkerson [FF62] for classic network flows, the two defini-
tions are not quite identical. Time-expanded networks are based on the arc formulation
of network flows. They are constructed by introducing copies of both the nodes and the
arcs of the underlying static network and adjusting the end points of the arcs according
to their transit times. By construction, the resulting structure is guaranteed to be a
network again. Unfortunately, there is no correspondence to the arc flow formulation
for abstract flows—their definition is inherently tied to the path system, which does not
allow for local concepts such as flow conservation at a particular element. Our model of
time expansion therefore introduces copies of each abstract path as a whole. In contrast
to time-expanded networks, the time expansion of an abstract network is not an abstract
network in general, as can be seen in the following example.

Example 2.3 Let E = {s, a, b, t} and P = {P,Q,R, S} with paths P = (s, a, b, t),
Q = (s, b, a, t), R = (s, a, t), and S = (s, b, t). It is easy to verify that P in fact fulfills
the switching axiom. Assume all elements have unit transit times, i.e., τ ≡ 1. The
temporal paths P0 and Q1 intersect at element (b, 2). However, there is no temporal
path in PT that can be constructed from the elements {(s, 0), (a, 1), (b, 2), (a, 3), (t, 4)}.
Thus, the time expansion violates the switching axiom.

Statement of the main theorems

In view of Example 2.3, it is not even clear whether max flow/min cut results are still
valid in the context of abstract flows over time or how far existing algorithms for abstract
flow problems can be applied to the time expansion of the abstract network. Fortunately,
our investigations in the following sections will show that both max flow/min cut and
efficient algorithms can still be achieved for abstract flows over time.
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Theorem 2.4 (Abstract max flow/min cut over time) The value of a maximum abstract
flow over time equals the capacity of a minimum abstract cut over time.

In fact, our proof of Theorem 2.4 is constructive and it implies that both a maximum
flow and a minimum cut over time can be computed by solving a single (static) weighted
abstract flow problem.

Theorem 2.5 A maximum abstract flow and a minimum abstract cut over time can be
computed in time φ(|E|, 〈u〉, log(T )) · TIME(Opath,P), where φ is a polynomial, 〈u〉 is
the encoding size of u, and TIME(Opath,P) denotes the time needed by a call of the
oracle Opath for the abstract network P.

Our proof of the above theorems involves constructing an abstract cut over time. In
order to show feasibility of this cut, we will have to introduce the possibility of storage at
intermediate elements as an important device in our proof in Section 2.4. Storage of flow
at intermediate nodes plays an interesting role in the field of flows over time. In some
settings, such as the maximum flow over time problem or the NP-hard minimum cost flow
over time problem, there always exist optimal solutions that do not wait at intermediate
nodes; see the articles by Ford and Fulkerson [FF58b] and Fleischer and Skutella [FS03],
respectively. This is not true in other settings: e.g., for multi-commodity flows over
time, the decision of allowing flow storage at intermediate nodes has an influence on the
value of the solution and also on the complexity; see the article by Hall, Hippler, and
Skutella [HHS07] for an overview and by Groß and Skutella [GS12] for a recent technique
designed to cope with the absence of intermediate storage. In the context of abstract
flows over time, our results imply that the possibility of storage has no influence on the
problem, as we prove in Section 2.5 that the temporally repeated solution constructed in
Section 2.3 is optimal even if intermediate storage is allowed.

Theorem 2.6 The value of an abstract flow over time with storage at intermediate ele-
ments is not larger than the value of a maximum abstract flow over time without storage.

Remark 2.7 As pointed out in the Section 1.2.5, flows over time allow for both a discrete
and a continuous model of time. While we restrict ourselves to the discrete model in
this thesis, we remark that all our results can easily be transferred to the corresponding
continuous-time version of abstract flows over time. In fact, our proofs do not make
any use of the discretization of time, and any occurring sequence of consecutive discrete
points in time t1, . . . , tk can naturally be replaced by the continuous interval [t1, tk + 1).

2.3 Construction of a maximum abstract flow over
time and a minimum abstract cut over time

The number of paths created by applying the time expansion is linear in T and can thus
be exponential in the size of the input. Hence, even encoding a solution in the straight-
forward way may result in an exponentially sized output. Ford and Fulkerson [FF58b]
resolved this problem for the classic (non-abstract) flow over time problem by introducing
a so-called temporally repeated flow, i.e., a flow over time constructed by temporally
repeating a static flow pattern. In this section, we will translate the concept of temporally
repeated flows to the abstract setting and show how to construct a maximum temporally
repeated abstract flow by solving a static weighted abstract flow problem.
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Temporally repeated flows

A temporally repeated abstract flow is an abstract flow over time xT that is constructed
from a static abstract flow x by setting xT (Pt) := x(P ) for every P ∈ P and every t ∈ T
with 0 ≤ t < T −∑e∈P τ(e). In other words, the static flow on each path is repeatedly
sent as long as possible before the time horizon is reached. It is easy to check that
feasibility of the underlying static flow implies feasibility of the temporally repeated
flow.

Lemma 2.8 A temporally repeated abstract flow xT derived from a feasible abstract flow
x is a feasible abstract flow over time.

Proof. We only need to verify that xT obeys the capacity restrictions for every e ∈ E
and every θ ∈ T . Observe that (e, θ) ∈ Pt if and only if e ∈ P and θ = t+

∑
p∈P τ(p).

As the second summand on the right hand side is constant for a fixed P ∈ P, there is at
most one value of t ∈ T for which (e, θ) ∈ Pt. Thus∑

Pt∈PT : (e,θ)∈Pt
xT (Pt) ≤

∑
P∈P : e∈P

x(P ) ≤ u(e)

for all (e, θ) ∈ ET .

In order to construct a maximum temporally repeated abstract flow, we first observe
that flow can be sent along path P ∈ P up to time r(P ) := T −∑e∈P τ(e), i.e., the flow
value x(P ) is repeated r(P ) times. Thus, the total flow value of the temporally repeated
flow xT resulting from the static flow x is

∑
P∈P r(P )x(P ) and a maximum temporally

repeated flow corresponds to a static abstract flow that is maximum with respect to the
weights r(P ). It is not hard to observe that the weight function defined in this way is
supermodular.

Lemma 2.9 The weight function r(P ) := T −∑e∈P τ(e) is supermodular.

Proof. By definition of r we have

r(P ×e Q) + r(Q×e P ) = T −
∑

e∈P×eQ
τ(e) + T −

∑
e∈Q×eP

τ(e)

≥ 2T −

∑
e∈[P,e]

τ(e) +
∑
e∈(e,Q)

τ(e)

−
∑
e∈[Q,e]

τ(e) +
∑
e∈(e,P )

τ(e)


= 2T −

∑
e∈P

τ(e)−
∑
e∈Q

τ(e)

= r(P ) + r(Q).

Let x∗ be a (static) abstract flow of maximum weight with respect to r, and let x∗T
be the corresponding temporally repeated flow—at the end of this section, we will argue
how to compute x∗ using the oracle Opath and the algorithm from [McC96]. We will
show that the value of x∗T is not only maximum among the temporally repeated abstract
flows but also among all abstract flows over time, i.e., it is an optimal solution to the
maximum abstract flow over time problem. To this end, we construct an abstract cut
over time whose capacity matches the flow value of x∗T .
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Constructing an abstract cut over time

Let y∗ be an optimal solution to the dual of the static weighted abstract flow problem with
the weights r(P ) used to construct the temporally repeated flow. Note that by [Hof74]
and Lemma 2.9, we can assume y∗ to be integral. We will interpret the values y∗ as the
number of time steps for which element e is contained in the cut. We define the time at
which e ∈ E enters the cut by setting

α(e) := min
P∈P

∑
p∈(P,e)

(τ(p) + y∗(p))

and define
C := {(e, θ) ∈ ET : α(e) ≤ θ < α(e) + y∗(e)} .

Theorem 2.10 C is an abstract cut over time.

The proof of Theorem 2.10 involves some additional results on the structure of ab-
stract networks, which we will elaborate on in the following sections. Using LP duality,
Theorem 2.10 immediately leads to the following corollary, which in turn implies Theo-
rem 2.4.

Corollary 2.11 The temporally repeated abstract flow x∗T is a maximum abstract flow
over time, and C is a minimum abstract cut over time whose capacity is equal to the flow
value.

Proof. We observe that by LP duality,∑
(e,θ)∈C

u(e) =
∑
e∈E

u(e)y∗(e) =
∑
P∈P

r(P )x∗(P ) =
∑
Pt∈PT

x∗T (Pt)

and thus the capacity of C equals the flow value of x∗T .

Remark 2.12 Our proof of Theorem 2.10 will make use of the fact that our definition
of C is based on the “shortest path labels” α. Unfortunately, in the case of abstract
networks these labels need not satisfy the triangle inequality, i.e., there might be el-
ements e, f ∈ E such that f is the immediate successor of e in an abstract path P ,
but α(e) + τ(e) + y∗(e) < α(f); see Example 2.13. This makes the proof considerably
more involved than the corresponding proof for classic networks.

Example 2.13 Consider the abstract network with ground set E = {a, b, c, d, z} and
path set P = {(a, c, z), (b, c, d, z), (a, z), (b, z)}. Suppose T = 2, τ(b) = 1, y∗(z) = 2,
and τ(e) = 0 for all e ∈ E \ {b} and y∗(e) = 0 for all e ∈ E \ {z}. Observe that in this
case α(d) = 1 > α(c) + τ(c) + y∗(c).

Note that for the static abstract flow problem, the first two paths in the above example
would be redundant, as an optimal solution can always restrict to the latter two. However,
it is not immediately clear that this is true for abstract flows over time; additional
elements on a path can delay flow, which in principle could help to avoid bottlenecks and
achieve larger flow values. Yet we will show later that this is not the case and delaying
flow is never beneficial.
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Complexity of constructing x∗T and C

We close this section by arguing how to compute the maximum weighted abstract flow
x∗, the corresponding dual solution y∗ and the values α(e) for elements occurring in the
cut while only accessing the abstract network using the oracle Opath. This suffices to
implicitly construct x∗T and C and thus proves Theorem 2.5.

Lemma 2.14 The values of x∗T , y
∗, and α restricted to the support of y∗ can be computed

in time φ(|E|, 〈u〉, log(T )) ·TIME(Opath,P), where φ is a polynomial, 〈u〉 is the encoding
size of u, and TIME(Opath,P) denotes the time needed by a call of the oracle Opath for
the abstract network P.

Proof. First observe that for any u′ ∈ QE
+, the corresponding unweighted abstract cut

problem can be solved using the algorithm of McCormick [McC96] with a polynomial
number of oracle calls. By the equivalence of optimization and separation [GLS88],
we can thus decide whether a given y ∈ QE

+ fulfills
∑

e∈P y(e) ≥ 1 for all P ∈ P, or
find a violated path P ∈ P with

∑
e∈P y(e) < 1. Because

∑
e∈P y(e) ≥ r(P ) if and

only if
∑

e∈P (y(e) + τ(e))/T ≥ 1, we can solve the separation problem of the minimum
weighted abstract cut problem with respect to r as well. As a result, we can compute x∗

and y∗ with a polynomial number of oracle calls, either by once more applying the
equivalence of optimization and separation and LP duality, or by using the combinatorial
algorithm of Martens and McCormick [MM08].

For any P ∈ P with x∗(P ) > 0 and any e ∈ P define

αP (e) :=
∑

p∈(P,e)

(τ(p) + y∗(p)).

We will show that y∗(e) > 0 implies α(e) = αP (e) for all paths P ∈ P with e ∈ P
and x∗(P ) > 0. Therefore, α can be computed by only considering the support of x∗.
Let e ∈ E with y∗(e) > 0. By complementary slackness,

∑
P∈P:e∈P x

∗(P ) = u(e). Thus
there is a P ∈ P with e ∈ P and x∗(P ) > 0 (unless u(e) = 0, in which case we can
ignore e). Again by complementary slackness,

∑
p∈P y

∗(p) = r(P ). By contradiction
assume there is a path Q ∈ P with αQ(e) < αP (e). Let S := Q×e P . Then∑

s∈S
(τ(s) + y∗(s)) ≤ αQ(e) +

∑
p∈[e,P ]

(τ(p) + y∗(p)) <
∑
p∈P

(τ(p) + y∗(p)) = T

contradicting the feasibility of y∗.

Remark 2.15 The usage of the equivalence of optimization and separation in the above
proof can be omitted if the oracle for accessing the abstract network is slightly more
powerful:

Oracle Osep: Given y ∈ QE
+, return (P,<P ) for some P ∈ P with

∑
e∈P y(e) < 1, or

verify that
∑

e∈P y(e) ≥ 1 for all p ∈ P.

Note that Opath is equivalent to the restriction of Osep to integral y. Although Osep is
not a separation oracle for arbitrary supermodular weight functions, using the argument
in the proof of Lemma 2.14 it works as separation oracle for all weight functions of the
type r(P ) = T −∑e∈P τ(e) for some T ∈ Z+ and τ ∈ ZE+. Therefore, we can directly
apply the combinatorial algorithm from [MM08] for computing x∗ and y∗.
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2.4 Storage at intermediate elements and the struc-
ture of abstract networks

In order to prove that the set C constructed in the preceding section actually covers all
temporal paths, we need to ensure that the switching operation × preserves the order
of the intersecting paths. In this section we show how this can be done without loss of
generality. We start by showing a weaker version of this statement, asserting that we
can always choose the path resulting from an application of × in such a way that the
two subpaths used for its construction are not mixed.2

Lemma 2.16 Let P,Q ∈ P, e ∈ P ∩ Q, then there is a path R ⊆ [P, e] ∪ [e,Q] such
that a <R b for any a ∈ R ∩ [P, e] and b ∈ R \ [P, e].

Proof. Let P,Q ∈ P and e ∈ P ∩ Q. Let R to be a path contained in [P, e] ∪ [e,Q]
such that |R \ [P, e]| is minimal. By contradiction assume the existence of a ∈ R ∩ [P, e]
and b ∈ R \ [P, e] with b <R a. Let R′ := P ×a R. Observe that R′ ⊂ [P, e] ∪ [e,Q] and
furthermore R′ \ [P, e] ⊂ R \ [P, e] as b /∈ R′. This contradicts the choice of R.

As a result of Lemma 2.16, the following assumption is without loss of generality.

Assumption A If a ∈ P ×e Q ∩ [P, e] and b ∈ P ×e Q \ [P, e], then a <P×eQ b.

In order to show that × actually preserves the internal order of P and Q, we will—
temporally—extend our model of time expansion by allowing flow to deliberately delay
its traversal at intermediate elements.

Storage at intermediate elements

A temporal path with intermediate storage is denoted by Pσ, where P ∈ P is a path of
the underlying static abstract network and σ : P → T specifies the storage time σ(e)
before traversing element e ∈ P . Flow sent along Pσ enters element e at time

γ(Pσ, e) :=
∑
p∈(P,e)

(σ(p) + τ(p)) + σ(e)

which is the time it needs for traversing all preceding elements and the time it spends
waiting at those elements and at e itself. Accordingly, we identify Pσ with the set of its
temporal elements by defining

Pσ := {(e, γ(Pσ, e)) ∈ ET : e ∈ P} .

The set of all temporal paths with intermediate storage is denoted by

P∗T :=
{
Pσ : P ∈ P, σ ∈ T P , ∑e∈P (σ(e) + τ(e)) < T

}
.

We will identify Pt ∈ PT with P(t,0,...,0) ∈ P∗T . Note that the maximum abstract flow
over time problem with storage at intermediate elements is a relaxation of maximum
abstract flow over time without storage, and that in particular the temporally repeated

2This property of the switching operation was first noted by Orlin in personal communication with
McCormick [McC13].
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abstract flow x∗T defined in Section 2.3 is a feasible solution to this relaxation. We will
show that C actually covers all paths in P∗T , and thus x∗T is optimal even if storage is
allowed. This implies that the relaxation does not have any effect on the value of the
optimal solution.

However, the extension of the model allows us to delete certain paths from the net-
work. Observe that if Q is a strict subset of P , and <Q is identical to the restriction
of <P to Q, then there always is an optimal abstract flow over time that does not use
any copy of P , since the flow can wait at intermediate elements and use Q instead. Thus
we can safely erase P from the base network in this case—note that this does not violate
the switching axiom, as Q can always replace P as switching choice. Hence, if we allow
storage at intermediate elements, the following assumption is without loss of generality.

Assumption B If Q ⊂ P then there are a, b ∈ Q with a <P b and b <Q a.

In the remainder of this section, we show that Assumption B implies the following
lemma. As a consequence of the lemma, we can assume the switching operation to
preserve order; see Corollary 2.18.

Lemma 2.17 There are no paths P,Q ∈ P such that Q ⊂ P .
Proof. By contradiction assume there are P,Q ∈ P with Q ⊂ P . Let P ∗ be such that |P ∗|
is minimal among all possible choices of such a P .

For Q ⊂ P ∗ define b(Q) ∈ Q to be the maximal element with respect to <Q such
that p <P ∗ b(Q) for all p ∈ (Q, b(Q)), i.e., until element b(Q), the order of Q is identical
to that of P . By Assumption B, b(Q) cannot be the last element of Q. So let a(Q) ∈ Q be
the successor of b(Q) in Q. Note that this implies a(Q) <P∗ b(Q) by definition of b(Q).
Among all paths Q ⊂ P ∗, choose Q∗ such that b∗ := b(Q∗) is maximal with respect
to <P ∗ . Let a∗ := a(Q∗).

Now let R := Q∗ ×b∗ P ∗. Note that a∗ /∈ R, as a∗ >Q∗ b∗ and a∗ <P ∗ b∗. There-
fore R ⊂ P ∗. We now claim that <R is identical to <Q∗ on the (Q∗, b∗)-part of R.

Claim Let c, d ∈ R ∩ (Q∗, b∗). Then c <Q∗ d if and only if c <R d.

In order to see the claim is true, assume c <Q∗ d but d <R c and let R′ := R×d Q∗.
Note that c /∈ R′ and by Assumption A, we have chosen R such that [R, d] ⊂ Q∗. This
implies R′ ⊂ Q∗ ⊂ P ∗, which contradicts the choice of P ∗, proving the claim.

By definition of b(Q∗), the order <Q∗ is identical to <P ∗ on (Q∗, b∗) and thus the claim
implies that <R is identical to <P ∗ on the (Q∗, b∗)-part of R. Therefore a(R) and b(R)
cannot be both in the (Q∗, b∗)-part of R. Thus, a(R) ∈ [b∗, P ∗], which by a(R) <P ∗ b(R)
implies that b(R) ∈ (b∗, P ∗). However, this means b(R) >P ∗ b

∗, contradicting our choice
of Q∗ maximizing b∗. This proves the lemma.

Corollary 2.18 Let R := P ×e Q.
• If a, b ∈ R ∩ [P, e] and a <P b, then a <R b.

• If a, b ∈ R \ [P, e] and a <Q b, then a <R b.

Proof.

• By contradiction assume a, b ∈ [P, e] ∩ R and a <P b but b <R a. Then, by
Assumption A, there is no c ∈ R \ [P, e] with c <R a. This means [R, b] ⊆ P and
thus R×b P ⊆ P \ {a}, contradicting Lemma 2.17.
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• By contradiction assume a, b ∈ R \ [P, e] and a <Q b but b <R a. Then, by
Assumption A, there is no c ∈ R ∩ [P, e] with c >R b. This means [a,R] ⊆ Q and
thus Q×a R ⊆ Q \ {b}, contradicting Lemma 2.17.

2.5 Proof of abstract max flow/min cut over time
We will show that C not only covers all paths in PT but even those paths that use storage
at intermediate elements, implying optimality of the constructed temporally repeated
abstract flow for the relaxation of the problem. We are thus allowed to use the results
from Section 2.4 in the proof.

Theorem 2.10a C ∩ Pσ 6= ∅ for every Pσ ∈ P∗T .

Proof. By contradiction assume there is a path that is not covered by C. Among all
uncovered paths choose Pσ ∈ P∗T such that the length

∑
e∈P (τ(e) + y∗(e)) is minimal.

We will show that there is an uncovered path R whose length is strictly shorter, yielding
a contradiction.

Let ē ∈ P be maximal with respect to <P among all e ∈ P with γ(Pσ, e) ≥ α(e).
Note that such an element exists because the first element of P fulfills this inequality. By
construction, Pσ arrives at ē after the element has entered the cut. Note that, as Pσ is
not covered by the cut, the path must actually arrive at ē after it has left the cut again,
i.e., γ(Pσ, ē) ≥ α(ē) + y∗(ē). Adding τ(ē) to both sides of this inequality yields∑

e∈[P,ē]

(σ(e) + τ(e)) ≥ α(ē) + y∗(ē) + τ(ē). (2.1)

Now let Q ∈ P be a path with
∑

e∈(Q,ē)(τ(e) + y∗(e)) = α(ē), and let

R := Q×ē P.

In order to show that R actually contradicts our choice of P , we first argue that ē
cannot be the final element of P . Assume this was the case. Then Q×ē P ⊆ [Q, ē] and
thus α(ē) + τ(ē) + y∗(ē) =

∑
e∈[Q,ē](τ(e) + y∗(e)) ≥ T by feasibility of y∗. Combining

this with (2.1) yields
∑

e∈P (σ(e) + τ(e)) ≥ T , a contradiction to Pσ ∈ P∗T .
Thus, ē is not the final element of P and we let e′ be the successor of ē on P . Observe

that the choice of ē and the definition of α imply

γ(Pσ, e
′) < α(e′) ≤

∑
e∈[P,ē]

(τ(e) + y∗(e)). (2.2)

Note that the left hand side of (2.1) is bounded from above by γ(Pσ, e
′) and thus

combining (2.1) and (2.2) yields α(ē) <
∑

e∈(P,ē)(τ(e) + y∗(e)). Therefore∑
e∈R

(τ(e) + y∗(e)) ≤ α(ē) +
∑
e∈[ē,P ]

(τ(e) + y∗(e)) <
∑
e∈P

(τ(e) + y∗(e)).

Now let s :=
∑

e∈[Q,ē] y
∗(e) +

∑
e∈[Q,ē]\R τ(e) and σ′ := (s, 0, . . . , 0) ∈ T R. We will

show that the temporal path Rσ′ is not covered by C, which contradicts the choice of Pσ
as uncovered path minimizing the length with respect to τ + y∗.
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Let f ∈ R. We show (f, γ(Rσ′ , f)) /∈ C. Note that γ(Rσ′ , f) = s +
∑

e∈(R,f) τ(e).
Our results from Section 2.4 further imply that R consists of two parts: The first part
containing elements from [Q, ē] in the same order as <Q, the second part containing
elements form (ē, P ), in the same order as <P .

• If f ∈ [Q, ē], then

γ(Rσ′ , f) ≥
∑
e∈(Q,f)

(τ(e) + y∗(e)) + y∗(f) ≥ α(f) + y∗(f).

So Rσ′ reaches f after it has left the cut in this case.

• If f ∈ R \ [Q, ē], then

γ(Rσ′ , f) =
∑
e∈[Q,ē]

(τ(e) + y∗(e)) +
∑

e∈(ē,R)∩(R,f)

τ(e) ≤ α(ē) + τ(ē) + y∗(ē) +
∑

e∈(ē,P )∩(P,f)

τ(e)

≤ γ(Pσ, ē) +
∑
e∈[ē,P ]∩(P,f)

(τ(e) + σ(e)) ≤
∑
e∈(P,f)

(τ(e) + σ(e)) + σ(f)

where the penultimate inequality follows from γ(Pσ, ē) ≥ α(ē) + y∗(ē). Note that
the last term of the inequality is equal to γ(Pσ, f), and thus strictly less than α(f)
due to the choice of ē and the fact that f >P ē. So Rσ′ reaches f before it enters
the cut in this case.

This concludes the proof.

2.6 Conclusion
In this chapter, we introduced and investigated abstract flows over time, an extension
of flows over time that can be viewed as a first approach towards more general dynamic
packing problems. Our main result shows that the max flow/min cut result of Ford and
Fulkerson still is valid in Hoffman’s setting of abstract flows, emphasizing the robustness
of the concept. Our proofs rely exclusively on the switching axiom for abstract networks,
showing how thoroughly this abstraction actually captures the essential forces behind
total dual integrality in network-based packing problems.

Open problems and future research

Some interesting questions concerning abstract flows have already been posed in [McC96]
and most of them have remained open. In addition, we would like to point out two further
directions of future research that have been brought up by our study.

Dynamic packing problems. As we laid out in the introduction, our research on ab-
stract flows over time originated from a project to further the understanding of “dynamic”
packing problems, i.e., packing problems with a temporal component, where solutions
may vary over time and a decisions taken at some point in time may impact the state
of the solution at later points as well. Canonical candidates for future investigations
are, e.g., matching problems, knapsack problems, and packing integer programs in gen-
eral. Some preliminary results for matchings over time have already been established
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in [BKM+12]. Similar packing problems over time have also been investigated by Ad-
jiashvili, Bosio, and Weismantel [ABW12], who provide complexity results and an ap-
proximation algorithm for the case where the underlying structure is an independence
system.

Shortest abstract paths. Our results, specifically the proof of Lemma 2.14, reveal an
interesting implication of McCormick’s abstract flow algorithm [McC96] and the equiv-
alence of optimization and separation [GLS88]: Given an abstract network (P, E) with
non-negative weights w ∈ QE

+ on the elements, a shortest abstract path, i.e., a path P ∈ P
minimizing

∑
e∈P w(e) can be found in time polynomial in E, 〈w〉, and TIME(Opath,P),

even when the abstract network can only be accessed by the oracle Opath (note that
the weighted abstract flow algorithm of Martens and McCormick [MM08] needs a much
stronger separation oracle). This directly leads to the question of whether there is a
combinatorial—possibly strongly polynomial—algorithm for the shortest abstract path
problem.





Chapter 3

An integrated approach to
tactical transportation planning

in logistics networks
In this chapter, we introduce a new model for the optimization of freight transporta-
tion in logistics networks. The main features of our approach include accurately
modeled tariff structures and the integration of spatial and temporal consolidation
effects via a cyclic expansion of the network. We propose various heuristic methods
for solving the resulting capacitated network design problem, most notably a local
search procedure based on path decomposition of network flows and an aggregated
mixed integer programming formulation that also provides lower bounds on the value
of the optimal solution. In a computational study based on data from our project
partner 4flow AG, we show that most of our solutions are within a single-digit per-
centage of the optimum.

Publication remark: The results presented in this chapter are joint work with
Tobias Harks, Felix G. König, Alexander Richter, and Jens Schulz [HKM+].

Modeling and optimizing the transportation of goods in a network is a central application
of network flow theory. While early models assumed transportation costs to be linear,
at present, capacitated network design formulations—which combine network flows with
network design—allow for much more precise replication of the highly involved tariff
systems offered by logistics carriers in practice. Transportation tariffs are complex cost
functions, depending on different properties of the shipment often in a non-linear or even
non-continuous way. Most tariffs, however, exhibit an “economies of scale” structure, i.e.,
the per-unit shipping cost decreases with increasing size of the payload. This observation
motivates the consolidation of shipments, i.e., the aggregation of several small shipments
into a larger one. Consolidation may occur over space as well as over time. In spatial
consolidation, material flows of different origins are combined at an intermediate node
and forwarded jointly to the next. In temporal consolidation, material is kept in inventory
at a node for some time in order for more flow to accumulate, thereby enabling a larger
outbound shipment. This leads to a complex tradeoff between efficient usage of economies
of scale, short transportation routes and low inventory cost. The increasing world-wide
shipping volumes and the availability of comprehensive data and network analytics fosters
an interest in more precise models and optimization techniques that address this tradeoff
in an integrated fashion.

In this chapter of the thesis, we introduce a new model for tactical transportation
planning, the task of optimizing inventory levels, material flows, and tariff choices for
freight transportation in logistics networks. Our model integrates temporal delivery
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patterns and inventory decisions into a multi-commodity flow formulation with a very
general set of cost functions that captures many important cases of transportation tariffs
used in logistics networks today. We also present algorithms for solving the optimization
problem resulting from this formulation and generating lower bounds on the value of
the optimal solution. The model has been developed in close collaboration with logistics
experts at 4flow AG, a logistics consultancy company serving small, medium-sized and
global customers from a broad spectrum of industries. Our algorithmic methods were
evaluated on a library of transportation networks obtained from recent and ongoing
customer projects of 4flow AG.

Chapter outline

A general description of transportation planning—the logistical task that is the subject
of our model—is given in Section 3.1. This section also introduces literature covering
transportation models and solution methods for related problems.

In Section 3.2, we introduce a new model for tactical transportation planning. The
main decision variables of our model include the flow paths of commodities through the
network, the choice of transportation tariffs, and inventory levels. Several graph-based
gadgets enable us to formulate complex tariff systems within a capacitated network
design problem. By using a cyclic expansion of the network, our model also includes
the possibility for flexible delivery patterns, accurately modeling the tradeoff between
inventory cost and economies of scale in transportation.

In the process of designing heuristic algorithms suitable for large-scale instances of
logistics networks arising in practice, we identified the problem of selecting optimal tariffs
on a single link in the network as an important subproblem that is crucial in speeding up
the solution process: In order to compute cost efficient paths, our algorithms need good
and fast estimates on the cost incurred by sending a particular amount of flow along a
transport relation. In Section 3.3, we will propose different algorithms that provide a
good balance between accuracy and speed for solving this NP -hard subproblem.

In Section 3.4, we then devise a local search heuristic that employs local changes
on a path decomposition of flow in the network using the tariff selection subroutines
mentioned above. In contrast to many local search heuristics known in the literature—
that either directly modify the network design or reroute flow of a single commodity
only—our approach applies a neighborhood search based on path decomposition of flow
and re-routing multiple commodities simultaneously and then adjusting the network
design accordingly. In order to obtain good initial solutions for our local search heuristic,
we provide two successive shortest path type algorithms. By forbidding certain paths
(for instance direct connections) and linearizing costs we further tune the initial solutions
towards a high level of flow consolidation that will eventually be disaggregated by the
local search heuristic.

In Section 3.5, we complement our heuristic approach by mixed integer program-
ming (MIP) techniques. While our model can be naturally formulated as a MIP, this
plain formulation is not suited for solving reasonably sized real-world instances due to
enormous problem sizes. Instead, we propose an aggregated formulation that consider-
ably reduces model size and still yields good lower bounds on the solution value. We
combine this with efficient preprocessing techniques to tighten the relaxation and a post-
processing step to improve the solution quality. Combining the LP relaxation of this
strengthened and aggregated formulation with the tariff selection heuristics mentioned
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earlier yields a third way of constructing initial solutions for our local search procedure.
In Section 3.6, we evaluate the performance of our different algorithmic approaches

on a library of real-world instances provided by our project partner 4flow AG. The test
set consists of case studies from the automotive, chemical, and retail industry with up
to thousands of facilities and hundreds of commodities. We can show that most of our
solutions are within a single-digit percentage of the optimum, and that our modeling and
algorithmic techniques yield a cost reduction of over ten percent over the current status
quo, which can result in annual savings of several millions of euros.

3.1 Introduction to transportation planning

Before we can introduce our model in Section 3.2, we give an introduction to the logistical
task referred to as transportation planning, which is the subject of the model. We also
discuss literature related to this topic.

3.1.1 Problem description

In the following, we describe the important aspects of transportation planning and in-
troduce some terminology we will use throughout this chapter.

Levels of planning. Due to a strong variance in lead times associated with the different
decisions to be made when designing transportation networks, the planning process is
hierarchically structured in strategic, tactical, and operational levels [SLKSL03]. The
work presented in this chapter focusses on the tactical level: We assume the location
and product decisions to be already made, and the general design of the network to be
fixed. Typical logistic decisions on the tactical level include the amount of flow between
the existing nodes of the network, e.g., which customers to serve from which warehouses
or suppliers, how much inventory to keep at which locations, and which transporta-
tion modes and delivery frequencies to employ on the different connections [GP03]. In
contrast, strategic planning is concerned with long-term decisions such as location of
facilities, while operational planning focuses on the daily tasks of operating the network
such as scheduling workforce and meeting time-windows for delivery. We will discuss later
in Section 3.2.5 to what extent our results can be translated to strategic and operational
planning.

Transportation networks. We consider a network of facilities, which are of different
types, e.g., production plants, warehouses, distribution centers, or retailers. Some facili-
ties have a supply of, or a demand for certain products, also known as commodities. The
number of commodities can be large and distinct commodities typically differ in many
aspects, e.g., their weight, volume, or value. Facilities are joined by transport relations,
and on each transport relation, different transportation tariffs are available corresponding
to concurring offers of freight forwarders and available transportation modes. Each tariff
is characterized by capacity restrictions and a cost function, describing how much of a
commodity (or of some commodity mix) can be transported, and at which cost. E.g.,
a full truck load tariff may have the payload and footprint of a certain truck type as
capacity restrictions and incur a fixed charge cost. Some facilities may be able to carry
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inventory, usually with a commodity-dependent capacity and cost. Handling cost may
result from commodities passing through facilities, such as distribution centers, regardless
of whether they are moved to inventory or not.

Consolidation. Quite commonly, transportation cost includes fixed-charge costs for dis-
patching shipments, and the larger a shipment, the lower the effective per-unit shipping
cost. Hence, a key ingredient to successful tactical planning in a logistics network is the
efficient consolidation of material flows, i.e., the combination of smaller order amounts
into larger shipments in order to utilize capacity efficiently and enable economies of
scale [Çet05]. As already pointed out in the introduction, consolidation may occur over
space—in form of aggregation of different shipments at intermediate hubs—as well as over
time—in form of accumulation of material through lower shipment frequencies. While
temporal consolidation may incur cost for holding inventory, spatial consolidation may
require shipments to deviate from the shortest path to their destination. Thus, in both
cases, a tradeoff has to be considered. Also note that spatial and temporal consolidation
are not mutually exclusive, they may in fact occur jointly at the same node.

Temporal patterns. The interplay between inventory cost and different transportation
tariffs necessitates a notion of time in planning. Since temporal details such as transport
transit times or demand deadlines are commonly postponed to operational planning, the
goal in tactical optimization is a cyclic pattern of deliveries and inventory. The length
and structure of this pattern usually follows some natural notion of rough timing, like
“once every month”, “once every week” or “once every day of the week”, and in each
slot of the pattern (like in one month, week or weekday), deliveries are dispatched, and
inventories are replenished or depleted.

In conclusion, the outcome of tactical transportation planning as described above com-
prises

• the paths each commodity takes through the network, i.e., the total amount of flow
for each commodity on each transport relation,

• the transportation tariffs employed on each transport relation, together with an
assignment of a commodity mix to each of them,

• a cyclic pattern in which transports are executed for each tariff used on each trans-
port relation, including the amounts shipped for each commodity in each slot of
the pattern, and finally

• a pattern of inventory levels for each commodity at each node, supporting the above
transport patterns.

Note that in tactical planning, the aim is not to use the results to operate the lo-
gistics network directly, as this is the subject of operational planning. Rather, tactical
optimization intends to aid with decisions which have to be made with some lead time,
providing the framework for efficient operation: How much throughput capacity needs
to be reserved at certain distribution centers? Which logistics provider should be coop-
erated with on which network connections, and which available tariffs will be employed
on what volume of commodities? Hence, the main purpose of many details in tactical
modeling is not primarily to reflect operational reality, but much more to yield a realistic
assessment of operational cost in the framework provided.
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3.1.2 Related work

Mathematical optimization for logistic problems has been a vast field of research for sev-
eral decades. We give an overview of models and algorithms for transportation planning.

Models for transportation planning

Transportation planning as a scientific field is part of supply chain management (SCM),
an area that deals with “the management of flows between and among all stages of a
supply chain to maximize total profitability” [CM07]. Literature on SCM is as broad
and diverse as the field itself, see the textbooks by Simchi-Levi, Kaminsky, and Simchi-
Levi [SLKSL03] and Chopra and Meindl [CM07]. An excellent overview of network-based
optimization techniques for SCM is given by Geunes and Pardalos [GP03]. The authors
review articles dealing with strategic as well as tactical and operational planning.

In one of the earliest optimization models for SCM by Geoffrion and Graves [GG74],
the authors model a multi-commodity network with several plants, possible distribution
center locations, and demand zones on the strategic level. While the model incorporates
fixed location costs, as well as upper and lower bounds on the throughput of a distribution
center, it does not consider inventory decisions and assumes transportation costs to be
linear. The resulting MIP model is solved using Benders decomposition.

A strategic optimization model that incorporates the interdependence of location,
transportation, and inventory decisions is described by Jayaraman [Jay98]. Here, differ-
ent transportation modes can be chosen for each connection in the network. Each mode
is associated with a commodity-dependent per-unit cost and a delivery frequency. Keep-
ing inventory at a plant or warehouse incurs per-unit inventory cost, and the amount
of inventory held results from the delivery frequencies of the outbound transportation
modes used. Note that this still captures temporal consolidation rather coarsely, as theo-
retically, also transportation modes with low delivery frequency could carry low shipping
volume, making their assumed low per-unit cost unrealistic. The model is solved using
standard MIP solvers.

While the above network-wide SCM models are focussed on strategic planning and
incorporate location decisions, the tactical and operational tradeoff between transporta-
tion and inventory cost lies at the heart of dynamic lot-sizing in inventory theory. In the
basic version of dynamic lot-sizing introduced by Wagner and Whitin [WW58], different
demands for a commodity at a single facility need to be met in multiple periods. In
each period, an arbitrary amount can be ordered at fixed per-order cost, while per-unit
inventory cost is incurred. The goal is to determine the amount ordered in each pe-
riod such that all demands are met on time and the sum of order and inventory cost
is minimized. Wagner and Whitin show that this problem can be solved to optimality
in polynomial time by dynamic programming. This basic model has been extended in
many ways since then, and most variants are computationally hard, see e.g., the litera-
ture review by Jans and Degraeve [JD07]. The practical importance of considering the
trade-off between transportation and inventory cost is highlighted impressively by Burns
et al. [BHBD85, BBD+87], who were able to reduce logistics cost by 26% in a case study
for General Motors.

Generalizing lot-sizing to networks with multiple stages brings it closer to the require-
ments of tactical transportation planning. The first such model was introduced by Clark
and Scarf [CS60] and further developed by Afentakis, Gavish, and Karmarkar [AGK84,
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AG86]. An overview of more recent works can be found in [Sta03]. Most of these mod-
els, however, still make rather restrictive assumptions on the structure of the network
considered and transportation costs incurred. Moreover, the quantity of material flowing
between node pairs is fixed a priori in all lot-sizing models, so the possibility for more
spatial consolidation at hubs is effectively ignored.

Kempkes, Koberstein, and Suhl [KKS10] propose a general model for the integrated
operational planning of external and internal logistics of the last two stages of a supply
chain. In their model, all costs depend on the usage of resources, such as vehicle capacities
or workforce, and this dependence can be piecewise constant as well as linear and may
involve multiple resources. Planning occurs over multiple however non-cyclic periods,
and in particular, inventory cost is taken into account. The authors devise a flow-based
construction heuristic to generate an initial feasible solution that is passed to a standard
MIP solver. In order to introduce all details necessary for realistic operational planning,
their model even allows for logical relations between different resources, which however
significantly increases the algorithmical challenge of solving large scale instances. Ac-
cordingly, their solution approaches are validated on relatively small instances involving
only five planning periods with networks of up to 25 nodes, several hundred arcs, and up
to one hundred commodities.

In a more tactical context, Schöneberg, Koberstein, and Suhl [SKS10] propose a sim-
ilar resource-based model for optimizing the choice of delivery profiles in area forwarding
based networks. In such networks, suppliers are grouped into areas and each area is
equipped with a consolidation center run by a logistics carrier. The main decision vari-
ables are the choices from a fixed set of delivery profiles for each supplier and the usage
of vehicles on the main legs (i.e., the connections between consolidation centers and the
target). The authors propose a solution method that first decomposes the model by
fixing certain decisions for each possible delivery profile and then generates an initial
feasible solution for the MIP solver using a two-phase construction heuristic. The ap-
proach is evaluated in the logistics network of a German truck manufacturer, achieving
cost savings of up to 36% in individual areas.

The transportation model introduced in this chapter, as well as the models in [KKS10]
and [SKS10] are based on capacitated network design formulations, as discussed in more
detail below. An alternative approach to modeling non-linear transportation tariffs are
concave-cost network flows, see [GP90] for a survey. Note, however, that also all three
models mentioned above include the possibility of concave cost functions; see Section 3.2.4
for how such functions can be modeled in context of our model.

Capacitated network design

While network flow seems to be the dominant aspect in transportation planning, the fixed
cost nature of transportation tariffs brings in network design decisions: We have to install
sufficient capacity in the network such that all flow can be routed. In literature, such
mixtures of network flow and network design are referred to as capacitated network design
or fixed-charge network flow, and they are widely used for models not only in logistics
but also in telecommunication and infrastructure planning; see the surveys by Magnanti
and Wong [MW84] and Crainic [Cra00]. Most capacitated network design problems are
not only challenging to solve in practice but have been shown to be very hard from a
theoretical point of view as well; see Section 1.3 for an overview of complexity results for
network design problems.
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Tabu search procedures. The intrinsic hardness of capacitated network design, com-
bined with the enormous size of instances encountered in practical applications from
logistic contexts, leaves little hope for exact solution approaches that run in acceptable
time. Therefore, fast combinatorial heuristics appear to be the method of choice. The
current state of the art is mainly built on specialized tabu search procedures. Crainic,
Gendreau, and Farvolden [CGF00] proposed a tabu search procedure based on a neigh-
borhood in the multi-commodity flow polytope. Their algorithm has later been adapted
for parallelization by Crainic and Gendreau [CG02]. A different neighborhood for tabu
search was introduced by Ghamlouche, Crainic, and Gendreau [GCG03], operating on
the network design and modifying it along cycles. This procedure has been refined by
the same authors by supplementing it with a path relinking technique [GCG04].

Slope scaling. A different approach for solving fixed-charge network flow problems is
constituted by slope scaling. The slope scaling procedure, first proposed by Kim and
Pardalos [KP99a] for single-commodity fixed-charge network flow, iteratively solves the
min-cost flow problem arising from linearizing the fixed costs according to the current
solution. Crainic, Gendron, and Hernu [CGH04] generalize this technique to the case
of multiple commodities, and augment it by Lagrangian perturbation and intensifica-
tion/diversification mechanisms based on a long-term memory.

Benders decomposition. Among the MIP based solution techniques for capacitated
network design, Benders decomposition [Ben62] appears to be particularly well-suited,
as it separates the complex network design decisions from the well-understood network
flow substructure. A survey of various applications of Benders decomposition in this
context is given by Costa [Cos05]. Costa, Cordeau, and Gendron [CCG09b] investigate
the relation between different classes of inequalities. In particular, the authors explain
how the inequalities from (non-extreme) dual rays of the Benders framework and cut-
set inequalities can be strengthened via shortest path computations to become metric
inequalities. To improve the running times, Fischetti, Salvagnin, and Zanette [FSZ10]
suggest to generate cuts from a minimal infeasible subsystems. While it is NP -hard to
find such systems, they show that this task can be carried out heuristically.

Valid inequalities. While MIP formulations of capacitated network design problems
usually yield relatively weak linear programming relaxations, these can be significantly
improved by adding stronger valid inequalities to the formulation. Chouman, Crainic,
and Gendron [CCG09a] investigate the effect of various classes of such inequalities on the
efficiency of the branch and bound process. In particular, they present separation and
lifting procedures for strong capacity, cover, minimum cardinality, flow pack, and flow
cover inequalities. We will discuss some of these classes in more detail in Section 3.5.2.

Tractable instance sizes. All solution methods referenced above are designed for ca-
pacitated network design problems in general graphs. The combinatorial tabu search
and slope scaling algorithms have been successfully tested on a standard benchmark set
of randomly generated instances of moderate size with at most 100 nodes and 400 arcs,
introduced in [CGF00]. Regarding the approaches based on mixed integer programming
techniques, the above works indicate that the scope of tractable instance sizes is roughly
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(a) base network (b) pattern-expanded network

Figure 3.1: A base network and the associated pattern-expanded network with cycle
length F = 3. Dashed arcs denote holdover arcs.

limited to 30 nodes, 500 arcs and 200 commodities, i.e., for the few larger instances
reported on, the provable gaps on solution quality exceed single digits.

3.2 Mathematical model

Our model, which is formally defined as the tactical transportation planning problem
(TTP) is at its heart based on multi-commodity network flow, with both linear and
fixed-charge cost on the arcs. However, we extend the standard concepts of capacity
and cost to more generality in order to reflect the requirements of logistics modeling
more precisely. Moreover, we expand the underlying network significantly in order to
model delivery patterns, inventory effects, and complex tariff systems. We proceed to
detail all of these features in the following, describing basic concepts such as pattern
expansion and the set of possible transportation tariffs in Section 3.2.3, which leads to
a first formulation of our model as multi-commodity flow problem with non-linear cost
functions. We then provide a reformulation of the model as a capacitated network design
problem in Section 3.2.4. Finally, we discuss the advantages and inherent challenges of
our model in Section 3.2.5.

3.2.1 Pattern expansion

The tradeoff between minimizing inventory cost and taking advantage of the economies of
scale in transportation is of key importance in tactical logistics planning. Temporal and
spatial consolidation effects regularly determine which tariff is most suitable on a con-
nection. Consequently, even the decision which path in the network is most efficient for a
commodity may ultimately depend on temporal delivery patterns. As tactical planning
defines the environment for operational planning which will take place again and again
over time, a solution should be a cyclic pattern for dispatching deliveries and replenishing
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and depleting inventories. To integrate temporal and spatial consolidation together with
cyclic delivery patterns, we introduce the notion of pattern-expanded networks, similar
to the concept of time-expanded networks introduced in Section 1.2.5, but with a cyclic
structure.

A pattern-expanded network denoted by D has two main components: The first is the
base network B, which comprises the physical entities of the transport network: facilities
(or nodes) together with corresponding transport relations between facilities (the arcs of
the base network). The second parameter is a cycle length F defining the number of time
slots available in a period (e.g., 7 days of a week). The pattern-expanded network D is
now obtained from B and F by introducing F copies of B denoted by B1, . . . , BF and
connecting copies of each node of every two adjacent networks Bi and Bi+1 by holdover
arcs, being directed from the nodes in Bi to those in Bi+1. Moreover, the nodes of the
last copy BF are also connected by holdover arcs to their corresponding copies in the first
slot B1, yielding a cyclic network structure. If commodities are sent along holdover arcs
from BF to B1, this corresponds to storing commodities at the corresponding nodes at the
end of a cycle, to the beginning of the next cycle. Costs can be associated with holdover
arcs modeling inventory costs. In the following we will conceptually not differentiate
between holdover arcs and transport arcs. We denote the set of nodes in the pattern-
expanded network by V and the set of all arcs of D, which we will refer to as transport
relations throughout the chapter, by R.

The construction of the pattern-expanded network from the base network is illustrated
in Figure 3.1.

3.2.2 Commodities and properties

Commodities in a logistics network can be very diverse, e.g., in their size, weight, or
value, and logistic costs and transport capacities cannot be realistically assumed to be
oblivious to this diversity and the resulting interdependencies when mixing commodities
in transport. We introduce the concept of flexible properties to characterize commodities.
A set of commodities K and a list of relevant properties P are parameters of our model.
Each commodity i ∈ K is assigned a per unit extent αij ∈ Q+ for each property j ∈ P .
The main motivation for introducing these properties is that transportation costs intro-
duced in the next section will mostly depend on the total extent of each property of a
commodity mix (rather than the specific type of commodities itself), thus reflecting the
effects of consolidating goods for utilizing vehicle capacities more efficiently.

Throughout this chapter, we will denote the aggregated properties of a vector x ∈ QK
+

by α(x) ∈ QP
+ with

αj(x) :=
∑
i∈K

αijxi.

Each node in the pattern-expanded network may supply or demand certain commodi-
ties. These supplies and demands are expressed by a balance vector b(v) ∈ QK for each
node v ∈ V. Note that we allow different values for distinct copies of the same node in
the base network. A node with a supply (bi(v) > 0) of a certain commodity i ∈ K is
called a source of i, and a node with a demand (bi(v) < 0) is called a sink of i. The
goal is to satisfy all demands by transporting the supplies from the sources to the sinks.
Without loss of generality, we will assume

∑
v∈V bi(v) = 0 for all i ∈ K.
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3.2.3 Transportation tariffs

When shipping goods on a transport relation, different transportation tariffs are available.
For each transport relation R ∈ R we denote by T (R) the set of available tariffs for
transporting a flow of commodities from tail(R) to head(R). Each such tariff t ∈ T (R)
is associated with a cost function Ct : QK

+ → Q+; a list of possible cost functions is
given below. A solution of our model consists of a multi-commodity flow in the pattern-
expanded network satisfying all demands, together with an assignment of the flow on
each transport relation to the tariffs available on this relation.

Problem: Tactical transportation planning (TTP)

Input: A pattern-expanded network D = (V,R), a set of commoditiesK
and a set of properties P with per-unit extents α ∈ QK×P

+ , a
balance vector b(v) ∈ QK

+ for every node v ∈ V, and a set of
tariffs T (R) on P and K for every R ∈ R.

Task: Find a multi-commodity b-flow x ∈ QK×R
+ in D and a tariff

assignment x̃ ∈ QK×T (R)
+ for each transport relation R ∈ R

such that
∑

t∈T (R) x̃i(t) = xi(R) for all i ∈ K, minimizing the
cost

∑
R∈R

∑
t∈T (R)Ct(x̃(t)).

We will now present a set of cost functions that covers most tariffs occurring in current
logistical applications. In the next section, we will then show how all these cost functions
can also be modeled in a unified form as a capacitated network design problem.

Linear costs. In many logistical applications, commodity-dependent linear costs of the
form

Ct(x̃) =
∑
i∈K

ci · x̃i

with cost rates ci ∈ Q+ for each commodity occur, e.g., in the context of handling costs,
in-stock and in-transit inventory costs and simple linear tariffs without interdependencies
of the transported commodities.

Maximum over multiple cost rates. Tariffs can also be specified as the maximum over
varying cost rates for distinct properties, i.e., when sending a shipment that rate applies
for which the cost is highest. More formally, with cj being the cost rate for property
j ∈ P , the cost function is given as

Ct(x̃) = max
j∈P

cj ·
∑
i∈K

αij x̃i.

Note that, in contrast to the linear costs described before, these maximum cost functions
capture the effect of cost savings when mixing commodities of different dimensions, e.g.,
light but voluminous with heavy but compact ones.
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Property-dependent piecewise constant costs. Many tariffs, such as those offered by
most full truck load (FTL) carriers and some less than truck load (LTL) carriers, are
based on piecewise constant cost functions, i.e., they are specified by a cost c ∈ Q+ and
a capacity vector β ∈ QP

+ for a single shipment, yielding the function

Ct(x̃) = c ·max
j∈P

⌈
αj(x̃)

βj

⌉
.

In practice, logistic carriers offer groups of such tariffs realizing different levels of discount
for higher shipment volumes. We will see in Section 3.3 that finding the most cost-efficient
combination of such tariffs for a given shipment volume is already an NP -hard problem.

Of course, linear and fixed costs can also occur at the same time, e.g., to model a
transport to a distribution center which incurs fixed cost for transportation and a linear
cost for handling the incoming shipment at the distribution center. We thus also allow
the combination of these two cost types.

Incremental discount costs. We consider a tariff with varying cost rates depending on
a single property. The cost rates are specified on intervals and decrease with increasing
size of shipment, resulting in a piecewise linear and concave cost function; see Table 3.1
for an illustration. Formally, label the intervals from 0 to L. For each ` ∈ [L], let
c(`) ∈ Q+ be the cost rate on the interval

[
β

(`)
j , β

(`+1)
j

)
for the fixed property j ∈ P , with

0 = β
(0)
j < β

(1)
j < . . . < β

(L)
j < β

(L+1)
j =∞ and c(0) > c(1) > . . . > c(L−1) > c(L). Then

the cost function is

Ct(x̃) =
L∑
`=0

c(`) ·min

{
β

(`+1)
j − β(`)

j ,
(
αj(x̃)− β(`)

j

)+
}
.

All-unit discount costs. Again we consider linear cost rates in some property j ∈ P
with several levels of decreasing per-unit cost rates. Different from the above, however, a
cost rate applies to the entire transport volume as long as it lies within the corresponding
interval. To ensure monotonicity, a cost cap applies whenever the cost with respect to
the current rate exceeds the cost at the beginning of the next level—this corresponds
to the common practice of declaring higher volumes than actually transported in such
cases [CMS+02]. See Table 3.1 for a graphical illustration of the resulting cost function.
Formally, if cost rate c(`) for ` ∈ [L] is applicable starting from transport volume β(`)

j on,
the cost function is

Ct(x̃) = min
`∈[L]

(
c(`) ·max

{
αj(x̃), β

(`)
j

})
.

3.2.4 Reformulation as capacitated network design

We will now provide a different perspective to the model presented in the previous section.
We introduce the concept of containers to model the different types of tariffs in a way
that leads to a unifying description of the above model as a fixed-charge multi-commodity
flow problem. This description corresponds to a natural mixed integer programming
formulation, making the model accessible to MIP based solving techniques. Its compact
structure demonstrates the degree of mathematical uniformity achieved by the model.
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We will first present the alternative formulation of the model in full detail, and then
show the equivalence to the formulation in the previous section by describing how different
cost functions can be modeled using containers.

The tariff-expanded network

For each tariff on a transport relation, we introduce a gadget consisting of different arcs,
which connects the start node of the relation with its end node. On each arc, a certain
type of container is available, and capacities can be installed on the arc in increments
of this container type. After replacing all transport relations in the pattern-expanded
network by the corresponding gadgets for their tariffs, we obtain the tariff-expanded
network D = (V,A) consisting of the original nodes of the pattern-expanded network,
the additional nodes introduced in the gadgets and the arcs introduced in the gadgets.

A solution to the container-based formulation of our model specifies for each arc a the
integer number of containers y(a) installed on a together with the arc flow values xi(a)
for each commodity i. In the context of capacitated network design, the variables y(a)
are known as design variables, while the variables xi(a) are known as flow variables.

Each container has a capacity for every property. For each property, the capacity
installed on a must be sufficient to transport the flow. More formally, the capacity
constraints can be described as follows. Recall that αij denotes the per-unit extent of
commodity i with respect to property j, and let βj(a) be the corresponding capacity of
a container at arc a. Then the capacity constraints∑

i∈K
αijxi(a) ≤ βj(a)y(a) ∀ j ∈ P (3.1)

must hold at every arc a ∈ A. Moreover, an upper bound u(a) on the number of
containers installed on an arc a may be specified.

In a feasible solution, the multi-commodity flow x has to satisfy all demands. We
extend the node balances introduced for the nodes in the pattern-expanded network by
setting the balances for all nodes artificially introduced by tariff expansion to zero for
each commodity. We thus obtain the flow conservation constraints∑

a∈δ+(v)

xi(a)−
∑
a∈δ−(v)

xi(a) = bi(v) ∀ i ∈ K (3.2)

that must be valid at every node v ∈ V of the tariff-expanded network.
For each container installed on a, a fixed cost c(a) has to be paid. Flow sent along a

may furthermore incur a commodity-dependent linear cost ci(a), which may also be used
to model property dependent linear costs. Thus, the total cost of a solution is

∑
a∈A

(
c(a)y(a) +

∑
i∈K

ci(a)xi(a)

)
.

Putting all of this together, the fixed-charge multi-commodity flow problem resulting
from the container formulation can be directly formulated as a MIP.
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[TTPCND] min
∑
i∈K

∑
a∈A

ci(c)xi(a) +
∑
a∈A

c(a)y(a)

s.t.
∑
a∈δ+(v)

xi(a) −
∑
a∈δ−(v)

xi(a) = bi(v) ∀ v ∈ V, ∀ i ∈ K

∑
i∈K

αijxi(a) ≤ βj(a)y(a) ∀ a ∈ A, ∀ j ∈ P

y(a) ≤ u(a) ∀ a ∈ A
xi(a) ∈ Q+, y(a) ∈ Z+ ∀ a ∈ A, ∀ i ∈ K

Note that a flow in the tariff-expanded network (i.e., on arcs) can be transformed into
a flow in the pattern-expanded network (i.e., on transport relations) by setting the flow
value x̃(t) assigned to tariff t ∈ T (R) on some transport relation R to be the amount
of flow going from tail(R) to head(R) through the gadget corresponding to t in the
tariff-expanded network—this corresponds to the total amount shipped using this tariff.
Conversely, a flow in the tariff-expanded network can be obtained from a flow in the
pattern-expanded network. The gadget of each tariff t will be designed to model its cost
function Ct in the sense that the minimum cost incurred by the flow in the gadget—in
terms of required container capacity and linear costs—equals Ct(x̃(t)). Therefore, the
total cost of the solution in the tariff-expanded network equals the cost of the flow in the
pattern-expanded network.

Modeling tariffs with containers

We now proceed to explain how containers can be used to accurately model the different
types of transportation tariffs introduced in the previous section; see Table 3.1 for an
overview of the more complex gadgets.

Modeling linear and piecewise constant costs. It is clear that both commodity-
dependent linear costs and property-dependent piecewise constant costs are directly cap-
tured by the container concept. Linear costs are part of the definition, while piecewise
constant tariff groups can be directly modeled by introducing a bundle of parallel arcs,
one for each tariff in the group. The container on each arc takes the capacity and cost
of the corresponding tariff.

Modeling the maximum over multiple cost rates. In order to model the maximum
over multiple cost rates we need to introduce fractional containers to the model, i.e.,
the variable y(a) corresponding to the number of installed copies of such a container can
be fractional. We use a single gadget arc for each tariff that corresponds to maximum
over multiple cost rates cj with j ∈ P . We set the cost to c(a) = 1 and the capac-
ity βj(a) = 1/cj for each j ∈ P . Sending a flow of x(a) through this arc requires y(a) to
be set to maxj∈P αj(x(a))/βj(a), which is equal to the cost function by choice of βj(a).
Note that introducing such fractional containers does not have significant impact on the
complexity of the model. Still, for the sake of simplicity, we will assume throughout this
work that all containers have to be installed in integral increments.
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tariff cost gadget

incremental discount
(piecewise linear concave)

αj(x)

cost
C(`)

b(`)

C(x) = min
`∈[L]

C(`)(x)

C(`)(x) := c(`)αj(x) + b(`)

minimum modeled
by parallel arcs

a0
...a`

aL

...

c(a`) = b(`)

ci(a`) = αijc
(`)

all-unit discount

β(`)

C(`)(x) := c(`) ·max
{
αj(x), β

(`)
}

αj(x)

cost

C(x) = min
`∈[L]

C(`)(x)

a
a′

a′′

a a′ a′′

c c(`)β(`) 0 0

ci 0 αijc
(`) 0

βj ∞ ∞ β(`)

minimum modeled
by parallel gadgets

Table 3.1: Modeling tariff systems with containers.

Modeling incremental discounts. Piecewise linear concave functions arising from in-
cremental discount tariffs can be interpreted as the minimum of several affine linear func-
tions. Again denoting the linear segments of the function by 0 to L with cost rates c(`)

and break points β(`), we define

C(`)(x) := c(`)αj(x) + b(`) with b(`) :=

`−1∑
k=0

(c(k) − c(`))(β
(k+1)
j − β(k)

j )

for ` ∈ [L]. It is easy to verify that Ct(x) = min`∈[L]C
(`)(x); see Table 3.1 for an

illustration. We now introduce a gadget of L+1 parallel arcs a0, . . . , aL with c(a`) = b(`)

and ci(a`) = αijc
(`). Sending flow along arc a` incurs the cost C(`) and an optimal

solution will always send flow along that arc which achieves the minimum cost for the
transported amount.

Modeling all-unit discounts. Note that functions of the form c(`) ·max
{
αj(x), β(`)

}
can be modeled by the following gadget; also see the corresponding figure in Table 3.1.
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Introduce a series-parallel graph, consisting of a single arc a followed in series by two
parallel arcs a′ and a′′. We set the fixed costs c(a) = c(`)β(`) and c(a′) = c(a′′) = 0.
We also set the linear costs ci(a) = ci(a

′′) = 0 and ci(a
′) = αijc

(`) for all i ∈ K.
Capacity βj(a′′) is set to β(`), all other capacities are left infinite, and we let u(a′′) = 1 so
that only one container can be installed on a′′, while the number of containers remains
unbounded for all other arcs. Now, all-unit discount tariffs, which can be represented as
minimum of such functions, can be modeled by introducing several of these gadgets in
parallel.

3.2.5 Model characteristics

We want to close this section by discussing some characteristics and possible extensions
of the TTP model introduced above.

Additional aspects of modeling. The two key ingredients of the model are a cyclic
pattern expansion to incorporate inventory and frequency decisions and a characteriza-
tion of commodities in terms of scalar properties that enables the precise replication of
real-world transportation tariffs. We want to point out two additional general concepts
that are implicitly covered by these modeling techniques and that are thus captured by
our model. Firstly, the TTP model includes the possibility of omitting some holdover
arcs or even some transport arcs of the base network in individual time slots, in order to
model restricted operation times of transportation services or hubs. The second concept
are abstract aspects of commodities, such as “needs cooling”, “is hazardous” and similar
features restricting their transportation. These can be modeled by introducing a corre-
sponding property, letting the respective commodities receive a strictly positive extent
in this property and accordingly adjusting container capacities.

Computational tractability. Naturally, the generality of our model comes at the price
of computational challenges. As a generalization of the directed Steiner forest problem,
it does not allow for approximation factors significantly better than linear in the number
of nodes [DK99]; see Section 1.3 for details.

Theorem 3.1 For any ε > 0, there is no 2log1−ε(|V |)-approximation algorithm for TTP,
unless NP ⊆ DTIME(npolylog(n)).

Pattern and tariff expansion allow us to model temporal consolidation effects and com-
plex tariff systems in a uniform way without further increasing the complexity from a
theoretical point of view—assuming all slots in the pattern-expanded network are given
explicitly. However, both expansions significantly amplify the size of the network. In the
remaining sections of this chapter, we will show how to cope with this computational
challenge in practice.

Strategic and operational transportation planning. Finally, we address the validity
of our model in the context of strategic and operational planning. As pointed out at
the beginning of Section 3.1.1, our model is aimed at the tactical level. In particular, it
does not address location decisions, which are an important part of strategic planning.
Fixed costs for opening and running facilities differ from fixed costs for transportation
in that they affect all slots of the pattern-expanded network. Thus, incorporating such
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decisions would significantly change the complexity of our model, which is designed to
be solved with network flow based approaches. However, we want to point out that our
model can very well be used to assist strategic planners in evaluating different network
layouts: In Section 3.6, we assess solution methods that are sufficiently fast to solve
multiple instances separately in a row. In the context of operational planning, the exact
time of dispatchment, transit time, and arrival time of a shipment play a crucial role.
We intentionally omitted these aspects in the design of the pattern-expanded network as
they are not the subject of tactical planning. Of course, transit times can be included
by adjusting the arcs of the pattern-expanded network in the same way as it is done
in the time-expanded network of Ford and Fulkerson [FF62]. However, it still needs to
be investigated how to incorporate other aspects relevant for operational planning into
our model, such as scheduling personnel, vehicle usage, or loading devices and return of
empties.

3.3 Tariff selection subproblem
While containers constitute a versatile tool to model various transportation tariffs as
described in Section 3.2.3, the use of elaborate gadgets significantly increases the number
of arcs in an instance of our model. Different algorithms may or may not be able to
cope well with this challenge. In this section, we describe an approach to curb the
effects of model blow-up due to tariff gadgets by encapsulating tariff selection decisions
in a subordinate optimization problem, which we call the tariff selection subproblem
(TS). While some of our algorithms for TTP introduced later will operate directly on
tariff gadgets as introduced in Section 3.2.4, others will solve TS repeatedly, possibly
several hundred times for each transport relation, while computing a flow pattern for all
commodities through the network.

In contrast to the global perspective of the TTP model, TS constitutes a local de-
cision limited to a single transport relation R ∈ R: Given a fixed vector ∆ ∈ QK

+ of
flow to be transported on R, it asks which transportation tariffs should be selected and
how the fixed demand should be distributed among the selected tariffs in order to meet
flow demand at minimum cost. A solution to TS comprises a vector x(t) ∈ QK

+ of
multi-commodity flow for each tariff t ∈ T (R) such that their sum meets the total flow
demand ∆. From a network-wide perspective, solving the set of TS problems on all trans-
port relations optimizes transport cost with respect to a given fixed multi-commodity flow
in the pattern-expanded network.

Problem: Tariff selection (TS)

Input: A set K of commodities, a set P of properties, per-unit ex-
tents α ∈ QK×P

+ , shipping amounts ∆ ∈ QK
+ , and a set of trans-

portation tariffs T on P and K with cost functions Ct for t ∈ T .
Task: Find a tariff assignment x̃ ∈ QK×T

+ with
∑

t∈T x̃i(t) = ∆i for
all i ∈ K, minimizing the cost

∑
t∈T Ct(x̃(t)).

Depending on which of the five types of tariff cost functions introduced in Section 3.2.3
are present in TS, we employ different techniques in order to solve TS. In Section 3.3.1
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we devise a mixed integer programming formulation for arbitrary combinations of tariff
cost functions. However, out of the different tariff cost functions, property-dependent
piecewise constant costs stand out for a number of reasons. Firstly, even though they
constitute the most elementary class of cost functions, finding an optimal tariff selec-
tion is already NP -hard when restricting to piece-wise constant costs; see Theorem 3.2.
Secondly, they are a very common, if not the most common, tariff type in logistic ap-
plications. Indeed, in the real-life data for our computational study in Section 3.6, most
transport relations are equipped exclusively with piecewise constant tariffs. Therefore,
Section 3.3.2 is devoted to theoretic and algorithmic insights into TS for this tariff type.

Combinatorial algorithms for TTP have to solve TS as a subroutine with a very
high frequency. Due to its hardness and the demand for extremely short computation
times, we develop fast heuristic algorithms for piecewise constant tariffs yielding only
approximate solutions as an alternative to the exact MIP approach. In particular, we
propose an efficient greedy algorithm for computing solutions of decent quality within a
minimum of computation time and a cost estimator, which instead of a feasible solution
only outputs an estimate of the optimal cost of the given instance.

A more detailed analysis of the techniques presented in this section, together with
an extensive computational study on real-world and randomly generated tariff selection
instances can be found in [KMR12].

3.3.1 MIP for the general case

The introduction of tariff gadgets in Section 3.2.4 enables us to naturally formulate and
solve TS as a mixed integer program. This versatile approach is especially suited when
various tariff types occur together on a single transport relation, or when computational
time is not a great issue, e.g., if flow paths for all commodities are already specified and
TS only needs be solved once on each transport relation to optimize the tariff choice.
When each tariff t ∈ T (R) is represented by a container gadget (V (t), A(t)) as described
in Section 3.2.3, we denote with A(R) :=

⋃
t∈T (R)A(t) and V (R) :=

⋃
t∈T (R) V (t) the

set of all arcs and nodes, respectively, that are used to model the tariff structure on
transport relation R. TS for R can then be written as

min
∑

a∈A(R)

c(a)y(a) +
∑
i∈K

ci(a)xi(a)

s.t.
∑
a∈δ+(v)

xi(a)−
∑
a∈δ−(v)

xi(a) =


∆i if v = tail(R)
−∆i if v = head(R)

0 otherwise
∀ v ∈ V (R), ∀ i ∈ K

∑
i∈K

αijxi(a) ≤ βj(a)y(a) ∀ a ∈ A(R), ∀ j ∈ P

y(a) ≤ u(a) ∀ a ∈ A(R)

y(a) ∈ Z+, xi(a) ∈ Q+ ∀ a ∈ A(R), ∀ i ∈ K.

As this MIP only involves the tariff choices on a single transport relation, the correspond-
ing instances are rather small and can be solved near-optimally in reasonable time for
matters of post-optimization.
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3.3.2 Piecewise constant costs

When all tariffs on a transport relation are of the property-dependent piecewise constant
type, the tariff-expanded counterpart of the transport relation is a bundle of parallel
fixed-charge container arcs. In this case, the MIP formulation of TS can be simplified to

min
∑

a∈A(R)

c(a)y(a)

s.t.
∑

a∈A(R)

xi(a) = ∆i ∀ i ∈ K

∑
i∈K

αijxi(a) ≤ βj(a)y(a) ∀ a ∈ A(R), ∀ j ∈ P

y(a) ∈ Z+, xi(a) ∈ Q+ ∀ a ∈ A(R), ∀ i ∈ K.

It is not hard to see that finding an optimal tariff selection for piecewise constant cost
functions is NP -hard, even for very restricted special cases. We give a straightforward
reduction from the well-known unbounded knapsack problem, which is known to be NP -
hard [Lue75], to TS instances with only a single property and a single commodity.

Problem: Unbounded knapsack

Input: A set of n items with values v1, . . . , vn ∈ Z+ and
weights w1, . . . , wn ∈ Z+, capacity W ∈ Z+, and a desired
value V ∈ Z+.

Task: Find numbers z1, . . . , zn ∈ Z+ such that
∑n

i=1wizi ≤ W and∑n
i=1 vizi ≥ V , or decide that no such numbers exist.

Theorem 3.2 The tariff selection problem is NP -hard, even when restricted to instances
with only piecewise constant cost functions, a single property, and a single commodity.

Proof. In the single-commodity single-property case, the above MIP reduces to |A(R)|+1
non-trivial constraints, and there remain single variables αij , x and βj , which we denote
by α, x and β, respectively. Every feasible solution satisfies α∆ ≤∑a∈A(R) β(a)y(a),
and conversely, if this inequality is satisfied, it is trivial to find feasible assignments x(a).
Hence, the MIP reduces in fact to a single non-trivial constraint.

Given an instance IUK of the unbounded knapsack problem, we construct an in-
stance ITS of the above special case of TS as follows. First, for every item i ∈ {1, . . . , n}
of IUK, define ui := dW/wie to be the maximum number of items of type i in a fea-
sible knapsack solution. Then, for each item i ∈ {1, . . . , n} introduce a corresponding
arc ai with containers of fixed cost c(ai) = vi and capacity β(ai) = wi. Moreover, we
set ∆ =

∑n
i=1wiui −W and α = 1.

We now argue that IUK possesses a solution with value at least V if and only if ITS
can be solved with cost at most

∑n
i=1 viui−V . First assume there is a feasible solution z

to IUK with value at least V . We define y(ai) := ui − zi and observe that

n∑
i=1

β(ai)y(ai) =
n∑
i=1

wi(ui − zi) ≥
n∑
i=1

wiui −W = α∆
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Algorithm 3.1: Greedy algorithm for tariff selection
Initialize ∆′ = ∆, x = 0, y = 0, x∗ = 0, y∗ = 0.
while ∆′ 6= 0 do

if ∃ a∗ = argmin{c(a) : a ∈ A(R), α(∆′) ≤ β(a)} then
if y∗ = 0 or c(y) + c(a∗) < c(y∗) then

Set y∗(a) = y(a) and x∗(a) = x(a) for all a ∈ A(R) \ {a∗}.
Set y∗(a∗) = y(a∗) + 1 and x∗(a∗) = x(a∗) + ∆′.

Choose a′ ∈ argmax{score(a,∆′) : a ∈ A(R)}.
Set d = fill(a′,∆′).
Set k =

⌊
min

{
∆′i
di

: i ∈ K, di > 0
}⌋

.
Set y(a′) = y(a′) + k and x(a′) = x(a′) + kd.
Set ∆′ = ∆′ − kd.
if y 6= 0 and c(y∗) < c(y) then

return x∗, y∗

return x, y

and
n∑
i=1

c(ai)y(ai) =

n∑
i=1

vi(ui − zi) ≥
n∑
i=1

viui − V.

We omit the converse of the argument as it works analogously.

Greedy algorithm

We now present a generic greedy algorithm to heuristically solve instances of TS for
piecewise constant cost functions. The inherent covering nature of TS—in the sense
that we select containers in order to “cover” the capacity extents of a fixed flow vector—
motivates us to devise a generalization of the natural greedy approach to integer programs
with nonnegative data as studied for example by Dobson [Dob82]. We emphasize that our
methods are specifically designed to cope well with the given practical instances: in those
instances all properties and capacities are strictly positive, they are always feasible and
the number of properties is small. Though some of the following methods also work with
zero-valued properties or capacities and feasibility tests could be easily incorporated, we
omit the explicit treatment of these issues for the sake of readability.

The greedy algorithm for tariff selection repeatedly selects a “most efficient” con-
tainer a ∈ A(R) to cover portions of, or the whole remaining shipping amount ∆′ ∈ QK

+ .
In this context, the “efficiency” of a container is measured by a function score(a,∆′),
which reflects the ratio between cost of container type a ∈ A(R) and the shipping amount
it covers. The selected container then is packed using the function fill(a,∆′), which
returns a vector d ∈ QK

+ , with di ≤ ∆′i for all i ∈ K and αj(d) ≤ βj(a) for all j ∈ P ,
trying to ensure an “efficient” capacity usage of the container. To speed up the algorithm
we can assign the computed mix of commodities d multiple times to copies of the same
container, as long as d ≤ ∆′. The algorithm repeats until all demand is assigned, i.e., ∆′

is reduced to zero. During the course of the algorithm, there might be containers large
enough to cover all remaining demand, although the score method still favors a smaller
container that covers only fractions and leaves demand for the next step. In such situ-
ations it is advisable to consider both container types and to branch on the computed
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solution: Among all containers that suffice to cover ∆′, the algorithm picks the one with
least cost and constructs a complete solution (x∗, y∗) to be stored separately—if it is bet-
ter than any previous complete solution—and it also proceeds with the partial solution
arising from selecting the container with best score value.

A formal listing of the greedy algorithm is given as Algorithm 3.1. To simplify
notation we denote by c(y) :=

∑
a∈A(R) c(a)y(a) the selection cost of a vector y ∈ ZA(R)

+ .

Implementation of score and fill

Algorithm 3.1 uses two subprocedures called score for estimating “container efficiency”,
and fill for computing corresponding assignment d ∈ QK

+ of commodities to the con-
tainer. Several variants of different implementations of these subprocedures, including
LP based methods and simple scaling techniques, have been tested in [KMR12]. For the
implementation of the algorithms incorporated into the TTP solvers, we decided to base
both score and fill on a two-phase greedy algorithm, which we shortly outline here.
Recall that the input of both subprocedures consists of a container type a ∈ A(R) and
the vector of remaining shipping amount ∆′ ∈ QK

+ . The algorithm tries to greedily fill
the container a by approximating the ray induced by its capacity vector β(a) with the
property extents α(d) ∈ QP

+ of the computed vector d. The two phases are described
in detail below. The subroutine score only executes the first phase of this algorithm
and uses the resulting vector d ∈ QK

+ to return the score
∑

j∈P αj(d)/c(a). Note that
score is executed far more frequently than fill and thus restricting to the first phase
significantly reduces computation time. Once a container is selected, fill returns the
refined filling derived by the second phase.

Phase 1. The algorithm maintains a vector d ∈ QK
+ of demand assigned to the container,

starting with d = 0. It will iteratively increase d by adding a certain amount δ of a
commodity i∗ ∈ K. Let β̄(a) := β(a)− α(d) denote the residual capacity of the container
with respect to the currently assigned demand. At the beginning of every iteration the
algorithm computes

δi := min

{
β̄j
αij

: j ∈ P, αij > 0

}
∪
{

∆′i
}

for every commodity i ∈ K. Note that δi corresponds to the maximal assignment of
commodity i that can be added to d without violating the capacities of the container.
The algorithm iteratively chooses a commodity i∗ ∈ K that minimizes the Euclidian
norm of the vector of slacks with respect to this assignment, i.e.,

i∗ ∈ argmini∈K
∥∥β̄(a)− δiαi

∥∥
2

and adds δi∗ units of commodity i∗ to d and subtracts the same amount from ∆′. The
first phase ends when δi = 0 for all i ∈ K.

Phase 2. The second phase tries to further reduce unused container capacities by
adjusting the vector d produced in the first phase. It does so by approximating the
ray induced by the capacity vector β(a) with a conic combination of the extent vec-
tors αi ∈ QP

+ of the available commodities i ∈ K. More formally, we decompose the
property space QP = span(β(a)) + span(β(a))⊥ into the linear subspace spanned by the
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capacity vector β(a) and its orthogonal complement and consider for each commod-
ity i ∈ K the unique decomposition of its extent vector αi = vi+ui with vi ∈ span(β(a))
and ui ∈ span(β(a))⊥. The current filling vector d ∈ QK

+ induces the vector

α(d) =
∑
i∈K

diαi =
∑
i∈K

divi +
∑
i∈K

diui ∈ QP
+.

Our goal of approximating the ray induced by β(a) corresponds to minimizing the or-
thogonal deviation ‖∑i∈K diui‖2. For commodity k ∈ K, we define

λk :=
∑
i∈K

di
uTi uk
uTk uk

.

Note that λkuk corresponds to the projection of
∑

i∈K diui on span(uk). We chosse
an i∗ ∈ K with λi∗ < 0 and increase d by min{−λi∗ ,∆′i∗} units of commodity i∗, which
leads to a decrease of the orthogonal deviation. We iteratively augment d in this way until
no additional improvement can be achieved by any commodity. Note that the resulting
vector d might violate container capacities. We therefore scale d down to feasibility.

Cost estimation by covering relaxation

In many situations in which TS occurs as a subproblem in the course of an algorithm
for TTP, it is not important to know which tariffs are actually utilized in a solution, but
merely which cost is incurred. Examples include shortest path type algorithms where
the transport relations leaving some node are to be labeled with the cost of forwarding
some flow along them. In these situations, the following covering relaxation can be
used to obtain considerable speed-ups while still computing reasonable cost estimates.
The relaxation is based on dropping the requirement of an exact assignment of the
commodities to containers. Instead, we only require the chosen containers to cover the
vector of aggregated properties Γ := α(∆′) induced by the flow vector ∆′. The result of
this relaxation is the following covering integer program:

min
∑

a∈A(R)

c(a)y(a)

s.t.
∑

a∈A(R)

y(a)βj(a) ≥ Γj ∀ j ∈ P

y(a) ∈ Z+ ∀ a ∈ A(R)

We can heuristically solve this problem very efficiently by adjusting Algorithm 3.1 to
directly operate on the vector Γ instead of considering ∆, i.e., we reduce Γ by β(a) for
each selected container copy of type a. An appropriate scoring function can be defined
by

score(a,Γ) :=
1

c(a)
min

{
βj(a)

Γ
: j ∈ P, Γj > 0

}
.

Note that a solution to the covering relaxation does not necessarily yield a feasible solu-
tion for the original TS problem. In fact, one can easily come up with counterexamples
where the estimate obtained from the relaxation is arbitrarily far away from the actual
optimal solution value of TS. However, these examples are of rather artificial nature,
including containers with near-zero capacity in certain properties. Such cases do not
occur in the instances of TS arising from our practical data.
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3.4 Path-based local search
We propose a local search procedure that employs local changes on a path decomposition
of flow in the pattern-expanded network using tariff selection subroutines. As described
in Section 3.1.2, there are already a number of local search heuristics available for solving
capacitated network design problems. Adapting those methods to multi-dimensional ca-
pacities and non-binary design variables does not suffice to cope with the large instance
sizes occurring in practical application of our model: The precise replication of complex
tariff structures leads to a drastically increased number of (mostly parallel) arcs, which
is further amplified by the cyclic expansion of the network; to give rough numbers, the
tariff-expanded networks in our computational study have 250,000 arcs on average, corre-
sponding to a blow-up factor of 60 from an average of 4000 arcs in the base networks. This
poses a great computational challenge for heuristics that operate in the tariff-expanded
network without knowledge of the tariff structure. While most methods known from
literature either work directly on the network design, delegating the corresponding flow
computations to a subproblem, or re-route flow of a single commodity in each iteration,
our approach applies a neighborhood search that is based on path decomposition of flow
in the pattern-expanded network and it re-routes multiple commodities simultaneously.

In order to obtain good initial solutions for the local search algorithm that is presented
in Section 3.4.3, we also provide two successive shortest path type algorithms. The first
method linearizes costs by estimating the per unit cost. It is denoted by SPLC (for
shortest path with linearized cost) and it is presented in Section 3.4.1. The second method
uses a tariff selection method for the purpose of cost estimation. It is denoted by SPTS
(for shortest path with tariff selection) and it is presented in Section 3.4.2. The SPLC
method is designed with an emphasis on speed and low memory requirement, making
it possible to obtain solutions of reasonable quality in short time, even for very large
networks. The SPTS method, on the other hand, is more accurate in cost estimation
and is therefore also used as the central subroutine for re-routing flow in our local search
improving moves.

In the process of analyzing the local search procedure, we identified a certain asym-
metry in its ability to find cost savings arising from consolidation and deconsolidation of
flow in the network, respectively. We observed that the procedure very well detects possi-
ble cost savings resulting from splitting up paths that share a common transport relation
and re-routing the flow separately. In contrast, detecting potential savings from consoli-
dating several disjoint flow carrying paths by re-routing them along a shared subpath is
not well captured. Note that such savings may only be realized by re-routing multiple
paths at once. Identifying such a set of paths is an algorithmically challenging task. In
order to address this issue, we adapt the two path-based algorithms to encourage consoli-
dation by (i) forbidding direct source-sink-connections—which is well-suited for the type
of logistical networks arising in our study—in the SPLC heuristic and (ii) using a partial
linearization technique for SPTS. Both refinements yield considerable improvements in
solution quality of the local search procedure as we will see in the computational study
in Section 3.6.

3.4.1 Shortest Paths with linearized costs (SPLC)

A straightforward idea for obtaining arc costs for a shortest path computation is estimat-
ing the per unit shipping cost on each arc in the tariff-expanded network by linearizing
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the fixed costs. This technique yields a highly efficient approach suited for solving even
the largest occurring instances in a very small amount of time.

In each iteration, the algorithm chooses a commodity and finds a shortest path from a
source to a sink with respect to arc weights w ∈ QA

+. Whenever the algorithm encounters
an arc during the shortest path computation, the residual capacity for the chosen com-
modity on this arc is computed and the fixed cost for that arc is divided by this capacity
to obtain a linear cost rate. To make this more precise, let k ∈ K be the commodity that
is currently being routed and (x, y) be the current (partial) solution of the capacitated
network design formulation [TTPCND] consisting of the flow x ∈ QK×A

+ and the design
choices y ∈ ZA+. Using the notation introduced in Section 3.2.4, we compute the residual
capacity of arc a ∈ A for commodity k provided by the y(a) containers currently installed
on the arc. This capacity is defined by

ρ(a) := min
j∈P

βj(a)y(a)− αj(x(a))

αkj
.

If there is a positive residual capacity ρ(a) > 0, we set the capacity r(a) := ρ(a) and the
weight w(a) := ck(a), only considering the linear cost for shipping commodity k along a.
If no residual capacity is left, i.e., ρ(a) = 0, then an additional container can be installed
on a if y(a) < u(a). In this case, we set

r(a) := min
j∈P

βj(a)

αkj
and w(a) := ck(a) +

c(a)

r(a)
.

Otherwise, if y(a) = u(a), we set r(a) := 0 and w(a) :=∞.
Once a shortest path P from a source to a sink of commodity k with respect to the

weights w is found, the bottleneck capacity r := mina∈P r(e) is determined and r units of
commodity k are sent along the path. Note that all computations above can be carried
out very efficiently and of course, instead of updating weights and capacities of all arcs
in each step, these values are calculated on-demand and only updated when necessary.
Technically, we flag those variables r(a) and w(a) as ‘invalid’ that have to be recomputed
at the next encounter of arc a. A listing of SPLC is given as Algorithm 3.2.

The linearization procedure assumes optimal utilization of container capacities in the
resulting flow pattern and thus favors large containers with low per unit cost rates. Since
this high utilization is not always attained, the linearization often leads to suboptimal
tariff choices on transport relations. The effect can be compensated by optimizing the
tariff selection on each transport relation a posteriori with a tariff selection method
described in Section 3.3.

Consolidation by forbidding direct connections (SPLC-F). The SPLC heuristic favors
large containers with low per unit cost rates and prefers direct connections from source
to sink over paths along intermediate hubs—note that the latter can only yield shorter
paths with respect to the weights w, when some container with residual capacity is already
installed on an intermediate arc. A simple approach for encouraging consolidation when
costs are linearized is to forbid all direct connections between sources and sinks of the
same commodity during the construction of the initial solution. By doing so, the heuristic
is forced to route flow along intermediate hubs, and the paths intersect automatically.
Unnecessary detours can be easily identified and corrected by improving moves of the
local search procedure.
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Algorithm 3.2: Successive shortest path algorithm with linearized costs (SPLC)
Initialize x = 0, y = 0.
for each commodity i ∈ K do

Invalidate r(a) and w(a) for all a ∈ A.
while there is a source s of i with remaining supply do

Find path P in G from s to a sink t with
∑

a∈P w(a) minimum, updating
the values of r(a) and w(a) on-demand when the previous value has been
invalidated.
Augment x along P by mina∈P r(a) units of commodity i, adjust y
accordingly.
Invalidate r(a) and w(a) for all a ∈ P .

3.4.2 Shortest paths with tariff selection (SPTS)

The rather imprecise estimation of the actual transportation cost achieved by the lin-
earization approach presented above might lead to weak choices of paths for optimizing
the cost of the final solution. We thus propose a second strategy that employs tariff
selection algorithms already during the shortest path search. Although this more sophis-
ticated approach requires more computational effort, it still turns out to be very efficient
while at the same time providing several possibilities for adjustments.

Since tariff selection methods require as input the amount of flow to be routed, these
flow values ∆ ∈ QK

+ have to be determined before the shortest paths computation. We
implement this a priori flow computation efficiently by identifying source-sink-pairs such
that the possible transport volume from source to sink is maximum (with respect to a
weighted combination of the property extents). To make this more formal, let x be the
current flow in the network and recall the definition of the excess of this flow at node v
as

ex(xk, v) :=
∑
a∈δ−(v)

xk(a)−
∑
a∈δ+(v)

xk(a)

for k ∈ K. Using the supply/demand values b ∈ QK×V given in the input, define for each
ordered pair of nodes (s, t) in the pattern-expanded network the value ∆(s, t, x) ∈ QK

+

by
∆k(s, t, x) :=

(
min {bk(s) + ex(x, s), −(bk(t) + ex(x, t))}

)+
for k ∈ K. Then source s and sink t are chosen such that

∑
j∈P wjαj(∆(s, t, x)) is

maximum, where α are the aggregated properties of the flow as defined in Section 3.2.2
and w ∈ QP

+ is a weight function, which is an adjustable parameter of the heuristic. A
listing of SPTS is given as Algorithm 3.3.

During the shortest path computation, arc weights have to be evaluated too often to
solve the tariff selection problem to optimality every time. In fact, it is sufficient to only
estimate the cost using the estimator presented in Section 3.3, while the actual tariff
assignment can be determined at the end of the solution process from the flow values on
the transport relations in the pattern-expanded network using an exact method.

Consolidation by partial cost linearization (SPTS-L). Cost computation based on
tariff selection allows for a more sophisticated approach to encourage consolidation by
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Algorithm 3.3: Successive shortest path algorithm with tariff selection (SPTS)
Initialize x = 0.
while not all demand has been satisfied do

Let s, t ∈ V such that
∑

j∈P wjαj(∆(s, t, x)) is maximum.
Let ∆ = ∆(s, t, x).
Compute shortest path P in D from s to t w.r.t. c̃, where
c̃(R) = TS(R, x+ ∆)− TS(R, x) with TS(R, x̃) being the estimated cost of
sending flow x̃ ∈ QK

+ along transport relation R ∈ R.
Augment x along P by ∆.

Compute a tariff assignment on each transport relation for the given flow x using
a tariff selection method.

taking into account the remaining, still unrouted demand. We linearize costs at inter-hub
connections and also at source-hub connections (if there are fewer sources) or hub-sink
connections (if there are fewer sinks) in the following way: Let R′ be the set of transport
relations just described, and let ∆ be the amount of flow to be routed in the current
iteration. Let ∆+ ∈ QK

+ be the sum of all supply not yet routed in the current solution,
and define

M := min

{
αj(∆

+)

αj(∆)
: j ∈ P, αj(∆) > 0

}
.

Now, if R ∈ R′ we compute

c̃(R) := min

{
TS(R, x+ ∆)− TS(R, x),

TS(R,∆+)

M

}
in Algorithm 3.3, where TS(R, x) denotes the estimated cost needed to transport the
flow x along transport relation R, computed by one of the algorithms from Section 3.3.
If the minimum is attained by the second argument, the arc cost c̃(R) anticipates future
consolidation on this transport relation by assuming all remaining demand will be send
along R and scaling the cost down according to the proportion of ∆+ represented by ∆.
If R /∈ R′, we compute c̃(R) as described originally in Algorithm 3.3. Our computational
results in Section 3.6 show that this mixture of linearization at presumably strongly uti-
lized transport relations and precise cost estimation for weakly utilized transport relations
yields significant improvements in solution quality.

3.4.3 Path-based local search

In the following we introduce a local search algorithm that re-routes flow along paths with
the aim of improving feasible solutions. The algorithm maintains a path decomposition
of the flow of the current solution in the pattern-expanded network. It moves from one
solution to another by replacing one or multiple paths of the decomposition with paths
of lower cost.

The general outline of an improving move is the following: When removing a path P
in D with flow value x(P ) ∈ QK

+ from the solution, for each transport relation R of
the path, the flow x(R) is decreased by x(P ) and the tariff selection of R is adapted
accordingly, using the greedy tariff selection heuristic presented in Section 3.3. After
removing a set of paths, the resulting partial solution is completed again by computing
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new paths using the SPTS heuristic introduced in Section 3.4.2. The move is accepted
if the total cost of the solution decreases, and reverted otherwise.

The procedure uses two variants of improving moves: Type A moves simply remove a
single path at a time. This way, only small amounts of flow are re-routed in one move and
the assignment of sources to sinks is left unaffected. In contrast, Type B moves consider
groups of paths sharing the same transport relation. All flow passing this transport
relation is removed and routed anew, which means that multiple paths can be replaced
at once and the assignment of sources to sinks might be altered.

The local search procedure performs improving moves in alternating phases of Type A
and B. This allows us to re-compute the path decomposition at the beginning of each
phase, adapted to the type of movement. In both cases the paths of the decomposition
are constructed in a depth-first search (DFS) manner: At a node in the DFS tree for
each incident arc R we compute the maximal flow vector ∆(R) that could be assigned
to a path proceeding on that arc and choose an arc greedily so as to maximize a suitably
defined weight function of that flow vector. For Type A phases, the DFS starts at a source
and continues along the arc that maximizes a weighted combination of the properties of
∆(R). In contrast, the decomposition for Type B phases facilitates a bidirectional DFS
starting at heavily used transport relations and chooses arcs that maximize the savings
resulting from reducing their flow. In both cases, due to flow conservation we either close
cycles (which can immediately be removed from the solution) or find a source-sink path,
which we add to the path decomposition.

The two phases are repeated alternatingly until the relative improvement achieved
by both of them falls below a specified threshold or the time limit is reached. At the end
of the procedure, a final improvement phase is conducted by identifying and eliminat-
ing weakly utilized containers in the tariff-expanded network and again re-routing the
corresponding flow using a variation of Type B moves.

3.5 Mixed integer programming approaches

In this section, we discuss mixed integer programming techniques that supplement the
combinatorial heuristics presented in the previous section, not only yielding high quality
solutions but also providing lower bounds for assessing solution quality.

The plain MIP formulation presented in Section 3.2.4 is not suited for solving TTP
instances in practice as it involves too many variables and constraints when applied
to large logistics networks occurring in practice. Instead, we propose an aggregated
formulation that considerably reduces model size and still yields good lower bounds on
the value of the optimal solution in Section 3.5.1. We then combine this with efficient
preprocessing techniques to tighten the relaxation in Section 3.5.2. In Section 3.5.3,
we describe how to use solutions to the LP relaxation of this strengthened aggregated
formulation as initial solutions for the local search introduced in the previous section.
Finally, a post-processing step that improves solution quality is presented in Section 3.5.4.
During this post-processing step, tariff selection decisions are locally optimized on all
transport relations that connect a given pair of nodes in different slots of the pattern-
expanded network.
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3.5.1 Aggregated MIP formulation (AMIP)

As mentioned above, the plain MIP formulation [TTPCND] introduced in Section 3.2.4
suffers from the enormous sizes of resulting instances. In particular, the introduction
of tariff gadgets results in a high number of—mostly parallel—arcs, each of which is
associated with |K| flow variables and |P | capacity constraints. We make use of this
parallel structure and propose an aggregated formulation that still reflects the original
tariff structures while significantly reducing the number of flow variables and capacity
constraints. The aggregation is set up as follows. For each pair of nodes v, w ∈ V
let A(v, w) be the set of arcs from v to w in the tariff-expanded network. For each
i ∈ K, we replace the flow variables xi(a) of all arcs a ∈ A(v, w) by a single flow variable
xi(v, w) ∈ QK

+ . For each j ∈ P , we replace the capacity constraints of the arcs in A(v, w)
with respect to j by a single constraint∑

i∈K
αijxi(v, w) ≤

∑
a∈A(v,w)

βj(a)y(a).

Clearly, the resulting MIP is a relaxation of the original TTP instance, as we can construct
a feasible solution of the relaxation from a feasible solution of the original formulation
by setting xi(v, w) :=

∑
a∈A(v,w) xi(a) and adopting the values of all design variables.

Conversely, each solution of the relaxation induces a flow on the transport relations of
the pattern-expanded network. These flow values yield a tariff selection subproblem on
each transport relation; see Section 3.3. Computational experiments based on real-world
data reveal that by applying a tariff selection heuristic on each relation, we can derive
feasible solutions of the original model with only a minimal increase in cost. On the
other hand, given the typically high number of parallel arcs between each pair of nodes
in TTP instances—20 on average in our test sets—the aggregation drastically reduces
the number of variables and constraints, resulting in a considerable boost in efficiency
for branch and bound solution methods.

3.5.2 Preprocessing

Although tariff aggregation greatly helps to reduce problem sizes, the MIP models arising
from TTP instances based on realistic data still suffer from numeric instability and weak
lower bounds. We address these issues in the following with two preprocessing steps that
can be applied to strengthen the aggregated formulation.

Strengthened container inequalities

As already discussed in Section 3.1.2, MIP formulations of capacitated network design
problems can be considerably strengthened by adding valid inequalities. Among the valid
inequalities used in literature are strong capacity and minimum cardinality inequalities.
The natural extensions of these inequalities to TTP, however, did not turn out to be very
effective for the instances in our computational study. Instead, we propose a method to
bound the total extent of capacity used within individual containers. Before we describe
these strengthened container inequalities in detail, we give some reasons for the failure of
the known inequalities mentioned above.

Strong capacity inequalities. These inequalities state that xi(a) ≤ biy(a) for all i ∈ K
and all a ∈ A, where bi :=

∑
v∈V :bi(v)>0 bi(v) is the total supply of commodity i ∈ K.
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While Chouman, Crainic, and Gendron [CCG09a] report on the positive impact of strong
capacity inequalities on the integrality gap in their computational experiments, it is
also easy to see that the strong capacity inequality for commodity i at arc a can only
strengthen the original formulation if αij <

βj(a)
bi

for all j ∈ P . In typical TTP instances
arising in practice, total demands within the network are much larger than individual
transport capacities and the inequalities remained mostly ineffective.

Minimum cardinality inequalities. These inequalities require the number of containers
installed on a cut induced by a set of nodes S ⊂ V to be at least as large as the mini-
mum number of containers required to transport the excessive demand (

∑
v∈S bi(v))+

i∈K
within S across the cut. As already observed by Chouman et al. [CCG09a], these in-
equalities are weak if the magnitudes of the capacities vary widely, as it is typically the
case for logistics tariffs that are modeled within TTP instances. Their suggested im-
provements cannot be applied in our case as their model contains only binary design
variables whereas ours are integer. In the following, however, we show how to strengthen
our capacity inequalities using similar ideas.

Strengthened container inequalities. Solutions to the LP relaxation of TTP provide
weak lower bounds for the following reason: When considering a flow carrying transport
relation, LP solutions tend to set the variable of the largest container to the minimal
fraction needed to grant capacities for the flow on this transport relation. These fractions
are unfortunately very small, which means that they do not reflect the cost that would
be incurred in an integer solution. The idea is to restrict container capacities without
affecting the cost of an optimal integer solution. This is possible, if for a given transport
relation R ∈ R an upper bound Γ(R) on the flow x(R) in any optimal solution is known.
Useful upper bounds can be derived for transport relations incident to node sets S ⊂ V
with either δ+(S) = ∅ or δ−(S) = ∅. Given an upper bound Γ(R), we can replace for
every a ∈ A(R) and every j ∈ P the capacity βj(a) by βj(a)− sj , where sj is the result
of solving

min sj

s.t.
∑
i∈K

αij′xi(a) + sj′ = βj′(a) ∀ j′ ∈ P

0 ≤ xi(a) ≤ Γi(R) ∀ i ∈ K
sj′ ≥ 0 ∀ j′ ∈ P.

In a preprocessing routine we solve these linear programs for each property j of each fixed
charge container e on each transport relation R for which reasonable upper bounds Γ(R)
can be computed.

Commodity scaling

During initial computational experiments, we could observe numerical difficulties while
solving LP relaxations of large problem instances: The LP solving steps suffer from basis
singularities and sometimes even numerical infeasibility. One reason for these difficulties
lies in the diversity of properties for different commodities. The capacity inequalities
involve many flow variables with property coefficients varying in magnitudes of 106 for
our test instances. In order to attenuate the effects, we apply the following scaling steps.
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For each commodity i ∈ K we determine a scaling factor pi > 0 and obtain scaled
values b̃i(v) and α̃ij , defined by b̃i(v) := bi(v)/pi and α̃ij := piαij for each j ∈ P . The
scaled problem instance is equivalent to the non-scaled one in the sense that feasible
flow values x̃i(a) obtained for the scaled problem can be scaled back to obtain feasible
flow values xi(a) = pix̃i(a) for the original problem. We chose the scaling factors pi for
each commodity in such a way that among the resulting coefficients α̃ij for j ∈ P the
smallest such coefficient has the magnitude 10−1. The improved numeric stability of the
constraint system significantly speeds up the LP solution process.

3.5.3 Initial solutions from aggregated LP relaxation (ALP)

In Section 3.4, we discussed the importance of properly chosen initial solutions for the
local search procedure, and devised two ways to encourage consolidation of flow during
the construction of the initial solution by shortest path type algorithms. Alternatively, we
can obtain initial solutions from the LP relaxation of the aggregated MIP formulation by
applying tariff selection heuristics to the multi-commodity flow in the pattern-expanded
network induced by the aggregated LP solution.

Note that in this case, strengthened container inequalities as described above also
boost consolidation in the solution process. In fact, the effect of the strengthened in-
equalities is strongest on arcs that are reachable from few sources or sinks only (such as
direct source-sink connections). This implicitly encourages flow to take detours on paths
along intermediate hubs, where less strong container inequalities permit lower costs in the
LP relaxation. Since inappropriately consolidated flow can be efficiently disaggregated
by the local search algorithm, initial solutions constructed from the LP relaxation lead
to high quality final solutions as we shall see in Section 3.6.

3.5.4 Pattern optimization subproblem

In the tariff selection subproblem considered in Section 3.3, we fixed the amount of flow
passing a given transport relation and optimized the tariff selection with respect to this
given flow value. This idea can be extended by considering all transport relations that
connect a given pair of nodes in different slots of the pattern-expanded network. More for-
mally, for some node v ∈ B in the base network and a cycle length F , let v1, . . . , vF be the
copies of v created in the pattern expansion step, with vi ∈ V (Bi) for i ∈ {1, . . . , F}. We
consider the pattern optimization subproblem induced by a fixed pair of nodes s, t ∈ B.
To this end, we define

V(s, t) :=

F⋃
i=1

{si, ti} and R(s, t) := {R ∈ R : tail(R),head(R) ∈ V(s, t)}.

Given a feasible solution to the whole TTP instance with flow values x̄(R) for R ∈ R,
we consider a locally restricted instance of TTP, fixing the flow values on all transport
relations in R \ R(s, t) and optimizing the flow (x(R))R∈R(s,t) in the subnetwork of the
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pattern-expanded network induced by the copies of s and t, i.e.,

min
∑

R∈R(s,t)

∑
t∈T (R)

Ct(x̃(t))

s.t.
∑

R∈δ+R(s,t)
(v)

xi(R) −
∑

R∈δ−R(s,t)
(v)

xi(R) = b̄i(v) ∀ v ∈ V(s, t), ∀ i ∈ K

∑
t∈T (R)

x̃i(t) = xi(R) ∀R ∈ R(s, t), ∀ i ∈ K

x̃(t) ≥ 0 ∀ t ∈ T (R), ∀R ∈ R(s, t)

where b̄(v) :=
∑

R∈δ+R(s,t)
(v) x̄(R)−∑R∈δ−R(s,t)

(v) x̄(R).
Using the tariff gadgets from Section 3.2.4, this restricted instance of TTP can be

formulated as a mixed integer program. It contains only a small fraction of the decision
variables present in the whole instance. In fact, these restricted instances can be solved to
near-optimality very quickly using a standard MIP solver. We thus iteratively optimize
these subproblems arising for all pairs of adjacent nodes with flow carrying transport
relations in between them.

Note that in contrast to the tariff selection subproblem, solving the pattern optimiza-
tion subproblem for one pair of nodes may affect the subproblem of other, non-disjoint
pairs of nodes, as holdover arcs of a common node appear in each of the problems as vari-
ables. Consequently, the order in which the node pairs are considered plays an important
role. We sort the node pairs non-increasingly with respect to the total flow in the subnet-
work affected by the pattern optimization for each pair, scalarized by a weighted sum of
the property extents, i.e.,

∑
j∈P wjαj(

∑
R∈R(s,t) x̄(R)), using the same weights w ∈ QP

+

as provided for local search and SPTS heuristic. This reflects the potential of the corre-
sponding node pair for cost savings and leads to an “important pairs first” order, which
is also useful when the pattern optimization process cannot be carried out on all node
pairs due to time constraints.

3.6 Computational study
We verify the TTP model and the algorithmic approaches presented in the preceding
sections by conducting a computational study based on real-world data provided by our
project partner 4flow AG.

3.6.1 Instance sets

The benchmark library consists of 145 instances aggregated from four recent and on-going
customer projects of 4flow AG in three different industries, two from the automotive
industry, one from the chemical industry, and one from home appliances retail. We
denote the corresponding sets by auto1, auto2, chemical, and retail, respectively. All
base networks correspond to European supply chains in which goods are transported
according to full truck load (FTL) or less than truck load (LTL) tariffs. The networks
share a layered graph structure. More specifically, the nodes of the base network are
partitioned into an ordered set of layers, with the lowest layer containing all sources, and
the highest layer containing all sinks. In addition, there is a fixed number (varying from
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nodes in base network transport relations/arcs
instance set sources sinks hubs |K| base pattern tariff
auto1 (36) 35 6 7 162 335 2296 76653
auto2 (18) 34 3 4 117 186 1364 29264

chemical (50) 7 244 19 101 6601 41222 239238
retail (41) 4 177 26 307 5665 35229 511064

Table 3.2: Average sizes of the instances per set: the number of sources, sinks, and hubs in the
base network, the number of commodities, and the number of arcs in the base net-
work, the pattern-expanded network, and the tariff-expanded network. The number
of instances in each set is given in parentheses after the name of the set.

one to three) of intermediate hub layers. There is a transport relation between every
pair of nodes from distinct layers, directed towards the higher layer. However, transport
relations between nodes of the same layer are not present. Pattern expansion has been
conducted with a cycle length of six slots—one slot corresponds to two months of a year.
All tariffs are of piecewise constant type, depending on the same two properties, weight
and volume, in every instance.

While the automotive instances represent production networks with a high number
of sources and a low number of sinks, the instances from chemical industry and retail are
based on distribution networks with a high number of sinks but only few sources. Another
notable differences lies in the number of different tariffs available on each transport
relation, which is considerably lower for instances from the chemical set as compared to
those of the others with an average of 6 vs. 20 tariffs per transport relation, respectively.
Table 3.2 shows the average values of key parameters of the instances within each set.

A complete overview of the characteristics of all instances is given in Tables 3.5 to 3.7
at the end of this chapter.

3.6.2 Algorithms and implementation details

We implemented and tested different variants of the algorithms presented in Sections 3.4
and 3.5 in order to determine good parameter settings and combinations. In long term
planning, computation time plays a minor role and the fine-tuned aggregated MIP formu-
lation combined with the path-based local search and pattern optimization with generous
time limits can be used. When evaluating multiple scenarios in a row—e.g., in the context
of strategic planning, as indicated in Section 3.2.5—however, computation time becomes
more significant. Our industrial partner suggested a time limit of 30min for this applica-
tion. We thus also tested approaches designed for time-efficiency without sacrificing too
much solution quality. Overall, the following algorithms were tested on all 145 instances
of the benchmark library.

MIP-plain: branch and bound using the plain MIP formulation [TTPCND] for compar-
ison purposes (Section 3.2)

SPLC: local search using initial solutions from the shortest path heuristic with linearized
cost (Section 3.4.1)

SPLC-F: same as SPLC, but with forbidden direct connections (Section 3.4.1)

SPTS-L: local search using initial solutions from the shortest path heuristic with tariff
selection and partial linearization (Section 3.4.2)
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AMIP-H: branch and bound using the aggregated MIP formulation with integrated
local search (Section 3.5.1)

ALP: local search using initial solutions derived from the LP relaxation of the aggregated
formulation (Section 3.5.3)

All algorithms have been implemented in C++ and compiled with gcc 4.5.0 on open-
SUSE 11.3 Linux with kernel 2.6.32.19-0.2. Computations have been performed on clus-
ter nodes with two DualCore-Opteron 2218 processors (2.6GHz, 64 bit) and 16GB of
memory using CPLEX 12.1 for MIP and LP solving. Since the heuristic approaches have
not been adapted to support concurrent computations, we limited the number of threads
for the CPLEX solver to one to ensure comparability of the results.

In the following we first elaborate on the interplay of the branch and bound framework
and the local search heuristic and then describe the exact settings for the variants of the
local search procedure.

Branch and bound frameworks

Our tests involved different MIP formulations, which we implemented in CPLEX. For a
direct comparison with our algorithms, we tested a plain MIP model (MIP-plain) based
on the capacitated network design formulation [TTPCND] presented in Section 3.2.4. We
also tested the aggregated MIP formulation from Section 3.5.1 combined with the prepro-
cessing methods described in Section 3.5.2 and callbacks to our combinatorial heuristics.
The resulting algorithm is denoted by AMIP-H and details of the implementation are
given below. In order to obtain reasonably tight lower bounds, we also ran the aggre-
gated MIP formulation without heuristic callbacks; this setting is referred to as AMIP-B
below. We invoked a time limit of 2 h for the branch and bound process, and an extra
time of 1 h for applying local search and pattern optimization each.

When solving the aggregated and preprocessed MIP formulation with the branch
and bound framework, we improve feasible integer solutions and promising fractional LP
solutions obtained during the search of the branch and bound tree using our heuristics.
Note that these solutions induce a flow on the transport relations of the pattern-expanded
network, which can be turned into a feasible TTP solution by solving the tariff selection
subproblem on each transport relation. We further improve the solution by applying
the local search heuristic and pattern optimization with a time limit of 300 s. As this
procedure incurs a significant computational effort, we require at least 1500 branch and
bound nodes to be processed between two successive calls of the heuristics. Furthermore,
we use the cost estimator presented in Section 3.3.2 in order to evaluate the potential
of a given LP solution to improve on the currently best solution: Only if the estimated
total cost is within 8% to the best known solution, we compute the corresponding TTP
solution. We also apply the procedure to all integral solutions found by the MIP solver.

Local search procedure

We tested the local search algorithm described in Section 3.4.3 using initial solutions con-
structed by the heuristics mentioned above. For intermediate tariff selection, we employed
both the estimator and the two-phase greedy method described Section 3.3. In addition,
pattern-optimization is performed on the final solution using the non-aggregated MIP
formulation, as described in Section 3.5.4.
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auto1 auto2 chemical retail all
solver (31/36) (18/18) (48/50) (30/41) (127/145)
ALP -17.81 -6.87 -21.61 -10.44 -15.96

AMIP-B 17.48 0.61 12.38 4.84 10.18

Table 3.3: Average improvement of the lower bound over that achieved by MIP-plain in percent.
The numbers in parentheses indicate the share of instances for which MIP-plain was
able to obtain a lower bound in the corresponding set.

Computation time of the starting heuristics ALP, SPLC and SPLC-F turned out to
be almost negligible, and we invoked a total solution time of 30min (including pattern
optimization) in this case. Unfortunately, the more sophisticated SPTS-L solver turned
out to cause considerably more computational effort. Here we invoked the same time
limits as for the branch and bound approaches.

Recall that for fine-tuning the path decomposition of the local search procedure and
the SPTS heuristic, an additional parameter is specified: a weight function on the prop-
erties of the model that reflects the importance of properties. For our test instances, the
(physical) weight of shipments occurs to be the dominant property. We thus choose the
weight function to be an indicator function on weight.

3.6.3 Results

We now elaborate on the results of our computational experiments, starting with the
effect of aggregation on the lower bounds. We then analyze solution quality and the
impact of the choice of initial solutions, local search, and pattern optimization. We close
by comparing our approach to a reference solution on an additional instance.

Influence of aggregation and preprocessing on lower bounds. Table 3.3 shows the
average improvement on lower bounds achieved by the aggregation and our preprocess-
ing techniques over that computed by the plain MIP formulation. In fact, we observed
that especially for large instances, MIP-plain suffers from numerical instabilities and de-
generacy that lead to solving times of thousands of seconds already for the LP relaxation
at the root node. In some cases, the initial cut generation rounds for the root node do
not terminate within given time limits. In turn, the efficiency of initial cuts greatly ben-
efits from our preprocessing techniques—fewer cuts achieve a much better lower bound
when using AMIP-B. Not surprisingly, the lower bounds derived by the strengthened
aggregated LP (ALP) are of low quality, with an decrease of more than 15% on average
towards the values obtained by MIP-plain. In a set-by-set comparison, the aggregated
AMIP-B framework achieves an average improvement over MIP-plain of more than 10%,
and of up to 17% on average on set auto1, while MIP-plain is only competitive on the
comparatively small instances of the auto2 set. Apparently, the loss in exactness caused
by the aggregation is more than compensated by the boost in efficiency of the branch
and bound procedure achieved by the smaller size of the formulation and its increased
numerical stability.

Solution quality. Figure 3.2 and Table 3.4 show the gaps of the solutions obtained
by the respective algorithms to the lower bound computed by AMIP-B. Throughout
the automotive and retail instance sets, the average gap to the lower bound is within
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Figure 3.2: Gaps of solutions to best found lower bounds in percent. The diagrams show the
distribution of the gaps for the respective algorithms within each test set. The mark
inside each box represents the median of the gaps, the box boundaries represent
lower and upper quartiles and the whisker ends show the minimum and maximum
obtained gap, respectively, apart from possible outliers that are marked with a cycle
(four extreme outliers of MIP-plain and three of SPLC-F have been removed from
the retail set for better readability). The diagrams have been plotted following the
suggestions in [FHI89].

solver auto1 (36) auto2 (18) chemical (50) retail (41) all (145)
MIP-plain 9.09 (1) 2.35 (3) 29.18 (0) 13.33 (1) 16.38 (5)

ALP 6.22 (24) 2.63 (0) 13.92 (17) 4.74 (40) 8.01 (81)
AMIP-H 6.12 (26) 1.26 (16) 14.61 (24) 4.75 (38) 8.06 (104)

SPLC 6.51 (17) 5.07 (0) 23.54 (0) 4.75 (37) 11.71 (54)
SPLC-F 6.90 (11) 3.65 (0) 18.08 (9) 10.70 (27) 11.43 (47)
SPTS-L 6.57 (19) 4.15 (0) 19.44 (1) 4.74 (39) 10.19 (59)

Table 3.4: Average gaps to best known lower bound in percent. The numbers in parentheses
indicate the number of best solutions achieved by the solver.

a single-digit percentage. The local search with LP starting solution and the AMIP-H
framework achieve the lowest costs, while the performance of approaches with shortest
path-based initial solutions is weaker and varies depending on the instance set. We infer
that the more holistic LP approach captures the multi-commodity flow nature of our
problem better than the iterative path approaches.

AMIP-H attains near-optimality on auto2, outperforming ALP on this set. Appar-
ently, the small instance sizes in this set benefit the branch and bound process. The gaps
are considerably weaker on the instances of the chemical set. The instances of this set
are much bigger with respect to the number of arcs and sinks in the base network than
those from the other sets, which presumably also affects the MIP framework’s ability to
produce tight lower bounds.
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Figure 3.3: Performance of fast solvers with time limit 1800 s. Average gaps to best known lower
bounds in percent are shown for the initial solution (top of the white area), after
local search (top of the light area), and after pattern optimization (top of the dark
area).

Performance of local search and impact of initial solutions. The results in Table 3.4
and Figure 3.2 show that the choice of the initial solution clearly affects the performance
of the local search procedure. In fact, on many instances, the initially expensive flow
patterns of the consolidation enforcing start heuristics lead to better final solutions than
those obtained from solutions with low consolidation provided by SPLC for comparison;
see Figure 3.3. However, the effectiveness of the combinatorial starting heuristics strongly
depends on the structure and size of the instance. In contrast, ALP consistently shows
best results among the fast solvers, on par with the AMIP-H framework—which takes
considerably more computational effort.

Impact of pattern optimization. Figure 3.3 reveals that the effect of pattern opti-
mization is almost negligible on the sets auto2 and retail, and still relatively weak on
the set auto1. However, for the instances of the chemical set, the effect is significantly
stronger. This better performance can be explained by the less granular tariff structure
in this instance set, resulting in smaller subproblems while at the same time increasing
the importance of temporal consolidation.

Purely combinatorial heuristics. In order to provide solutions independent of third
party software and licenses, we also evaluated purely combinatorial variants of the local
search heuristic with path-based initial solutions: After replacing MIP-based tariff selec-
tion algorithms with greedy heuristic and omitting pattern optimization, the approaches
still produced good solutions with a mild increase in cost of at most 3% on average.

Comparison with reference solution. Due to confidentiality restrictions it was not pos-
sible to obtain reference solutions or current network costs for the instances presented
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above. Instead, a direct comparison with an instance of a European cross-docking net-
work from a recent customer project has been conducted in cooperation with 4flow AG.
The base network consists of 228 sources, 545 sinks, 5 hubs, 5857 arcs, resulting in a
tariff-expanded network with 209304 arcs. It is fully connected in contrast to the layered
structure observed so far. On this instance, the AMIP-H framework obtained a solution
with 1.2% gap to optimality. We compared this against a solution obtained with a stan-
dard software for supply chain design at project start operating on a conventional model
and optimizing flow routes and delivery frequencies in two separate phases. Our solution
constitutes a 14% improvement, which, if applied on an annual basis, results in savings
of up to 1.6million Euro.

3.7 Conclusion

The tactical transportation planning model presented in this chapter integrates the im-
portant aspects of tactical logistics network optimization in practice: realistic transporta-
tion tariffs, cyclic delivery patterns, and inventory costs. Several algorithmic techniques
have been devised to address the challenges associated with the specific instance struc-
ture induced by our model. These methods have proven to be successful in tests on a
broad set of instances derived from real-world logistics networks.

The performance of our algorithms relies to a great extent on the successful isolation
of the tariff selection subproblem. We devise a variety of exact and heuristic methods
to efficiently solve this problem, satisfying the different needs for speed and exactness
of the solution procedure resulting from the various contexts of solving the subproblem.
Using these subroutines, we propose a local search procedure that simultaneously re-
routes flow of multiple commodities. Equipping the local search with different types of
initial solutions, such as multi-commodity flow patterns derived from a strengthened LP
relaxation or from combinatorial path-based approaches, yields solutions that are within
a single digit percent of the optimum on average. Our algorithms can be used both in
connection with standard MIP solvers, or as purely combinatorial algorithms, yielding
competitive solutions without usage of third-party software.

Open problems and future research

Currently, our algorithmic toolkit is being integrated into a supply chain software package
developed by 4flow AG. The collaboration with 4flow AG also sparked a second project
investigating the possibility of incorporating robustness aspects into transportation mod-
els. In addition, our model opens several directions for future research.

Strategic and operational planning. While the model presented here aims at trans-
portation planning on the tactical level, we have already discussed possible generaliza-
tions to strategic and operational settings in Section 3.2.5. As remarked there, incor-
porating aspects such as facility costs in the strategic context, or time-windows in the
operational context poses new algorithmic challenges for solving the model. Augment-
ing the model by such features and devising suitable solution methods is an interesting
subject for future work on the topic of transportation planning.
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Efficient algorithms for multi-commodity flows with multiple capacities. Benders
decomposition is one of the most successful techniques for solving capacitated network
design problems. Initial experiments with this approach in the context of our model,
however, have revealed the LP subproblem to be a severe computational bottleneck. De-
vising an efficient combinatorial algorithm for solving this subproblem, which corresponds
to a multi-commodity flow problem with multiple capacities, is an interesting task for
future research. A natural candidate for such a method would be an extension of the
Garg-Könemann algorithm [GK07] to multiple capacities.

Approximation algorithms for the tariff selection problem. The tariff selection prob-
lem introduced in Section 3.3 constitutes a central subproblem of the TTP model, with
great importance to our algorithmic methods. Generalizing classic covering problems by
the aspect of assignment, this subproblem is also interesting on its own right. In [KMR12],
we provide initial insights on the approximability of the tariff selection problem, including
hardness of approximation with a factor better than logarithmic. The reduction, how-
ever, requires the number of properties to be unbounded. It remains an open question
whether there exists a constant factor approximation algorithm for the special case that
the number of properties is constant. This is particularly interesting as the number of
properties is typically very small in practice.
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nodes in base network transport relations/arcs
instance sources sinks facilities |K| base pattern tariff
auto1_1 108 10 127 917 1109 7416 253614

auto1_1QA 60 8 77 349 701 4668 160290
auto1_1QB 13 6 28 153 206 1404 47136
auto1_1QC 47 7 63 196 559 3732 127830
auto1_1QD 22 9 40 218 267 1842 61116
auto1_1QE 8 7 24 214 168 1152 38448
auto1_1QF 18 8 35 136 224 1554 51282
auto1_1SA 30 3 37 282 146 1098 33510
auto1_1SB 25 2 31 71 126 942 28914
auto1_1SC 59 4 67 402 294 2166 67434
auto1_1SD 39 3 51 244 417 2808 95382
auto1_1SE 34 2 40 331 171 1266 39228

auto1_3 92 10 111 348 970 6486 221826
auto1_3QA 47 8 64 129 571 3810 130572
auto1_3QB 12 6 27 50 197 1344 45078
auto1_3QC 35 7 51 79 438 2934 100170
auto1_3QD 20 9 38 93 262 1800 59964
auto1_3QE 8 7 24 73 168 1152 38448
auto1_3QF 17 8 34 53 220 1524 50364
auto1_3SA 29 3 36 107 143 1074 32820
auto1_3SB 18 2 24 32 95 714 21804
auto1_3SC 48 4 56 148 242 1788 55512
auto1_3SD 35 3 47 102 378 2550 86466
auto1_3SE 30 2 36 116 151 1122 34644

auto1_4 92 10 111 257 970 6486 221826
auto1_4QA 47 8 64 105 571 3810 130572
auto1_4QB 12 6 27 35 197 1344 45078
auto1_4QC 35 7 51 70 438 2934 100170
auto1_4QD 20 9 38 63 262 1800 59964
auto1_4QE 8 7 24 47 168 1152 38448
auto1_4QF 17 8 34 42 220 1524 50364
auto1_4SA 29 3 36 71 143 1074 32820
auto1_4SB 18 2 24 27 95 714 21804
auto1_4SC 48 4 56 113 242 1788 55512
auto1_4SD 35 3 47 79 378 2550 86466
auto1_4SE 30 2 36 86 151 1122 34644

auto2_1 64 4 72 383 355 2562 13872
auto2_1A 17 4 24 64 88 672 27054
auto2_1B 29 4 37 188 172 1254 14346
auto2_1C 18 4 25 131 91 696 55812

auto2_1S0511 36 2 42 131 190 1392 29892
auto2_1S0710 42 2 48 256 220 1608 34608

auto2_2 64 4 72 161 355 2562 13872
auto2_2A 17 4 24 27 88 672 27054
auto2_2B 29 4 37 88 172 1254 14346
auto2_2C 18 4 25 46 91 696 55812

auto2_2S0511 36 2 42 64 190 1392 29892
auto2_2S0710 42 2 48 100 220 1608 34608

auto2_3 64 4 72 153 355 2562 13872
auto2_3A 17 4 24 26 88 672 27054
auto2_3B 29 4 37 83 172 1254 14346
auto2_3C 18 4 25 44 91 696 55812

auto2_3S0511 36 2 42 61 190 1392 29892
auto2_3S0710 42 2 48 95 220 1608 34608

Table 3.5: Characteristics of the auto1 and auto2 instances.
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nodes in base network transport relations/arcs
instance sources sinks facilities |K| base pattern tariff

chemieTN1 2 844 890 90 38140 234180 1378380
chemieTN2 2 34 48 25 469 3102 17172
chemieTN3 2 59 70 41 613 4098 22488
chemieTN4 2 205 229 64 4776 30030 173310
chemieTN5 2 62 71 36 516 3522 19002
chemieTN6 2 99 109 47 914 6138 33558
chemieTN7 2 122 136 42 1616 10512 58992
chemieTN8 2 58 67 26 483 3300 17790
chemieTN9 2 195 204 56 1596 10800 58680
chemieTN10 6 108 128 88 1741 11214 63444
chemieTN11 6 152 173 120 2573 16476 93666
chemieTN12 6 648 673 243 13318 83946 483486
chemieTN13 6 160 178 79 2204 14292 80412
chemieTN14 6 201 220 105 2961 19086 107916
chemieTN15 6 326 353 107 7400 46518 268518
chemieTN16 6 211 229 84 2860 18534 104334
chemieTN17 6 454 471 154 5694 36990 207810
chemieTN18 1 407 452 29 18359 112866 663636
chemieTN19 3 1247 1294 51 56463 346542 2040432
chemieTN20 3 70 78 23 445 3138 16488
chemieTN21 3 75 92 33 1184 7656 43176
chemieTN22 3 407 434 45 10315 64494 373944
chemieTN23 3 72 84 24 757 5046 27756
chemieTN24 3 124 133 37 908 6246 33486
chemieTN25 3 185 197 34 1903 12600 69690
chemieTN26 3 95 107 31 996 6618 36498
chemieTN27 3 208 216 41 1301 9102 48132
chemieTN28 12 408 453 248 14526 89874 525654
chemieTN29 12 174 209 145 4553 28572 165162
chemieTN30 12 234 274 213 7279 45318 263688
chemieTN31 11 90 124 78 2456 15480 89160
chemieTN32 12 84 115 108 1966 12486 71466
chemieTN33 12 113 147 161 2949 18576 107046
chemieTN34 12 121 151 122 2586 16422 94002
chemieTN35 12 238 272 151 5897 37014 213924
chemieTN36 11 63 96 71 1732 10968 62928
chemieTN37 12 117 149 115 2787 17616 101226
chemieTN38 12 58 90 59 1486 9456 54036
chemieTN39 11 33 64 37 933 5982 33972
chemieTN40 12 84 114 104 1882 11976 68436
chemieTN41 12 997 1041 373 33993 210204 1229994
chemieTN42 12 672 705 269 15551 97536 564066
chemieTN43 12 39 75 36 1290 8190 46890
chemieTN44 12 338 369 205 7209 45468 261738
chemieTN45 12 294 328 201 7224 45312 262032
chemieTN46 11 44 71 45 947 6108 34518
chemieTN47 12 514 548 200 12388 77616 449256
chemieTN48 12 322 364 156 10489 65118 379788
chemieTN49 12 292 330 151 8337 52002 302112
chemieTN50 11 30 66 27 1061 6762 38592

Table 3.6: Characteristics of the chemical instances.
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nodes in base network transport relations/arcs
instance sources sinks facilities |K| base pattern tariff
handel1 7 702 748 1468 27008 166536 2435208
handel2 7 702 748 316 27008 166536 2435208
handel3 7 702 748 100 27008 166536 2435208

handelTN1 7 60 106 257 2691 16782 242826
handelTN2 7 62 108 143 2485 15558 224298
handelTN3 4 74 117 104 2718 17010 245322
handelTN4 7 75 121 223 3293 20484 297096
handelTN5 7 72 118 182 3144 19572 283668
handelTN6 6 76 121 177 3227 20088 291156
handelTN7 7 65 111 175 2815 17556 254016
handelTN8 7 78 124 234 3162 19716 285324
handelTN9 4 72 115 161 2658 16638 239910
handelTN10 7 68 114 266 2951 18390 266274
handelTN11 2 121 135 142 1605 10440 145260
handelTN12 2 186 198 227 2082 13680 188568
handelTN13 3 269 289 494 5032 31926 454614
handelTN14 2 182 196 210 2401 15582 217266
handelTN15 3 174 193 372 3034 19362 274218
handelTN16 2 212 222 219 1943 12990 176202
handelTN17 2 57 67 78 530 3582 48102
handelTN18 2 62 72 77 581 3918 52722
handelTN19 2 74 87 90 912 5994 82602
handelTN20 2 62 74 118 708 4692 64164
handelTN21 2 72 84 108 820 5424 74304
handelTN22 2 52 64 84 594 3948 53844
handelTN23 3 65 81 121 956 6222 86526
handelTN24 3 78 94 187 1221 7890 110454
handelTN25 3 72 92 159 1381 8838 124842
handelTN26 3 54 70 164 803 5238 72690
handelTN27 3 60 79 176 1085 6984 98124
handelTN28 3 46 65 100 833 5388 75360
handelTN29 3 68 87 180 1212 7794 109602
handelTN30 3 57 81 115 1324 8430 119646
handelTN31 3 72 96 88 1652 10488 149256
handelTN32 3 65 89 116 1496 9510 135174
handelTN33 7 359 405 669 13952 86142 1258110
handelTN34 7 343 389 911 13323 82272 1201404
handelTN35 7 344 390 900 13948 86028 1257660
handelTN36 7 494 540 1214 19720 121560 1778040
handelTN37 4 413 456 724 15966 98532 1439676
handelTN38 3 340 382 744 12971 80118 1169682

Table 3.7: Characteristics of the retail instances.



Chapter 4

Approximating combined location
and network design problems

In this chapter, we investigate optimization problems that combine facility location
with vehicle routing or network design problems. We discuss a general framework
for combining approximation techniques based on different lower bounds to obtain
algorithms for such integrated location and network design problems. We use this
framework to derive approximation algorithms for capacitated location routing, an
important problem in transport logistics, and facility location with capacitated and
length-bounded trees, a problem motivated by the design of optical access networks
in telecommunication. We also present computational results indicating that the
performance of our algorithm in practice clearly exceeds the theoretical guarantee.

Publication remark: The results presented in Section 4.2 are joint work with Tobias
Harks and Felix G. König [HKM13]. The results presented in Section 4.3 are joint
work with Andreas Bley and Benjamin Müller [MBM13].

Location analysis plays a crucial role in the design of networks, e.g., in transport logistics
or telecommunication. The cost for opening and operating depots, central offices, and
similar facilities constitutes a large share of the overall solution cost. A fundamental
combinatorial optimization problem addressing location decisions is the uncapacitated
facility location problem. It asks for a subset of facilities from a given set to be opened
in order to serve a set of clients with minimum cost. In this very basic setting, each
client is directly connected to the nearest open facility. In many practical applications,
however, such dedicated connections for each client are rarely encountered, as it is often
more economical to serve multiple clients by a shared infrastructure. Logistics carriers,
e.g., usually serve several clients on a single tour. Likewise, fiber cables in optical access
networks are split so they can connect multiple neighboring clients to a central office in
a tree-based network topology.

In this chapter, we consider optimization problems that combine facility location
with various ways of connecting clients to facilities. We discuss a general framework
for obtaining approximation algorithms for such problems by combining different lower
bounds and approximation techniques. We apply this framework to two problem classes
from logistics planning and telecommunication network design and derive approximation
algorithms for several variants of these problems. Besides a thorough theoretical analysis
of the approximation factors, we also evaluate the resulting practical performance of our
approach on a set of large-scale benchmark instances.
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CLR MCVR Section
standard 4.38 4 4.2.2

prize-collecting 6 4 4.2.3
group 4.38L 4L 4.2.4

cross-docking 3.5 3 4.2.5

Table 4.1: Approximation ratios for different variants of capacitated location routing (CLR) and
multi-depot capacitated vehicle routing (MCVR). The value L denotes the size of the
largest group in group CLR.

Chapter outline

In Section 4.1, we introduce the basic notions of facility location and discuss related
literature, including approximation results for the fundamental uncapacitated facility lo-
cation problem (UFL) and the work of Ravi and Sinha [RS06] on the capacitated-cable
facility location problem, which provides the basis for our algorithms. We also discuss the
necessity for addressing a combined optimization problem as compared to solving two
separate problems for location and network design. Finally, we introduce a procedure
for extracting subtrees with clustered demand from a given input tree. This procedure
plays a central role in the algorithms introduced in the following sections.

In Section 4.2, we study the capacitated location routing problem (CLR), a combina-
tion of UFL and vehicle routing. In this setting, clients are served by tours originating at
open facilities using vehicles with uniform capacity. In Section 4.2.1, we give an overview
of work related to vehicle routing and location routing, with a focus on approximation
results. In Section 4.2.2, we introduce two combinatorial lower bounds for the problem,
based on spanning trees and facility location. Combining these lower bounds using the
clustering procedure introduced in the preceding section, we obtain the first constant
factor approximation for CLR. As a by-product, the algorithm also improves on the
previously best-known approximation factor for multi-depot capacitated vehicle routing,
the special case of CLR where location decisions are already taken. We extend our ap-
proximation results to several variants of location routing. In Section 4.2.3, we consider
prize-collecting CLR, where individual clients can be left unserved by paying a client-
dependent penalty. In Section 4.2.4, we investigate group CLR, where the set of clients
is partitioned into groups, and only one client from each group has to be served. The
results in this section are also interesting because they are derived from an LP relaxation
that combines the two combinatorial lower bounds mentioned above. In Section 4.2.5,
we study a version of CLR where cross-docking is allowed, i.e., shipments can be loaded
from one vehicle to another at intermediate vertices. While we derive constant factor
approximations for the prize-collecting and cross-docking versions, the approximation
guarantee for the group version depends on the cardinality of the largest group. In fact,
we show that this version of the problem is hard to approximate better than by a factor
logarithmic in the number of groups. A concise overview of the respective approxima-
tion results is given in Table 4.1. In Section 4.2.6, we present a computational study
of our algorithm on benchmark instances and large-scale randomly generated instances.
It reveals that the quality of the computed solutions is much closer to optimality than
guaranteed by the proven approximation factor.
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length cost Section
general O(log |C|) O(log |C|) 4.3.3

generalqp 3 + ε O(log2 |C|) 4.3.3
length-proportional cost 3α (1 + 2

α−1)βST + γα + 1 4.3.4
hop constraint 1 + ε O(log |C|) 4.3.5

Table 4.2: Approximation ratios for length bound and optimal solution cost for different cases
of uncapacitated facility location with capacitated and length-bounded trees (UFL-
CLT). The set C is the set of clients. The superscript qp denotes quasi-polynomial
running time. The value βST is the approximation factor of a Steiner tree algorithm.
The value α > 1 is a parameter of the algorithm. The value γα is defined as the
unique solution to the equation (1 + 2

α−1 )(2 + 4e−γα) = γα.

In Section 4.3, we turn our attention to a problem that occurs in the planning of
optical access networks in telecommunication, the uncapacitated facility location problem
with capacitated and length-bounded tree connections (UFL-CLT). In this setting, clients
are connected to open facilities via shared access trees that have to obey both a capacity
restriction on the total demand served by the tree, as well as a bound on the length of
each client-facility-path. In the most general version of the problem, cost and length of
an edge are two independent values. We study bicriteria (α, β)-approximation algorithms
that relax the length bound by a factor of α and approximate the cost of the optimal
solution by a factor of β. In Section 4.3.1, we discuss the related shallow-light Steiner tree
problem (SLST), which asks for a minimum cost Steiner tree obeying a length bound.
We give an overview of approximation results for SLST and related problems. We then
use a well-known connection between SLST and directed Steiner trees in the so-called
layered graph to obtain an additional pseudo-polynomial approximation algorithm for
SLST that relaxes the length bound only by a factor of (1 + ε). In Section 4.3.2, we
show that UFL-CLT remains hard to approximate even in a very restricted special case
and we give two lower bounds on the value of an optimal solution. In Section 4.3.3, we
show how to adapt our approximation framework to cope with length bounds. By using
different SLST-approximations as subroutines, we obtain two different approximation
algorithms for the general version of our problem. The first runs in polynomial time
and approximates both the length bound and the optimal cost by a logarithmic factor.
Our second algorithm, which runs in quasi-polynomial time, approximates the length
bound by a constant factor while giving a polylogarithmic guarantee for the cost. In the
remaining sections, we investigate two important special cases of the problem, for which
we can obtain considerably better results. In Section 4.3.4, we consider the case where
lengths and costs are both proportional to a common metric. For this case, combining
a greedy covering technique with so-called light approximate shortest-path trees yields
an approximation algorithm that guarantees constant factors both for length bound and
solution cost. By modifying an input parameter of the algorithm, the two factors can be
adjusted to obtain different levels of trade-off between length and cost. In Section 4.3.5,
we consider UFL-CLT with hop constraints, i.e., the case where the length of a path
corresponds to the number of its edges. For the case that the cost function is metric,
we can achieve an arbitrarily good approximation ratio for the hop constraint together
with logarithmic cost approximation. A concise overview of the respective approximation
results for UFL-CLT is given in Table 4.2.
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4.1 Introduction to combined facility location and
network design

In this section, we introduce some basic notation and discuss results from the literature
related to facility location and combinations of facility location and network design. We
also motivate the use of such combined problems by showing that the additional cost
incurred by addressing location and network design separately can be arbitrarily high.
Finally, we describe a procedure for partitioning a tree into several subtrees, which we
will use extensively in the remainder of this chapter.

4.1.1 Basic notation

The notation presented in this section will be used throughout this chapter. In particular,
we will frequently use the standard notation

c(S) :=
∑
e∈S

c(e)

for a cost vector c ∈ QE and a subset S ⊆ E of edges. Also recall our definition of the
bidirected graph B(G) and the function ψ mapping edges to their end points introduced
in Section 1.1.3. The latter will be used regularly in Section 4.3, where parallel edges
with different costs and lengths might occur.

Distances. The distances of clients and facilities in facility location problems are usually
specified by a function c : C × F → Q+, where C is the set of clients and F is the set of
facilities. We define

c(v, F ) := min
w∈F

c(v, w)

for all v ∈ C and F ⊆ F to be the distance from v to the closest facility in F .

Trees and subtrees, depth and diameter. Let T be a tree. For v, w ∈ V (T ) we
let T [v, w] denote the unique path from v to w in T . Furthermore, for a given root
vertex r ∈ V (T ), we denote the subtree of T rooted at v ∈ V (T ) by Tr[v], i.e., Tr[v] ⊆ T
is the subtree that spans all vertices w ∈ V (T ) with T [v, w] ∩ T [v, r] = ∅. We omit the
subindex r if the root of the tree is clear from the context.

Let ` : E(T )→ Q+ be a length function on the edges. The `-depth of T with respect
to the root r ∈ V (T ) is

depth`(T, r) := max
v∈V (T )

`(T [v, r]).

Similarly, the `-diameter of T is

diam`(T ) := max
v,w∈V (T )

`(T [v, w]).

4.1.2 Related work

Facility location problems are a central topic in combinatorial optimization and approx-
imation algorithms for these problems have been studied extensively. We discuss results
regarding approximation for the classic uncapacitated facility location problem and the
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capacitated-cable facility location problem, a basic combination of facility location and
network design. However, we defer the discussion of results related specifically to either
location routing or network design with length bounds to the corresponding Sections 4.2.1
and 4.3.1.

Uncapacitated facility location

Facility location problems ask for opening a subset of facilities from a given set of possible
locations and connecting clients to the open facilities. One of the most basic variants of
facility location is known as uncapacitated facility location.

Problem: Uncapacitated facility location (UFL)

Input: A set of clients C, a set of facilities F , opening costs f ∈ QF+,
connection costs c ∈ QC×F+ , and demands d ∈ QC+.

Task: Find a set of facilities F ⊆ F such that the total
cost

∑
w∈F f(w) +

∑
v∈C d(v)c(v, F ) is minimized.

In the metric uncapacitated facility location problem, the connection costs c
are required to be metric, i.e., c(v, w) ≤ c(v, w′) + c(v′, w′) + c(v′w) for
all v, v′ ∈ C and all w,w′ ∈ F .

The non-metric version of UFL is closely related to set cover. On the one hand, it is
easy to see that UFL generalizes set cover and is thus hard to be approximated better
than by a logarithmic factor—corresponding to the inapproximability lower bound of set
cover [Fei98]. On the other hand, the greedy algorithm for set cover can be adapted to
UFL to obtain an ln(|C|)-approximation, as observed by Hochbaum [Hoc82].

If the connection costs are metric, however, the reduction from set cover breaks
down and a wide range of different techniques for achieving constant factor approxima-
tion algorithms has been developed, including greedy approaches, LP rounding, primal-
dual schemes, and local search—see [MYZ06] for an overview. Shmoys, Tardos, and
Aardal [STA97] were the first to achieve a constant approximation factor for metric
UFL, using LP-rounding combined with a filtering technique by Lin and Vitter [LV92].
Since then, the approximation factor has been improved from 3.16 to the current value of
1.5, which is accomplished by combining a randomized rounding algorithm of Byrka and
Aardal [BA10] with a primal-dual approximation by Jain, Mahdian, and Saberi [JMS02].
The algorithm in [BA10] is special in that it is a bifactor approximation algorithm: Given
a parameter γ > 1.68 and a feasible solution to the LP relaxation of the UFL instance, it
returns a solution with opening cost at most γ times the opening cost of the LP solution
and connection cost at most 1 + 2e−γ times the connection cost of the LP solution. We
will make use of this parameterized analysis to improve the approximation factors of
our algorithms.

Combining facility location and network design

As already indicated at the beginning of this chapter, the assumption of a dedicated
connection for each individual client does not reflect the reality of many practical ap-
plications of facility location, where trees, tours, or more general network structures are



80 Chapter 4: Approximating combined location and network design problems

used to serve multiple clients jointly. The corresponding combinations of facility loca-
tion and network design have been studied extensively in operations research literature.
An early model can be found in the survey by Magnanti and Wong [MW84]. See the
surveys by Gourdin, Labbé, and Yaman [GLY04] and Melo, Nickel, and Saldanha-Da-
Gama [MNSDG09] for models and applications in telecommunication and logistics, re-
spectively. For the latter, also see the literature on location routing cited in Section 4.2.1.

The above references focus on modeling aspects, applicability, and heuristic solution
approaches for combined location and network design problems. In contrast to classic
facility location, however, research on approximation algorithms for such combined prob-
lems is rather sparse. The first result with respect to approximation algorithms in this
context is due to Ravi and Sinha [RS06], who studied the capacitated-cable facility loca-
tion problem, in which clients are connected to facilities via cables of uniform capacity
installed on the edges of a graph. Using the definition of the bidirected graph B(G) in
Section 1.1.3, the problem can be formally stated as follows.

Problem: Capacitated-cable facility location (CCFL)

Input: A graph G = (V,E), a set of clients C ⊆ V , a set of facili-
ties F ⊆ V , opening costs f ∈ QF+, cable costs c ∈ QE

+, de-
mands d ∈ QC+, and a cable capacity U ∈ Q+.

Task: Find a set of facilities F ⊆ F and for each edge e ∈ E, a
number of cables z(e) ∈ Z+ to be installed such that there is
a flow x ∈ QB(E)

+ in B(G) with

(1)
∑

a∈δ−(v) x(a)−∑a∈δ+(v) x(a) = d(v) for all v ∈ C,

(2)
∑

a∈δ−(v) x(a)−∑a∈δ+(v) x(a) = 0 for all v ∈ V \ (F ∪ C),

(3) x(a−e ) + x(a+
e ) ≤ Uz(e) for all e ∈ E,

minimizing the cost
∑

w∈F f(w) +
∑

e∈E c(e)z(e).

Ravi and Sinha [RS06] proposed to combine a βST-approximation for Steiner tree
and a βUFL-approximation for metric UFL to obtain a (βST + βUFL)-approximation al-
gorithm for CCFL. Their algorithm constructs a feasible solution by iteratively relieving
the load on the initial Steiner tree using the UFL solution. The algorithms presented
in Sections 4.2 and 4.3 for capacitated location routing and facility location with ca-
pacitated and length-bounded trees, respectively, are based on the same framework of
merging solutions for subproblems corresponding to different lower bounds to the com-
bined problem.

Chen and Chen [CC09a] considered the soft-capacitated facility location and cable
installation problem. In this generalization of CCFL, the demand served by a facility is
bounded by a facility-dependent capacity, but arbitrarily many copies of each facility can
be opened. The authors give a 19.84-approximation for this problem, using a combinato-
rial primal-dual scheme to obtain a forest clustering the clients, which is then combined
with a solution for soft-capacitated facility location.

Bley, Hashemi, and Rezapour [BHR13, BR13] investigated the connected facility loca-
tion problem with buy at bulk edge costs, in which various cable types of different cost and
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capacity can be installed on the edges and the open facilities have to be connected via a
Steiner tree using an additional cable type of infinite capacity. They devise two different
constant factor approximation algorithms for the case that the cable costs observe an
economies of scale assumption, one using a clustering technique by Talwar [Tal02] for the
single-sink version of the problem, and one using a random sampling method.

Maßberg and Vygen [MV08] studied the related sink clustering problem, in which
clients are served using Steiner trees with a capacity that bounds the sum of the demand
and the cost of the tree. Instead of choosing facilities from a given set of possible loca-
tions, every tree incurs a uniform facility opening cost. The authors obtain a constant
factor approximation for this problem. Their demand clustering technique, which was
introduced by Alpert et al. [AKL+03], is also similar to the one employed by Ravi and
Sinha [RS06].

4.1.3 Integrated planning vs. two-phase planning

We want to point out that fixing location decisions based solely on solving a UFL instance
and then optimizing the connecting network based on those facilities can lead to solutions
that are arbitrarily far away from the optimum of the combined problem. This can be
seen from the following two examples of CCFL instances, which also directly extend
to the problems considered in the following sections. Note that the classic UFL is not
designed to take cable capacities into account by default. In the first example, the UFL
solution is computed with respect to the original connection costs, completely ignoring
the cable capacity. In the second example, the capacity is incorporated into the UFL
instance by scaling all connection costs by a factor of 1/U .

Example 4.1 Consider the following sequence of instances of CCFL. Let ε > 0. Instance
In has n clients v1, . . . , vn with unit demands and two facilities w1 and w2 with opening
costs f(w1) = ε and f(w2) = n. Furthermore U = n, and there are edges from every
client to every other vertex, with costs c(vi, w1) = 1, c(vi, w2) = 0, and c(vi, vj) = 0 for
all i, j ∈ {1, . . . , n}. An optimal solution to this instance opens facility w1 and installs
a single cable on each of the edges {w1, v1}, {v1, v2}, . . . , {vn−1, vn}. This solution has
cost 1 + ε. On the other hand, interpreting In as an instance of UFL, the unique optimal
solution opens w2 and connects all clients to this facility. The opening cost of this solution
is n, exceeding the cost of the optimal CCFL solution by a factor of θ(n).

Example 4.2 Consider the following family of instances of CCFL. Let ε > 0. Instance
IU with cable capacity U ∈ Q+ has one client v with demand d(v) = 1 and two facilities
w1 and w2 with opening costs f(w1) = 0 and f(w2) = 1 + ε. The costs of the only two
edges present in the graph are c(v, w1) = U and c(v, w2) = 0. An optimal solution to this
instance opens facility w2 and connects v directly to w2. This solution has cost 1 + ε.
Interpreting IU as an instance of UFL with connection cost c/U , the unique optimal
solution opens facility w1. The only option to serve v based on this location decision is
to install a cable from v to w1. The cost of the resulting CCFL solution is U , exceeding
the cost of the optimal solution by a factor of θ(U).

4.1.4 Relieving overloaded trees

In the following sections, we will investigate approximation algorithms for problems com-
bining facility location and network design similar to the CCFL problem introduced
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Algorithm 4.1: Subroutine for relieving overloaded trees
Input: a rooted tree T ′, a set of clients C, demands d ∈ QC+, a capacity U ∈ Q+, a

set of edges Ẽ = {ev : v ∈ V (T ′) ∩ C}, costs c ∈ QẼ
+

Output: a set of trees T , a tree assignment φ : V (T ′) ∩ C → T

procedure relieve (T ′, Ẽ, C, d, U, c)
Initialize T = ∅.
while d(V (T ′) ∩ C) > U do

Find v′ ∈ V (T ′) with d(V (T ′[v′]) ∩ C) > 0 and d(V (T ′[v]) ∩ C) ≤ U for all
children v of v′ in T ′.
Let S = {T ′[v] ∪ T ′[v, v′] : v is a child of v′ in T ′}.
Partition S into sets S0, . . . ,Sk such that

∑
S∈S0 d(V (S) ∩ C) ≤ U and

U/2 ≤∑S∈Si d(V (S) ∩ C) ≤ U for all i ∈ [k] \ {0}.
for all i ∈ [k] \ {0} do

Find vi ∈
⋃
S∈Si V (S) ∩ C such that c(evi) is minimum.

Set Ti =
⋃
S∈Si S ∪ {evi}.

Set φ(v) = Ti for all v ∈ V (Ti) ∩ C.
Set T ′ = T ′ \ Ti, and T = T ∪ {Ti}.

Set T = T ∪ {T ′} and φ(v) = T ′ for all v ∈ V (T ′) ∩ C.
return (T , φ)

above. In the solution process of all these algorithms, an initial forest spanning all
clients will serve as the backbone of the connecting network. While every tree of this
forest is rooted at an open facility, the trees do not obey the capacity restrictions im-
posed by the respective optimization problems. In order to retrieve a feasible solution,
overloaded trees, i.e., those trees who carry more demand than allowed, will be relieved
by reconnecting some of their subtrees directly to a set of open facilities.

We describe a procedure that takes as input a tree and a set of additional edges,
one for each client, connecting it to its nearest facility. It partitions the tree into several
trees such that the demands within every tree obey the capacity restriction. It uses a
subset of the additional edges to connect these new trees to open facilities. The total
cost of the resulting solution can be bounded against the lower bounds presented later
for the corresponding problems. We will make use of the procedure in all algorithms in
the following sections.

The idea of relieving overloaded subtrees goes back to Alpert et al. [AKL+03], and
Ravi and Sinha [RS06], who also combine a tree with a UFL solution using a flow rerout-
ing scheme to obtain their approximation result for CCFL. Different from their approach,
our procedure does not reroute individual client demands but partitions the set of children
of an overloaded vertex, ensuring that the subtrees remain intact. This is necessitated
by the fact that our algorithms will turn those trees to tours and cannot install singular
cables on individual links.

The procedure

In all contexts in which we use the procedure, a set of clients C with demands d ∈ QC+
and a capacity U ∈ Q+ will be present. In addition, the procedure is given a tree T ′,
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T ′

before relieving

v′

S0

S1 S2

T ′

after relieving
T1 T2

v′ v′ v′

Figure 4.1: Relieving an overloaded tree T ′. All clients have unit demands and U = 3. Clients
are depicted as black dots, non-clients as white circles. The roots of the trees are
depicted as squares. Dashed edges are from the set Ẽ given in the input. The
subtree rooted at node v′ is partitioned into groups S0, S1, and S2 with the first one
remaining in the tree.

which is rooted at a open facility, and a set of edges Ẽ = {ev : v ∈ V (T ′) ∩ C} with
costs c, such that every edge ev connects client v with an open facility. In order to enable
a more unified presentation, we will assume throughout the procedure that clients only
occur as leaves of the tree; this can be achieved without loss of generality by introducing
dummy vertices and edges at clients that are inner vertices of T ′. Note, however, that
when reverting this construction for the returned set of trees T , a client might occur
in multiple trees, as the constructed trees are not disjoint and may intersect at inner
vertices. We therefore return an additional tree assignment function φ that specifies for
each client v the tree φ(v) ∈ T serving the client.

The procedure iteratively identifies a vertex v′ ∈ V (T ′) such that the demand in T ′[v′]
exceeds the capacity U , but does not exceed the capacity in any tree T ′[v] for a child v
of v′. Such a vertex can be found by following the path from the root to a leaf of T ′.
Let S be the set containing all subtrees T ′[v] with v being a child of v′. This set is
greedily partitioned into groups S0, . . . ,Sk such that the sum of demands of all subtrees
in group Si for i 6= 0 is at least U/2 and at most U , and the sum of demands of the subtrees
in S0 is at most U . The trees in S0 will remain in T ′. For each other group i ∈ [k] \ {0},
we identify a client vi with minimum connection cost c(evi) among all clients in that
group. The subtrees in Si together with the edges connecting them to v′ and the edge evi
form a new tree Ti, which is extracted from T ′ and added to the output. We repeat this
procedure until the total remaining demand in T ′ is at most U . Finally, we also add the
remainder of T ′ to the output. The procedure described formally as procedure relieve
in Algorithm 4.1 and an example is given in Figure 4.1.

Analysis

The relieve procedure will play an important role as a subroutine in all algorithms
presented in the following sections. It is easy to verify that the trees constructed by the
procedure indeed serve all clients of the original tree without violating the capacity—
assuming that each edge in Ẽ is incident to an open facility.
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Observation 4.3 The output (T , φ) of the procedure described in Algorithm 4.1 fulfills
the following properties.

• Every client v ∈ V (T ′) ∩ C is contained in the tree φ(v).

• Every tree T ∈ T either contains the root of T ′, or an edge from Ẽ.

•
∑

v∈C :φ(v)=T d(v) ≤ U for all T ∈ T

The next lemma will be helpful to bound the cost of the solutions produced by
algorithms using the procedure.

Lemma 4.4 Let T be the set of trees returned by the relieve procedure described in
Algorithm 4.1, and let T ′ and Ẽ = {ev : v ∈ C} be the tree and the edge set given as
input to the procedure. Then

∑
T∈T

c(T ) ≤ c(T ′) + 2
∑

v∈V (T ′)∩C
d(v)

c(ev)

U
.

Proof. Let T ∈ T . Observe that if e ∈ T ∩ T ′, the edge e does not appear in any other
tree of T , as the edges in T were immediately extracted from T ′ when T was created.
Furthermore, there is at most one edge e ∈ T ∩ Ẽ. This edge e = evi was added in the
inner loop of the procedure when connecting a group Si of the partition. Observe that
no edge ev for any v ∈ Ci :=

⋃
S∈Si V (S) ∩ C can be part of any other tree in T , as

the corresponding clients were removed from T ′ with the creation of T . The lemma thus
follows by observing

c(evi) ≤
∑
v∈Ci

2d(v)

U
c(evi) ≤ 2

∑
v∈Ci

d(v)
c(ev)

U

where the first inequality holds because d(Ci) ≥ U/2 and the second inequality is implied
by the choice of evi minimizing the cost.

4.2 Capacitated location routing

In many logistics networks, client deliveries are performed by vehicles based at regional
depots. The task of optimizing the tours along which these vehicles are operating is
known as vehicle routing and constitutes an important area of operations research. When
planning the location of depots in such a setting, both the operating costs of the depots
and the prospective vehicle routing costs have to be taken into account. The integrated
problem of jointly making location and routing decisions is known as location routing
and has received significant attention in the operations research community as well. A
basic variant of location routing is the capacitated location routing problem defined as
follows.



4.2 Capacitated location routing 85

Problem: Capacitated location routing (CLR)

Input: A graph G = (V,E), a set of clients C ⊆ V , a set of facili-
ties F ⊆ V , opening costs f ∈ QF+, connection costs c ∈ QE

+,
demands d ∈ QC+, and a vehicle capacity U ∈ Q+.

Task: Find a set of facilities F ⊆ F and a set of closed walks T with a
demand assignment x ∈ QC×T+ such that

(1) V (T ) ∩ F 6= ∅ for all T ∈ T ,

(2)
∑

T∈T : v∈V (T ) x(v, T ) = d(v) for all v ∈ C,

(3)
∑

v∈C x(v, T ) ≤ U for all T ∈ T ,

minimizing the cost
∑

w∈F f(w) +
∑

T∈T c(T ).

The special case of CLR where location decisions have already been made
(i.e., f ≡ 0) is the multi-depot capacitated vehicle routing problem (MCVR).

Throughout this section, the closed walks in T will be referred to as tours, and we
will use the terms depot and facility interchangeably.

Splittable demands and single assignments. In the version of the problem described
above, the demand of a client may be split up and served by multiple facilities, which is
not always desired or even possible in practice. This motivates the following terminology.
A solution to CLR fulfills the single-assignment property [LNT88, NS07], if the demand
of each client is served by exactly one facility. A solution fulfills the single-tour property,
if each the demand of each client is served by exactly one tour, i.e., if it is a feasible
solution to the version of the problem with unsplittable demand. Clearly, this latter
property can only be fulfilled if d(v) ≤ U for all v ∈ C.

Remark 4.5

(1) Because the vehicles serve the clients along closed walks—which might traverse the
same edge multiple times—the following assumptions are without loss of generality.

• G is complete and c is a metric.

• Every tour visits exactly one open facility and no other non-client vertices.

• The vertex set is partitioned into clients and facilities, i.e., V = C ∪̇F .

(2) Given a set of open facilities F and a set of tours T , a feasible demand assign-
ment x (if one exists) can be found by solving a maximum flow problem in a
bipartite graph.

(3) Note that the above model also implicitly covers depot-dependent fixed costs per
tour, i.e., each vehicle sent out from facility w ∈ F incurs a cost of a(w) ∈ Q+.
This can be easily modeled by adding 1

2a(w) to the cost of all edges incident to w,
as each tour originating at w contains exactly two of these edges.
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(4) In the uncapacitated case (U = ∞), CLR and MCVR are equivalent: By the
triangle inequality, every optimal solution to either problem can be transformed
such that at most one tour originates from each open depot without increasing
cost. Hence, facility opening costs can be modeled by adding 1

2f(w) to c(e) for all
edges e incident to a facility w ∈ F .

4.2.1 Work related to vehicle routing and location routing

Both vehicle routing and location routing have occupied a central place in operations
research literature over the past decades. We will give an overview of works regarding
approximation algorithms in this area, with some pointers to text books and survey
articles when referring to other main streams of research.

Vehicle routing

Vehicle routing problems have been studied in countless variants from various per-
spectives. Algorithmic results focus particularly on combinatorial heuristics and exact
branch-and-bound algorithms. For an overview of the rich literature in this field, we refer
the reader to the books edited by Toth and Vigo [TV02] and Golden and Assad [GA88].

Single depot. Regarding approximation algorithms, there is a large body of work for
the classic capacitated vehicle routing problem (CVR), in which only a single depot is
present. The most fundamental special case is the famous traveling salesperson prob-
lem (TSP), which asks for a single tour visiting all vertices. The currently best known
approximation algorithm for TSP is the 3/2-approximation of Christofides [Chr76], which
combines a minimum spanning tree with a matching on its odd degree vertices. It is a
longstanding open question whether this result can be improved. A seminal result by
Arora [Aro96] yields a PTAS for TSP with Euclidean distances. Altinkemer and Gav-
ish [AG87] proposed a tour partitioning technique that transforms a TSP tour into several
tours respecting the vehicle capacity. They showed that this algorithm is a 2 + βTSP-
approximation for CVR with unsplittable demands, where the initial tour is computed
by a βTSP-approximation for TSP. For CVR with Euclidean distances and unit demands,
Haimovich and Rinnoy Kan [HRK85] presented a (1 + ε)-approximation whose running
time is exponential in U/ε. On the negative side, it is known that, unless P = NP , CVR
with arbitrary unsplittable demands cannot be approximated better than by a factor
of 1.5, even when all clients are located on the same point of the Euclidean plane [GW81].

Multiple depots. Li and Simchi-Levi [LSL90] studied algorithms for multi-depot ca-
pacitated vehicle routing. Among other results, they generalized the tour partitioning
technique from [AG87] to the multi-depot case, providing a (2 + 2βTSP)-approximation
algorithm for arbitrary, unsplittable demands. They also showed that their analysis of
this algorithm is tight. Previous to the work presented in this chapter, this has been
the best known approximation algorithm for the unsplittable demand version of MCVR,
giving a 5-approximation using the TSP algorithm from [Chr76]. Additional algorithms
for the uncapacitated case of multi-depot vehicle routing are listed below as they also
apply to location routing.
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Location routing

One of the earliest models of location routing appeared in an article by Webb [Web68].
Laporte [Lap88] gave a comprehensive overview of the literature prior to the late 80s.
More recent survey articles summarizing heuristic algorithms and mathematical program-
ming formulations for many variants of location routing have been published by Mina,
Jayaraman, and Srivastava [MJS98], and Nagy and Salhi [NS07].

Approximation results for the uncapacitated case. There are only a few works that
are concerned with approximation algorithms for location routing problems, all of them
restricted to the case of unbounded vehicle capacity. In the uncapacitated case, opening
costs can be modeled as connection costs and the problem is equivalent to multi-depot
vehicle routing; see Remark 4.5 (4). Goemans and Williamson [GW95] remarked that
their primal-dual technique for constrained forest problems also yields a 2-approximation
for uncapacitated location routing. Glicksman and Penn [GP08] generalized this result to
the case of uncapacitated group location routing, where one is given a system of groups
of clients, and only one client from each group needs to be served. They derived a 2L-
approximation algorithm, with L denoting the cardinality of the largest group. Finally,
Chen and Chen [CC09b] provided a 24-approximation for location routing with soft
facility capacities, i.e., facilities can be installed multiple times with each copy capable
of serving a limited amount of demand, while vehicle loads are unbounded.

Extended models

In later sections, we will study several extensions of the standard CLR model. Here we
give an overview of previous work regarding these variants.

Prize-collecting variant. In the prize-collecting (PC) version of an optimization prob-
lem, a feasible solution does not have to serve all clients. Instead, an individual penalty
may be paid for each unserved client. Thereby, PC can precisely model outsourcing de-
cisions and is hence of profound practical interest. For the PC version of metric UFL,
Jain et al. [JMM+03] presented a 2-approximation, improving on the 3-approximation
by Charikar et al. [CKMN01], but omitting a complete proof. We are not aware of any
previous approximation results for PC vehicle routing or PC location routing.

Group variant. In the group variant, the set of clients is partitioned into disjoint subsets,
or groups of clients, and only one client from every group has to be served. The group
version of UFL does not allow for a constant factor approximation, even when the costs
are metric, as we shall see in Section 4.2.4. For the group version of uncapacitated
location routing, the only previous result we know of is the algorithm by Glicksman and
Penn [GP08] mentioned above.

Cross-docking. In capacitated location routing and multi-depot capacitated vehicle
routing, cross-docking may be allowed in certain application scenarios, i.e., shipments
may be loaded from one vehicle to another when tours intersect. Cross-docking plays
a significant role in numerous logistics applications. Some heuristic approaches have
recently been proposed for vehicle routing with cross-docking by Wen et al. [WLC+09]
and Vahdani and Zandieh [VZ10]. Their models also exhibits strong similarity to the
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mixed truck delivery problem, which was studied by Liu, Li, and Chan [LLC03]. Here,
clients may be served by tours either from facilities or from hubs, which are in turn
served by facilities. The authors developed a heuristic solution approach and presented
computational results suggesting that routing cost can be reduced on average by around
10% for random instances when allowing cross-docking.

4.2.2 A constant factor approximation for CLR

In this section, we derive a constant factor approximation for CLR by combining two lower
bounds on the value of an optimal solution: a minimum spanning tree in an auxiliary
graph and an optimal solution to a UFL instance with scaled costs.

Two combinatorial lower bounds

Assume we are given an instance of CLR and let OPT be the cost of an optimal solution
to this instance. The following two lower bounds are adaptations of the UFL and Steiner
tree lower bounds used in [RS06] to the tour connections occurring in location routing.

Lemma 4.6 Let F̃ ⊆ F be an optimal solution to the UFL instance with facilities F ,
clients C, opening costs f and connection costs c̃ := 2

U c. Then∑
w∈F̃

f(w) +
∑
v∈C

c̃(v, F̃ ) ≤ OPT.

Proof. Let (F, T , x) be an optimal solution of the CLR instance. Note that 2c̃(v, F ) ≤ c̃(T )
for all v ∈ C and all T ∈ T with v ∈ V (T ), as every tour T containing v can be decom-
posed into two paths from v to an open facility. Thus∑

v∈C
d(v)c̃(v, F ) ≤ 1

2

∑
T∈T

∑
v∈C

x(v, T )c̃(T ) ≤
∑
T∈T

c(T ),

which proves the lemma, when interpreting F as a feasible solution of the UFL instance.

Lemma 4.7 Consider the graph G′ = (V ∪ {r}, E ∪ E′), where E′ = {{r, w} : w ∈ F}
and define costs

c′(e) =


0 if e = {r, w} for some w ∈ F
c(e) + 1

2f(w) if e = {v, w} for some v ∈ C, w ∈ F
c(e) otherwise

Let T ′ be a minimum spanning tree in G′ with respect to c′. Then c′(T ′) ≤ OPT.

Proof. Consider an optimal solution (F, T , x) to the CLR instance. We will construct
a spanning tree in G′ that has at most the same cost as this solution. For every
open facility w ∈ F , let T1, . . . , Tk be the tours based at w (in an arbitrary but fixed
order) with Ti = (w, vi1, . . . , v

i
`i
, w) where `i is the number of clients in Ti. For ev-

ery i ∈ {1, . . . , k − 1}, replace the last edge {vi`i , w} of Ti and the first edge {w, vi+1
1 }

of Ti+1 by the edge {vi`i , v
i+1
1 }. Also remove the final edge {vk`k , w} of Tk. As a re-

sult, we get a walk Pw from w to vk`k along all clients that are served by w. Note
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Algorithm 4.2: Approximation algorithms for CLR
Step 1:
Create a UFL instance with edge costs c̃ = 2

U c as described in Lemma 4.6.
Apply the bifactor approximation algorithm in [BA10] with γ = 2.38 on this
instance and let F̃ be the resulting set of open facilities.
For v ∈ C, choose w(v) ∈ F̃ such that c(v, w(v)) is minimal.
Step 2:
Construct the graph G′ with edge costs c′ as described in Lemma 4.7.
Compute a minimum spanning tree T ′ in G′ with respect to c′.
Let F ′ be the set of facilities that are incident to an edge in T ′ ∩ E.
Step 3:
for all v ∈ C with d(v) ≥ U do

Construct
⌈
d(v)
U

⌉
copies of a tour from v to a closest facility in F̃ ∪ F ′.

Add those tours to T , set x accordingly, and remove v from C.
Step 4:
for all w ∈ F ′ do

Let Ẽw = {{v, w(v)} : v ∈ V (T ′[w]) ∩ C}.
Call relieve (T ′[w], Ẽw, C, d, U, c) and obtain trees Tw and assignments φ.
for all T ∈ Tw do

Construct a tour T̄ visiting all vertices in V (T ) by doubling the edges of T
and short-cutting. Set x(v, T̄ ) = d(v) for all v ∈ C with φ(v) = T .
Add T̄ to T .

return (F̃ ∪ F ′, T , x).

that c′(Pw) ≤ ∑k
i=1 c(Ti) + 1

2f(w) by triangle inequality and the fact that Pw contains
only one edge incident to w.

Now let S =
⋃
w∈F E(Pw) ∪ E′. As S spans r and all facilities and contains a walk

from any client to a facility, it contains a spanning tree of G′ with cost at most

c′(S) ≤
∑
w∈F

c′(Pw) ≤
∑
T∈T

c(T ) +
∑
w∈F

f(w) = OPT.

Remark 4.8 A different analysis using the undirected cut relaxation of the Steiner tree
problem reveals a stronger, LP-based upper bound on the cost of the minimum spanning
tree; see Lemma 4.18 and Corollary 4.19 for details. However, as this does not improve
the performance guarantee of the approximation algorithm discussed in this section, we
restrict ourselves to the simpler, combinatorial proof of the tree lower bound here.

Algorithm

We now use the lower bounds described above to obtain an approximate solution to the
CLR instance. Our algorithm computes an approximate solution to the UFL instance
described in Lemma 4.6 and a minimum spanning tree as described in Lemma 4.7 and
uses the relieve procedure described in Algorithm 4.1 to decompose the spanning tree
into subtrees obeying the capacity constraints. These are connected to the facilities from
the UFL solution and turned into tours by doubling the edges.
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In detail, the algorithm works as follows. After obtaining an approximate UFL solu-
tion F̃ and computing a minimum spanning tree T ′, we open all facilities in F̃ and also
the set F ′ of all facilities w that are incident to any edge other than {r, w} in T ′. We
first serve all clients with large demands, i.e., every v ∈ C with d(v) ≥ U is assigned to a
closest open facility and served by dd(v)/Ue tours comprising only the assigned facility
and the client. The tours for the remaining clients are constructed from the tree T ′.
Note that by removing r, the tree T ′ decomposes into a forest, with each tree rooted at
the facilities in F ′. Using the edges induced by the facility set F̃ , each of the trees in
the forest is partitioned further by the relieve procedure described in Algorithm 4.1.
The resulting trees have demands between U/2 and U . They are turned into tours by
doubling edges and short-cutting using the triangle inequality. A formal listing of the
approximation algorithm for CLR is given as Algorithm 4.2.

Analysis

We analyze the algorithm presented above and show that it is a 4.38-approximation for
CLR. We start by using our previous analysis of the relieve procedure to bound the
cost of the solution produced by the algorithm against the cost of the spanning tree and
the facility location solution.

Lemma 4.9 Let (F, T , x) be the solution computed by Algorithm 4.2 and let T ′ be the
spanning tree computed in Step 1 and F̃ be the set of open facilities computed in Step 2.
Then ∑

w∈F
f(w) +

∑
T∈T

c(T ) ≤ 2c′(T ′) +
∑
w∈F̃

f(w) + 2
∑
v∈C

d(v)c̃(v, F̃ ).

Proof. Every tour T constructed in Step 3 for a client v with large demand has cost at
most

c(T ) ≤ 2

⌈
d(v)

U

⌉
︸ ︷︷ ︸
≤ 2d(v)/U

c(v, F̃ ) ≤ 2d(v)c̃(v, F̃ )

as d(v)/U ≥ 1. The remaining tours have cost at most twice the cost of the trees
produced by the relieve procedure. Thus, by Lemma 4.4 their cost is bounded by

2
∑
w∈F ′

∑
T∈Tw

c(T ) ≤
∑
w∈F ′

2c(T ′[w]) + 4
d(v)

U
c(Ẽw) ≤ c(T ′) + 2

∑
v∈C : d(v)<U

d(v)c̃(v, F̃ ).

The opening cost of the facilities in F ′ is furthermore bounded by 2(c′(T ′) − c(T )).
Summing everything up yields the claim of the lemma.

Consequently, if F̃ is a β-approximation to a minimum cost solution to the UFL
instance, Algorithm 4.2 constructs a (2 + 2β)-approximation to the CLR instance. Note,
however, that in this analysis the opening cost for the facilities in F̃ is counted twice,
while the actual solution only pays it once. We can improve the approximation factor
by using the bifactor approximation algorithm for UFL from [BA10]. Recall that, given
a parameter γ > 1.68, this algorithm returns a solution whose opening cost exceeds the
opening cost of an initially computed optimal LP solution by at most a factor of γ,
and whose connection cost exceeds the connection cost of the fractional solution by at
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most 1 + 2e−γ . Let c̃LP be the connection cost of the LP solution and let fLP be the
opening cost of the LP solution. Then

2
∑
v∈C

c̃(v, F̃ ) +
∑
w∈F̃

f(w) ≤ 2 (1 + 2e−γ) c̃LP + γ fLP,

which is bounded by γ(c̃LP + fLP) ≤ γOPT for γ ≥ 2.38. Choosing γ = 2.38, Lemma 4.9
yields our main result.

Theorem 4.10 Algorithm 4.2 is a 4.38-approximation algorithm for CLR. It fulfills the
single-assignment property. If d(v) ≤ U for all v ∈ C, it fulfills the single-tour property.

Of course, the approximation ratio of our algorithm improves for classes of instances
that allow for a better UFL approximation. An example is the case of Euclidean costs.
Here, the PTAS by Arora, Raghavan, and Rao [ARR98] can be applied to obtain a (4 + ε)-
approximation for CLR.

Multi-depot vehicle routing. Recall that the special case of CLR where opening fa-
cilities does not incur cost (f ≡ 0) is known as multi-depot capacitated vehicle routing
problem (MCVR). In this case, the corresponding UFL instance can be solved optimally,
by connecting each client to its nearest facility. Thus, we can replace the factor incurred
by the UFL approximation algorithm by 1 and obtain the following result, which im-
proves the previously best known approximation guarantee of 5 for MCVR fulfilling the
single-tour property [LSL90].

Theorem 4.11 Algorithm 4.2 is a 4-approximation algorithm for MCVR. It fulfills the
single-assignment property. If d(v) ≤ U for all v ∈ C, it fulfills the single-tour property.

4.2.3 Prize-collecting location routing

We now apply our algorithmic framework for CLR and MCVR to the prize-collecting
(PC) variant of these problems. In a prize-collecting setting, we can decide for each
client whether to serve it by our solution, or to pay a penalty for not serving it.

Problem: Prize-collecting CLR (PC-CLR)

Input: A graph G = (V,E), a set of clients C ⊆ V , a set of facili-
ties F ⊆ V , opening costs f ∈ QF+, connection costs c ∈ QE

+,
demands d ∈ QC+, a vehicle capacity U ∈ Q+, and penal-
ties p ∈ QC+.

Task: Find a set of clients C ⊆ C, a set of facilities F ⊆ F , and a
set of closed walks (called tours) T with a demand assignment
x ∈ QC×T+ such that

(1) V (T ) ∩ F 6= ∅ for all T ∈ T ,

(2)
∑

T∈T : v∈V (T ) x(v, T ) = d(v) for all v ∈ C \ C,

(3)
∑

v∈C x(v, T ) ≤ U for all T ∈ T ,

minimizing the cost
∑

v∈C p(v) +
∑

w∈F f(w) +
∑

T∈T c(T ).



92 Chapter 4: Approximating combined location and network design problems

Note that prize-collecting can naturally be viewed as a way of incorporating outsourcing
decisions into an optimization model: In this case, the penalty for not serving a customer
corresponds to the cost of having it served by an outside service provider. As outsourcing
is an important option in many logistics applications, the prize-collecting variants of CLR
and MCVR are highly relevant in practice.

Remark 4.12 All observations made in Remark 4.5 remain true for the prize-collecting
version of the problem. It is also not hard to see that PC-CLR is a generalization of
CLR: By setting penalties high enough, we can force any optimal solution to serve all
clients.

Algorithm

We solve the prize-collecting variant of CLR by utilizing an approximation algorithm for
prize-collecting UFL, and an LP-based approximation algorithm for the prize-collecting
Steiner tree problem to determine two respective sets of customers served. We then
compute a solution to PC-CLR serving exactly those customers served by both the tree
and the facility location solution.

A formal description of the algorithm is given in Algorithm 4.3. We will prove
that it is a (βPC-ST + 2βPC-UFL)-approximation algorithm for PC-CLR, where βPC-ST
and βPC-UFL denote the approximation factors of the approximation algorithms used for
prize-collecting Steiner tree with respect to the undirected cut relaxation and PC-UFL,
respectively. Currently, the best known approximation algorithm for PC-UFL by Jain et
al. [JMM+03] achieves an approximation ratio of βPC-UFL = 2, while for prize-collecting
Steiner tree the primal-dual algorithm of Goemans and Williamson [GW95] achieves an
approximation factor of 2, meeting the integrality gap of the LP relaxation. Using these
algorithms as subroutines results in an approximation factor of 6 for our algorithm.

First note that both Lemmas 4.6 and 4.7 can directly be transferred to the prize-
collecting setting: In the corresponding proofs, we construct a UFL solution or a spanning
tree, respectively, from an optimal solution of CLR without increasing the cost. It is easy
to see that this construction adapts naturally when transferring the set of clients served
from an optimal PC-CLR solution to feasible solutions of prize-collecting UFL or Steiner
tree: The penalties for customers not served are exactly the same in both solutions. This
immediately gives an approximation guarantee of 2(βPC-UFL +βPC-ST) for Algorithm 4.3.

However, we can improve our analysis by using a tighter lower bound in case of the
tree. To this end, we consider a prize-collecting Steiner tree instance defined as follows.
We consider the same graph G′ as constructed in Lemma 4.7. We then extend the cost
function c to the edges in E′ by defining cost c(r, w) = 1

2f(w) for each w ∈ F and define
new penalties by setting p′ := 1

2p. We let R = C∪{r} be the set of terminals. We will use
a primal-dual approximation algorithm for prize-collecting Steiner tree due to Goemans
and Williamson [GW95]. It is based on the following LP relaxation.

[PC-STLP] min
∑
e∈E∪E′

c(e)y(e) +
∑
N⊆C

p′(N)z(N)

s.t.
∑

e∈δG′ (S)

y(e) +
∑

N⊆C :S ∩C⊆N
z(N) ≥ 1 ∀ S ⊆ V, S ∩ C 6= ∅

y(e) ≥ 0 ∀ e ∈ E ∪ E′
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Algorithm 4.3: Approximation algorithms for PC-CLR
Step 1: Create a PC-UFL instance with edge costs c̃ = 2

U c as described in
Lemma 4.6. Apply a βPC-UFL-approximation algorithm and let F̃ be the resulting
set of open facilities and C̃ the set of clients not served.
Step 2: Use the algorithm from [GW95] to obtain a 2-approximate
prize-collecting Steiner tree T ′ with respect to the instance defined by [PC-STLP]
in graph G′. Let C ′ be the set of clients not spanned by T ′ and let F ′ be the set of
facilities spanned by T ′.
Remove C̃ ∪ C ′ from C.
Step 3: The same as Step 3 from Algorithm 4.2.
Step 4: The same as Step 4 from Algorithm 4.2.
return (F̃ ∪ F ′, T , x, C̃ ∪ C ′).

The intuition for the LP relaxation is the following: Given a feasible solution to the
prize-collecting Steiner tree problem, define z(C) = 1 for the set C of clients that are
not connected to the Steiner tree, and z(N) = 0 for all other sets of clients. Moreover,
set y(e) = 1 if edge e is in the Steiner tree, y(e) = 0 otherwise. The inequalities follow
from the fact that any cut that separates a served client from the root r /∈ V has to be
crossed by at least one edge of the tree.

Lemma 4.13 Let OPT be the cost of an optimal solution to a PC-CLR instance and
let (y, z) be an optimal solution to [PC-STLP]. Then

∑
e∈E∪E′

c(e)y(e) +
∑
N⊆C

∑
v∈N

p′(v)z(N) ≤ 1
2OPT.

Proof. Let (C,F, T , x) be an optimal solution to the PC-CLR instance. Construct
a solution (ỹ, z̃) to [PC-STLP] by setting z̃(C) = 1 and z̃(N) = 0 for all N ⊆ C
with N 6= C, and ỹ({r, w}) = 1 for all w ∈ F , ỹ({r, w}) = 0 for all w ∈ F \ F ,
and ỹ(e) = 1

2 |{T ∈ T : e ∈ T}|. It is easy to observe that the constructed solution (ỹ, z̃)
has cost 1

2

∑
w∈F f(w) + 1

2

∑
v∈C p(v) + 1

2

∑
T∈T c(T ).

It remains to show that (ỹ, z̃) is feasible for [PC-STLP]. So let S ⊆ V with S ∩C 6= ∅.
If S contains an open facility w, then {r, w} ∈ δG′(S), and by definition of ỹ, the
constraint for S is fulfilled. Otherwise, if S ∩ C ⊆ C, then by definition of z̃, the
constraint for S is satisfied as well. Finally, if S does not contain an open facility
and (S ∩ C) \ C 6= ∅, then there is a a client v ∈ S \ C connected to an open facility
outside of S by a tour. At least two edges of this tour cross the cut δG′(S), hence the
constraint for S is again satisfied by definition of ỹ.

Theorem 4.14 Algorithm 4.3 is a (2+2βPC-UFL)-approximation algorithm for PC-CLR,
and it is a 4-approximation algorithm for PC-MCVR, i.e., for instances of PC-CLR with
f ≡ 0. It fulfills the single-assignment property. If d(v) ≤ U for all v ∈ C, it fulfills the
single-tour property.

Proof. By Lemma 4.9, the cost of the solution constructed by the algorithm is bounded
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by ∑
v∈C

p(v) + 2c(T ′) +
∑
w∈F̃

f(w) + 2
∑
v∈C\C

c̃(v, F̃ )

≤ 2

(
c(T ′) +

∑
v∈C′

p′(v)

)
+
∑
w∈F̃

f(w) + 2
∑
v∈C\C̃

c̃(v, F̃ ) +
∑
v∈C̃

p(v)

≤ (2 + 2βPC-UFL)OPT,

where the last inequality uses Lemma 4.13 and the fact that the algorithm in [GW95]
computes a 2-approximation with respect to the LP relaxation [PC-STLP].

4.2.4 Group location routing and LP relaxation

In this section, we consider a group version of location routing (G-CLR) where the set of
clients is partitioned into groups and only one client from each group needs to be served.

Problem: Group capacitated location routing (G-CLR)

Input: A graph G = (V,E), a set of clients C ⊆ V , a partition C0, . . . , Ck
of C, a set of facilities F ⊆ V , opening costs f ∈ QF+, connection
costs c ∈ QE

+, demands d ∈ QC+, and a vehicle capacity U ∈ Q+.

Task: Find a set of facilities F ⊆ F and a set of closed walks (called
tours) T with a demand assignment x ∈ QC×T+ such that

(1) V (T ) ∩ F 6= ∅ for all T ∈ T ,

(2) for every i ∈ [k] there is a client v ∈ Ci in the corresponding
group with

∑
T∈T : v∈V (T ) x(v, T ) = d(v),

(3)
∑

v∈C x(v, T ) ≤ U for all T ∈ T ,

minimizing the cost
∑

w∈F f(w) +
∑

T∈T c(T ).

The uncapacitated version of the problem was studied by Glicksman and Penn [GP08],
who give a (2 − 1

|V |−1)L-approximation algorithm with L being the cardinality of the
largest group. Their idea is to solve an LP relaxation of the problem and use the resulting
fractional solution to decide which client is to be served from each group. We extend this
approach to the capacitated case which is significantly more complex: In the absence of
vehicle capacities, facility opening costs can be transferred to edges of the graph, i.e.,
location routing is equivalent to multi-depot vehicle routing in this case. In contrast to
the result in [GP08], our LP relaxation has to explicitly incorporate the facility location
aspect of the problem.

The dependence of our approximation factor on the parameter L gives rise to the
question whether there is a constant factor approximation algorithm for G-CLR that is
independent of any parameters in the input. At the end of this section, we answer this
question in the negative by showing hardness of approximation for G-CLR for any factor
better than ln(k).
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Remark 4.15 Again, the assertions made in Remark 4.5 remain valid for the group
version of the problem. However, although we can assume the connection costs to be
metric, the groups can be used to emulate certain aspects of non-metric connection costs,
rendering the problem much harder; see Theorem 4.21 for a non-approximability result
making use of this fact.

LP relaxation

In order to obtain an approximation for G-CLR, we describe how to transform a solution
of G-CLR into a multi-commodity flow. We then prove a set of valid inequalities fulfilled
by all variable assignments obtained from feasible G-CLR solutions. The LP relaxation
resulting from these inequalities can be used to decide on a set of representatives, one
for each client group. Replacing each group by its representative, we obtain an instance
of (non-group) CLR, which can be approximated by an adaption of Algorithm 4.2 with
the spanning tree replaced by a Steiner tree. We will show that the resulting solution to
G-CLR is a 4.38L-approximation.

While the problem remains based on an undirected graph, it is more convenient
to consider the corresponding bidirected digraph B(G) = (V,B(E)) as defined in Sec-
tion 1.1.3. We start constructing a multi-commodity flow in B(G) from a given (undi-
rected) solution of G-CLR by fixing an arbitrary orientation for every tour. Let y(a)
be the number of directed tours using arc a ∈ B(E). Let Tv←w(a) and Tv→w(a) be
the set of all tours that serve client v ∈ C from facility w ∈ F with an occurrence of
arc a ∈ B(E) on the path from w to v or, respectively, from v to w. Accordingly, define
variables xv←w(a) =

∑
T∈Tv←w(a) x(v, T ) and xv→w(a) =

∑
T∈Tv→w(a) x(v, T ). Finally,

for each facility w ∈ F , let z(w) = 1 if w is open and z(w) = 0 otherwise.
The values xv←w(a) and xv→w(a) for a ∈ B(E) can be interpreted as multi-commodity

flow with two commodities v ← w and v → w for each pair v ∈ C and w ∈ F , respectively.
The first commodity v ← w corresponds to goods transported from facility w to client v,
the second commodity v → w emulates the empty truck capacity on the tour returning
from v to w. We will now establish several inequalities fulfilled by the triple (x, y, z).

First observe that the total amount of flow on any arc can at most be the capacity U
times the number of tours using the arc, i.e.,∑

v∈C

∑
w∈F

(xv←w(a) + xv→w(a)) ≤ Uy(a) ∀ a ∈ B(E). (4.1)

Furthermore, we obtain∑
v∈Ci

∑
w∈F

xv←w(a) + xv→w(a)

d(v)
≤ y(a) ∀ a ∈ B(E), i ∈ [k] (4.2)

by observing that the left hand side of the equation is at most 1 per tour that is using
the arc: Only one client v in a group is served, only d(v) units are transported to this
client in total, and in any tour, each arc occurs either before or after v but never both.

Recall the definition of the excess at node v ∈ V with respect to the flow xh of
commodity h ∈ {v ← w, v → w : v ∈ C, w ∈ F} as

ex(xh, v) :=
∑

a∈δ−(v)

xh(a)−
∑

a∈δ+(v)

xh(a).
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By construction of x, flow conservation holds for each commodity at all nodes that neither
correspond to the facility nor to the client of the commodity. At every client v ∈ C, the
value of any commodity v → w for some w ∈ F leaving the client equals the value
of v ← w entering it:

ex(xv→w, u) = 0 = ex(xv←w, u) ∀ v ∈ C, w ∈ F , u ∈ V \ {v, w} (4.3)
ex(xv←w, v) = − ex(xv→w, v) ∀ v ∈ C, w ∈ F (4.4)

Moreover, as one client from every group needs to be served, the variables fulfill

∑
v∈Ci

∑
w∈F

ex(xv←w, v)

d(v)
= 1 ∀ i ∈ [k]. (4.5)

Finally, for every i ∈ [k] at most d(v) units of flow are sent from an open facility to one
of the clients v ∈ Ci, and no flow is sent if the facility is not open. This implies

∑
v∈Ci

ex(xv→w, w)

d(v)
≤ z(w) ∀ w ∈ F , i ∈ [k]. (4.6)

We conclude that the value of an optimal solution to the group location routing
problem is at least the value of an optimal solution of the following LP.

[G-CLRLP] min
∑

a∈B(E)

c(a)y(a) +
∑
w∈F

f(w)z(w)

s.t. x, y, z fulfill (4.1)− (4.6)
x, y, z ≥ 0

Group representatives

Let (x∗, y∗, z∗) be an optimal solution to [G-CLRLP] with cost OPT. For i ∈ [k],
let ri ∈ Ci be a client maximizing

∑
w∈F ex(x∗v←w, v)/d(v) over all v ∈ Ci. We now define

the set of representatives as R := {r0, . . . , rk}.
Let L := max{|Ci| : i ∈ [k]} be the maximum group size. The following inequality

will be useful for deriving lower bounds on the optimum value of [G-CLRLP].

Lemma 4.16 L ·∑w∈F ex(x∗ri←w, ri) ≥ d(ri) for all i ∈ [k].

Proof. By applying the pigeon hole principle to (4.5), for every i ∈ [k] there must to
be at least one client v ∈ Ci with

∑
w∈F ex(x∗v←w, v)/d(v) ≥ 1

L , and thus this inequality
holds for ri in particular.

Lower bounds

Now denote the instance of (non-group) CLR defined by replacing C with the set of
representatives R by CLR(R). Consider the following LP relaxation for the uncapacitated
facility location problem arising from CLR(R) as described in Lemma 4.6. We will use
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it to derive a lower bound on the value of an optimal solution to [G-CLRLP].

[UFLLP(R)] min
∑
v∈R

∑
w∈F

c̃(v, w)x(v, w) +
∑
w∈F

f(w)z(w)

s.t.
∑
w∈F

x(v, w) ≥ d(v) ∀ v ∈ R

x(v, w) ≤ d(v)z(w) ∀ v ∈ R, w ∈ F
x, z ≥ 0

Lemma 4.17 OPT([UFLLP(R)]) ≤ L ·OPT([G-CLRLP])

Proof. Consider the solution (x̃, z̃) to [UFLLP(R)] obtained by setting z̃(w) = L · z∗(w)
and x̃(v, w) = L · ex(x∗v←w, w) for all v ∈ R, w ∈ F . Observe that by Lemma 4.16∑

w∈F
x̃(ri, w) = L ·

∑
w∈F

ex(x∗ri←w, ri) ≥ d(ri)

for every i ∈ [k]. Together with (4.6), this immediately implies that (x̃, z̃) is a feasible
solution to [UFLLP(R)].

The flow of each commodity v ← w (v → w, respectively) can be decomposed into
flow on v-w-paths (w-v-paths, respectively), each of which has length at least c(v, w) by
triangle inequality. Combining this with (4.1), we obtain

∑
a∈B(E)

c(a)y∗(a) ≥
∑

a∈B(E)

∑
v∈C

∑
w∈F

c(a)
x∗v←w(a) + x∗v→w(a)

U

≥
∑
v∈C

∑
w∈F

2

U
c(v, w) ex(x∗v←w, v)

≥ 1

L

∑
v∈R

∑
w∈F

c̃(v, w)x̃(v, w).

Furthermore, L ·∑w∈F f(w)z∗(w) =
∑

w∈F f(w)z̃(w) by construction, which implies
OPT([UFLLP(R)]) ≤ L ·OPT([G-CLRLP]).

A second lower bound can be obtained from the LP relaxation of a Steiner tree in-
stance similar to that in Section 4.2.3. Again, consider the graph G′ = (V ∪ {r}, E ∪ E′)
with E′ = {{r, w} : w ∈ F} as constructed in Lemma 4.7. We extend the cost function c
to E′ by defining cost crw = 1

2f(w) for each w ∈ F . We now consider the undirected cut
relaxation of the Steiner tree instance on G′ with terminals R ∪ {r}.

[STLP(R)] min
∑
e∈E∪E′

c(e)y(e)

s.t.
∑

e∈δG′ (S)

y(e) ≥ 1 ∀ S ⊆ V, S ∩R 6= ∅

y(e) ≥ 0 ∀ e ∈ E ∪ E′

Lemma 4.18 OPT([STLP(R)]) ≤ 1
2L ·OPT([G-CLRLP])
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Proof. Consider the solution ỹ of [STLP(R)] obtained by setting

ỹ(e) = 1
2L · (y∗(a+

e ) + y∗(a−e ))

for all e ∈ E and setting ỹ(r, w) = L · z∗(w) for all w ∈ F . Let S ⊆ V with ri ∈ S for
some i ∈ [k]. By flow conservation and (4.6) we obtain∑

w∈F\S

∑
a∈δ+

B(G)
(S)

x∗ri→w(a) +
∑
w∈S

d(ri)z
∗(w) ≥

∑
w∈F

ex(x∗ri←w, ri) and

∑
w∈F\S

∑
a∈δ−

B(G)
(S)

x∗ri←w(a) +
∑
w∈S

d(ri)z
∗(w) ≥

∑
w∈F

ex(x∗ri←w, ri).

By construction of ỹ and (4.2), the above inequalities yield

∑
e∈δG′ (S)

ỹ(e) =
1

2
L

∑
a∈δ+

B(G)
(S)

y∗(a) +
∑
a∈δ−

B(G)
(S)

y∗(a)

+
∑
w∈S

z∗(w)

≥ L

2d(ri)

∑
w∈F

∑
a∈δ+

B(G)
(S)

x∗ri→w(a) +
∑
a∈δ−

B(G)
(S)

x∗ri←w(a)

+ 2 ·
∑
w∈S

d(ri)z
∗(w)


≥ L

d(ri)
·
∑
w∈F

ex(x∗ri←w, ri).

This last expression is at least 1 by Lemma 4.16. Thus, ỹ is a feasible solution to
[STLP(R)] with

∑
e∈E∪E′

c(e)ỹ(e) =
1

2
L

 ∑
a∈B(E)

c(a)y∗(a) +
∑
w∈F

f(w)

 =
1

2
L ·OPT([G-CLRLP]).

Corollary 4.19 Let T ′ be a minimum cost spanning tree in G′[R ∪F ∪ {r}] with respect
to c′ as defined in Lemma 4.7. Then c′(T ′) ≤ L ·OPT([G-CLRLP]).

Proof. Let T̂ be a minimum cost tree spanning R∪{r} in the metric closure of (G′, c). It
is known that a minimum terminal spanning tree is a 2-approximation for the undirected
cut formulation of a Steiner tree instance [Vaz01]. Thus, Lemma 4.18 implies that the cost
of T̂ in the metric closure is bounded by L·OPT([G-CLRLP]). For v ∈ R, choose w(v) ∈ F
minimizing the cost c(v, w(v)) + 1

2f(w). Observe that

T ′ = (T̂ ∪ E′ ∪ {{v, v(w)} : {r, v} ∈ T̂}) \ {{r, v} : v ∈ R}

is a spanning tree in G′[R∪F ∪{r}] and c′(T ′) is bounded by the cost of T̂ in the metric
closure of (G′, c).
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Algorithm 4.4: Approximation algorithm for G-CLR
Compute an optimal solution (x∗, y∗, z∗) to [G-CLRLP].
for all i ∈ [k] do

Let ri ∈ Ci be a client with
∑

w∈F ex(x∗v←w, v)/d(v) maximum over all v ∈ Ci.
Set R = R ∪ {ri}.

Apply Algorithm 4.2 on the CLR instance with clients R.

Algorithm

Lemma 4.17 and Corollary 4.19 immediately yield a 4.38L-approximation algorithm for
G-CLR: Compute an optimal solution to [G-CLRLP], obtain a set of representatives R
from this solution, and compute an approximation to the resulting instance of CLR using
Algorithm 4.2; see Algorithm 4.4 for a formal listing.

Theorem 4.20 Algorithm 4.4 is a 4.38L-approximation for G-CLR and it is a 4L-
approximation for G-MCVR, i.e., the case of G-CLR with f ≡ 0. It fulfills the single-
assignment property. It fulfills the single-tour property if d(v) ≤ U for all v ∈ C.

Lower bound on approximability

Observing that the approximation guarantee of Algorithm 4.4 depends on the cardinal-
ity of the largest group, it is natural to ask whether the group version of CLR is indeed
considerably harder than the standard version or whether there is a constant factor ap-
proximation whose performance is independent of any instance parameters. We answer
this question in the negative by showing that there is no approximation algorithm for
G-CLR with a factor better than ln(k). In fact, the inapproximability result already
holds for the special case of G-CLR with unit demands and unit capacity, which corre-
sponds to the group version of metric uncapacitated facility location, as well as for the
uncapacitated case considered in [GP08]. It is derived by a straightforward reduction
from set cover.

Theorem 4.21 For any γ < 1 there is no γ ln k-approximation for G-CLR, unless
NP ⊆ DTIME(nO(log logn)), even when restricted to instances with d ≡ 1 and U = 1, or
instances with U =∞.

Proof. We give an approximation preserving reduction from set cover to G-CLR. The
theorem then follows from the inapproximability result by Feige [Fei98].

Given an instance of set cover with set of ground elements H, set system S ⊆ 2H ,
and weights w ∈ QS+, we construct an instance of G-CLR as follows. For every S ∈ S, we
introduce a facility uS with opening cost f(uS) = w(S). For every h ∈ H and every S ∈ S
with h ∈ S we introduce a client vhS with unit demand. We also introduce a client
group Ch for each element h ∈ H of the ground set and let it contain all clients vhS .
Finally, we set c(vhS , wS′) = 0, whenever S = S′, and to ∞ otherwise.1

Note that any feasible solution of this G-CLR instance with finite costs corresponds
to a feasible solution of the set cover instance with the same costs and vice versa, as there
is a one-to-one correspondence between facilities that can serve a client from group Ch

1Note that the resulting client-facility distances are actually metric, and the G-CLR instance thus
corresponds to an instance of the group version of metric uncapacitated facility location.



100 Chapter 4: Approximating combined location and network design problems

with connection cost 0 and sets that contain element h. This is true irrespective of
whether d ≡ 1 and U = 1 or U ≡ ∞. Thus, any β-approximation for G-CLR immediately
implies a β-approximation for set cover. Further note that |H| is the number of groups in
the constructed G-CLR instance. Thus, by [Fei98], we conclude that there is no γ ln(k)-
approximation for G-CLR unless NP ⊆ DTIME(nO(log logn)).

4.2.5 Location routing with cross-docking

In the location routing models discussed in the previous sections, vehicles are loaded
exclusively at the depots. While this is a realistic assumption in many applications, in
other contexts freight may be shifted from one vehicle to another at intersection points of
their tours. This operation of reloading goods between vehicles is known as cross-docking
in the transportation literature. In this section, we study a basic cross-docking model, in
which tours may start not only at depots but also at clients, and cross-docking operations
may be performed at all nodes of the network.

In order to incorporate cross-docking operations into the CLR model, we once again
replace the underlying undirected graph by a bidirected one and require the tours of the
vehicles to provide sufficient capacity for a flow from the open depots to the clients.

Problem: Capacitated location routing with cross-docking (CLR-CD)

Input: A graph G = (V,E), a set of clients C ⊆ V , a set of facili-
ties F ⊆ V , opening costs f ∈ QF+, connection costs c ∈ QE

+,
demands d ∈ QC+, and a vehicle capacity U ∈ Q+.

Task: Find a set of facilities F ⊆ F , a set of directed closed walks
(called tours) T in B(G) = (V,B(E)) and a flow x ∈ QB(E)

+ such
that

(1)
∑

a∈δ−(v) x(a)−∑a∈δ+(v) x(a) = d(v) for all v ∈ C,

(2)
∑

a∈δ−(v) x(a)−∑a∈δ+(v) x(a) = 0 for all v ∈ V \ (F ∪ C),

(3) x(a) ≤ U · |{T ∈ T : a ∈ T}| for all a ∈ B(E),

minimizing the cost
∑

w∈F f(w) +
∑

T∈T c(T ).

Remark 4.22

(1) Because the vehicles serve the clients along closed walks, we can assume G to be
complete and c to be a metric without loss of generality. Note, however, that we
can no longer assume V = C∪̇F , as nodes that are neither clients nor facilities can
still be used as cross-docks for intersecting tours.

(2) Given a set of open facilities F and a set of tours T , a feasible flow x (if one exists)
can be found by solving a maximum flow problem.

(3) The special case of CLR-CD with U = ∞ is equivalent to MCVR without cross-
docking.
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Figure 4.2: A CLR instance and its optimal solutions with and without cross-docking. The
numbers on the edges indicate the edge costs. The demand at the central client is 1,
the demand at the other clients is 3, the vehicle capacity is 5. The optimal routing
scheme in solution 1 without cross-docking has total cost 12. The routing scheme in
solution 2 uses cross-docking to consolidate two tours at the central vertex, starting
a third tour. Its total cost is 10.

Remark 4.23 Note that the lower bounds established in Section 4.2 for standard CLR
remain valid when allowing cross-docking. To see this, observe that the any solution
to a CLR-CD instance induces a flow that is valid for the LP relaxation introduced in
Section 4.2.4 for G-CLR. Thus, Lemma 4.17 and Corollary 4.19 for L = 1 yield the
desired UFL and spanning tree lower bounds for the cross-docking variant.

Cost-savings by cross-docking. Cross-docking can reduce transportation cost by im-
proving the utilization of vehicle capacities. The example depicted in Figure 4.2 shows
that the ratio of an optimal solution without cross-docking to an optimal solution with
cross-docking can be at least 1.2 for some instances. On the other hand, as a result of
Remark 4.23, the lower bounds used by Algorithm 4.2 are still valid, and thus the algo-
rithm is a constant factor approximation on CLR-CD that does not use cross-docking.
This implies an upper bound on the aforementioned cross-docking ratio.

Theorem 4.24 Algorithm 4.2 is a 4.38-approximation for CLR-CD.

Corollary 4.25 For any instance of CLR-CD, there is a feasible solution without cross-
docking with cost at most 4.38 times the cost of an optimal solution with cross-docking.

Algorithm with improved approximation guarantee

The original algorithm for location routing without cross-docking described in Algo-
rithm 4.2 can be adapted to achieve an improved approximation factor for cross-docking.
While every step of the algorithm is modified slightly, the most extensive modification
applies to the relieve procedure employed in Step 4. It will create two types of tours,
facility tours, which include a facility directly serving the demand of the clients in the
tour, and cross-dock tours, which do not contain a facility but intersect with facility
tours. See Algorithm 4.5 for a formal listing of the algorithm.

As explained in Remark 4.22 (1), we cannot remove vertices that are neither clients
nor facilities from the graph without increasing the cost. However, those vertices will not
appear in our algorithm: Step 2 computes a spanning tree only on the clients, the facilities
and the artificial root r. As usual, we will denote the closest open facility to a client
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v by w(v). Throughout the algorithm, every client v is assigned a residual demand d̄,
a representative r̄(v) and a corresponding cost c̄(v). The interpretation of the values is
the following. The residual demand d̄(v) keeps track of the remaining demand in the
tree T ′[v], after some of the subtrees of T ′[v] have already been connected to facilities.
Step 3 of the algorithm ensures that d̄(v) < U for all clients v ∈ C by constructing direct
client-facility-tours serving all demand exceeding U . The representative r̄(v) is a client
in those vertices of T ′[v] that are not yet in a subtree connected to a facility. It is chosen
in such a way that c̄(v) := c(r̄(v), w(r̄(v))) is minimized. Initially r̄(v) = v.

Relieving overloaded subtrees with cross-docking. As in the original relieve proce-
dure described in Algorithm 4.1, we consider a vertex v′ such that the tree T ′[v′] exceeds
the capacity but all subtrees rooted at its children obey the capacity. Without loss of
generality, we assume v′ to be a client as otherwise we can introduce a dummy client
vertex between the facility and the remainder of the tree. We define S to be the set
containing all subtrees rooted at children of v′, including the edge incident to v′. We
order the sets S ∈ S non-decreasingly by the connection cost minv∈V (S) c̄(v) and define
the set of source trees S+ as the first bd(V (T ′[v′] ∩ C))/Uc elements of S. The remaining
elements S\S+ comprise the set of sink trees S−. Among the vertices in the sink trees, we
identify a new representative for v′ minimizing c̄. We extract all trees in S from T ′ and
add them to a collection T̄ of trees that are turned into tours at the end of the algorithm.
For each source tree S ∈ S+ we furthermore find a client vS ∈ V (S) minimizing c̄(vS) and
connect the corresponding representative r̄(vS) to its closest facility. Note that r̄(vS) is
not necessarily contained in V (S) but can be contained in a previously extracted subtree
of T ′[vS ]. However, we will argue below that connecting r̄(vS) to a facility induces an
additional excess of U units at v′.

Analysis

We first show that the tours constructed by Algorithm 4.5 indeed suffice to serve the
demand of every client.

Lemma 4.26 Algorithm 4.5 constructs a feasible solution

Proof. We show by induction that the following is true after the algorithm has processed
the subtree T [v′] in the inner while loop in Step 4: The remaining demand of all clients
in T [v′] can be either served by sending a flow of d̄(v′) on an additional tour to v′ or by
connecting r̄(v′) to its closest facility, in which case an excessive demand of U − d̄(v′) can
be sent along an additional tour containing v′. This is also true initially for any vertex v
in the subtree T [v′], which either can provide an excess of U − d̄(v) if it is connected to
its facility, or has to be served by d̄(v) units of flow.

To apply the induction step, note that all tours constructed from S visit v′. Hence,
any spare capacity on a facility tour from a source tree can be used to satisfy demands
ensuing at v′. Using the induction hypothesis, in total a demand of bd(T ′[v′])/Uc · U
can be covered by sending flow along these facility tours and distributing the excess at v′

further to sink trees. Now, if the remaining demand d̄(v′) is provided by an additional
tour visiting v′, also this flow can be forwarded into the sink tours, satisfying all demands
in the subtrees by induction hypothesis. If, alternatively, the representative r̄(v′) is
connected to its closest facility, an additional sink tree can be turned into a source
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Algorithm 4.5: Algorithm for CLR-CD.
Step 1: Compute a βUFL-approximate solution F̃ to the UFL instance described
in Lemma 4.6. For v ∈ C, choose w(v) ∈ F̃ such that c(v, w(v)) is minimal.
Step 2: Construct the graph G′ with edge costs c′ as described in Lemma 4.7.
Compute a minimum spanning tree T ′ in G′[F ∪ C ∪ {r}] with respect to c′.
Let F ′ be the set of facilities that are incident to an edge in T ′ ∩ E.
Step 3:
Initialize d̄(v) = d(v), r̄(v) = v, and c̄(v) = c(v, w(v)) for all v ∈ C.
for all v ∈ C do

Construct
⌊
d(v)
U

⌋
copies of the tree {{v, w(v)}} and add them to T̄ .

Set d̄(v) = d(v)−
⌊
d(v)
U

⌋
· U .

Step 4:
for all w ∈ F ′ do

while d̄(V (T ′[w])) > U do
Let v′ ∈ V (T ′[w]) such that d̄(V (T ′[v′])) > U but d̄(V (T ′[v])) ≤ U for all
children v of v′. Let S = {T ′[v] ∪ {{v′, v}} : v is a child of v′}.
Order the sets in S non-decreasingly by minv∈V (S) c̄(v) and include the

first
⌊
d̄(V (T ′[v′]))

U

⌋
trees in S+. Let S− = S \ S+.

Choose v̄ ∈ ⋃S∈S− V (S) minimizing c̄(v̄).
Set r̄(v′) = r̄(v̄) and c̄(v′) = c̄(v̄).
Set d̄(v′) = d̄(V (T ′[v′]))−

⌊
d̄(V (T ′[v′]))

U

⌋
· U .

Set d̄(v) = 0 for all v ∈ V (T ′[v′]) \ {v′}.
for all S ∈ S do

Add S to T̄ . Remove S from T ′.
Let φ(v) = S for all v ∈ V (S).
if S ∈ S+ then

Choose vS ∈ V (S) minimizing c̄(vS).
Add the edge {r̄(vS), w(r̄(vS))} to φ(r̄(vS)) ∈ T̄ .

Add the remainder of T ′[w] to T̄ .
for all T ∈ T̄ do

Construct a tour visiting V (T ) by doubling the edges of T and shortcutting,
and add it to T .

Compute a feasible flow x corresponding to F̃ ∪ F ′ and T .
return (F̃ ∪ F ′, T , x).

tree. The flow that was sent from v′ into this sink tree cancels out and the excess at v′

increases by U . This suffices to serving all remaining sink trees, still leaving an excess
of U − d̄(v′) at v′.

Note that for every vertex v′ processed in the while loop, either there is a later
iteration in which v′ is contained in a source or sink tree of an ancestor v′′ of v′ or it is
contained in the remainder of T ′, when the remaining demand is at most U . In either
case, the remaining demand of v′ is served with an additional tour or the representative
of v′ is connected to a facility.
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The modified method of partitioning the tree in Algorithm 4.5 ensures that every
edge introduced from the UFL solution is used up to its full capacity. This yields an
improved approximation guarantee for the algorithm.

Lemma 4.27 Let (F, T , x) be the solution computed by Algorithm 4.5 and let T ′ be the
spanning tree computed in the tree phase and F̃ be the set of open facilities computed in
the UFL phase. Then∑

w∈F
f(w) +

∑
T∈T

c(T ) ≤ 2c′(T ′) +
∑
w∈F̃

f(w) +
∑
v∈C

d(v)c̃(v, F̃ ).

Proof. At some point in the algorithm, let Ē be the multiset of edges {v, w(v)} added
to trees so far, including multiple copies for occurrences in multiple trees. We will show
that the algorithm maintains the invariant∑

e∈Ē
c(e) +

∑
v∈C

d̄(v)

U
c̄(v) ≤

∑
v∈C

d(v)

U
c(v, F̃ ). (4.7)

This in particular implies c(Ē) ≤∑v∈C
d(v)
U c(v, F̃ ) at the end of the algorithm, which in

turn yields ∑
T∈T

c(T ) ≤ 2c(T ′) + 2c(Ẽ) ≤ 2c(T ′) +
∑
v∈C

d(v)c̃(v, F̃ )

proving the lemma.
Obviously, the invariant is true at the beginning of Step 3, when Ē is empty, d̄ = d,

and c̄(v) = c(v, F̃ ) for all v ∈ C. The invariant is maintained throughout Step 3, as d̄(v)
is decreased by U for every tree {{v, w(v)}} introduced to serve v and c(v, w(v)) = c̄(v).
To verify that also (4.7) is preserved by any iteration of the inner while loop in the
algorithm, let d̄ old and c̄ old be the residual demands and costs before the iteration, and d̄
and c̄ be the respective values at the end of the iteration. Observe that c̄ old(v) = c̄(v)
for all v ∈ C \ {v′} and c̄ old(v′) ≤ c̄(v′). The iteration changes the left-hand side of (4.7)
by

∆ :=
∑
S∈S+

min
v∈V (S)

c̄(v) + c̄(v′)
d̄(v′)
U

−
∑

v∈V (T ′[v′])

d̄ old(v)

U
c̄ old(v).

We claim that∑
v∈V (T ′[v′])

d̄ old(v)

U
c̄ old(v)

≥
∑
S∈S+

∑
v∈V (S)\{v′}

d̄ old(v)
c̄(v)

U
+

d̄ old(v′) +
∑
S∈S−

d̄ old(V (S) \ {v′})

 c̄(v′)
U

≥
∑
S∈S+

min
v∈V (S)

c̄(v) + (d̄ old(V (T ′[v′]))− |S+|U)︸ ︷︷ ︸
=d̄(v′)

c̄(v′)
U

which implies ∆ ≤ 0. The first inequality follows from the fact that c̄(v′) ≤ c̄ old(v) for
every sink tree S ∈ S− and every vertex v ∈ V (S), which is true by definition of c̄(v′).
The second inequality follows from minv∈V (S) c̄(v) ≤ c̄(v′) for every source tree S ∈ S+,
which is true by construction of the source trees. Thus, ∆ ≤ 0 and invariant (4.7) is
maintained.



4.2 Capacitated location routing 105

Using the 1.5-approximation for UFL given in [BA10] yields the following result.

Theorem 4.28 Algorithm 4.5 is a 3.5-approximation algorithm for CLR-CD and a 3-
approximation for MCVR with cross-docking, i.e., the special case of CLR-CD with f ≡ 0.

4.2.6 Computational study

In Section 4.2.2, we have proven that our polynomial time algorithm for CLR is guar-
anteed to compute solutions which are at most 4.38 times as expensive as the optimum.
In this section, we shall see that the algorithm’s performance in practice exceeds this
theoretical worst-case estimate by far. We would like to emphasize that we do not ex-
pect our algorithm to compete with (meta-)heuristic approaches without approximation
guarantee and polynomial running time. Rather, the question addressed in this compu-
tational study is how much solution quality on typical instances needs to be sacrificed
in exchange for polynomial running time and a worst case performance guarantee across
all instances.

Implementation details. For our experiments, we implemented Algorithm 4.2 with the
following minor modifications: First, instead of using the bifactor approximation algo-
rithm from [BA10] in the first step, we implemented the greedy approximation algorithm
from [JMM+03]. While the latter has a slightly worse approximation guarantee of 1.861,
it is purely combinatorial, avoiding randomization and linear programming, and far easier
to implement. In this context, note that although the instances in our study are equipped
with Euclidian distances, we do not apply the PTAS from [ARR98], which is not tailored
for practical use in regards of running time. Moreover, before applying Prim’s algorithm
[Pri57] in the second step of the algorithm, we set the opening costs of all facilities opened
in the first step to zero. We also close open facilities not used in the final solution. Doing
so yields slightly improved results, while it does not interfere with our theoretical analysis
of the algorithm. Finally, once the algorithm has computed all tours, we added an option
to improve each single tour by solving the corresponding TSP instance using LKH, an
implementation of the Lin-Kernighan heuristic by Helsgaun [Hel00].

Observation 4.29 Our implementation of Algorithm 4.2 has an approximation guaran-
tee of 5.722. Its running time is O(|C|2|F|).

The approximation guarantee results directly from Lemma 4.9 and the approximation
factor of the greedy algorithm used for the UFL computation. The running time of the
implementation is dominated by that of the UFL algorithm; see [JMM+03]. Moreover,
experiments in [Hel00] indicate that the practical running time of LKH is quite low (close
to quadratic). Our study supports this observation, as the additional running time in-
curred by a-posteriori tour optimization using LKH turns out to be small—immeasurable
on moderately sized instances. Our implementation was done in C++ using GCC 4.5 un-
der SUSE Linux 11.3 and all computations were conducted on an Intel Core2 Duo E8400
processor at 3GHz with 4GB RAM.

Instance sets. We report results for two different sets of instances: The first, referred to
as the benchmark set, comprises 45 instances appearing frequently in the location routing
literature [TB99, BFPS07]; see the next section for details. We compare our results for
the benchmark instances with those obtained by recent (meta-)heuristic algorithms as



106 Chapter 4: Approximating combined location and network design problems

well as best known solutions (BKS) from the literature. While the benchmark instances
are moderate in size (20–200 clients, 5–20 facilities), our second test set consists of 27
randomly generated instances which are considerably larger (up to 10000 clients and 1000
facilities). We refer to these latter instances as the randomized set.

4.2.7 Benchmark instances

Key properties of the benchmark instances used are listed in Table 4.3. The first 36
instances were introduced by Tuzun and Burke [TB99], the last nine by Barreto et
al. [BFPS07]; we will refer to them as sets TB and BFPS , respectively. While set TB
is adopted as-is, set BFPS contains only those instances introduced in [BFPS07] which
have no capacity limits on facilities, as only those mirror the location routing problem
addressed here. The best known solutions reported for TB were obtained by Prins et
al. [PPR+07]. For BFPS , some proven optima were already reported in [BFPS07], while
the remaining instances were solved to optimality by Baldacci, Mingozzi, and Wolfler
Calvo [BMW09], as reported in [CCG11].

Table 4.4 contains gaps to BKS and CPU times for our implementation of Algo-
rithm 4.2, with and without a-posteriori optimization of tours using LKH, compared
to those of four other algorithms for CLR: a greedy randomized adaptive search proce-
dure (GRASP) proposed by Prins, Prodhon, and Wolfler Calvo [PPW06]; a Lagrangean
relaxation granular tabu search (LRGTS) developed by Prins et al. [PPR+07]; a two-
phase tabu search (TS) studied by Tuzun and Burke [TB99]; and finally an exact
branch-and-cut-and-price approach (BCP) proposed by Baldacci, Mingozzi, and Wolfler
Calvo [BMW09]. Results for algorithms GRASP and LRGTS are stated in [PPR+07]
for all 45 benchmark instances, while results for TS and BPS are only available for the
instances in TB and BFPS , respectively.

Note that GRASP, LRGTS, TS, BCP, and our algorithm each were tested on different
machines, so the CPU times stated here cannot be compared directly. Since all tests were
performed on modern desktop computers, however, we do believe that a comparison of
the order of magnitudes of the running times remains feasible.

On average, our approximation algorithm delivers solutions with cost about 19 %
above the BKS value. This figure improves to 10 % when LKH is used to optimize
tours a-posteriori. Moreover, the running time of our algorithm is negligible on these
instances, regardless of whether LKH is used or not. In comparison, the (meta-)heuristic
algorithms GRASP, LRGTS, and TS compute solutions with objective 1–4 % above that
of BKS on average, while their running times vary strongly from 2–26 seconds (TS) to
up to 7 minutes (GRASP). The exact approach BCP is able to find optimal solutions
for all instances in BFPS , while its running time is naturally very high, needing several
hours on some of the instances.

Since gaps to BKS for GRASP and LRGTS are no greater for the instances in TB
than for those in BFPS , where optimality has been proven, it seems reasonable to assume
that the gap between BKS and an optimum solution is generally small. In this case, our
algorithm vastly outperforms its theoretical approximation guarantee of 5.722. When
employing a simple post-optimization step using LKH, it yields solutions within a factor
of 1.25 of BKS on all instances, within 1.1 on average. Moreover, its polynomial running
time is reflected in very small CPU times on these benchmark instances. When com-
pared to heuristic algorithms, solution quality suffers only by a single-digit percentage on
average, while computation times are improved by several magnitudes. Moreover, recall
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name #facilities #clients ∅ demand vehicle capacity BKS value

111112 10 100 15.17 150 1468.40
111122 20 100 15.00 150 1449.20
111212 10 100 14.39 150 1396.46
111222 20 100 15.19 150 1432.29
112112 10 100 15.28 150 1167.53
112122 20 100 14.32 150 1102.70
112212 10 100 15.06 150 793.97
112222 20 100 14.73 150 728.30
113112 10 100 14.81 150 1238.49
113122 20 100 15.10 150 1246.34
113212 10 100 14.73 150 902.38
113222 20 100 14.78 150 1021.31
121112 10 200 14.95 150 2281.78
121122 20 200 15.15 150 2185.55
121212 10 200 14.81 150 2234.78
121222 20 200 14.94 150 2259.52
122112 10 200 15.24 150 2101.90
122122 20 200 14.47 150 1709.56
122212 10 200 14.69 150 1467.54
122222 20 200 15.21 150 1084.78
123112 10 200 15.13 150 1973.28
123122 20 200 14.66 150 1957.23
123212 10 200 15.09 150 1771.06
123222 20 200 15.29 150 1393.62
131112 10 150 14.79 150 1866.75
131122 20 150 14.93 150 1841.86
131212 10 150 15.02 150 1981.37
131222 20 150 14.71 150 1809.25
132112 10 150 14.95 150 1448.27
132122 20 150 14.75 150 1444.25
132212 10 150 14.91 150 1206.73
132222 20 150 15.15 150 931.94
133112 10 150 14.95 150 1699.92
133122 20 150 14.93 150 1401.82
133212 10 150 15.18 150 1199.51
133222 20 150 14.91 150 1152.86
Chr69-100x10 10 100 14.58 200 842.90∗

Chr69-50x5 5 50 15.54 160 565.60∗

Chr69-75x10 10 75 18.19 160 861.60∗

Gas67-22x5 5 22 463.14 4500 585.11∗

Gas67-29x5 5 29 439.66 4500 512.10∗

Gas67-32x5 5 32 917.81 8000 562.20∗

Gas67-32x5-2 5 32 917.81 11000 504.30∗

Gas67-36x5 5 36 25.00 250 460.40∗

Min92-27x5 5 27 311.48 2500 3062.00∗

Table 4.3: Properties of benchmark instances and cost of a best known solution (BKS, ∗ denotes
proven optimality). The BKS values for the first 36 instances are from [PPR+07],
those for the last nine from a series of papers [TB99, BFPS07, BMW09].
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instance approx approx+tsp GRASP LRGTS TS/BCP
gap time gap time gap time gap time gap time

111112 0.207 0.00 0.079 0.00 0.039 32.40 0.015 3.30 0.060 5.00
111122 0.235 0.00 0.117 0.00 0.054 40.70 0.016 6.50 0.057 3.00
111212 0.133 0.00 0.043 0.00 0.019 27.60 0.011 4.20 0.034 3.00
111222 0.342 0.00 0.246 0.00 0.035 36.20 0.008 7.40 0.055 4.00
112112 0.164 0.00 0.076 0.00 0.028 27.70 0.017 6.90 0.054 4.00
112122 0.133 0.00 0.095 0.01 0.019 34.30 0.012 6.80 0.027 2.00
112212 0.086 0.00 0.041 0.00 0.025 22.50 0.024 5.20 0.039 3.00
112222 0.119 0.00 0.070 0.00 0.027 37.30 0.020 5.90 0.017 3.00
113112 0.183 0.00 0.090 0.00 0.028 21.50 0.024 4.30 0.063 3.00
113122 0.201 0.00 0.131 0.00 0.021 36.00 0.008 6.30 0.023 4.00
113212 0.140 0.00 0.082 0.00 0.011 20.30 0.012 4.00 0.020 4.00
113222 0.166 0.00 0.126 0.00 0.004 38.40 0.007 4.90 0.023 3.00
131112 0.253 0.01 0.142 0.01 0.075 113.00 0.042 12.50 0.072 12.00
131122 0.230 0.01 0.110 0.01 0.026 161.40 0.018 18.50 0.028 12.00
131212 0.153 0.00 0.067 0.01 0.027 100.00 0.015 11.10 0.021 14.00
131222 0.206 0.01 0.102 0.01 0.026 132.40 0.006 15.80 0.025 13.00
132112 0.163 0.01 0.081 0.01 0.041 117.70 0.000 22.00 0.074 9.00
132122 0.301 0.01 0.230 0.02 0.009 166.10 0.034 28.00 0.024 12.00
132212 0.101 0.01 0.050 0.00 0.028 106.70 0.004 14.60 0.020 9.00
132222 0.170 0.00 0.123 0.01 0.010 142.40 0.005 13.70 0.018 9.00
133112 0.155 0.01 0.098 0.00 0.022 92.80 0.017 17.90 0.037 9.00
133122 0.127 0.01 0.075 0.01 0.017 128.40 0.016 18.50 0.062 9.00
133212 0.128 0.00 0.068 0.01 0.020 88.50 0.014 14.50 0.054 10.00
133222 0.081 0.00 0.029 0.01 0.068 134.90 0.008 14.30 0.026 9.00
121112 0.217 0.01 0.145 0.01 0.055 308.00 0.016 32.60 0.053 22.00
121122 0.139 0.01 0.050 0.02 0.047 410.00 0.010 39.60 0.012 22.00
121212 0.191 0.01 0.105 0.02 0.017 311.40 0.012 32.80 0.024 23.00
121222 0.225 0.02 0.122 0.02 0.042 418.90 0.004 40.20 0.047 26.00
122112 0.145 0.02 0.088 0.02 0.017 338.00 0.009 47.20 0.027 20.00
122122 0.179 0.02 0.125 0.02 0.057 370.00 0.017 59.30 0.045 18.00
122212 0.107 0.01 0.050 0.01 0.020 242.70 0.014 36.70 0.056 18.00
122222 0.119 0.01 0.049 0.00 0.010 308.50 0.005 38.70 0.026 18.00
123112 0.170 0.01 0.081 0.01 0.036 282.80 0.005 41.60 0.042 23.00
123122 0.126 0.01 0.050 0.02 0.068 399.20 0.015 51.80 0.023 20.00
123212 0.183 0.02 0.146 0.02 0.010 199.00 0.009 34.00 0.060 20.00
123222 0.182 0.01 0.134 0.01 0.011 296.30 0.005 43.20 0.015 17.00
Chr69-100x10 0.283 0.00 0.108 0.00 0.022 25.50 0.000 28.20 0.000 13074.7
Chr69-50x5 0.220 0.00 0.079 0.00 0.059 2.30 0.037 2.40 0.000 112.9
Chr69-75x10 0.177 0.00 0.104 0.00 0.000 9.80 0.002 10.10 0.000 3413.5
Gas67-22x5 0.244 0.00 0.021 0.00 0.000 0.20 0.004 0.20 0.000 6.0
Gas67-29x5 0.279 0.00 0.165 0.00 0.006 0.40 0.000 0.40 0.000 178.2
Gas67-32x5 0.245 0.00 0.179 0.00 0.017 0.60 0.040 0.60 0.000 63.4
Gas67-32x5-2 0.205 0.00 0.123 0.00 0.000 0.50 0.001 0.50 0.000 117.9
Gas67-36x5 0.448 0.00 0.094 0.00 0.000 0.80 0.035 0.70 0.000 2.9
Min92-27x5 0.181 0.00 0.115 0.00 0.000 0.40 0.001 0.30 0.000 47.0

∅ 0.188 0.01 0.100 0.01 0.026 128.54 0.013 17.96 0.038 11.5
0.000 1890.69

Table 4.4: Gaps to best known solution and CPU times for various algorithms on benchmark
instances. Results for algorithm TS are only available for the first 36 instances, those
for BCP only for the last nine; hence they share a column. The last row contains
average values, with those for TS (first 36 instances) and BCP (last nine) one above
the other.
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that this improvement in running time comes in addition to the advantage of having a
guarantee on solution quality across all possible instances, including malicious examples
where heuristics might perform very poorly. In light of its high efficiency in terms of
computation time, our algorithm can also be used to compute feasible start solutions for
other search heuristics.

4.2.8 Larger, randomly generated instances

The extremely short running time of our algorithm on benchmark instances, which are all
of moderate size, suggests that our algorithm is suitable for larger instances as well. To
the best of our knowledge, no instances of CLR which are significantly larger than those
in the benchmark set have been solved in the literature; hence, we generated a random
test set from three input parameters: size, facility opening cost, and vehicle capacity.

Instances were generated on three base networks of different sizes: M (1000 clients,
100 facilities), L (5000, 500), and XL (10000, 1000). Facility opening costs were drawn
uniformly at random from three different ranges: [0; 100], [100; 200], and [200; 500]. Ve-
hicle capacities were set to either 9, 100, or 1000, while client demands were drawn
uniformly at random from [0; 10] in all cases. Finally, x- and y-coordinates for clients
and facilities were drawn uniformly at random from [0; 100], and Euclidean distances
d(i, j) :=

√
(xj − xi)2 + (yj − yi)2 are used in all instances. Our approach of generat-

ing the random instances is similar to the approach of [TB99], except that we did not
use clustering. The experimental design, using the same base network with different
parameters, allows us to compare the effects of these parameters on solution structure,
performance of the algorithm, and quality of the lower bounds derived from the minimum
spanning tree and UFL subproblems, respectively.

All possible combinations of the three input parameters yield 27 different instances,
which we name by their size, indexed with their choice of facility opening cost and vehicle
capacity. E.g., M2,2 is an instance with 1000 clients, 100 facilities, facility opening costs
in [100; 200], and vehicle capacity 100.

Key properties of the solutions computed by our algorithm, again with and without
LKH, together with CPU times are depicted in Table 4.5. The column “lower bound”
denotes the better of the two lower bounds arising from the UFL and MST instances as
described in Lemmas 4.6 and 4.7. While the minimum spanning tree computed within the
algorithm is optimal and can thus be directly used as lower bound, deriving a reasonable
UFL lower bound requires more care, as the UFL solutions used in the algorithm are
only approximations: For smaller instances (size M), we computed the optimal solution
value of the corresponding UFL instances using the mixed integer programming solver
CPLEX 12.1 [IBM]. For the instances of size L and XL, where using a MIP solver was
not possible, we derived a lower bound by constructing a feasible dual solution from the
client bids occurring in the UFL greedy algorithm by [JMM+03].

CPU time for the largest instances is at most about twenty minutes. On average,
using LKH to optimize tours a-posteriori reduces total cost by about 5 %, while increasing
CPU time by roughly 10 %. Naturally, the effect of using LKH on both solution quality
and CPU time is more significant when vehicle capacity is large, i.e., when tours are long.
Regarding the lower bounds, we observe that the MST yields stronger bounds for larger
vehicle capacities, while the UFL bound is stronger when vehicle capacities are small. On
average, our algorithm shows a gap of 61.6 % to the corresponding lower bounds when
LKH post-optimization is enabled.
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name lower bound #open fac. fac. cost #tours approx approx+tsp
cost gap time cost gap time

M1,1 8800.8O 33 779.4 757 13563.4 0.541 0.47 13478.9 0.532 0.55
M1,2 41249.5O 13 82 58 4111.6 0.961 0.95 3499.05 0.669 1.00
M1,3 2096.3T 8 31.8 10 3343.6 0.595 1.59 2478.9 0.183 1.65
M2,1 12166.6O 18 2157.9 756 18086.2 0.487 0.53 17997 0.479 0.62
M2,2 2288.8O 5 528.2 55 5098.9 1.228 0.92 4468.74 0.952 0.98
M2,3 2151.6T 1 205.2 6 3520.2 0.636 1.62 2620.84 0.218 1.67
M3,1 15432.2O 10 2370.3 756 23008.8 0.491 0.68 22926.8 0.486 0.76
M3,2 2938.7O 3 869.1 55 6012 1.046 1.27 5345.92 0.819 1.32
M3,3 2203.4T 1 414.3 6 3656.8 0.66 0.83 2779.25 0.261 0.88
L1,1 17502D 128 2426.4 3695 32473 0.855 23.39 32325.9 0.847 35.90
L1,2 4607T 47 337.3 272 9433.5 1.048 50.84 8106.1 0.76 59.29
L1,3 4607T 16 42.1 31 7344.7 0.594 120.12 5463.71 0.186 121.95
L2,1 29519.6D 50 6000.5 3694 50380.6 0.707 28.89 50229.7 0.702 41.35
L2,2 5946.5D 10 1163.8 271 13435.5 1.259 65.79 12059.5 1.028 73.81
L2,3 4659.4T 2 306 29 8477 0.819 162.99 6624.78 0.422 165.08
L3,1 38728.3D 31 7293.4 3694 64058.9 0.654 38.3 63905.1 0.65 50.94
L3,2 7515.9D 6 1473 271 15694.9 1.088 89.8 14372.4 0.912 97.81
L3,3 4709.4T 1 409.3 29 8835.3 0.876 210.71 6966.54 0.479 213.44
XL1,1 25449.7D 229 3394.8 7480 48879.5 0.921 136.48 48677.1 0.913 214.23
XL1,2 6494.6T 78 405.1 554 13752.3 1.117 314.81 11872 0.828 369.47
XL1,3 6494.6T 33 52.7 69 10400 0.601 741.08 7754.66 0.194 749.91
XL2,1 46601.8D 82 9264.9 7473 77796.3 0.669 165.57 77580.6 0.665 243.40
XL2,2 9253.7D 17 1752.7 547 20133.7 1.176 383.13 18159.1 0.962 434.58
XL2,3 6550.3T 4 507.8 57 12018.2 0.835 879.48 9296.1 0.419 886.83
XL3,1 60461.3D 48 10593.1 7473 101676 0.682 228.14 101454 0.678 307.12
XL3,2 11838.1D 11 2255.2 547 23304.5 0.969 518.15 21341.5 0.803 570.46
XL3,3 6600.5T 2 610.2 57 13091.1 0.983 1314.86 10389.9 0.574 1322.69

∅ 14328.43 32.85 2063.94 1433.41 22651.35 0.833 203.01 21562 0.616 221.03

Table 4.5: Best known lower bounds (T: MST, O: optimal UFL solution, D: dual UFL solution),
solution properties, costs, gaps and CPU times of the approximation algorithm with
and without TSP post-optimization for randomly generated instances.

While we do not expect the lower bounds to be very close to the optimum solution
values, we do not have any other primal solutions to compare with our results on instances
of similar size. However, we encourage the authors of other algorithms for CLR to perform
experiments on our random test set, which are publically available for download [CLR],
and compare their results to ours.

4.3 Facility location with capacitated and length-
bounded tree connections

In this section, we study a combination of facility location and network design in which
the length of each connection from a client to its closest facility is bounded. Such length
bounds play an important role in the design of telecommunication networks. They are
used, e.g., to ensure reliability of the connection in case of limited signal strength, or to
minimize the transmission delay in real-time applications such as video conferencing. We
will show how to incorporate length bounds into an approximation framework for facility
location problems where clients are connected to open facilities via capacitated trees.

The particular application motivating our research stems from the planning of opti-
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cal access networks. In these so-called fiber-to-the-home or fiber-to-the-curb networks,
optical splitters are used to split a single fiber emanating from the central office into a
fiber tree serving multiple clients. The main advantage of this technology, compared to
using an individual fiber for each client, is a considerable reduction in the total length of
fibers in use and the amount of active fiber termination equipment at the central office
location. On the other hand, all clients in the same fiber tree share the limited trans-
mission capacity of a single fiber. Therefore, not too many clients may be aggregated
into such a tree. Moreover, the optical signal emitted at the central office must fulfill
several power and quality requirements when reaching a client, in order to guarantee a
reliable connection. These technical requirements imply an upper bound on the path
length between the central office and any client within the fiber tree or, in other words,
on the depth of the tree.

When planning the deployment of an optical access network, one generally has to
decide where to set up central offices and how to connect the clients to these offices via
fiber trees. One of the most important objectives of the planning process is to minimize
the total network cost, which is comprised by the cost for setting up the offices and
the cost for laying out the fibers. Together with the technological constraints discussed
above, this results in the following optimization problem.

Problem: UFL with capacitated and length-bounded trees (UFL-CLT)

Input: A graph G = (V,E), a set of clients C ⊆ V , a set of facili-
ties F ⊆ V , opening costs f ∈ QF+, connection costs c ∈ QE

+,
lengths ` ∈ ZE+, demands d ∈ QC+, a tree capacity U ∈ Q+, and
a length bound L ∈ Z+.

Task: Find a set of facilities F ⊆ F and a set of trees T together with
a tree assignment φ : C → T such that

(1) every tree T ∈ T is rooted at a facility wT ∈ F ,

(2)
∑

v∈C :φ(v)=T d(v) ≤ U for all T ∈ T ,

(3) depth`(T,wT ) ≤ L for all T ∈ T ,

minimizing the cost
∑

w∈F f(w) +
∑

T∈T c(T ).

Note that the above problem definition does not require trees to be disjoint. In fact,
several trees can share the same open facility.

Bicriteria approximation algorithms. We will study several special cases of UFL-CLT.
In order to obtain the most insightful results for each of them, we will devise bicriteria
approximation algorithms, which approximate length bound and optimal cost at the
same time with separate approximation factors. An (α, β)-approximation algorithm for
UFL-CLT is an algorithm that computes in polynomial time a solution fulfilling (1), (2),
and the approximate length bound depth`(T,wT ) ≤ αL for all T ∈ T , with cost at most
βOPT, where OPT denotes the minimum cost of a solution fulfilling (1), (2), and (3).

Before we turn our attention to the approximability of UFL-CLT in Sections 4.3.2 to 4.3.5,
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we take a short detour to discuss the closely related subject of shallow-light trees in the
next section.

4.3.1 Shallow-light trees

UFL-CLT is closely related to the shallow-light Steiner tree problem (SLST), which asks
for a Steiner tree with the property that the length of a path from each terminal to the
given root obeys the length bound while minimizing the cost. This corresponds to the
special case of UFL-CLT where U =∞ and |F| = 1.

Problem: Shallow-light Steiner tree problem (SLST)

Input: A graph G = (V,E), a set of terminals S ⊆ V , a root r ∈ V ,
edge costs c ∈ QE

+, lengths ` ∈ ZE+, and a length bound L ∈ Z+.

Task: Find a tree T ⊆ E spanning S ∪ {r} such that depth`(T, r) ≤ L,
minimizing c(T ).

In this section, we will give an overview of work related to approximation algorithms
for shallow-light trees and discuss the connections of SLST to bounded diameter tree
problems and directed Steiner trees via so-called layered graphs.

Related work

The concept of (α, β)-approximation algorithms naturally extends to SLST. Although
the problem has been studied extensively by the combinatorial optimization commu-
nity, its approximability is not well-understood at this point. A significant gap remains
between the best known approximation algorithms and results establishing hardness of
approximation for SLST. We give an overview of these results and discuss important
special cases for which better approximation guarantees are known.

Shallow-light Steiner trees. Marathe et al. [MRS+98] studied approximation algo-
rithms for different variants of bicriteria tree problems. Using a matching augmentation
technique, they achieved a (O(log |S|),O(log |S|))-approximation for SLST. On the neg-
ative side, a hardness result for the group Steiner tree problem by Halperin and Krauth-
gamer [HK03] implies that SLST does not allow for a (3− ε, log2−ε |S|)-approximation
for any ε > 0, unless NP ⊆ ZTIME(npolylog(n)). While this lower bound does not rule
out the possibility of an (O(1),O(1))-approximation or a (1, log2 |S|)-approximation for
the problem, the only improvement on the approximation factor in [MRS+98] so far
is a parameterized

(
O
(
p log |S|

log p

)
,O
(

log |S|
log p

))
-approximation for an input parameter p,

with 1 ≤ p < |S|, by Kapoor and Sarwat [KS07].2

2Naor and Schieber [NS97] presented what promised to be a (2,O(log |V |))-approximation for SLST,
using a flow-based LP relaxation. However, their rounding scheme, which employs a decomposition
technique by Edmonds, was flawed: the branchings resulting from the decomposition do not fulfill the
length bound given in the LP.
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Directed Steiner trees. When relaxing the requirement of polynomial running time, an
improved approximation guarantee can be achieved using directed Steiner trees. Charikar
et al. [CCC+99] provided an algorithm for the directed Steiner tree problem that returns
an O(p2|S|1/p)-approximation in time O(|S|3p) for a parameter p. Setting p = log |S|
yields an O(log2 |S|)-approximation in time O(|S|3 log |S|). Using a condensed layered
graph, this result immediately translates into a quasi-polynomial time (1+ε,O(log2 |S|))-
approximation for SLST; see Theorem 4.32 for details.

Restricted shortest paths. If |S| = 1, SLST asks for a path of bounded `-length con-
necting the root with the single terminal. For this special case, known as restricted
shortest path problem, Hassin [Has92] gave both a (1, 1+ε)-approximation and a (1+ε, 1)-
approximation. Both approximation schemes run in time polynomial in 1/ε and the input
size.

Hop-constrained trees. The special case of SLST with ` ≡ 1 is known as hop-constrained
Steiner tree problem. For this problem, Kortsarz and Peleg [KP99b] gave a (1,O(log n))-
approximation, whose running time is polynomial when L is bounded by a constant. For
the hop-constrained spanning tree problem with metric costs, Althaus et al. [AFHP+05]
provided a (1,O(log n))-approximation algorithm using tree metrics.

Light approximate shortest-path trees. Finally, for SLST instances with c = `, Khuller,
Raghavachari, and Young [KRY95] devised an algorithm that transforms a given tree T
into a tree T ′ with cost c(T ′) ≤ (1 + 2/(1 − α))c(T ) such that the path length of any
vertex v to the specified root r in T ′ is a most α times the length of a shortest v-r-path
in the graph. They called such trees light approximate shortest-path trees (LAST).

Condensed lengths

Using a standard scaling and rounding technique for constructing approximation schemes,
we can ensure the values of ` and L to be polynomially bounded by the size of the input,
losing only a factor of 1 + ε in the precision of the length bound. We can make use
of this compression technique to model SLST as a directed Steiner tree problem in a
polynomially sized layered graph, and to establish a relation between shallow light trees
and bounded diameter trees.

Lemma 4.30 Let G = (V,E) be a graph, ` ∈ ZE+, L ∈ Z+, and ε > 0. For all e ∈ E,
define ˜̀(e) =

⌊
|V |
εL `(e)

⌋
and let L̃ =

⌊
|V |
ε

⌋
.

• If P is a simple path in G with `(P ) ≤ L, then ˜̀(P ) ≤ L̃.

• If P is a simple path in G with ˜̀(P ) ≤ L̃, then `(P ) ≤ (1 + ε)L.

Proof. Let P be a simple path in G.

• If `(P ) ≤ L, then ˜̀(P ) =
∑
e∈P

⌊ |V |
εL

`(e)

⌋
≤
⌊ |V |
εL

L

⌋
≤ L̃.

• If ˜̀(P ) ≤ L̃, then `(P ) ≤
∑
e∈P

εL

|V |(
˜̀(P ) + 1) ≤ εL

|V | L̃+
εL

|V | |P | ≤ (1 + ε)L.
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The layered graph and directed Steiner trees

Similar to the time-expanded networks for flows over time, we can construct a directed
layered graph from a given graph with edge lengths and length bound. The shallow-
light Steiner tree problem is closely related to the directed Steiner tree problem in the
corresponding layered graph; see, e.g., the recent study by Gouveia, Simonetti, and
Uchoa [GSU11], who use this connection to obtain stronger integer programming formu-
lations for hop-constrained and diameter-constrained tree problems. We will explore this
connection in the context of approximation algorithms.

Layered graph. Given an instance (G = (V,E), S, r, c, `, L) of SLST, the corresponding
layered graph is a directed graph GL = (VL, AL) with vertices VL, arcs AL, and costs cL
defined as follows. For every vertex v ∈ V and every t ∈ [L], there is a node vt in VL. For
every edge e ∈ E with ψ(e) = {v, w}, and every t ∈ [L−`(e)], there is an arc (vt, wt+`(e))
and an arc (wt, vt+`(e)), both with cost c(e). Finally, there is also an arc (vt, vL) for every
terminal v ∈ S and every t ∈ [L− 1] with cost 0.

Lemma 4.31 Given an instance (G = (V,E), S, c, `, L) of SLST, the minimum cost of
a directed Steiner tree in GL rooted at r0 and spanning all terminals vL for v ∈ S is
equal to the minimum cost of a shallow-light Steiner tree in G. Given a directed Steiner
tree TL in GL, one can compute in time polynomial in |TL| a shallow-light Steiner tree T
in G with c(T ) ≤ cL(TL).

Proof. Let T be a shallow light Steiner tree in G. For every edge e ∈ T , let ve be
the one of its end vertices that closer to the root and let we be the other end vertex.
Let te := `(T [r, ve]). Note that for every w ∈ V (T ) \ {r}, there is exactly one e ∈ T
with we = w. Thus, the set TL := {(vete , wete+`(e)) : e ∈ T} is an arborescence in GL.
It is rooted at r0 and spans exactly one copy sts of every terminal s ∈ S with tS ≤ L.
If ts < L for a terminal s ∈ S, add {sts , sL} to TL. Then TL is a directed Steiner tree
in GL spanning all terminals sL and having cost c(T ).

Conversely, let TL be a directed Steiner tree inGL. Let A := {(vt, wt′) ∈ TL : v 6= w}.
For an arc a ∈ A let ea be the corresponding edge in G and let B := {ea ∈ E : a ∈ A}.
As there is an r0-sL-path in TL for every terminal s ∈ S, there is an r-s-path of `-length
at most L in B. Computing a shortest path tree from r to every s ∈ S in B with respect
to ` yields a shallow-light Steiner tree in G spanning S of depth at most L and cost at
most c(A) = c(TL).

Combining Lemmas 4.30 and 4.31, we can use the quasi-polynomial time O(log2 |S|)-
approximation algorithm for directed Steiner tree in [CCC+99] to obtain a corresponding
approximation algorithm for SLST.

Theorem 4.32 For every ε > 0, there is an O(|S|3 log |S|)-time algorithm that computes
a (1 + ε,O(log2 |S|))-approximate solution for SLST.

Bounded diameter vs. bounded length

The results in [MRS+98], [KS07], and [KP99b] in fact refer to the bounded diameter
Steiner tree problem (BDST) instead of SLST. In this setting, the bound L affects the
`-diameter of the tree rather than its `-depth. However, up to a constant factor for the
length bound, the two problems are equivalent with respect approximation.
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Lemma 4.33 If there is an (α, β)-approximation for bounded diameter Steiner tree,
then there is a (2α−1, β)-approximation for SLST. This is also true if both problems are
restricted to the case ` ≡ 1.

Proof. Let (G = (V,E), S, r, c, `, L) be an instance of SLST and let T be an optimal
solution to this instance. Let G′ = (V ∪ {r′}, E ∪ {e′}) for some new vertex r′ and
new edge e′ with ψ(e′) = {r′, r}, `(e′) = L, and c(e′) = 0. Then T ∪ {{r′, r}} is a tree
feasible solution to the BDST instance defined by (G′, S ∪ {r′}, c, `, 2L}. Let T ′ be an
(α, β)-approximate solution to this instance. Then c(T ′) ≤ βc(T ) and

depth`(T
′ \ {e′}, r) ≤ diam`(T

′)− L ≤ (2α− 1)L.

Thus T ′\{e′} is a (2α−1, β)-approximate shallow-light Steiner tree. The same reduction
also works for the case ` ≡ 1 by splitting the edge e′ into L edges.

Lemma 4.34 If there is an (α, β)-approximation for SLST, then for every ε > 0 there
is an ((1 + ε)α, β)-approximation for bounded diameter Steiner tree. When restricting to
instances with L being polynomial in the input size, ε can be chosen to be 0.

Proof. Consider an instance (G = (V,E), S, c, `, L) of BDST and let T ∗ be an optimal
solution. Choose s, t ∈ S such that `(T ∗[s, t]) is maximum and choose e∗ ∈ T ∗[s, t]
with ψ(e∗) = {v, w} such that `(T ∗[s, v]) ≤ L/2 and `(T ∗[w, t]) ≤ L/2. Furthermore
define λ := L/2− `(T ∗[s, v]). Construct the graph G∗ = (V ∪ {u}, E \ {e∗} ∪ {ev, ew})
by splitting e∗ into two edges ev and ew with endpoints ψ(ev) = {v, u} and ψ(ew) =
{u,w}, costs c(ev) = c(e) and c(ew) = 0, and lengths `(ev) = λ and `(ew) = `(e∗) − λ.
Let T ′ be an (α, β)-approximate shallow-light Steiner tree in G∗ with respect to costs
c, lengths 2`, and length bound L, spanning the terminals S with root u. Observe
that T ∗∗ = T ∗ \ {e∗} ∪ {ev, ew} is a feasible solution to the same SLST instance, as
`(T ∗∗[u, u′]) ≤ max{`(T ∗∗[u, s]), `(T ∗∗[u, t])} ≤ L/2 by maximality of T ∗[s, t]. This
implies c(T ′) ≤ βc(T ∗). Therefore, T ′ \ {ev, ew} ∪ {e} is an (α, β)-approximate solution
to the initial BDST instance.

If L is polynomial in the input size, we can compute an (α, β)-approximate SLST for
every possible choice of e∗ ∈ E and 0 ≤ λ ≤ `(e∗) ≤ L in polynomial time and choose
the cheapest among those trees. If L is not polynomially bounded, we can condense the
lengths at the cost of a factor of 1+ε in the length bound as described in Lemma 4.30.

4.3.2 Inapproximability and lower bounds for UFL-CLT

In this section, we give a hardness result on the approximability of UFL-CLT and provide
two lower bounds used in the following sections.

Inapproximability

UFL-CLT generalizes several problems that are known to be hard to approximate better
than by a polylogarithmic factor, e.g., non-metric UFL or SLST. In fact, the problem
remains hard to approximate even in the special case of c and ` being proportional to a
common metric.

Theorem 4.35 For any ε > 0, there is no (3 − ε, (1 − ε) ln |C|)-approximation for
UFL-CLT, unless NP ⊆ DTIME(nO(log logn)), even when restricting to instances with
c = ` is a metric.
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Proof. The result follows from a simple reduction from (unweighted) set cover. Let (H,S)
be an instance of set cover with ground set H and set system S ⊆ 2H . We construct an
instance of UFL-CLT as follows. For each element h ∈ H, we introduce a client vh and for
every set S ∈ S, we introduce a facility wS with opening cost f(wS) = M := |H| ln |H|.
Set `(vh, wS) = c(vh, wS) = 1 if e ∈ S and 3 otherwise. We set U = ∞ and L = 1.
Let OPT be the cost of the resulting UFL-CLT instance. Let S∗ ⊆ S be a set cover
of minimum cardinality. This set cover induces a solution to this UFL-CLT instance by
opening all facilities corresponding to sets in S∗ and connecting each client directly to
its closest open facility. Hence OPT ≤M |S∗|+ |H|.

Now assume by contradiction there is a (3−ε, (1−ε) ln |C|)-approximation algorithm
for UFL-CLT and apply it on the constructed instance. As (3 − ε)L < 3, the resulting
solution only contains edges {vh, wS} for which h ∈ S. Accordingly, the set of open
facilities F induces a set cover. The cost of the solution isM |F |+|H| ≤ (1−ε) ln |H|OPT.
Hence, the number of sets in this cover is

|F | ≤ (1− ε) ln |H|OPT− |H|
M

≤ (1− ε)|S∗| ln |H|+ (ln |H| − 1)|H|
M

which is bounded by (1−ε) ln |H||S∗| for all sufficiently large values of |H| . Hence there
is a (1− ε) ln |H|-approximation for set cover, implying NP ⊆ DTIME(nO(log logn)).

Lower bounds

We assume we are given an instance of UFL-CLT. Let OPT be the cost of an optimal
solution to this instance. The following two lower bounds are again generalizations of
the lower bounds used in [RS06].

Lemma 4.36 For v ∈ C and w ∈ F define

c̃(v, w) :=
1

U
min{c(P ) : P is a v-w-path in G with `(P ) ≤ L}.

Let F̃ ⊆ F be an optimal solution to the UFL instance with facilities F , clients C, opening
costs f and connection costs c̃. Then

∑
w∈F̃ f(w) +

∑
v∈C c̃(v, F̃ ) ≤ OPT.

Proof. Let (F, T , φ) be an optimal solution of the UFL-CLT instance. Interpret F as a
solution to the UFL instance with connection cost c̃. Clearly, c̃(v, F ) ≤ c(φ(v))/U as the
tree φ(v) contains a path from a facility to v of `-length at most L. Thus∑

v∈C
d(v)c̃(v, F ) ≤

∑
v∈C

d(v)
c(φ(v))

U
=
∑
T∈T

∑
v∈C :φ(v)=T

d(v)
c(T )

U
≤
∑
T∈T

c(T )

where the last inequality follows from the capacity constraint (2). Note that the last
term equals the connection cost of the optimal UFL-CLT solution and thus the total cost
of the UFL solution F with respect to f and c̃ is at most the total cost of (F, T , φ) with
respect to f and c.

Lemma 4.37 Let G′ := (V ′, E′) with V ′ = V ∪ {r} and E′ = E ∪ {ew : w ∈ F}
where ψ(ew) = {r, w}, c(ew) = f(w), and `(ew) = 0. Let T ⊆ E′ be a tree of minimal
cost among all trees spanning C ∪ {r} with `(T [r, v]) ≤ L for all v ∈ C, i.e., T is an
optimal shallow-light Steiner tree on G′. Then c(T ) ≤ OPT.
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Proof. Let (F, T , φ) be an optimal solution of the UFL-CLT instance. Define the set
of edges S =

⋃
T∈T T ∪ {ew : w ∈ F}. This set spans C ∪ {r} and contains a path of

length L from each client to r. Computing a shortest path tree from r to each v ∈ C
with respect to ` in the graph induced by S yields a tree T ′ with depth`(T

′, r) ≤ L
and c(T ′) ≤ c(S) ≤∑w∈F f(w) +

∑
T∈T c(T ).

4.3.3 Approximation algorithms for general UFL-CLT

In this section, we introduce an algorithmic framework for approximating UFL-CLT
similar to the one used in Section 4.2 for location routing. We apply it to the general
version of the problem and derive two approximation algorithms. The first runs in
polynomial time and approximates both length bound and optimal cost by a logarithmic
factor. The second runs in quasi-polynomial time, violating the length bound only by a
constant while approximating the cost by a polylogarithmic factor.

Algorithmic framework

The algorithm consists of three main steps. In the first two steps, the facility location
and shallow-light tree instances introduced in Lemmas 4.36 and 4.37 are constructed
and approximately solved. The two solutions are merged in the third step, using the
relieve procedure described in Algorithm 4.1. The UFL instance is computed with
respect to (1, 1 + ε)-approximate shortest paths, which are also passed to the relieve
procedure, each path compressed to a single edge. In a clean up step, compressed edges
that are contained in trees returned by the relieve procedure are expanded again to
paths. The complete algorithm is listed as Algorithm 4.6.

Remark 4.38 Note that the replacement of an edge e in a tree T with the corresponding
path P might create cycles. However, these cycles can be removed by replacing the tree
T with a shortest path tree with respect to costs ` in the graph induced by T from the
root of T to any vertex spanned by T . This neither increases the cost of the tree nor the
length of any path in the tree.

Lemma 4.39 Let T be the set of trees computed by Algorithm 4.6 with wT ∈ V (T ) being
the root of tree T ∈ T . Then

depth`(T,wT ) ≤ (2αSLST + 1)L

for all T ∈ T .
Proof. Let T ′ be the tree computed in Step 1 of the algorithm. Let T ∈ Tw for
some w ∈ F . Note that expanding the paths does not increase the `-depth of T . We
thus consider T as it is returned from the relieve procedure, before expanding the
paths. If T ⊆ T ′[w], i.e., the relieve procedure did not insert an edge from Ẽw
into T , then wT = w and depth`(T,w) ≤ depth`(T

′[w], w) ≤ αSLSTL. Otherwise, the
relieve procedure inserted an edge from ev = Ẽw with ψ(ev) = {v, w(v)} into T . Note
that wT = w(v) and let u ∈ V (T ). Then

`(T [u,wT ]) ≤ `(T ′[u,w]) + `(T ′[w, v]) + `(ev) ≤ (2αSLST + 1)L

where the last inequality follows from the fact that T ′ is an approximate shallow-light
tree and from the construction of ev.
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Algorithm 4.6: Algorithm for UFL-CLT
Step 1:
Construct the UFL instance described in Lemma 4.36 using the
(1, 1 + ε)-approximation for restricted shortest path [Has92]. For v ∈ C and
w ∈ F , let Pvw be the resulting restricted approximately shortest v-w-path.
Compute a βUFL-approximate solution F̃ ⊆ F to this instance.
For v ∈ C, choose w(v) ∈ F̃ with c(Pvw(v)) minimal. Let ev be an edge with
ψ(ev) = {v, w(v)}, c(ev) = c(Pvw(v)), and `(ev) = `(Pvw(v)).
Step 2:
Construct the graph G′ as described in Lemma 4.37 and compute an
(αSLST, βSLST)-approximate shallow-light Steiner tree T ′ in G′ spanning C ∪ {r}.
Let F ′ = {w ∈ F : ew ∈ T ′}.
Step 3:
for all w ∈ F ′ do

Let Ẽw = {ev : v ∈ V (T ′[w]) ∩ C}.
Call relieve (T ′[w], Ẽw, C, d, U, c) and obtain trees Tw and assignments φw.
For every T ∈ Tw, expand the edge ev ∈ T to the corresponding path.
Set φ(v) = φw(v) for all v ∈ V (T [w]) ∩ C.

return
(
F̃ ∪ F ′, ⋃w∈F ′ Tw, φ

)

The algorithmic framework introduced above can be implemented using different
variants of approximation algorithms for the UFL and SLST instances in Steps 1 and 2,
resulting in different overall approximation factors and running times.

A polynomial-time (O(log |C|),O(log |C|))-approximation

A natural choice for the UFL approximation of Step 1 is the greedy O(log |C|)-approxima-
tion by Hochbaum [Hoc82]. In Step 2, the (O(log |C|),O(log |C|))-approximation for
diameter-constrained Steiner trees by Marathe et al. [MRS+98] can be used to approxi-
mate the SLST instance. Thus, Lemmas 4.4 and 4.39 yield the following theorem.

Theorem 4.40 Using the greedy UFL approximation [Hoc82] in Step 1 and the (diame-
ter, cost)-algorithm of [MRS+98] in Step 2, Algorithm 4.6 computes in polynomial time
an (O(log |C|),O(log |C|))-approximate solution for UFL-CLT.

A quasi-polynomial (3 + ε,O(log2 |C|))-approximation

In order to improve the approximation guarantee for the length bound to a constant
factor, we employ the quasi-polynomial directed Steiner tree algorithm from [CCC+99]
in the layered graph in Step 2, as described in Theorem 4.32. By Lemmas 4.4 and 4.39,
we get the following approximation ratios.

Theorem 4.41 For every ε > 0, there is an algorithm computing a (3 + ε,O(log2 |C|))-
approximate solution for UFL-CLT in time O(|C|3 log |C|).
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Algorithm 4.7: Greedy 3-stretched covering algorithm
Initialize C′ = C, F = ∅.
while C′ 6= ∅ do

Let v′ ∈ C′ and a let Fv′ = {w ∈ F : `(v′, w) ≤ L}.
Let w′ ∈ Fv′ minimizing f(w′).
Set F = F ∪ {w′}.
Set C′ = C′ ∩ {v ∈ C : `(v, w′) > 3L}.

return F

4.3.4 UFL-CLT with length-proportional costs

The approximation algorithms presented in the previous section are designed to work
well even when cost and length are mutually independent. In practice, it is often realistic
to assume a connection between the two values—the cost of installing a cable usually
increases with the distance it covers. Throughout this section, we assume G to be
complete and both c and ` to be proportional to a common metric on G. Note that
we can thus assume c = ` without loss of generality. For this special case, a modified
version of Algorithm 4.6, using the LAST algorithm of Khuller et al. [KRY95] introduced
in Section 4.3.1 and a greedy covering, yields a solution that approximates both the
length bound and the optimal cost by constant factors. We can adjust the two constants
by modifying the parametric approximation factor of the LAST.

µ-stretched covers. Before applying the LAST algorithm, we need to ensure that for
each client we have opened a facility whose distance to the client does not exceed the
length bound by more than a constant factor. A µ-stretched cover is a set of facili-
ties F ⊆ F such that for every client v ∈ C there is a facility w ∈ F with `(v, w) ≤ µL.
When ` is metric, a 3-stretched cover whose opening cost is bounded by the opening cost
of the optimal solution can be computed by a simple greedy procedure; see Algorithm 4.7.

Lemma 4.42 A 3-stretched cover F with
∑

w∈F f(w) ≤ OPT can be computed in time
O(|C||F|) using Algorithm 4.7.

Proof. The running time of O(|C||F|) is obvious. During the course of Algorithm 4.7,
a client v is only removed from C′ if `(v, F ) ≤ 3L. Thus, when the algorithm termi-
nates, F is a 3-stretched cover. For any facility w ∈ F , let v(w) ∈ C be the client
that was chosen in the first line of the while loop in the iteration where w was added
to F , and let o(w) ∈ F be the facility that serves v(w) in a fixed optimal solution.
Clearly, f(w) ≤ f(o(w)) as o(w) ∈ Fv(w). We now show o(w) 6= o(w′) for w 6= w′, which
implies the claim of the lemma. By contradiction assume o(w) = o(w′) for w 6= w′.
Without loss of generality, w was added to F before w′. Then o(w) = o(w′) im-
plies `(v(w′), w) ≤ `(v(w′), o(w′)) + `(v(w), o(w)) + `(v(w), w) ≤ 3L. Thus v(w′) was
erased from C′ when w was added to F , contradicting the fact that v(w′) was chosen in
a later iteration.

Remark 4.43 By a simple reduction from set cover, it is also easy to see that there is no
polynomial time algorithm computing a (3− ε)-stretched cover with cost at most OPT,
unless P = NP .
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Algorithm 4.8: Algorithm for UFL-CLT with length-proportional cost
Step 1:
Construct a UFL instance with clients C, facilities F , demands d, opening cost f
and connection cost c/U . Compute an approximate solution F̃ ⊆ F to this
instance using the algorithm in [BA10] with γ = γα.
For v ∈ C, choose w(v) ∈ F̃ such that c(v, w(v)) is minimal.
Step 2:
Construct the graph G′ as described in Lemma 4.37 and a βST-approximate
Steiner tree T ′ in G′ spanning C ∪ {r}.
Let F ′ = {w ∈ F : ew ∈ T ′}.
Step 3:
for all w ∈ F ′ do

Let Ẽw = {{v, w(v)} : v ∈ V (T [w]) ∩ C}.
Call relieve (T [w], Ẽw, C, d, U, c) and obtain trees Tw and assignments φw.
Set φ(v) = φw(v) for all C ∈ V (T [w]) ∩ C.

Step 4:
Compute a 3-stretched cover F̄ using Algorithm 4.7.
Let F = F̃ ∪ F ′ ∪ F̄ and T =

⋃
w∈F ′ Tw.

Contract F to a single vertex r′.
For v ∈ V , choose ev ∈ E with ψ(ev) = {r′, v} and c(ev) minimal.
for all T ∈ T do

Apply the algorithm of Khuller et al. [KRY95] using T as initial tree and the
star {ev : v ∈ V (T )} as shortest path tree; obtain an (α, 1 + 2/(α− 1))-LAST
T ∗ with respect to c and root r′. Replace T ′ by T ∗.

Expand r′ to F .
return (F, T , φ)

The algorithm

The first three steps of the algorithm for length-proportional cost resemble those of Al-
gorithm 4.6 with the only difference being the absence of the length bound. We therefore
can apply constant factor approximations for the resulting metric UFL and Steiner tree
instances in Steps 1 and 2, respectively. After applying the relieve procedure, the
algorithm computes a 3-stretched cover of facilities that are opened in addition to those
stemming from the previous steps. Finally, each tree in the solution computed thus far
is processed using the LAST algorithm, ensuring that the distance of each client to the
root of its tree is at most α times the distance to the closest open facility (which is at
most 3L), while increasing the cost of the tree by a factor of at most 1 + 2/(α− 1). The
algorithm is formally described in Algorithm 4.8.

In order to improve the approximation guarantee of the algorithm, the connection
and opening costs of the UFL approximation are balanced carefully. As in Section 4.2,
we use the bifactor approximation algorithm of Byrka and Aardal [BA10], which takes as
additional input a parameter γ, returning a solution whose opening cost is at most γ times
the opening cost of an initial LP solution and whose connection cost is at most 1 + 2e−γ

times the connection cost of that LP solution. We denote the optimal choice of γ for a
given α by γα. It is the unique solution to (1 + 2/(α − 1))(2 + 4e−γ) = γ, as can be
derived from the proof of Theorem 4.44.
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Figure 4.3: Approximation factors achieved by Algorithm 4.8 for UFL-CLT with length-
proportional cost, using the Steiner tree approximation by Byrka et al. [BGRS10]
with βST = 1.39.

Theorem 4.44 For every α > 1, there is a (3α, (1 + 2
α−1)βST + γα + 1)-approximation

algorithm for UFL-CLT restricted to instances with ` = c being a metric, where γα is the
unique value fulfilling the equation (1 + 2

α−1)(2 + 4e−γα) = γα and βST is the approxima-
tion factor of an approximation algorithm for Steiner tree.

Proof. The approximation ratio of the length bound immediately follows from the fact
that F̄ is a 3-stretched cover and thus the shortest path distance from any client to r′ in
Step 4 is at most 3L.

By Lemma 4.4, the cost of the solution constructed at the end of Step 3 is at
most

∑
w∈F̃ f(w) + c(T ′) + 2

∑
v∈C c̃(v, F̃ ). Thus, the cost of the final solution is bounded

by ∑
w∈F̄

f(w)︸ ︷︷ ︸
≤OPT

+
∑
w∈F̃

f(w)

︸ ︷︷ ︸
≤γαfLP

+ (1 +
2

α− 1
)

(
c(T ′)︸ ︷︷ ︸
≤ βSTOPT

+ 2
∑
v∈C

c̃(v, F̃ )︸ ︷︷ ︸
≤(1+2e−γα )c̃LP

)

where fLP and c̃LP denote the opening cost and connection cost of the solution to the
LP relaxation used in the algorithm from [BA10]. By definition of γα the cost sums up
to the optimal cost times the ratio claimed in the theorem.

4.3.5 UFL-CLT with hop constraints

In many applications, the quality of a connection within the network depends on the num-
ber of hops, i.e., the number of intermediate nodes between the sender and the receiver.
In this section, we consider the corresponding special case of UFL-CLT where ` ≡ 1,
the graph is complete and c is a metric. We will show how to adapt Algorithm 4.6 so
as to approximate the length bound—also known hop constraint in this case—with ar-
bitrary precision while still achieving a logarithmic cost approximation and polynomial
running time.

The improved guarantee on the hop constraint is achieved by applying two different
tree algorithms, depending on the number of hops allowed in the instance. If L is large, we
will use a (1,O(log |V |))-approximation for the minimum hop-constrained spanning tree



122 Chapter 4: Approximating combined location and network design problems

problem with metric costs by Althaus et al. [AFHP+05]. However, the transformation
of the corresponding lower bound from Steiner tree to spanning tree incurs an increase
in the number of hops by an additive constant. We will compensate for this by using a
different algorithm for instances where L is small: The (1,O(log |S|))-approximation for
bounded diameter Steiner trees by Kortsarz and Peleg [KP99b] runs in polynomial time
when the number of hops is constant. It also does not require the costs to be metric.
The final ingredient is a slight modification of the relieve subprocedure, ensuring that
the depth of newly created trees does not exceed that of the original tree.

The spanning tree lower bound. We start by showing that the cost of an optimal
UFL-CLT solution can be bounded against twice the minimum cost of a hop-constrained
tree spanning exactly the clients and an artificial root node derived from merging all
facilities—note that for general length functions, the minimum cost of a length-bounded
spanning tree can exceed that of an length-bounded Steiner tree by a factor of θ(|V |).
Lemma 4.45 Let Ĝ = (C∪{r}, Ê) be the complete graph on C∪{r}. Extend the metric c
by defining c(r, v) = minw∈F c(v, w)+f(w) for all v ∈ C. Let T̂ be an (L+1)-hop spanning
tree in Ĝ with root r of minimum cost. Then c(T̂ ) ≤ 2OPT.

Proof. Let (F, T , φ) be an optimal solution to the UFL-CLT instance. We will modify
every tree in T to ensure it only contains clients and is rooted at r. Without loss of
generality, we can assume all leaves of the tree to be clients. Furthermore, if wT = wT ′

for the roots of T, T ′ ∈ T , then merge T and T ′ to obtain a single tree rooted at wT by
computing a shortest path tree in T ∪T ′ with respect to `. Thus, for every w ∈ F , there
is only a single tree T ∈ T with wT = w.

For T ∈ T and a vertex w ∈ V (T ), let vmin
w,T be a child of w in T that minimizes c(v, w)

among all children v of w. We modify each tree T ∈ T by iteratively applying the
following change to a vertex w ∈ V (T ) \ C. We choose w so as to maximize its dis-
tance |T [w,wT ]| from the root; note that this implies v ∈ C for all children v of w.
If w = wT , then let u = r. Otherwise, let u be the parent of w in T . Remove the edges
of {vmin

w,T , w} and {w, u} from T and insert {vmin
w,T , u}. Then, for each child v ∈ C of w

with v 6= vmin
w,T , replace {v, w} by {v, vmin

w,T } in T . The vertex w is thus removed from the
tree. Repeat the procedure until r is the only non-client vertex in T .

Observe that by triangle inequality, every replacement of an edges {v, w} by {v, vmin
w,T }

increases the cost of the corresponding tree by at most c(vmin
w,T , w) ≤ c(v, w). Note

that vmin
w,T is always a client in such a situation and thus v is involved in such a replacement

at most once. A replacement of the edge {vmin
w,T , w} and {w, u} by {vmin

w,T , u} does not
increase the cost of the tree unless u = r. If u = r, it increases the cost of the tree
by at most f(wT ). Note that this happens at most once for every w ∈ F , as there is
only one T ∈ T with wT = w. Hence, the total increase in cost by all edge replacements
is bounded by

∑
T∈T c(T ) +

∑
w∈F f(w). Furthermore, observe that if u 6= r, then

the modification does not change the length of any client-root-path in the tree (the
subpath v − w − u is replaced by v − vmin

w,T − u). If u = r, then the modification may
increases the length of some client-root-paths by 1 (the subpath v − wT is replaced
by v − vmin

w,T − r).
Thus, for each client v ∈ C there is a tree T ∈ T with a v-r-path of length at

most L+ 1. Therefore, the set of edges
⋃
T∈T T contains an L+ 1-hop spanning tree T ∗

of Ĝ with c(T ∗) ≤ 2
∑

T∈T c(T ) +
∑

w∈F f(w) ≤ 2OPT.
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Algorithm 4.9: Algorithm for UFL-CLT with hop constraints.
Step 1:
Construct a metric UFL instance with clients C, facilities F , demands d, opening
cost f and connection cost c/U . Compute an O(log |C|)-approximate solution
F̃ ⊆ F to this instance using the algorithm from [Hoc82].
For v ∈ C, choose w(v) ∈ F̃ such that c(v, w(v)) is minimal.
Step 2:
if L ≤ d1/εe then

Construct the graph G′ as described in Lemma 4.37 and compute an
O(log |C|)-approximate (L+ 1)-hop Steiner tree T ′ in G′ spanning C ∪ {r}
using the algorithm in [KP99b].

else
Construct the graph Ĝ as described in Lemma 4.45 and compute an
O(log |C|)-approximate (L+ 1)-hop spanning tree T ′ rooted at r in Ĝ using
the algorithm in [AFHP+05]. Replace every edge {r, v} in T ′ by edges {r, w}
and {w, v} for some w ∈ F with c(v, w) + f(w) minimal.

Let F ′ = {w ∈ F : {r, w} ∈ T ′}.
Step 3:
for all w ∈ F ′ do

Let Ẽw = {{v, w(v)} : v ∈ V (T [w]) ∩ C}.
Call mod_relieve(T ′[w], Ẽw, C, d, U, c) and obtain trees Tw and
assignments φw.
Set φ(v) = φw(v) for all C ∈ V (T [w]) ∩ C.

return
(
F̃ ∪ F ′, ⋃w∈F ′ Tw, φ

)

Modified relieve procedure. Our modification to the original relieve procedure
as described in Algorithm 4.1 is very subtle. When processing a group of subtrees Si
rooted at children of a vertex v′, we do not add the edge evi = {vi, w(vi)} to the tree,
but instead insert {v′, w(vi)}. We denote this modified procedure by mod_relieve.

Lemma 4.46 Let T be the set of trees that is returned by mod_relieve when given
the tree T ′ rooted at wT ′ and edges Ẽ = {ev : v ∈ C} as input. Then

depth(T,wT ) ≤ depth(T ′, wT ′)

for all T ∈ T . Furthermore,∑
T∈T

c(T ) ≤ 2c(T ′) + 2
∑

v∈V (T ′)∩C
d(v)

c(ev)

U
.

Proof. Let T ∈ T . If T ⊆ T ′[w], i.e., none of the edges from Ẽ were added to T , the
depth of T is at most the depth of T ′. In any other case, mod_relieve added an edge
{v′, w(vi)} to T when connecting the subtrees in some group Si of subtrees rooted at
children of vertex v′. Thus,

|T [v, w(vi)]| = |T [v, v′]|+ 1 ≤ |T ′[v, v′]|+ |T ′[v′, wT ′ ]| = |T ′[v, wT ′ ]|

for every v ∈ V (T ) ∩ C.



124 Chapter 4: Approximating combined location and network design problems

It remains to show the cost bound. Compared to the original procedure described
in Algorithm 4.1, the procedure mod_relieve inserts edge {v′, w(vi)} instead of the
edge {vi, w(vi)} for each tree Ti it creates for group Si. Observe that c(v′, w(vi)) ≤
c(vi, w(vi))+c(T ′[vi, v′]) by triangle inequality. As the paths T [vi, v

′] are pairwise disjoint
for different groups Si, the total cost of the trees in T increases at most by the cost of
the original tree T ′ compared to the analysis given in Lemma 4.4.

Theorem 4.47 Algorithm 4.9 is a (1 + ε,O(log |C|)-approximation for UFL-CLT re-
stricted to instances with ` ≡ 1 and c being a metric.

Proof. By Lemma 4.46, the cost of the solution produced by the algorithm is bounded
by ∑

w∈F̃∪F ′
f(w) +

∑
T∈T

c(T ) ≤
∑
w∈F̃

f(w) + 2c(T ′) + 2
∑
v∈C

c̃(v, F̃ ).

Using the approximation guarantees of the UFL and tree algorithms, and the lower
bounds from Lemmas 4.36, 4.37 and 4.45, we deduce that this is within a factor of
O(log |C|) of the optimal solution cost.

If L ≤ d1/εe, then every tree T ′[w] has depth at most L, as T ′ is an (L+ 1)-hop tree.
If L > d1/εe, then every tree T ′[w] has depth at most L+ 1, as T ′ is an (L+ 2)-hop tree
after insertion of the edges {r, w} and {w, v} for {r, v}. However, note that in the latter
case, L+ 1 ≤ (1 + ε)L. By Lemma 4.46, applying mod_relieve to these trees does not
increase their cost, and thus the hop-constraint is approximated by a factor of 1 + ε.

4.4 Conclusion
In this chapter, we studied a framework for approximating combined facility location and
network design problems. We applied the framework to different variants of capacitated
location routing (CLR) and to facility location with capacitated and length-bounded trees
(UFL-CLT). For the latter problem, we achieved individual approximation guarantees for
maximum connection length and cost, with improved factors in two important special
cases. In addition to our theoretical results, a computational study revealed that the
actual solution quality achieved by our algorithm for CLR is much closer to optimality
than suggested by the theoretical worst-case bounds.

Open problems and future research

We want to close by pointing out several interesting open questions related to our re-
search.

Capacitated facilities. In many practical settings, the amount of demand that can be
served from an individual facility is bounded. Such facility capacities are particularly
relevant in the case of location routing. Most heuristic algorithms for CLR have been
shown to cope well with facility capacities, and also our algorithm has been adapted
to work heuristically in this setting [Bod12]. Unfortunately, the situation is much less
clear in the context of approximation. Even for the basic capacitated facility location
problem, many of the established approximation techniques fail; see also Problem 5 in
the list of open problems in [WS11]. Still, there exist constant factor approximation
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algorithms for capacitated facility location based on local search [KPR98]. Generalizing
these results to CLR with facility capacities would be of profound interest for the vehicle
routing community. So far, the only known results in this direction are due to Chen and
Chen [CC09a, CC09b] for the case of soft-capacitated facilities.

Lower bounds on the approximability of location routing. Our study does not address
the issue of lower bounds on the possible approximation factor for basic capacitated
location routing. Of course, hardness results for metric UFL or capacitated vehicle
routing carry over to CLR. This means that, unless P = NP , no approximation factor
better than 1.43 in case of splittable demands or 1.5 in case of unsplittable demands can
be achieved; see [GK98] and [GW81], respectively. However, a significant gap between
these lower bounds and the upper bound of 4.38 established by our results remains. It
would be interesting to see a hardness result that combines the complexity of the two
problems in order to achieve a stronger inapproximability result.

Uncertainty of demands. In the practical application motivating our work on UFL-
CLT, precise client demands are unknown during the early planning phase but can only be
estimated roughly. However, fixing location decisions with sufficient lead time can reduce
installment costs considerably. Developing approximation algorithms for a generalization
of UFL-CLT that incorporates this uncertainty in a two-stage optimization problem is
an interesting subject for future research.

Approximability of shallow-light trees. As already indicated in Section 4.3.1, there is a
considerable gap between known approximation algorithms for the shallow-light Steiner
tree problem (SLST) and the corresponding non-approximability results. The existence
of an (O(1),O(1))-approximation algorithm or a (1,O(log2 n))-approximation algorithm
for SLST remains one of the most important open question in this area.





Chapter 5

Degree-constrained orientations
of embedded graphs

In this chapter, we investigate the problem of orienting the edges of an embedded
graph in such a way that the in-degrees of both the vertices and faces in the resulting
digraph and its induced dual meet given values. We show that the number of feasible
solutions is bounded by 22g, where g is the genus of the embedding, and that all
solutions can be determined within time O(22g|E|2 + |E|3). In particular, in the case
of planar embeddings, the solution is unique if it exists, and in general, the problem
of finding a feasible orientation is fixed-parameter tractable in g. In sharp contrast to
these results, we show that the problem becomes NP -complete even for a fixed genus
if only upper and lower bounds on the in-degrees are specified instead of exact values.

Publication remark: The results presented in this chapter are joint work with
Yann Disser [DM12].

Graph orientation is a special variant of network design that deals with the assignment
of directions to the edges of an undirected graph, subject to certain problem-specific
requirements. Besides yielding useful structural insights, e.g., with respect to connectivity
of graphs [Rob39, NW60] and hypergraphs [FKK03], research in graph orientation is
motivated by applications in areas such as evacuation planning [Wol01, RAEP10], graph
drawing [EW90, BCG+05], or efficient data structures for planar graphs [CE91].

A particularly well-studied class of orientation problems are degree-constrained prob-
lems, where the in-degree of each vertex in the resulting digraph has to lie within certain
bounds. Hakimi [Hak65] and Frank and Gyárfás [FG76] provided good characteriza-
tions1 for the existence of such orientations. In this chapter, we answer a question raised
by András Frank [Fra10], asking for a good characterization for the following problem:
Given an embedding of a graph in the plane, is there an orientation of the edges that
meets prescribed in-degrees both in the primal and the dual graph at the same time? We
show that if such an orientation exists, it is unique and can be computed by combining
a feasible orientation for the primal graph with a feasible orientation for the dual graph.
Our result generalizes to graph embeddings of higher genus, showing that the number of
feasible orientations is bounded by a function of the genus, and the set of all solutions
can be computed efficiently as long as the genus is fixed. We also show that the problem
becomes NP -complete as soon as upper and lower bounds on the in-degrees are specified
instead of exact values.

1A good characterization of a decision problem in the sense of Edmonds [Edm65] is a description of
polynomially verifiable certificates for both yes- and no-instances of the problem.

127



128 Chapter 5: Degree-constrained orientations of embedded graphs

Chapter outline. In Section 5.1, we give a short introduction to orientations and embed-
ded graphs. Section 5.2 then deals with the fixed-degree primal-dual orientation problem,
which asks for an orientation of a given embedded graph, such that exact in-degree pre-
scriptions are met not only for every vertex but also for every face of the embedding.
The section contains two different proofs that yield the answer to Frank’s question for
a good characterization: Section 5.2.1 comprises a combinatorial proof for the unique-
ness of the solution in plane graphs, also reducing the problem to solving the original
degree-constrained orientation problem once in the primal and once in the dual graph.
In Section 5.2.2, an alternative proof based on a simple linear algebra argument also
yields a bound on the number of feasible orientations in embeddings of higher genus. In
Section 5.3, we show that if we accept upper and lower bounds on the in-degrees instead
of exact values, the problem becomes NP -complete.

5.1 Introduction to graph orientation
In this section, we introduce the basic notions of graph orientation and embedded graphs,
and give an overview of results in literature related to graph orientation.

5.1.1 Orientations and embedded graphs

Throughout this chapter, we will assume all graphs to be connected but not necessarily
simple, i.e., loops and parallel edges are allowed. While the connectedness assumption is
very common in the context of graph embeddings, all results presented here can be ex-
tended to non-connected graphs by temporarily introducing additional edges—adjusting
the in-degree specifications accordingly—so as to render the graph connected.

Orientations

An orientation of a graph G = (V,E) is a digraph D = (V,A) such that A ⊆ B(E)
contains for every edge e ∈ E exactly one of the two corresponding arcs a+

e , a
−
e ∈ B(E)

of the bidirected graph B(G) = (V,B(E)) as defined in Section 1.1.3. Given an orienta-
tion D, note that δ−D(v) denotes the set of edges that are oriented towards vertex v and
that δ+

D(v) denotes those edges that are oriented away from v. The degree-constrained
orientation problem asks for an orientation fulfilling given degree bounds.

Problem: Degree-constrained orientation problem

Input: A graph G = (V,E), and in-degree bounds α, β ∈ ZV+.

Task: Find an orientation D of G such that α(v) ≤ |δ−D(v)| ≤ β(v) for
all v ∈ V , or prove that there is no such orientation.

The special case of the problem with α = β is called fixed-degree orientation
problem.

Remark 5.1 The fixed-degree orientation problem is equivalent to checking the existence
of a b-flow in the digraph D = (V,A) corresponding to an arbitrary orientation of G when
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Figure 5.1: Induced orientations of the edges in the dual graph. Primal edges are drawn as solid
lines, dual edges are drawn as dashed lines. An edge in the dual graph crosses its
corresponding edge in the primal graph from right to left.

defining b(v) := α(v)− δ−D(v) for all v ∈ V . Observe that x ∈ {0, 1}A is a feasible b-flow
if and only if reversing all arcs a with x(a) = 1 results in a feasible orientation. Checking
the existence of such a b-flow is, in turn, equivalent to the maximum flow problem with
unit capacities.

Embedded graphs

An embedding of a graph is a mapping of the vertices and edges of the graph onto a
closed surface—e.g., a sphere or a torus—such that edges meet only at common vertices.
This mapping partitions the surface into several regions, called faces. The dual of an
embedded graph is the graph that is obtained by the following procedure: For every
face in the embedding, introduce a vertex in the dual graph. For every edge of primal
graph, introduce an edge in the dual graph that connects the faces that are adjacent to the
original edge. The genus g of the embedding is determined by Euler’s formula: If E is the
set of edges, V is the set of vertices and V ∗ is the set of faces, then |V |+|V ∗|−|E| = 2−2g.

Planar embeddings. If g = 0, i.e., the graph is embedded in a sphere, the embedding
is called planar—note that embeddings in spheres and planes are combinatorially equiv-
alent. Planar embeddings have several features that make them particularly interesting.
In particular, we will make use of the following fact, called cycle/cut duality, which was
first discovered by Whitney [Whi32] and holds exclusively in planar embeddings: A set
of edges is a simple cycle in the primal if and only if it is a simple cut in the dual and
vice versa.

Embeddings of digraphs. The concepts of embeddings and graph duality naturally
transfer to directed graphs using the convention that arcs in the dual graph are oriented
in such a way that they cross their primal “alter egos” from right to left; see Figure 5.1 for
an example. In particular, cycle/cut duality extends to planar embeddings of digraphs
in the sense that a directed simple cycle in the primal is a directed simple cut in the dual
and vice versa.

For a comprehensive introduction to combinatorial embeddings see, e.g., the lecture
notes in by Klein [Kle09], which also contain interesting algorithmic techniques exploiting
planarity.
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Orientations of primal graph and dual graph. By the convention for embeddings of
digraphs introduced above, every orientation of the primal graph induces an orientation of
the dual graph and vice versa. In accordance with our notation for the primal orientation,
we let δ−D(f) be the set of edges whose left face is f , and δ+

D(f) be the set of edges whose
right face is f .

5.1.2 Related work

Research in graph orientation has a long history that revealed many interesting struc-
tural insights and applications. Classic results include the orientation theorem by Rob-
bins [Rob39] stating that an undirected graph is 2-edge-connected if and only if it
has an orientation that is strongly connected; see also the generalizations by Nash-
Williams [NW60] and Frank, Király, and Király [FKK03]. Graph orientation is also
closely related to both graph drawing and network flows. We will discuss the latter
connection in more detail below. Before, we will give an overview of results related to
degree-constrained orientations and orientations of planar graphs.

Degree-constrained orientations. Hakimi [Hak65] considered the fixed-degree orienta-
tion problem. He showed that a feasible orientation exists if and only if

∑
v∈V α(v) = |E|

and
∑

v∈S α(v) ≥ |E[S]| for all S ⊆ V . He gave similar characterizations for the exis-
tence of orientations that fulfill either lower or upper bounds on the in-degrees, i.e., the
special cases α = 0 or β = 0 of the degree-constrained orientation problem. Frank and
Gyárfás [FG76] observed that the results for lower and upper bounds can easily be com-
bined in a constructive way to find orientations that fulfill upper and lower bounds at
the same time. Also optimization versions of the degree-constrained orientation prob-
lem have been studied. Gabow [Gab06] considered the problem of finding a subset of
edges with maximum cardinality that can be oriented without violating any degree con-
straints, leaving the other edges unoriented. He derives a 3

4 -approximation algorithm
for this problem, which he also shows to be MAXSNP-hard. Asahiro et al. [AJMO12]
investigated a version where a penalty function on the violated degree-bounds is to be
minimized. They found that the problem is solvable in polynomial time if the penalty
function is convex, but APX-hard in case of concave penalty functions.

Orientations of planar graphs. Orientations of planar graphs received special attention
by the research community because they revealed several interesting properties. Based on
the insight that every planar graph allows for an orientation with maximum in-degree 3,
Chrobak and Eppstein [CE91] designed a highly efficient data structure for adjacency
queries in planar graphs. In a distinct line of research, Felsner [Fel04] showed that the
set of orientations fulfilling a prescribed in-degree in a planar graph carries the structure
of a distributive lattice.

Graph orientation and network flows. Graph orientation is connected to network flows
in various ways. Important applications combining the two topics arise in evacuation
planning and traffic management, where certain arcs of the network may be reversed in
order to enable faster evacuation or to resolve traffic jams; studies in this direction have,
e.g., been conducted by Wolshon [Wol01] and Hausknecht et al. [HAS+11], respectively.
Rebennack et al. [RAEP10] discuss the complexity of the related contraflow problem,
which asks for which arcs to reverse in order to maximize the flow value. Recently,
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Arulselvan, Groß, and Skutella [AGS13] investigated the price of orientation for flows
over time, i.e., the impact of orienting the edges of the graph on the value of the maximum
transshipment or the time needed for satisfying all demands. Finally, as already pointed
out in Remark 5.1, the fixed-degree orientation problem, which is also the basis for the
problem studied in the next section, is equivalent to the maximum flow problem with unit
capacities. This in particular implies that the problem can be solved in time O(|E| 32 )
using Dinic’s algorithm [Din70]. In the case of planar graphs, this further improves to
a time of O(|E| log3 |E|) using the recent multiple-sources multiple-sinks maximum flow
algorithm by Borradaile et al. [BKM+11].

5.2 Orientations with fixed in-degrees
We consider the problem of finding an orientation that meets given fixed in-degrees for
both the vertices and faces of the embedded graph, called the fixed-degree primal-dual
orientation problem.

Problem: Fixed-degree primal-dual orientation problem

Input: An embedded graph G = (V,E), in-degree specifications α ∈ ZV+
and α∗ ∈ ZV ∗+ .

Task: Find an orientation D of G such that |δ−D(v)| = α(v) for all v ∈ V
and |δ−D(f)| = α∗(f) for all f ∈ V ∗, or prove that there is no such
orientation.

Primal and dual feasibility. The following notation will be useful throughout the proofs
in this section. Given an instance of the fixed-degree primal-dual orientation problem,
we say an orientation D is

• primally feasible if |δ−D(v)| = α(v) for all v ∈ V .

• dually feasible if |δ−D(f)| = α∗(f) for all f ∈ V ∗.

• totally feasible if it is primally and dually feasible.

The fixed-degree primal-dual orientation problem thus asks for a totally feasible orien-
tation. It is clear that the existence of both a primally feasible orientation and a dually
feasible orientation is necessary for the existence of a totally feasible orientation. How-
ever, it can easily be checked that this is not sufficient.

Example 5.2 Consider a planar graph with two vertices and two parallel edges connect-
ing them, and let α(v) = 1 and α∗(f) = 1 for all v ∈ V and f ∈ V ∗. While orienting
both edges in opposite directions in the primal graph is primally feasible, orienting them
in the same direction—which corresponds to orienting them in oposite directions in the
dual graph—is dually feasible. However, neither of the orientations is totally feasible.

In this section, we will present two approaches for obtaining necessary and sufficient
conditions for the existence of a totally feasible orientation.
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5.2.1 A combinatorial approach for planar embeddings

Using the duality of cycles and cuts in planar graphs yields a combinatorial proof for
the uniqueness of a feasible solution to the fixed-degree primal-dual orientation problem
in the case of planar embeddings. We will also show how to construct a totally feasible
solution from an orientation that is feasible in the primal graph and an orientation that
is feasible in the dual graph.

Rigid edges. Consider a subset S ⊆ V with
∑

v∈S α(v) = |E[S]|. Observe that each
edge in E[S] contributes 1 to the in-degree of a vertex in S, no matter how it is ori-
ented, and thus all edges δ(S) must be oriented from S to V \ S in all primally feasible
orientations. We call edges whose orientation is fixed in this way primally rigid2 and
denote the set of all primally rigid edges by R. Analogously, we define the set of dually
rigid edges R∗ as those that are fixed for all dually feasible orientations due to a tight
set S∗ ⊆ V ∗ of faces with

∑
f∈S∗ α

∗(f) = |E[S∗]|. It is easy to check that an edge is
primally rigid if and only if it is on a directed cut in the primal graph with respect to
any primally feasible orientation.3 Likewise, an edge is dually rigid if it is on a directed
cut in the dual graph with respect to any dually feasible orientation. Note that this also
implies that the set of edges on directed cuts is invariant for all feasible orientations.

Our main result in this section follows from this characterization of rigid edges and the
duality of cycles and cuts in planar graphs.

Theorem 5.3 In case of a planar embedding, there exists a totally feasible orientation
if and only if the following three conditions are fulfilled.

(1) There exists both a primally feasible orientation D and a dually feasible orienta-
tion D∗.

(2) The edge set can be partitioned into primally and dually rigid edges, i.e., E = R∪̇R∗.

(3) The orientation obtained by orienting all primally rigid edges in the same direction
as they are oriented in D and all dually rigid edges in the same orientation as they
are oriented in D∗ is totally feasible.

If it exists, the solution is unique.

Proof. The sufficiency of the conditions is trivial, as the third condition requires the
existence of a totally feasible orientation.

In order to show necessity, assume there exists a totally feasible orientationD0. AsD0

is both primally and dually feasible, it fulfills condition (1) of the theorem. An edge is
primally rigid if and only if it is on a directed cut with respect to D0 in the primal graph.
It is dually rigid if and only if it is on a directed cut in the dual graph. Thus, by cycle/cut
duality of planar graphs, an edge is dually rigid if and only if it is on a directed cycle in
the primal graph. As every edge in the primal graph is either on a directed cut or on
a directed cycle, the sets of primally and dually rigid edges comprise a partition of E,
proving condition (3). Now, let D be a primally feasible orientation and D∗ be a dually

2The term “rigid” for edges that are oriented in an identical way in all feasible orientations was
introduced by Felsner [Fel04].

3Recall that a cut δ(S) in a digraph is directed if δ+D(S) = ∅ or δ−D(S) = ∅.
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feasible orientation. As D0 equals D on all primally rigid edges and equals D∗ on all
dually rigid edges, the construction described in condition (3) yields D0 and is feasible.

As all edges are either primally of dually rigid, they must have the same orientation
in all totally feasible solutions, and D0 is unique.

Note that the totally feasible solution constructed in the third condition does not
depend on the choice of D and D∗. As primally and dually feasible solutions can be
found in polynomial time, and rigid edges can be identified by determining the strongly
connected components with respect to D and D∗, respectively, Theorem 5.3 yields a
polynomial time algorithm for solving the problem for planar embeddings.

Corollary 5.4 The fixed-degree primal-dual orientation problem for planar embeddings
can be solved in time O(|E| log3 |E|).

Proof. By Theorem 5.3, the problem can be solved by computing a primally feasible
solution and a dually feasible solution and identifying the corresponding rigid edges. Both
a primally feasible orientation and a dually feasible orientation can be found by solving
the corresponding maximum flow problems in the primal graph and in the dual graph
using the multiple-sources multiple-sink planar maximum flow algorithm by Borradaile
et al. [BKM+11], which runs in time O(|E| log3 |E|). Note that identifying directed
cuts is equivalent to identifying strongly connected components, which can be done in
time O(|E|).

5.2.2 A linear algebra analysis for general embeddings

The fixed-degree primal-dual orientation problem can be formulated as a system of linear
equalities over binary variables. To this end, we fix an arbitrary orientation D = (V,A)
of the graph and introduce for every arc a ∈ A a decision variable x(a) that determines
whether the orientation of the arc should be reversed (if it is 1) or not (if it is 0) in order
to become totally feasible. The vector x ∈ {0, 1}A yields a feasible orientation if and
only if it satisfies the following system of equalities:

∑
a∈δ+D(v)

x(a)−
∑
a∈δ−D(v)

x(a) = α(v)− |δ−D(v)| ∀ v ∈ V (5.1)

∑
a∈δ+D(f)

x(a)−
∑
a∈δ−D(f)

x(a) = α∗(f)− |δ−D(f)| ∀ f ∈ V ∗ (5.2)

The matrix corresponding to the equalities (5.1) is the incidence matrix of the primal
graph, while the matrix corresponding to the equalities (5.2) is the incidence matrix of the
dual graph. As we assume the graph to be connected, we know that the rank of the former
matrix is |V | − 1, while the rank of the latter matrix is |V ∗| − 1. Using the fact that the
boundary of a face is a closed walk in the primal graph, it is easy to see that the rows of the
first matrix are orthogonal to the rows of the second matrix. This implies that all feasible
solutions are contained in a subspace of RA of dimension |E| − |V | − |V ∗|+ 2 = 2g.
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Figure 5.2: Construction of an instance with 22g feasible orientations, showing the tightness
of the bound in Theorem 5.5. The base graph consists of two cycles of length 3
intersecting in a common vertex and is embedded in a torus. Examples of genus g
are obtained by introducing g copies of the base graph.

Theorem 5.5 There are at most 22g distinct solutions to the fixed-degree primal-dual
orientation problem. The set of all totally feasible orientations can be determined in
time O(22g|E|2 + |E|3). The bound on the number of orientations is tight, i.e., there are
embedded graphs of genus g that allow for 22g distinct orientations.

Proof. By basis augmentation, there is a set A′ ⊆ A of 2g arcs such that adding the
equalities x(a) = b(a) with b(a) ∈ {0, 1} for all a ∈ A′ to the system (5.1) and (5.2)
results in a system with full rank, i.e., it has at most one solution. If for some b ∈
{0, 1}A′ the unique solution exists and is a 0-1-vector, it corresponds to the unique
totally feasible orientation that orients the edges of A′ according to the values b(a).
Otherwise, there is no such totally feasible orientation. Thus, solving the equality system
for all |{0, 1}A′ | = 22g possible values of b yields all possible solutions to the fixed-degree
primal-dual orientation problem. This takes time O(|E|3) for inverting the |E| × |E|-
matrix and O(22g|E|2) for multiplying the 22g distinct right hand side vectors.

To see that the bound on the number of orientations is tight, consider the example
depicted in Figure 5.2. The example is constructed from a base graph consisting of a
cycle of length 3 with vertices a, b, c and an additional loop at vertex c. The base graph is
embedded in a torus, thus featuring only a single face f . When setting α∗(f) = |E| = 4,
any orientation is dually feasible as all dual edges are loops. We set the in-degree spec-
ifications to α(a) = α(b) = 1 and α(c) = 2. Now, an orientation of the base graph is
primally feasible if and only if the edges of the cycle are all oriented in the same direction.
As the cycle and the loop can be oriented independently, the base graph has 4 feasible
orientations.

Examples of higher genus can be obtained by introducing g copies of the embed-
ding described above. The graphs are joined via an edge from vertex bi to ai+1 for
every i ∈ {1, . . . , g − 1}. The resulting embedding has 3g vertices and 5g − 1 edges, and
it still has only a single face. We increase the in-degree specifications of each base graph
by setting α(ai+1) = 2 for i ∈ {1, . . . , g − 1}, so that the new edges joining the copies
have to be oriented from copy i to copy i + 1. The in-degree specification of the face is
set to |E| = 5g− 1. Now each copy of the base graph still has its 4 feasible orientations,
so in total there are 4g feasible orientations.4

4Note that while the primal graph in the construction described in the proof could also be embedded
in a plane, an example where g is the actual genus of the graph can be constructed by introducing
additional vertices and edges.
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5.3 Orientations with upper and lower bounds
A generalization of the fixed-degree primal-dual orientation problem asks for an orienta-
tion that fulfills upper and lower bounds on the in-degrees of vertices and faces instead of
attaining fixed values. We show that this problem is NP -complete, even when restricted
to instances with embeddings of a fixed genus as, e.g., planar embeddings.

Problem: Degree-constrained primal-dual orientation problem

Input: An embedded graph G = (V,E), in-degree bounds α, β ∈ ZV+
and α∗, β∗ ∈ ZV ∗+ .

Task: Find an orientation D of G such that α(v) ≤ |δ−D(v)| ≤ β(v) for
all v ∈ V and α∗(f) ≤ |δ−D(f)| ≤ β∗(f) for all f ∈ V ∗, or prove
that there is no such orientation.

In order to show the NP -completeness of the problem, we use a reduction from planar
3-SAT, which was shown to be NP -complete by Lichtenstein [Lic82].

Problem: Planar 3-SAT

Input: A set of n variables V = {v1 . . . , vn} and a set of m
clauses C = {C1, . . . , Cm}, each containing exactly three literals
over V , such that the bipartite graph G3SAT = (V ∪ C,E) with
edges E = {{vi, Cj} : Cj contains a literal of vi} is planar.

Task: Find a truth assignment for the variables in V such that all
clauses in C are satisfied.

Theorem 5.6 The degree-constrained primal-dual orientation problem is NP -complete,
even when restricted to embeddings with a fixed genus.

Proof. An orientation that solves the degree-constrained primal-dual orientation problem
can easily be verified in polynomial time. Hence, it remains to show that the problem is
NP -hard. It is sufficient to do this for planar graphs. We use a reduction from planar
3-SAT. In the following, we let G3SAT denote a fixed embedding of the planar graph
corresponding to a given instance of planar 3-SAT. We proceed to construct an instance
(G,α, β, α∗, β∗) of the degree-constrained primal-dual orientation problem that has a
solution if and only if the instance of planar 3-SAT has a solution. The construction
consists of three parts: a variable gadget for each variable in G3SAT, a clause gadget for
each clause in G3SAT, and an edge gadget for each edge in G3SAT, connecting a clause
and a variable gadget.

For each variable vi of degree di = |δG3SAT
(vi)| in G3SAT, we introduce a variable

gadget; see Figure 5.3 for a depiction. The gadget consists of a cycle of length 2di,
and we refer to the vertices in this cycle as v1,T

i , v1,F
i , v2,T

i , . . . , vdi,Ti , vdi,Fi . The cycle
induces a single face which we call fi. We set α∗(fi) = 0 and β∗(fi) = 2di. For now,
in order to understand the idea behind the variable gadget, we set α(v) = β(v) = 1

for every v ∈ {v1,T
i , . . . , vdi,Fi }, but we will change this when extending the construction
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1 v1,Fi

1 v2,Ti

1 v2,Fi

1 v3,Ti

1vdi,Fi

1vdi−1,Ti

1vdi−2,Fi

1vdi−2,Ti

1vdi−3,Fi

fi
[0, 2di]

1 v1,Ti

1 v1,Fi

1 v2,Ti

1 v2,Fi

1 v3,Ti

1vdi,Fi

1vdi−1,Ti

1vdi−2,Fi

1vdi−2,Ti

1vdi−3,Fi
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Figure 5.3: Illustration of the variable gadget for a variable vi, which has di occurrences in
clauses. The gadget admits only the depicted orientations, the one on the left is
interpreted as vi being ‘true’ and the other as vi being ‘false’.
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1
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c3j

c1,Tj

c2,Fj

c2,Tjc3,Fj

c3,Tj
Fj

[4, 6]

Figure 5.4: Illustration of the clause gadget for a clause Cj . All directed edges are rigid, and the
orientation of each of the three remaining edges represents a truth assignment to a
literal of the clause. At least one of these three edges needs to be oriented counter-
clockwise with respect to Fj . The dashed edges belong to edge gadgets connected
to the clause gadget.

later. Let us analyze the construction so far. Since every vertex requires an in-degree of
exactly 1, all edges of the cycle need be oriented the same with respect to fi, i.e., only
two orientations of the gadget are permitted. We interpret each of the two possible orien-
tations as a truth assignment for the variable vi, depending on the direction of the edges
between vk,Ti and vk,Fi for k ∈ {1, . . . , di}. Directing the edge towards vk,Ti is interpreted
as setting vi to ‘true’, and directing it towards vk,Fi is interpreted as setting vi to ‘false’.

For each clause Cj in G3SAT we introduce a clause gadget that is a cycle with nine
vertices c1

j , c
1,F
j , c1,T

j , c2
j , c

2,F
j , c2,T

j , c2
j , c

2,F
j , c2,T

j enclosing a face Fj ; see Figure 5.4 for a
depiction. We set α(c`j) = β(c`j) = 2 for ` ∈ {1, . . . , 3} and α∗(Fj) = 4 and β∗(Fj) = 6.
We set the lower and upper bounds for the remaining vertices to 1, and remark that
there will be one additional edge incident to each of these vertices in the final con-
struction. For now, observe that any valid orientation has to direct the edges incident
to c1

j , c
2
j , c

3
j towards these vertices. Each of the three remaining edges can be oriented

either way, provided that at least one is in counter-clockwise orientation relative to the
face Fj . For each ` ∈ {1, . . . , 3}, the edge between c`,Fj and c`,Tj will determine whether
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1
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Figure 5.5: Illustration of the edge gadget for an edge connecting variable vi with clause Cj .
The gadget on the left is used when vi appears in a positive literal in Cj , and the
one on the right is used when vi appears in a negative literal. In both cases, the
orientation of the edges in the variable gadgets induces an orientation in of the edge
in the clause gadget that corresponds to the value of the literal.

the corresponding literal of Cj is false or true. If it is directed from c`,Tj to c`,Fj , the cor-
responding literal is considered ‘false’, otherwise it is considered ‘true’. In these terms,
our construction enforces that at least one literal of Cj has to be ‘true’.

So far, we have provided a construction for each variable that can be oriented in
two ways only, and we have given an interpretation of this orientation as a truth as-
signment to the variable. Also, we have provided a construction for each clause to-
gether with an interpretation of each valid orientation as a truth assignment to the
literals of the clause. What remains is to show how to connect the two constructions
in a way that guarantees consistency of the truth assignments to variables and liter-
als. To this end, we introduce an edge gadget for each edge eij = {vi, Cj} in G3SAT

between variable vi and clause Cj as follows; see Figure 5.5 for an illustration. We
assume a fixed counter-clockwise ordering of the edges at each vertex in the embed-
ding of G3SAT. Suppose that eij is the k-th edge at vi and the `-th edge at Cj with
respect to this ordering. We introduce an additional edge between vk,Ti and vk,Fi and
set α∗(f) = β∗(f) = 1 for the new face f enclosed by the two parallel edges. We reas-
sign α(vk,Ti ) = β(vk,Ti ) = α(vk,Fi ) = β(vk,Fi ) = 2. The remaining construction depends on
whether vi appears in a positive or negative literal in Cj . If vi appears in a positive literal,
we add two vertices w1

ij , w
2
ij connected by two parallel edges with α∗(f) = β∗(f) = 1 for

the induced face f . We add the edges {vk,Fi , w1
ij}, {w1

ij , c
`,F
j }, {v

k,T
i , w2

ij}, and {w2
ij , c

`,T
j },

which yields two additional faces f1, f2. We set α(w1
ij) = β(w1

ij) = α(w2
ij) = β(w2

ij) = 2,
α∗(f1) = α∗(f2) = 0, and β∗(f1) = β∗(f2) = 4. Observe that in any valid orientation,
the edge {c`,Fj , c`,Tj } is directed towards c`,Tj (i.e., the corresponding literal is ‘true’) if
and only if vi is ‘true’. Now, if vi appears in a negative literal, we instead simply add
the two edges {vk,Fi , c`,Fj }, {v

k,T
i , c`,Tj }. This yields an additional face f , for which we

set α∗(f) = 0, β∗(f) = 4. Observe that in any valid orientation, the edge {c`,Fj , c`,Tj } is
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Figure 5.6: Example for the reduction of a planar 3-SAT instance with four clauses and four
variables. The clauses are C1 = ¬v1∨¬v3∨¬v4, C2 = v1∨¬v2∨v3, C3 = v1∨v2∨v3,
and C4 = ¬v1 ∨ ¬v3 ∨ v4. The depicted orientation corresponds to the assignment
setting v1, v2, and v4 to ‘true’ and setting v3 to ‘false’.

directed towards c`,Tj (i.e., the corresponding literal is ‘true’) if and only if vi is ‘false’.
Figure 5.6 shows an example of the complete construction for a 3-SAT instance.

The above construction admits an orientation if and only if the corresponding instance
of planar 3-SAT admits a satisfying truth assignment. If it exists, the truth assignment
can easily be inferred from the orientation by the interpretation given above. Finally,
the construction can be made in polynomial time, which concludes our reduction.

Corollary 5.7 The degree-constrained primal-dual orientation problem is NP -complete
even when restricted to instances with either α = β or α∗ = β∗.

Proof. The corollary follows from the fact that the construction in the proof of Theo-
rem 5.6 fulfills α = β. By duality, the reduction can also be achieved by an instance
with α∗ = β∗.
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5.4 Conclusion
In this chapter, we have studied orientation problems in embedded graphs with con-
straints on the in-degrees both in the primal graph and in the dual graph. Using the
orthogonality of cycles and cuts, we have shown that the fixed-degree primal-dual orien-
tation problem for embedded graphs of genus g has at most 22g feasible solutions and
that the set of all solutions can be computed in time O(22g|E|2 + |E|3). In particu-
lar, the solution is unique if the embedding is planar, which answers the question by
Frank [Fra10] that motivated our study. However, the problem becomes NP -complete
immediately, even in the planar case, if only upper and lower bounds on the in-degrees
are specified.

Open problems and future research

While our results already give an almost complete characterization of the complexity of
the primal-dual orientation problem, several interesting open questions remain.

Complexity of the fixed-degree primal-dual orientation problem. The running time
of our algorithm for the fixed-degree primal-dual orientation problem is exponential in
the genus of the embedding. Is it possible to devise an algorithm that finds a totally
feasible orientation in time polynomial in the genus of the embedding?

Optimization variants. Gabow [Gab06] and Asahiro et al. [AJMO12] studied optimiza-
tion variants of the degree-constrained orientation problem, aiming for minimizing the
number of oriented edges in a partial orientation, or minimizing a penalty function for
violated degree bounds. These concepts can be transferred directly to the primal-dual
orientation problem, and it is natural to ask for approximation algorithms for these op-
timization variants. Note, however, that our hardness result in Theorem 5.6 already
implies the non-existence of approximation algorithms in the case of general upper and
lower bounds (unless P = NP ). It thus seems to be advisable to restrict to the fixed-
degree version of the problem.

One-sided bounds. While we showed the degree-constrained primal-dual orientation
problem to be NP -complete, even when restricted to instances where all vertices require
a fixed in-degree and only the faces allow for intervals of different degrees, the complexity
of the following special case, suggested by Woeginger [Woe12], remains unclear: Consider
only instances where for each vertex v ∈ V either α(v) = 0 or β(v) = |δ(v)|, and for each
face f ∈ V ∗ either α∗(f) = 0 or β∗(f) = |δ(f)|. Both constructing a reduction from an
NP -hard problem or devising an exact polynomial algorithm appears to be challenging
in this case, as the one-sidedness of the bounds leaves very large degrees of freedom.





Notation index

General notation

symbol description page
⊂ proper subset
⊆ subset or equal
2E the power set {S : S ⊂ E} of set E
S ∪̇T disjoint union; implies S ∩ T = ∅
AB set of functions/vectors x : B → A
(x)+ positive part of x ∈ R, i.e., (x)+ = max{x, 0}
R+,Q+,Z+ set of non-negative reals, rationals, integers, respectively
[k] set of integers {0, 1, . . . , k}
x ≤ y componentwise less or equal, x(e) ≤ y(e) for all e ∈ E
c(S)

∑
e∈S c(e) for c ∈ QE and S ⊆ E

span(S) the linear hull
{∑

v∈S λ(v)v : λ ∈ QS
}
of the vectors in S

ln(x) logarithm of x with basis e
log(x) logarithm of x with basis 2
〈I〉 encoding size of the instance I 4
f = O(g) O-notation for “f is asymptotically bounded by g” 4
ψ(e) the end points of the edge e 7
V (F ) set of vertices incident to the edges in F 8
tail(a) the tail of the arc a 8
head(a) the head of the arc a 8
E[S] edges with both end points in S ⊆ V 8
G[S] induced subgraph (S,E[S]) of the vertices S ⊆ V 8
U(D) the underlying undirected graph of a digraph D 8
U(A) the set of edges {ea : a ∈ A} corresponding to the arcs in A 8
B(G) the bidirected digraph corresponding to a graph G 8
B(E) the arcs {a+

e , a
−
e : e ∈ E} of the bidirected graph 8

δ(S) set of edges e ∈ E with ψ(e) ∩ S 6= ∅ and ψ(e) ∩ V \ S 6= ∅ 8
δ+(S) set of arcs a ∈ A with tail(a) ∈ S and head(a) ∈ V \ S 8
δ−(S) set of arcs a ∈ A with tail(a) ∈ V \ S and head(a) ∈ S 9
ex(x, v) excess at node v with respect to flow x ∈ QA

+; 9
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Abstract flows

symbol description page
[P, e] {p ∈ P : p ≤P e} for an abstract path P 21
P ×e Q abstract path in [P, e] ∪ [e,Q] guaranteed by the switching axiom 21
Opath path oracle for accessing the abstract network 22
τ(e) transit time of element e 23
T points in time T = {0, . . . , T − 1} 23
ET elements of the time expansion of an abstract network 23
PT set of temporal paths 23
γ(Pt, e) time t+

∑
p∈(P,e) τ(p) at which flow arrives at e when sent along Pt 23

xT temporally repeated abstract flow derived from the abstract flow x 26
Osep separation oracle for accessing the abstract network 28

Transportation planning

symbol description page
B base network 43
D = (V,R) pattern-expanded network 43
K set of commodities 43
P set of properties 43
αij per-unit extent of commodity i for property j 43
α(x) aggregated properties of the vector x ∈ QK

+ ; αj(x) :=
∑

i∈K αijxi 43
bi(v) supply/demand of node v for commodity i 43
T (R) set of available tariffs for transport relation R 44
D = (V,A) tariff-expanded network 46
βj(a) capacity of container type a for property j 46
u(a) upper bound on the number of containers installed on arc a 46

Combined network design and facility location problems

symbol description page
c(v, F ) distance of client v to the nearest facility in F 78
T [v, w] the unique v-w-path in tree T 78
Tr[v] subtree rooted at vertex v of the tree T with respect to root r 78
depth`(T, r) depth of the tree T rooted at r with respect to lengths ` 78
diam`(T ) diameter of the tree T with respect to lengths ` 78

Graph orientation

symbol description page
R set of primally rigid edges 132
R∗ set of dually rigid edges 132



Subject index

abstract flows, 19–33
abstract cut over time, 24
abstract flow over time, 23
abstract network, 20

abstract max flow/min cut over time, 25
aggregated MIP formulation, 61, 63
algorithm, 3–6
all-unit discount cost, 45, 48
ALP, see aggregated MIP formulation
AMIP, see aggregated MIP formulation
anti-parallel, 8
approximation algorithm, 5
arc, 8
arrival time, 23
augmenting path algorithm, 11

base network, 42
bounded diameter Steiner tree problem, 114

capacitated location routing problem, 85
with cross-docking, 100

capacitated-cable facility
location problem, 80

CCFL, see capacitated-cable facility
location problem

CLR, see capacitated location
routing problem

CLR-CD, see capacitated location
routing problem

commodities, 12, 43
complexity class, 4
connected component, 8
consolidation, 35, 38
container, 46
cross-docking, 100
cut, 8

directed, 8
induced, 8
simple, 8

cycle, 8

cycle/cut duality, 129

decomposition, see network flows
degree, 8
degree-constrained orientation problem, 128
degree-constrained primal-dual

orientation problem, 135
depth, 78
diameter, 78
digraph, see graph, directed graph
directed Steiner forest problem, 17
directed Steiner tree problem, 17, 113
DTIME, 4
dual feasibility, 131
dual graph, 129
duality

linear programming, 7
of embedded graphs, 129

edge, 7
rigid, 132

embedded digraph, 129
embedded graph, 129

orientation, 130
embedding, 129
encoding size, 4
end points, 7
Euler’s formula, 129
excess, 9

face, 129
fixed-charge network flow problem, 18
fixed-degree primal-dual orientation

problem, 131
fixed-parameter tractability, 5
flow, see network flows

G-CLR, see group capacitated
location routing problem

good characterization, 127
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graph, 7–9
bidirected, 8
connected, 8
directed, 8
embedded, 129
planar, 129
undirected, 7

group capacitated location
routing problem, 94

head, see arc
heuristic, 5
holdover arc, 14
hop constraint, 113

in-degree, 9
incremental discount cost, 45, 48
integer programming, 6–7
IP, see integer programming

LAST algorithm, 113
layered graph, 114
linear programming, 6–7

duality, 7
equivalence of optimization

and separation, 7
relaxation, 7

local search, 56, 59–60
location routing, 84–110

prize-collecting, 91
with cross-docking, 100
with groups, 94

loop, 7
LP, see linear programming

max flow/min cut theorem, 10
maximum abstract flow

over time problem, 24
maximum flow over time problem, 14
maximum flow problem, 10–11
MCVR, see multi-depot capacitated

vehicle routing problem
minimum cost flow problem, 11
minimum cost multi-commodity

flow problem, 13
minimum spanning tree problem, 16
MIP, see mixed integer programming
mixed integer programming, 6
multi-commodity flows, 12–13

multi-commodity b-flow, 12
multi-depot capacitated vehicle

routing problem, 85

network design, 15–18
network flows, 9–15

b-flow, 9
flow conservation, 9
flow decomposition, 9, 59
flows over time, 13–15
s-t-flow, 9

node, see vertex
NP , 4

oracle, 21, 28
orientation

dually feasible, 131
of a graph, 128
primally feasible, 131
totally feasible, 131

out-degree, 9
out-tree, 9

P , 4
parallel, see edge, 8
path, 8

abstract path, 20
path decomposition, see network flows

pattern optimization, 63
pattern-expanded network, 42
PC-CLR, see prize-collecting capacitated

location routing problem
planar 3-SAT problem, 135
planar graph, 129
primal feasibility, 131
prize-collecting capacitated

location routing problem, 91
properties, 43

aggregated, 43

relieve procedure, 81–84
residual network, 11
restricted shortest paths, 113
rigid, 132
running time, 4

separation, see linear programming
set cover, 4
shallow-light Steiner tree problem, 112
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shallow-light trees, 112–116
shortest path with linearized costs, 56–57
shortest path with tariff selection, 58–59
single-assignment property, 85
single-tour property, 85
sink, 9
SLST, see shallow-light Steiner tree

problem
source, 9
spanning tree, 9
SPLC, see shortest path with linearized costs
SPTS, see shortest path with tariff selection
Steiner tree problem, 16
storage at intermediate elements, 14, 25, 29
strengthened container inequalities, 62
subgraph, 8
subtree, 78
successive shortest path algorithm, 12
supermodularity, 22
switching axiom, 20

tactical transportation planning, 37–38
capacitated network design

formulation, 46
complexity, 49
problem formulation, 44

tail, see arc
tariff, 44
tariff selection, 50–55

cost estimation, 55
greedy algorithm, 53–55
hardness, 52

tariff selection problem, 50
tariff-expanded network, 46
TDI, see total dual integrality
temporal path, 23
temporally repeated abstract flow, 26
time expansion of abstract networks, 23
time horizon, 13
time-expanded ground set, 23
time-expanded network, 14, 24
total dual integrality, 7
total feasibility, 131
transit time, 14
tree, 9

depth, 78
diameter, 78

TS, see tariff selection problem

UFL, see uncapacitated facility location
unbounded knapsack problem, 52
uncapacitated facility location problem, 79

vehicle routing, 84, 86
vertex, 7

degree, 8

walk, 8
weighted abstract cut problem, 21
weighted abstract flow problem, 21

ZTIME, 4
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